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ABSTRACT

We show that administrative hourly wage data exhibits considerable bunching at round numbers 
that cannot be explained by rounding of survey respondents. We consider two explanations—
worker left-digit bias and employer optimization frictions. We experimentally rule out left-
bunching by randomizing wages for an identical task on Amazon Mechanical Turk, and fail to 
find evidence of any discontinuity in the labor supply function as predicted by workers’ left-digit 
bias despite a considerable degree of monopsony. We replicate the absence of round number 
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asymmetry predicted by worker left-digit bias. Symmetry of the missing mass distribution around 
the round number suggests that employer optimization frictions are more important. We show 
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bunching in the data. The extent of monopsony power implied by our estimated labor supply 
elasticities, which are in line with other recent studies, are consistent with a sizable amount of 
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1 Introduction

Behavioral economics has documented a wide variety of deviations from perfect rationality

among consumers and workers. For example, in the product market, prices are more

frequently observed to end in 99 cents than can be explained by chance, and a sizable

literature has confirmed that this reflects firms taking advantage of customers’ left digit

bias (e.g Levy et al. 2011; Strulov-Shlain 2019). However, it is typically assumed that

deviations from firm optimization are unlikely to survive, as competition among firms

drives firms that fail to maximize profits out of business. Therefore, explanations for

pricing and wage anomalies typically rely on human behavioral biases. In this paper, we

show that when it comes to a quantitatively important anomaly in wage setting–bunching

at round numbers—it is driven by mis-optimization by firms and not workers. We also

show that round number bunching survives because of monopsony power in the labor

market, which blunts the cost of mispricing. A moderate amount of monopsony power,

well within the range obtained in both our data and other recent high-quality US evidence,

is sufficient to explain the substantial bunching we document in this paper.

We begin by documenting bunching in the hourly wage distribution at “round” num-

bers. We use data from both administrative sources and an online labor market to confirm

that there is true bunching of wages at round numbers, and it is not simply an artifact of

survey reporting. We begin by providing the first (to our knowledge) credible evidence on

the extent to which wages are bunched at round numbers in high quality, representative

data on hourly wages from Unemployment Insurance records from the three largest U.S.

states (Minnesota, Washington, and Oregon) that collect information on hours.1 We further

assess the extent of bunching in online labor markets, using a near universe of posted

rewards on the online platform Amazon Mechanical Turk (MTurk).

We compare the size of the bunches in the administrative data to those in the Current

1We were able to use individual-level matched worker-firm data from Oregon, and micro-aggregated
data of job counts by detailed wage bins in Minnesota and Washington.

2



Population Survey (CPS), where round number bunching is prevalent. For example, in

the CPS data for 2016, a wage of $10.00 is about 50 times more likely to be observed than

either $9.90 or $10.10. Figure 1 shows that the hourly wage distribution from the CPS

outgoing rotation group (ORG) data between 2010 and 2016 has a visually striking modal

spike at $10.00 (top panel). The middle panel of the figure shows that the share of wages

ending in round numbers is remarkably stable over the past 35 years, between 30-40%

of observations. The bottom panel of the figure also shows that since 2002, the modal

wage has been exactly $10.00 in at least 30 states, reaching a peak of 48 in 2008. Of course,

survey data is likely to overstate the degree of round-number bunching. We also use a

unique CPS supplement, which matches respondents’ wage information with those from

the employers to correct for reporting error in the CPS, and show that the measurement

error-corrected CPS replicates the degree of bunching found in administrative data in the

states where we observe both. It seems highly unlikely that such bunching at $10.00 is

present in the distribution of underlying marginal products of workers.

We first attempt to account for bunching by building and experimentally testing an

imperfectly competitive model with workers’ left-digit bias, paralleling product price

studies from the marketing literature that have documented pervasive “left-digit bias”

where agents ignore lower-order digits in price. First, we design and implement an

experiment (N=5,017) on an online platform (MTurk). We randomly vary rewards above

and below 10 cents for the same task to estimate the labor supply function facing an online

employer. Like the administrative data, the task reward distribution on MTurk exhibits

considerable bunching. However, our experimentally estimated labor supply function

shows no evidence of a discontinuity as would be predicted by worker left-digit bias. We

further use observational job posting data from MTurk and show there is no discontinuity

in the duration of vacant tasks posted at $1.00.

Next, we use administrative matched worker-firm data on hourly wages from Oregon

to show that there is no discontinuity in the separation elasticity at $10.00 conditional
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on past worker wage history and other characteristics. These results suggest that our

experimental findings on lack of left-digit bias are likely to have external validity beyond

on-line labor markets. In addition, our analysis using the matched worker-firm produces

observational residual labor supply elasticities in the 3 to 5 range, which is very similar to

those estimated in similar contexts in other recent work (Sokolova and Sorensen (2018);

Caldwell and Oehlsen (2018)), and suggests a moderate degree of monopsony power in the

U.S. low-wage labor market. Finally, we provide evidence on lack of worker left-digit bias

using stated-preference conjoint experiments where workers at a large retailer (Wal-Mart)

were asked whether they would choose to quit their current job for another, where the

hypothetical wage was randomized. While a higher offered wage makes it more likely that

the workers leave their current position, we found no discontinuity at round numbers.

We then extend the model to allow imperfect firm optimization in the form of employer

preferences for round wages, parameterized by the fraction of profits foregone in order to

pay a round number. We recover estimates of monopsony, employer misoptimization, and

left-digit bias from the distribution of missing mass around $10.00 relative to a smooth

latent density and conclude that employer mis-optimization accounts for much of the

observed bunching.2

In the administrative data from Oregon, we further show that small, low-wage employ-

ers in sectors such as construction are most likely to pay round numbers, consistent with

bunching being a result of small, potentially unsophisticated, employer pay-setting. Using

our estimates of monopsony power, we calculate that employer misoptimization in US

labor markets costs mis-optimizing employers between 2% and 8% of profits, but is an

order of magnitude smaller in online labor markets. The reason is that the monopsony

power on Amazon Mechanical Turk is so high that even very substantial mispricing (as

2While other configurations are logically possible, they do not easily explain why wages are bunched at
round numbers. For example, if employers had a left-digit bias, any heaping would likely occur at $9.99 and
not at $10.00, which is not true in reality. Similarly, if workers tended to round off wages to the nearest dollar,
this would not encourage employers to set pay exactly at $10.00. In contrast, both workers’ left-digit bias
and employers’ tendency to round off wages provide possible explanations for a bunching at $10.00/hour.
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indicated by a high degree of bunching) does not lead employers to lose very much in

profits.

Our paper is related to a small but growing literature on behavioral firms, which

documents a number of ways firms fail to maximize profits (DellaVigna and Gentzkow

2017; Goldfarb and Xiao 2011; Hortacsu and Puller 2008; Bloom and Van Reenen 2007;

Cho and Rust 2010). A large literature has discussed cognitive biases in processing price

information, but little of this has discussed applications to wage determination. Behavioral

labor economics has extensively documented other deviations from the standard model

(e.g. time-inconsistency and fairness, see Babcock et al. (2012) for an overview) for worker

behavior. Worker behavioral phenomena have been replicated even in online spot labor

markets (Chen and Horton (2016); Della Vigna and Pope (2016)). Our paper is the first to

document the absence of left-digit bias among workers, and to the best of our knowledge,

the first to systematically quantify the extent of firm mis-optimization in the labor market.

In our account of wage-bunching, it is important to assume that firms have some labor

market power. In this, we follow work in behavioral industrial organization that explores

how firms choose prices when facing behavioral consumers in imperfectly competitive

markets.3 A recent and fast-growing literature has argued that monopsony is pervasive

in modern, unregulated, labor markets (Manning 2011). Monopsony does not require

explicit collusion or restrictive legal contracts (Starr, Bishara and Prescott 2016; Krueger

and Ashenfelter 2017) nor is labor market power confined to particularly repressive

institutional environments (e.g. Naidu 2010, Naidu, Nyarko and Wang 2016). While some

of the recent literature on monopsony has focused on identifying effects of labor market

concentration on wages (Berger et al. (2019); Azar et al. (2017)), more relevant for our paper

is the literature that tries to directly estimate residual labor supply elasticities, either from

identifying firm-specific rent-sharing estimates (Lamadon et al. (2018); Kline et al. (2017);

3See Heidhues and Kőszegi (2018) for a survey and Gabaix and Laibson 2006 for an early example.
Theoretical models to explain bunching in prices also assume firms have some market power: e.g., Basu
(1997) has a single monopolist supplying each good, Basu (2006) has oligopolistic competition, and Heidhues
and Kőszegi (2008) use a Salop differentiated products model.
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Cho (2018)) or from direct experimental manipulation of wages (Caldwell and Oehlsen

(2018); Dube et al. (2018)). We show that moderate amounts of monopsony in the labor

market can provide a parsimonious explanation of anomalies in the wage distribution,

such as patterns of wage-bunching at arbitrary numbers.4

The plan of the paper is as follows. In section 2, we provide evidence on bunching

at round numbers using administrative data as well as data from the CPS corrected

for measurement error, and benchmark these against the raw CPS results. We recover

the source of the bunched observations by comparing the observed distribution to an

estimated smooth latent wage distribution. In section 3, we develop a model of bunching

that nests worker left-digit bias and firm optimization frictions as special cases. Section 4

presents findings from the online experiment, administrative data, and stated-preference

experiment–recovering both estimates of the degree of monopsony as well as the extent of

worker-left digit bias. Section 5 extends the model to account for firm misoptimization.

Section 6 recovers the degree of mis-optimization and monopsony from the bunching

estimates under a variety of assumptions about the degree of heterogeneity in both, and

documents the characteristics of firms that mis-optimize. Section 7 concludes.

2 Bunching of wages at round numbers

There is little existing evidence on bunching of wages. One possible reason is that hourly

wage data in the Current Population Survey comes from self-reported wage data, where it

is impossible to distinguish the rounding of wages by respondents from true bunching of

wages at round numbers. Documenting the existence of wage-bunching requires the use

4Hall and Krueger (2012) show that wage posting is much more frequent in low wage labor markets than
bargaining. Their data shows that more than 75% of jobs paying an hourly wage of around $10 were ones
where employers made take-it-or-leave-it offers without any scope for bargaining. We also find that the
bunching at the $10/hour wage in the Hall and Krueger data is almost entirely driven by jobs with such
take-it-or-leave-it offers. Appendix Figure E.4 shows, in the Wal-Mart experiment, that stated propensity
to ask for a raise also exhibits no discontinuity at a round number. Along with our evidence from MTurk,
where there is no scope for bargaining, this makes it unlikely that employers offer round number wages as a
signal for willingness to bargain as in the EBay prices reported by Backus, Blake and Tadelis (2015). .
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of other higher-quality data.

2.1 Administrative hourly wage data from selected states

Earnings data from administrative sources such as the Social Security Administration or

Unemployment Insurance (UI) payroll tax records are of high quality, but most do not

contain information about hours. However, 4 states (Minnesota, Washington, Oregon, and

Rhode Island) have UI systems that collect detailed information on hours, allowing the

measurement of hourly wages. We have obtained individual-level matched employer-

employee data from Oregon, as well as micro-aggregated hourly wage data from Min-

nesota and Washington. The UI payroll records cover over 95% of all wage and salary

civilian employment. Hourly wages are constructed by dividing quarterly earnings by

total hours worked in the quarter. The micro-aggregated data are state-wide counts of

employment (and hours) by nominal $0.05 bins between $0.05 and $35.00, along with a

count of employment (and hours) above $35.00. The counts exclude NAICS 6241 and 814,

home-health and household sectors, which were identified by the state data administrators

as having substantial reporting errors.

Figure 2 shows the distribution of hourly wages in MN, OR and WA (we report the

distributions separately in the Appendix). The histogram reports normalized counts in

$0.10 (nominal) wage bins, averaged over 2003q1 to 2007q4. We focus on this period

because in later years the nominal minimum wages often reach close to $10.00, making it

difficult to reliably estimate a latent wage density in this range as we do in our analysis

later in this paper. The counts in each bin are normalized by dividing by total employment.

The wages are clearly bunched at round numbers, with the modal wage at the $10.00 bin

representing more than 1.5 percent of overall employment. This suggests that observed

wage bunching is not solely an artifact of measurement error, and is a feature of the “true”

wage distribution. Further, the histogram reveals spikes at the MN, OR, and WA minimum

wages in this period, suggesting that the hourly wage measure is accurate.
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In Online Appendix C, we show very similar degree of bunching in a measurement-

error corrected CPS, using the 1977 CPS Supplement that recorded wages from firms as

well as workers. While the degree of bunching in the raw CPS falls with the measurement

error correction, it remains substantial, and indeed comparable to the administrative data.

2.2 Task rewards in an online market: Amazon Mechanical Turk

Amazon MTurk is an online task market, where “requesters” (employers) post small online

Human Intelligence Tasks (HITs) to be completed by “Turkers” (workers).5 Psychologists,

political scientists, and economists have used MTurk to implement surveys and survey

experiments (e.g. Kuziemko et al. (2015)). Labor economists have used MTurk and other

online labor markets to test theories of labor markets, and have managed to reproduce

many behavioral properties in lab experiments on MTurk (Shaw et al. 2011).

We obtained the universe of MTurk requesters from Panos Ipeirotis at NYU. We then

used the Application Programming Interface developed by Ipeirotis to download the near

universe of HITs from MTurk from May 2014 to February 2016, resulting in a sample of

over 350,000 HIT batches. We have data on reward, time allotted, description, requester

ID, first time seen and last time seen (which we use to estimate duration of the HIT request

before it is taken by a worker). The data are described more fully in Online Appendix E

and in Dube et al. (2018).

Figure 3 shows that there is considerable bunching at round numbers in the MTurk

reward distribution. The modal wage is 30 cents, with the next modes at 5 cents, 50 cents,

10 cents, 40 cents, and at $1.00. This is remarkable, as this is a spot labor market that has

almost no regulations, suggesting the analogous bunching in real world labor markets is

not driven by unobserved institutional constraints, including long-term implicit or explicit

contracts. Nor is there an opportunity for bargaining, so the rewards posted are generally

5The sub header of MTurk is “Artificial Artificial Intelligence", and it owes its name to a 19th century
“automated" chess playing machine that actually contained a “Turk” person in it.
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the rewards paid, although there may be unobserved bonus payments.

3 A model of round-number bunching in the labor market

As a first pass for explaining the bunching at round numbers, this section presents a

model of the labor market where workers exhibit a left-digit bias, mirroring features in the

price-bunching literature (e.g. Basu 1997, Basu 2006) .

Suppose there is a mass 1 of workers differing in their marginal product p, assumed to

have density k(p) and CDF K(p)—assume labor is supplied inelastically to the market as a

whole. We assume there is only one “round number” wage in the vicinity of the part of

the productivity distribution we consider—denote this by w0. We do not here attempt to

micro-found w0. There are various functions of wj that could deliver w0. For example we

could set w0 = wj − mod (wj, 10h), where mod (w, 10h) denotes the remainder when w

is divided by 10h and h is the highest digit of w. Or we could impose the formulation in

Basu (1997), where agents form expectations about the non-leftmost digits. In contrast to

Basu (1997), which delivers a strict step function, the discrete choice formulation allows

supply to be increasing even at non-round numbers, as well as relaxing the assumption

that each good is provided by a single monopolist (Basu (2006) considers a Bertrand variant

of a similar model, showing that .99 cents can be supported as a Bertrand equilibrium

with a number of homogeneous firms). We also extend the formulation of digit bias from

Lacetera, Pope and Sydnor (2012) by allowing utility to depend on the true wage w as well

as the leading digit.6 We consider two reasons why w0 might be chosen—left-digit bias on

the part of workers, and mis-optimization on the part of employers in the form of paying

round numbered wages.

