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1 Introduction

In this paper we study estimation of and inference for average treatment effects in a setting

with panel data. We focus on the setting where units, e.g., individuals, firms, or states, adopt

the policy or treatment of interest at a particular point in time, and then remain exposed to

this treatment at all times afterwards. The adoption date at which units are first exposed to

the policy may, but need not, vary by unit. We refer to this as a staggered adoption design

(SAD), such designs are sometimes also referred to as event study designs. An early example is

Athey and Stern [1998] where adoption of an enhanced 911 technology by counties occurs over

time, with the adoption date varying by county. This setting is a special case of the general

Difference-In-Differences (DID) set up (e.g., Card [1990], Meyer et al. [1995], Angrist and Pischke

[2008], Angrist and Krueger [2000], Abadie et al. [2010], Borusyak and Jaravel [2016], Athey

and Imbens [2006], Card and Krueger [1994], Freyaldenhoven et al. [2018], de Chaisemartin

and D’Haultfœuille [2018], Abadie [2005]) where, at least in principle, units can switch back and

forth between being exposed or not to the treatment. In this SAD setting we are concerned with

identification issues as well as estimation and inference. In contrast to most of the DID literature,

e.g., Bertrand et al. [2004], Shah et al. [1977], Conley and Taber [2011], Donald and Lang [2007],

Stock and Watson [2008], Arellano [1987, 2003], Abraham and Sun [2018], Wooldridge [2010],

de Chaisemartin and D’Haultfœuille [2017, 2018], we take a design-based perspective where

the stochastic nature and properties of the estimators arises from the stochastic nature of the

assignment of the treatments, rather than a sampling-based perspective where the uncertainty

arises from the random sampling of units from a large population. Such a design perspective

is common in the analysis of randomized experiments, e.g., Neyman [1923/1990], Rosenbaum

[2002, 2017]. See also Aronow and Samii [2016], Abadie et al. [2016, 2017] for this approach in

cross-section regression settings. This perspective is particularly attractive in the current setting

when the sample comprises the entire population, e.g., all states of the US, or all countries of

the world. Our critical assumptions involve restrictions on the assignment process as well as

exclusion restrictions, but in general do not involve functional form assumptions. Commonly

made common trend assumptions (de Chaisemartin and D’Haultfœuille [2018], Abraham and

Sun [2018]) follow from some of our assumptions, but are not the starting point.

As in Abraham and Sun [2018] we set up the problem with the adoption date, rather than the

actual exposure to the intervention, as the basic treatment defining the potential outcomes. We
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consider assumptions under which this discrete multivalued treatment (the adoption date) can

be reduced to a binary one, defined as the indicator whether or not the treatment has already

been adopted. We then investigate the interpretation of the standard DID estimator under

assumptions about the assignment of the adoption date and under various exclusion restrictions.

We show that under a random adoption date assumption, the standard DID estimator can be

interpreted as the weighted average of several types of causal effects; within our framework,

these concern the impact of different types of changes in the adoption date of the units. We

also consider design-based inference for this estimand. We derive the exact variance of the

DID estimator in this setting. We show that under a random adoption date assumption the

standard Liang-Zeger (LZ) variance estimator (Liang and Zeger [1986], Bertrand et al. [2004]),

or the clustered bootstrap, are conservative. For this case we propose an improved (but still

conservative) variance estimator.

Our paper is most closely relateds to a very interesting set of recent papers on DID methods

that explicitly focus on issues with heterogenous treatment effects (Abraham and Sun [2018],

de Chaisemartin and D’Haultfœuille [2018], Han [2018], Goodman-Bacon [2017], Callaway and

Sant’Anna [2018], Hull [2018], and Borusyak and Jaravel [2016]). Among other things these

papers derive interpretations of the DID estimator as weighted averages of causal effects and

bias terms under various assumptions. In many cases they find that these interpretations involve

weighted averages of basic average causal effects with potentially negative weights and propose

alternative estimators that do not involve negative weights.

2 Set Up

Using the potential outcome framework for causal inference, we consider a setting with a

population of N units. Each of these N units are characterized by a set of potential out-

comes in T periods for T + 1 treatment levels, Yit(a). Here i ∈ {1, . . . , N} indexes the units,

t ∈ T = {1, . . . , T} indexes the time periods, and the argument of the potential outcome func-

tion Yit(·), a ∈ A = T ∪ {∞} = {1, . . . , T,∞} indexes the discrete treatment, the date that

the binary policy was first adopted by a unit. Units can adopt the policy at any of the time

periods 1, . . . , T , or not adopt the policy at all during the period of observation, in which case

we code the adoption date as ∞. Once a unit adopts the treatment, it remains exposed to the
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treatment for all periods afterwards. This set up is like that in Abraham and Sun [2018], and in

contrast to most of the DID literature where the binary indicator whether a unit is exposed to

the treatment in the current period indexes the potential outcomes. We observe for each unit

in the population the adoption date Ai ∈ A and the sequence of T realized outcomes, Yit, for

t ∈ T, where

Yit ≡ Yit(Ai),

is the realized outcome for unit i at time t. We may also observe pre-treatment characteristics,

denoted by the K-component vector Xi, although for most of the discussion we abstract from

their presence. Let Y , A, and X denote the N × T , N × 1, and N ×K matrices with typical

elements Yit, Ai, and Xik respectively. Implicitly we have already made a sutva-type assumption

(Rubin [1978], Imbens and Rubin [2015]) that units are not affected by the treatments (adop-

tion dates) for other units. Our design-based analysis views the potential outcomes Yit(a) as

deterministic, and only the adoption dates Ai, as well as functions thereof such as the realized

outcomes as stochastic. Distributions of estimators will be fully determined by the adoption

date distribution, with the number of units N and the number of time periods T fixed, un-

less explicitly stated otherwise. Following the literature we refer to this as a randomization, or

designed-based, distribution (Rosenbaum [2017], Imbens and Rubin [2015], Abadie et al. [2017]),

as opposed to a sampling-based distribution.

In many cases the units themselves are clusters of units of a lower level of aggregation.

For example, the units may be states, and the outcomes could be averages of outcomes for

individuals in that state, possibly of samples drawn from subpopulations from these states. In

such cases N and T may be as small as 2, although in many of the cases we consider N will

be at least moderately large. This distinction between cases where Yit is itself an average over

basic units or not, affects some, but not all, of the formal statistical analyses. It may make some

of the assumptions more plausible, and it may affect the inference, especially if individual level

outcomes and covariates are available.

Define W (a, t) = 1a≤t to be the binary indicator for the adoption date a preceeding t, and

define Wit to be the indicator for the the policy having been adopted by unit i prior to, or at,

3



time t:

Wit ≡ W (Ai, t) = 1Ai≤t,

so that the N × T matrix W with typical element Wit has the form:

WN×T =



0 0 0 0 . . . 0 (never adopter)

0 0 0 0 . . . 1 (late adopter)

0 0 0 0 . . . 1

0 0 1 1 . . . 1

0 0 1 1 . . . 1 (medium adopter)
...

