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“The sixteenth-century Dutch, on the verge of becoming economic leaders

of the world, borrowed heavily from the techniques of the Italians, the outgoing

leaders. By then, the English were already learning not only from the Low

Countries but also from other parts of the continent. The Americans borrowed

heavily from the English and from other European sources, particularly from the

time they achieved independence up until the middle of the nineteenth century.”

(Baumol et al., 1991, p. 271-272)

1 Introduction

The world income distribution has been widening over the past 50 years. In 1960, the

real GDP per worker of the top 10th percentile country was about 12 times higher than

that of the bottom 10th percentile; in 2014 it has doubled to 24 times (the black line in

the left panel of Figure 1). However, the same ratio for factor inputs, such as physical

capital and human capital per worker, remained largely constant at 5 times (the red

line). This evidence suggests a large and widening TFP gap between the rich and poor

countries. Furthermore, the TFP gaps are widening in diverging directions. The dash

line in the right panel of Figure 1 delineates the frontier of growth: the growth rate of

real GDP per worker as the sum of the growth rate of factor inputs per worker and the

growth rate of frontier productivity (represented by the TFP of the U.S.). If the TFP

gaps were not widening, then countries should be well aligned on the frontier. If the

TFP gap were widening but at a constant rate, then they should be parallelly shifted

below the frontier. Instead, evidence suggests an amplification mechanism à la anti-

clockwise rotation in the figure: countries having their factors accumulation faster than

the U.S. tend to have their TFP gaps shrinking and their income growing increasingly

faster than the U.S. - the growth miracles we have witnessed in the past half century.

The rotation is also consistent with a poverty-trap puzzle where some countries (dots

on the far left of the U.S.) experience negative income growth in spite of slower yet

positive growth of factors in general. Indeed, in some of these trapped countries the

positive factor accumulation is driven by strong growth in human capital comparable

to the miracle economies (for example human capital in Zimbabwe is growing 1.16%

faster than in the U.S., see Table 4 for details). Furthermore, their income level in

1970 were comparable with those of the Asian tigers and were ahead of some of their

ASEAN counterparts. How can some countries successfully catch up with the rich

countries? But why at the same time some other countries are worsening, even with

similar initial condition and similar improvement in human capital? Explaining these
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Figure 1: Left black: the ratio between the top and the bottom 10 percentiles of real
GDP per worker. Left red: the top-bottom ratio of factors per worker. The factors
are physical capital and human captial aggregated by a Cobb-Douglas function with a
capital share of 1/3. Right: the average growth rate of per-worker real GDP against
the average growth rate of per-worker factors, each dot represents a country in the
sample. Outliners like oil rich countries in OPEC, and former members of USSR and
Yugoslavia are excluded. Source: Penn World Table 9.0.

regularities of TFP gap is crucial to answering these questions. Unfortunately, it is

challenging under the standard aggregate production function framework.

To address these issues, we revisit a microfoundation of the aggregate production

function framework. Production technology often requires the composition of factor

inputs very different from the country’s available factor inputs, a concept entailing

factor input-technology mismatch. This is particularly true when the technologies are

adopted from developed countries: they are usually more productive but also require

demanding factors such as sophisticated machines and skilled workers, not always avail-

able in less developed countries. In reality the mismatch is more severe in some factors

and less in others. We refer the former the disadvantageous factors, and the latter the

advantageous factors. To mitigate the impact of mismatch, it is natural to leverage the

advantageous factors to compensate for the disadvantageous factors. We refer to this

process as technology assimilation. In practice the ability to assimilate technologies

is a key component of firms’intangible organizational capital —depending on entre-

preneurs’understanding of foreign techniques, their learning from experimenting, the

flexibility of organization and institution, and the infrastructure and policies relevant

to adaptation.1 It is therefore natural to expect that the cross-country variations in the

1The importance of assimilation is supported by a vast body of evidences from various case stud-
ies. For example Wan (2011), emphasizes the successful assimilation of technology as the common
denominator in Asian economic development, whereas Rosenberg (1994) many developed countries
today are successful cases for modified existing technology. Policy issues concerning the assimilation
of foreign techniques are discussed in Dahlman et al. (1987) and Nelson and Pack (1999)
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Figure 2: Left black and red are the same as those in Figure 1. Left blue: the top-
bottom ratio of the same factors but aggregated by (3). Right: the average growth
rate of per-worker real GDP against the average growth rate of per-worker factors in
the assimilation model. Source: see Figure 1.

mismatch and in assimilation ability serve to explain part of the cross-country income

disparities. Notwithstanding, mismatch and assimilation are missing in the standard

aggregate production function.

The main contribution of this paper is to develop a tractable framework for analyz-

ing factor input-technology mismatch under imperfect technology assimilation, subse-

quently accounting for cross-country income disparities. Our framework encompasses,

for example, the technological frontier model, the stochastic techniques model, and the

multi-tier CES production model. This mechanism can generate large income varia-

tions in both the level and the growth rate across countries. Our theoretical results

show that, a lower ability of assimilation reduces production effi ciency by deterring

adaptation to the frontier technology and aggravating the mismatch, thus widens the

variation of income level. However, a lower ability of assimilation increases factor

complementarity, and the disadvantageous factors become more important in produc-

tion. Thus, a modest variation in the growth of the disadvantageous factors translates

to a much larger variation in the income growth. Moreover, disadvantageous factors

may eventually become advantageous. If the factor advantage reversal takes place,

mismatch would be widening again, slowing down the income growth.

Upon establishing the theory, we then verify its explanation power with the data.

Identifying technology and assimilation ability in our framework faces the similar chal-

lenge from Diamond-McFadden impossibility theorem. We circumvent the impossibil-

ity theorem by using the solution to the firm’s technology choice problem as an extra

identification condition from the theory. The quantitative results show that our frame-

work helps reducing the reliance on the unexplained TFP gap, illustrated in the left
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panel of Figure 2. In addition, the unexplained TFP gap is growing much slower in our

framework, as illustrated by the flatter fitted line in the right panel of Figure 2, indi-

cating that the mismatch story is promising in explaining the rotation pattern of TFP

gaps. Indeed, our framework yields better fit in about 95% of the sample countries.

We then examine the quantitative importance of the mismatch mechanism by con-

ducting development and growth accounting. In development accounting, accounting

for the factor input-technology mismatch improves the success rate from 33% to 92%.

In growth accounting, changes in the factor input-technology mismatch contribute to

41% of the income growth gap from the U.S., exceeding the contributions of physical

capital accumulation (about one-third), human capital (almost negligible) and residual

(about a quarter). Accumulation of factors matters a lot to growth when they are the

disadvantageous factors. In development-trapped countries such as Congo, Zimbabwe,

and many others, their disadvantageous factor, physical capital, has been decumulat-

ing and the advantageous factor, human capital, has been accumulating significantly

over time. It widens the factor input-technology mismatch and lowers growth - our

explanation to the poverty-trap puzzle. For these trapped countries, our mismatch

channel explains on average 94% of the widening income gap from the U.S., whereas

the standard approach would predict a converging gap otherwise. On the other hand,

in miraculously fast growing countries such as Korea, China and Vietnam, the dis-

advantageous factor, physical capital, has out-grown the advantageous factor, human

capital. As a result, factor input-technology mismatch has been improving over time,

accounting for 30% of their prolonged growth. We further investigate the role of cross-

country heterogeneity in assimilation ability, and find it to account for another 20% of

the income growth gap from the U.S., on top of the 41% from the widening mismatch.

We finally extend our analysis to alternative assimilation targets as well as early stop

or late start in assimilation, finding a more important role played by mismatch.

The mechanism of factor advantage reversal can also serve as a plausible explanation

for the middle-income traps that features a significant slowdown of once fast-growing

economies in the midst of its development. We find that the timing of reversal in

several countries, including Spain, Greece, Hong Kong and Taiwan, matches well the

timing of middle-income trap [cf. Eichengreen et al. (2014)], as well as their structural

breaks in relative incomes (identified by Chow test).

The main takeaway is that factor input-technology mismatch and assimilation abil-

ity are crucial for disparities in income levels and growth rates, accounting for a large

portion of the otherwise unexplained residual TFP component. Successful assimila-

tion narrowing mismatch has promoted economic development, with Western Europe
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and America taking off early, then Japan and followed first by the newly industrial-

ized Asian Tigers in the 1960s and various emerging latecomers since the 1980s, as

argued by Baumol et al. (1991) in our opening quote. This dynamic process of de-

velopment generates an ever changing cross-section distribution as observed in data.

Conversely, failure to assimilate technology has caused the backwardness seen in Sub-

Saharan countries. What distinguishes miracles from traps is not just the speed of

factor accumulation; it is the accumulation of the right factor.

Related Literature

To formalize the concepts of technology-factor input mismatch and assimilation, we

refer to the now-classic pieces by Houthakker (1955) and recently by Kortum (1997),

Jones (2005) - HKJ hereafter - and Lagos (2006). With different frictions and focuses,

HKJ and Lagos (2006) obtain a Cobb-Douglas global production function as an aggre-

gation of Leontief local productions in which firms’production techniques are drawn

from the Pareto distribution. HKJ derive a measure of TFP that summarizes the pro-

duction effi ciency of the economy, and show how the TFP depends on frictions and

fundamentals of the economy. Another theoretical lesson from HKJ and Lagos (2006)

are that the macro elasticity of substitution (EOS) can be much higher than the micro

EOS, because of factor reallocation across firms or techniques (in spite of various fric-

tions and constraints). Our framework includes the results of HKJ and Lagos (2006)

as special cases. Related but on the time dimension, León-Ledesma and Satchi (2017)

show that with the presence of adjustment cost to techniques, a short-run EOS of about

0.2 can generate a long-run EOS of about 0.6 and explain the short- and medium-run

behaviors of labor shares.2

Our framework emphasizes the fact that the frontier techniques available can be

very restrictive. To this end, our paper is also closely related to Caselli and Coleman

(2006). The Caselli-Coleman paper explains cross-country income disparities by as-

suming that the frontier technology is not available and countries choose from their

own technology menus. Given that skilled and unskilled labor are gross substitutes un-

der a CES production function, Caselli and Coleman show that rich (poor) countries

who are skilled (unskilled)-labor abundant choose skilled (unskilled)-labor augmenting

2In this regard, our paper is also related to a growing literature that investigates the role of
disaggregated (sectoral, firm or plant level) EOS on explaining the declining labor share, since the
seminal work of Karabarbounis and Neiman (2014). Also see Oberfield and Raval (2014) and Lawrence
(2015) for some recent studies on the EOS and labor share. See the Appendix for a detailed discussion
about the methodology of estimating the EOS.
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technologies. We show that the factor input-technology mismatch alone can explain

much of income differences even when the frontier technology is available.

Some studies have focused on costly (or frictional) learning, including Caselli (1999).

Atkinson and Stiglitz (1969) suggest a theory that country’s production features lo-

calized learning by doing. Based on that idea, Basu and Weil (1998) construct a

Solow-type one-factor growth model of technological progress that emphasizes that

technological advances will only benefit the technologies with similar capital intensity.

Parente and Prescott (1994) examine how barriers to technology adoption affect the

process of development. With the exogenous growth of world knowledge, the amount

of investment required for technological advances decreases, which enhances long-term

growth. Acemoglu and Zilibotti (2001) study the economy where skilled labor avail-

able does not match the technology requirement. Therefore, even if all technologies

are freely available and instantly transferred, a country may refrain from using a new

but inappropriate technology.

In these studies, the mismatch or the inappropriateness is summarized by one factor

(e.g. skill or capital). While it proves useful to explain the cross-sectional variation,

it does not fully explain why over time the income gap is widening even though the

inappropriateness in some aspects, for example the gap of human capital, is narrowing.

And the importance of human capital has been emphasized to explain the Asian mir-

acles [see the survey by Lucas (1993)], but it cannot explain why no miracle happens

in those trapped countries with comparable growth in human capital. Insteads, our

framework allows for multi-dimensional mismatch which is useful to generate various

income dynamics.

In the equilibrium our production function falls into a class of normalized CES

(NCES) function, popularized by Klump and de La Grandville (2000). The tractability

of NCES allows us to estimate the model with cross-country time series, and to apply

the estimated model to development accounting and growth accounting. León-Ledesma

et al. (2010) demonstrate that EOS estimation without normalization can be seriously

biased. A summary of the empirical literature using NCES and CES will be provided

in the methodology section.

2 The Aggregate Production Function: A Prelude

We first preview the key innovation of this paper before the details of the theoretical

and quantitative analyses. The existing literature of the neoclassical production adopts
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the following prototypical model for a country j:

y = zjF (kj, hj) . (1)

According to (1), output y is produced with a constant-returns-to-scale technology,

F , using physical capital k and human capital h with TFP z. Letting s denote the

benchmark country with frontier technology, the literature [see the survey by Caselli

(2005)] focuses on the Cobb-Douglas specification of F which is given by

y = exp (τ j) zsk
α
j h

1−α
j , (2)

where α ∈ (0, 1) is the output elasticity of physical capital and all countries share the

TFP zs, By normalizing τ s = 0, τ j becomes the residual TFP gap from the leading

country —or, in short, the TFP residual. Then the common conclusion is: only about

20%-40% of the variation in world income can be attributed to variation in factor

inputs, with the TFP residual alone accounting for most of the variation. This result

is viewed as unsatisfactory.

Departing from the neoclassical production framework, we generalize the concept of

production techniques developed by HKJ. While we will lay out the micro-foundation

to derive the general case in the next section, here we illustrate with a simple two-factor

case. The resulting production function takes a normalized CES form:

y = exp (τ j) ys

[
α

(
kj
ks

)σ−1
σ

+ (1− α)

(
hj
hs

)σ−1
σ

] σ
σ−1

, (3)

where σ ∈ [0, 1] and the normalization is taken at the frontier techniques summarized

by the triplet {ys, ks, hs}. Figure 3 illustrates the isoquants of the normalized CES
production function under assimilation. An isoquant consists of combination of fac-

tors (k, h) needed to produce a one unit of output. Point Es represents the frontier

technology on the isoquant Fs if the benmark country is endowed with country j’s

factors. Point E1j represents the production of country j on the isoquant Fj with σ < 1

capturing the imperfect assimilation of the frontier technology. Isoquants with vari-

ous σ are tangent at the production point Ej on the (k/h)s ray. Isoquants moving

downward from Ej along the (k/h)s ray represents increasing TFP τ j. The factor

input-technology mismatch is represented by the intersection of these isoquants and

the (k/h)j ray. When no factor input-technology mismatch can be assimilated, country

j is producing on the kinked isoquant Fj with σ = 0 and the factors needed to produce

one unit of output are captured by point E0j . Caselli (2005) is the special case of the

isoquant Fj with σ = 1, associating with a lower point E2j . The ranking of factor

7
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Figure 3: Assimilation and the isoquants.

requirements is E0j > E1j > E2j . The effi ciency loss measured by the standard TFP

residual from (2) is associated with the increased factor requirement given by E2j −Es.
The effi ciency loss due to the factor input-technology mismatch is the increased factor

requirement given by E1j −E2j . As the mismatch increases, the (k/h)j ray moves away

from the (k/h)s ray and the factor requirement gap E
1
j − E2j increases. Similarly, as

assimilation ability decreases, the isoquant moves closer to Fj with σ = 0, and the

factor requirement gap E1j −E2j also increases. Thus, the assimilation model generates
additional effi ciency loss due to mismatch and imperfect assimilation.