We model the left-digit bias of workers in the following way. Starting from a discrete

choice model of the labor market, a workers i′s utility at a job j is:

6However we do not parameterize the extent of “left-digitness” as Lacetera, Pope and Sydnor (2012) do.
We are implicitly assuming “full inattention” to non-leading digits.
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uij = η · ln(wj) + γ · 1wj≥w0 + aj + εij

Here aj is a commonly valued amenity at job j while εij captures idiosyncratic valuation

of the job that are independently drawn from a type I extreme value distribution. Impor-

tantly, here there can be a discontinuous jump in the utility at a round number w0 due to

left digit bias among workers. Left digit bias has been documented in a wide variety of

markets, used to explain prevalence of product prices that end in 9 or 99, and is a natural

candidate explanation for bunching in the wage distribution.7 Note that γ represents the

utility value of crossing the round number, while γ/η approximates the percentage change

in wages that is utility equivalent to crossing the round number.

This setup implies that workers have logit choice probabilities

pj =
exp

[
η ln(wj) + γ · 1wj≥w0 + aj

]
∑k exp [η ln(wk) + γ · 1wk≥w0 + ak]

When number of jobs J is large, the logit probabilities can be approximated by expo-

nential probabilities

pj ≈ C · exp
[
η ln(wj) + γ · 1wj≥w0 + aj

]
This produces approximate firm-labor supply functions:

7For example, Levy et al. (2011) show that 65% of prices in their sample of supermarket prices end in 9
(33.4% of internet prices), and prices ending in 9 are 24% less likely to change than prices ending in other
numbers. Snir et al. (2012) also document asymmetries in price increases vs. price decreases in supermarket
scanner data, consistent with consumer left-digit bias. A number of field and lab experiments document that
randomizing prices ending in 9 results in higher product demand (Anderson and Simester 2003; Thomas
and Morwitz 2005; Manning and Sprott 2009; Pope, Pope and Sydnor 2015). Pope, Pope and Sydnor (2015)
show that final negotiated housing prices exhibit significant bunching at numbers divisible by $50,000,
suggesting that round number focal points can matter even in high stakes environments. Lacetera, Pope and
Sydnor (2012) show that car prices discontinuously fall when odometers go through round numbers such
as 10,000. Allen et al. (2016) document bunching at round numbers in marathon times, and interpret this
as reference-dependent utility. Backus, Blake and Tadelis (2015) show that posted prices ending in round
numbers on eBay are also a signal of willingness to bargain down.
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ln(lj) = ln(C) + η ln(wj) + γ · 1wj≥w0 + aj (1)

Our baseline model assumes some imperfect competition in the labor market but

perfect competition is a special case as η → ∞.

When worker productivities p vary across firms, wages are dispersed and depend on

p. Define ρ (w, p) = (p− w)l∗(w, p). Here ρ (w, p) is, in the language of Chetty (2012), the

“nominal model” that parameterizes profits in the absence of left-digit bias. Optimizing

wages in the nominal model would yield a smooth “primitive” profit function of produc-

tivity given by π(pj) = (
pj

1+η )1+η, but the presence of worker biases induces discontinuities

in true profits at round numbers. In deciding on the optimal wage for employers one

simply needs to compare the profits to be made by maximizing the nominal model and

paying the round number. Consider the wage that maximizes the nominal model. Given

the isoelastic form of the labor supply curve to the individual firm, this can simply be

shown to be:

w∗(p) =
(

η

1 + η

)
p (2)

where the size of the mark-down on the marginal product is determined by the extent

of competition in the labor market. If the labor market is perfectly competitive, η → ∞,

and wages are equal to the marginal product. We will refer to the wage that maximizes the

nominal model as the latent wage. The firm with job productivity p will pay the round

number wage as opposed to the latent wage if:

eγ1w∗(p)<w0 >
ρ (w∗ (p) , p)

ρ (w0, p)
(3)

Taking logs, we obtain that a firm will pay the round number if p ∈
[

p∗,
(1+η)

η w0

]
,

where p∗ solves

γ = ln ρ (w∗ (p∗) , p∗)− ln ρ (w0, p∗) (4)
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This implies that all firms with latent wages between w0 and w∗(p∗) will pay w0, and

bunching will be larger the greater is γ . For the marginal bunching firm, the propor-

tionate increase in profits from paying a round number wage is γ. We now turn towards

identifying estimates of η and γ from experimental and observational data.

4 Experimental and Observational Evidence on Worker Left-

Digit Bias

4.1 Experimental Evidence From MTurk

We begin with providing direct evidence on the parameters of interest based on an exper-

iment on an online labor market. The advantage of this approach is the high degree of

internal validity, though a disadvantage is that one is inevitably unsure about the external

validity of the estimates. For example, one might expect that these “gig economy” labor

markets are very competitive because they are lightly regulated and there are large num-

bers of workers and employers with little informational frictions or long-term contracting.

However, in a companion paper, Dube, Jacobs, Naidu and Suri (2018) compile labor supply

elasticities implicit in the results from a number of crowdsourcing compensation exper-

iments on MTurk, finding a precision-weighted elasticity of 0.14 across 5 experiments

(including the one in this paper). This low estimate implies considerable market power

in these types of “crowdsourcing” labor markets, which are finding increased use by

large employers (for example Google, AOL, Netflix, and Unilever all subcontract with

crowdsourcing platforms akin to MTurk) around the world (Kingsley, Gray and Suri 2015).

In their original paper on labor economics on Amazon Turk, Horton, Rand and Zeck-

hauser (2011) implement a variant of the experiment we conduct below, making take it

or leave it offers to workers with random wages in order to trace out the labor supply

curve. However, while they label this an estimate of labor supply to the market, it is in fact

12



a labor supply to the requester that they are tracing out, as the MTurk worker has the full

list of alternative MTurk jobs to choose from. We extend the Horton, Rand and Zeckhauser

(2011) design to experimentally test for worker left-digit bias.8 We randomize wages for a

census image classification task to estimate discontinuous labor supply elasticities at round

numbers (in particular at 10 cents, to test for left-digit bias). We choose 10 cents because

it is the lowest round number, allowing us to maximize the power of the experiment to

detect left-digit bias. We also aim to replicate the upward sloping labor supply functions to

a given task estimated in Horton, Rand and Zeckhauser (2011). We posted a total of 5,500

unique HITS on MTurk tasks for $0.10 that includes a brief survey and a screening task,

where respondents view a digital image of a historical slave census schedule from 1850 or

1860, and answer whether they see markings in the “fugitives” column (for details on the

1850 slave census, see Dittmar and Naidu (2016)). This is close to the maximum number of

unique respondents obtainable on MTurk within a month-long experiment. Respondents

are offered a choice of completing an additional set of classification tasks for a specific

wage. Appendix Figure E.1 shows the screens as seen by participants with (1) the consent

form, (2) the initial screening questions and demographic information sheet, and (3) the

coding task content.

We refer to the initial screening part as stage-1. Those who complete stage-1 and indicate

that the primary reason for participation is "money" or "skills" (as opposed to "fun") are

then offered an additional task of completing either 6 or 12 such image classifications

(chosen randomly) for a specific (randomized) wage, w, which we refer to as the stage-2

offer. If they accept the stage-2 offer, they are provided either 6 images (task type A) or 12

images (task type B) to classify, and are paid the wage w. These 5,500 HITs will remain

posted until completed, or for 3 months, which ever is shorter. Any single individual on

MTurk (identified by their MTurk ID) will be allowed to only do one of the HITs. We aim

to assess the left-digit bias in wage perceptions experimentally by randomizing the offered

8Pre-registered as AEA RCT ID AEARCTR-0001349.
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wages for HITs on MTurk to vary between $0.05 and $0.15, and assessing whether there is

a jump in the acceptance probability between $0.09 and $0.10 as would be predicted by a

left-digit bias.9

4.2 Specifications

While our model entails a sharp discontinuity in the level of labor supplied at a round

number (a “notch”) we do not impose this in all our empirical specifications, and allow for

either a kink or a notch, and also control for the overall shape of the labor supply curve in

a variety of ways. We estimate the following 3 specifications, all of which were included

in the pre-analysis plan. We deviate slightly from our pre-analysis plan by including

controls and using logit rather than linear probability to better match our model, and we

will estimate analogous specifications in the observational Oregon data, as well as the

worker stated preference experiment below. We show the exact specifications from the

pre-analysis plan in Online Appendix E.

First, we estimate a linear-probability model regressing an indicator for accepting a

task on log wages, closely following the specification entailed by our model:

Accepti = β0 + η1log(wi) + β1Ti + β2Xi + εi (5)

Here T is a dummy indicating the size of the task. We add individual covariates Xi

for precision; point estimates remain unchanged when controls are excluded (shown in

9There are a few anomalies in the data relative to our design. The first was that a small number (17) of
individuals were able to get around our javascript mechanism for preventing the same person from doing
multiple HITs. In the worst cases, one worker was able to do 118 HITs, while 3 others were able to do more
than 10. The second is that 9 individuals were entering responses to images they had not been assigned. We
drop these HITs from the sample, which costs us 316 observations. None of the substantive results change,
although the nominal labor supply effect is slightly more precise when those observations are included.
We also drop 3 observations where participants were below the age of 16 or did not give the number of
hours they spent on MTurk. Finally, we underestimated the time it would take for all of our HITs to be
completed, and thus some (roughly 11%) of our observations occur after the pre-registration plan specified
data collection would be complete. We construct an indicator variable for these observations and include
it in all specifications discussed in the text (the additional specifications in Online Appendix E omit this
variable).
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Online Appendix E). Our main test from this specification is that the slope (semi-elasticity)

η1 > 0: labor supply curves (to the requester) are upward sloping. We will also report the

elasticity η = η1
E[Accept] in every specification where we estimate it.

Our first test for left-digit bias is based on an augmented regression allowing for a jump

in the labor supply at $0.10, but constraining the slope to the the same on both sides:

Accepti = β0A + η1Alog(wi) + γ1A1 {wi ≥ 0.1}i + β1ATi + β2Xi + εi (6)

Here left-digit bias is rejected if γA1 = 0. This specification corresponds closely to the

theoretical model with constant labor supply elasticity η = η1A
E[Accept] ,and with γ = γ1A

E[Accept]

measuring the extent of left-digit bias.

Our second specification allows for heterogeneous slopes in labor supply above and

below $0.10 using a knotted spline, where the knots are at $0.09 and $0.10:

Accepti = β0B + η1Blog(wi) + γ2B × (log(wi)− log(0.09))× 1 {wi ≥ 0.09}i

+γ3B × (log(wi)− log(0.10))× 1 {wi ≥ 0.1}i + β2BTi + β2Xi + εi (7)

Our main test here is that the slope between $0.09 and $0.10 (i.e., η1B + γ2B) is greater

than the average of the slopes below $0.09 and above $0.10
(

1
2 × η1B + 1

2 × (η1B + γ2B + γ3B)
)

;

or equivalently to test: γ2B − γ3B > 0. Note that (γ2B − γ3B) is analogous to γ1A in the

spline specification, and measures the jump at $0.10.

Finally, our most flexible specification estimates:

Accepti = ∑
k∈S

δk1 {wi = k}i + γβ3BT + β2Xi + εi (8)

And then calculates the following statistics:
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δjump = (δ0.1 − δ0.09)

βlocal = (δ0.1 − δ0.09)−

(
∑0.12

k=.08,k 6=0.1 δk − δk−0.01

)
4

βglobal = (δ0.1 − δ0.09)− 1
10

(δ0.15 − δ0.05)

The βlocal estimate provides us with a comparison of the jump between $0.09 and $0.10

to other localized changes in acceptance probability from $0.01 increases. In contrast,

βglobal provides us with a comparison of the jump with the full global (linear) average

labor supply response from varying the wage between $0.05 and $0.15.

A left-digit bias might not only affect willingness to accept a task, but also may affect

a worker’s performance. For example, if workers are driven by reputational concerns

or exhibit reciprocity, and they perceive $0.10 to be discontinuously more attractive than

$0.09, we may expect a jump in performance at that threshold. To assess this, we will also

estimate the same statistics, but with the error rate for the two known images (i.e., equal to

0, 0.5, or 1) as the outcome instead of Accepti.

4.3 Experimental results from MTurk

Our distribution of wages was chosen to generate power for detecting a discontinuity at

10 cents, as can be seen in the wage distribution in Figure 4. The binned scatterplot in

Figure 4 shows the basic pattern of a shallow slope (in levels) with no discontinuity at 10.

Table 1 below shows the key experimental results from the specifications above, which

uses log wages as the main independent variable. Column 1 reports the estimates using a

log wage term only; the elasticity, η, is 0.083. The elasticity is statistically distinguishable

from zero at the 1 percent level, consistent with an upward sloping labor supply function
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facing requesters on MTurk. However, the magnitude is quite small, suggesting a sizable

amount of monopsony power in online labor markets. When we restrict attention only to

“sophisticated” MTurkers (column 5), the elasticity is only somewhat larger at 0.132, still

surprisingly small.

While we find a considerable degree of wage-setting power in online labor markets,

we do not find any evidence of left-digit bias for workers. Column 2 estimates equation 6

and tests for a jump at $0.10 assuming common slopes above and below $0.10. Column

3 corresponds to equation 7 and allows for slopes to vary on both sides of $0.10. Finally,

column 4, following the flexible specification in equation 8, estimates coefficients for each

1-cent dummy in the regression and compares the change between $0.09 and $0.10 to

either local or global changes. In all of these cases, the estimates are often negative, always

close to zero in magnitude, and never statistically significant. We can rule out even small

differences in the probability of acceptance between $0.09 and $0.10. When we limit our

sample to sophisticated MTurkers, we do not find any left-digit bias either. None of

the estimates for discontinuity in the labor supply function are statistically significant or

sizable in columns 6, 7 or 8.

Column 2’s specification corresponds closely to the theoretical model, where we can

recover γ (or the percentage jump in supply at $0.10) by dividing the coefficient on the

dummy for a reward greater than or equal to $0.10 by the mean outcome. The point

estimate for γ is of the “wrong sign” at -0.010, while the 95 percent confidence interval of

(0.026, -0.048) is concentrated around zero.

We also estimate parallel regressions using task quality as the outcome, which is defined

as the probability of getting at least 1 out of two pre-tagged images correct. In Appendix

Table E.3, we find that no evidence that task performance rises discontinuously at the $0.10

threshold. We also find little impact of the reward on task performance for the range of

rewards offered; the most localized comparison yields estimates very close to zero.

We interpret the evidence as strongly pointing away from any left-digit bias on the
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workers’ side. Moreover, it also suggests that locally, there is not very much impact

of rewards on task performance: therefore, the primary benefit of providing a slightly

higher reward is occurring through increased labor supply and not through performance.

Summarizing to this point, while there is considerable bunching at round numbers in

the MTurk reward distribution, including at $0.10, there is no indication of worker-side

left-digit bias in labor supply or in performance quality. This finding is counter to the

analogous explanation for the product market, where a number of experiments have found

that demand for products increases when prices ending in 9 are posted (e.g. Anderson

and Simester 2003). At the same time, we find considerable amount of wage-setting power

in this online labor market: labor is fairly inelastically supplied to online employers, with

an estimated elasticity η generally between 0.1 and 0.2.

