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1. Introduction

Having a third-party match other donors’ voluntary contributions to a public good is

a fundraising intervention widely used by charitable organizations. Accordingly, there is a

large empirical literature in economics using matches to investigate preferences for giving.1

The extant theory used by economists to motivate this literature assumes that donors derive

utility from the amount of donations received by a charity and that matches lower the price,

in terms of forgone consumption, of providing $1 to a charity (e.g., see Andreoni and Payne,

2013). The results in the empirical literature are fairly uniform: the amounts charities receive

are very responsive to matches. The interpretation based on the extant theory is that giving

is price elastic, or nearly so.

However, there are unresolved puzzles, both empirical and theoretical, that indicate

that this current interpretation cannot be correct. First, as is well-known, the extant the-

ory of matches predicts equivalent responses to a match at rate m and a rebate at rate

t = m/(1 + m). Contradicting this prediction are lab experiments (Blumenthal, Kalam-

bokidis, and Turk, 2012; Eckel and Grossman, 2003, 2006a), field experiments (Eckel and

Grossman, 2008, 2017), an incentivized survey experiment (Bekkers, 2015) and a hypotheti-

cal scenario experiment (Scharf and Smith, 2015) all of which have found that the match-price

elasticity and rebate-price elasticity are not even close to each other. If this evidence is valid,

then the extant theory is not. Further, while match- and rebate- elasticities differ, the so-

called “checkbook” elasticity induced by the match—based on the out-of-pocket checkbook

amounts donors write to charities, excluding the match itself—is often inelastic, small, and

closer to the rebate elasticity. This raises the question: which elasticity produced by a match,

checkbook or amount-received, should we expect to equate with a rebate elasticity?

These issues reflect a more fundamental puzzle concerning what a match-price elasticity

is actually telling us about preferences. Suppose a donor is offered a 1-to-1 match and her

1See for example Karlan and List (2007), Meier (2007), Huck and Rasul (2011), Meer (2017), Eckel and
Grossman (2003, 2008), Davis (2006), Bekkers (2015), Scharf and Smith (2015), and others discussed below.
Vesterlund (2016) provides a survey.
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checkbook giving does not change at all in response. This scenario is not too dissimilar

from the findings in a number of empirical studies. What does this response mean? The

interpretation offered by the extant theory is that the price of securing a dollar increase in the

charity’s receipts was cut in half and the amount of donations received by the charity doubled,

so that the donor must have unit-elastic price responsiveness regarding the charity’s amount

received. An alternative interpretation is that the donor cares only about her checkbook

donation: in this case the match did not alter her incentives in any way, so her checkbook

amount did not change. These are extremely different descriptions of donor preferences. But

prior research has not determined how to differentiate between them.

This paper makes a theoretical and an empirical contribution towards the understand-

ing of donor preferences, matches, and incentives to give. First, we present a theoretical

explanation of the above puzzles based on a long-established construct in the economics of

charitable giving: warm-glow. In the new theory, a donor gets utility from how much her

gift increases the amount received by the charity—the impact of her gift (Duncan, 2004;

see also Atkinson, 2009)—just as in the extant theory. The innovation is that she also gets

warm-glow utility (Andreoni, 1989) from her donation. Because the new theory combines

impact with warm-glow, we call it “impure impact giving”.

In the model, a change in the match rate changes the opportunity cost of impact, in

terms of forgone own consumption, but does not change the opportunity cost of warm-glow.

In contrast, a rebate changes the opportunity cost of both. The impure impact model thus

predicts non-equivalence between the match-price elasticity and the rebate-price elasticity.

We show that the rebate effect can be thought of as a “conventional” price effect in that it

can be decomposed into traditional Slutsky substitution and income effects. In contrast, the

match effect depends not only on the conventional price effect but also upon the strength

of warm-glow. Specifically, warm-glow alters both the substitution effect and the income

effect, making the former weaker and the latter stronger. The theoretical representation of

the altering of the income effect is equivalent to Andreoni’s (1989) analysis of how warm-
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glow alters crowding-out of government grants. Because warm-glow changes the substitution

effect and the income effect in opposing directions, the net effect of warm-glow on the match

elasticity depends upon which change dominates.

Analysis of the model provides further insights about the other puzzles mentioned above.

Which of the two match-price elasticities, checkbook or amount-received, should one expect

to be conceptually the same as the rebate elasticity? The answer is neither. Then, having

observed a small checkbook response to a match, what should one conclude about prefer-

ences? The answer is that the match-price elasticity alone is not sufficiently informative. In

an impure impact model both rebate-price and match-price elasticities are necessary to make

inferences about the nature of preferences.

Because the impure impact model nests canonical models of charitable giving—the pure

impact model (Duncan, 2004; Atkinson, 2009), pure warm-glow, pure altruism (Becker, 1974)

and impure altruism (Andreoni, 1989)—it provides a framework within which the match and

rebate elasticities together can be used to investigate the nature of preferences. Our analysis

of the impure impact model leads to tests for these models based on the two elasticities.

Observing just one of the elasticities is generally not enough to conduct the tests. But as

pointed out by Meer (2014), observing both of these elasticities together is typically not

feasible because the same data rarely afford estimation of multiple elasticities in parallel.

Our second contribution is to provide parallel estimates of match and rebate elasticities

generated from a match and a real-world tax rebate. The estimates come from donations

to a university over a twelve-year period. During a 19-month window within this period,

a 1-to-1 match was made available to a subset of donors. The match turned on and off,

motivating a difference-in-differences approach to estimating the match-price elasticity. The

baseline estimate of this elasticity is −1.2, qualitatively similar to results from the matching

literature.

During the entire twelve-year period the donors living in the same state as the university

were eligible for a 50 percent state tax credit for donations to universities. The credit
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was capped at $400, causing excess bunching of donations at the cap and motivating a

bunching-based approach. We develop two new bunching estimators based on identifying

assumptions weaker than those used in standard bunching estimators (although we also apply

the standard estimators developed by Saez, 2010, and Kleven and Waseem, 2013). One of the

new estimators is similar in spirit to that proposed by Blomquist and Newey (2017). Both

of the new estimators use identifying assumptions different from each other (and different

from the standard estimators), but both produce similar rebate-price elasticity estimates of

≈ −.2 (as do the standard estimators). Hence, the match and rebate elasticity estimates

are qualitatively similar to the results from the lab, field, survey, and hypothetical-scenario

experiments: the match-price elasticity is elastic, the rebate-price elasticity is inelastic and

small, and the extant theory is not compatible with donor behavior. This is the first evidence

of non-equivalence from parallel estimation of responses to a match and a real-world tax

rebate.

The results have several additional implications. First, the findings indicate that future

work on match prices should consider how to estimate a conventional price effect in parallel

with estimating a match-price effect. If all one has is an estimate of the match-price elasticity,

there is an identification problem: the conventional price effect and the strength of warm-

glow will be confounded.

Next, in the standard impure altruism model interventions to increase the public good

are more effective in the presence of warm-glow (Andreoni, 1989). However, in an impure

impact model it is possible that the presence of warm-glow makes interventions less effective.

We discuss scenarios where this is possible and provide a simple example.

Third, the empirical tests derived from the theory not only reject the extant pure impact

model but also reject pure warm-glow. The rejection of pure warm-glow is noteworthy

because the empirical setting is one with many donors and a large amount being given

to the public good. In such a setting, asymptotic analysis of impure altruism indicates

that preferences on the margin should be almost entirely influenced by their warm-glow
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component (Ribar and Wilhelm, 2002). But despite the many donors/large-public-good

setting, the results indicate donors continue to get utility from the amount received by

the charity. That, combined with the rejection that the amount received is all they get

utility from, is consistent with the impure impact model. We also combine the empirical

and theoretical results to generate estimates of the compensated price elasticity of giving.

These estimates are close to the observed rebate elasticity, and far from the observed match

elasticity.

Finally, it is well-known that because rebate elasticities are inelastic, the amount received

by charities can be much higher if the price reduction is introduced via a match rather than

via a rebate (e.g., Turk et al., 2007; Eckel and Grossman, 2017). Hence, charities prefer

matches to rebates. In contrast, we show that donor welfare is higher if price reductions

are introduced via a rebate. The preference of donors for rebates should be included in

normative analyses of incentives to give.

The rest of the paper is organized as follows. Section 2 presents the impure impact model,

proves the non-equivalence result, derives the Slutsky decompositions, discusses implications

of impure impact for understanding puzzles in the matching literature, discusses testing, and

proves the normative result. Section 3 describes the matching environment, the tax credit

policy, and the data, and also the difference-in-differences and bunching methods. Section

4 carries out the estimation and robustness checks. Section 5 provides a general discussion

of the theoretical and empirical results, including the connection with results from several

other papers in the matching literature. Section 6 concludes.

2. Theory

2A. Pure impact

Before turning to the model of impure impact, first consider the baseline model that

motivates the matching literature. Suppose a donor i makes a gift gi to a charity; the gift is
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matched by a third party at rate m so that the charity receives the amount Ri = (1+m) gi,

and the donor gets utility U(ci, Ri) from own consumption ci and Ri. This model is Duncan’s

(2004) pure impact theory of philanthropy: Ri is the impact i has on the charity’s output.

Atkinson (2009) proposes a similar model. In the matching literatureRi is called the “amount

received”, and gi is called the “checkbook amount”.

The budget constraint is ci + gi = yi where yi is the donor’s income. To facilitate

the proof of match- and rebate-price equivalence, introduce a rebate at rate t for each dollar

of checkbook giving. Such rebates typically come from the tax code, so we refer to the

rebate incentive as the “tax-price”. Then the budget constraint is ci + gi = yi + t gi.

Bringing the rebate term to the left-hand side and substituting gi = Ri/(1 + m) produces

a constraint in terms of the amount received: ci + pm pt Ri = yi, where the match-price

is pm = 1/(1 + m) and the tax-price is pt = (1 − t). To maintain parallel treatment of

the match- and tax- price, we take the sources of funds that finance both to be exogenous

to the donor.

Substituting the budget constraint into utility U(yi−pm pt Ri, Ri), and maximizing with

respect to Ri yields the first-order condition:

− pm pt Uc(yi − pm pt Ri, Ri) + UR(·, ·) = 0 (1)

which can be solved for the optimal amount received:

R∗
i = q(yi, pm pt). (2)

Equation (2) is a demand function in terms of income and price. If the rebate is designed to

be “price-equivalent” t = m/(1+m) ⇒ pt = pm, then it follows immediately that R∗
i under

a match will be equivalent to R∗
i under a rebate. Further,

∂R∗
i

∂pm
=

∂R∗
i

∂pt
, implying equivalence

of the respective elasticities: em = et.

The optimal checkbook amount follows from (2): g∗i = pm q(yi, pm pt). The checkbook
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elasticity em,b reflects the mechanical relationship between the amount received and the

checkbook amount donated: em,b = 1 + em. Changing the match rate m both changes the

price pm and, for a given checkbook donation, mechanically changes the amount received by

the charity.