3 The Framework

Let production technique specifies the organization of factor inputs for output. A

typical technique is defined by the input-output parameters, a ≡ (a1, ..., aN), such that

its output level given the factor inputs, n ≡ (n1, ..., nN), is

y = f(n; a) ≡
[ ∑
m=1,...,N

αm

(
nm
am

)σ−1
σ

] σ
σ−1

,
∑

m=1,...,N

αm = 1. (4)

That is, the technique requires n = a units of different factors to produce one unit

of output. The tuple of ratios µ ≡ (n1/a1, ..., nN/aN) represents the factor input-

technology mismatch between factor inputs and the factor requirement of the technique.

We interpret the EOS parameter σ ∈ [0, 1] as the ability of assimilation.3 In the absence

3This is a parsimonious setup to capture two sided matching between heterogeneous factor inputs
with technical progress as in Chen et al. (2012). The idea of learning-by-using (LBU) or fixed adoption
costs of dynamic technology adoption models [e.g., Arthur (1989) and David (1985)] can be captured
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assimilation (σ = 0), the output level is determined entirely by the worst mismatched

factor —one with the lowest nm/am.

Given a combination of factor inputs, n, firms to choose the best technique from a

menu, a ∈ P. With its best selected techniques, a firm’s output level is then given by
the following global production function:

f(n) = max
a∈P

f(n; a). (5)

Assuming that P is a compact connected set in RN++ with a differentiable envelope,
Proposition 1 provides necessary and suffi cient condition for the Cobb-Douglas speci-

fication to arise given a menu set.4

Proposition 1 Given P, there exists z > 0 such that the global production function

(5) is given by

f(n) = z
∏

m=1,...,N

(nm)αm ,

if and only if a? (n) ≡ arg maxa∈P f(n; a) ∝ n.5

Notably, a? (n) ∝ n if there exists a positive scalar k such that a?m = nm/k for

all m = 1, ..., N , i.e., the optimal technique is proportional to factor inputs. Under

Proposition 1, if the optimal technique is proportional to factor inputs, then the global

production function is Cobb-Douglas and the output effect of the optimal technique is

completely summarized by the TFP parameter z. The "only if" part of Proposition 1

points out that having a? (n) ∝ n is necessary in any environments that "microfound"
the Cobb-Douglas specification. We illustrate the following special cases to Proposition

1 of particular interest.

Example 1 (Caselli and Coleman, 2006) Consider N = 2 and define P ≡ {(a1,a2) |
B ≤ (a1)

α1 (a2)
α2}, where B > 0 is a measure to the barrier to technology frontier.

Then the optimal technique is a?1 = B (n1/n2)
α2 and a?2 = B (n2/n1)

α1 and the global

production function is given by f(n) = z (n1)
α1 (n2)

α2, where z = B−1.6

by our flexilibility parameter σ. We can translate a high cost of LBU or adoption to a low flexibility
in production, i.e., a low σ.

4Define a− ≡ {a1, ..., aN−1} ∈ RN−1++ , and A (a−)≡min ai,N s.t. ai ∈ P and am ≤ ai,m for all
m = 1, ..., N − 1. P has a differentiable envelope if A (a−) is differentiable for any interior a−.

5All proofs are relegated to Appendix A.
6Caselli and Coleman (2006) assume Y = Kα

[
(AuLu)

ψ
+ (AsLs)

ψ
](1−α)/ψ

, which is isomorphic

to our framework by taking Y/K as our y, Lu/K as n1, Ls/K as n2, Auα
1/ψ
1 as a1 and Asα

1/ψ
2 as a2.
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Our framework also encompasses the model of stochastic technique, for example

Kortum (1997) and Jones (2005), where ai is drawn from a stationary distribution

that can lead to an extreme value distribution of the technology frontier. In this case

P is the limited set as the number of technique goes to infinity.7

Example 2 (Kortum, 1997; Jones, 2005) Consider σ = 0 and N = 2. Suppose ai,m,

m = 1, 2 and i = 1, ..., I, is drawn from independent inverse Pareto distributions with

the shape parameter αmθ and the scale parameter γmI
−1/θ, where θ > 1 and γm > 0.

When I →∞ the optimal technique converges to satisfy n1/a?1 = n2/a
?
2 almost surely,

and the global production function converges in distribution to f(n) = z (n1)
α1 (n2)

α2,

where z = εγα11 γ
α2
2 and ε follows the Fréchet distribution with parameter θ.

Without much loss of generality, the local production production (4) consists of a

single-tier structure. Proposition 1 can be extended to the local production function

featuring multi-tier CES like in Krusell et al. (2000).

Example 3 (Krusell et al., 2000) Consider N = 3 and the following local production

function

y = max
a∈P

α[β (n1
a1

) ε−1
ε

+ (1− β)

(
n2
a2

) ε−1
ε

] ε
ε−1

σ−1
σ

+ (1− α)

(
n3
a3

)σ−1
σ


σ
σ−1

, α, β ∈ (0, 1) .

(6)

There exists z > 0 such that the global production function is given by y = znαβ1 n
α(1−β)
2 n1−α3 ,

if and only if the solution a? (n) to (6) satisfies that n1/a?1 = n2/a
?
2 = n3/a

?
3.

Krusell et al. (2000) use the local production function (6) to study capital-skill

complementarity —think of n1 as capital, n2 skilled labor, n3 unskilled. In their model

there is a CES aggregation of capital and skilled labor with a complementary elasticity

of substitution (EOS) ε ≤ 1, whose outcome is then aggregated with unskilled labor

with an EOS σ ≥ 1. If ε = σ then (6) is a special case to (4), analyzed in Proposition

1. For the generic values of ε and σ, rewrite (6) as

y = max
a∈P

[
α (n̄)

σ−1
σ + (1− α)

(
n3
a3

)σ−1
σ

] σ
σ−1

, s.t. n̄ ≡
[
β

(
n1
a1

) ε−1
ε

+ (1− β)

(
n2
a2

) ε−1
ε

] ε
ε−1

.

Applying Proposition 1 sequentially —first on n̄ with inputs n1 and n2 given a3, then

on y with inputs n3 and n̄ —we reach the result in Example 3. While our results

7Wong and Yip (2014) extend the results of Jones (2005) to the general case with N ≥ 2 and

σ ∈ [0, 1). A CDF of ai,m is given by Pr (ai,m ≤ x) =
(
xγmI

−1/θ)αmθ for all x ∈ [0, γ−1m I1/θ
]
.
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are readily extensible to more sophitiscated structure like (6), we will, for the sake of

parsimony, focus primarily on the more commonly specified setting given by (4).

In Proposition 1 what matters to give rise to the Cobb-Douglas specification is that

the technique chosen is proportional; the environment (like the shape of menu, cost

or other frictions) do not matter much. To see it, consider that, alternatively, the

technology choice is no longer restricted to any menu but the choice is costly. The

firm’s net output is given by the following global production function

f(n) ≡ max
a
{f(n; a)− C (a)} , (7)

where C : RN+ → R+ is a twice-differentiable cost function. Analog to Proposition 1,
Proposition 2 provides necessary and suffi cient condition for the Cobb-Douglas speci-

fication to arise under the problem of costly technology choice.8

Proposition 2 Given C, there exists z > 0 such that the global production function

(7) is given by

f(n) = z
∏

m=1,...,N

(nm)αm ,

if and only if a? (n) ≡ arg maxa {f(n; a)− C (a)} ∝ n.

3.1 Assimilating the Frontier and Endogenous TFP

Consider a leader country s, say, the U.S. or a major advanced economy regarded as a

regional leader (e.g., Japan in Asian; France, UK or Germany in Europe). The leader

country is using the most productive “frontier”technique as (maybe because it has the

largest menu P or lowest cost C) to produce ys with its factor input ns. In this section
we analyze the world development when as is avaliable to the rest of the world.

Depending on P or C, the chosen technique can be anything. In practice, we

do not have suffi cient information to separately identify the techniques and the pa-

rameter of assimilation ability [Diamond et al. (1978)]. To circumvent this problem,

we assume that the resulted global production function, f(ns), in the leader country

is Cobb-Douglas - probably the most common assumption in macroeconomics. This

identification assumption is maintained only on the leader country, and the local pro-

duction functions in the rest of world are not restricted. Applying Proposition 1 or

8Lagos (2006) derives a Cobb-Douglas global production function in the presence of labor search
friction. One can formulate the firm’s problem of Lagos (2006) in term of (7). Since the technology
in Lagos (2006) is assumed to be Hick-neutral, with n1 = n2 in the equilibrium (or in term of his
notations hours n as n1 in our model and capital k as n2, where the total labor is the total hours of
employed workers) the techniques of the filled firms are always proportional to the factor inputs.
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2, it is necessary (the part of "only if") that the frontier technique in equilibrium is

proportional to the leader’s factor inputs, i.e., as,m = ns,m/ys for all m = 1, ..., N .

Thus, the output level of a country with factor input n after assimilating the frontier

technique is tractably given by

y = f(n; as) = ys

[ ∑
m=1,...,N

αm

(
nm
ns,m

)σ−1
σ

] σ
σ−1

= Z (n;ns, σ)
∏

m=1,...,N

(nm)αm , (8)

where Z (n;ns, σ) is a TFP measure given by

Z (n;ns, σ) = zs︸︷︷︸
source TFP

×
∏

m=1,...,N

(
ns,m
nm

)αm [ ∑
m=1,...,N

αm

(
nm
ns,m

)1−1/σ]1+1/(σ−1)
︸ ︷︷ ︸

mismatch and assimilation

. (9)

Equation (8) is the key equation in this paper; we shall examine in the rest of this paper,

theoretically and quantitatively, how assimilating the frontier technique is accountable

for the world income disparity.

Since the frontier technique is chosen only based on the leader country’s own inter-

est, it does not necessarily match the factor inputs in other countries. More specifically,

when a country assimilates the frontier technique, as, its TFP measure, Z (n;ns, σ),

becomes endogenous and contains two effects: (i) a source TFP effect captured by zs;

and (ii) an assimilation effect, jointly captured by the assimilation ability parameter, σ,

and the mismatch from assimilating the frontier technique, µs = (n1/as,1, ..., nN/as,N).

The following proposition relates the TFP with the assimilation ability:

Proposition 3 The TFP, Z(n;ns, σ), is increasing in the assimilation ability, σ.

Proposition 3 states that for a given degree of factor input-technology mismatch,

production effi ciency improves with more flexible assimilation that enables better adap-

tation to the frontier technique. If σ → 1 then the country inherits the frontier pro-

ductivity and output such that Z(n;ns, σ) = zs and f (n) = zs
∏

m=1,...,N (nm)αm ; a

special case studied in Caselli (2005).

The effects of the leader’s factor input on the TFP are more involved. The leader’s

factor input, ns, now matters for the TFP in other countries, through assimilating the

frontier technique, as, which is chosen according to ns. Clearly from (9), assimilating

the frontier technique does not always lead to a higher TFP. Define the most disadvan-

tageous factor as md ≡ arg minm=1,...,N (nm/ns,m) and the most advantageous factor as

ma ≡ arg maxm=1,...,N (nm/ns,m). The following proposition shows that the effects of

ns,m depend crucially on the relative factor advantage:

12



Proposition 4 There exists γy ∈ [nmd/ns,md , nma/ns,ma ] such that the TPF, Z(n;ns, σ),

is decreasing in ns,m if and only if nm/ns,m ≤ γy, i.e. when the factor is disadvanta-

geous.

On the one hand, an increase in the leader’s factor input ns,m induces the use

of more productive technique (higher as,m) and yields higher output via assimilation.

This resembles the conventional positive productivity effect of technology adoption.

On the other hand, an increase in as,m widens the factor input-technology mismatch,

thereby harming the assimilated production outcome. This is our novel mismatch

effect as a result of discrepancies between factor inputs and factor requirements for

assimilating the frontier technique. Proposition 4 concludes that the factor input-

technology mismatch effect dominates when the m-th factor is an disadvantageous one

(nm < γyns,m). When the m-th factor is the advantageous one, the two effects align

and always increase the assimilated output. In the exercise of development accounting,

we will check whether the theoretical predictions drawn from our propositions are

supported by the cross country data.

Finally, by taking log and totally differentiating with respect to time, the rate of

growth assimilated output is derived as

ŷ = ẑs︸︷︷︸
source TFP growth

+
∑

m=1,...,N

αmn̂m︸ ︷︷ ︸
factor growth

+
∑

m=1,...,N

(πm − αm) (n̂m − n̂s,m)︸ ︷︷ ︸
change in mismatch

, (10)

where x̂ ≡ d lnx/dt and πm ≡ αm

(
nm
ns,m

)σ−1
σ

/∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ
. Thus, output

growth with assimilation can be decomposed into three components: (i) source TFP

growth, (ii) the conventioanl factor growth component as in Caselli (2005) and others,

and (iii) the new component highlighted by this paper measuring changes in factor

input-technology mismatch over time. Focusing on the mismatch component, we stress

that the difference in the relative growth of factor m between the two countries, n̂m −
n̂s,m, must be properly weighted by the associated gap between the factor share (πm)

and the technology share (αm). When this gap is larger, changes in the factor input

difference becomes more important for driving output growth.

It is interesting to note that widening factor input-technology mismatch need not

lower output growth. The following corollary to Propositon 4 provides the necessary

and suffi cient condition for the harmful effect of widening mismatch to arise.

Corollary 1 Output growth, ŷ, is increasing in the relative factor growth, n̂m − n̂s,m,
if and only if nm ≤ γyns,m.
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Corollary 1 states that the disadvantageous factors have a positive weight in the

growth component of the mismatch, i.e., πm − αm > 0 for m such that nm ≤ γyns,m.

Given that the factor is a disadvantageous one, then the mismatch component dimin-

ishes with an increase in the factor input difference. So narrowing the mismatch of

such disadvantageous factors, i.e., by having n̂md − n̂s,md > 0, will bring additional

growth in the assimilated output.9

The next proposition further establishes the relationship between assimilation abil-

ity (σ) and relative factor advantage (nm/ns,m), as well as their interaction on growth.