...
...

...
. . .

...

0 1 1 1 . . . 1 (early adopter)


Let Na ≡

∑N
i=1 1Ai=a be the number of units in the sample with adoption date a, and define

πa ≡ Na/N , for a ∈ A, as the fraction of units with adoption date equal to a, and Πt ≡
∑t

s=1 πs,

for t ∈ T, as the fraction of units with an adoption date on or prior to t.

Also define Y t(a) to be the population average of the potential outcome in period t for

adoption date a:

Y t(a) ≡ 1

N

N∑
i=1

Yit(a), for t ∈ T, a ∈ A.

Define the average causal effect of adoption date a′ relative to a, on the outcome in period t, as

τt,aa′ ≡ Y t(a
′)− Y t(a) =

1

N

N∑
i=1

{
Yit(a

′)− Yit(a)
}
.

Abraham and Sun [2018] focus on slighlty different building blocks, what they call CATTa,t,

which, for 0 ≤ t ≤ T − a, are the super-population equivalent of (1/Na)
∑

i|Ai=a
{Yia+t(a) −

Yia+t(∞)}. The average causal effects τt,aa′ are the building blocks of many of the estimands we
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consider later. A particularly interesting average effect is

τt,∞1 =
1

N

N∑
i=1

(
Yit(1)− Yit(∞)

)
,

the average effect of switching the entire population from never adopting the policy (a = ∞),

to adopting the policy in the first period (a = 1). Formally there is nothing special about the

particular average effect τt,∞1 relative to any other τt,aa′ , but τt,∞1 will be useful as a benchmark.

Part of the reason is that for all t and i the comparison Yit(1) − Yit(∞) is between potential

outcomes for adoption prior to or at time t (namely adoption date a = 1) and potential outcomes

for adoption later than t (namely, never adopting, a =∞). In contrast, any other average effect

τt,aa′ will for some t involve comparing potential outcomes neither of which correspond to having

adopted the treatment yet, or comparing potential outcomes both of which correspond to having

adopted the treatment already. Therefore, τt,∞1 reflects more on the effect of having adopted

the policy than any other τt,aa′ .

3 Assumptions

We consider three sets of assumptions. The first set, containing only a single assumption, is

about the design, that is, the assignment of the treatment, here the adoption date, conditional

on the potential outcomes and possibly pretreatment variables. We refer to this as a design

assumption because it can be guaranteed by design. The second set of assumptions is about

the potential outcomes, and rules out the presence of certain treatment effects. These exclusion

restrictions are substantive assumptions, and they cannot be guaranteed by design. The third

set of assumptions consists of four auxiliary assumptions, two about homogeneneity of certain

causal effects, one about sampling from a large population, and one about an outcome model

in a large population. The nature of these three sets of assumptions, and their plausibility, is

very different, and it is in our view useful to carefully distinguish between them. The current

literature often combines various parts of these assumptions implicitly in the notation used and

in assumptions about the statistical models for the realized outcomes.
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3.1 The Design Assumption

The first assumption is about the assignment process for the adoption date Ai. Our starting

point is to assume that the adoption date is completely random:

Assumption 1. (Random Adoption Date) For some set of positive integers Na, for a ∈ A,

pr(A = a) =

(
N !∏
a∈ANa!

)−1
,

for all N-vectors a such that for all a ∈ A,
∑N

i=1 1ai=a = Na.

This assumption is obviously very strong. However, without additional assumptions that

restrict either the potential outcomes, or expand what we observe, for example by including

pre-treatment variables or covariates, this assumption has no testable implications in a setting

with exchangeable units.

Lemma 1. (No Testable Restrictions) Suppose all units are exchangeable. Then Assump-

tion 1 has no testable implications for the joint distribution of (Y ,A).

All proofs are given in the Appendix.

Hence, if we wish to relax the assumptions, we need to bring in additional information. Such

additional information can come in the form of pretreatment variables, that is, variables that

are known not to be affected by the treatment. In that case we can relax the assumption by

requiring only that the adoption date is completely random within subpopulations with the

same values for the pre-treatment variables. Additional information can also come in the form

of limits on the treatment effects. The implications of such restrictions on the ability to relax

the random adoption assumption is more complex, as discussed in more detail in Section 3.2.

Under Assumption 1 the marginal distribution of the adoption dates is fixed, and so also

the fraction πa is fixed in the repated sampling thought experiment. This part of the set up is

similar in spirit to fixing the number of treated units in the sample in a completely randomized

experiment. It is convenient for obtaining finite sample results. Note that it implies that the

adoption dates for units i and j are not independent. Note also that in the standard framework

where the uncertainty arises solely from random sampling, this fraction does not remain constant

in the repeated sampling thought experiment.
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An important role is played by what we label the adjusted treatment, adjusted for unit and

time period averages:

Ẇit ≡ Wit −W ·t −W i· +W,

where W ·t, W i·, and W are averages over units, time periods, and both, respectively:

W ·t ≡
1

N

N∑
i=1

Wit =
1

N

N∑
i=1

1Ai≤t =
1

N

N∑
i=1

∑
s≤t

1Ai=s =
∑
s≤t

1

N

N∑
i=1

1Ai=s =
∑
s≤t

πs,

W i· ≡
1

T

T∑
t=1

Wit = 1Ai≤T
T + 1− Ai

T
,

and

W ≡ 1

T

T∑
t=1

W ·t =
1

T

T∑
t=1

∑
s≤t

πs =
1

T

T∑
t=1

(T + 1− t)πt,

where, with some minor abuse of notation, we adopt the convention that a1a≤T is zero if a =∞.

Note that under Assumption 1, ow·t and W are non-stochastic. Using these representations we

can write the adjusted treatment indicator as

Ẇit = g(t, Ai),

where

g(t, a) ≡

(
1a≤t −

∑
s≤t

πs

)
+

1

T

(
a1a≤T −

T∑
s=1

sπs

)
+
T + 1

T
(1a=∞ − π∞) . (3.1)

Because the marginal distribution of Ai is fixed under Assumption 1, the sum
∑

i,t Ẇ
2
it is non-

stochastic under this assumption, even though Ẇit and thus Ẇ 2
it are stochastic. This fact enables

us to derive exact finite sample results for the standard DID estimator as discussed in Section 4.

This is similar in spirit to the derivation of the exact variance for the estimator for the average

treatment effect in completely randomized experiments when we fix the number of treated and

controls.
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3.2 Exclusion Restrictions

The next two assumptions concern the potential outcomes. Their formulation does not involve

the assignment mechanism, that is, the distribution of the adoption date. In essence these

are exclusion restrictions, assuming that particular causal effects are absent. Collectively these

two assumptions imply that we can think of the treatment as a binary one, the only relevant

component of the adoption date being whether a unit is exposed to the treatment at the time

we measure the outcome. Versions of such assumptions are also considered in Borusyak and

Jaravel [2016], de Chaisemartin and D’Haultfœuille [2018], Abraham and Sun [2018] and Imai

and Kim [2016], where in the latter a graphical approach is taken in the spirit of the work by

Pearl [2000].