2B. Impure impact giving

In the impure impact model the donor also gets warm-glow utility from her checkbook

giving: U(ci, gi, R). In this utility function R ≡ Ri + λ R−i, where Ri = (1 + m)gi

as before, R−i is exogenous output contributed by others, and λ is a weight. R−i models

challenge grants or lead donations that are exogenous to i’s checkbook giving (e.g., Rondeau

and List, 2008; Huck and Rasul, 2011). The weight λ introduces flexibility in how i regards

the exogenously contributed output relative to her own impact Ri. If λ = 1, the two

are viewed as perfect substitutes, and if pm = 1 also, then the model becomes the standard

impure altruism model; removing the warm-glow term in this case produces the pure altruism

model. If λ < 1, donor i regards her own impact more highly than that of others; the case

of λ = 0 would imply that she disregards exogenous output entirely and the model becomes

a model of impact and warm-glow alone. Removing the warm-glow term in this case would

produce the pure impact model. The weight λ is an unobservable preference parameter, so

that R is an unobservable function of the observables Ri and R−i. This does not present

a problem for the analysis of the response of observed Ri to price because given the above

definitions ∂Ri

∂p
= ∂R

∂p
where p represents pm or pt. One could further generalize preferences

to be U(ci, gi, Ri, R−i); doing so would not change the main findings and in Appendix A.3

we derive the results of this section using these more general preferences. The preferences

analyzed here are sufficiently general to nest the standard models while allowing a succinct

presentation of the results.

The budget constraint is the same as in Section 2A, ci + pm pt Ri = yi − τi, except we
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now include a lump-sum tax τi. Add pm pt λ R−i to both sides of the constraint:

ci + pm pt R = Zi ≡ yi − τi + pm pt λ R−i (3)

where Zi is social income. As before gi = pm Ri, but now Ri = R − λ R−i. Substituting

these and the budget constraint into utility:

U(Zi − pmptR, pm(R− λR−i), R) (4)

and maximizing with respect to R yields the first-order condition:

−pmptUc(Zi − pmptR, pm(R− λR−i), R) + pmUg(·, ·, ·) + UR(·, ·, ·) = 0. (5)

The marginal utilities in the first order condition depend on four arguments: social income

Zi, weighted exogenous output pm λ R−i, a price term pm pt that also appeared in the pure

impact demand function (2), and a second price term pm. Each of these arguments are

exogenous to i. Accordingly, (5) can be solved for the optimal impact as a function of these

four:

R∗ = q(Zi, λ pm R−i, pm pt, pm). (6)

Equation (6) is the impure impact demand curve for R. Note that the exogenous output

term pm λ R−i enters q(·) on its own (in addition to its entering through social income Zi)

only because of the warm-glow term in utility (4). Likewise, the price term pm enters q(·)

on its own in the fourth argument only because of warm-glow.

Denote q1 as the partial of q(·) with respect to Zi. Then using equation (3) the effect of

own income on demand is ∂R∗

∂yi
= q1. The effect of exogenous output is ∂R∗

∂(λpmR−i)
= ptq1 + q2.

Because g∗i = pm R∗
i = pm (R∗−λR−i), we have

∂g∗i
∂(λpmR−i)

= pm(ptq1 +q2)−1. The expression

pm(ptq1 +q2)−1 is how much an increase in (λ-weighted) exogenous output crowds-out donor

i’s checkbook amount gi. The presence of warm-glow q2 > 0 implies a mitigation of crowd-
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out: pm(ptq1 + q2)− 1 is closer to zero. These relationships were first explained by Andreoni

(1989) in the context of the impure altruism model (in which λ = 1 and pm = 1) without a

tax rebate (pt = 1). An equivalent way to think about warm-glow’s mitigation of crowd-out

is that warm-glow enhances the ∂R∗

∂(λpmR−i)
“income effect”; q2 is the difference between this

income effect and the own-income effect (Ottoni-Wilhelm, Vesterlund, and Xie, 2017).2

The partial derivative q3 is the price effect that is the counterpart to the price effect

that appeared in the pure impact version of the model, equation (2). Suppose that pt is

reduced by a penny, holding the other terms in (6) constant. This reduces the opportunity

cost of both one’s checkbook donation gi and one’s impact Ri. In contrast, if there is a

match (pm < 1), and i sacrifices one dollar of own consumption ci to increase her checkbook

donation, she does not get 1/pm units of both Ri and gi: instead she gets 1/pm > 1 units

of Ri but only one unit of gi. Hence the two prices have different effects; the difference is

captured by the fourth partial, q4. The comparative statics with respect to pt and pm are:

∂R∗

∂pt
= pm

(− Uc
∆

− q1 Ri

)
(7)

∂R∗

∂pm
= pt

(− Uc
∆

− q1 Ri

)
+
(Ug

∆
− q2 Ri

)
(8)

where ∆ is the negative of the terms in the second-order sufficient condition; hence ∆ > 0

(see Appendix A.1 for derivations of equations (7) and (8)).

Recalling that ∂Ri

∂p
= ∂R

∂p
, equations (7) and (8) can be used to derive elasticities of

observed impact Ri with respect to each price change, et = ∂Ri

∂pt

pt
Ri

and em = ∂Ri

∂pm

pm
Ri

:

2In a pure altruism model (λ = 1 and pm = 1), there is no warm-glow, q2 = 0, and the crowd-out of
exogenous output is −1+ptq1. If in the pure altruism model the increase in output is endogenously financed
by a lump-sum tax (dτi = pt d(λpmR−i)) so that Zi does not change, then crowd-out is −1 (see Andreoni,
1989). These results hold in the pure impact model, noting the minor change that crowd-out is in terms of
expenditure on R∗ (rather than in terms of R∗ itself).
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et = pm pt

(
− Uc
Ri ∆

− q1

)
(9)

em = et + pm

( Ug
Ri ∆

− q2

)
. (10)

The two terms in the brackets on the right-hand side of (10) are driven by warm-glow: Ug > 0

and q2 > 0. In a pure impact model there is no warm-glow, Ug = 0 and q2 = 0, and em = et.

In an impure impact model, however, there is warm-glow, these terms will not be zero, and

non-equivalence of the two elasticities is established.

Using equations (9) and (10), we next recast these price effects as Slutsky decompositions

to clarify how and why rebates and matches are different. We then discuss implications of

impure impact for understanding puzzles in the matching literature, its implications for

empirical testing of several models of giving, and its implications for normative analysis.

The Slutsky decompositions are derived in Appendix A.2. The compensated price elas-

ticity of Ri with respect to pt is:

eHt =
−pm pt Uc
Ri ∆

(11)

which leads to a conventional Slutsky decomposition of the rebate-price elasticity in (9):

et = eHt − bRi
ey (12)

where bRi
= pmptRi/yi is the expenditure share spent on Ri, and ey = q1yi/Ri is the own-

income elasticity of Ri. We say this is a “conventional” Slutsky decomposition because

estimates of et and the income elasticity, along with the observed expenditure share, are

sufficient to uncover the compensated elasticity eHt , an important element in calculations of

welfare effects of taxation.
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In contrast, the Slutsky decomposition with respect to the match-price is:

em = eHm − b̃Ri
ey (13)

where eHm is the compensated match-price elasticity and ey is as before. However, the budget-

share b̃Ri
is an expression that depends on an unobserved ratio of marginal utilities: b̃Ri

=

p̃Ri/yi where p̃ ≡ pm(pt − Ug

Uc
). Therefore estimates of em and the own-income elasticity

are not sufficient to uncover the compensated elasticity eHm. The implication of the Slutsky

decompositions (12) and (13) for empirical work is that tax-price estimates can be used to

uncover compensated demand, but match-price estimates cannot.3

To see the intuition of how warm-glow causes em-et non-equivalence, substitute (11) into

(9) to re-write the Slutsky decomposition of the rebate elasticity as:

et = eHt − q1 pm pt. (14)

Then substitute (14) into (10) to re-write the match-price elasticity as:

em = eHt +
pm Ug
Ri ∆

− pm (pt q1 + q2). (15)

Comparing equation (15) to the Slutsky decomposition of the rebate elasticity in (14) reveals

that warm-glow has two effects that cause the match-price response to depart from the tax-

price response. First, the presence of warm-glow mitigates the substitution response to a

match eHt . The reason is that, unlike a one penny decrease in the tax-price, a one penny

decrease in the match-price does not reduce the opportunity cost of warm-glow. The term

pm Ug

Ri ∆
> 0 in (15) captures this mitigation of the substitution effect; mitigation is proportional

to the marginal utility of warm-glow. In the extreme case of pure warm-glow, UR = 0 and

3The match-price compensated demand is also unconventional in that it depends on the unobserved ratio
Ug

Uc
, as well as the income effects q1 and q2 (see Appendix A.2). In the pure impact model there is no

warm-glow, Ug = 0, p̃ = pmpt, and the Slutsky decomposition in (13) becomes the same as (12).
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the first-order condition (5) implies that the mitigation of the substitution effect is complete:

eHt + pm Ug

Ri ∆
= 0.

Second, warm-glow enhances the income effect by q2 > 0. The third-party match ex-

ogenously increases the net amount received by the charity, and the donor’s response to

this change will be determined by their response to an increase in social income Zi (hence

the q1 term in (15)) and by their warm-glow preferences (hence the q2 term). The q2 > 0

term captures how much i disregards the exogenous increase in the net amount received,

and accordingly does not crowd it out. To fix this idea, use the mechanical relationship

em,b = 1 + em from Section 2A to re-write (15) in terms of the checkbook elasticity:

em,b = eHt +
pm Ug
Ri ∆

− [−1 + pm (pt q1 + q2)]. (16)

The term in square brackets is crowd-out. Warm-glow q2 > 0 mitigates crowd-out (pushing

it toward zero), implying less of a reduction in the checkbook amount than would be the

case in the absence of warm-glow.

Equation (16) thus provides a way to think through the “small-checkbook-elasticity-

in-response-to-a-match” puzzle: Is it driven by a near-unit price elasticity of the amount

received, or by warm-glow? The answer is potentially either: it could be that warm-glow is

weak, in which case (16) reduces to em,b ≈ eHt − pmptq1 + 1 = et + 1 (the last equality using

(14)). Then, if et ≈ −1, em,b would be ≈ 0. Or, it could be that warm-glow is strong—

pmUg

Ri∆
≈ |eHt | and pm(ptq1 + q2) ≈ 1—so (16) reduces to em,b ≈ 0. Equation (16) makes it

clear that these two answers cannot be differentiated if the match-price elasticity is all that

is estimated.

More generally, both equation (10) and equation (15) indicate that one cannot observe

a match-price elasticity in isolation and separately identify the price elasticity of impact Ri

apart from the strength of warm-glow. The match-price elasticity incorporates both effects.