Proposition 5 There exists γg ∈ [nmd/ns,md , nma/ns,ma ] such that the growth coeffi -

cient, πm − αm, is decreasing in σ if and only if nm ≤ γgns,m. Moreover, γg ≤ γy

where the equality holds if either σ = 1 or nm/ns,m = γ0 > 0 for all m.

Interestingly, although a higher assimilation ability always raises the level of output

(Proposition 3), Proposition 5 points out that its effect on output growth is ambiguous

and depends on the relative factor advantage. Specifically, if the factor is a disad-

vantageous one, the positive effect on output growth from its growth relative to the

source country diminishes when assimilation ability is greater (higher σ). The key

insight of Proposition 5 on how assimilation ability affects the relationship between

the degree of mismatch and the relative factor advantage is elaborated intuitively as

follows. Given the complementarity nature of factor inputs in the assimilation process,

the more disadvantageous a factor is, the more essential it would be in production

using assimilated techniques. With lower assimilation ability, factor complementarity

rises and the disadvantageous factors become more important in production, so it is

harder to assimilate the frontier techniques (see Propositions 3 and 4). As a result,

narrowing the mismatch of these disadvantageous factors has a much larger impact on

output growth when assimilation ability is low.

4 Data and Methodology

In the quantitative analysis, we estimate the assimilation model with the data from

the Penn World Table 9.0 (PWT) for 107 countries over the period of 1950 to 2014.10

We exploit several nice features of this new generation of the PWT. First, to compare
9Similarly, thema-th factor captures the most advantageous factor in assimilation. The explanation

goes through in vice versa.
10See Feenstra et al. (2015) for details. We exclude outliners like the former USSR countries, former

Yugoslav countries (long time series are not available anyway) and all OPEC countries (due to large
dependence on energy production where the output price is heavily influenced by nonmarket factors).
In the end, we have a panel of 106 countries and the U.S. While we always use maximal length of
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Figure 4: Global output, capital and human capital. Source: PWT 9.0

production capacity, an output-based measure of real GDP, rgdpo, is used income

measure, yt. Second, consistent measures of physical capital, kt, and (years-of-school

based) human capital, ht, are available to calibrate our assimilation model, where

multi-dimensional factors in addition to per capita physical capital are crucial for the

mismatch problem (thus, view n1 = k and n2 = h, from now on). Here, we divide both

output and physical capital measures by employment to obtain per-worker series.11

Finally, this new generation of the PWT is based on multiple vintages of price data to

construct the income time series. The PWT provides reliable information without the

concerns about inconsistency raised by Johnson et al. (2013) for the earlier version.

Figure 4 illustrates the time-series of global incomes, physical capital and human

capital. Over the last fifty years, while the gaps between the U.S. and the world average,

in terms of output or factor input, are pretty much constant (the gap between the two

series), the inequalities in physical capital and output among countries are widening

(the grey area). Human capital inequality has been steadily improved, due to faster

increases in years of schooling in poor countries compared to the U.S. Nevertheless,

human and physical capitals are increasingly correlated, which also contribute to the

overal inequality of the factor input.

Let the U.S. be the technology frontier. Following Propositions 1 or 2, the US

technique in our model is a1,t = kUS,t/yUS,t and a2,t = hUS,t/yUS,t. We estimate the

data in each country for our analysis, not many have data available prior to 1960, so in the rest of
the paper we only report our post-1960 results. Results based on the earlier vintages of PWT are also
available upon request.
11Note from Barro and Lee (1996) that human capital is based on the Mincerian returns from the

year of schooling, so it is already a per capita measure.
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following specification of the aggregate production function

yj,t = exp (τ j,t) yUS,t

[
α

(
kj,t
kUS,t

)1−1/σ
+ (1− α)

(
hj,t
hUS,t

)1−1/σ]1−1/(1−σ)
, (11)

where the TFP residual follows a standard specification:

τ j,t+1 = τ 0j + ρjτ j,t + νj,t+1. (12)

with i.i.d. zero-mean innovation, νj,t, satisfying E (νi,t, νj,t) = Ω and E (νj,tνj,t′) = 0

for any t 6= t′.12 In general, the assimilation mechanism and the TFP residual are the

two competing forces in explaining the income variation. Here we restrict to a single σ

to fit 107 countries for more than 60 years of time series, but allow that countries have

its own process of TFP residual, where its innovation has country-specific variance and

correlates with other countries’innovation contemporarily. This flexible specfication

on τ j,t gives the TFP residual the best explanation power to the data, implying that

the explanation power of σ would be conservative.

Following Hall and Jones (1999), we set α = 1/3 for the physical capital share

such that our specification allows the standard Cobb-Douglas parameterizartion as a

special case. The estimation of the EOS σ, altogether with {τ 0j , ρj} and Ω, follows

the non-linear feasible generalized least square estimator outlined in Antras (2004) and

León-Ledesma et al. (2010). The non-linear feasible generalized least square estimator

finds that σ = 0.42.

The empirical literature of estimating EOS is huge. Summarizing a large number

of studies (mostly without normalization), Chirinko (2008) finding that “while the

estimates range widely, the weight of the evidence suggests a value of EOS in the range

of 0.40 and 0.60." León-Ledesma et al. (2010) demonstrate that the estimates of EOS

can be biased, depending whether the technical changes are rightly modelled. Table 1

focuses on the literature that allows biased technical changes. Our estimate of σ = 0.42

is in line with this literature, which found σ between 0.2 and 0.9 [with a notable outlier

σ = 1.2 by Karabarbounis and Neiman (2014)]. See Online Appendix B for a discusion

about our estimate and the literature.13

12As commonly assumed in the literature, factor inputs are determined at the beginning of each

period, so E
(
νj,t

[
kj,t
ks,t

hs,t
hj,t

])
= 0. We do, however, allow E (νj,t′kj,t) 6= 0 and E (νj,t′hj,t) 6= 0 for

t′ ≤ t, so factor inputs can be contemporarily correlated with the TFP residual through the shocks in
previous periods. These capture the standard environment in growth models that factor inputs take
time to build and the aggregate shocks are usually persistent.
13Data on the labor shares is also available for some countries in PWT 9.0. We also estimate σ

from the labor shares, after introducing more structure to pin down these shares as in the literature.
Results are available upon request.
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EOS (σ) Sample Biased technical change

Brown and de
Cani (1963)

0.08-0.35 1890-1958, U.S. Constant growth

David and van de
Klundert (1965)

0.32 1899-1960, U.S.
Constant growth, allowing
incomplete capital adjustment

Wilkinson (1968) 0.5 1899-1953, U.S. Constant growth

Sato (1970) 0.5-0.7 1909-1960, U.S. Constant growth

Panik (1976) 0.76 1929-1966, U.S.
Constant growth, allowing
learning-by-doing

Kalt (1978) 0.76 1929-1967, U.S. Constant growth

Antràs (2004) 0.64-0.89 1948-1998, U.S. Constant growth

Klump et al. (2007) 0.56 1953-1998, U.S. Time-varying, Box-Cox model

Karabarbounis and Neiman (2014) 1.20 1975-2012, 129 countries
Capital-augmenting change
proxied by TFP growth

Oberfield and Raval (2014) 0.71 1972-2007, U.S. manufacturing Aggregating plant-level EOS

Lawrence (2015) 0.41-0.69 1947-2010, U.S. manufacturing Constant growth

León-Ledesma and Satchi (2017) 0.2 1948-2013, U.S. Adjustment cost to technical changes

This paper 0.42 1950-2014, 107 countries Time-varying, assimilating the U.S.

Table 1: Empirical studies of the elasticity of substitution. References before 2007 are
combined from Chirinko (2008) and León-Ledesma et al. (2010), see therein for details.

5 Development Accounting

Development accounting asks how much world income disparities can be explained

by factor input differences, controlling for production effi ciency (Caselli, 2005). This

section conducts development accounting under our assimilation framework. A useful

feature of our framework for accounting exercises is that it can allow the set of frontier

techniques and its productivity changing over time (but each country still assimilates

the same frontier technology). The relative outputs of country j to the frontier in the

data and in the three models are given as follows.

• Data:
qdataj,t =

yj,t
yUS,t

.

• Our Assimilation Model:

qj,t =

[
α

(
kj,t
kUS,t

)1−1/σ
+ (1− α)

(
hj,t
hUS,t

)1−1/σ]1−1/(1−σ)
. (13)

• The Cobb-Douglas Model:

qCDj,t =
zUS,t (kj,t)

α (hj,t)
1−α

yUS,t
=

(
kj,t
kUS,t

)α(
hj,t
hUS,t

)1−α
. (14)
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Figure 5: Comparison of success rates.

• The Hick-neutral CES Model:

qCESj,t = (kUS,t)
−α (hUS,t)

α−1
[
α (kj,t)

1−1/ε + (1− α) (hj,t)
1−1/ε

]1−1/(1−ε)
. (15)

To facilitate comparison, we fix the EOS ε = σ for all countries. We also compare with

the model with high assimilation ability σ = 1.20 [as in Karabarbounis and Neiman

(2014)] to contrast the impact of imperfect assimilation under our estimate σ = 0.42.

In the standard development accounting exercise, we measure how much interna-

tional income variation can be accounted by the model with the following success rate:

St ≡
V AR (log qj,t)

V AR
(
log qdataj,t

) . (16)

Similarly, we construct SCDt , SCESt and SHt for the Cobb-Douglas model, the Hick-

neutral CES model and the assimilation model with a high value σ = 1.20 respectively.

In principle, the better the model is capable of explaining the income disparity, the

closer the success rate is to 100%. Nonetheless, Caselli (2005) argues that the variations

can be sensitive to outliers. A measure that is less sensitive to outliers, while at the cost

of forgoing some information in the data, is a measure of the inter-percentile differential.

As such, we also calculate the success rate based on the comparison between the top

10-th percentile, q90th,t, and the bottom 10-th percentile, q10th,t, as

Sp,t ≡
q90th,t/q10th,t
qdata90th,t/q

data
10th,t

. (17)

with similar counterparts, SCDp,t , S
CES
p,t and SHp,t. Figure 5 reports the results of the

development accounting since 1960.

No matter which measure of success rates, our assimilation model consistently yields

better success rates than the alternatives for almost the entire sample period. For

18



instance, our assimilation model on average can explain 92% of the income disparities

in terms of the conventional success rate, compared to a rate of about 33% of the

Cobb-Douglas model, 9% of the CES model and 28% for the high-σ model; for the top-

bottom 10-th percentile measures of the success rates, our assimilation model yields a

rate of 80%, compared to 31%. 14% and 27% for the three alternative models.

Finally, one might also argue that the income variation is biased toward small

countries; for example, China and India together are counted as a tenth of the twenty

African countries in computing the income variation even though China and India are

forty-times larger than in population. One way to address (at least partly) this concern

is to weight the success rate with population:

Sw,t ≡
V ARw (log qj,t)

V ARw

(
log qdataj,t

) . (18)

with weighted success rates SCDw,t , S
CES
w,t and S

H
w,t for the the three alternatives. Again, as

shown in Figure 5, the previous ranking on the success-rate remains valid. The success

rate of our assimilation model is almost the same (92%), and the success rates of the

three alternatives reduce slightly (31% for the Cobb-Douglas, 8% for the CES and 26%

for the high-σ). Notice that the weighted success rate is calculated as if no inequality

within the country, so the correction may remain biased in another direction.

5.1 Why do standard models underperform?

To understand why the standard models underperform in development accounting,

Figure 6 compares the distributions generated by these models. Specifically, we classify

the sample countries based on their (i) initial (relative) incomes in 1960, (ii) “current”

(relative) incomes in 2010, and (iii) average growth rates (relative to the U.S.) during

the sample period. The initial/current incomes indicate a country’s initial/current

development stage; the average growth indicates its catching up speed with the U.S.

Cobb-Douglas and high σ. Comparison with models of Cobb-Douglas and high
σ highlighs the role of imperfect assimilation. Regardless of which income-level classi-

fications we use, the Cobb-Douglas model always generates too much upper tail of the

relative income distribution while missing the lower half of the distribution. Intuiti-

ively, Proposition 3 shows that, under our NCES setup, income level is increasing in

σ. So a model with imperfect assimilation (σ = 0.42 in our estimation) can generate

more lower tail in the level than the Cobb-Douglas model with σ = 1. Increasing

assimilation ability to σ = 1.2 (the last column in Figure 6) only misses more lower

tail than Cobb-Douglas since the better assimilation ability mitigates the output loss

due to mismatch.
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Figure 6: Distributions of log(qj,1960), of log(qj,2010) and of time-series average q̂j ac-
cording to different models.

The last row of Figure 6 reflects the prediction of Proposition 5. For the growth

distribution, the Cobb-Douglas model misses the two tails because the mismatch con-

tribution for the extreme (both positive and negative) growing economies are severely

underpredicted. The assimilation model with σ = 0.42 gives rise to addition contribu-

tion (positive and negative) to growth so that the predicted number of extreme growing

countries increases. Thus, the distribution spreads more evenly. These outcomes are

consistent with the right panel of Figure 2. With a lower σ than the Cobb-Douglas
technology, the fitted line in Figure 2 generated from the assimilation model tilts in

the clockwise direction and reduces the bias of the two ends.

Hick-neutral CES. Comparison with the Hick-neutral CES models highlighs the
role of mismatch. The Hick-neutral CES model shifts the distribution to the left but

inevitably misses the upper half of the income distribution. Since the Hick-neutral

CES model misses the factor biasness of technology, if we lower the EOS ε from Cobb-

Douglas toward the our EOS estimate (σ = 0.42), then factor complementarity over-

corrects the skewness of the Cobb-Douglas model with all the predicted outcomes
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concentrated at the left tail. This can be seen by rewriting (15) as

qCESj,t =

α( kj,t

kαUS,th
1−α
US,t

)1−1/ε
+ (1− α)

(
hj,t

kαUS,th
1−α
US,t

)1−1/ε1−1/(1−ε) . (19)

So the CES model can be understood as an NCES setup with the baseline normaliza-

tion at the geometric average of the frontier factor inputs. It implies that one of the

relative factor inputs in (15) must be smaller compared with those in (13). As a result,

factor complementarity makes the predicted relative output smaller. This explains the

difference in the first and last panels of the first two rows in Figure 6.

For the growth distribution, the Hick-neutral CES production function ignores the

relative factor advantage so that there is no mismatch consideration. With the EOS

ε = 0.42, factor complementarity implies that the less-growing countries dominates the

fast-growing ones.14 This reduces the spread of the relative distribution so that the

predicted growth outcomes are more concentrated around the zero benchmark than

the Cobb-Douglas model.