The first of the two assumptions, and likely the more plausible of the two in practice, rules

out effects of future adoption dates on current outcomes. More precisely, it assumes that if the

policy has not been adopted yet, the exact future date of the adoption has no causal effect on

potential outcomes for the current period.

Assumption 2. (No Anticipation) For all units i, all time periods t, and for all adoption

dates a, such that a > t,

Yit(a) = Yit(∞).

We can also write this assumption as requiring that for all (i, t, a),

Yit(a) = 1a≤tYit(a) + 1a>tYit(∞), or 1a>t

(
Yit(a)− Yit(∞)

)
= 0,

with the last representation showing most clearly how the assumption rules out certain causal

effects. Note that this assumption does not involve the adoption date, and so does not restrict

the distribution of the adoption dates. Violations of this assumption may arise if the policy is

anticipated prior to its implementation.

The next assumption is arguably much stronger. It asserts that for potential outcomes in

period t it does not matter how long the unit has been exposed to the treatment, only whether

the unit is exposed at time t.

Assumption 3. (Invariance to History) For all units i, all time periods t, and for all
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adoption dates a, such that a ≤ t,

Yit(a) = Yit(1).

This assumption can also be written as

Yit(a) = 1a≤tYit(1) + 1a>tYit(a), or 1a≤t

(
Yit(a)− Yit(1)

)
= 0,

with again the last version of the assumption illustrating the exclusion restriction in this assump-

tion. Again, the assumption does not rule out any correlation between the potential outcomes

and the adoption date, only that there is no causal effect of an early adoption versus a later

adoption on the outcome in period t, as long as adoption occurred before or on period t.

In general, this assumption is very strong. However, there are important cases where it may

be more plausible. Suppose the units are clusters of individuals, where in each period we observe

different sets of individuals. To be specific, suppose the the units are states, the time periods

are years, and outcome is the employment rate for twenty-five year olds, and the treatment is

the presence or absence of some regulation, say a subsidy for college tuition. In that case it may

well be reasonable to assume that the educational choices for students graduating high school

in a particular state depends on what the prevailing subsidy is, but much less on the presence

of subsidies in previous years.

If both the exclusion restrictions, that is, both Assumptions 2 and 3, hold, then the potential

outcome Yit(a) can be indexed by the binary indicator W (a, t) = 1a≤t:

Lemma 2. (Binary Treatment) Suppose Assumptions 2 and 3 hold. Then for all units i,

all time periods t and adoption dates a > a′, (i)

Yit(a
′)− Yit(a) = 1a′≤t<a

(
Yit(1)− Yit(∞)

)
,

so that,

Yit(a) = Yit(∞) + 1a≤t

(
Yit(1)− Yit(∞)

)
=

 Yit(∞) if a ≤ t

Yit(1) otherwise,

9



and, for all time periods t, and adoption dates a > a′, (ii)

τt,aa′ = τt,∞11a′≤t<a =

 τt,∞1 if a′ ≤ t < a,

0 otherwise.

If these two assumptions hold, we can therefore simplify the notation for the potential out-

comes and focus on Yit(1) and Yit(∞).

Note that these two assumptions are substantive, and cannot be guaranteed by design. This

in contrast to the Assumption 1, which can be guaranteed by randomization of the adoption

date. It is also important to note that in many empirical studies Assumptions 2 and 3 are

made, often implicitly by writing a model for realized outcome Yit that depends solely on the

contemporaneous treatment exposure Wit, and not on the actual adoption date Ai or treatment

exposure Wit′ in other periods t′. In the current discussion we want to be explicit about the fact

that this restriction is an assumption, and that it does not automatically hold. Note that the

assumption does not restrict the time series dependence between the potential outcomes.

It is trivial to see that without additional information, the exclusion restrictions in Assump-

tions 2 and 3 have no testable implications because they impose restrictions on pairs of potential

outcomes that cannot be observed together. However, in combination with random assignment,

2 and 3, there are testable implications as long as T ≥ 2 and there is some variation in the

adoption date.

Lemma 3. (Testable Restrictions from the Exclusion Restrictions) (i) Assump-

tions 2 and 3 jointly have no testable implications for the joint distribution of (Y ,W ).

(ii) Suppose T ≥ 2, and π2, π∞ > 0. Then the combination of Assumptions 1–3 impose testable

restrictions on the joint distribution of (Y ,W ).

3.3 Auxiliary Assumptions

In this section we consider four auxiliary assumptions that are convenient for some analyses,

and in particular can have implications for the variance of specific estimators, but that are

not essential in many cases. These assumptions are often made in empirical analyses without

researchers explicitly discussing them.

The first of these assumptions assumes that the effect of adoption date a′, relative to adoption
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date a, on the outcome in period t, is the same for all units.

Assumption 4. (Constant Treatment Effect Over Units) For all units i, j and for

all time periods t and all adoption dates a and a′

Yit(a)− Yit(a′) = Yjt(a)− Yjt(a′).

The second assumption restricts the heterogeneity of the treatment effects over time.

Assumption 5. (Constant Treatment Effect over Time) For all units i and all time

periods t and t′

Yit(1)− Yit(∞) = Yit′(1)− Yit′(∞).

We only restrict the time variation for comparisons of the adoption dates 1 and ∞ because

we typically use this assumption in combination with Assumptions 2 and 3. In that case we

obtain a constant binary treatment effect set up, as summarized in the following Lemma.

Lemma 4. (Binary Treatment and Constant Treatment Effects) Suppose Assump-

tions 2-5 hold. Then for all t and a′ < a

Yit(a
′)− Yit(a) = 1a′≤t<aτ1∞.

The final assumption allows us to view the potential outcomes as random by postulating a

large population from which the sample is drawn.

Assumption 6. (Random Sampling) The sample can be viewed as a random sampling from

an infinitely large population, with joint distribution for (Ai, Yit(a), a ∈ A, t ∈ T) denoted by

f(a, y1(1), . . . , yT (∞)).

Under this assumption we can put additional structure on average potential outcomes.

Assumption 7. (Additivity)

E [Yit(∞)] = αi + βt.
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4 Difference-In-Differences Estimators: Interpretation and

Inference

In this section we consider the standard DID set up (e.g., Meyer et al. [1995], Bertrand et al.

[2004], Angrist and Pischke [2008], Donald and Lang [2007], de Chaisemartin and D’Haultfœuille

[2018]). In the simplest setting with N units and T time periods, without additional covariates,

the realized outcome in period t for unit i is modeled as

Yit = αi + βt + τWit + εit. (4.1)

In this model there are unit effects αi and time effects βt, but both are additive with interactions

between them ruled out. The effect of the treatment is implicitly assumed to be additive and

constant across units and time periods.

We interpret the DID estimand under the randomized adoption date assumption, leading to

a different setting from that considered in de Chaisemartin and D’Haultfœuille [2018], Abraham

and Sun [2018], Goodman-Bacon [2017]. We also derive its variance and show that in general

it is lower than the standard random-sampling based variance. Finally we propose a variance

estimator that is is smaller than the regular variance estimators such as the Liang-Zeger and

clustered bootstrap variance estimators.