In Online Appendix D, we present complementary evidence from scraped MTurk

data to show that similar patterns are obtained at the even more salient round number

of $1.00. By estimating how long a job stays posted before being filled as a function of

the reward posted (and controlling for a data driven set of task features using the double-

machine-learning estimator proposed by Chernozhukov et al. (2017)), we can recover

another estimate of the labor supply curve facing an employer. We find a similar labor

supply elasticity as our experimental estimate (around 0.07); we also find that tasks with

rewards greater than $1.00 do not discontinuously fall in the time to fulfillment, consistent

with our experimental findings at $0.10. Together, the observational and experimental

evidence suggest that, at least on Amazon Turk, there is plenty of monopsony, and little

left-digit bias, at both the $0.10 and $1.00 thresholds.

4.4 Observational Evidence From Oregon Administrative Data

While the experimental evidence strongly points away from worker left-digit bias in the

online labor markets, here we additionally use observational evidence from “real world”

labor market to assess whether workers’ labor supply exhibits sharp breaks (notch or
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kink).

Using matched employer-employee data from Oregon, we estimate the responsiveness

of separations to hourly wages, and for a discontinuity at $10.00/hour wage. The separa-

tion elasticity is widely used in the monopsony literature to measure the responsiveness of

the supply of labor to a firm to the firm’s posted wage (see Manning (2011)). A key concern

in estimating this elasticity in observational data is that workers earning different wages

may differ in other dimensions. In order to approximate our ideal experiment–where a

group of workers randomly get raises that set wages exactly at 10.00 and another compara-

ble group gets raises at other nearby numbers–we control for a variety of job history and

firm characteristics. Using the 2003-2007 period, we consider all workers who were hired

within this period, and had at least 2 quarters of tenure. These restrictions remove workers

who are very marginally attached to the workforce, and we note that the spike at $10.00

remains in this sample. We then compare how the separation rate at time t varies by wage

wit among workers who were hired at the same starting hourly wage. In least saturated

specification, the control vector Xit only includes (1) indicators for calendar quarter and (2)

indicators for starting hourly wage (in 10 cents intervals). The second version includes fully

saturated interactions between (1) calendar time in quarter, (2) quarter of hire, (3) previous

quarter’s weekly hours category10 (we call these “standard controls”). In a third version,

we further interact all of these with 2-digit industry indicators and a 6-categories of firm

size indicators.11 In yet a fourth version, we instead interact the standard controls with

the firm fixed effect. This fourth (most saturated) version compares very similar workers

hired within the same firm at the same time and at the same original wage working similar

hours, but who happen to be earning somewhat different wages at the present time.

We estimate analogues of our experimental specifications above, regressing separations

Sit on log wages, and an indicator for earning more than $10.00.

10The break points for last quarter’s weekly hours were 10, 20, 35, 45 and 55
11The break points for firm size are 50, 100, 500, 1000, 5000
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Sit = β0 + η1log(wit) + γ1A1 {wi ≥ 10.00}i + ΛXit + εit (9)

This specification tests for a jump in the labor supply at $10, but constraining the slope

to be the same on both sides. So left-digit bias is rejected if γ1A = 0. Similar to the case

of MTurk experimental data, a second specification allows for heterogeneous slopes in

labor supply above and below $10 using a knotted spline, where the knots are at $9.90 and

$10.00:

Sit = β0B + η1Blog(wit) + γ2B × (log(wit)− log(9.90))× 1 {wit ≥ 9.90}i (10)

+γ3B × (log(wit)− log(10.00))× 1 {wit ≥ 10.00}i + ΛXit + εit

Here we test whether the slope between $9.90 and $10.00 (i.e., η1B + γ2B) is greater than

the average of the slopes below $9.90 and above $10.10
(

1
2 × η1B + 1

2 × (η1B + γ2B + γ3B)
)

;

or equivalently to test βspline = γ2B − γ3B > 0.

Finally, our most flexible specification including 10-cent dummies spanning $9.50 to

$10.40 (where the 9.50 dummy includes wages between $9.50 and $9.59):

Sit = ∑
k∈S

δk1 {wi = k}i + ΛXit + εit (11)

And then calculates the following statistics:

δjump = (δ10.00 − δ9.90)

βlocal = (δ10.00 − δ9.90)−

(
∑10.20

k=9.80,k 6=10.00 δk − δk−0.10

)
4

20



βglobal = (δ10.00 − δ9.90)− 1
10

(δ10.40 − δ9.50)

The βlocal estimate provides us with a comparison of the jump between $9.90 and $10.00

to other localized (10 cent) changes in separation probability from $0.10 increases. In

contrast, βglobal provides us with a comparison of the jump with the full global (log-linear)

average separation response from varying the wage between $9.50 and $10.40.

Columns 1, 2, 4, and 6 of Table 2 report the semi-elasticity for separations without any

jumps with increasingly saturated controls. The semi-elasticities range between -0.192

and -0.277. Dividing these by the mean separation rates in the respective estimation

samples, the implied separation elasticities are between -1.3 and -1.9. In turn, if we use the

dynamic monopsony steady state assumption, where firm labor supply elasticity is twice

the negative of the separation elasticity, the labor supply elasticities, η, range between 2.6

and 3.7 and all are statistically significant at the 5 percent level. These are consistent with

a moderate amount of monopsony power in the low-wage labor market in Oregon over

this period. Columns 3, 5, and 7 of Table 2 show estimates using the jump specification

of equation 9, with the standard controls, additional firm size and sector controls, and

additional firm FE controls.12

Next, when we add an indicator for $10/hour or more as a regressor, we do not see

any indication that the separation rate changes discontinuously at $10. The coefficients

are positive, when we would expect separations to decline at a round number, in addition

to being small and not statistically distinguishable from zero. In columns 8 and 9 we

12One can imagine that even conditional on these individual level covariates (such as starting wage, hours
of work, firm), wage differences across workers can reflect other forms of heterogeneity such as learning
about match quality or other time varying productivity differences. Bassier et al. (2019) uses the data from
Oregon but uses a different strategy that focuses on wage policy differences across firms: namely it regresses
the separation rate on firm effect to isolate the part of wage differences that are more plausibly due to
differences in firm-level wages after accounting for individual fixed effects. Their estimates of the labor
supply elasticity (using a broader set of Oregon workers) for the 2003-2007 period is around 3.6, which
is very similar to what we find here. Here, however, our key interest is in detecting left-digit bias among
workers, by testing for discontinuities in the worker-level separation elasticity around $10.00, as opposed to
the causal interpretation of the firm-level slopes around $10.00, and this exercise requries using individual
and not firm-level wage variation.
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report the results from equations (10) and (11); specifically we report βspline, βlocal ,and

βglobal and associated standard errors. Neither the spline, local or global comparisons

indicate any discontinuous decrease in the separation rate around $10. Finally, in Figure

5, we plot the coefficient on each 10 cent dummies between $9.50 and $10.40 associated

with equation (11). Consistent with the findings in the table, there is a general negative

relationship between wages and separation, with a similar implied separations elasticity

as the baseline specification above. However, there is no indication of a discontinuous

drop in the separation rate going from $9.90 to $10.00. Again, we can use column (7) as the

estimate most closely related to our theoretical model. Dividing (negative one times) the

“Jump at 10.00” coefficient by the mean separation rate in the estimation sample (0.13), the

95 percent confidence interval for the estimate of γ is (-0.116, 0.090), and similarly to the

online labor market, it is centered around zero.

4.5 Stated Preference Experiments on Worker Mobility

A final piece of evidence on worker left-digit bias comes from stated preference experiments

we conducted to see how responsive job mobility is to the outside offered wage. To leverage

firm-level wage variation, we focus on workers at a single large retailer: using Facebook we

reached a sample of current or recent employees at Wal-Mart, the largest private employer

in the U.S. After asking about their current wage and working conditions, we presented

them with 3 possible jobs, where we randomly varied wages (and job amenities) around

their current job values, and asked them if they would leave their current employment if

offered such a job 13 The randomized wage offer allows us to estimate a recruit elasticity

among workers in a specific firm (Wal-Mart) and allows us to test whether the willingness

to leave or bargain at the current job falls discontinuously when the offered wage crosses a

round number (integer). In our sample of 3057 workers, the 10th percentile was $11, which

13The work conditions included commute time, assessment of co-workers and supervisors, scheduling, and
other characteristics, shown in the survey excerpt in Appendix FigureE.2.Further details on the larger project
of which this analysis is a part is available at https://www.socialscienceregistry.org/trials/5224
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is Wal-Mart’s voluntary minimum wage while the 90th percentile was $16.63 dollars. The

gap between the randomized offered wages and current wages was $0.04 with a standard

deviation of $1.57. Histograms of offered and current wages are shown in Appendix Figure

E.3.

We estimated an analogous set of regressions as in our MTurk and Oregon samples.

Since this sample has multiple round number wage thresholds, here we construct a running

variable dit which is the distance from the nearest round number, wR. However, to estimate

comparable regressions to the MTurk and Oregon samples (and obtain a recruitment

elasticity), we need to pool across multiple round numbers ; we create a (recentered) wage

variable w̃ that centers dit around the sample median round wage, $12: w̃it = dit + 12. We

also include fixed effects for each $1 intervals such as $9.50 to $10.49, $10.50 to $11.49,

etc., to ensure the identifying variation is only coming from within the interval around

the round number. Finally, because each respondent was given up to 3 randomized

wage offers, and because randomization was around the respondent’s current wage, we

also include a fixed effect for each respondent, to ensure all wage variation is from the

randomization.

In the baseline specification, we regress an indicator for remaining on the job, Rit on

log wages, and an indicator for earning more than the nearest round number.

Rit = β0 + η1log(wit) + γ1A1 {w̃it ≥ wR}i + δ[wi]=wR + δr + εit (12)

Here, the controls include the $1 interval and respondent fixed effects, δ[wi]=wRand δr,

respectively. We run analogous regressions to equations (10) and (11) above, and estimate

analogous test statistics (i.e., jump, spline, local and global changes). Note that in the

equivalent of equation (11), we estimate the remaining probabilities by $0.10 intervals as

before.

Column 1 of Table 3 first reports the elasticity of remaining with respect to the log of

the randomized offered wage, log(wit). The coefficient of -0.618 is statistically significant at
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the 1 percent level and has an economically meaningful magnitude. At the same time, the

elasticity of remaining at Wal-Mart with respect to the outside offered wage is -0.618/0.39

= -1.58, which suggests only a modest impact of a higher wage on the ability to entice

a current worker to move–consistent with the importance of other job-based amenities

and/or mobility cost. In column 2, we report the estimate but including interval fixed

effects. The coefficient of -0.625 is quite close in magnitude but of lower precision due to

using only within interval variation. Column (3) estimates the jump model, and while

the coefficient is the expected sign, we still find no evidence of a significant jump in the

remain probability at the round number. Dividing the negative of the coefficient by the

sample mean stay probability (0..39) produces an estimate of γ of 0.024 (SE=0.034) which

can rule out values greater than 0.9 at 95% confidence. None of the other tests (spline, local

or global) in columns 4 and 5 suggest any discontinuities, though the estimates from the

spline specification are imprecise. However, the local and global jump estimates are more

precise, and the corresponding Figure 6 visually confirms that while the probability of

staying at the current job is declining with the offered outside wage, there is no indication

of any discontinuity at the round number.

4.6 Comparison with product market estimates

A natural question is whether our experiments allow us to reject levels of left-digit bias

estimated in the product market literature. In our model, the degree of left-digit bias is

parameterized by γ, which is the percentage change in labor supply when the wage crosses

a round number. Strulov-Shlain (2019) provides estimates of left digit bias among retail

customers, and estimates the demand drop at round numbers along with product demand

elasticities. The estimated mean percentage drop of product demand at round numbers in

Strulov-Shlain is 8.89%, which is much larger than the equivalent estimates (of γ) from the

jump specifications in our three designs. (For comparability, here the “drops” are positive

if they are of the expected sign based on left digit bias.) For example, in the Wal-Mart
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data the percentage drop is 2.4% (s.e. = 3.4%), while in the Oregon data it is -1.3% (s.e.

= 5.3%), and finally in the MTurk experimental data the percentage jump at 10 cents is

-1.1% (s.e.=1.9%). In other words, the point estimates for the drops are much smaller in all

three of our designs, and often of the wrong sign, as compared to those in Strulov-Shlain.

Moreover, the confidence intervals from the Wal-Mart, Oregon and the MTurk data can

rule out the 8.89% drop at least at the 90% confidence level.

Another way to compare the implied left digit bias in product and labor markets is

by calculating the implied percentage change in price (or wage) from crossing a round

number. In particular, this rescales the size of the discontinuity in demand or supply at the

round number (the “drop”) by the relevant demand or supply elasticities at non-round

numbers. Strulov-Shlain (2019) parameterizes left-digit bias in demand with θ, where

his specification of left-digit bias is somewhat different from ours; namely, he specifies

the demand function to be log(Q) = εDlog((1− θ)p + θbpc), and recovers θ. At a round

number d, he approximates θ(d) ≈ −d (log(Q(d))−log(Q(d−.01)))
εD

which can be recovered by

dividing the discontinuity in demand at a round number by the demand elasticity times

the price d. θ captures the price change that induces a change in demand equal to that

induced by the one penny at the round number d, and captures the degree of inattention

to non-leading digits of a price change. For the purposes of comparison, θ
d is a more

attractive measure as it is price-independent, and represents the percentage change in price

at non-round numbers that is utility-equivalent to crossing a round number price. This is

readily comparable to our estimates of γ
η , which encodes the same information. In product

by product estimates, Strulov-Shlain (2019) finds a θ from 0.226 to 0.239 (Table 2 rows 5 and

6 of the November 2019 version of his paper), with a mean price of 3.50, resulting in a point

estimate of θ(d)
d between 0.064 and 0.068. The comparable numbers across our Wal-Mart,

Oregon, and MTurk datasets are all much lower, and again often of the wrong sign 0.021

(s.e.=0.04), -0.005 (s.e.=0.032), and -0.115 (s.e.=0.159), respectively. Our two experimental

labor-supply elasticities are somewhat imprecise, so only the Oregon estimates are able
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to reject the product market point estimates at 95% significance, although if we use the

more precise and larger global elasticity instead of the recentered wage elasticity η from

the Wal-Mart estimates we can rule out 0.064 at the 90% significance level. Unsurprisingly,

the extraordinarily low MTurk labor supply elasticity makes it difficult to rule out any

left digit bias by this elasticity-rescaled measure, even as the upper 95% MTurk value

of θ(0.1) itself is 0.02, an order of magnitude lower than the product market estimates

reported by Strulov-Shlain (2019). On the whole, percentage change in labor supply at

round numbers is sufficiently small relative to comparable drops in demand in the product

market, that even when rescaled by the larger labor supply elasticities we are still able

to reject comparable levels of left-digit bias found in the product market.An interesting

direction for future research is exploring why left digit bias is so much larger in product

prices than hourly wages; we conjecture it is because any given product is a small share of

expenditure, while hourly wages are a large share of income for most wage workers, and

so rational inattention could account for the differences.14

5 Incorporating employer optimization frictions

Given the lack of evidence for worker left-digit bias, we now consider the other possible

explanation for bunching: employer mis-optimization. We extend the model to allow

employers to “benefit” by paying a round number, despite lowered profits.15 While con-

sistent with employers preferring to pay round numbers, it could reflect internal fairness

constraints or administrative costs internal to the firm. These could be transactions costs

involved in dealing with round numbers, cognitive costs of managers, or administrative

costs facing a bureaucracy. δ is a simple way to capture satisficing behavior by firms willing

to use a simple heuristic (choose nearest round number) instead of bearing the costs of

14Matejka and McKay (2015) provide foundations for discrete choice that incorporates inattention, and see
Gabaix (2017) for applications of inattention to a wide variety of behavioral phenomena, including left-digit
bias.