5.2 Fitness

So far the development accounting distinguishes that how well our framework can

explain the income inequality on the global level. It would also be useful to examine

how well our framework can explain the income dynamics for each country. This

diagnostics is pursued in this section with two fitness measures. Recall that the TFP

residual in our model is given by τ j,t = log qdataj,t − log qj,t; similarly, τCDj,t for the Cobb-

Douglas model and τCESj,t for the Hick-neutral CES model. Define relative TFP as

zj ≡ exp(Eτ j,t), (20)

and similarly zCDj ≡ exp(EτCDj,t ) and zCESj ≡ exp(EτCESj,t ) for the Cobb-Douglas and the

Hick-neutral CES models. A model that competently explains the income dynamics

should feature τ j,t close to zero on average and a value of zj close to one; a lower-

than-unity (higher-than-unity) relative TFP means the model implies a lower (higher)

productivity and hence underpredicts (overpredicts) the output data. Thus, we can

rank the model explanation power by comparing zj, zCDj and zCESj to one.

A model that misses some significant movements in the output dynamics may still

feature zj close to one if these movements happen to cancel each other. In this regard

14This applies to countries with either positive or negative growth rates. See a discussion of this
non-balanced growth result for the case of positive growth rates in Acemoglu and Guerrieri (2008).

21



# zj zCDj zCESj MSE ≤MSECD ≤MSECES

Fraction of U.S. income in 1960

≤ 25% 39 0.62 0.40 8.61 0.60 97% 95%
(25%, 50%] 16 0.74 0.69 18.93 0.20 94% 100%
(50%, 75%] 10 0.83 0.79 22.61 0.11 90% 100%
> 75% 3 0.87 0.85 27.12 0.03 100% 100%
Fraction of U.S. income in 2010

≤ 25% 56 0.63 0.32 5.83 0.67 100% 92%
(25%, 50%] 21 0.75 0.62 14.60 0.27 86% 100%
(50%, 75%] 16 0.81 0.72 20.40 0.17 88% 100%
> 75% 13 0.78 0.75 23.15 0.10 25% 100%
Fraction of U.S. growth rate

≤ 50% 23 0.66 0.32 5.52 0.56 96% 91%
(50%, 100%] 17 0.63 0.50 12.12 0.44 100% 100%
(100%, 200%] 47 0.70 0.56 14.88 0.34 96% 96%
> 200% 19 0.81 0.52 11.95 0.57 89% 95%

Overall 106 0.70 0.49 11.94 0.44 95% 95%

Table 2: Comparison of explanation power.

we also complement our diagnostics with the following MSE measure:

MSEj ≡
1

T

T∑
t=1

(τ j,t)
2 . (21)

Specifically, MSEj captures the time-series average variation of the income gap of

country j that cannot be generated by the assimilation model. We then construct

comparable measures, MSECDj and MSECESj , for the two alternative models.

Table 2 summarizes our findings. For all the countries in the sample, the CES model

yields the worst performance, in terms of both the relative TFP and theMSE metrics,

just like when we judge the development accounting performances using success rates.

As such, we shall focus on the comparison between the assimilation model and the

Cobb-Douglas model.

The relative TFP of our assimilation model is 0.7 on average, about 40% higher

than that of the Cobb-Douglas counterpart. In terms of MSEs, the overall average

of our assimilation model is 0.44, lower than the Cobb-Douglas counterpart in 95%

of the sample countries. We also group countries according to the income quartiles

in 1960 and 2010, as well as according to their average income growth rates.15 In
15The average income growth rate of the U.S. for the sample period is 1.79%.
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terms of the relative TFPs, our assimilation model is always better than the Cobb-

Douglas model in the low tail of the income distributions, and also for fast-growing

countries. These results are robust in terms of the MSEs. Specifically, the MSEs of

our model for the above three low-income or low-growth groups are smaller than the

Cobb-Douglas model in 97%, 100% and 96% of the sample countries, respectively. For

the fast-growing countries, the MSEs of the assimilation model is still lower than the

Cobb-Douglas model in 89% of the sample countries.

Summarizing, our assimilation framework yields better fit in general, generating

zj closer to unity and lower MSEs. The highest explanatory power is obtained in

the following three groups: (i) countries with suffi ciently low income (no more than a

quarter of the U.S. income); (ii) countries with very low growth (no more than half of

the U.S. growth rate); (iii) countries with very high growth rates (more than doubling

the U.S. rates). These conclusions are consistent with our findings given in Figure 6,

showing that our assimilation model is better in capturing the tails observed in the

data than the alternatives. In other words, technology assimilation can be regarded

as crucial for understanding why some developing countries advanced successfully and

some lagged behind or even fell into the development trap. As a result, the consideration

of technology assimilation enables a sizable reduction in the unexplained income gap:

lowering it from 51% under the standard Cobb-Douglas model to 30%.

6 Growth Accounting

To gain further insight into the role of technology assimilation played in driving a

country’s growth path, we check how much it is able to explain changes in income gap

over time. By assimilating the U.S. technique, relative income growth of country j can

be, utilizing (10), decomposed as

q̂dataj,t = q̂j,t + ∆τ j,t = α
(
k̂j,t − k̂US,t

)
+ (1− α)

(
ĥj,t − ĥUS,t

)
+ M̂j,t + ∆τ j,t, (22)

where

Mj,t ≡
[
α

(
kj,t
kUS,t

hUS,t
hj,t

)1−1/σ
+ 1− α

]1−1/(1−σ)(
kj,t
kUS,t

hUS,t
hj,t

)−α
. (23)

The first two terms on the right side of (22) measure the conventional factor growth

contribution, via the accumulation of physical capital and human capital, as in the

Cobb-Douglas model. The difference of the factor growth contribution from the data

is typically regarded as the Solow residual, ∆τCDj,t = M̂j,t + ∆τ j,t, which is usually

found very large (see the literature cited as well as our replication below). In our
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Relative growth(pp) Contribution to growth(%)
# Income Capital Human

capital
Capital Human

capital
Mismatch Wedge

Fraction of U.S. income in 1960

≤ 25% 39 0.66 0.36 0.39 28.84 6.38 49.93 14.85
(25%, 50%] 16 0.97 1.13 0.23 25.46 5.52 10.21 58.81
(50%, 75%] 10 0.21 0.77 0.01 36.19 3.07 4.56 56.18
> 75% 3 0.01 0.36 -0.11 -28.86 20.89 -1.95 109.93
Fraction of U.S. income in 2010

≤ 25% 56 -0.15 -0.31 0.47 32.55 -14.29 60.63 21.11
(25%, 50%] 21 1.16 1.65 0.49 35.49 26.00 23.79 14.73
(50%, 75%] 16 1.33 1.73 0.24 37.74 17.18 19.70 25.38
> 75% 13 1.32 1.40 0.14 31.48 8.77 6.31 53.44
Fraction of U.S. growth rate

≤ 50% 23 -1.74 -1.45 0.51 21.58 -24.76 51.24 51.94
(50%, 100%] 17 -0.28 -0.20 0.17 39.81 -54.78 55.36 59.61
(100%, 200%] 47 0.96 1.13 0.34 38.89 28.91 36.13 -3.93
> 200% 19 2.84 2.46 0.61 30.53 14.57 24.96 29.94

Overall 106 0.51 0.60 0.40 33.78 1.27 40.49 24.45

Table 3: Growth accounting in different groups of countries.

assimilation framework, we can further isolate the contribution of an endogenous TFP

component due to changes in the factor input-technology mismatch, M̂j,t. We will

show the importance of this new and interesting component and check its validity by

referring back to the development accounting results obtained before.

Table 3 reports the growth accounting results in different groups of income levels

and growth rates as classified before. Each time-series growth rate is obtained for

each country; average within each subgroup and for the entire sample (overall) are

subsequently computed. The third to fifth columns report the subgroup and overall

average of the growth rates of income and factor inputs relative to the U.S. The last four

columns report the contribution to the relative income growth rates due respectively

to: (i) physical capital accumulation, (ii) human capital accumulation, (iii) changes in

factor input-technology mismatch, and (iv) changes in the (unexplained) TFP residual.

These contributions correspond to the four terms in (22).

The growth accounting based to the Cobb-Douglas model rely entirely on the con-

tribution from factor accumulation, leading to a large TFP residual component and

failing to capture the development proces facing poor and low-growth countries that

locate in the left tail of the distribution. For example, for countries in the lowest
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growth subgroup, the Cobb-Douglas model predicts that there would have been pos-

itive income growth relative to the U.S., contradicting the data (-1.74). As a result,

the Cobb-Douglas model contributes a negligible -3.18% (obtained from summing up

the contributions from the accumulation of the two capitals), failing explain the lack

of growth and hence leaving all the explanatory power to the Solow residual.

Turning now to the assimilation model, we are able to account for more than 60%

of the Solow residual in the Cobb-Douglas alternative. Overall, changes in the factor

input-technology mismatch contribute to 40% of relative income growth, even more

important than the contribution of physical capital accumulation (about one-third)

and TFP residual changes (about a quarter). Most dramatically, for the 47 moderately

fast growing countries (with growth rates exceeding the U.S. but no more than double),

TFP residual changes become inessential whereas the accumulation of each capital and

the mismatch all have comparable contributions.

For initially low-income countries (no more than a quarter of the U.S. income in

1960), the consideration of technology assimilation lowers the contribution of the TFP

residual (from the Cobb-Douglas counterpart of 64.78%) to 14.85%. Such large reduc-

tions in the unexplained component also arise in currently low-income countries (no

more than a quarter of the U.S. income in 2010) and in the fastest growing economies

(growing at a speed more than doubling the U.S.). In all these countries, the factor

input-technology mismatch plays a key role, accounting for half (or more) of their

economic growth. By focusing on initial development stage and development speed,

human capital accumulation is important only in those subgroups with countries hav-

ing initially high relative income (more than three quarters of the U.S.) or growing at

least as fast as the U.S.

6.1 Traps and Miracles

Because our assimilation model is more powerful than the Cobb-Douglas in explain-

ing the income stagnation observed in many development trapped countries and the

miraculous development process of fast growing countries. To gain more insight, we

conduct in-depth study of some representative countries from these two subgroups.

With regard to trapped countries, we select 18 with relatively longer time series and

divergent movements. We depict the data and the predicted income dynamics by the

Cobb-Douglas model and by our assimilation model in Figure 7. The average MSE

of our assimilation model is 0.61 over this subsample, far lower than the counterpart

in the Cobb-Douglas model (2.04).16 Among them, our model only fails to track the
16The variation is huge with the maximum at 1.60 (Niger) and the minimum at 0.01 (Burundi)
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Figure 7: Income time-series for the development-trapped countries.

income dynamics of Gambia prior to 1990, but the Cobb-Douglas model misses many

episodes of such movements in most of these countries.

For most of the time these trapped countries typically have less than 5% of the

U.S. income and their income gaps are widening. While human capital is improving

for most of the trapped countries (on average 0.41 percentage points faster than the

U.S.), physical capital is common to see negative growth. The latter (former) is the

(dis)advantageous factor, as reported in the third and fourth columns of Table 4. The

fact that physical (human) capital is decumulating (accumulating) over time widens

the factor input-technology mismatch.17 Thus, from Proposition 5, this mismatch

channel is translated to lower growth. Our quantitative results indicate that this new

channel is significant in explaining the data observation: it explains on average 94%

in the assimilation model. For the Cobb-Douglas model, the variation is similarly large with the
maximum at 3.71 (Central African) and the minimum at 0.40 (Mauritania).
17The only exception is Senegal, but it also has factor advantage reversal.
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Relative growth(pp) Growth contribution(%) Fitness

Income Capital
Human
capital Mismatch Capital

Human
capital zj zCDj MSEj MSECDj

Burundi -1.58 -1.37 0.30 69.13 28.95 -12.49 1.00 0.19 0.01 2.77
Benin -1.55 -2.35 1.04 116.55 50.59 -44.85 0.43 0.24 0.74 2.18
Central African -3.33 -3.23 0.58 67.30 33.26 -11.62 0.32 0.15 1.31 3.71
Côte d’Ivoire -0.23 -2.15 0.22 438.35 311.38 -64.39 0.41 0.32 0.84 1.32
Congo D.R. -2.30 -1.30 0.14 40.67 18.82 -4.08 1.76 0.44 0.83 1.41
Ghana -1.35 -2.50 0.74 91.53 61.60 -36.39 0.44 0.28 0.68 1.69
Gambia -1.34 0.33 0.70 15.97 -8.11 -34.62 0.86 0.41 0.09 0.84
Kenya -0.54 -1.78 0.48 212.50 108.59 -58.73 0.55 0.31 0.38 1.39
Cambodia -0.80 -0.68 0.54 93.17 28.31 -44.80 0.64 0.21 0.25 2.54
Madagascar -1.52 -2.42 0.01 98.41 53.17 -0.30 0.57 0.20 0.36 2.69
Mauritania -1.08 -0.08 0.51 17.80 2.56 -31.42 0.71 0.54 0.13 0.40
Malawi -1.14 -0.47 0.02 26.84 13.67 -1.02 0.48 0.19 0.69 2.75
Niger -2.51 -3.58 -0.27 55.46 47.57 7.22 0.28 0.20 1.60 2.72
Senegal -2.01 -3.36 0.11 48.09 55.71 -3.50 0.47 0.36 0.58 1.08
Sierra Leone -1.32 -1.75 0.63 107.48 44.30 -31.68 0.64 0.26 0.22 1.83
Togo -2.78 -3.04 0.70 78.23 36.38 -16.85 0.50 0.20 0.50 2.66
Tanzania -0.43 -0.45 -0.15 36.42 34.23 22.52 0.33 0.20 1.25 2.62
Zimbabwe -3.07 -3.40 1.16 83.57 36.92 -25.28 0.63 0.28 0.45 2.05

Average -1.60 -1.87 0.41 94.25 53.22 -21.79 0.61 0.28 0.61 2.04

Table 4: Growth accounting for the development-trapped countries up to 2014.

of the widening income gap from the U.S., whereas the Cobb-Douglas model only

accounts for 31%. Also, upon consideration technology assimilation, the unexplained

income gap is reduced (on average) to 39% (from 72% in the Cobb-Douglas alternative).

The detailed accounting results are reported in Table 4. Interestingly, in all but one

country (Senegal), the mismatch component contributes more (mostly much more)

than physical capital in their subpar development experiences.