4.1 Difference-In-Differences Estimators

Consider the least squares estimator for τ based on the specification in (4.1):

(
τ̂did, {α̂i}Ni=2, {β̂t}Tt=1

)
= arg min

τ,{αi}Ni=2,{βt}Tt=1

N∑
i=1

T∑
t=1

(Yit − αi − βt − τWit)
2 .

It is convenient to write τ̂did in terms of the adjusted treatment indicator Ẇit as

τ̂did =

∑
i,t ẆitYit∑
i,t Ẇ

2
it

.
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The primary question of interest in this section concerns the properties of the estimator τ̂did.

This includes the interpretation of its expectation under various sets of assumptions, and its

variance. Mostly we focus on exact properties in finite samples.

In order to interpret the expected value of τ̂did we consider some intermediate objects. Define,

for all adoption dates a ∈ A, and all time periods t ∈ T the average of the outcome in period t

for units with adoption date a:

Y t,a =

 1
Na

∑
i:Ai=a

Yit if Na > 0,

0 otherwise.

Under Assumption 1 the stochastic properties of these averages are well-defined because the Na

are fixed over the randomization distribution. The averages are stochastic because the realized

outcomes depend on the adoption date. Define also the following two difference between outcome

averages:

τ̂t,aa′ = Y t,a′ − Y t,a.

In general these differences do not have a causal interpretation. Such an interpretation requires

some assumptions, for example, on random assignment of the adoption date.

Example: To facilitate the interpretation of some of the results it is useful to consider a

special case where the results from completely randomized experiments directly apply. Suppose

T = {1, 2}, and A = {2,∞}, with a fraction π = π2 = 1− π∞ adopting the policy in the second

period. Suppose also that Yi1(a) = 0 for all i and a. Then the DID estimator is

τ̂did = τ̂2,2∞ = Y 2,2 − Y 2,∞ =
1

N2

∑
i:Ai=2

Yi2 −
1

N∞

∑
i:Ai=∞

Yi2,

the simple difference in means for the second period outcomes for adopters and non-adopters.

Under Assumption 1, the standard results for the variance of the difference in means for a

randomized experiments apply (e.g., Neyman [1923/1990], Imbens and Rubin [2015]), and the
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exact variance of τ̂did is,

V(τ̂did) =
1

N2(N − 1)

N∑
i=1

{
Yi2(2)− Y 2(2)

}2
+

1

N∞(N − 1)

N∑
i=1

{
Yi2(∞)− Y 2(∞)

}2

− 1

N(N − 1)

N∑
i=1

{(
Yi2(2)− Y 2(2)

)
−
(
Yi2(∞)− Y 2(∞)

)}2
.

The standard Neyman estimator for this variance ignores the third term, and uses unbiased

estimators for the first two terms, leading to:

V̂(τ̂did) =
1

N2(N2 − 1)

∑
i:Ai=2

{
Yi2 − Y 2,2

}2
+

1

N∞(N∞ − 1)

∑
i:Ai=∞

{
Yi2 − Y 2,∞

}2
.

�

4.2 The Interpretation of Difference-In-Differences Estimators

The following weights play an important role in the interpretation of the DID estimand:

γt,a ≡
πag(t, a)∑

t′∈T
∑

a′∈A πa′g(t′, a′)2
, γt,+ ≡

∑
a≤t

γt,a, and γt,− ≡
∑
a>t

γt,a, (4.2)

with g(a, t) as defined in (3.1). Note that these weights are non-stochastic, that is, fixed over

the randomization distribution.

Example (ctd): Continuing the example with two periods and adoption in the second period

or never, we have in that case

γt,a =



0 if (t, a) = (1, 1),

0 if (t, a) = (2, 1),

−1 if (t, a) = (1, 2),

1 if (t, a) = (2, 2),

1 if (t, a) = (1,∞),

−1 if (t, a) = (2,∞),

γt,+ =

 0 if t = 1,

1 if t = 2,
and γt,− =

 0 if t = 1,

−1 if t = 2.
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�

The weights γt,a have some important properties,

∑
t∈T

γt,+ = 1
∑
t∈T

γt,− = −1, and
T∑
t=1

∑
a∈A

γt,a =
∑
t∈T

γt,+ +
∑
t∈T

γt,− = 0.

Now we can state the first main result of the paper.

Lemma 5. We can write τ̂did as

τ̂did =
∑
t∈T

∑
a∈A

γt,aY t,a =
∑
t∈T

γt,+τ̂t,∞1 +
∑
t∈T

∑
a>t

γt,aτ̂t,∞a −
∑
t∈T

∑
a≤t

γt,aτ̂t,a1. (4.3)

Comment 1. Alternative characterizations of the DID estimator or estimand as a weighted

average of potentially causal comparisons are presented in Abraham and Sun [2018], de Chaise-

martin and D’Haultfœuille [2018], Han [2018], Goodman-Bacon [2017], and Borusyak and Jaravel

[2016]). The characterizations differ in terms of the building blocks that are used in the repre-

sentation and the assumptions made. Like our representation, the representation in Abraham

and Sun [2018] is in terms of average causal effects of different adoption dates, but it imposes

no-anticipation. Goodman-Bacon [2017] presents the DID estimator in terms of basic two-group

DID estimators. Like our representation, the Goodman-Bacon [2017] is mechanical and does

not rely on any assumptions. To endow the building blocks and the representation itself with a

causal interpretation requires some assumption on, for example, the assignment mechanism. �

Comment 2. The lemma implies that the DID estimator has an interpretation as a weighted

average of simple estimators for the causal effect of changes in adoption dates, the τ̂t,aa′ . More-

over, the estimator can be written as the sum of three averages of these τ̂t,aa′ . The first is a

weighted average of the τ̂t,∞1, which are all averages of switching from never adopting to adopt-

ing in the first period, meaning that these are averages of changes in adoption dates that involve

switching from not being treated at time t to being treated at time t. The sum of the weights

for these averages is one, although not all the weights are necessarily non-negative. The second

sum is a weighted sum of τ̂t,∞a, for a > t, so that the causal effect always involves changing the

adoption date from never adopting to adopting some time after t, meaning that the comparison

is between potential outcomes neither of which involves being treated at the time. The sum of

the weights for these averages is one again. The third sum is a weighted sum of τ̂t,a1, for a ≤ t,

15



so that the causal effect always involves changing the adoption date from adopting prior to,

or at time, t relative to adopting at the initial time, meaning that the comparison is between

potential outcomes both of which involves being treated at the time. These weights sum to

minus one. �

If we are willing to make the random adoption date assumption we can give this representa-

tion a causal interpretation:

Theorem 1. Suppose Assumption 1 holds. Then (i):

E [τ̂t,aa′ ] = τt,aa′ ,

and (ii)

E [τ̂did] =
∑
t∈T

γt,+τt,∞1 +
∑
t∈T

∑
a>t

γt,aτt,∞a −
∑
t∈T

∑
a≤t

γt,aτt,a1.