Conversely, if all that is observed is an estimate of et, one cannot identify what the response
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to a m = t/(1 − t) match would be. The implication of (10) and (15) is that the answer

to the question—Which of the two match-price elasticities, amount received or checkbook,

should one expect to be conceptually the same as the rebate elasticity?—is neither.

Moreover, because warm-glow’s two effects—altering both the substitution effect and the

income effect—push the response to a match in opposite directions, whether a match is more

effective than a rebate in increasing the amount received depends on the sign of Ug

Ri∆
− q2.

If (and only if) warm-glow’s mitigation of the substitution effect is weaker than its income

effect ( Ug

Ri∆
< q2), then equation (10) indicates that the presence of warm-glow makes a

match more effective in increasing the amount received compared to a rebate. This is how

we have become accustomed to thinking about how warm-glow works since Andreoni (1989):

the presence of warm-glow makes interventions more effective. However, here it is possible

that the presence of warm-glow counter-intuitively makes the intervention less effective. In

Section 2C we provide an example that illustrates this possibility.

The non-equivalence demonstrated above indicates that the pure impact model can be

tested straightforwardly: get parallel estimates of em and et, and test their equality. That is

the approach we take in Sections 3 and 4, in a non-experimental setting with a real-world tax

policy. Similarly, previous experimental designs also have used two treatments, one to get em

and the other to get et. Alternatively, pure impact could be tested with a single treatment

that manipulates both pm and pt in different directions so as to hold pm pt constant. This

would be a balanced-budget test of pure impact’s assumption that there is no warm-glow.

To test pure warm-glow, however, a single match treatment on its own is sufficient. The

test is whether em = −1, and evidence that em 6= −1 is sufficient to reject pure warm-glow.

In contrast, evidence that em ≈ −1 would not be sufficient evidence of pure warm-glow,

unless a unit elastic price response et = −1 could also be ruled out. As we will discuss in

Section 5, testing for pure warm-glow has practical significance given the implications of

prior studies for our empirical setting.

Finally, we derive a normative implication of impure impact: the presence of warm-glow
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in the model implies donor welfare is lower under a match compared to a rebate. To prove

this, apply the envelope theorem to the indirect utility function from (4), to determine, first,

the increase in utility following a reduction in the match-price:

∂U∗

∂pm
= (−pt Uc + Ug) Ri (17)

and then the increase in utility following a reduction in the tax-price:

∂U∗

∂pt
= − pm Uc Ri. (18)

The right-hand side of (18) is unambiguously negative. The first-order condition (5) and

UR > 0 imply the right-hand side of (17) is also negative. With pm = pt substitute (18) into

(17):

∂U∗

∂pm
=

∂U∗

∂pt
+ Ug Ri. (19)

The presence of warm-glow Ug > 0 implies | ∂U∗

∂pm
| < |∂U∗

∂pt
|. A match and rebate both increase

donor utility, but the match increases donor utility less. The intuition is that a match

reduces the price of impact, but a rebate reduces the price of both impact and warm-glow.

The resulting difference in donor utility is proportional to the marginal utility of warm-glow.

In contrast, Davis et al. (2006) reason that if checkbook donations are similar under matches

and rebates, then rebates are inferior to matches. That argument focuses on the amount of

funds received by the charity, but the normative result in (19) suggests that donor welfare

should also be considered.

2C. A simple example

We illustrate the impure impact model using a simple example. Consider a quasilinear

utility function:
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U(ci, gi, Ri) = ci +
θ

1 + 1/e

(gγi R(1−γ)
i

θ

)1+ 1/e

(20)

in which the impure impact part, gγi R
(1−γ)
i , is Cobb-Douglas. In this model e is the conven-

tional quasilinear price-elasticity parameter, γ is the weight on warm-glow from the check-

book amount gi relative to impact Ri, and θ is a taste-shifting parameter. Substituting in

the budget constraint ci = yi − τi − pmptRi and noting that gi = pmRi, it is straightforward

to solve for the optimal Ri
∗:

Ri
∗ = θ p−γm

(
pm

1−γ pt

)e
.

The rebate- and match-price elasticities are et = e and em = −1 + (1− γ)(1 + e). If there is

warm-glow, γ 6= 0, and the two elasticities will be different.

Further, it is clear from the example that observations of both em amd et can be used

to test several cases of the model. If γ = 1 the model becomes pure warm-glow and

em = −1, regardless of the value of e. If γ = 0 the model becomes pure impact and em = e,

a possibility that cannot be tested for unless both elasticities were observed: if all that is

observed is em, then all one could say is that is that if the true model is pure impact then

the parameter e would equal em. But to test the pure impact assumption an independent

observation of e is needed, and the rebate elasticity et provides that.

The example also illustrates that the rebate elasticity et equals the conventional price

elasticity e, regardless of the absence or strength of warm-glow. But whether a match is

more effective as preferences are characterized by stronger warm-glow depends on e. If e

is elastic, e < −1 implies (1 + e) < 0, and then the stronger is warm-glow (γ ↑) the less

effective is the match: em gets pushed closer to −1.

Finally, let V denote the indirect utility function. Then it follows that ∂V
∂pm

= (1− γ) ∂V
∂pt

.

Rebates have greater effects on donor welfare than matches, and the difference is greater the

stronger is warm-glow.
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Overall, both this simple example and the more general analysis of the impure impact

model suggest that match- and tax rebate-price elasticities will typically differ, and that

estimating both effects is important for testing different motivations to give. A real-world

version of that testing requires estimating responses to both a match and a rebate for com-

parable donors. We turn to this next.

3. Methods for estimating em and et

3A. The matching environment, the tax credit policy, and the data

There are relatively few studies that compare responses to matches and rebates in the

field (Bekkers, 2015; Eckel and Grossman 2008, 2017; Scharf and Smith, 2015; also see

Kesternich, Löschel, and Römer, 2016), and none that utilizes variation in a rebate created

by tax policy. We will do both. The data are donations made by tens of thousands of

people from 2004 to 2015 to a university located in Indiana. The data contain a (scrambled)

identifier for each donor, alumni status and graduating class, the date of the donation, the

amount, state of residence, and whether the donation was being given jointly with a spouse.

In 2009, a donor from the class of 1960 made a $3 million matching grant to the univer-

sity to support the Class of 1960 Scholarship Endowment. The grant matched one-to-one

donations from members of the 1960 class made in the 19-month period December 1, 2008

through June 30, 2010. This matching environment has features in common with the natu-

ral field experiments that have previously estimated match-price elasticities: the matching

grant occurred in the field and donors did not know that we would use the data they were

generating to estimate their responsiveness to the match. The university development office

has confirmed that there were not any other similar large-scale matches made during the

data period. Note that because the quality of the university is well-known to its alumni, the

offering of a match likely does not function as a quality signal.

The tax policy we investigate is the Indiana Income Tax Credit for Donations to Colleges.
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Indiana income taxpayers who make a donation to any higher education institution located

in Indiana are eligible for the credit. The credit is a reduction in taxes owed, rather than

taxable income, so that (unlike a deduction) the impact of the credit on the price of giving

is the same regardless of taxable income.4 The credit is 50 percent of the donation, up to a

maximum donation of $400 for joint filers. We focus on joint filers.5

Table 1 provides summary statistics of checkbook donations. In the first four rows the

unit of analysis is at the donation-level; this is because estimation of the match-price elasticity

uses within-year variation in the availability of the match (as will be discussed in Section 3B

below). There are over 8,000 donations from the 1960 class alone. The last four rows present

annual donations—all donations made by a donor within a year are added together. Annual

donations are the relevant unit of analysis for estimating the response to the tax policy.

Across all states, and all years, there are 373,994 annual joint donations (made by 84,295

unique donors), of which 41,129 donations were made by donors residing in Indiana (9,873

donors). In the $200–$1,000 range of giving around the kink there are almost 80,000 annual

donations. As reported in the notes to Table 2, there are 7,585 annual joint donations by

Indiana residents between $200 and $1000, and the mean of these donations is $383, which

is close to the $374 mean among donors in all states (row 8). We use donations in the

$200-$1000 range for the baseline kink-based approaches, although results are not sensitive

4Donations used for the credit can also be deducted from federal taxable income. However, we show
in Appendix A.4 that because the tax credit lowers state income taxes paid, and state income tax is it-
self deductible from federal taxable income, the combined federal-state price is the product of the federal
deduction-price and the state credit-price; the implication is that percentage changes in the state credit-price,
and the elasticity estimate based on them, are unaffected by federal deductibility.

5We focus on joint donations for two reasons. First, for most of the years of the data (2007 and after)
the donation amount needed to enter a lottery for football tickets was $200, exactly the location of the tax
credit cap for singles. Hence, for singles, bunching at $200 in response to the tax policy cannot be separated
from bunching at $200 to enter the football lottery. The football lottery-kink at $200, however, does not
affect the elasticities estimated from joint donations (in Appendix A.8 Tables AT2 and AT3 we redo the
estimates for joint donations that did not face this $200 lottery-kink and those estimates are similar to the
main estimates). Second, in the data, although “joint” necessarily means “married”, “non-joint” can mean
either single or that marital status is missing or that the donation was made by a corporation or other legal
entity.
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to changing the range.6,7

3B. Difference-in-differences estimation of the match-price elasticity

We compare the giving behavior of alumni from the 1960 class to the giving behavior

of other alumni who were ineligible for the match, before, during, and after the 19-month

match period. The approach is difference-in-differences, although unlike standard diff-in-diff

the treatment turns both on and off over time. The baseline specification is:

log Risctm = δ matchictm + Xictm βX + φc + ϕt + λm + ε (21)

where i lives in state s, is an alumni of class c, and makes the donation in year t, month

m. The dependent variable is the logarithm of the amount received Ri = (1 + m) gi by

the university based on each individual i ’s checkbook donation gi. The variable of interest

“matchictm” is a dummy that equals unity from December 1, 2008 to June 30, 2010, for c

= 1960 class, and zero otherwise. The φc, ϕt, and λm represent class, year-of-donation, and

month-of-donation dummy variables, capturing variation in donations across classes, trends

in donations across years, and seasonal variation within a year.

The match period includes the class of 1960’s 50th anniversary, or more specifically, the

first six months of the year in which the anniversary occurs. To control for natural increases

6The data consist of donations to one university, but an Indiana donor could give to more than one
higher education institution. The schedule on which this credit is claimed requires individuals to list the
different schools in Indiana that they have donated to. While that information is not publicly available, we
have consulted with officials at the Indiana Department of Revenue, and they have told us that the vast
majority of credits claimed—on the order of 90 percent—are for donations made to a single school, so that
this multiple-school donation concern should not affect the results. Also, because the second of our two new
kink methods exploits giving behavior in other states, it should net out any common two-school-donation
behavior among donors across states, and results from this method are very similar to the estimates from
the other kink methods.