We turn now to an in-depth study on how miracles happened. As shown in Figure

8, our assimilation model tracks the data quite well. Notably, although incomes in

these countries were on average less than 15% of the U.S. income in the 1960s, they

have maintained a prolong period of strong growth. By 2014 the relative income has

been more than triple in Hong Kong, four times in Taiwan, five times in Singapore

and six times in Korea. Overall, factor accumulation can explain 64% of the growth

performance for these ten miracle countries. The disadvantageous factor —physical

capital —has been growing much faster than the advantageous one —human capital:

the average growth rate of the former is 2.5% faster than the U.S. whereas the latter

is only 0.8%. The factor input-technology mismatch has therefore been improving

over time and technology assimilation can account for another 30% of their prolonged

growth. As a result, the TFP residual only accounts for 6%.

Our assimilation story is highly plausible in countries that are importing foreign

technology based on their export-led growth policy, for instance, Korea and Taiwan.
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Figure 8: Income time-series for the miracle countries

Assimilation is important for Korea and Taiwan to catch up with the frontier, which

contributes to 47% and 27%, respectively, to growth via narrowing the factor input-

technology mismatch. It translates to extra 1.49% and 0.81% annual growth rates in

Korea and Taiwan respectively. Similar conclusion can be apply to the ASEAN coun-

tries such as Malaysia and Thailand too, with the factor input-technology mismatch

accounts for 18% and 31%. respectively.

Narrowing the mismatch is less important in some miracle countries. In Hong Kong

there is a reversal in relative factor disadvantage such that phyiscal capital eventually

becomes the advantageous factor: a phenomenon detailed in the next subsection.18 In

Botswana and India, although the factor input-technology mismatch channel does not

contribute much to their growth, the assimilation model still performs much better

than the Cobb-Douglas model (with the MSEs being reduced by at least 30%), and

the assimilation model captures most of the important income dynamics, as illustrated

in Figure 8. In Singapore, our assimilation model is largely indistinguishable from the

Cobb-Douglas counterpart. The assimilation model becomes more distinguishable once

we allow for alternative sources and early stop of assimilation when the local economy

becomes highly advanced, shown in Section 8.

Finally, for China and Vietnam, factor accumulation alone has already accounted

for 100% and 81% of their growth performance respectively, so our assimilation is

18As to be shown later, such a reversal also occurred in Taiwan but in a more moderate manner
toward the end of the sample period, thereby not dampening much of the assimilation channel.
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Relative growth(pp) Growth contribution(%) Fitness

Income Capital
Human
capital Mismatch Capital

Human
capital zj zCDj MSEj MSECDj

Hong Kong 1.83 2.13 0.50 2.59 38.67 18.15 0.79 0.78 0.09 0.10
Korea 3.18 4.17 0.53 46.73 43.79 11.22 0.79 0.52 0.07 0.51
Singapore 2.95 2.01 1.05 -0.80 22.82 23.94 0.81 0.79 0.12 0.13
Taiwan 3.05 3.51 0.68 26.58 37.39 14.87 0.99 0.79 0.01 0.14
Botswana 2.48 2.27 1.82 4.04 30.56 48.99 0.59 0.53 0.29 0.42
China 1.79 4.08 0.71 101.41 76.10 26.63 0.83 0.31 0.18 1.43
India 0.97 0.37 0.36 0.19 12.62 24.97 0.44 0.26 0.68 1.84
Malaysia 1.64 1.71 0.80 17.78 34.67 32.63 0.79 0.64 0.09 0.22
Thailand 1.83 1.94 0.66 30.81 35.39 23.94 0.46 0.31 0.63 1.42
Vietnam 1.83 2.76 0.83 65.24 50.38 30.36 0.78 0.23 0.11 2.16

Average 2.15 2.50 0.80 29.46 38.33 25.55 0.73 0.52 0.23 0.84

Table 5: Growth accounting for the miracle countries up to 2014.

doomed to overpredict their growth, as illustrated in Figure 8. Nevertheless, for these

economies, there are significant reduction in the unexplained income gap compared

with the Cobb-Douglas model, from 69% to 17% for China, and from 77% to 22% for

Vietnam. Similar to the case of Singapore, the selection of the assimilated frontier

country matters as well, though rather than early stop they both face late start due to

delayed implementation of market-oriented development policy.

In summary, the lack of assimilation is proven to prevent trapped countries from

advancing; assimilation accompanied by accumulating the disadvantageous factor can

help a country to produce miraculous development outcomes. Our findings echo the

conclusion that the assimilation model is better than the Cobb-Douglas model in cap-

turing the two tails of the growth distribution in the data, especially the left tail.

6.2 Factor Advantage Reversal and Middle-Income Trap

Proposition 5 states that rapid accumulation in the disadvantageous factors relative

to the advantageous factors can drive a faster growth, nevertheless, it is possible that

these disadvantageous factors may eventually become advantageous. In this circum-

stance, the factor input-technology mismatch will be reversed. Such reversal may arise

naturally as an equilibrium outcome, or as a result of active development policy.

We have already mentioned such cases in the previous discussion, including the

miracle ones such as Hong Kong and Taiwan. In the case of Hong Kong, factor advan-

tage reversal may reflect the structural transformation of these countries from capital

intensive manufacturing to service. The reversal may also happen in many middle-

income countries such as Greece and Portugal, some high-income countries such as

France and some low-income countries such as Senegal. For initially middle-income
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Figure 9: Income time-series for the countries with disadvantage reversal.

countries including development miracles, after the reversal has taken place, the factor

input-technology mismatch will be working in the reverse direction. So the country’s

income will be bottlenecked at the middle level unless the once-advantageous factors

keep up to the growing pace of the once-disadvantageous factors. Figure 9 highlights

some of the countries that experience the relative factor advantage reversal.

In most of the countries experiencing reversal, the mismatch channel of the assim-

ilation model does not contribute much in growth accounting. This is not diffi cult to

understand because the contribution to growth accounting of the relative factor ad-

vantage is reversed after the reversal has taken place. For the eight countries depicted

in Figure 9, the mismatch contributes to growth for only 9.4%. The detailed growth

accounting results are reported in Table 6. After the reversal has taken place, almost all

of the countries have their mismatch contribution turned negative. The only exception

is Taiwan whose mismatch contribution falls but still remains positive (from 26.61% to

0.09%). This is likely due to the fact that the reversal has taken place three times in

a relatively moderate manner only toward the last decade of the sample period, thus

having less impact on the contribution of mismatch.

To better understand the mismatch contribution for the reversal countries, we com-

pute the counterfactual increase in growth had the reversal been absent. Specifically,

the growth differential is computed as the difference in the incremental growth caused

by the mismatch component before and after the reversal. Such growth differentials,
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Relative growth(pp) Growth contribution(%)

Income Capital
Human
capital Mismatch Capital

Human
capital

∆growth
(pp)

Denmark- overall 0.54 1.26 -0.24 26.28 77.26 -29.71 0.39
before reversal 0.50 2.06 -0.85 74.65 137.01 -113.16
after reversal 0.56 0.60 0.18 -2.74 35.91 21.65

Spain- overall 2.01 2.47 0.10 7.96 41.08 3.45 0.76
before reversal 3.63 3.50 -0.38 17.76 32.13 -6.90
after reversal 0.95 1.80 0.39 -12.25 63.19 27.47

Finland- overall 1.26 1.71 0.17 10.65 45.08 9.08 0.40
before reversal 2.00 2.67 -0.098 18.75 44.56 -3.26
after reversal 0.85 0.95 0.35 -2.52 37.04 27.09

France- overall 1.11 1.54 -0.0072 5.53 46.46 -0.43 0.35
before reversal 2.36 2.35 -0.56 12.86 33.11 -15.74
after reversal 0.49 1.13 0.25 -10.25 76.28 33.34

Greece- overall 1.53 1.43 0.51 -0.81 31.26 22.22 0.09
before reversal 3.56 1.70 0.72 1.26 15.88 13.53
after reversal 0.44 1.13 0.42 -9.19 86.56 64.86

Hong Kong- overall 1.83 2.13 0.50 2.59 38.67 18.15 0.26
before reversal 2.72 2.46 0.32 7.11 30.14 7.79
after reversal 1.16 1.79 0.69 -5.46 51.52 34.64

Portugal- overall 1.62 1.67 0.47 -3.63 34.42 19.58 0.14
before reversal 2.05 1.05 -0.23 2.17 17.03 -7.59
after reversal 1.53 1.82 0.71 -6.03 39.63 31.17

Taiwan- overall 3.05 3.51 0.68 26.58 37.39 14.87 1.09
before reversal 4.09 4.35 0.63 26.61 35.50 10.20
after reversal 0.11 0.85 0.85 0.09 257.26 512.40

Table 6: Growth accounting for the countries with disadvantage reversal

reported in the last column of Table 6 (∆growth), can be large if the differences in the

mismatch contribution and in income growth caused by the reversal are sizable. For

example, in the case of Denmark, the difference in the mismatch contribution is large

but the difference in income growth is negligible, whereas both differences in Spain are

large. This explains why the growth differential is larger in Spain than in Denmark

(0.76 pp vs. 0.39 pp). Similar to Spain, differences in both the growth rates and in

the mismatch contribution are large in Taiwan, leading to a large growth drop (by 1.09

pp). However, mismatch does not play much role after the reversal. Its sharp decline

in growth is mainly associated with the widening of the TFP residual, despite decent

factor accumulation.19

To close the section, we would like to point out that the mechanism of factor

19This can be explained by the fact that the relative factor advantage reversal of Taiwan is not
significant in 2010. The relative k and relative h in 2010 are 0.84 and 0.83 respectively so that the
relative ratio of k/h is 1.01 which is the lowest in the group.
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Country Chow’s test Eichengreen et. al. (2014) This paper

Denmark 1969 1968-70, 1973 1977
Spain 1975 1966, 1969, 1972-7 1974
Finland 1974 1974-5, 2002-3 1976
France 1974 1973-4 1971
Greece 1972 1969-78, 2003 1972
Hong Kong 1993 1981-2, 1990-4 1984
Portugal 1974,1990 1973-4, 1977, 1990-2 1966
Taiwan 1995 1992-7 1999, 2011, 2012

Table 7: Timing for the midde-income traps and for the factor advantage reversal.

advantage reversal can serve as a plausible explanation for the middle-income traps

that features a significant slowdown of once fast-growing economies in the midst of its

development. Specifically, Eichengreen et al. (2014) identify empirically the timing of

middle-income trap with the following three criteria: (i) before the trap year the seven-

year moving averages of the income growth rate are at least 3.5%; (ii) since the trap year

the seven-year averages of the income growth rate decrease by at least 2 percentage

points; and, (iii) at the trap year the per capita real GDP is at least USD10,000

at 2005 international PPP. Table 7 compares the middle-income traps identified by

Eichengreen et al. (2014) to that based on that identified by factor advantage reversals.

For robustness we also report the middle-income traps identified as the structural break

by the Chow’s test. For easy comparison we have boldfaced the matches with no more

than two years apart from the finding of Eichengreen et al. (2014). For most countries

in Table 7, it is found that the timing of the factor advantage reversal matches quite

well the empirical timing of the middle-income trap. Thus, the mechanism of factor

advantage reversal can be regarded as an empirically plausible cause of the slowdown

of the middle-income traps experienced by these once fast-growing economies.

7 Country-Specific Assimilation and Counterfactual

So far we have assumed that all countries have the common ability to assimilate the

frontier technology. In this section we allow for country-specific σj, which will allocate

more explanation power to the assimilation mechanism by estimating σj that mini-

mizes the MSEj for each country j. In general, allowing country-specific assimilation

significantly improves the fitness in all income groups (especially the lowest), by reduc-

ing the overall MSE from 0.44 to 0.15. The unexplained income gap falls from 30%

to 14% (see Table 8 below for details).
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Figure 10: Development accounting with country-specific assimilation.

The upper panel of Figure 10 compares the success rates after applying the country-

specific estimates. Allowing country-specific assimilation improves all three success

rates starting from the 1990s. But before 1990, the comparison yields mixed outcomes:

the weighted success rate is lower under country-specific than country-common assim-

ilation, whereas the outcomes are reversed for the two other measures of success rates,

which are always higher under country-specific assimilation. Notice that σj is esti-

mated to maximize the average fitness of the entire sample period for each country, so

the success rates can be lower under country-specific assimilation in some subsample

period. On average, the three success rates yield close to 100% under country-specific

assimilation, compared with 87% under country-common assimilation.

The lower panel of Figure 10 compares the predicted distribution, which are ex-

amined in different subgroups of countries in Table 8. In most countries, the country-

specifc assimilation ability is much lower than the common value of σ = 0.42. Notice

that the mismatch term under country-specific σj becomes

Mj,t (σj) ≡
[
α

(
kj,t
kUS,t

hUS,t
hj,t

)1−1/σj
+ 1− α

]1−1/(1−σj)(
kj,t
kUS,t

hUS,t
hj,t

)−α
. (24)

By allowing country-specific σj, the contribution to growth from the change in mis-
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Country-common Country-specific

#
Relative income
growth (pp) σj

Mismatch con-
tribution(%) zj MSE

Mismatch con-
tribution(%) zj MSE

Fraction of U.S. income in 1960

≤ 25% 39 0.66 0.11 49.93 0.62 0.60 61.02 0.82 0.22
(25%, 50%] 16 0.97 0.09 10.21 0.74 0.20 22.09 0.86 0.11
( 50%, 75%] 10 0.21 0.11 4.56 0.83 0.11 49.11 0.89 0.06
> 75% 3 0.01 0.00 -1.95 0.87 0.03 -78.61 0.93 0.02
Fraction of U.S. income in 2010

≤ 25% 56 -0.15 0.13 60.63 0.63 0.67 89.08 0.85 0.22
(25%, 50%] 21 1.16 0.18 23.79 0.75 0.27 34.44 0.88 0.11
(50%, 75%] 16 1.33 0.12 19.70 0.81 0.17 30.61 0.88 0.06
> 75% 13 1.32 0.03 6.31 0.78 0.10 19.01 0.87 0.06
Fraction of U.S. growth rate

≤ 50% 23 -1.74 0.18 51.24 0.66 0.56 69.89 0.81 0.14
(50%, 100%] 17 -0.28 0.07 55.36 0.63 0.44 133.59 0.86 0.15
(100%, 200%] 47 0.96 0.09 36.13 0.70 0.34 44.08 0.85 0.15
> 200% 19 2.84 0.18 24.96 0.81 0.57 26.21 0.85 0.19

Overall 106 0.51 0.12 40.49 0.70 0.44 60.83 0.86 0.15

Table 8: Country-specific assimilation in different groups.

match increases from 40% to 61% on average (except the subgroup with three initially

rich countries). As a result, Proposition 3 implies that the overshooting in the upper

tail of the distribution under the country-common assimilation can now be corrected

under the country-specific assimilation. Also, Proposition 5 signifies the factor input-

technology mismatch so that the two tails of the country distribution in income growth

are thickened. This increases the spread of the distribution as shown in Figure 10.