Suppose also Assumption 2 holds. Then (iii):

E [τ̂did] =
∑
t∈T

∑
a≤t

γt,aτt,∞a.

Suppose also Assumption 3 holds. Then (iv):

E [τ̂did] =
T∑
t=1

γt,+τt,∞1.

Suppose also Assumption 5 holds. Then (v):

E [τ̂did] = τ∞1.

Part (iii) of the theorem where we make the no-anticipation assumption is closely related to

one of the results in Abraham and Sun [2018], who make a super-population common trend as-

sumption that, in the super-population context, weakens our random adoption date assumption.

Part (iv) of the theorem, where we assume both the exclusion restrictions so that the treatment

is effectively a binary one, is related to the results in de Chaisemartin and D’Haultfœuille [2018],
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although unlike those authors we do not restrict the trends in the potential outcomes.

Without either Assumptions 2 or 3, the estimand τdid has a causal interpretation, but it

is not clear it is a very interesting one concerning the receipt of the treatment. With the no-

anticipation assumption (Assumption 2), the interpretation, as given in part (iii) of the theorem,

is substantially more interesting. Now the estimand is a weighted average of τt,∞a for a ≤ t,

with weights summing to one. These τt,∞a are the average causal effect of changing the adoption

date from never adopting to some adoption date prior to, or equal to, time t, so that the average

always involves switching from not being exposed to the treatment to being exposed to the

treatment.

4.3 The Randomization Variance of the Difference-In-Differences Es-

timators

In this section we derive the randomization variance for τ̂did under the randomized adoption

date assumption. We do not rely on other assumptions here, although they may be required for

making the estimand a substantively interesting one. The starting point is the representation

τ̂did =
∑

t,a γt,aY t,a. Because under Assumption 1 the weights γt,a are fixed, the variance is

V(τ̂did) =
∑
t,a

γ2t,aV(Y t,a) +
∑

(t,a) 6=(t′,a′)

γt,aγt′,a′C(Y t,a, Y t′,a′).

Note that the γt,a are known. Working out the variance V(Y t,a), and finding an unbiased estima-

tor for it, is straightforward. It is more challenging to infer the covariance terms C(Y t,a, Y t′,a′),

and even more difficult to estimate them. In general that is not possible. Note that for a

sampling-based variance the γt,a are not fixed, because in different samples the fractions with

a particular adoption date will be stochastic. This in general leads to a larger variance, as we

verify in the simulations.

Define

Yi(a) =
T∑
t=1

γt,aYit(a), Y (a) =
T∑
t=1

γt,aY t(a) and Y a =
T∑
t=1

γt,aY t,a.
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Now we can write τ̂did as

τ̂did =
∑
a∈A

∑
t∈T

γt,aY t,a =
∑
a∈A

Y a.

Define also

S2
a =

1

N − 1

N∑
i=1

(
Yi(a)− Y (a)

)2
,

and

V 2
a,a′ =

1

N − 1

N∑
i=1

{(
Yi(a)− Y (a)

)
+
(
Yi(a

′)− Y (a′)
)}2

.

Theorem 2. Suppose Assumptions 1 holds. Then the exact variance of τ̂did over the random-

ization distribution is

V (τ̂did) =
∑
a∈A

S2
a

(
1

Na

+
T − 1

N

)
−
∑
a∈A

∑
a′∈A,a′>a

V 2
a,a′

N
,

with

V (τ̂did) ≤
∑
a∈A

S2
a/Na.

Comment (ctd): In our two period example with some units adopting in the second period

and the others not at all, and Yi1(a) = 0, we have

γ1 =

 0

0

 , γ2 =

 −1

1

 , and γ∞ =

 1

−1

 .

S2
1 = 0,

S2
,2 =

1

N − 1

N∑
i=1

(
Yi2(2)− 1

N

N∑
j=1

Yj2(2)

)2

,
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S2
∞ =

1

N − 1

N∑
i=1

(
Yi2(∞)− 1

N

N∑
j=1

Yj2(∞)

)2

,

V 2
1,2 = 0, S2

1,∞ = 0,

V 2
2,∞ =

1

N − 1

N∑
i=1

((
Yi2(2)− 1

N

N∑
j=1

Yi2(2)

)
−

(
Yi2(∞)− 1

N

N∑
j=1

Yi2(∞)

))2

,

so that in this special

V(τ̂did) =
1

N2(N − 1)

N∑
i=1

(
Yi2(2)− 1

N

N∑
j=1

Yi2(2)

)2

+
1

N∞(N − 1)

N∑
i=1

(
Yi2(∞)− 1

N

N∑
j=1

Yi2(∞)

)2

− 1

N(N − 1)

N∑
i=1

((
Yi2(2)− 1

N

N∑
j=1

Yi2(2)

)
−

(
Yi2(∞)− 1

N

N∑
j=1

Yi2(∞)

))2

,

which agrees with the Neyman variance for a completely randomized experiment. �

4.4 Estimating the Randomization Variance of the Difference-In-

Differences Estimators

In this section we discuss estimating the variance of the DID estimator. In general there is

no unbiased estimator for V (τ̂did). This is not surprising, because there is no such estimator

for the simple difference in means estimator in a completely randomized experiment, and this

corresponds to the special case with T = 1. However, it turns out that just like in the simpled

randomized experiment case, there is a conservative variance estimator. In the current case

it is based on using unbiased estimators for the terms involving S2
γa,a, and ignoring the terms

involving V 2
γa,a,γa′ ,a

′ . Because the latter are non-negative, and enter with a minus sign, ignoring

them leads to an upwardly biased variance estimator. One difference with the simple randomized

experiment case is that there is no simple case with constant treatment effects such that the

variance estimator is unbiased.
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Next, define the estimated variance of this by adoption date:

s2a ≡
1

Na − 1

∑
i:Ai=a

(
Yi − Y a

)2
.

Now we can characterize the proposed variance estimator as

V̂did ≡
∑
a∈A

s2a
Na

.

Theorem 3. Suppose Assumption 1 holds. Then

E
[
V̂did

]
≥ V(τ̂did),

so that V̂did is a conservative variance estimator for τ̂did.

There are two important issues regarding this variance estimator. The first is its relation to

the standard variance estimator for DID estimators. The second is whether one can improve on

this variance estimator given that in general it is conservative.

The relevant variance estimators are the Liang-Zeger clustered variance estimator and the

clustered bootstrap (Bertrand et al. [2004], Liang and Zeger [1986]). Both have large sample

justifications under random sampling from a large population, so they are in general not equal

to the variance estimator here. In large samples both the Liang-Zeger and bootstrap variance

will be more conservative than V̂did because they also take into account variation in the weights

γt,a. These weights are kept fixed under the randomization scheme, because that keeps fixed

the marginal distribution of the adoption dates. In contrast, under the Liang-Zeger calculations

and the clustered bootstrap, the fraction of units with a particular adoption date varies, and

that introduces additional uncertainty.

The second issue is whether we can improve on the conservative variance estimator V̂did.