7Using the 2005, 2007, and 2009 waves of the Philanthropy Panel Study, the generosity module within
the Panel Study of Income Dynamics (PSID), Indiana donors to educational institutions can be placed in
the context of general American giving. Indiana residents who donate to education resemble in their overall
giving the sample of PSID donors who give over $1,000 per year in total. Average total donations for the
former group are $4,403, and for the latter group are $4,401. The sample of $1,000+ per-year donors give
about 80 percent of all donations measured in the PSID. Below we compare results from our sample to
results from other studies.
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in donations that occur at significant anniversaries, the X regressors include dummies for

25, 50, and 75 years following a class’s graduation. Because the match was available for 13

months prior to the start of the 1960 class’s 50th anniversary calendar year and lasted only for

the first six months of 2010, we also include in X a “placebo match” variable that switches

on 13 months before each class’s 50th anniversary begins, and changes back to zero in July

of the class’s 50th anniversary year. The placebo match thus controls for any tendency for

donations from the other classes to increase in the 19-month time period around their 50th

anniversaries corresponding to the 19-month match period for the 1960 class.

The coefficient of interest δ represents the percentage change in the amount received in

response to the match. δ̂ is converted to a match-price elasticity êm :

êm = − δ̂

(p1 − pm)/
(

(p1+pm)
2

) (22)

where p1 = 1 is the non-match price. Because each observation in this specification cor-

responds to a separate donation, the estimates are identified off of the intensive margin:

the estimated elasticity is the percentage change in the amount received in response to a

percentage change in price, conditional on making a donation. To obtain an estimate that

also includes the extensive margin, we consider a second dependent variable: the amount

received by the university aggregated into class × state × month × year cells (logged). In

this case δ is the percentage change in amount received in response to the match and will

pick up any effect of the match on the number of checkbook donations being made.

Finally, we check robustness to the inclusion of state dummies, and to the inclusion of

a set of interaction state-by-year dummies λst and month-by-year dummies ϕtm; the latter

subsume the ϕt and λm dummies in (21). The interactions flexibly control for year patterns

by state and secular year patterns by month.
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3C. Kink-based estimation of the compensated tax-price elasticity

The kink-based estimation approaches we use can be understood from the perspective of

two different counterfactuals. The Saez (2010) and Kleven and Waseem (2013) estimators,

applied to our setting, are based on an ”extended credit” counterfactual where the credit is

kept in place but the cap at $400 is removed, thereby extending the credit to larger donated

amounts. The first new approach we introduce also is based on this counterfactual. In prin-

ciple these approaches estimate a compensated tax-price elasticity. The second approach we

introduce is based on a different, “unavailable credit” counterfactual—What would happen

if the Indiana credit were entirely removed, as is the case in the real-world non-Indiana

states?—and in principle estimates an uncompensated tax-price elasticity. We discuss each

counterfactual and its accompanying methodology in turn.

To simplify the discussion of the first counterfactual we set aside utility over the charity’s

exogenous output (R−i ≡ 0⇒ R = Ri), and note that in the absence of matching (pm = 1;

Ri = gi) utility can be written in terms of ci and Ri and the budget constraint (3) becomes

ci + pt Ri = yi − τi. The tax credit induces pt < 1; however the credit is capped at

Rk (e.g., $400), creating a convex kink in the budget constraint as shown in Figure 1. In

the first counterfactual where the credit is not capped, the budget line would continue to

include the solid line below Rk but would then extend to the dashed straight line above Rk.

Begin with this straight-line budget and imagine the government intervening to introduce

the cap: the individual furthest above Rk on the dashed line, who subsequently bunches at

Rk after the cap is introduced, is depicted at the equilibrium bundle B. Individual B will

have an indifference curve tangent to the upper part of the kink at point K, after the

cap is introduced. For individual B, the creation of the kink by capping the tax credit is

approximately a compensated price increase, Rb−Rk ≈ Rb−Rc, if B’s income effect is small.

Other individuals whose R∗
i would be along the counterfactual dashed budget line ∈ (Rk, Rb)

would also bunch at the kink.

The “bunching interval” Rb−Rk and the price elasticity of Ri can be estimated from the
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data. Following Saez (2010) we take the representation of preferences in (20), which given the

above conditions becomes U(ci, Ri; θ) = ci + θ
1+1/e

(
Ri

θ

)1+1/e
where as before e is the price

elasticity of Ri and θ is a smoothly-distributed taste parameter describing heterogeneous

preferences for Ri.
8 Maximize this utility with respect to ci + pt Ri = yi − τi, and it

can be shown that (see Appendix A.5):

β ∼=
hR−

k
+ hR+

k

(
pe1
pe0

)
2

Rk

(
pe0
pe1
− 1

)
(23)

where β is the fraction who bunch at the kink, p0 < 1 is the initial credit-induced low price

of donations that rises to p1 = 1 above Rk, hR−
k

is the limit of the density of donations

as R approaches Rk from below, and hR+
k

is the limit of the density as R approaches Rk

from above. The limits hR−
k

and hR−
k

are from the observed density of donations and the

policy parameters Rk and pt are known. Then if one has an estimate of bunching at the

kink β, equation (23) can be solved for the elasticity e. The width of the bunching interval

is estimated by Rk

(
pe0
pe1
− 1
)

.

We will estimate β using three different methods: nearest neighbor (following Saez, 2010),

polynomial (following Kleven and Waseem, 2013), and our first new approach, that we call

nearest round neighbor. The methods differ according to the identifying assumption made

about how many donors would have located at the kink location in the counterfactual case

where the credit is not capped at $400. The nearest neighbor method assumes that the

counterfactual fraction of donors at $400 would have looked like the average of the two

fractions of donors just below and just above the kink: center a bin of bandwidth w at $400,

form one bin below this and one bin above (both of width w), and estimate the regression:

fb = a+ βdb=400 + ε (24)

where fb is the fraction of donors at bin b, db=400 is a dummy indicating the bin centered at

8The second new estimator we introduce below makes no functional form assumption on preferences.
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$400 and ε is noise. The coefficient â estimates the counterfactual fraction at the kink and

the coefficient β̂ estimates bunching at $400 due to the kink.9

When the kink is located at a round number like $400, the nearest neighbor method

cannot avoid capturing in its estimate of bunching at the kink the tendency for people to

make donations at round numbers of $100s, a tendency that has nothing to do with tax policy.

This would bias the estimated elasticity away from zero. Applying Kleven and Waseem’s

(2013) polynomial method addresses this round-number bunching by using dummy variables

to indicate a donation amount at any multiple of $100. Accounting for average donations at

multiples of $100 necessarily involves moving away from “near” neighboring bins. Therefore,

in addition to the dummy indicator for $100s, Kleven and Waseem identify the counterfactual

fraction of donors at the kink by assuming that the “regular” counterfactual pattern of the

distribution can be captured by a third-order polynomial (Chetty, Friedman, Olsen and

Pistaferri, 2011 use a similar approach):

fb = a+ βdb=400 + ϕdb at 100s +
3∑
j=1

ωj
bj

10j−1 + ε (25)

where db at 100s is a dummy indicating that bin b is a multiple of $100. Although not shown

in (25), the regression also includes round number dummies for donations ending in $25 and

$50. In (25), as in (24), the counterfactual fraction at the kink is estimated by the prediction

of the regression with db=400 set to zero, and β̂ estimates bunching at the kink. Of course,

consistent estimation is based on the regression functional form in (25) being correct in the

sense that it adequately captures the shape of the counterfactual fractions across the bins.

We developed the nearest round neighbor method to combine the focus on bins that are

relatively near the kink, as in Saez (2010), with the recognition that some portion of the

fraction at $400 is there because people tend to make donations at round numbers, as in

9Using three bins of equal width w is slightly different than Saez’s (2010) use of a bin centered on the
kink with a width of 2w rather than w. We use equal-width bins so that “bandwidth” is defined the same
across the three methods presented in this section. Appendix A.6 shows that using a centered bin twice as
wide produces similar but somewhat smaller elasticity estimates.
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Kleven and Waseem (2013). The idea is to estimate the counterfactual fraction at $400 using

the fractions at $300 and $500, denoted f300 and f500. An advantage of the nearest round

neighbor method is that a weak identifying assumption—that the counterfactual fractions

are monotonically decreasing near the kink—is sufficient to identify lower and upper bounds

on the elasticity. For the lower bound: in the extreme case where the counterfactual was a

flat line from $300 to $400, the counterfactual fraction at $400 would be simply the observed

fraction at $300 (f cf400 = f300). The estimate of bunching at the kink is then:

β̂ = f400 − f cf400. (26)

With decreasing counterfactual fractions, using the fraction at $300 for the counterfactual

would thus provide a lower bound estimate of β and hence a lower bound estimate of the

elasticity. Likewise, taking the counterfactual fraction at $400 to be the observed fraction

at $500 adjusted by pe1/p
e
t (f cf400 = f500 (pe1/p

e
t )), and applying (26), would lead to an upper

bound estimate of the elasticity.10 We also estimate the elasticity using a linearly interpolated

estimate of the counterfactual fraction locating at the kink: f cf400 = 1
2

[f300+f500 (pe1/p
e
0)].11

3D. Kink-based estimation of the uncompensated tax-price elasticity:

A second counterfactual

Our second approach uses data from the non-Indiana states, in which donors face neither

the credit nor the kink, as “controls”. The approach is based on a different counterfactual

10The observed density below the kink matches what the counterfactual density would be in the absence
of the cap, but the observed density above the kink (with the cap in place) does not. Although in many
applications this discrepancy can be ignored (see Kleven, 2016), it is straightforward to adjust the nearest
round neighbor method to take it into account. The adjustment is the same as was used in equation (23) to
convert the observed density above the kink, hR+

k
, to the counterfactual density (see Appendix A.5).

11Although monotonically decreasing fractions continuously from $300 to $500 is sufficient to identify these
lower and upper bounds, all that is necessary is that in the counterfactual, f 300 ≥ f 400 ≥ f 500, i.e., only that
the fraction decreases point-to-point from $300 to $400 and that the fraction decreases point-to-point $400
to $500. If the counterfactual was increasing, so that the fraction at $300 was smaller than the fraction at
$500, the bounds would be upper and lower, respectively, and the identifying assumption would be f 300 ≤
f 400 ≤ f 500 in the counterfactual.
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in which the credit is unavailable for all donations, as in the non-Indiana states.

Figure 2 shows that this approach based on the unavailable credit counterfactual esti-

mates an uncompensated elasticity. Under normality, anyone who gives at least Rk in the

absence of the credit+kink will stay at an interior solution with giving greater than Rk once

the credit+kink is introduced. This means that bunching at the kink will come entirely from

individuals who would, were the credit to be eliminated, move from the kink to some lower

level of giving below Rk. Consider individual K at the kink; this is the donor whose dona-

tions fall by the most after the kink is eliminated. This individual’s non-kink equilibrium

bundle is represented by the equilibrium S in Figure 2. This individual’s indifference curve

at K is tangent to the lower edge (with slope = −1/pt) of the kink after the credit+kink is

introduced. Because individual K at the kink would relocate to a solution below the kink

under the counterfactual, the difference Rk −Rs is an uncompensated price effect.