15It would be equivalent to assume that firms suffer an effective loss from not paying a round number.
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locating at the exact profit-maximizing wage. These costs may be substantial, as evidenced

by the prevalence of pay-setting consultancies16 and pervasive use of round-numbers in

publicly stated wage-policies of large firms.17

The presence of δ modifies the profit function to be:

π(w, p) = (p− w)l(w, p)eδ1w=w0 (13)

where δ is the percentage “gain” in profits from paying the round number.18 This specifi-

cation parallels that in Chetty (2012), who restricts optimization frictions to be constant

fractions of optimal consumer expenditure (in the nominal model), except applied to the

employer’s choice of wage for a job rather than a consumer’s choice of a consumption-

leisure bundle. In the taxable income model, optimization frictions parameterize the lack

of responsiveness to tax incentives, while in our model they parameterize the willingness

to forgo profits in order to pay a round number.

Given (1) and (13), profits from paying a wage w to a workers with marginal product p

can be written as:

π(w, p) = (p− w)
wη

C
eγ1w≥w0 eδ1w=w0 k (p) = (p− w)l∗(w, p)eγ1w≥w0 eδ1w=w0 (14)

which can be written in terms of the nominal model ρ as:

eγ1w∗(p)<w0 eδ >
ρ (w∗ (p) , p)

ρ (w0, p)
(15)

16Companies and consortia such as ADP, The Survey Group, The Mayflower Group, Paychex, and Payscale
all sell consultancy services for pay setting, informed by the shared payroll data of client companies.

17For example, Wal-Mart pays a voluntary minimum wage of $11.00, Target pays $13, and Amazon pays
$15. Additionally McDonald’s, T.J. Maxx, The Gap, and many other firms have company minimum wage
policies that mandate round numbers.

18While we do not microfound why employers may have preferences for paying a particular round
number, this may reflect inattention among wage-setters. For example, Matějka (2015) shows that rationally
inattentive monopoly sellers will choose a discrete number of prices even when the profit-maximizing price
is continuous.
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Taking logs, we obtain that a firm will pay the round number if

δ + γ1w∗(p)<w0
> ln ρ (w∗ (p) , p)− ln ρ (w0, p) (16)

This shows that bunching is more likely the greater is the left-digit bias of workers

and the optimization cost for employers. The optimization bias is symmetric whether the

latent wage is above or below the round number. But left-digit bias is asymmetric because

it only has an impact if the latent wage is below the round number. The right-hand side

of (16) can be approximated using the following second-order Taylor series expansion of

ρ (w0, p) about w∗ (p)19:

ln ρ (w0, p) ' ln ρ (w∗, p) +
∂ ln ρ (w∗, p)

∂w
[w0 − w∗] +

1
2

∂2 ln ρ (w∗, p)
∂w2 [w0 − w∗]2 (17)

The first-order term is zero by the definition of the latent wage (Akerlof and Yellen

(1985) use this idea to explain price and wage rigidity). Using the definition of the nominal

model, the second derivative can be written as:

∂2 ln ρ (w, p)
∂w2 = − 1

(p− w)2 −
η

w2 (18)

Using (2) this can be written as:

∂2 ln ρ (w∗, p)
∂w2 = −η (1 + η)

w∗2
(19)

where it is convenient to invert (2) and express in terms of the latent wage because

wages are observed but marginal products are not. Substituting (19) into (17) and then

into (16) leads to the following expression for whether a firm pays the round number:

19One can use the actual profit function, instead of the approximation, but the difference is small for the
parameters we use, and the approximation has a clearer intuition.
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1
2

[
w0 − w∗

w∗

]2

≡ ω2

2
≤ δ + γ1w∗<w0

η (1 + η)
(20)

The left-hand side of (20) implies that the size of the loss in nominal profits from

bunching is increasing in the square of the proportional distance of the latent wage from

the round number (ω). The right-hand side tells us that, for a given latent wage, whether a

firm will bunch depends on the extent of left-digit bias as measured by γ (only relevant

for wages below the round number), the extent of optimization frictions as measured by δ

and the degree of competition in the labor market as measured by η. The extent of labor

market competition matters because the loss in profits from a sub-optimal wage are greater

the more competitive is the labor market. Define:

z0 =
δ + γ

η (1 + η)
, z1 =

δ

η (1 + η)
(21)

Assume, for the moment, that there is some potential variation in (δ, γ, η) across firms

which is independent of the latent wage and leads to a CDF for z0 of Λz
0 (z) and a CDF

for z1 of Λz
1 (z). From (21) it must be the case that Λz

0 (z) ≤ Λz
1 (z) with equality if there

is no left-digit bias. The way in which we use this is the following—suppose the fraction

of firms who bunch from above w0 is denoted by φ (ω∗) = φ
(

w∗H−w0
w∗H

)
, where ω∗ is the

proportionate gap between the latent optimal wage under the nominal model,w∗, the

round number w0, w∗H as the optimal wage under the nominal model for the marginal

buncher from above. Similarly, φ(ω∗) is defined as φ(w0−w∗L
w∗L

). Then (20) implies that we

will have, for ω < 0, :

φ (ω∗) = 1−Λz
0

[
ω2
∗

2

]
(22)

and for ω > 0 :

φ (ω∗) = 1−Λz
1

[
ω∗2

2

]
(23)

In the next section, we empirical recover estimates of the left-hand sides of (22) and
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(23). The results in this section imply that these estimates of the source of the missing mass

in the wage distribution can be used to nonparametrically identify the distributions of z0

and z1, Λ0 and Λ1. However, these estimates alone do not allow us to nonparametrically

identify the distribution of (δ, γ, η), the underlying economic parameters of interest, and

below we estimate the degree of monopsony and employer misoptimization under a

variety of parametric assumptions.

5.1 Estimating the origin of the missing mass

The excess mass in the wage distribution at a bunch that has been documented in the

previous sections must come from somewhere in the latent wage distribution that would

result from the “nominal model” without any bunching (in the terminology of Chetty

(2012)).20 This section describes how we estimate the origin of this “missing mass.” To do

so, we follow the now standard approach in the bunching literature of fitting a flexible

polynomial to the observed distribution, excluding a range around the threshold, and

using the fitted values to form the counterfactual at the threshold (see Kleven 2016 for a

discussion).

We focus on the bunching at the most round number ($10.00 in the wage data, $1.00

in the MTurk rewards data). We ignore the secondary bunches; this will attenuate our

estimate of the extent of bunching, as we will ignore the attraction that other round

numbers exert on the distribution.
20Following the literature, our procedure assumes that the missing mass is originating entirely from the

surrounding bunching interval. In principle, it is possible that the missing mass is originating from latent
non-employment—i.e., jobs that would not exist under the nominal model in the absence of bunching.
However, the extent to which some of the excess jobs at $10 is coming from latent non-employment, one
would need to assume either that (1) these jobs have latent productivity exactly at $10.00 so that employers
are indifferent between entering and not entering, or (2) they have productivity greater than $10 but have a
fixed cost of not paying exactly $10 that is independent of the size of the profits from paying different wages
under the nominal model. Both of these assumptions strike us as implausible. As an empirical matter, if some
of the excess mass at $10 are originating from latent non-employment, the estimated missing mass around
$10 would be smaller in magnitude than the excess mass at $10. However, our estimated missing mass from
the surrounding interval is, indeed, able to account for the size of the excess mass—which suggests that
latent non-employment is unlikely to be an important contributor to the excess mass in our case.
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We use bin-level counts of wages cw in, say, $0.10 bins, and define pw = cw
∑∞

j=0 cj
as the

normalized count or probability mass for each bin. We then estimate:

pw =
w0+∆w

∑
j=w0−∆w

β j1w=j +
K

∑
i=0

αiwi + εw (24)

In this expression j sums over 10 cent wage bins (we use 1 cent bins in the MTurk

data), and the g(w) ≡ ∑K
i=0 αiwi terms are a Kthorder polynomial, while β j terms are

coefficients on dummies for bins in the excluded range around w0, between wL = w0 − ∆w

and wH = w0 + ∆w. βw0 is the excess bunching (EB) at w0. In addition, ∑w0−10
j=w0−∆w β j is the

missing mass strictly below w0 (MMB), while ∑w0+∆w
j=w0+10 β j is the missing mass strictly above

w0 (MMA). However, it might be likely that the the number of workers is increasing in w;

so our test for left-digit bias tests whether ∑w0−10
j=w0−∆w

β j
g(j) = ∑w0+∆w

j=w0+10
β j

g(j) . In other words, we

test whether the share of workers would have been paid the latent wage j but are instead

paying w0 is different when considering bunchers from above versus below.

Since ∆w is unknown, we use an iterative procedure similar to Kleven and Waseem

(2013). Starting with ∆w = 10, we estimate equation (24) and calculate the excess bunching

EB and compare it with the missing mass MM = MMA + MMB. If the missing mass is

smaller in magnitude than the excess mass, we increase ∆w and re-estimate equation (24).

We do this until we find a ∆w such that the excess and missing masses are equalized. Since

∆w is itself estimated, we estimate its standard error using a bootstrapping procedure

suggested by Chetty (2012) and Kleven (2016). In particular, we resample (with replace-

ment) the errors ε̂w from equation (24) and add these back to the fitted p̂w to form a new

distribution p̃w, and estimate regression (24) using this new outcome. We repeat this 500

times to derive the standard error for ∆w. The estimate of ∆w and its standard error will

be useful later for the estimation of other parameters of interest.

In Figure 7 we show the estimates for the administrative data from MN, OR, and WA,

using polynomial order K = 6. For visual ease, we plot the kernel-smoothed β̂ j for the

missing mass. Even leaving out the prominent spike at $10.00, the wage distribution
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is not smooth, and has relatively more mass at multiples of 5, 10 and 25 cents. For

this reason, it is easier to detect the shape of the missing mass by looking at the kernel-

smoothed β̂ j. Moreover, we show the excess and missing mass relative to the counterfactual

p̂C
w = ∑6

i=0 αiwi. There is clear bunching at $10.00 in the administrative data, consistent with

evidence from the histogram above. We find that the excess bunching can be accounted

for by missing mass spanning ∆w = $0.80; we can also divide ∆w by w0 and normalize the

radius as ω = wH−w0
w0

= 0.08. Visually, the missing mass is coming from both below and

above $10.00, which is relevant when considering alternative explanations.

These estimates are also reported in Table 4, column 1. The bunch at $10.00 is statistically

significant, with a coefficient of 0.010 and standard error of 0.002. In addition, the size of

the missing mass from above and below w0 are quantitatively very close, at -0.006 and

-0.007 respectively. The t-statistic for the null hypothesis that the missing mass (relative

to latent) are equal for bunchers from above and below is 0.338. This provides strong

evidence against worker left-digit bias, which would have implied an asymmetry in the

missing masses. The radius of the missing mass interval is ω = 0.08, with a standard error

of 0.027. In other words, employers who are bunching appear to be paying as much as 8%

above or below the wage that maximizes profits under the nominal model.

In column 2, we use the CPS data limited to MN, OR, and WA only. We find a

substantially larger estimate for the excess mass, around 0.043, consistent with rounding

of wages by survey respondents. In column 3, we report estimates using the re-weighted

CPS counts for MN, OR, and WA adjusted for rounding due to reporting error using the

1977 supplement (CPS-MEC). The CPS estimate of bunching adjusted for measurement

error is much closer to the administrative data, with an estimated magnitude of 0.014;

while it is still somewhat larger, we note that the estimate from the administrative data is

within the 95 percent confidence interval of the CPS-MEC estimate. The use of the CPS

supplement substantially reduces the discrepancy, which is re-assuring. At the same time,

we note that the estimates for ω using the CPS (0.07) are remarkably close to those using
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the administrative data (0.08). The graphical analogue of column 3 is in Figure 8.

Since the counterfactual involves fitting a smooth distribution using a polynomial in

the estimation range, in Table 5 we assess the robustness of our estimates to alternative

polynomial orders between 4 and 7. Both the size of the bunch, and the radius of the

interval with missing mass, ω, are highly robust to the choice of polynomials. For example,

using the pooled administrative data, the bunching β0 is always 0.01, and ω is always 0.08

for all polynomial orders K.

One concern with bunching methods in cross sectional data is that the estimation of

missing mass requires parametric extrapolation of the wage distribution around $10. In

our case, however, the bunching is at a nominal number ($10) that sits on a different part

of the real wage distribution in each of the 20 quarters of our sample. As an alternative,

instead of collapsing the data into a single cross section, we use quarterly cross sectional

data and fit a polynomial in the real wage wr = w/Pt where Pt is the price index in year t

relative to 2003. Defining pwr as the probability mass for a real wage bin wr, we specify the

regression equation as:

pwr =
w0+∆w

∑
j=w0−∆w

β j1wr×Pt=j +
K

∑
i=0

αiwi
r + εwr (25)

We again iterate estimating this equation until MM = MMA + MMB to recover ∆w. If

the real wage distribution is assumed to be stable during this period (i.e. the αi are constant

over time), then in principle the latent wage distribution within the bunching interval

can be identified nonparametrically, because each wr bin falls outside of the bunching

interval in at least some periods. More precisely, suppose there were only two periods,

and (w0 − ∆w)/PT1 ≥ (w0 + ∆w)/PT0 , for some T1 and T0. In this case β j is identified from

the mass at wr × PT1 controlling for a flexible function of wr which is effectively identified

from the real wage distribution in T0 as well as the mass at wr × PT0 conditional on the

real wage density in T1. This specification is an example of a “difference in bunching”

approach that compares the same part of the real wage distribution across years (Kleven
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(2016)), and addresses criticisms of bunching estimators being dependent on parametric

assumptions about the shape of the latent distribution (Blomquist and Newey, 2017). To

show that this assumption of non-overlapping bunching intervals is satisfied for at least

some portion of our data, Appendix Figure A.2 shows that the bunching interval around

the nominal $10.00 mode in 2007 does not overlap with that from the 2003 real wage

distribution, allowing for estimation of the latent (real) density around the nominal $10.00

mode using variation in the price level over time. In column (8) of Table 5 we show that

estimates with the repeated cross section and real wage polynomials are virtually identical

to our baseline estimates, providing reassurance that our estimates are not being driven by

parametric assumptions about the latent distribution within the bunching interval.

The main conclusions from this section are that the missing mass seems to be drawn

symmetrically from around the bunch and from quite a broad range. As the next section

shows, these facts are informative about possible explanations for bunching and the nature

of labor markets.

6 Recovering optimization frictions from bunching estimates

The first result of our framework above is that worker left-digit bias implies that the degree

of bunching is asymmetric, in that missing mass will come more from below the round

number than above. Thus, finding symmetry in the origin of the missing mass implies

that we can approximate ω∗ and ω∗ with the harmonic mean of the two, which we denote

ω ≡
∣∣∣w−w0

w0

∣∣∣, and is exactly the proportional radius of the bunching interval in Table 4.