7.1 Revisiting Traps and Miracles

Table 9 summarizes the accounting results of the trapped countries based on the

country-specific σj. The average σj for the trapped countries is 0.13, much lower than

the country-common level of 0.42.20 As a result, the lower ability of assimilation of this

trapped group magnifies its significance in mitigating the factor input-technology mis-

match, leading to a large contribution to growth from widening mismatch (more than

120%). This is consistent with Proposition 5. However, such a correction turns out

to be overdone in some countries like Benin, Côte d’Ivoire, Ghana and Senegal, where

the accounting outcome appears to overstate the contribution of mismatch. In these

countries the estimated country-specific σj is at the zero lower bound - the complete

inflexibility in adjusting the factor input ratio to the frontier technology may inflate the

20The only exception is Congo whose σ is 0.58 which is higher than the world average. As a result,
growth contribution owing to the mismatch diminishes in the country-specific assimilation model.
However, its fitness is the worst in the group with the highest MSE of 0.56.
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Mismatch contribution(%) MSE zj

σj
Country-
common

Country-
specific

∆growth
(pp)

Country-
common

Country-
specific

Country-
common

Country-
specific

Burundi 0.42 69.13 69.15 0.00 0.01 0.01 1.00 1.00
Benin 0.00 116.55 146.03 0.46 0.74 0.08 0.43 0.86
C. African 0.00 67.30 78.15 0.36 1.31 0.19 0.32 0.65
Côte d’Ivoire 0.00 438.35 687.14 0.57 0.84 0.23 0.41 0.66
Congo D.R. 0.58 40.67 32.78 -0.18 0.83 0.56 1.76 1.06
Ghana 0.00 91.53 159.60 0.92 0.68 0.10 0.44 0.79
Gambia 0.35 15.97 17.41 0.02 0.09 0.08 0.86 1.00
Kenya 0.06 212.50 275.92 0.35 0.38 0.06 0.55 1.00
Cambodia 0.22 93.17 101.37 0.07 0.25 0.06 0.64 1.00
Madagascar 0.14 98.41 106.65 0.13 0.36 0.04 0.57 1.00
Mauritania 0.17 17.80 35.51 0.19 0.13 0.01 0.71 1.00
Malawi 0.00 26.84 28.36 0.02 0.69 0.16 0.48 0.99
Niger 0.00 55.46 87.92 0.81 1.60 0.50 0.28 0.50
Senegal 0.00 48.09 108.37 1.21 0.58 0.14 0.47 0.76
Sierra Leone 0.21 107.48 120.21 0.17 0.22 0.03 0.64 1.00
Togo 0.03 78.23 89.61 0.32 0.50 0.02 0.50 1.00
Tanzania 0.00 36.42 45.94 0.04 1.25 0.24 0.33 0.65
Zimbabwe 0.18 83.57 99.02 0.47 0.45 0.21 0.63 1.00

Average 0.13 94.25 127.17 0.33 0.61 0.15 0.61 0.88

Table 9: Growth accounting for the development-trapped countries, with country-
specific assimilation.

role of mismatch in growth accounting.21 Nevertheless, country-specific assimilation

significantly improves the fitness, largely reducing the MSE (from 0.61 to 0.15) and

the unexplained income gap (from 39% to 12%).

We also perform the following counterfactual exercise: how much would growth

have changed if we remove all the country-specific heterogeneity in assimilation abil-

ity? The results are reported in the fifth column of Table 9. Cross-country variations

in assimilation ability lead to, on average, 0.33 percentage points difference in growth.

This indicates that inability to assimilate can further explain growth stagnation by

one-third a percentage point, which is a nonnegligible figure to the trapped countries

and greatly raises the contribution of mismatch. Of course the counterfactual exercise

is preliminary in the sense that it abstracts from the endogenous effect on factor ac-

cumulation after the change in assimilation ability. Nevertheless, these results suggest

that the widening of mismatch is the key to understand the development trap.

Table 10 summarize the results obtained from the miracle countries. Without

repeating, allowing for country-specific assimilation ability generates better fit (lowers

MSEs from 0.23 to 0.06), reduces unexplained income gap (from 27% to 8%), raises

21It should be noted, however, that having a lower bound estimate of the assimilation parameter
does not always lead to over-correction (for example, in Central Africa, Malawi and Tanzania).
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Mismatch contribution(%) MSE zj

σj
Country-
common

Country-
specific

∆growth
(pp)

Country-
common

Country-
specific

Country-
common

Country-
specific

Hong Kong 0.00 2.59 22.80 -0.37 0.09 0.04 0.79 0.88
Korea 0.32 46.73 57.67 -0.35 0.07 0.05 0.79 0.88
Singapore 0.00 -0.80 -0.02 -0.02 0.12 0.07 0.81 0.91
Taiwan 0.39 26.58 28.95 -0.07 0.01 0.01 0.99 1.01
Botswana 0.00 4.04 12.14 -0.20 0.29 0.03 0.59 0.90
China 0.36 101.41 111.33 -0.18 0.18 0.16 0.83 0.95
India 0.00 0.19 0.27 -0.00 0.68 0.04 0.44 0.87
Malaysia 0.24 17.78 31.28 -0.22 0.09 0.06 0.79 0.95
Thailand 0.00 30.81 46.84 -0.29 0.63 0.06 0.46 0.83
Vietnam 0.32 65.24 69.55 -0.08 0.11 0.05 0.78 1.00

Average 0.16 29.46 38.08 -0.18 0.23 0.06 0.73 0.92

Table 10: Growth accounting for the miracle countries, with country-specific assimila-
tion.

the contribution of the mismatch component in growth accounting (from 29% to 38%),

and explains an additional 0.18 percentage points of income growth in these countries.

Of particular interest, mismatch countribution rises significantly in the case of Hong

Kong (from a negligible impact to more than one-fifth); nonetheless, it does not help

much for the cases of Singapore, Taiwan, India and Vietnam. While the case of Taiwan

is easier to understand as the country-specific σj of 0.39 is close to the common value

of 0.42, the other three cases worth further investigation in the Appendix.

7.2 Taking Stock

In the baseline exercisees before Section 7, we first restrict to the country-common,

time-invariant assimilation but allow for flexible, country-specific processes of TFP

residual. While these exercises are designed to be conservative, the results have il-

lustrated the significant role of mismatch on the growth performance. By introducing

country-specific assimilation in Section 7, we further explore the effects of countries’as-

similation abilities. Imperfect assimilation of mismatch explains for 61% of the growth

gap in the data. In sum, technology assimilation influences growth in two aspects. On

the one hand, imperfect assimilation ability (low σ) yields a lower income level via

its direct negative effect from limiting production flexibility. On the other hand, it

interacts with the country’s mismatch to yield an indirect effect on income growth via

amplifying the growth effect from the disadvantageous factors. The outcomes of the

success rates shown in Figure 10 illustrate these two opposing forces are at work.

Back to our theme question, which are the main forces widening the growth gap?

In our assimilation model, it can be due to differences in relative factor advantage or
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Mismatch contribution from country-specific assimilation

#
Relative income
growth (pp) σj

Overall
(%)

Country-specific
assimilation
ability(%)

Country-specific
relative factor
advantage(%)

Country-common
assimilation
ability(%)

Fraction of U.S. income in 1960

≤ 25% 39 0.66 0.11 61.02 11.08 49.43 0.50
(25%, 50%] 16 0.97 0.09 22.09 11.87 11.54 -1.33
(50%, 75%] 10 0.21 0.11 49.11 44.55 2.29 2.26
> 75% 3 0.01 0.00 -78.61 -76.65 18.84 -20.79
Fraction of U.S. income in 2010

≤ 25% 56 -0.15 0.13 89.08 28.45 63.29 -2.66
(25%, 50%] 21 1.16 0.18 34.44 10.65 21.64 2.14
(50%, 75%] 16 1.33 0.12 30.61 10.92 18.53 1.17
> 75% 13 1.32 0.03 19.01 12.70 6.13 0.18
Fraction of U.S. growth rate

≤ 50% 23 -1.74 0.18 69.89 18.65 54.29 -3.04
(50%, 100%] 17 -0.28 0.07 133.59 78.24 78.22 -22.86
(100%, 200%] 47 0.96 0.09 44.08 7.95 28.78 7.35
> 200% 19 2.84 0.18 26.21 1.25 23.38 1.58

Overall 106 0.51 0.12 60.83 20.34 41.27 -0.78

Table 11: Mismatch decomposition

in assimilation ability. To gain further insight, Table 11 reports the decomposition of

the log difference of factor input-technology mismatch, M̂j,t (σj) of equation (24), into

three components:

M̂j,t (σj)︸ ︷︷ ︸
country-specific
mismatch

= M̂j,t (σj)− M̂j,t︸ ︷︷ ︸
country-specific
assimilation ability

+ M̂j,t − M̂t︸ ︷︷ ︸
country-specific

relative factor advantage

+ M̂t︸︷︷︸
country-common
assimilation ability

(25)

where both M̂jt and M̂t are both measured under the same σ = 0.42: while the former

is the log difference of the mismatch terms associated with country-specific kj,t and

hj,t the latter is associated with the cross-country averages of kj,t and hj,t. Thus, the

last term on the right side of (25) captures the global effect of assimilation ability;

the middle term measures the effect of a country’s relative factor advantage over the

world trend but controlling the heterogeneity in assimilation ability; the first term

measures the effect of a country’s assimilation ability controlling the heterogeneity in

relative factor advantage. Notice that the sum of the middle and last terms gives us

the mismatch contribution to growth in Section 6 captured by M̂jt.

Overall, cross-country heterogeneity in assimilation ability accounts for one-third of

the mismatch countribution (41% out of 61%), whereas cross-country heterogeneity in

relative factor advantage trend accounts for the remaining two-third of the mismatch

countribution (20% out 61%). For initially and currently poor countries and coun-

tries growing slower than the U.S., the contribution of country-specific relative factor
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advantage is even greater, becoming the most important driver for relative income

growth. In the absence of cross-country heterogeneities in relative factor advantage

and assimilation ability, mismatch becomes inconsequential, implying that there is not

much global trend in the factor input-technology mismatch.

8 Extensions

So far we have assumed that countries assimilate the frontier technology from the

U.S. throughout the entire sample period. In reality, countries at different stages of

development may look for alternative assimilable targets, and they may either start

assimilating late or stop it early to suit their specific economic backgrounds. We then

compare these alternative “tailor-made”assimilation schemes to selected countries with

those of our country-specific assimilation model to see whether alternative assimilation

schemes may make a difference.

For brevity, we only summarize new insights below while relegating the detailed

discussion to Appendix C: (i) alternative targets (e.g., Thailand assimilating Hong

Kong; Malaysia assimilating Singapore; China and Vietnam assimilating Taiwan), (ii)

early stop (e.g., Singapore, stopping assimilation in 1990), (iii) late start (e.g., In-

dia, starting assimilation from 1985) and (iv) middle-income laggards (e.g., Colombia,

Fiji, and Nicaragua, where mismatch contributes to more than half of relative income

growth with human capital contributing negatively due to over-accumulation of the

advantageous factor).

9 Concluding Remarks

Adopting frontier technology does not improve income without successfully assimilat-

ing the associated mismatch between technology and factor inputs. The goal of this

paper is to develop a useful accounting framework based on this idea to explain world

income disparities, subsequently setting forth a first but crucial step before model-

ing the assimilation process in a fully fleged dynamic general equilibrium model. Our

technology assimilation framework highlights the factor input-technology mismatch

generated from the interaction between production flexibility associated with assimi-

lation ability and the relative factor advantage owing to factor input ratio gap from

the assimilated leader. By performing development and growth accounting exercises,

we have shown that our assimilation model outperforms the standard models, particu-

larly in trapped countries having consistently low income ratios throughout the sample
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period and in miracle countries experiencing fast growth. That is, we have identi-

fied the successful assimilation of the frontier technology as the key to understand the

widening gap between fast-growing miracles and poverty-trapped economies. We have

further established the possibility of relative factor advantage reversal and explained

how such reversal may lead to middle-income traps of countries having fast growth in

their disadvantageous factor.

The main implication is clear: to pull a poor country out of the trap or to prevent

a developing country from falling into the middle-income trap, it requires an adequate

provision of correct incentives and institutional settings. These factors are crucial for

domestic firms to assimilate relevant frontier technologies in a way that is suitable for

the country’s own development stages. For instance, in the earlier stages of develop-

ment where the assimilation ability of a labor-intensive country is low, policies should

be focused on providing incentives for adequate accumulation of the disadvantageous

factor. In the later stages of development when the disadvantageous capital accumu-

lation becomes satiated so that the levels of factor inputs relative to the frontier are

stable, then one has to avoid overaccumulation (factor input reversal) and the correct

incentives should be to enhance the assimilation ability while maintaining the right bal-

ance of relative factor input ratios. As a country becomes more advanced, assimilation

may stop and innovation should take the center of the stage. Notably, the establish-

ment of science parks can be rewarding, because with the clustering of high-tech firms,

local learning about specific needs can greatly enhance the effectiveness of technology

assimilation. Moreover, better platforms to encourage the acquisition of know-how

and tacit knowledge are essential as well for technology assimilation. Both science

parks and knowledge exchange platforms can further ensure technological innovation

and sustain economic growth. Unfortunately, we have also observed various barriers to

capital accumulation, learning and knowledge flows in developing (and even developed)

countries. Such barriers may result from incorrect incentives/institutions, protection-

ism, blocks by incumbents, and any other forms of frictions in financial, labor and

international trade markets. These frictions would lead to factor-input misallocation

and cause a country failing to mitigate the factor input-technology mismatch, thereby

slowing down its development process.

Along these lines are several interesting avenues for future studies, but for brevity,

we shall discuss only two. The first is to evaluate various human capital, industrial,

and trade policies for their effectiveness in promoting growth through the technology

assimilation channel. Specifically, our framework of technology assimilation may be

incorporated with that of Jovanovic (2009) to explain the interdependence of vintage
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technology and human capital distribution. As a consequence, directional human cap-

ital policies may possibly affect cross-industry human capital distributions as well as

encourage the development of techniques, industry-specific assimilation, and vintage

technology. Moreover, the promotion of key industries in some developing countries

may possibly be harmful to growth because of the lack of proper and effi cient assimi-

lation. Furthermore, the reluctance to further reduce tariffs associated with imported

technology may have differential effects on the development processes depending on the

effectiveness in the assimilation of world technologies. The second avenue for future

study is to apply our framework to a country-by-country analysis across sub-industries.