Two questions arise: How can a single kink capture both bunching from above (Figure

1) and bunching from below (Figure 2), and does bunching from below bias the estimate of

the compensated elasticity discussed in Section 4B? The important point to recall is that

Figures 1 and 2 represent two entirely different counterfactuals. It is possible that the same

individual would give at the kink and would give more if the credit were extended as in

Figure 1 (hence she “bunches from above” in Figure 1), but would give less if the credit were

eliminated as in Figure 2 (hence she “bunches from below” in Figure 2).12

The uncompensated elasticity approach has several benefits. First, if one assumes the

distribution of giving in control states can serve as a counterfactual for giving in Indiana

(which we discuss momentarily), it is possible to estimate the location of S without any

specified utility function at all. Second, because the target of estimation is an uncompensated

elasticity that by design includes any income effect, both large-price-change kinks and small-

price-change kinks should uncover the uncompensated elasticity well. Third, the approach

12In fact, under quasilinear utility it is straightforward to show that the set of θ ∈ [θmin, θmax] individuals
who bunch at the kink is identical in the two counterfactuals. θmax is the individual who would increase
her giving the most if the credit were extended, and θmin is the individual who would reduce his giving the
most if the credit were eliminated.
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can easily accommodate round number bunching. Fourth, as the observed counterfactual

distribution of giving is directly observed, this method avoids concerns about the estimation

of this distribution raised by Blomquist and Newey (2017) and Bertanha, McCallum, and

Seegert (2018). Indeed the estimates under this method can be compared to those using the

standard bunching methods below.

Our method for estimating the uncompensated elasticity involves finding the marginal

buncher who would reduce his giving the most in a counterfactual where the credit is elimi-

nated, and then using his level of giving to estimate the elasticity. Consider the population

of donors in Indiana who make donations in a certain range around the kink, Θ = [R, R],

where R < Rk < R. Let f be the fraction of donors in the Θ range that are below Rk, so

that the percentile value of the marginal donor in Indiana just below the kink is ρ = 100 * f.

This donor is the person whose θ (and giving level) is just below individual θmin, that is, the

individual K at the kink in Figure 2 who would reduce his giving the most if the credit were

eliminated. Then we take the set of donors residing in the control states who give amounts

in the Θ range, find the ρ–percentile donor, and use that donor’s giving amount R(ρ) as an

estimate of what the marginal donor in Indiana would give in the counterfactual where the

credit is eliminated.13 The arc (uncompensated) elasticity of giving is then:

êun
t =

[Rk −R(ρ)]/[(Rk +R(ρ))/2]

[p1 − p0]/[(p1 + p0)/2]
(27)

The greater the bunching at the kink in Indiana, the lower the percentile value ρ of the

Indiana donor just below the kink, consequently the lower will be the amount R(ρ) from the

control states, and the larger will be êun
t .14

13As a concrete example, consider gifts from $201 to $1000, so that Θ = [201, 1000]. For gifts in Indiana,
a gift of $399 would be the ρ = 49.4th percentile of gifts in this range. Outside of Indiana, the ρ = 49.4-
percentile level of giving in this range is R(ρ) = $335.

14We investigated the presence of credits in other states for donations to the university located in Indiana,
and cannot identify any other credit in these states that would bias the results. If there were a set of control
states that offered an uncapped credit for donations, we could use them and the percentile-based approach
to estimate the marginal individual bunching from above the kink and thereby estimate the compensated
elasticity; this would be an alternative to the kink methods described in Section 3C. Without such a set of
control states, this percentile method will estimate the uncompensated elasticity below the kink.
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The baseline estimate pools donors in the Θ range from all control states to find R(ρ).

The identifying assumption is that donors in other states can be used to study giving behavior

in Indiana in the absence of a state tax credit. The data come from a school in Indiana,

so that donors in Indiana not only face a credit, but include alumni who stay in-state

after graduation; it is possible that alumni residing in the other states differ in unobserved

ways. Accordingly, we do several checks intended to diagnose problems with the identifying

assumption.

First, we solicited qualitative information from university administrators who work closely

with alumni and donors. The administrators report that donors in Indiana are, in terms of

age, income, and “school spirit,” similar to donors in other states. This qualitative indicator

of similarity, like any check of an identifying assumption, is a necessary though not sufficient

condition.

Second, to the extent that there is heterogeneity across states in how similar their donors

are to Indiana donors, we can exploit variation in the Rj(ρ) amounts from the j = 1, . .

., Nstates separate states to construct “heterogeneity lower and upper bounds”. To do this,

find the ρ–percentile donor in each state separately, and form a set of those {Rj(ρ); j =

1, 2, ..., Nstates, j 6= Indiana}. The smallest Rj(ρ) amount from this set, when used in (27),

will produce the largest êun
t from among the control states. At the other extreme, the largest

Rj(ρ) amount from this set will produce the smallest êun
t . The smallest and largest êun

t s

estimated in this way are the lower and upper bounds constructed from the full range of

heterogeneity across the states. Using the smallest-to-largest êun
t interval to bracket the

uncompensated elasticity involves a much weaker identifying assumption: that at least one

state in that interval can serve as a control state for Indiana.

Third, if unobserved heterogeneity causes differences in the giving of donors in Indiana

compared to the giving of donors in other states—for example, if in-state alumni were es-

pecially fervent supporters of the university and especially generous donors—then it would

be likely that we would find a nonzero spurious elasticity at some other location above the
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kink, say at $500—or even at $401. We check for this possibility by redoing the estimation

using a series of “placebo kinks” above the true kink.

However, unobserved heterogeneity would not be the only possible interpretation of a

sizable “elasticity” at a placebo kink above the true kink; an alternative interpretation

would be that the tax credit produces a large income effect. To understand why, return to

the first counterfactual depicted in Figure 1 and note that a portion of the budget constraint

(the part below the kink) is exactly the same both before and after the kink is introduced.

But that is not true in the second counterfactual: in Figure 2 the donors in Indiana are

always on a different budget line than those in the control states. In this figure, for a person

in Indiana giving slightly above the kink, say $450, the tax credit works as a pure income

effect. For this Indiana donor, the price of donating one extra dollar is the same as it would

be in any other state—but the Indiana donor has $200 more income than she would in the

control states because she qualifies for the $200 Indiana credit. Now assume for the moment

that there are no income effects at all; then the Indiana donor would be unresponsive to the

$200 income shock created by the credit, and would give the same $450 even if the credit

were eliminated. This argument holds not just for $450 but for any value of giving above

$400: in the case of no income effects, the distribution of donors giving more than $400 in

Indiana would match the distribution of donors giving more than $400 in the control states

(it is straightforward to verify this in the quasilinear model; see Appendix A.7). Relaxing the

assumption of no income effects: if income effects are positive but small, the distributions

of giving in Indiana and the control states should be similar and a placebo kink above the

true kink should return a near-zero estimate.

We interpret placebo kink checks as primarily informative about heterogeneity because

our prior expectation is that income effects in this giving environment are likely small,

because the $200 income shock is a very small percentage change in donors’ incomes. Alter-

natively, if one expects large income effects, a sizable “elasticity” at a placebo kink would

be indicative of either unobserved heterogeneity or a sizable income effect or both. In any
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event, elasticities near zero at placebo kinks above the true kink, combined with an elasticity

estimate at the true kink similar in magnitude to the compensated elasticity estimates from

Section 3C, would suggest the êun
t results are being driven by bunching at the tax kink and

not by heterogeneity in unobservables or by large income effects.15

Finally, the identifying assumption for the second counterfactual is qualitatively different

from the identifying assumptions used in the variety of Section 3C kink methods which do

not use control state information in any way. Summarizing then, although the identification

assumption in (27) should be kept in mind while thinking about the êun
t estimates, we can

bound eun
t under a weak identifying assumption, carry out strong tests of robustness using

placebo kinks, and compare êun
t to the Section 3C estimates of the compensated elasticity

that rely on qualitatively different identifying assumptions.

4. Parallel em and et estimates

4A. Estimates of em

Figure 3 presents simple visual evidence of the response to the matching grant. For the

1960 class we aggregate the amounts received by the university in each month, take the log,

and smooth the data for the figure by averaging the logged amounts received over six month

periods from 2007 through 2012. Because December 2008 is the first month of the match, it

is averaged in with the first half of 2009. We do the same thing for the nearby control classes

1954 to 1959 and 1961 to 1965, averaging the log of aggregate monthly amounts received for

these classes over each six month period. Figure 3 plots the difference: that is, 1960-class

giving minus giving from other nearby classes.16

15Below the kink, interpretation of placebo estimates is more complicated, even if income effects are zero.
It can be shown that for placebo kinks at a distance below the true kink (e.g., placebo kinks at $200 or $250)
the “elasticity” estimate should be close to zero, but as the placebo kink location approaches the true kink
from below (e.g., at $390) the placebo “elasticity” approaches the true elasticity (see Appendix A.7); this
pattern is confirmed in the data. We focus on placebo locations above the kink because placebos above the
kink provide a sharper robustness test of unobserved heterogeneity.

16To facilitate comparison with the tax-rebate elasticities to be estimated below, we focus on joint donations
in nominal dollars. Because the treatment varies by graduation class, the sample is restricted to alumni.
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There is a clear spike in the amount received from the 1960 class relative to the nearby

classes during the period of the match, especially in the first half of 2010. After the match

switches off, the amounts received from the 1960 class once again resemble unmatched do-

nations from the nearby classes.

In Table 2 we use this response to estimate a match-price elasticity. The dependent

variable is the log amount received by the university from each separate checkbook donation.

The first row estimates are the matching-treatment dummies, δ, from Section 3B equation

(21). The second row converts the δ into an elasticity as described in equation (22). Each

regression includes class, year, and month dummies. Moving left to right across the columns

adds state dummies and different controls for trends. The standard errors are clustered by

graduating class. The baseline δ̂ in column 1 suggests about an 84 percent increase in the

size of the amount received from any checkbook donation made when the match is available,

which is similar to the overall implied effect in Figure 3. The implied elasticity is −1.265

(s.e. = .074). Column 2 adds month-by-year dummies, column 3 adds state-of-residence

dummies, and column 4 adds state-by-year dummies; in each specification the estimates are

similar to baseline. Column 5 includes class-specific year trends. Unsurprisingly, given the

identifying source of variation in the data, the estimates are quite similar with these controls.