This further implies that Λ0 = Λ1 and allows us to accept the hypothesis that γ = 0. The

intuition for this is that left-digit bias implies that firms with a latent wage 5 cents below

the round number have a higher incentive to bunch than those with a latent wage 5 cents

above. We fail to reject symmetry of the missing mass in Table 4 and so we proceed holding

γ = 0.
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Under the assumption that bunchers have latent wages near the round number, the

presence of missing mass greater than w0 also rules out a number of explanations that do

not require monopsony in the labor market. If the labor market were perfectly competitive,

then no worker could be underpaid, even though misoptimizing firms could still overpay

workers. Explanations involving product market rents or other sources of profit for firms

cannot explain why firms systematically can pay below the marginal product of workers;

only labor market power can account for this. Similarly, however, the presence of missing

mass below w0 rules out pure employer collusion around a focal wage of w0, as the pure

collusion case would imply that all the missing mass was coming from above w0.

Taking γ = 0 as given, our estimates of the proportion of firms who bunch for each latent

wage identifies the CDF of z1 = δ
η(1+η)

, but does not allow us to identify the distributions

of δ and η separately. This section describes how one can make further assumptions

to identify these separate components. First, note that if there is perfect competition

in labor markets (η = ∞) or no optimization frictions (δ = 0), we have that z1 = 0 in

which case there would be no bunches in the wage distribution. The existence of bunches

implies that we can reject the joint hypothesis of perfect competition for all firms and no

optimization frictions for all firms. But there is a trade-off between the extent of labor

market competition and optimization friction that can be used to rationalize the data on

bunches. To see this note that if the labor market is more competitive i.e. η is higher, a

higher degree of optimization friction is required to explain a given level of bunching.

Similarly, if optimization frictions are higher i.e. a higher δ, then a higher degree of labor

market competition is required to explain a given level of bunching.

To estimate η and δ separately from φ(ω), we need to make assumptions about the

joint distribution. A natural first place to start is to assume a single value of η and a single

value of δ. In this case, the missing mass is a constant proportion within the bunching

interval around the whole number bunch with all latent wages inside the interval and

none outside. If there is no left-digit bias (γ = 0) (because of the symmetry in the missing
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mass), then ω , η and δ must satisfy:

2δ

η (1 + η)
= ω2 (26)

This expression shows that, armed with an empirical estimate of ω, we can trace out a δ-η

locus, showing the values of δ and η that can together rationalize a given ω. For a given

size of the bunching interval ω, a higher value of optimization frictions (higher δ) implies

a more competitive labor market (a higher η). 21

But our estimates of the “missing mass” do not suggest a bunching interval with this

shape. At all latent wages, there seem to be some employers who bunch and others who

do not. To rationalize this requires a non-degenerate distribution of δ and/or η . We

make a variety of different assumptions on these distributions in order to investigate the

robustness of our results.

We always assume that the distributions of η and δ are independent with cumulative

distributions H(η) and G(δ). At least one of these distributions must be non-degenerate

because, by the argument above, if they both have a single value for all firms one would

observe an area around the bunch where all firms bunch so the missing mass would be

100% - this is not what the data look like. Our estimates imply that there are always some

firms who do not bunch, however close is their latent wage to the bunch. We rationalize

this as being some fraction of employers who are always optimizers i.e. have δ = 0.

We first make the simplest parametric assumptions that are consistent with the data:

we assume that η is constant, and δ has a 2-point distribution with δ=0 with probability

G and δ = δ∗ with probability 1− G, so that E[δ|δ > 0] = δ∗. Below, we will extend this

formulation to consider other possible shapes for the distribution G(δ|δ > 0), keeping a

mass point at G(0) = G.

21Andrews, Gentzkow and Shapiro (2017) make a similar point in a different context, arguing that differing
percentages of people with optimization frictions can substantively affect other parameter estimates using
the example of DellaVigna, List and Malmendier (2012).
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This then implies the missing mass at w is given by:

φ(ω) = [1− G] I
[

ω2 <
2δ∗

η (1 + η)

]

In this model, the share of jobs with a latent wage close to the bunch that continue to pay a

non-round w identifies G, and the radius of the bunching interval (ω) in the distribution

identifies δ∗

η(1+η)
. The width of the interval was estimated, together with its standard error,

in the estimation of the missing mass where, relative to the bunch, it was denoted by ∆w
w0

.

Under assumptions about δ∗ we can recover a corresponding estimate of η and vice versa.

What do plausible values of optimization error imply about the likely labor supply

elasticities for bunchers? To answer this question, we report bounds using “economic

standard errors” similar to Chetty (2012). We calculate estimates of η assuming δ∗ equal

to 0.01, 0.05 or 0.1 in rows A, B, and C of Table 6 respectively. The implied labor supply

elasticity η varies between 1.337 and 5.112 when we vary δ∗ between 0.01 and 0.1. Even

assuming a substantial amount of mis-optimization (around 10% of profits) suggests a

labor supply elasticity facing a firm of less than 5.5, and we can rule out markdowns

smaller than 6 percent. If we assume, instead, a 1% loss in profits due to optimization

friction, the 90 percent confidence bounds rule out η > 3.1 and markdowns smaller than

25 percent. While our estimate for the labor supply elasticity are not highly precise, the

extent of bunching at $10.00 suggests considerable wage setting power on firms’ part even

for a sizable amount of optimization frictions, δ.

The admissible values of δ, η can also be seen in Figure 9. Here we plot the δ∗, η locus

for the sample mean of estimated bunching, ω, as well as for the 90 percent confidence

interval around it. We can see visually that as we consider higher values of δ∗, the range

of admissible η′s increases and becomes larger in value. However, even for sizable δ∗’s

the implied values of the labor supply elasticity are often modest, implying at least a

moderate amount of monopsony power. Our estimates are plausible given the recent
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literature: Caldwell and Oehlsen (2018) find an experimental labor-supply elasticity for

Uber drivers at between 4 and 5, similar to the estimates in Dube et al. (2015), while Kline

et al. (2017) estimate a labor-supply elasticity facing the firm of 2.7, using patent decisions

as an instrument for firm productivity, both of which would be well within the range of η

implied by our estimates together with a δ∗ less than 0.05.

We examine robustness of the estimates to alternative specifications of the latent dis-

tribution of wages in Table 7. Columns 1 and 2 add indicator variables for “secondary”

modes, to capture the bunching induced at 50 cent and 25 cent bins. Columns 3 and 4

specify the latent distribution as a Fourier polynomial, in order to allow the specification

to pick up periodicity in the latent distribution that even a high-dimensional polynomial

may miss. Columns 5 and 6 of Table 7 explore changing the degree of the polynomial used

to fit the main estimates in Table 6. Column 5 uses a quadratic and column 6 uses a quartic,

and our results stay very similar to our main estimates in Table 6.

6.1 Alternative assumptions on heterogeneity

While assuming a single value of non-zero δ and a constant elasticity η may seem restrictive,

it is a restriction partially made for empirical reasons as our estimate of the missing mass at

each latent wage is not very precise and we will also be unable to distinguish heterogeneous

elasticities in our experimental design. Nonetheless, there is a concern that different

assumptions about the distribution of δ and η might be observationally indistinguishable

but have very different implications for the extent of optimization frictions and monopsony

power in the data. This section briefly describes a number of robustness exercises that vary

the possible heterogeneity in δ and η, with details relegated to Online Appendix A .

While it is not possible to identify arbitrary nonparametric distributions of δ and η, as

robustness checks we consider polar cases allowing each to be unrestricted one at a time,

and then finally a semi-parametric deconvolution approach that allows for an unrestricted,

non-parametric distribution H(η), along with a flexible, parametric distribution G(δ). First,
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we continue to assume a constant η but allow δ to be have an arbitrary distribution

G(δ|δ > 0) while continuing to fix the probability that δ = 0 at G. Second, at the opposite

pole, we allow each firm to have its own labor supply elasticity η, while each firm either mis-

optimizes profits by a fixed fraction δ∗ or not at all.22 Finally, we continue to allow arbitrary

heterogeneity in η but only restrict G(δ) to have a continuous lognormal distribution, with

prespecified variances of .1 and 1.

We quantitatively show robustness of our main estimates to these four alternate spec-

ifications in Table 8. Column 1 shows the implied E[δ|δ > 0] and δ̄ when an arbitrary

distribution of δ is allowed. The implied η for E[δ|δ > 0] = 0.01 is 1.67 instead of 1.33 in

the baseline estimates from Table 6. Similarly, in column 2 we see the estimates under the

2-point distribution for δ and an arbitrary distribution for η. The mean η of 1.56 in this

case is quite close to column 1. The implied bounds are somewhat larger, with a 1% loss in

profits for those bunching (i.e., E(δ|δ > 0) = 0.01) generating 95% confidence intervals that

rule out estimates of 5.4 or greater. Under 5% loss in profits, we get elasticities in columns 1

and 2 that are close to 4 , somewhat larger than the comparable baseline estimate of 3.5, but

with similarly close to 20 percent wage markdown. Therefore, allowing for heterogeneity

in either δ or η only modestly increases the estimated mean η as compared to our baseline

estimates.

In columns 3 and 4 we report our estimates allowing for an arbitrary distribution for

η, along with a lognormal conditional distribution for δ. These estimates are obtained

using a deconvolution estimator to recover the distribution of a difference in random

variables, described in more detail in Online Appendix B. As in columns 1 and 2, we

consider the case where E(δ|δ > 0) = 0.01 or 0.05, but now allow the standard deviation

22This exercise is in the spirit of Saez (2010) who estimates taxable income elasticities using bunching in
income at kinks and thresholds in the tax code (Kleven 2016). Kleven and Waseem (2013) use incomplete
bunching to estimate optimization frictions, similar to our exercise in this paper; however, in our case
optimization frictions produce bunching while in Kleven and Waseem (2013) they prevent it. This has been
applied to estimating the implicit welfare losses due to various non-tax kinks, such as gender norms of
relative male earnings (Bertrand, Kamenica and Pan 2015) as well as biases due to behavioral constraints
(Allen et al. 2016).
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σδ to vary. In column 3 we take the case where δ is fairly concentrated around the mean

with σδ = 0.1. Here the estimated E(η) is equal to 2.5, which is larger than the analogous

baseline estimates in columns 1 and 2 allowing for an arbitrary distributions for δ and η,

respectively. In column 4, we allow δ to be much more dispersed, with σδ = 1. In this case

the estimated E(η) falls somewhat to 2. With E(δ|δ > 0) = 0.05, we get E[η] = 6 and 4.6

under σδ = 0.1 and σδ = 1, respectively, and we are able to rule out markdowns less than 5

percent easily. Encouragingly, for a given mean value of optimization friction, E[δ|δ > 0],

allowing for heterogeneity in δ and η together only modestly affects the estimated mean η

as compared to our baseline estimates.

Overall, a wide range of assumptions made about the distribution of δ and η continue

to suggest that the degree of bunching observed in the data is consistent with a moderate

degree of monopsony along with a modest reduction in profits from optimization errors;

and that an assumption of a more competitive labor market implies larger profit loss from

mispricing.

6.2 Heterogeneous δ by Firms - Evidence from Oregon Administrative

Data

We can now examine what type of firms are more likely to bunch exactly at $10.00 to pro-

vide additional validation for the hypothesis that this reflects employer mis-optimization.

If heterogeneity in δ is indeed driving variation in bunching, then firms that bunch should

exhibit plausibly “behavioral” characteristics, for example a lack of administrative sophis-

tication or modern management practices. While we do not have extensive firm-level

data on human resource practices, we do have a variety of firm characteristics from the

matched employer-employee data from Oregon. In Figure 10 we show the firm-specific

determinants of bunching, where we regress the extent of bunching (ratio of excess mass

to latent wage density) on a variety of firm level characteristics, including firm size, deciles
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of hourly wage firm effects23 , industry, and part-time (less than 20 hours) share of em-

ployment. While bunching is present in every subgroup, with no coefficient less than 1,

we find that the firms most likely to bunch are very small firms, those in the construction

sector , and those in the bottom of the firm-effect distribution for hourly wages. This is

consistent with these firms being relatively “unsophisticated,” more likely to pay in cash,

and less likely to have standardized pay practices (e.g. automatic inflation escalation) that

would eliminate employer discretion in wage setting; this results in bunching of wages

at round numbers. The public sector also exhibits some unusual bunching, which could

reflect low cost mininimization pressure on public wage-setting, but may also indicate

some preference of public sector workers or unions for benefits over wages. Starting wages

are also more likely to bunch; this is consistent with firms using other rules for raises

(such as a common percentage increase in wages for all workers) that erode bunching at

round numbers over time. Overall, the variation in the use of round numbered wages

across firms is consistent with the hypothesis that it is driven by optimization errors by

employers.

24

7 Conclusion

Significantly more U.S. workers are paid exactly round numbers than would be predicted

by a smooth distribution of marginal productivity. This fact is documented in admin-

istrative data, mitigating any issues due to measurement error, and is present even in

Amazon MTurk, an online spot labor market, where there are no regulatory constraints nor

long-term contracts. We integrate imperfect labor market competition with left-digit bias

23These firm effects are estimated using the Abowd et al. (1999) decomposition, with the Oregon-specific
hourly wage decomposition results detailed more fully in Bassier et al. (2019).

24In Appendix Table C.1 we examine heterogeneity in η by worker characteristics, holding fixed δ and
using measurement error corrected CPS data. The estimates are consistent with plausible heterogeneity in
residual labor supply elasticities: women have lower estimated η while new workers have higher values,
but the extent of heterogeneity is generally limited.
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by workers and a general employer preference for round-number wages to evaluate the

source of left-digit bias. Using administrative wage data, we reject a role for worker left-

digit bias using the symmetry of the missing mass around round numbers. We also reject

the left-digit bias hypothesis using a high-powered, preregistered experiment conducted

on MTurk: despite considerable monopsony power (in a putatively thick market), there is

no discontinuity in labor supply or quality of work at 10 cents relative to 9. Observational

evidence from administrative hourly wage data from Oregon similarly confirms the lack

of any discontinuity in labor supply facing firms at $10/hour, as do stated preference

experiments conducted with Wal-Mart workers.

This evidence shows that the extent of round-number bunching can be explained by a

combination of a plausible degree of monopsony together with a small degree of employer

mis-optimization. We show that when there is sizable market power, it requires only a

modest extent of optimization error to rationalize substantial bunching in wages. With

optimization error leading to a profit loss of less than 5%, the observed degree of bunching

in administrative data can be rationalized with a firm-specific labor supply elasticity less

than 2.5; at 1% of profits lost from round-number bias of employers, the implied firm labor-

supply elasticity is between .8 and 1.5, depending on the extent and shape of heterogeneity

assumed.