As firms in different industries can be expected to have different frontier technologies

and different assimilation processes, this allows us to have a better understanding of

the growth contribution of the aggregate factor input-technology mismatch from the

micro-level firm assimilation process.
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Appendix
(Not Intended for Publication)

The Appendix contains mathematical details, detailed discussion on global EOS

and detailed results of extensions.

A Appendix A: Mathematical Details

A.1 Proof of Proposition 1

Proposition 1 is proved by the following steps. We focus on N ≥ 2 as the case of

N = 1 is obvious. First we show that, instead of choosing a ∈ P, the global production
function can be transformed to choosing any a− ∈ RN−1++ such that

f(n) = max
a−

f(n;B (a−)),

where a− = {a1, ..., aN−1}, A (a−) is on the differentiable envelope of P and

B (a−) ≡ {a1, a2, ...aN−1,A (a−)}.

Second, we show that the first-order condition implies that A (a) is in power form.

It implies the global production function is Cobb-Douglas. Finally, we show that the

first-order approach is valid if σ ∈ [0, 1].

Step 1. We want to show f(n) ≥ maxa− f(n;B (a−)). First we show f(n) ≤
maxa− f(n;B (a−)). Since P is compact, the solution to (5) exists, denoted as a?.

Thus, we have

f(n) = f(n; a?),

≤ f(n;B
(
(a?)−

)
),

≤ max
a−

f(n;B (a−)).

On the other hand, we want to show f(n) ≥ maxa− f(n;B (a−)). Suppose a?− =

arg maxa− f(n;B (a−)). Thus there exist some ai such that ai− ≤ a?− and ai,N =

A
(
a?−
)
. Then we have

max
a−

f(n;B (a−)) =

[ ∑
m=1,...,N−1

αm

(
nm
a?m

)σ−1
σ

+ αN

(
nN
A (a?−)

)σ−1
σ

] σ
σ−1

,

≤
[ ∑
m=1,...,N

αm

(
nm
am

)σ−1
σ

] σ
σ−1

,

≤ f(n).
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Step 2. From the envelope theorem, we have

fm(n) =
1

am
fm(n;B (a−)). (A3)

Suppose the first-order approach is valid. The first-order condition ofmaxa− f(n;B (a−))

with respect to am, m = 1, ..., N − 1, is given by

− nN

A (a−)2
fN(n;B (a−))Am (a−) =

nm

(am)2
fm(n;B (a−)), (A4)

where Am (a−) ≡ ∂A (a−) /∂am, and fm (n; a) = ∂
[∑

m αmκ
(σ−1)/σ
m

]σ/(σ−1)
/∂κm. Us-

ing (A3) from the envelope theorem, we have

−amAm (a−)

A (a−)

nNfN(n)

f(n)
=
nmfm(n)

f(n)
.

Since f(n) is Cobb-Douglas if and only if nmfm(n)/f(n = αm for all n, the first-order

condition implies that f(n) is Cobb-Douglas if and only if A solves the following partial
differential equation (PDE):

Am (a−) =
−αm
αN

A (a−)

am
, for m = 1, ..., N − 1. (A5)

Clearly, the solution to the above PDE has the following closed-form solution

A (a−) = z−1/αN
∏

m=1,...,N−1
(am)

−αm
αN ,

where z is a positive constant. Substituting the above solution of A into (A4) we have
a? (n) ∝ n.
On the other hand, given that the first-order approach is valid, the optimal tech-

nique satisfies a? (n) ∝ n if and only if that a? (n) = k (n)n, where k : RN+ → R+, is
a solution to (A4). By using the funtional form (4), it implies that A solves the PDE
(A5). Thus, if the first-order approach is valid, then the global production function is

Cobb-Douglas if and only if a? (n) ∝ n.
Step 3. Suppose that σ ∈ [0, 1]. The second-order condition evaluated at a = n/k

is
−fNm(n;n/k)

A (a−)

αmnNnm
αNa3m

− fNN(n;n/k)

A (a−)

αmn
2
NAm (a−)

αNamA (a−)2
− fN(n;n/k)

A2 (a−)

αmnN
αNam

Am (a−)

−fN(n;n/k)

A (a−)

αmnN
αNa2m

+
2nm

(am)3
fm (n;n/k) +

n2m
(am)4

fmm (n;n/k) +
nmnN

(am)2
fNm (n;n/k)

Am (a−)

A (a−)2
,

= −fNm(n;n/k)
αmk

2

αNa2m
+ fNN(n;n/k)

(
αmk

αNam

)2
+ fN(n;n/k)

(
αm
αNam

)2
k

−fN(n;n/k)
αmk

αNa2m
+ fm (n;n/k)

2k

(am)2
+

k2

(am)2
fmm (n;n/k)− k2

a2m

αm
αN

fNm (n;n/k) ,
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= −αmαN (σk)−1
αmk

2

αNa2m
− αN (1− αN) (σk)−1

(
αmk

αNam

)2
+ αN

(
αm
αNam

)2
k

−αN
αmk

αNa2m
+ αm

2k

(am)2
− k2

(am)2
αm (1− αm) (σk)−1 − k2

a2m

αm
αN

αmαN (σk)−1 ,

=

[
−αN

(
αm
αNam

)2
− αm

(am)2

]
k

σ
+

αmk

(am)2
+

(
αm
αNam

)2
αNk,

=
kαm

(am)2

(
αm
αN

+ 1

)(
1− 1

σ

)
,

≤ 0,

where fmm(n;n/k) = −αm (1− αm) (σk)−1 and fNm(n;n/k) = αmαN (σk)−1.

A.2 Proof of Proposition 2

The proof is similar to the proof of Proposition 1 so we only highlight the key steps.

From the envelope theorem, we have the condition similar to (A3). The first-order

condition of 7 with respect to am, m = 1, ..., N , is given by

Cm (a) =
nm

(am)2
fm(n; a). (A6)

Thus, similar to the proof of Proposition 1, f(n) is Cobb-Douglas if and only if

nmfm(n)/f (n) = αm for all n, then the first-order condition implies that f(n) is

Cobb-Douglas if and only if C has the power form, which is equivalent to a? (n) ∝ n.
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A.3 Proof of Proposition 3

To prove ∂Z(n;ns, σ)/∂σ ≥ 0, notice that

∂

∂σ
logZ(n;ns, σ) =

−1

(σ − 1)2
log

[ ∑
m=1,...,N

αm

(
nm
ns,m

)σ−1
σ

]

+
1

σ (σ − 1)

∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ

log
(

nm
ns,m

)
∑

m=1,...,N αm

(
nm
ns,m

)σ−1
σ

,

=
1

(σ − 1)2



− log

[∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ

]

+

∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ

log

[
αm
(
nm
ns,m

)σ−1
σ

]
∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ

−
∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ

logαm∑
m=1,...,N αm

(
nm
ns,m

)σ−1
σ


,

=
1

(σ − 1)2

[ ∑
m=1,...,N

πm log

(
πm
αm

)]
,

≥ −1

(σ − 1)2

[ ∑
m=1,...,N

πm

(
αm
πm
− 1

)]
,

= 0,

where the last inequality follows the fact that log (x) ≥ − (1/x− 1) and the last

eqaulity follows the fact that
∑

m=1,...,N πm = 1 =
∑

m=1,...,N αm and

πm ≡
αm

(
nm
ns,m

)σ−1
σ

∑
m′=1,...,N αm

(
nm′
ns,m′

)σ−1
σ

.

To prove the rest of Proposition 3, notice that

∂

∂ns,m
logZ(n;ns, σ) =

αm
ns,m

1−

(
nm
ns,m

)σ−1
σ

∑
m′=1,...,N αm

(
nm′
ns,m′

)σ−1
σ

 .
Also notice that since nmd/ns,md ≤ nma/ns,ma and σ ∈ [0, 1], we have(

nmd
ns,md

)σ−1
σ

∑
m′=1,...,N αm

(
nm′
ns,m′

)σ−1
σ

≥ 1 ≥

(
nma
ns,ma

)σ−1
σ

∑
m′=1,...,N αm

(
nm′
ns,m′

)σ−1
σ

.
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Hence we have
∂

∂ns,md
logZ(n;ns, σ) ≤ 0 ≤ ∂

∂ns,ma
logZ(n;ns, σ).

Finally, since ∂ logZ(n;ns, σ)/∂ns,m is strictly increasing in nm/ns,m, using the inter-

mediate value theorem there exists γy ∈ [nmd/ns,md , nma/ns,ma ] such that ∂ logZ(n;ns, σ)/∂ns,m ≤
0 if and only if nm/ns,m ≤ γy.

A.4 Proof of Propositon 4

Notice that

∂πm
∂σ

=
αm
σ2

(
nm
ns,m

)σ−1
σ


[∑

m′=1,...,N αm′
(

nm′
ns,m′

)σ−1
σ
[
log
(

nm
ns,m

)
− log

(
nm′
ns,m′

)]]
[∑

m′=1,...,N αm′
(

nm′
ns,m′

)σ−1
σ

]2


Since nmd/ns,md ≤ nma/ns,ma , we have

∂πmd
∂σ

≤ 0 ≤ ∂πma
∂σ

.

Finally, since ∂πm/∂σ is strictly increasing in nm/ns,m, using the intermediate value

theorem there exists γg ∈ [nmd/ns,md , nma/ns,ma ] such that ∂πm/∂σ ≤ 0 if and only if

nm/ns,m ≤ γg .

To show γg ≤ γy , recall from the proof of Proposition 3 that
∂

∂ns,m
logZ(n;ns, σ) =

αm
ns,m

(
1− πm

αm

)
. Consider anym such that πm ≤ αm and hence ∂

∂ns,m
logZ(n;ns, σ) ≥ 0.

Then Proposition 3 implies that nm/ns,m ≥ γy. Notice that ∂πm/∂σ can be rewritten

as

∂πm
∂σ

=
πm

σ (σ − 1)

 ∑
m′=1,...,N

πm′

 log
(

nm
ns,m

)σ−1
σ − log

(∑
m′=1,...,N αm′

(
nm′
ns,m′

)σ−1
σ

)
− log

(
nm′
ns,m′

)σ−1
σ

+ log

(∑
m′=1,...,N αm′

(
nm′
ns,m′

)σ−1
σ

)

 ,

=
πm

σ (1− σ)

[
log

(
αm
πm

)
+

∑
m′=1,...,N

πm′ log

(
πm′

αm′

)]
,

≥ 0,

where the last inequality follows the fact that
∑

m′=1,...,N πm′ log
(
πm′
αm′

)
≥ 0 (shown in

the proof of Proposition 1) and the premise that πm ≤ αm. Thus, the proof of the first

part of Proposition 4 we have nm/ns,m ≥ γg and hence γg ≤ γy. Actually the weak

inequality becomes equality if and only if
∑

m′=1,...,N πm′ log
(
πm′
αm′

)
= 0, which happens

when π = αm for all m. But we have π = αm if and only if either σ = 1 or n ∝ ns.
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B Appendix B: Discussion on the Global EOS Es-
timation

The following specification of the production function is usually maintained in the

empirical literature:

Yt =
[
α (AK,tKt)

σ−1
σ + (1− α) (AL,tLt)

σ−1
σ

] σ
σ−1

.

After some manipulation, the firm’s FOC with respect to capital service can be ex-

pressed as the following specifications

log

(
Yt
Kt

)
= β1 + σ logRt + (1− σ) logAK,t + ε1,t,

log

(
RtKt

Yt

)
= β2 + (1− σ) logRt − (1− σ) logAK,t + ε2,t, (A7)

whereRt is the rental rate of the capital service andRtKt/Yt is the capital income share.

We can obtain similar specifications from the FOC with respect to labor service. The

empirical literature basically estimates different combinations of these specifications,

with different treatment on factor compensations and different estimation methods. In

spite of that, σ < 1 is found in general.

Karabarbounis and Neiman (2014) study a monopolistic competition model in final

goods, which implies that RtKt/Yt = 1 − µst and R̂t = ξ̂t around the steady state,

where µ ∈ [0, 1] is the markup, st ∈ [0, 1] is the labor income share, R̂t is the growth

rate of the rental rate and ξ̂t is the growth rate of the relative price of the investment

goods. Log-linearizing (A7) and averaging the log differences across time for each

country, the cross-section observations of the labor shares are given by

s̄j
1− µs̄j

ŝj = β3 − (1− σ)
(
ξ̂j − ÂK,j

)
+ ε3,j, (A8)

The data since 1980 documents global declines in the labor income share and in the

relative price of the investment goods, i.e. ŝj < 0 and ξ̂j < 0 in most of the countries.

The decline in the labor income share tends to be stronger in countries with a stronger

decline in the relative price of the investment goods. Ignoring the effect from AK , which

is maintained in most of the paper, a regression on (A8) finds that σ̃ = 1.25. When AK
is not negligible, the bias is given by σ̃−σ = (1− σ) cov

(
ξ̂j, ÂK,j

)
/var

(
ξ̂j

)
. Avoiding

direct identification of ÂK,j, Karabarbounis and Neiman (2014) use TFP estimates from

Conference Board as a proxy to λ̂K,j, and find that cov
(
ξ̂j, ÂK,j

)
/var

(
ξ̂j

)
= −0.25

and σ = 1.20.
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To reconcile why our estimate of σ is different from Karabarbounis and Neiman

(2014), first notice that given the biased estimate σ̃ > 1 in their model, a unbiased

estimate σ < 1 is possible if a direct identification of ÂK,j finds that cov
(
ξ̂j, ÂK,j

)
>

var
(
ξ̂j

)
. For example, an increase in AK,j induces the demand for investment and

pushes up ξj. This mechanism can give a strong correlation between ξ̂j and ÂK,j such

that cov
(
ξ̂j, ÂK,j

)
> var

(
ξ̂j

)
. Second, we are estimating different equations with

different data. We estimate σ directly from the NCES production function with the

time series of output, capital and human capital. Instead, Karabarbounis and Neiman

(2014) estimate σ from the firm’s FOC, (A8), with the time series of the labor income

share and the relative price of the investment goods. Our choice of data is in line

with the goal to explain the international income difference with the factor inputs and

technology. Our specification is closest to Klump et al (2007), which found a slightly

higher σ, despite that we are using a panel of time series from 110 countries instead of

only the U.S.