In Table 3 the dependent variable is the amount received aggregated into class × state

× month × year cells (then logged). Because the difference between states captures the

difference between the number of donations coming from each state, as well as the difference

between the amount received per donation in each state, the estimates combine both exten-

sive and intensive margin changes in response to the match. The baseline elasticity estimate

is −1.208 (.095). The results are similar across the specifications.17 The last column inves-

tigates how the total amount received of the 1960 class changes after the match switches

Similar estimates are produced if these restrictions are relaxed.
17The similarity of the results in Tables 2 and 3 implies that the match did not increase the number of

donations. Appendix A.8 Table AT1 confirms this by estimating models in which the dependent variable
is the number of donations. Hence, extensive margin results indicate that the match was ineffective at
encouraging “cold donors” (alumni who after approximately 50 years were not giving to their alma mater)
to start giving.
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off. The model is the month-by-year specification from column 2, plus a new dummy vari-

able that equals one in the 12-month period following the match. The coefficient on the

new dummy is essentially zero, and precisely estimated: after the match switched off, the

donation behavior of the 1960 class cannot be distinguished from that of other classes. As

in Figure 3, there does not appear to be a long-term increase, or decline, in donations after

the match ends.

4B. Estimates of et: Compensated

Figure 4 provides graphical evidence about the nature of bunching at the kink. The

figure presents a histogram of joint dontions between $200 and $700, in bins of $10, for

donors from Indiana (grey bars) and elsewhere (clear bars). Even in this somewhat narrow

range of donation amounts there are over 7,000 donors in Indiana alone. While both groups

see much higher densities of giving at $400 than $10 above or below that amount, the figure

shows evidence of particularly large bunching for those in Indiana compared to other states.

The pattern of declining densities at multiples of $100 is broken at $400 in Indiana, but not

so in other states. Hence, a simple visual inspection suggests that the tax incentive at least

to some extent “matters” in Indiana. In this section we use the excess bunching in Indiana

to estimate the compensated tax rebate-price elasticity.

Table 4 presents results using the three methods described in Section 3C. Row 1 begins

with the nearest round neighbor method from equation (26). The first column presents the

lower bound estimate where the counterfactual is based on the fraction giving at $300. The

last column shows the upper bound estimate using $500 as the counterfactual, and the middle

column is the linearly-interpolated counterfactual. The lower bound estimate is −.121. The

upper bound estimate is −.293. Both estimates have small standard errors (.021, .033). The

-.121 to −.293 range is fairly narrow; that is, the lower and upper bounds are informative.

The point estimate of the elasticity in the middle column is −.197 (.024); the 95% confidence

interval is −.150 to −.243.

30



Row 2 presents the nearest neighbor estimate developed by Saez when a bandwidth of $25

is used: -.465 (.036). It is important to understand why this estimate is larger (more negative)

than the nearest round neighbor estimates in row 1. First, note that with a bandwidth of

$25, the estimate in row 2 is comparable to a nearest round neighbor estimate that uses

mass points at $375 and $425 instead of $300 and $500. Second, the fractions of donors

at $375 and $425 are very small and not typical of donation amounts that are multiples of

$100, as can be seen upon examination of Figure 3. Therefore the row 2 estimate confounds

bunching at the kink because of the tax policy with the greater tendency to donate at $400

because it is a multiple of $100. When the nearest neighbor bandwidth is expanded to $50

(row 3), so that the neighbor below the kink includes the mass point at the round number

$350 (as well as the mass point at $375) and the neighbor above the kink includes the mass

point at round number $450 (as well as the mass point at $425), the estimate falls to -.290

(.019). Obviously, though, all these estimates are far below the em estimates in Tables 3 and

4. The polynomial method is presented in row 4. The elasticity estimate is -.259 (.022).18

Rows 5-8 return to the nearest round neighbor method and examine its sensitivity to

various estimation choices. Row 5 doubles the bandwidth used to estimate the counterfactual

density below and above the kink; the change in estimates is negligible compared to the

baseline in row 1. Row 6 doubles to $50 the width of the bins into which we put the

donation amounts; the resulting estimates are smaller magnitude, the lower bound not being

significantly different from zero. Row 7 uses the mass point at $250 (in place of the mass

point at $300) in the estimation of counterfactual fraction who choose the kink because the

18The polynomial estimate was produced using donation amounts from $200 to $999, a range we selected
out of concern that large mass points at amounts outside that range (at $25, $50, $100 and $1,000) may
distort the polynomial from accurately capturing the counterfactual pattern of the distribution around $400.
Accordingly, we examined the sensitivity of this method to the choice of range: expanding the range to the
left to include $100, $50 and $25, and expanding the range to the right to include $1,000 and $1,500, as well as
doing sensitivity analyses of other estimation choices: doubling the bandwidth, doubling the bin width, using
different polynomials (linear through fifth-order), using no polynomial (i.e., using just the round number
dummies), using only the bins at multiples of $100, and “dummying out” the football lottery-influenced
mass point at $200 so that it does not contribute to forming the counterfactual fraction at the kink. These
sensitivity tests produced a range of estimates that in no case changed the substantive findings of the table:
the smallest magnitude was −.017 (s.e. = .018; using a linear polynomial) and the largest −.369 (s.e. =
.026; using a fourth-order polynomial).
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kink is at a round number: the linearly interpolated estimate is smaller (−.136), the lower

bound is essentially zero, and the upper bound is, of course, unaffected. Row 8 uses the

mass point at $600 (in place of the mass point at $500). The resulting linearly interpolated

estimate (−.231) is not much different than baseline, but the upper bound estimate (−.477)

is larger. This upper bound estimate based on the fraction at $600 is a more conservative

upper bound because the upper bound based on the fraction at $500 (row 1) may capture

a tendency to give in multiples of $500, over and above the tendency to give in multiples of

$100. In any event, the main conclusion from Table 3 remains: regardless of which estimator

we use, the elasticity estimates reflect evidence of clear bunching but are uniformly inelastic

and smaller than .50 in magnitude.

Table 5 subjects the nearest round neighbor method to a series of placebo tests. Each row

provides estimates of “elasticities” at the placebo kink listed in column 1. For example, row

1 shows the elasticity estimates from a placebo kink at $300, using mass points at $250 and

$500 as the nearest round neighbors. The lower bound and linearly interpolated estimates

are nonsensically positive, and the upper bound is a very small −.096. Row 2 examines a

placebo kink at $500: the lower bound estimate is positive, the linearly interpolated estimate

is −.110, and the upper bound is −.240. These larger negative placebo results are consistent

with the point raised in the previous paragraph that the fraction at $500 may capture a

tendency to give in multiples of $500 over and above the tendency to give in multiples

of $100. The six remaining linearly interpolated estimates in rows 3-8 include two that are

negative but small (−.078 and −.084) and four that are positive. The remaining upper bound

estimates include two that are positive and four that range from −.059 to −.166, magnitudes

much smaller than Table 2’s −.293 baseline upper bound and −.477 more conservative upper

bound. In short, these tests indicate that the estimates based on the mass point at the $400

kink are picking up more than just a placebo.

In summary, the estimates suggest a compensated tax-price elasticity between −.121 and

−.293, with a more conservative upper bound estimate of about −.477. Estimates from
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nearest neighbor (−.290) and polynomial (−.259) methods are smaller in magnitude than

the conservative upper bound. The standard errors on these estimates are fairly small.

4C. Estimates of et: Uncompensated

Table 6 provides uncompensated elasticity estimates as discussed in Section 3D and equa-

tion (27). The table focuses on a Θ = [$201, $1,000] range around the kink, but the results

are similar using alternate ranges (see Appendix A.8 Table AT3). The baseline elasticity es-

timate is −.265 (.042); the 95% confidence interval is −.183 to −.347. Rows 2 and 3 present

the heterogeneity lower and upper bounds: from zero to −.429. The overall similarity of

these results with Section 4B’s compensated elasticity estimates suggests that income effects

do not create dramatic differences between the uncompensated and compensated elasticities.

Rows 4 (a)-(d) test the sensitivity of the control state identifying assumption by looking

for “elasticities” at placebo kinks above the true kink. If the distribution of donations in

Indiana differs from other states in a way that biases the estimates in rows (1)-(3), then we

would also expect to see this bias leading to spurious estimates not only at the true $400 kink,

but at other amounts above this kink as well. In row 4(a) going just one dollar above the

real kink reveals a strikingly different estimate. The estimate in this case is a wrong-signed

.069 and insignificantly different from zero. The estimates remain close to zero at placebo

locations farther above the kink. These results thus show that the uncompensated elasticity

estimates are local to the true kink, and that when looking at other donation levels close to

but not precisely at the kink, the distribution of donations is similar in Indiana compared to

the control states. This does not support a heterogeneity story where donors in Indiana are

simply more generous at all levels of giving, but does indicate that the estimates are driven

by bunching precisely at the kink.

To summarize, the estimates indicate an uncompensated tax-price elasticity that is inelas-

tic, small and precisely estimated. The estimates are close in magnitude to the compensated

elasticity estimates from Section 4B. Hence, kink-based approaches based on two different
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counterfactuals produce tax-price elasticities that are similar to each other, but are both

much smaller than the match-price elasticity. In the next section we discuss implications of

these estimates.

5. Discussion

The empirical work in Section 4 indicates a large, elastic response of the amount received

by the university to a match, but a small, inelastic response to a rebate. Using the baseline

estimates of em = −1.208 from Table 3 and et = −.197 from Table 4, the estimated difference

is −1.208− (−.197) = −1.01 (bootstrapped s.e. = .0908). The difference between em and et

is large in magnitude and highly significant. We can therefore unambiguously reject the pure

impact model’s prediction that the match and rebate elasticities are equivalent. We can also

reject the pure warm-glow model; that model predicts the amount received in response to

a match is mechanically unit elastic because donors do not change their checkbook amount

at all. However, the estimates from Table 3 (e.g., the baseline em = −1.208, s.e. = .095)

reject em = −1. In other words, despite this being a setting with many donors and a large

amount being given to the public good—a setting which might be expected to produce, on

the margin, a response indistinguishable from pure warm-glow—there is evidence that on

the margin donors are still influenced by the match. This evidence, combined with the non-

equivalence evidence that implies donors also care about about their checkbook giving, is

consistent with donors getting utility from both the amount the university receives because

of their checkbook donation and the checkbook amount itself—the impure impact model

developed in Section 2.

Vesterlund (2016) notes that only one paper in the prior literature, by Davis (2006), man-

ages to undertake a treatment that leads to similar match and rebate effects on donations.