This research suggests that bunching in the wage distribution may not be merely a

curiosity. Spikes at arbitrary wages suggest a failure of labor-market arbitrage due to

employer mis-optimization and market power. Given the prevalence of round numbers in

the wage distribution, it suggests that market power may be ubiquitous in labor markets

as well as product markets. Moreover, our evidence suggests that when there is market

power, we can expect employers to exhibit a variety of deviations from optimizing behavior,

including adoption of heuristics such as paying round number wages.
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Figure 1: Prevalence of Round Nominal Wages in the CPS
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Notes. The top figure shows the CPS hourly nominal wage distribution, pooled between 2010 and
2016, in 10 cent bins. The middle figure shows the fraction of hourly wages in the CPS that end
in .00 from 2003 through 2016. The bottom figure shows the fraction of states with $10.00 modal
wages in the CPS. We exclude imputed wages.
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Figure 2: Histogram of Hourly Wages In Pooled Administrative Payroll Data from Min-
nesota, Oregon, and Washington, 2003-2007
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Notes. The figure shows a histogram of hourly wages in $0.10 (nominal) wage bins, averaged over
2003q1 to 2007q4, using pooled administrative Unemployment Insurance payroll records from the
states of Oregon, Minnesota and Washington. Hourly wages are constructed by dividing quarterly
earnings by the total number of hours worked in the quarter. The counts in each bin are normalized
by dividing by total employment in that state, averaged over the sample period. The UI payroll
records cover over 95% of all wage and salary civilian employment in the states. The vertical line is
the highest minimum wage in the sample (7.93 in WA 2007). The counts here exclude NAICS 6241
and 814, home-health and household sectors, which were identified by the state data administrators
as having substantial reporting errors.
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Figure 3: Bunching in Task Rewards in Online Labor Markets - MTurk
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Notes. The figure shows a histogram of posted rewards by $0.01 (nominal) bins scraped from
MTurk. The sample represents all posted rewards on MTurk between May 01, 2014 and September
3, 2016.
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Figure 4: Distribution of Randomized Rewards in the MTurk Experiment, and Result-
ing Probability of Task Acceptance
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Notes. The figure shows the raw probability of accepting the bonus task as a function of the wage. Dots are
scaled proportionally to the number of observations.
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Figure 5: Oregon separation response by wage bin
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Notes: Estimated from quarterly matched worker-establishment data from Oregon 2003-2007. Separations
with blue circles are coefficient on $0.10 wage bin dummies relative to $9.90 (the bin right below $10.00),
and control for fully saturated interactions of current quarter, quarter of hire, starting wage bin ($0.10),
5-categories of weekly hours, and firm fixed effects. Robust standard errors are clustered at the 1-cent wage
bin level.
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Figure 6: Wal-Mart worker stated job mobility preference by offered wage bin

Notes: Estimated from responses of Wal-Mart workers in stated preference experiments. Stay probabilities
with blue circles are coefficient on $0.10 wage bin dummies relative to dit= -$0.10 (the bin right below round
number), and control for respondent fixed effect and $1 interval fixed effect. Confidence intervals constructed
from robust standard errors.
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Figure 7: Excess Bunching and Missing Mass Around $10.00 Using Administrative Data
on Hourly Wages (MN, OR, WA)
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Notes. The reported estimates of excess bunching at $10.00, and missing mass in the interval around
$10.00 as compared to the smoothed predicted probability density function, using administrative
hourly wage counts from OR, MN and WA, aggregated by $0.10 bins, over the 2003q1-2007q4
period. The darker shaded blue bar at $10.00 represents the excess mass, while the lighter red
shaded region represents the missing mass. The dotted lines represent the estimated interval from
which the missing mass is drawn. The predicted PDF is estimated using a sixth order polynomial,
with dummies for each $0.10 bin in the interval from which the missing mass is drawn. The width
of the interval is chosen by iteratively expanding the interval until the missing and excess masses
are equal, as described in the text.
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Figure 8: Excess Bunching and Missing Mass Around $10.00 Using Measurement Error
Corrected CPS Data
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Notes. The reported estimates of excess bunching at $10.00, and missing mass in the interval around
$10.00 as compared to the smoothed predicted probability density function, using CPS data for
MN, OR, and WA, corrected for measurement error using the 1977 administrative supplement.
The darker shaded blue bar at $10.00 represents the excess mass, while the lighter red shaded
region represents the missing mass. The dotted lines represent the estimated interval from which
the missing mass is drawn. The predicted PDF is estimated using a sixth order polynomial, with
dummies for each $0.10 bin in the interval from which the missing mass is drawn. The width of
the interval is chosen by iteratively expanding the interval until the missing and excess masses are
equal, as described in the text.
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Figure 9: Relationship Between Labor Supply Elasticity (η) , Optimization Frictions (δ)
and Size of Bunching (ω): Administrative Hourly Wage Data from MN, OR, and WA
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Notes. The solid, red, upward sloping line shows the locus of the labor supply elasticity η and optimization
frictions δ∗ = E[δ|δ > 0] consistent with the extent of bunching ω estimated using the administrative hourly
wage data from MN, OR, and WA between 2003q1-2007q4, as described in equation 26 in the paper. The
dashed lines are the 95 percent confidence intervals estimated using 500 bootstrap replicates.
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Figure 10: Heterogeneity in bunching by Oregon firm characteristics
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Notes: AKM firm effects refer to deciles of firm effects estimated via Abowd et al. (1999), PT refers to part-time
workers (less than 20 hours).The omitted firm size category is over 500 workers; the omitted sector is Retail.
95 percent confidence intervals are based on standard errors clustered at the firm level.
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Table 1: Task Acceptance Probability by Offered Task Reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage 0.063*** 0.077** 0.089** 0.120*** 0.149** 0.227***

(0.023) (0.034) (0.041) (0.044) (0.064) (0.078)

Jump at 10 -0.009 -0.019
(0.015) (0.027)

Spline -0.075 -0.132
(0.140) (0.254)

Local 0.002 0.031
(0.020) (0.041)

Global -0.005 -0.009
(0.014) (0.025)

η 0.080*** 0.097** 0.144*** 0.179**
(0.029) (0.043) (0.053) (0.077)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 5017 5017 5017 5017 1618 1618 1618 1618

Notes. The reported estimates are logit regressions of task acceptance probabilties on log wages,
controlling for number of images done in the task (6 or 12), age, gender, weekly hours worked
on MTurk, country (India/US/other), reason for MTurk work, and an indicator for HIT ac-
cepted after pre-registered close date. Column 1 reports specification 1 that estimates the
labor-supply elasticity, without a discontinuity. Column 2 estimates specification 2, which tests
for a jump in the probability of acceptance at 10 cents. Column 3 estimates a knotted spline in
log wages, with a knot at 10 cents, and reports the difference in elasticities above and below 10
cents. Column 4 estimates specification 4, including indicator variables for every wage and
testing whether the different in acceptance probabilities between 10 and 9 cents is different
from the average difference between 12 and 8 (local) or the average difference between 5 and
15 (global). Columns 5-8 repeat 1-4, but restrict the sample to "sophisticates": Turkers who
respond that they work more than 10 hours a week and their primary motivation is money.
Mean acceptance rate for the full sample is 0.78, and 0.8 for the sophisticates sample. Robust
standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Table 2: Oregon Separation response around $10.00/hour jobs

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log wage -0.233* -0.192** -0.510* -0.277*** -0.558*** -0.242** -0.268* -0.268

(0.108) (0.075) (0.232) (0.063) (0.160) (0.091) (0.144) (0.152)

Jump at 10.00 0.021 0.018 0.002
(0.016) (0.010) (0.007)

Spline -0.000
(0.001)

Local 0.006
(0.007)

Global (0.005)
(0.005)

η -3.055** 2.577** 6.834** 3.709*** 7.472*** 3.737*** 4.137*
(1.469) (1.023) (3.045) (0.846) (2.080) (1.401) (2.199)

Obs 821797 755634 755634 380129 380129 100744 100744 100744 100744
Standard controls Y Y Y Y Y Y Y Y
Sector and firm size Y Y
Firm FE Y Y Y Y

Notes. Baseline controls include saturated interactions between current quarter, quarter of hire, 0.10 starting wage
bin, 6-part weekly lagged hours category. The outcome is all separations. The mean quarterly separation rate in this
sample is 0.13. Exact 10-dollar bin defined as [10.00, 10.09]. Robust standard errors are clustered at the 1-cent wage
bin level.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

61



Table 3: Wal-Mart worker job mobility response to offered wage around a round num-
ber

(1) (2) (3) (4) (5)
Log wage -0.618*** -0.625*** -0.456 -0.309

(0.045) (0.199) (0.304) (0.562)

Jump at Round Number -0.009
(0.013)

Spline -1.058
(1.959)

Local 0.001
(0.021)

Global -0.003
(0.017)

η 3.164*** 3.198*** 2.336
(0.231) (1.021) (1.554)

Obs 9171 9171 9171 9171 9161

Wage Relative to Round Number N Y Y Y Y

Notes. Estimated from responses of Wal-Mart workers in stated preference experiments. Re-
gressions control for respondent fixed effect and $1 interval fixed effect. Dependent variable
is an indicator variable that the subject chose "Stay at current job and do nothing", instead of
"Ask for a Raise", or "Leave current job for offered job", and the sample mean of this variable
is 0.39. Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table 4: Estimates for Excess Bunching, Missing Mass, and Interval around Threshold

(1) (2) (3) (4)
Value of w0 $10.00 $10.00 $10.00 $10.00

Excess mass at w0 0.010 0.034 0.014 0.041
(0.002) (0.008) (0.004) (0.009)

Total missing mass -0.013 -0.043 -0.016 -0.033
(0.009) (0.034) (0.017) (0.047)

Missing mass below -0.007 -0.024 -0.009 -0.019
(0.007) (0.023) (0.010) (0.029)

Missing mass above -0.006 -0.019 -0.007 -0.014
(0.008) (0.029) (0.013) (0.036)

Test of equality of missing
shares of latent < and > 0:

t-statistic -0.338 -0.097 -0.065 -0.151

Bunching = Actual mass
Latent density 2.555 6.547 4.172 8.394

(0.343) (6.476) (1.772) (7.405)

wL $9.20 $9.30 $9.30 $9.30
wH $10.80 $10.70 $10.70 $10.70

ω =(wH–w0)
w0

0.080 0.070 0.070 0.070
(0.026) (0.033) (0.034) (0.033)

Data: Admin OR & MN & WA CPS-Raw OR & MN & WA CPS-MEC OR & MN & WA CPS-Raw

Notes. The table reports estimates of excess bunching at threshold w0, missing mass in the interval around w0 as compared to the
smoothed predicted probability density function, and the interval (ωL, ωH) from which the missing mass is drawn. It also reports
the t-statistic for the null hypothesis that the size of the missing mass to the left of w0 is equal to the size of the missing mass to
the right. The predicted PDF is estimated using a sixth order polynomial, with dummies for each bin in the interval from which
the missing mass is drawn. The width of the interval is chosen by iteratively expanding the interval until the missing and excess
masses are equal, as described in the text. In columns 1-3, estimates are shown for bunching at $10.00 from pooled MN, OR, and
WA using the administrative hourly wage counts, the raw CPS data, and measurement error corrected CPS (CPS-MEC) over the
2003q1-2007q4 period. Bootstrap standard errors based on 500 draws are in parentheses.
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Table 6: Bounds for Labor Supply Elasticity in Administrative Data

(1) (2) (3) (4)
A. δ∗ = 0.01
δ 0.001 0.004 0.002 0.003
η 1.337 1.581 1.581 1.581
90% CI [0.417, 2.050] [0.417, 4.525] [0.472, 9.512] [0.417, 4.525]
95% CI [0.417, 2.871] [0.417, 4.525] [0.417, 9.512] [0.417, 4.525]

B. δ∗ = 0.05
δ 0.005 0.020 0.011 0.017
η 3.484 4.045 4.045 4.045
90% CI [1.291, 5.112] [1.291, 10.692] [1.429, 21.866] [1.291, 10.692]
95% CI [1.291, 6.970] [1.291, 10.692] [1.291, 21.866] [1.291, 10.692]

C. δ∗ = 0.1
δ 0.010 0.041 0.022 0.034
η 5.112 5.908 5.908 5.908
90% CI [1.983, 7.421] [1.983, 15.319] [2.182, 31.127] [1.983, 15.319]
95% CI [1.983, 10.053] [1.983, 15.319] [1.983, 31.127] [1.983, 15.319]

G(0)= G 0.896 0.592 0.785 0.662

Data: Admin OR & MN & WA CPS-Raw OR & MN & WA CPS-MEC OR & MN & WA CPS-Raw

Notes. The table reports point estimates and associated 95 percent confidence intervals for labor supply elasticities, η,
and markdown values associated with different values of optimization friction δ. All columns use the pooled MN, OR,
and WA administrative hourly wage data. In columns 1, 2 and 3, we use hypothesized values of δ of 0.01, 0.05 and 0.1
respectively. The labor supply elasticity, η, and the markdown are estimated using the estimated extent of bunching, ω,
and the hypothesized δ, using equations 26 and 2 in the paper. The 95 percent confidence intervals in square brackets
are estimated using 500 boostrap draws.
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Table 8: Bounds for Labor Supply Elasticity in Offline Labor Market - Heterogeneous δ
and η

Heterogeneous δ Heterogeneous η
Heterogeneous δ & η,

σδ = 0.1
Heterogeneous δ & η,

σδ = 1
A. E(δ|δ > 0)= 0.01
δ 0.001 0.001 0.001 0.001
η 1.668 1.559 2.469 1.849
90% CI [0.969, 4.394] [0.917, 4.650] [1.056, 5.446] [0.758, 4.163]
95% CI [0.845, 4.816] [0.823, 5.328] [0.905, 6.589] [0.649, 5.062]

Markdown 0.375 0.391 0.288 0.351
90% CI [0.185, 0.508] [0.177, 0.522] [0.155, 0.486] [0.194, 0.569]
95% CI [0.172, 0.542] [0.158, 0.548] [0.132, 0.525] [0.165, 0.606]

B. E(δ|δ > 0)= 0.05
δ 0.006 0.006 0.006 0.006
η 4.244 3.991 6.036 4.616
90% CI [2.629, 10.397] [2.503, 10.965] [2.808, 12.739] [2.108, 9.833]
95% CI [2.337, 11.346] [2.284, 12.453] [2.469, 15.445] [1.837, 11.894]

Markdown 0.191 0.200 0.142 0.178
90% CI [0.088, 0.276] [0.084, 0.285] [0.073, 0.263] [0.092, 0.322]
95% CI [0.081, 0.300] [0.074, 0.304] [0.061, 0.288] [0.078, 0.352]

G(0)= G 0.880 0.880 0.880 0.880

Data: Admin OR & MN & WA Admin OR & MN & WA Admin OR & MN & WA Admin OR & MN & WA

Notes. The table reports point estimates and associated 95 percent confidence intervals for labor supply elasticities, η, and markdown
values associated with hypothesized δ=0.01 and δ=0.05. All columns use the pooled MN, OR, and WA administrative hourly wage
counts. Heterogeneous δ and η are allowed in columns 1 and 2, using equations 27 and 28, respectively. Columns 3 and 4 allow
heterogeneous δ and η, and assume a conditional lognormal distribution of δ, using a deconvolution estimator based on equation
29. The third column assumes a relatively concentrated distribution of δ (σδ = 0.1); whereas the fourth column assumes a rather
dispersed distribution (σδ = 1). In row A, we hypothesize δ = 0.01; whereas it is δ = 0.05 in row B. The 90 and 95 percent confidence
intervals in square brackets in columns 1 and 2 (3 and 4) are estimated using 500 (1000) boostrap draws.
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Online Appendix A

Additional Figures

Appendix Figure A.1 plots the histograms of hourly wages in (nominal) $0.10 bins using

administrative data separately for the states of Minnesota (panel A), Oregon (Panel B) and

Washington (panel C). All are based on hourly wage data from UI records from 2003-2007.