In general there is only a limited ability to do so. Note, for example, that in the two period

example this variance reduces to the Neyman variance in randomized experiments. In that case

we know we can improve on this variance a little bit exploiting heteroskedasticity, e.g., Aronow

et al. [2014], but in general those gains are modest.
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5 Some Simulations

The goal is to compare the exact variance, and the corresponding estimator in the paper to

the two leading alternatives, the Liang-Zeger (stata) clustered standard errors and the clustered

bootstrap. We want to confirm settings where the proposed variance estimator differs from

the Liang-Zeger clustered variance, and settings where it is the same. We have N units, ob-

served for T time periods. We focus primarily on the case with T = 3. The adoption date is

randomly assigned, with πI = (π1, π2, π3, π∞) = (0, 0.67, 0, 0.33), and πII = (π1, π2, π3, π∞) =

(0, 0.5, 0.4, 0.1).

We consider two designs for the potential outcome distributions in the population, the Yi(a)

for a ∈ {1, 2, 3,∞}. In design A the potential outcomes, are generated as



Yi1(2)

Yi1(3)

Yi1(∞)

Yi2(2)

Yi2(3)

Yi2(∞)

Yi3(2)

Yi3(3)

Yi3(∞)



∼ N





0

0

0

4

3

3

2

2

1



, σ2



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





.

In this design the treatment effect is constant, and depends only on whether the adoption

date preceeds the potential outcome date, or

Yit(a) = 1a≤t + εit,

where the εit are correlated over time.

In design B the potential outcomes are generated as
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

Yi1(2)

Yi1(3)

Yi1(∞)

Yi2(2)

Yi2(3)

Yi2(∞)

Yi3(2)

Yi3(3)

Yi3(∞)



∼ N





0

0

0

2

1

1

2

11

1



, σ2



1 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





.

Here the treatment effects depend on the treatment having been adopted, but the effect

differs by the adoption date.

In design C the potential outcomes are generated with positive correlations between the

potential outcomes as



Yi1(2)

Yi1(3)

Yi1(∞)

Yi2(2)

Yi2(3)

Yi2(∞)

Yi3(2)

Yi3(3)

Yi3(∞)



∼ N





0

0

0

2

1

1

2

11

1



, σ2



1 0.9 0.9 0 0 0 0 0 0

0.9 1 0.9 0 0 0 0 0 0

0.9 0.9 1 0 0 0 0 0 0

0 0 0 1 0.9 0.9 0 0 0

0 0 0 0.9 1 0.9 0 0 0

0 0 0 0.9 0.9 1 0 0 0

0 0 0 0 0 0 1 0.9 0.9

0 0 0 0 0 0 0.9 1 0.9

0 0 0 0 0 0 0.9 0.9 1





.

In design D the potential outcomes are generated with negative correlations between the

potential outcomes as
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

Yi1(2)

Yi1(3)

Yi1(∞)

Yi2(2)

Yi2(3)

Yi2(∞)

Yi3(2)

Yi3(3)

Yi3(∞)



∼ N





0

0

0

2

1

1

2

11

1



, σ2



1 −0.4 −0.4 0 0 0 0 0 0

−0.4 1 −0.4 0 0 0 0 0 0

−0.4 −0.4 1 0 0 0 0 0 0

0 0 0 1 −0.4 −0.4 0 0 0

0 0 0 −0.4 1 −0.4 0 0 0

0 0 0 −0.4 −0.4 1 0 0 0

0 0 0 0 0 0 1 −0.4 −0.4

0 0 0 0 0 0 −0.4 1 −0.4

0 0 0 0 0 0 −0.4 −0.4 1





.

For a particular design, eg (A, 2) draw the four sets of three-component vectors of potential

outcomes for each unit (the three components corresponding to the three time periods), one set

for each of the values of a ∈ {1, 2, 3,∞}. We keep these sets of potential outcomes fixed across

all simulations for a given design. Then for each simulation draw the adoption date according

to the distribution for that design, keeping the fraction of units with a particular adoption date

fixed.

We want to look at variances and the corresponding confidence intervals based on four

methods for estimating the variance for the DID estimator. The confidence intervals are Normal-

distribution based, simply equal to the point estimates plus and minus 1.96 times the square

root of the variances. We can write τ̂did as a regression estimator with NT observations, and

N + T regressors. Let with j = 1, . . . , NT . For observation j, Tj ∈ {1, . . . , T} denotes the time

period the observation is from, and Nj ∈ {1, . . . , N} denotes the unit is corresponds to. Now

let Yj = YNj ,Tj and Wj = WNj ,Tj , so that the regression function can be written as

Yj = µ+
N−1∑
n=1

αn1Nj=n +
T−1∑
t=1

βt1Tj=t + τWj + εj = Yj = X>j θ + εj,

whereXj = (1,1Nj=1, . . . ,1Nj=N−1, ,1Tj=1, . . . ,1Tj=T−1,Wj), and θ = (µ, α1, . . . , αN−1, β1, . . . , βT−1, τ).
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We compare five variances. The first is exact randomization-based variance,

Vdid = V (τ̂) =
∑
a∈A

S2
γa,a

Na

−
∑
a∈A

∑
a′∈A,a′>a

V 2
γa,a,γa′ ,a

′

N
.

The other four are estimators of the variance.

First, the feasible conservative variance estimator V̂did.

Second, the standard Liang-Zeger clustered variance. Start with the representation Yj =

X>j θ + εj. Let ε̂j = Yj −X>j θ̂ be the residual from this regression. Calculate the variance as

V̂LZ =

(
J∑
j=1

XjX
>
j

)−1 N∑
n=1

 ∑
j:Nj=n

Xj ε̂j

 ∑
j:Nj=n

Xj ε̂j

>
( J∑

j=1

XjX
>
j

)−1
,

and get the corresponding variance estimator for τ̂did.

Third, the clustered bootstrap, V̂B1. Draw bootstrap samples based on drawing units, with

all time periods for each unit drawn. Note that this explicitly changes from bootstrap sample

to bootstrap sample the fraction of units with a particular adoption date.

Fourth, a modification of the clustered bootstrap, V̂B2, where we fix the fraction of units

with each value for the adoption date.

In Table 1 we report the results. For each of the five variances we report the average of

variance, and the coverage rate for the 95% confidence interval.

We see that the standard Liang-Zeger and the clustered bootstrap (V̂B1) substantially over-

estimate the variance in Design B. The fixed adoption date bootstrap (V̂B2) and the proposed

variance estimator (V̂did) have the appropriate coverage.