That treatment is based on the idea that donors may “isolate on the amount presented to

be divided” between oneself and the public good. By changing the framing of the decisions,
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donors’ focus can be shifted from the checkbook amount to the impact amount, and rebates

and matches can have similar effects.19 Isolation thus relies on the impure impact models’

two key components gi and Ri. However, while donors may sometimes be induced to iso-

late their attention on just gi or Ri, in the empirical setting we investigate both effects are

operative.20

Moreover, the large but different from −1 match elasticities estimated in Section 4A

are in line with results from previous match studies. For instance, Karlan and List’s (2007)

field experiment estimated a checkbook elasticity of about −.3, implying an amount received

elasticity of about −1.3. Across a series of papers, including the first to produce experimental

evidence of non-equivalence, Eckel and Grossman have found match elasticites ranging from

−1.05 to −2.6 (2003, 2006a, 2008, 2017). Scharf and Smith’s (2015) analysis of taxpayers’

intended responses to an increase in the match indicated an elasticity of −1.45.21 Other

studies report similarly elastic responses (e.g., Lukas, Grossman, and Eckel 2010; Kesternich,

Löschel, and Römer 2016).22

19A related explanation is offered by Scharf and Smith (2015). They further point out that it is reasonable
to think that short-run responses at work in experiments could be different from long-run responses to
matches and rebates, as over time donors adjust to incentives. This is further motivation for the empirical
results, because the match we investigate caused a 50 percent reduction in pm and donors had 19 months to
become accustomed to it, and the tax credit caused a 50 percent pt reduction and has been in place for five
decades.

20Additionally, work such as Lukas, Grossman, and Eckel (2010) notes that an implication of isolation
theory is that donors should be unresponsive to all match sizes. Although there is evidence that donors
do appear to eventually become unresponsive as matches become large (Karlan and List, 2007), there also
is evidence that variation in small matches can matter (e.g., see Huck, Rasul, and Shephard, 2015). As
discussed below, the impure impact model is compatible with both findings.

21Huck and Rasul (2011) estimate a positive checkbook elasticity (e.g., for pm = .50, the elasticity is +.211),
and argue that the difference compared to prior experiments’ negative checkbook elasticities is because the
Huck and Rasul design nets out a leadership gift effect: simply knowing that there is a leadership gift,
even if it is not a matching grant, encourages people to donate. The design in prior experiments produces
elasticities that would implicitly include any leadership gift effect. When Huck and Rasul replicate this prior
design so that their elasticity estimate also includes the standard leadership gift effect, the estimates are
comparable with the checkbook elasticities from prior experiments (see the discussion of Table 3 in their
paper). Like prior match studies, the match-price elasticity we estimate implicitly includes any leadership
effect, so the present estimates are compatible with the prior studies. And, of course, the model in Section
2 allows individuals to have different preferences over checkbook, matching, and leadership gifts.

22Situating this result in the non-experimental tax-price literature is less straightforward because that
literature has produced a wide range of findings, so that any number produced will be close to some previous
papers but not others. Papers reporting inelastic estimates include Barrett, McGuirk, and Steinberg (1997),
Kingma (1989), Bradley, Holden, and McClelland (2005), Randolph (1995), and Almunia, Lockwood, and
Scharf (2018). Perhaps most notably, Fack and Landais (2010) estimate a tax-price elasticity reasonably
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The theory from Section 2 implies that estimates of the rebate elasticity, but not the

match elasticity, can be used to estimate the compensated price elasticity of giving. The

empirical results from Section 4 lead to two such estimates. First, the estimates in Section

4B directly produce compensated elasticities, and as discussed above, the baseline estimates

among these is −.197. Second, Section 4C’s baseline uncompensated estimate (−.265 from

Table 6) can be combined with the Slutsky decomposition from equation (12) and an esti-

mate of the income effect to produce a compensated elasticity. List (2011) shows that the

proportion of income spent on charitable giving appears reasonably steady across income

levels and time, at about three percent. So, setting the income effect q1 = .03 and prices

to unity leads to an estimate of the compensated elasticity of −.265 + .03 = −.235. Thus,

two different methods of estimating compensated effects—one from direct estimation and

the other from a Slutsky decomposition making no additional assumptions about utility

functional form—produce similar results. To our knowledge, these are the first estimates of

compensated price elasticities of giving.

We conclude this section with the limitations that should be kept in mind when thinking

about the results. The real-world parallel estimates of match and tax rebate elasticities we

present are for giving to a university. Although the estimates are qualitatively similar to

those from investigations of other types of charitable giving—both from experiments produc-

ing parallel estimates, and from studies producing match-price effects alone—further work

investigating non-equivalence in a variety of settings is warranted. Next, the present theo-

retical result that the presence of stronger warm-glow pushes the amount received elasticity

em → −1 (hence the checkbook elasticity → 0), combined with Ribar and Wilhelm’s (2002)

result that warm-glow can become stronger on the margin at larger levels of the charity’s

exogenous output, suggest that impure impact may provide insight about a puzzle first noted

close to the present estimates in an empirical setting where, like ours, the price variation occurs while income
is held constant (otherwise their setting is different: they investigate total charitable giving in France, and
a credit capped at a much higher level, 20 percent of taxable income). The results we report are generally
close to most prior tax-price work that uses either credits or experimental methods to avoid confounding
income effects with tax-price effects.
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by Karlan and List (2007): that matches become less effective at increasing the checkbook

amount as the match rate grows. Intuitively, because matches increase Ri, holding gi con-

stant, then as the match rate grows the role of warm-glow may become more prevalent

among donors, so that checkbook giving becomes less responsive on the margin to changes

in the match. However, this intuition could depend on degree of substitutability between the

amount received and the checkbook amount. An exploration of this possibility is left for fu-

ture work. Next, the evidence of strong warm-glow we found suggests the difference between

rebates and matches matters for donor welfare, at least in the setting we investigate, but with

the data at hand we cannot directly measure the welfare difference. Eckel and Grossman

(2006b) report evidence that when presented with the choice more people prefer rebates over

matches, which suggests further investigation of impure impact’s normative implication.

6. Conclusions

This paper introduces a theory of impure impact giving that combines the extant pure im-

pact model with warm-glow. The theory has several implications. It predicts non-equivalent

responses to price-equivalent match and rebate incentives. The reason is that the match-price

elasticity combines the effects of a conventional price elasticity (which is the rebate elasticity)

with warm-glow. Warm-glow has two opposing effects on the match elasticity: warm-glow

mitigates the substitution effect but enhances the “income” effect that arises from the char-

ity’s exogenous output. Because of its two effects, warm-glow can make a match more

effective, compared to a rebate, in increasing the amount received by the charity, but it is

possible that warm-glow counter-intuitively makes a match less effective. Impure impact

implies that a match elasticity, estimated in isolation from all other information, cannot

be used to identify the conventional price elasticity of impact separately from the strength

of warm-glow. It follows that, general speaking, one should not expect an estimate of a

match elasticity—either the amount received or the checkbook elasticity—to compare to the
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price-equivalent rebate elasticity; match and rebate elasticities are fundamentally different

entities. Finally, impure impact has a normative implication: donor welfare is higher under

a rebate than a price-equivalent match.

Non-equivalence between match and rebate elasticities has previously been found in ex-

periments. Our empirical investigation of giving to a university provides the first evidence

of the external validity of non-equivalence based on parallel estimates of match and rebate

elasticities generated from an incentivized match and a real-world tax rebate. The estimates

indicate an elastic response of the charity’s amount received to the match (like much of the

previous match literature), but a small, inelastic response to the rebate. The results reject

equivalence, and hence the extent pure impact model. The results also reject pure warm-

glow, indicating that donors do get some utility from the university’s larger amount received

evoked by the match. Consequently, the results are consistent with impure impact.

These results suggest that investigating the external validity of non-equivalence in ad-

ditional settings, determining the practical significance of the difference in donor welfare

between rebates and matches, and estimating compensating elasticities to more fully de-

scribe an optimal tax system for giving (e.g., as in Saez, 2004) are important areas for future

research.
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Figure 1. Extended credit counterfactual: Compensated price effect. 
 

 
 
 

Figure 2. Unavailable credit counterfactual: Uncompensated price effect. 
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Figure 3.  Log amounts received: The 1960 class minus nearby classes. 
 

 
 

Notes: The figure plots the difference between total amount of donations received from the 1960 class and the nearby classes 1954–1959, 1961–1965. For the 
1960 class we aggregate the donations from all class members in each month, take the log, and then average the logged donations over six month periods from 
2007 through 2012. Because December 2008 is the first month of the match, it is averaged in with the first half of 2009. We do the same thing for the nearby 
control classes, and take the difference. 
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Figure 4. Joint donations from Indiana and other states: A tax kink exists at $400 in Indiana. 

 
 

Note: The figure shows a histogram of joint donations greater than $200 and less than $700 from Indiana (grey bars) and other states (clear bars) between 2004 
and 2015 in bins of $10. There are 75,068 donations in the picture, of which 7,128 are from Indiana. 
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Table 1. Summary statistics: Checkbook donations. 

 
 All donorsa 

1. Number of donations 471,861 
  
2. Average donation 2,067 
 (65,344) 

3. Number of donations from the 1960 Class 8,321 
  
4. Average donation from the 1960 Class 4,360 
 (135,321) 
5. Number of annual donations† 373,994  
6. Average annual donation† 3,221 
 (87,995) 
7. Number of annual donations between $200 and $1,000† 79,122  
8. Average annual donation between $200 and $1,000† 374 

(149) 
 
Notes: The statistics describe joint checkbook donations to the university between 2004 and the first 
five months of 2015, and are calculated using donations from people in all states. Standard deviations 
are in parentheses. 
           Among the donations described in the table are 41,129 annual joint donations from people living 
in Indiana. Of these donations 7,585 are between $200 and $1,000, and in this range the average 
donation is $383 (sd = $155). 
 
a Donors in all the states. There are more than 50 “states” because there are donations made from 
several territories and by people in the military: American Samoa, the Federated States of Micronesia, 
Guam, the Mariana Islands, the Armed Forces Americas, Armed Forces Europe, Armed Forces Pacific, 
Puerto Rico, Palau, and the Virgin Islands. 
 
† Donations in the last 4 rows are donations aggregated to the annual level (that is, all donations made by 
a person during the year are combined).  In the first 4 rows non-aggregated donations are reported.  

 
  



 

 
 

Table 2. Match-price elasticity: Difference-in-differences estimates using donation-level 
observations (intensive margin). 

 
 

Baseline 
Month by year 

dummies 
State 

dummies 
State by year 

dummies 
Class 
trends 

Matching treatment .843 .841 .842 .840 .845 
   for the 1960 class (δ) (.049) (.048) (.048) (.047) (.041) 
Implied elasticity (em) −1.265 −1.261 −1.264 −1.260 −1.267 
 (.074) (.072) (.072) (.071) (.062) 
Matching treatment placebo 
   for the other classesa 

Yes Yes Yes Yes Yes 

25th, 50th, 75th graduation 
   anniversary dummies 

Yes Yes Yes Yes Yes 

Month dummies Yes Yes Yes Yes Yes 
Year dummies Yes Yes Yes Yes Yes 
Class dummies Yes Yes Yes Yes Yes 
State dummies No No Yes Yes No 
Month by year dummies No Yes Yes Yes No 
State by year dummies No No No Yes No 
Class trends No No No No Yes 

 
Notes: The dependent variable is the log of the amount received by the university (checkbook donation plus the match). 
The sample are N = 471,861 separate alumni donations. The first row presents the estimates on a dummy that equals 
one for the 1960 class during the time period of the match; standard errors are clustered by graduating class cohort (in 
parentheses). The second row converts the row 1 coefficients into elasticity estimates using equation (22) with pm = 
1/2 and p1 = 1; delta method standard errors are in parentheses. Using real dollars, including non-joint donations, or 
including non-alumni donations produces similar results. 
 
a A dummy that equals one for the other classes during the 19 month period around their 50th anniversaries. 
 