Hourly wages are constructed by dividing quarterly earnings by the total number of hours

worked in the quarter. The counts are normalized by dividing by total employment in that

state, averaged over the sample period. The figure shows very clear bunching at multiples

of $1 in both states, especially at $10. Appendix Figure A.2 plots the overlaid histograms of

hourly wages, pooled across MN, OR, and WA, in real $0.10 bins from 2003q4 and 2007q4,

and shows that the nominal bunching at $10.00 occurs at different places in the real wage

distribution in 2003 and 2007.
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Figure A.1: Histograms of Hourly Wages In Administrative Payroll Data from Min-
nesota, Oregon, and Washington, 2003-2007

Panel A: Minnesota
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Panel B: Oregon
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Panel C: Washington
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Notes. The figure shows histograms of hourly wages in $0.10 (nominal) wage bins, averaged over
2003q1 to 2007q4, using administrative Unemployment Insurance payroll records from the states of
Minnesota (Panel A) , Oregon (Panel B), and Washington (Panel C). Hourly wages are constructed
by dividing quarterly earnings by the total number of hours worked in the quarter. The counts in
each bin are normalized by dividing by total employment in that state, averaged over the sample
period. The UI payroll records cover over 95% of all wage and salary civilian employment in the
states. The counts here exclude NAICS 6241 and 814, home-health and household sectors, which
were identified by the state data administrators as having substantial reporting errors.
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Figure A.2: Histograms of Real Hourly Wages In Administrative Payroll Data from
Minnesota, Oregon, and Washington, 2003-2007
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Notes. The figure shows a histogram of hourly wages in $0.10 real wage bins (2003q1 dollars)
for 2003q1 and 2007q1, using pooled administrative Unemployment Insurance payroll records
from the states of Minnesota and Washington. The nominal $10 bin is outlined in dark for each
year—highlighting the fact that this nominal mode is at substantially different part of the real wage
distributions in these two periods. Hourly wages are constructed by dividing quarterly earnings
by the total number of hours worked in the quarter. The counts in each bin are normalized by
dividing by total employment in that state for that quarter. The UI payroll records cover over 95%
of all wage and salary civilian employment in the states. The counts here exclude NAICS 6241 and
814, home-health and household sectors, which were identified by the state data administrators as
having substantial reporting errors.
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Online Appendix B

Allowing Flexible Heterogeneity in η and δ

In this Appendix, we provide details on the derivations of the robustness checks in section

6.1. We also show the estimated CDFs for the distributions of δ and η under the different

distributional assumptions.

For the first exercise, we continue to assume a constant η but allow δ to have an arbitrary

distribution G(δ|δ > 0) while continuing to fix the probability that δ = 0 at G. In this case,

for a given value of η the non-missing mass at ω would equal:

φ (ω) = 1− Ĝ(η(1 + η)
ω2

2
)

This expression implicitly defines a distribution Ĝ(δ):

Ĝ(δ) = 1− φ

(√
2δ

η(1 + η)

)
(27)

Note that this implies that δ ∈ [0, δmax] where δmax = ω2

2 η(1 + η) where ω is the radius

of the bunching interval. We then fix E(δ|δ > 0) at a particular value, similar to what

we do with δ∗, and then can identify both an arbitrary shape of Ĝ(δ) as well as η. Figure

B.3 shows the distribution along with values of η from equation (27) in the MN-OR-WA

administrative data. As can be seen, a higher η implies a first-order stochastic dominating

distribution of δ; thus average δ is higher for higher η. This CDF also suggests our 2-point

distribution is not too extreme an assumption: the non-zero δ are confined to about 20%

of the distribution, and are bounded above by 0.11, suggesting that most firms are not

foregoing more than 10% of profits in order to pay a round number.

A natural question is how our estimates could differ if, instead of a constant η and

flexibly heterogeneous δ, we assume a heterogeneous η with an arbitrary distribution H(η),

along with some specified distribution G(δ). The simplest variant of this is to consider
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a two-point distribution (where δ is either 0 or δ∗) as in our baseline case above. In this

variant of the model each firm is allowed to have its own labor supply elasticity, and each

firm either mis-optimizes profits by a fixed fraction δ∗ or not at all. In this case, solving for

the positive value of η, the missing mass at ω should be equal to:

φ (ω) = [1− G] H

(
1
2

(√
1 +

8δ∗

ω2 − 1

))

Since we can identify G = G(0) = 1− limω→0+ φ̂(ω), for a particular δ∗ we can empiri-

cally estimate the distribution of labor supply elasticities as follows:

Ĥ(η) =

φ̂

(√(
8δ∗

(2η+1)2−1

))
1− G

(28)

We can use Ĥ(η) to estimate the mean ˆE(η) for a given value of δ∗:

ˆE(η) =
∫ ∞

0
ηdĤ(η)

Note that under these assumptions, η is bounded from below at ηmin = 1
2

√
1 + 8δ∗

ω2 − 1.

In other words, the lower bound of η from the third method is equal to the constant estimate

of η from our baseline, both of which come from the marginal bunching condition at the

boundary of the interval ω. While we can only recover the distribution of η conditional on

δ > 0 (i.e. those that choose to bunch), we can make some additional observations about

the parameters for non-bunchers. In particular, we can rule out the possibility that some

of the the non-bunchers have δ > 0 while being in a perfectly competitive labor market

with η = ∞. This is because in our model those firms would be unable to attract workers

from those firms with δ = 0 and η = ∞. The gradual reduction in the missing mass φ (ω)

that occurs from moving away from ω = 0 is entirely due to heterogeneity in η′s. It rules

out, for instance, that such a gradual reduction is generated by heterogeneity in δ′s in

contrast to the second method. As a result, the third method is likely to provide the largest
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estimates of the labor supply elasticity.

In parallel fashion to the previous case, we graphically show the implied distribution

of η with a 2-point distribution for δ in Figure B.4. This figure shows the distribution of η

implied by different values of δ from the MN-OR-WA administrative data. As can be seen,

a higher η implies a first-order stochastic dominating distribution of η, thus average η is

higher for higher δ.

Finally, we can extend this framework to allow for G(δ) to have a more flexible para-

metric form (with known parameters) than the 2-point distribution. We rely on recently

developed methods in non-parametric deconvolution of densities to estimate the implicit

H(η). If we condition on δ > 0,we can take logs of equation 20 (again maintaining that

γ = 0) we get

2 ln(ω) = ln(2)− ln(η(1 + η)) + ln(δ) = ln(2)− ln(η(1 + η)) + E[ln (δ) |δ > 0] + ln(δres) (29)

Here ln(δres) ∼ N(0, σ2
δ ), and we fix E[ln (δ) |δ > 0] = ln (E(δ|δ > 0)) + 1

2 σ2
δ . We

can use the fact that the cumulative distribution function of 2 ln(ω) is given by 1 −

φ
(

1
2 exp(2 ln(ω)

)
) to numerically obtain a density for 2 ln(ω). This then becomes a well-

known deconvolution problem, as the density of − ln(η(1 + η)) is the deconvolution of the

density of 2 ln(ω) by the Normal density we have imposed on ln(δres). We can then recover

the distribution of η,H(η), from the estimated density of − ln(η(1 + η)) + E[ln (δ) |δ > 0].

We now illustrate how Fourier transforms recover the distribution H(η). Consider the

general case of when the observed signal (W) is the sum of the true signal (X) and noise

(U). (In our case W = 2 ln(ω)− E[ln (δ) |δ > 0] and U = ln(δres).)

W = X + U

Manipulation of characteristic functions implies that the density of W is fW(x) =

( fX ∗ fU) (x) =
∫

fX(x − y) fU(y)dy where ∗ is the convolution operator. Let Wj be the
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observed sample from W.

Taking the Fourier transform (denoted by ∼) , we get that ˜fW =
∫

fW(x)eitxdx =

f̃X × ˜fU. To recover the distribution of X, in principle it is enough to take the inverse

Fourier transform of
˜fW
˜fU

. This produces a “naive” estimator f̂X = 1
2π

∫
e−itx ∑N

j=1
eitWj

N
φ(t) dt, but

unfortunately this is not guaranteed to converge to a well-behaved density function. To

obtain such a density, some smoothing is needed, suggesting the following deconvolution

estimator:

f̂X =
1

2π

∫
e−itxK(th)

∑N
j=1

eitWj

N

φ(t)
dt

where K is a suitably chosen kernel function (whose Fourier transform is bounded and

compactly supported). The finite sample properties of this estimator depend on the choice

of fU. If ˜fU decays quickly (exponentially) with t (e.g. U is normal), then convergence

occurs much more slowly than if ˜fU decays slowly (i.e. polynomially) with t (e.g. U is

Laplacian). Note that once we recover the density for X = ln(η(1 + η)), we can easily

recover the density for η.

For normal U = ln(δres), Delaigle and Gijbels (2004) suggest a kernel of the form:

K(x) = 48
cos(x)
πx4 (1− 15

x2 )− 144
sin(x)
πx5 (1− 5

x2 )

We use the Stefanski and Carroll (1990) deconvolution kernel estimator. This estimator

also requires a choice of bandwidth which is a function of sample size. Delaigle and Gijbels

(2004) suggest a bootstrap-based bandwidth that minimizes the mean-integral squared

error, which is implemented by Wang and Wang (2011) in the R package decon, and we

use that method here, taking the bandwidth that minimizes the mean-squared error over

1,000 bootstrap samples.

In Figure B.5, we show the distribution of η using the deconvolution estimator, as-

suming a lognormal distribution of δ. In the first panel, we estimate H(η) assuming the
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standard deviation σln(δ) = 0.1, which is highly concentrated around the mean. In the

second panel, we instead assume σln(δ) = 1. This is quite dispersed: among those with a

non-zero optimization friction, δ around 16% have a value of δ exceeding 1, and around

31% have a value exceeding 0.5. As a result, we think the range between 0.1 and 1 to repre-

sent a plausible bound for the dispersion in δ. As before, we see a higher E[δ|δ > 0] leads

to first-order stochastic dominance of H(η). For both cases with high- and low-dispersion

of δ, the distribution H(η) is fairly similar, though increase in σln(δ) tends to shift H(η) up

somewhat, producing a smaller E(η).
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Figure B.3: Implied Distribution of δ Under Constant η
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Notes. The figure plots the cumulative distributions G(δ) based on equation 27, for alternative values of
E(δ|δ > 0). The elasticity η is assumed to be a constant. The estimates use administrative hourly wage data
from MN, OR, and WA.
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Figure B.4: Implied Distribution of η with a 2-point Distribution of δ
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Notes. The figure plots the cumulative distributions H(η) based on equation 28, for alternative values of
δ∗ = E(δ|δ > 0). δ is assumed to follow a 2-point distribution with δ = 0 with probability G and δ = δ∗ with
probability 1− G. The estimates use administrative hourly wage data from MN, OR, and WA.
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Figure B.5: Implied Distribution of η using a Deconvolution Estimator where δ has a
Conditional Lognormal Distribution
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OR, and WA.
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Online Appendix C

Bunching in Hourly Wage Data from Current Population

Survey and Supplement

In this appendix, we show the degree of bunching in hourly nominal wage data using the

national CPS data. In Figure C.6, we plot the nominal wage distribution in U.S. in 2003 to

2007 in $0.10 bins. There are notable spikes in the wage distribution at $10, $7.20 (the bin

with the federal minimum wage), $12, $15, along with other whole numbers. At the same

time, the spike at $10.00 is substantially larger than in the administrative data (exceeding

0.045), indicating rounding error in reporting may be a serious issue in using the CPS to

accurately characterize the size of the bunching.

We also use a 1977 CPS supplement, which matches employer and employee reported

hourly wages, to correct for possible reporting errors in the CPS data. We re-weight wages

by the relative incidence of employer versus employee reporting, based on the two ending

digits in cents (e.g., 01, 02, ... , 98, 99). As can be seen in Figure C.7, the measurement error

correction produces some reduction in the extent of visible bunching, which nonetheless

continues to be substantial. For comparison, the probability mass at $10.00 is around

0.02, which is closer to the mass in the administrative data than in the raw CPS. This is

re-assuring as it suggests that a variety of ways of correcting for respondent rounding

produce estimates suggesting a similar and substantial amount of bunching in the wage

distribution.

Online Appendix C.1 Heterogeneous η by Worker Characteristics-CPS

In Appendix Table C.1 we estimate the implied η for different δ∗ under our baseline 2-

point model across subgroups of the measurement corrected CPS data, as we do not have

worker-level covariates for the administrative data. We examine young and old workers,
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as well as male and female separately. Consistent with other work suggesting that women

are less mobile than men (Webber (2016); Manning (2011)), the estimated η for women is

somewhat lower than that for men. We do not find any differences between older and

younger workers. However, the extent of bunching is substantially larger for new hires

consistent with bunching being a feature of initial wages posted, while workers with some

degree of tenure are likelier to have heterogeneous raises that reduce the likelihood of

being paid a round number. We find that among new hires the estimated η is somewhat

higher than non-new hires. However, even for new hires—who arguably correspond

most closely to the wage posting model—the implied η is only 1.58 if employers who are

bunching are assumed to be losing 1% of profits from doing so, increasing to 4 when firms

are allowed to lose up to 5% in profits.
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Figure C.6: Histogram of Hourly Wages in National CPS data, 2003-2007
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 and 2007q4, using CPS MORG files. Hourly wages are constructed by average weekly
earnings by usual hours worked. The sample is restricted to those without imputed earnings. The
counts here exclude NAICS 6241 and 814, home-health and household sectors. The histogram
reports normalized counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The
counts in each bin are normalized by dividing by total employment, averaged over the sample
period.
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Figure C.7: Wage Bunching in CPS data, 2003-2007, Corrected for Reporting Error Using
1977 CPS supplement
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 to 2007q4, using CPS MORG files, where individual observations were re-weighted
to correct for overreporting of wages ending in particular two-digit cents using the 1977 CPS
supplement. Hourly wages are constructed by dividing average weekly earnings by usual hours
worked. The sample is restricted to those without imputed earnings. The counts here exclude
NAICS 6241 and 814, home-health and household sectors. The histogram reports normalized
counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The counts in each bin are
normalized by dividing by total employment, averaged over the sample period.
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Online Appendix D

Testing Discontinuous Labor Supply on Amazon Mechani-

cal Turk Observational Data

Our Amazon Mechanical Turk experiment focused on discontinuities at 10 cents, while our

bunching estimator used the excess mass at $1.00. In this appendix we present evidence

from observational data scraped from Amazon Mechanical Turk to show that there is also

no evidence of a discontinuity in worker response to rewards at $1.00. Our primary source

of data was collected by Panos Ipseiros between January 2014 and February 2016, and, in

principle, kept track of all HITs posted in this period.

We keep the discussion of the data and estimation details brief, as interested readers can

see details in Dube et al. (2018). Dube et al. (2018) combines a meta-analysis of experimental

estimates of the elasticity of labor supply facing requesters on Amazon Mechanical Turk

with Double-ML estimators applied to observational data.. That paper does not look at

discontinuities in the labor supply at round numbers.

Following Dube et al. (2018) we use the observed duration of a batch posting as a

measure of how attractive a given task is as a function of observed rewards and observed

characteristics. We calculate the duration of the task as the difference between the first

time it appears and the last time it appears, treating those that are present for the whole

period as missing values. We convert the reward into cents. We are interested in the labor

supply curve facing a requester. Unfortunately, we do not see individual Turkers in this

data. Instead we calculate the time until the task disappears from our sample as a function

of the wage. Tasks disappear once they are accepted. While tasks may disappear due to

requesters canceling them rather than being filled, this is rare. Therefore, we take the time

until the task disappears to be the duration of the posting—i.e., the time it takes for the

task to be accepted by a Turker. The elasticity of this duration with respect to the wage

will be equivalent to the elasticity of labor supply when offer arrival rates are constant and
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reservation wages have an exponential (constant hazard) distribution.