Klump et al (2007) and León-Ledesma et al (2010) are recent examples of directly

estimating the NCES production function. Compared with an indirect estimation of σ

through the firm’s FOCs, it has the following advantages. First, it does not require the

data on factor prices, which avoid some classification problems like how to treat the

compensation of the self-employed pointed out by Gollin (2003). The compensation

data also tends to be noisy especially in the less developed countries. Second, to make

use of the information on the factor prices and shares, we need to assume no distortion

and perfect competition in the factor markets, which seems at odd with recent studies in

development accounting like Hsieh and Klenow (2004) that emphasize the importance

of the factor wedges. By estimating the production function directly, we do not need to

take a stance on how factors are compensated. Finally, since factor prices tends to be

endogenous to the innovation terms, using factor prices or shares as regressors likely

results in biasedness. On the other hand, the upside of estimating the firm’s FOC

is the resulting linear equations relating factor demands to factor prices, which are

straightforward to estimate. Of course, the computation cost of non-linear estimation

is less relevant nowadays.

C Appendix C: Details of Extensions

To illustrative purposes, we begin by focusing on the miracle and trapped countries.

We then investigate what alternative assimilation can do for better understanding the
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development process of the two Asian giants: China and India. In another extension, we

will examine a group of countries which we call “middle-income laggards,”characterized

by two criteria: (i) the initial relative income is reasonable high, and (ii) the average

growth rate of relative income is very low if not negative. We like to examine the

applicability of our assimilation model these medium-income but low-growth countries

that have lagged behind over time.

Best-Alternative Assimilation

In the 1960s and the 1970s, large flows of Japanese FDI entered Taiwan and then

to South Korea and Hong Kong; in late 1970s, Japanese firms have also expanded

production facilities to Singapore. Learning from the success of their neighbor, the

Asian Tigers followed the Japanese footsteps and realized that export expansion was

the main momentum to growth. Weiss (2005) notes a wave of Asian countries after

Japan that illustrates the successful application of export-led growth: (i) first tier of

Asian Miracle countries, namely, the four Asian tigers, whose takeoff began in the

1960s, (ii) second tier, namely, all the remaining miracles, whose takeoff began in the

mid 1980s. These Asian growth experiences exhibit the Flying Geese Pattern (FGP)

of economic development, as documented by Akamatsu (1962).

To capture this FGP development process, we consider an alternative assimilation

scheme, with Japan assimilating the U.S. frontier and the early birds Asian Tigers

subsequently assimilating their regional leader, Japan. So, ak,t = kJAP,t/yJAP,t and

ah,t = hJAP,t/yJAP,t, and the relative income growth can be written as:

q̂dataj,t = q̂altj,t + ∆τ altj,t = α
(
k̂j,t − k̂US,t

)
+ (1− α)

(
ĥj,t − ĥUS,t

)
+ M̂ alt

j,t + ∆τ altj,t , (26)

where

qaltj,t =
yJAP,t
yUS,t

[
α

(
kj,t
kJAP,t

)1−1/σaltj
+ (1− α)

(
hj,t
hJAP,t

)1−1/σaltj ]1−1/(1−σaltj )

, (27)

M alt
j,t ≡

[
yJAP,t

(kJAP,t)
α (hJAP,t)

1−α

]/[
yUS,t

(kUS,t)
α (hUS,t)

1−α

]
︸ ︷︷ ︸

ratio of bridging TFP to frontier TFP

(28)

×
(

kj,t
kJAP,t

hJAP,t
hj,t

)−α [
α

(
kj,t
kJAP,t

hJAP,t
hj,t

)1−1/σaltj
+ 1− α

]1−1/(1−σaltj )

︸ ︷︷ ︸
mismatch from using the bridging technology

.
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The alternatives serve like a bridge with the frontier technology. Now the factor input-

technology mismatch is reduced because the “bridging”technology is less demanding

than the frontier technology as a result of a narrower factor input gap (i.e., aJAP,k =

kJAP/yJAP < aUS,k = kUS/yUS and aJAP,h = hJAP/yJAP < aUS,h = hUS/yUS). The

trade-off is that this bridging technology of Japan is also less productive, as yJAP/yUS <

1. Because of the rapid advancement of the tigers, we set the assimilation process to

have an early stop in 1990. Further, we allow other latecomers in Asian to also target

their neigboring Tigers based on stronger FDI ties. All such subsequent assimilation

is assumed to take place with a late start from mid-1980s to present (2014). We have

also considered switching targets from one (say, Japan) to another (say, the U.S.). But

the improvement in fitness is negligible.

The results for the alternative assimilation scheme with the best-performing tar-

gets are reported in Table 12. Overall, the above results are consistent with the FGP.

Aamong the Asian tigers, having Japan as the assimilation target greatly improves

the fitness for Hong Kong and Singapore, where the unexplained income gaps reduce

to almost zero. The corresponding increases in the growth differential gain, from the

country-specific assimilation to assimilating Japan, are also large, at 1.42 and 2.30 per-

centage points, respectively. Taiwan also improve by having almost zero unexplained

income gap with a nonnegligible growth differential gain of 0.93 percentage point. In

these tigers the mismatch contribution to growth greatly increases to more than 50%.

Korea is the only exception where the MSE and the unexplained income gap worsens,

thus indicating the FGP may not be applicable. For the latecomers, switching the

assimilation target from the U.S. to the Asian tigers performs better in reducing in

the unexplained income gaps to alomost zero. Of particular interest, having Vietnam

assimilating Taiwan instead of the U.S.not only improves fitness significantly (by re-

ducing the MSE essentially to zero), but also corrects the overprediction of assimiation

when targeting the U.S. (see the country-common assimilation case illustrated in Fig-

ure 8 and note from Table 10 that overprediction in mismatch contribution could not

be fixed even with country-specific assimilation ability).

We next move to re-account the economic performance of the African trapped coun-

tries. The alternative targets are set among the choices of (i) the most technologically

advanced large economy close to Africa (Germany), (ii) their continent leader (South

Africa), and (iii) their colonial origins (e.g., France, the U.K.). Again we report the

results from the best performing alternative targets in Table 13. It turns out that in

14 of these 17 countries, the alternative targets are more in line with the FGP rather

than the colonial origins. Overall, in all but two countries, the fitness improves (at
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Mismatch contribution(%) MSE zj
Best alternative
assimiltion σaltj σj

Country-
specific

Alter-
native

∆growth
(pp)

Country-
specific

Alter-
native

Country-
specific

Alter-
native

Hong Kong Japan,1960-1990 0.59 0.00 22.80 76.08 1.42 0.04 0.01 0.88 0.97
Korea Japan,1960-1990 0.00 0.32 57.67 41.23 -0.77 0.05 0.29 0.88 0.61
Singapore Japan,1960-1990 0.68 0.00 -0.02 52.38 2.30 0.07 0.03 0.91 1.06
Taiwan Japan,1960-1990 0.33 0.39 28.95 50.77 0.93 0.01 0.01 1.01 1.01
China Taiwan,1985-2014 0.06 0.36 111.33 66.92 -0.90 0.16 0.01 0.95 1.00
India Singapore,1985-2014 0.26 0.00 0.27 35.18 0.44 0.04 0.03 0.87 1.00
Malaysia Singapore,1985-2014 0.41 0.24 31.28 51.27 0.23 0.06 0.02 0.95 1.00
Thailand HongKong,1985-2014 0.04 0.00 46.84 29.45 -0.34 0.06 0.02 0.83 1.00
Vietnam Taiwan,1985-2014 0.24 0.32 69.55 42.67 -1.41 0.05 0.00 1.00 1.00

Table 12: Growth accounting for the miracle countries, with alternative periods and
assimilation targets.

Mismatch contribution(%) MSE zj
Best alternative
assimiltion σaltj σj

Country-
specific

Alter-
native

∆growth
(pp)

Country-
specific

Alter-
native

Country-
specific

Alter-
native

Burundi Belgium 0.56 0.42 69.15 73.24 -0.06 0.01 0.01 1.00 1.00
Benin S. Africa 0.00 0.00 146.03 148.98 -0.04 0.08 0.03 0.86 0.95
Central African France 0.00 0.00 78.15 94.62 -0.55 0.19 0.01 0.65 0.97
Côte d’Ivoire Germany 0.00 0.00 687.14 753.42 -0.15 0.23 0.01 0.66 0.97
Congo D.R. S. Africa 0.61 0.58 32.78 39.21 -0.15 0.56 0.52 1.06 1.11
Ghana Germany 0.11 0.00 159.60 78.59 1.10 0.10 0.02 0.79 0.97
Gambia S. Africa 0.45 0.35 17.41 45.58 -0.38 0.08 0.08 1.00 0.94
Kenya Germany 0.33 0.06 275.92 132.06 0.79 0.06 0.05 1.00 0.91
Madagascar Germany 0.31 0.14 106.65 117.25 -0.16 0.04 0.06 1.00 0.99
Mauritania S. Africa 0.27 0.17 35.51 53.46 -0.19 0.01 0.01 1.00 0.99
Malawi S. Africa 0.02 0.00 28.36 56.29 -0.32 0.16 0.09 0.99 1.00
Niger Germany 0.00 0.00 87.92 77.19 0.27 0.50 0.17 0.50 0.68
Senegal Germany 0.14 0.00 108.37 39.02 1.39 0.14 0.04 0.76 0.95
Sierra Leone Germany 0.37 0.21 120.21 83.69 0.48 0.03 0.02 1.00 1.00
Togo S. Africa 0.11 0.03 89.61 91.25 -0.05 0.02 0.01 1.00 1.00
Tanzania UK 0.00 0.00 45.94 36.36 0.04 0.24 0.05 0.65 0.95
Zimbabwe Germany 0.34 0.18 99.02 79.25 0.61 0.21 0.25 1.00 1.03

Table 13: Growth accounting for the development-trapped countries with alternative
assimilation targets.

least weakly). By switching the heterogeneous assimilation from the U.S. to the al-

ternative, the unexplained income gap reduces from 12% to 4%, whereas the MSE

is lowered from 0.15 to 0.09. The growth differential from the counterfactual yields a

bonus of 0.15 percentage point, indicating that inability to assimilate can further ex-

plain growth stagnation by one-sixth a percentage point. Of particular interest, among

the four trapped countries where the accounting outcome overstate the contribution of

mismatch (Benin, Côte d’Ivoire, Ghana and Senegal, as shown in Table 9), two, Ghana

and Senegal, have the problem corrected under the alternative target of Germany, with

mismatch contribution dropped from over 100% to 79% and 39%, respectively.

The Asian Giants: China and India

In studying the economic performance of the two Asian giants, China and India, we

first describe what the Cobb-Douglas model tell us from the accounting exercises. In
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China, both factor inputs are growing rapidly at an average rate of 4.08% for relative

physical capital and 0.71% for relative human capital. As a result, relative physical

capital increases by eight times and relative human capital increases by 1.4 times over

the sample period. Given the rapid growth in capitals, factor accumulation of the Cobb-

Douglas model accounts for more than 100% of the income growth with a residual of

only -2.74%. But owing to the fact that physical capital is the disadvantageous factor

in the assimilation model, the factor input-technology mismatch alone also account

for 101.41% of the growth performance. Nevertheless, the country-specific assimilation

model seems informative to understand the China growth because it has a much lower

MSE than the Cobb-Douglas model (0.16 vs 1.43). Another support of the country-

specific assimilation model is that it has an unexplained income gap of only 5% which

is far lower than the Cobb-Douglas counterpart (69%). By switching the assimilation

target from the U.S. to Taiwan, as proposed by the FGP, the MSE further reduces

from 0.16 to less than 0.01 and the unexplained income gap from 5% to 0.6%. More

interestingly, the overprediction of mismatch contribution to growth is corrected: falling

from 111% to 67%. Thus, having China assimilating Taiwan seems to best capture its

rapidly development process after 1980s.

For the case India, the situation is different. Relative factor growth of the two

capitals are around 0.36%, so that relative physical capital increases by 1.4 times and

relative human capital increases by 1.3 times over the sample period. As a result, factor

accumulation of the Cobb-Douglas model accounts only for 37% of the income growth.

But balanced growth in the two relative factors also implies little change in the factor

input-technology mismatch, so the country-specific assimilation channel only accounts

for 0.27% of the growth performance. It is no longer the case when India assimilate

alternative technologies. By switching the assimilation target from the U.S. to the

best tied Asian tiger, Singapore, the growth contribution of factor input-technology

mismatch raises from essentially a negligible 0.27% to 35%, which successfully corrects

the underprediction with U.S. as the target (see Figure 8 and 10).

Middle-Income Laggards

To the end, we shift our focus to a group of middle-income laggards. We have

already discussed the connection between relative factor advantage reversal and middle-

income trap. In this subsection, we study the development process of countries with

decent initial relative income but very low average growth rate. We have selected

six countries for this laggard group, where the average initial income is 0.32 and the
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Relative growth(pp) Growth contribution(%) Fitness

Income Capital
Human
capital

Country-
common /specific Capital

Human
capital σj zj zCDj MSEj MSECDj

Colombia -0.30 -0.61 0.28 84.67 / 196.36 67.59 -61.18 0.00 0.64 0.57 0.22 0.36
Costa Rica -0.25 -0.04 0.19 35.27 / 43.82 4.91 -49.59 0.35 0.94 0.74 0.03 0.13
Fiji -1.45 -1.12 0.61 49.94 / 78.80 25.64 -28.15 0.17 0.69 0.49 0.15 0.54
Honduras -0.83 -0.99 0.50 80.65 / 119.19 39.71 -39.78 0.00 0.50 0.37 0.49 1.03
Mexico -0.38 -0.27 0.30 24.61 / 96.68 23.35 -52.32 0.08 0.87 0.84 0.07 0.10
Nicaragua -3.37 -2.58 0.71 37.64 / 65.00 25.51 -13.98 0.00 0.54 0.41 0.44 0.91

Average -1.10 -0.94 0.43 52.13 / 99.96 31.11 -40.83 0.10 0.70 0.57 0.23 0.51

Table 14: Growth accounting for the laggard countries up to 2014.

average relative income growth rate is −1.10%. Their accounting results are given in

Table 14.

Our assimilation model again outperforms the Cobb-Douglas model, reducing the

unexplained income gap from 43% to 30% and lowering the MSE by more than half

(from 0.51 to 0.23). In these countries, despite that physical capital is the disadvantage

factor, their accumulation of physical capital fell behind the U.S. whereas human cap-

ital outgrew the U.S. Widening factor input-technology mismatch thereby results in

growth stagnation, which accounts for about half of the relative income decline under

common assimilation. With country-specific assimilation, the accounting results im-

prove further, though in two of the six cases overprediction occurs. From Proposition 3,

we learn that the predicted income levels are low because the average country-specific

σ is far below the country-common level (0.01 vs. 0.42). Proposition 5 points out that

the low country-specific σ signifies the factor input-technology mismatch. As a result,

we have larger contributions of the country-specific assimilation for the laggards than

the trapped countries. Nonetheless, in Colombia and Honduras, the country-specific

parameters are at its lower bound (zero); as a result, mismatch turns out to overpredict

their negative growth outcomes.
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