6 Conclusion

We develop a design-based approach to Difference-In-Differences estimation in a setting with

staggered adoption. We characterize what the standard DID estimator is estimating under a

random adoption date assumption, and what the variance of the standard estimator is. We show

that the standard DID estimatand is a weighted average of different types of causal effects,

for example, the effect of changing from never adopting to adopting in the first period, or
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Table 1: : Simulations

Design π N Vdid Cov V̂did Cov V̂LZ Cov V̂B1 Cov V̂B2 Cov
A I 30 0.144 0.951 0.239 0.979 0.214 0.974 0.232 0.975 0.219 0.973
B I 30 0.111 0.947 0.187 0.986 0.163 0.978 0.182 0.982 0.172 0.978
C I 30 0.201 0.953 0.217 0.947 0.181 0.925 0.211 0.942 0.200 0.932
D I 30 0.064 0.949 0.265 1.000 0.230 0.999 0.257 1.000 0.244 0.999
A II 30 0.112 0.946 0.165 0.972 0.146 0.966 0.158 0.969 0.142 0.956
B II 30 0.085 0.947 0.139 0.973 0.268 0.999 0.269 0.999 0.119 0.962
C II 30 0.184 0.949 0.191 0.939 0.279 0.983 0.285 0.981 0.162 0.920
D II 30 0.081 0.950 0.164 0.992 0.285 1.000 0.280 0.999 0.142 0.987
A I 150 0.027 0.953 0.047 0.991 0.045 0.989 0.047 0.989 0.046 0.989
B I 150 0.022 0.955 0.041 0.994 0.039 0.992 0.041 0.992 0.041 0.992
C I 150 0.035 0.956 0.038 0.960 0.036 0.956 0.037 0.955 0.037 0.954
D I 150 0.019 0.950 0.044 0.997 0.044 0.997 0.044 0.996 0.043 0.995
A II 150 0.020 0.952 0.033 0.989 0.033 0.989 0.033 0.987 0.032 0.987
B II 150 0.021 0.945 0.036 0.985 0.053 0.997 0.052 0.997 0.035 0.984
C II 150 0.034 0.952 0.035 0.953 0.051 0.985 0.052 0.983 0.034 0.947
D II 150 0.016 0.950 0.028 0.990 0.044 0.998 0.044 0.998 0.028 0.987

changing from never adopting to adopting later. In this approach the standard Liang-Zeger

and clustered bootstrap variance estimators are unnecessarily conservative, and we propose an

improved variance estimator.
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Appendix

Proof of Lemma 1: Let Y p denote the N × (T · (T + 1)) dimensional matrix with all the potential

outcomes. Because the units are exchangeable we can write the joint distribution of the potential

outcomes and A as

f(Y p,A) =

N∏
i=1

f(Y p
i , Ai).

Now we shall construct a distribution f(Y p
i , Ai) that satisfies two conditions. First, Ai is independent of

all the potential outcomes and second, the implied distribution for the adoption date and the realized

outcome is consistent with the actual distribution. To do so we assume independence of the sets

potential outcomes Yi1(a), . . . , fiT (a) for different a, and assume that

f(Yi1(a), . . . , fiT (a)) = f(Yi1(a), . . . , fiT (a)|Ai = a) = f(Yi1, . . . , fiT |Ai = a).

�

Proof of Lemma 2: By Assumption 2 we have

Yit(a) = 1a≤tYit(a) + 1a>tYit(∞),

and by Assumption 3 we have

Yit(a) = 1a≤tYit(1) + 1a>tYit(a).

Combining the two assumptions implies

Yit(a) = 1a≤tYit(1) + 1a>tYit(∞).

Hence

Yit(a
′)− Yit(a) = 1a′≤tYit(1) + 1a′>tYit(∞)− (1a≤tYit(1) + 1a>tYit(∞))

= 1a′≤t<t (Yit(1)− Yit(∞)) ,

which proves part (i).
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For part (ii)

τt,aa′ =
1

N

N∑
i=1

(
Yit(a

′)− Yit(a)
)

=
1

N

N∑
i=1

1a′≤t<t (Yit(1)− Yit(∞))

= 1a′≤t<t
1

N

N∑
i=1

(Yit(1)− Yit(∞)) = 1a≤t<a′τt,∞1.

�

Proof of Lemma 3: Part (i) follows directly from the fact that the exclusion restrictions place

restrictions only on potential outcomes that cannot be observed together.

Let us turn to part (ii). By assumption

Yit(a) ⊥⊥ Ai,

which as a special case includes

Yi1(∞) ⊥⊥ Ai.

Hence

Yi1(∞) ⊥⊥ Ai

∣∣∣ Ai ≥ 2

which implies

Yi1 ⊥⊥ Ai

∣∣∣ Ai ≥ 2

and thus

Yi1 ⊥⊥ Ai

∣∣∣ Ai ∈ {2,∞},
which is a testable restriction. �
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Proof of Lemma 4: By Assumptions 2 and 3 we have

Yit(a)− Yit(∞) = 1a≤t

(
Yit(1)− Yit(∞)

)
.

By Assumptions 4 and 5, Yit(1)− Yit(∞) = τ1∞, so that

Yit(a)− Yit(∞) = 1a≤tτ1∞.

�

Proof of Lemma 5: Using the definition for g(t, a), we can write τ̂did as

τ̂did =

∑
i,t ẆitYit∑
i,t Ẇ

2
it

=

∑
t∈T
∑

a∈A
∑

i:Ai=a
ẆitYit

N
∑

t∈T
∑

a∈A πag(a, t)2
=

∑
t∈T
∑

a∈A
∑

i:Ai=a
g(a, t)Yit

N
∑

t∈T
∑

a∈A πag(a, t)2

=

∑
t∈T
∑

a∈A
∑

i:Ai=a
g(a, t)NaY t,a

N
∑

t∈T
∑

a∈A πag(a, t)2

=

∑
t∈T
∑

a∈A g(a, t)πaY t,a∑
t∈T
∑

a∈A πag(a, t)2
=
∑
t,a

γt,aY t,a,

where γt,a is as given in (4.2). �

Proof of Theorem 1: First consider part (i). We will show that

E[Y ta] = Y t(a),

which in turn implies the result in (i). We can write

E[Y ta] = E

[
1

Na

N∑
i=1

1Ai=aYit

]
= E

[
1

Na

N∑
i=1

1Ai=aYit(a)

]
.

By Assumption 1 this is equal to

1

Na

N∑
i=1

E [1Ai=a]Yit(a) =
1

Na

N∑
i=1

Na

N
Yit(a) =

1

N

N∑
i=1

Yit(a) = Y t(a),

which is the desired result.
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Next consider part (ii). By Lemma 5,

τ̂did =
∑
t∈T

γt,+τ̂t,∞1 +
∑
t∈T

∑
a>t

γt,aτ̂t,∞a −
∑
t∈T

∑
a≤t

γt,aτ̂t,a1,

so that

E [τ̂did] = E

∑
t∈T

γt,+τ̂t,∞1 +
∑
t∈T

∑
a>t

γt,aτ̂t,∞a −
∑
t∈T

∑
a≤t

γt,aτ̂t,a1

 ,
which by Assumption 1 is equal to

∑
t∈T

γt,+E [τ̂t,∞1] +
∑
t∈T

∑
a>t

γt,aE [τ̂t,∞a]−
∑
t∈T

∑
a≤t

γt,aE [τ̂t,a1] .