In order to handle unobserved heterogeneity, Dube et al. (2018) implement a double-

machine-learning estimator proposed by Chernozhukov et al. (2017), which uses machine

learning (we used random forests) to form predictions of log duration and log wage

(using one half of the data), denoted ̂ln(durationh) and ̂ln(wageh),and then subtracts them

from the actual variable values in the other sample, leaving residualized versions of both

variables. The predictions use a large number of variables constructed from the metadata

and textual descriptions of each task, and have high out-of-sample predictive power, and

so the residuals are likely to reflect variation that, if not exogenous, are at least orthogonal

to a very flexible and predictive function of all the other observable characteristics of a

task. See Dube et al. (2018) for further details on implementation and estimation.

We then estimate regressions of the form:

ln(durationh)− ̂ln(durationh) = η × (ln(wageh)− ̂ln(wageh)) + γ1w>w0 + ε

Results are shown in Table D.2. We restrict attention to windows of wages around

our two most salient round numbers, 10 cents, where the window is 6 to 14 cents, and 1

dollar, where the window is $0.80 to $1.20. Across specifications, there is a clear negative

relationship between wages/rewards and duration, with a coefficient on η similar in

magnitude to the - 0.11 estimate obtained on the whole sample in Dube et al. (2018),

and close to the experimental estimates reported there. We also show analogues of our

experimental specifications from our pre-analysis plan. The first approach tests for a

discontinuity by adding an indicator for rewards greater than or equal to 10 or 100 (“Jump

at 10/100”). This level discontinuity is tested in specifications 3 and 4, and there is no

evidence of log durations becoming discontinuously larger above either 10 cents or $1.00.

The second approach tests for a slope break at $1.00 by estimating a knotted spline that

allows the elasticity to vary between 6 and 9 cents, 9 and 10 cents, and then greater than 10
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cents, or 81 and 95 cents, 95 cents and $1.00, and then greater than $1.00 up to $1.20. The

slope break specification is tested in specifications 5 and 6, where we report the change

in slopes at 10 cents and $1.00 (“Spline”). Again, there is no evidence of a change in the

relationship between log duration and log reward between 9 and 10 cents, vs greater than

10 cents, or $0.95 and $1.00 versus greater than $1.00.
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Table D.2: Duration of Task Posting by Log Reward and Jump at $1.00

(1) (2) (3) (4) (5) (6)

Log Wage -0.089*** -0.066*** -0.089*** -0.069*** -0.090*** -0.070***
(0.024) (0.014) (0.024) (0.015) (0.025) (0.015)

GEQ 10 0.014
(0.018)

GEQ 100 0.027
(0.026)

Spline 10 0.084
(0.225)

Spline 100
0.693

(0.700)
Double-ML Y Y Y Y Y Y
Window 6-14 80-120 6-14 80-120 6-14 80-120

Sample size 59,654 39,442 59,654 39,442 59,654 39,442

Notes. Sample is restricted to HIT batches with rewards between 80 and 120 cents.
Columns 3, 4 and 8 estimate a specification testing for a discontinuity in the duration
at $1.00, as in our pre-analysis plan, while columns 5 and 6 estimate the spline specifi-
cation testing for a change in the slope of the log duration log reward relationship at
$1.00, also from the pre-analysis plan. Significance levels are * 0.10, ** 0.05, *** 0.01.
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Online Appendix E

Additional Experimental Details and Specifications from Pre-

analysis Plan

Figure E.1 shows screenshots from the experimental layout facing MTurk subjects. while

Table E.3 shows specifications parallel to those from the main text, except with the number

correct as the outcome, to measure responsiveness of subject effort to incentives. There is

no evidence of any effect of higher rewards on the number of images labeled.

In Tables E.1 and E.2 we show specifications from our pre-analysis plan that parallel

those in E.2 and E.3, respectively. These were linear probability specifications in the level of

wages not dropping any observations, nor with any controls, instead of the specifications

with log wages and controls we show in the main text. We also pool the two different task

volumes. The initial focus of our experiment was to test for a discontinuity at 10 cents,

which is unaffected by our changes in specification. While the elasticity is qualitatively

very similar, albeit slightly smaller, the log wage specification shown in the text is closer to

our model, a variant of the model specified by Card et al. (2018), and improves precision

on the elasticity estimate.
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Figure E.1: Online Labor Supply Experiment on MTurk

Page 1: Consent Form

The instructions are the same on all subsequent pages, but are collapsed (though they can
be revealed by clicking the “Show” link).

Page 2: Demographic Info Sheet

1

Page 3: Image Tagging Task

Page 4: Option to Continue

2

Notes. The figure shows the screen shots for the consent form and tasks associated with the online labor
supply experiment on MTurk.
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Figure E.2: Online Stated Preference Experiment for Wal-Mart Workers on Facebook

Notes. The figure shows the screen shots for the stated preference experiment conducted on Facebook
with Wal-Mart. Items in the left column are characteristics of the worker’s current job at Wal-Mart, items
in the right column are hypothetical characteristics of an offered job, with differences from current job
highlighted in yellow. For the full survey go to: https://cumc.co1.qualtrics.com/jfe/preview/SV_
d4LInUIkk9d3CHX?Q_SurveyVersionID=current
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Figure E.3: Distribution of Reported Wages and Hypothetical Offered Wages in Wal-
Mart Survey Experiment

Notes. The figure shows the density of survey respondent’s entered wages together with the density of
random hypothetical wage offers, the vertical line is at 11.00, which is Wal-Mart’s statutory minimum wage
as of January 2018.
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Figure E.4: Wal-Mart Stated Preference Experiment: Asking for a Raise Does Not Jump
At Round Numbered Wages

Notes. The figure is identical to Figure 6 except the outcome is asking for a raise at the Wal-Mart job.
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Table E.3: Task Correct Probability by Offered Task Reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage -0.004 -0.000 0.011 0.008 0.016 0.032

(0.012) (0.017) (0.018) (0.023) (0.034) (0.042)

Jump at 10 -0.003 -0.005
(0.007) (0.013)

Spline -0.019 -0.043
(0.067) (0.124)

Local 0.000 0.007
(0.012) (0.024)

Global -0.004 -0.003
(0.007) (0.012)

η -0.005 -0.000 0.008 0.017
(0.012) (0.017) (0.024) (0.035)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 3966 3966 3966 3966 1345 1345 1345 1345

Notes. The reported estimates are logit regressions of getting at least 1 out of 2 images cor-
rectly tagged on log wages (conditional on accepting the task), controlling for number of
images done in the task (6 or 12), age, gender, weekly hours worked on MTurk, country (In-
dia/US/other), reason for MTurk, and an indicator for HIT accepted after pre-registered close
date. Column 1 reports specification 1 that estimates the labor-supply elasticity, without a
discontinuity. Column 2 estimates specification 2, which tests for a jump in the probability of
acceptance at 10 cents. Column 3 estimates a knotted spline in log wages, with a knot at 10
cents, and reports the difference in elasticities above and below 10 cents. Column 4 estimates
specification 4, including indicator variables for every wage and testing whether the different
in acceptance probabilities between 10 and 9 cents is different from the average difference
between 12 and 8 (local) or the average difference between 5 and 15 (global). Columns 5-12
repeat 1-4, but restrict attention to subsamples based on the number of images given (random-
ized to be either 6 or 12). Robust standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Online Appendix F

Theoretical extension: An efficiency wage interpretation where

effort depends on wage

In the main paper, we assume that the firm’s ability to set wages comes from monopsony

power. However, it may be recast in terms of efficiency wages where wage affects worker

productivity: there, too, the employer will set wages optimally such that the impact of

a small change in wages around the optimum is approximately zero. In this section, we

show a very similar logic applies in an efficiency wage model with identical observational

implications as our monopsony model, with a re-interpretation of the labor supply elasticity

η as capturing the rate at which the wage has to increase to ensure that the no-shirking

condition holds when the firm wishes to hire more workers. Indeed, the observation that

the costs of optimization errors are limited when wages are a choice variable was originally

made by Akerlof and Yellen (1985) in the context of an efficiency wage model.

As in Shapiro and Stiglitz (1984), workers choose whether to work or shirk. Working

entails an additional effort cost e. Following Rebitzer and Taylor (1995), we allow the

detection of shirking, D(l), to fall in the amount of employment l(w).25 Workers quit with

an exogenous rate q. An unemployed worker receives benefit b and finds an offer at rate

s. The discount rate is r. All wage offers are assumed to be worth accepting; once we

characterize the wage setting mechanism, this implies a bound for the lowest productivity

firm. Finally, generalizing both Rebitzer and Taylor (1995) and Shapiro and Stiglitz (1984),

25In Shapiro and Stiglitz (1984), the detection probability is exogenously set. This produces some predic-
tions which are rather strong. For example, the model does not predict wages to vary with productivity, as
the no shirking condition that pins down the optimal wage does not depend on firm productivity. The same
is true for the Solow model, where the Solow condition is independent of firm productivity (see Solow 1979).
As a result, those models cannot readily explain wage dispersion that is independent of skill distribution,
which makes it less attractive to explain bunching. However, if we generalize the Shapiro-Stiglitz model to
allow the detection probability to depend on the size of the workforce as in Rebitzer and Taylor (1995), this
produces a link between productivity, firm size and wages. Going beyond Rebitzer and Taylor, we further
generalize the model to allow for heterogeneity in firm productivity, which produces a non-degenerate
equilbrium offer wage distribution.
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we allow the wages offered by firms to vary; indeed our model will predict that higher

productivity firms will pay higher wages—leading to equilibrium wage dispersion.

We can write the expected value of not shirking as:

VN(w) = w− e +
(1− q)VN(w)

1 + r
+

qVU

1 + r

The value of shirking can be written as:

VS(w) = w +
(1− q)(1− D)VS(w)

(1 + r)
+
(1− (1− q)(1− D))VU

(1 + r)

Finally, the value of being unemployed is:

VU = b +
sEVN + (1− s)VU

(1 + r)

The (binding) no shirking condition, NSC, can be written as:

VN(w) = VS(w)

Plugging in the expressions above and simplifying we get the no-shirking condition:

w =
r

1 + r
VU +

e(r + q)
D(l)(1− q)

We can further express VU as a function of the expected value of an offer VNand the

probability of receiving an offer, s, as well as the unemployment benefit b. However, for

our purposes, the key point is that this value is independent of the wage w and is taken to

be exogenous by the firm in its wage setting. Since detection probability D(l) is falling in l,

we can now write:

D(l) =
e (r + q)(

w− e + 1
1+r VU

)
(1− q)
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This generates a relationship between l and w:

l(w) = D−1

 e (r + q)(
w− e + 1

1+r VU
)

(1− q)

 = d


(

w− e + 1
1+r VU

)
(1− q)

e (r + q)


where d(x) = D−1( 1

x ). Since D′(x) < 0, we have d′(x) > 0. This is analogous to the labor

supply function facing the firm: to attract more workers who will work, one needs to pay

a higher wage because detection is declining in employment, D′(l) < 0. Therefore, we can

write the elasticity of the implicit labor supply function as:

l′(w)w
l(w)

=
d′(.)w

d(.)
× 1− q

e(r + q)

.

If we assume a constant elasticity d(x) function with elasticity ρ then the implicit

“effective labor” supply elasticity is also constant:

η =
l′(w)w

l(w)
= ρ× 1− q

e(r + q)

The elasticity is falling in effort cost e, exogenous quit rate q, as well as the discount

rate, r. It is also rising in the elasticity ρ, since a higher ρ means detection does not fall as

rapidly with employment.

The implicit effective labor supply function is then:

l(w) =
wη

C
=

wρ× 1−q
e(r+q)

C

which is identical to the monopsony case analyzed in the main text. For a firm with

productivity pi, profit maximization implies setting the marginal cost of labor to the

marginal revenue product of labor (pi), i.e., wi = η
1+η pi. 26

26We can also solve for VN = (E(w)−e)(1+r)
r−b(1+r) =

(
η

1+η E(p)−e
)

(1+r)

r−b(1+r) . This implies we can write the equi-
librium value of being unemployed as a function of the primitive parameters as follows: VU =
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Finally, we can augment this labor supply function to exhibit left-digit bias. Consider

the case where for wage w ≥ w0 , the wage is perceived to be to equal to w̃ = w + g while

under w0 it is perceived to be w̃ = w. Now, the labor supply can be written as:

l(w) = D−1
(

e(r+q)
(w−e+ 1

1+r VU)(1−q)

)
= d

(
(w−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w < w0

l(w) = D−1
(

e(r+q)
(w+g−e+ 1

1+r VU)(1−q)

)
= d

(
(w+g−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w ≥ w0

Note that under the condition that d(x) has a constant elasticity, the implicit labor

supply elasticity continues to be constant both below and above w0. However, there is a

discontinuous jump up in the l(w) function at w0. Therefore, we can always appropriately

choose a γ such that this implicit labor supply function can be written as:

l(wj, γ) =
wη × γ

1wj≥w0

C
=

wρ× 1−q
e(r+q) × γ

1wj≥w0

C

Facing this implicit labor supply condition, firms will optimize:

Π(p, w) = (p− w)l(w, γ) + D(p)1w=w0

With a distribution of productivity, p, higher productivity firms will choose to pay more,

as the marginal cost of labor implied by the implicit labor supply function is equated with

the marginal revenue product of labor at a higher wage. Intuitively, higher productivity

firms want to hire more workers. But since detection of shirking falls with size, this requires

them to pay a higher wage to ensure that the no shirking condition holds. Similarly, all

of the analysis of firm-side optimization frictions goes through here as well. A low η

due to (say) high cost of effort now implies that a large amount of bunching at w0 can be

consistent with a small amount of optimization frictions, δ.

One consequence of this observational equivalence is that it may be difficult to distin-

guish between efficiency wages and monopsony. At the same time, it is useful to note that

many of the implications from this efficiency wage model are quite similar to a monopsony

(1 + r)
[

b
r+s −

e
1−b(1+r + ηE(p)

(1+η)(r−b(1+r)

]
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one: for instance, both imply that minimum wages may increase employment in equilib-

rium, as Rebitzer and Taylor show. Therefore, while understanding the importance of

specific channels is useful, the practical consequences may be less than what may appear

at first blush.

However, as an empirical matter, a variety of evidence suggests monopsony plays

an important role in explaining the prevalence of round-number bunching. First, in

our experimental analysis, we find that the evidence from online labor markets is more

consistent with a monopsony interpretation than an effort one, due to the absence of

any effect of wages on the number of images tagged correctly. Second, our finding from

the separations response to wage in the Oregon data is inconsistent with the efficiency

wage model above, which suggests a constant (exogenous) separation rate. Moreover, the

separation response to wage is driven primarily by job-to-job separations, i.e., likely to be

quits as opposed to firings; this pattern is inconsistent with efficiency wage models. Finally,

our stated preference experiment directly measures workers likelihood of quitting a job as

a function of wage, which again points to the relevance of monopsony power in mediating

the relatively low cost of mispricing in the labor market. At the same time, the extent to

which efficiency wage considerations are important, they suggest that our estimates for

optimization frictions (i.e., profit loss from mispricing) are likely to be an upper bound.
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