This in turn, by part (i), is equal to

∑
t∈T

γt,+τt,∞1 +
∑
t∈T

∑
a>t

γt,aτt,∞a −
∑
t∈T

∑
a≤t

γt,aτt,a1,

which finishes the proof of part (ii).

Next consider part (iii). If Assumption 2 holds, then for all a > t, τt,∞a = 0, so that

E [τ̂did] =
∑
t∈T

γt,+τt,∞1 −
∑
t∈T

∑
a≤t

γt,aτt,a1

=
∑
t∈T

∑
a≤t

γt,aτt,∞a.

Next consider part (iv). If also Assumption 3 holds, then also for all a ≤ t, τt,a1 = 0, so that

E [τ̂did] =
∑
t∈T

γt,+τt,∞1 +
∑
t∈T

∑
a>t

γt,aτt,∞a −
∑
t∈T

∑
a≤t

γt,aτt,a1

=
∑
t∈T

γt,+τt,∞1.

Finally, consider part (v). This follows directly from part (iv) in combination with the constant

treatment effect assumption (Assumption 5). �

Next we give a preliminary result.

29



Lemma A.1. Suppose that Assumption 1 holds. Then (i) the variance of Y a is

V(Y a) =
S2
a

Na

(
1− Na

N

)
,

(ii), the covariance of Y a and Y a′ is

C(Y a, Y a′) = − 1

2N

(
S2
a + S2

a′ − S2
aa′
)

=
1

2N

(
S2
a + S2

a′ − V 2
aa′
)
,

(iii), the variance of the sum of the Y a is

V

(∑
a∈A

Y a

)
=
∑
a∈A

S2
a

(
1

Na
+
T − 1

N

)
− 1

2N

∑
a,a′:a6=a′

V 2
aa′ ,

and (iv),

V

(∑
a∈A

Y a

)
≤
∑
a∈A

S2
a

Na
.

Proof of Lemma A.1: Part (i) follows directly from the variance of a sample average with random

sampling from a finite population.

Next consider part (ii). Define

S2
aa′ =

1

N − 1

N∑
i=1

{(
Yi(a

′)− Y (a′)
)
−
(
Yi(a)− Y (a)

)}
.

Recall that the variance of the difference between Y a′ and Y a is

V(Y a′ − Y a) =
S2
a

Na
+
S2
a′

Na′
−
S2
aa′

N
,

from the results in Neyman [1923/1990], Imbens and Rubin [2015] for completely randomized experi-

ments with a binary treatment. In general it is also true that

V(Y a′ − Y a) = V(Y a) + V(Y a′)− 2C(Y a, Y a′).

Combining these two characterizations of the variance of the standard estimator for the average treat-
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ment effect, it follows that the covariance is equal to

C(Y a, Y a′) =
1

2

{
V(Y a) + V(Y a′)− V(Y a′ − Y a)

}
=

1

2

{
S2
a

Na

(
1− Na

N

)
+
S2
a′

Na′

(
1− Na′

N

)
−
{
S2
a

Na
+
S2
a′

Na′
−
S2
aa′

N

}}
= − 1

2N

{
S2
a + S2

a′ − S2
aa′
}

= − 1

2N

{
S2
a + S2

a′ + V 2
aa′ − 2S2

a − 2S2
a′
}

=
1

2N

{
S2
a + S2

a′ − V 2
aa′
}
.

Next, consider part (iii). Using the result in part (ii),

V

(∑
a∈A

Y a

)
=
∑
a∈A

V(Y a) +
∑

a,a′:a6=a′
C(Y a, Y a′)

=
∑
a∈A

S2
a

Na

(
1− Na

N

)
+

1

2N

∑
a,a′:a6=a′

{
S2
a + S2

a′ − V 2
aa′
}

=
∑
a∈A

S2
a

(
1

Na
− 1

N
+
T

N

)
− 1

2N

∑
a,a′:a6=a′

V 2
aa′

=
∑
a∈A

S2
a

(
1

Na
+
T − 1

N

)
− 1

2N

∑
a,a′:a6=a′

V 2
aa′ .

Finally, consider part (iv). The third term, the sum of V 2
aa′ terms is not directly estimable. Because it

has a negative sign, we need to find a lower bound on this sum. A trivial lower bound is zero, but we

can do better. We will show that

1

2N

∑
a,a′:a6=a′

V 2
aa′ ≥

∑
a∈A

S2
a

T − 1

N
. (A.1)

This in turn implies

− 1

2N

∑
a,a′:a6=a′

V 2
aa′ ≤ −

∑
a∈A

S2
a

T − 1

N
,
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and thus

V

(∑
a∈A

Y a

)
=
∑
a∈A

S2
a

(
1

Na
+
T − 1

N

)
− 1

2N

∑
a6=a′

V 2
aa′

≤
∑
a∈A

S2
a

(
1

Na
+
T − 1

N

)
−
∑
a∈A

S2
a

T − 1

N

=
∑
a∈A

S2
a

Na
.

The last inequality to prove is (A.1). First,

V 2
aa′ =

1

N − 1

N∑
i=1

((
Yi(a

′)− Y (a′)
)

+
(
Yi(a)− Y (a)

))2

=
1

N − 1

N∑
i=1

{(
Yi(a

′)− Y (a′)
)2

+
(
Yi(a)− Y (a)

)2
+ 2

(
Yi(a

′)− Y (a′)
) (
Yi(a)− Y (a)

)2}

=
1

N

(
S2
a + S2

a′ + 2C(Yi(a), Yi(a
′))
)
.

Hence

1

2N

∑
a6=a′

V 2
aa′ =

1

2N

∑
a,a′:a6=a′

{
S2
a + S2

a′ + 2C(Yi(a), Yi(a
′))
}

=
∑
a∈A

S2
a

T

N
+

1

N

∑
a6=a′

C(Yi(a), Yi(a
′)). (A.2)

Next,

0 ≤ V

(∑
a∈A

Yi(a)

)
=
∑
a∈A

V(Yi(a)) +
∑

a,a′:a6=a′
C(Yi(a), Yi(a

′)).

Therefore

∑
a,a′:a6=a′

C(Yi(a), Yi(a
′)) ≥ −

∑
a∈A

V(Yi(a)) = −
∑
a∈A

S2
a. (A.3)
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Combining (A.2) and (A.3) we get the bound

1

2N

∑
a,a′:a6=a′

V 2
aa′ =

∑
a∈A

S2
a

T

N
+

1

N

∑
a,a′:a6=a′

C(Yi(a), Yi(a
′))

≥
∑
a∈A

S2
a

T

N
−
∑
a∈A

S2
a =

∑
a∈A

S2
a

T − 1

N
,

which proves (A.1). �

Proof of Theorem 2: This follows directly from the results in Lemma A.1. �

Proof of Theorem 3: By Assumption 1 it follows that

E
[
s2γa,a

]
= S2

γa,a.

This implies that

E
[
V̂did

]
= E

[∑
a∈A

s2γa,a/Na

]
=
∑
a∈A

S2
γa,a/Na ≥ V(τ̂did),

where the inequality is by Theorem 2. �
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