  



 

Table 3. Match-price elasticity: Difference-in-differences estimates using aggregated observations 
(extensive and intensive margins). 

 
 

Baseline 
Month by year 

dummies 
State 

dummies 
State by year 

dummies 
Class 
trends 

Post-match 
control 

Matching treatment .805 .818 .820 .819 .812 .818 
   for the 1960 class (δ) (.063) (.062) (.064) (.064) (.041) (.063) 
Implied elasticity (em) −1.208 −1.227 −1.23 −1.229 −1.217 −1.227 
 (.095) (.093) (.096) (.096) (.062) (.095) 
Dummy for the 12-month  
   period after the match  - - - - - .0004 
   for the 1960 class      (.025) 
Implied post-match - - - - - .0006 
   elasticity      (.038) 
Matching treatment placebo 
   for the other classesa 

Yes Yes Yes Yes Yes Yes 

25th, 50th, 75th graduation 
   anniversary dummies 

Yes Yes Yes Yes Yes Yes 

Month dummies Yes Yes Yes Yes Yes Yes 
Year dummies Yes Yes Yes Yes Yes Yes 
Class dummies Yes Yes Yes Yes Yes Yes 
State dummies No No Yes Yes No No 
Month by year dummies No Yes Yes Yes No Yes 
State by year dummies No No No Yes No No 
Class trends No No No No Yes No 
 
Notes: The dependent variable is the amount received by the university aggregated by each class in a state, month, 
and year (then logged). There are 156,589 class x state x month x year cells. The first row presents the estimates on 
a dummy that equals one for the 1960 class during the time period of the match; standard errors are clustered by 
graduating class cohort (in parentheses). The second row converts the row 1 coefficients into elasticity estimates 
using equation (22) with pm = 1/2 and p1 = 1; delta method standard errors are in parentheses. Using real dollars, 
including non-joint donations, or including non-alumni donations produces similar results. 
 
a A dummy that equals one for the other classes during the 19 month period around their 50th anniversaries.  



 

Table 4. Rebate-price elasticity: Compensated elasticity estimated using a tax credit. 
 
Row Method Lower bound 

estimate 
Point estimate 

(linear interpolation) 
Upper bound 

estimate 
1 Nearest round neighbora −.121 

(.021) 
−.197 
(.024) 

−.293 
(.033) 

     
2 Nearest neighborb  −.465 

(.036) 
 

     
3 Nearest neighborc  −.290 

(.019) 
 

     
4 Polynomiald  −.259 

(.022) 
 

     
 Nearest round neighbore    
     

5 Use two bins below and two bins 
above the kink to estimate the 
counterfactual density (i.e., double the 
bandwidth) 

−.111 
(.022) 

−.177 
(.021) 

−.257 
(.023) 

6     Double the bin width to $50 
 

.006 
(.020) 

−.098 
(.019) 

−.224 
(.021) 

7     Mass point at $250 (instead of $300) .045 
(.021) 

−.136 
(.023) 

−.293 
(.033) 

8     Mass point at $600  (instead of $500) −.121 
(.021) 

−.231 
(.025) 

−.477 
(.035) 

 
Notes: Bootstrapped standard errors are in parentheses. The estimates use equation (23) where pt = 1/2 and p1 = 1. 
 
a Mass points at $300 and $500 used to identify counterfactual bunching at the kink. The lower bound is based on the 
mass point at $300, the upper bound is based on the mass point at $500, and the point estimate is based on linear 
interpolation between the $300 and $500 mass points. Donation amounts are placed in bins of width $25, centered at 
round numbers (e.g., $375, $400, $425, etc.). One bin below and one bin above the kink are used to estimate the 
counterfactual density.  
b Bandwidth = $25. Therefore, the kink includes donation amounts in the interval ($387.50, $412.50). One band 
below the kink ($362.50, $387.50] and one band above the kink ($412.50, $437.50) are used to identify 
counterfactual bunching at the kink, and to estimate the counterfactual density. The method is due to Saez (2010). 
c Bandwidth = $50. Therefore, the kink includes donation amounts in the interval ($375, $425). One band below the 
kink ($325, $375] and one band above the kink ($425, $475) are used to identify counterfactual bunching at the kink, 
and to estimate the counterfactual density. 
d Third-order polynomial in the donation amounts from $200 to $999 and three dummy variables at round numbers 
(at 25s, 50s and 100s) used to identify counterfactual bunching at the kink. Donation amounts are placed in bins of 
width $25. One bin below and above the kink are used to estimate the counterfactual density. The method is due to 
Kleven and Waseem (2013). 
e Same estimator as in Note a but with the indicated modifications to the estimation parameters.  



 

 
 

Table 5. Nearest round number estimator applied to placebo kinks. 
 

Row Placebo kink 
  at 

Mass points used 
for identification 

Lower bound 
estimate 

Point estimate 
(linear interpolation) 

Upper bound 
estimate 

      
1 $300 $250 and $500 .125 

(.015) 
.087 

(.014) 
−.096 
(.019) 

           
2 $500 $300 and $600 .116 

(.025) 
−.110 
(.022) 

−.240 
(.027) 

      
3 $600 $500 and $700 .383 

(.046) 
.119 

(.026) 
−.166 
(.024) 

      
4 $700 $600 and $800 .334 

(.068) 
.228 

(.055) 
.098 

(.043) 
      

5 $800 $700 and $900 −.057 
(.020) 

−.084 
(.020) 

−.112 
(.023) 

      
6 $900 $800 and $1,100a .263 

(.068) 
.292 

(.072) 
.379 

(.140) 
      

7 $1,000 $500 and $1,500 .221 
(.028) 

.063 
(.014) 

−.059 
(.015) 

      
8 $1,500 $1,000 and 

$2,000 
−.056 
(.006) 

−.078 
(.006) 

−.100 
(.007) 

 
Notes: Donation amounts are placed in bins of width $25. One bin below and one bin above the kink used to estimate 
the counterfactual density. Bootstrapped standard errors are in parentheses. The estimates use equation (23) where pt 
= 1/2 and p1 = 1. 
 
a The right mass point is set at $1,100 to avoid excessive round-number bunching at $1,000. 



 

Table 6. Rebate-price elasticity: Uncompensated elasticity estimated using a tax credit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The estimates use the percentile-based estimator: equation (27) with pt = 1/2 and p1 = 1. The range of donations 
Θ  = [$201, $1,000]; using other ranges produces similar results. Bootstrapped standard errors are in parentheses. 
 
a The baseline estimate is formed by pooling donors in the Θ  range from all control states. 
b The heterogeneity lower bound is formed by pooling donors in the Θ  range separately in each control state that has 
at least 100 observations, and then selecting the control state whose marginal donor gives largest amount (see Section 
3D). 
c The heterogeneity upper bound is formed as in the previous note, except that the control state selected is the one 
whose marginal donor gives smallest amount (see Section 3D). 

    Row Method Estimate 
1 Baselinea −.265 

(.042) 
   
2 Heterogeneity lower boundb 0 

(.082) 
   
3 Heterogeneity upper boundc −.429 

(.012) 
   

4 Placebo kink at:  
       (a)                              $401 .069 

(.055) 
   

      (b)                              $450 .096 
(.068) 

   
      (c)                              $500 .000 

(.005) 
     

      (d)                              $550 −.056 
(.027) 



7. Appendix

The Appendix is supplemental, and not intended for in-print publication. It will be

available on-line, or from the authors upon request.

There are several sections. The first three provide theoretical derivations. Section A.1

derives equations (7) and (8), as well as the income effects q1 and q2. Section A.2 derives

Slutsky decompositions. Section A.3 re-derives the Section A.1 price and income effects for

more general preferences U(ci, gi, Ri, R−i).

Section A.4 shows that estimates based on a state tax credit are unaffected by federal

deductibility. Section A.5 dervies the baseline bunching formula. Section A.6 describes

how our empirical results compare to nearest neighbor bandwidth results as in Saez (2010).

Section A.7 describes an example of estimating uncompensated elasticities using placebo

kinks.

Section A.8 contains tables with further estimation results.

A.1. Derivations of price and income effects.

In this section we derive the tax-price and match-price effects given in (7) and (8). Begin

with the first order condition:

− pmptUc(yi − τi − pmptR + pmptλR−i, pm(R− λ R−i), R) + pmUg + UR = 0. (28)

Differentiating this with respect to R yields the second order condition:

−pmptUcc
[
− pm pt

]
− pm2ptUcg − pmptUcR

+pmUgc

[
− pm pt

]
+ pm

2Ugg + pmUgR

+URc

[
− pm pt

]
+ pmURg + URR. (29)
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which we assume is negative. Solving the first order condition for R produces, as defined in

the text in (6),

R∗ = q(yi − τi + pmptλR−i, λpmR−i, pmpt, pm). (30)

We will use (28), (29), and (30) to construct the partial derivative q1. Suppose all else equal

yi increases. Fully differentiating the first order condition yields:

−pmptUcc
[
1− pm pt

∂R

∂yi

]
− pm2ptUcg

∂R

∂yi
− pmptUcR

∂R

∂yi

+pmUgc

[
1− pm pt

∂R

∂yi

]
+ pm

2Ugg
∂R

∂yi
+ pmUgR

∂R

∂yi

+URc

[
1− pm pt

∂R

∂yi

]
+ pmURg

∂R

∂yi
+ URR

∂R

∂yi
. (31)

Collecting terms together, we can express this as:

− pmptUcc + pmUgc + URc =
∂R

∂yi
∆ (32)

where as in the text ∆ is the negative of the second order condition (and thus ∆ > 0);

specifically ∆ = −p2
tp

2
mUcc + 2ptp

2
mUcg + 2ptpmUcR − 2pmUgR − p2

mUgg − URR. Noting that

q1 = ∂R
∂yi

, it follows from (32) that

q1 =
−pmptUcc + pmUgc + URc

∆
. (33)

Continuing this process for q2, totally differentiate the first order condition with respect

to R−i:
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−pmptUcc
[
pmptλ− pm pt

∂R

∂R−i

]
− pm2ptUcg

[
− λ+

∂R

∂R−i

]
− pmptUcR

∂R

∂R−i

+pmUgc

[
pmptλ− pm pt

∂R

∂R−i

]
+ pm

2Ugg

[
− λ+

∂R

∂R−i

]
+ pmUgR

∂R

∂R−i

+URc

[
pmptλ− pm pt

∂R

∂R−i

]
+ pmURg

[
− λ+

∂R

∂R−i

]
+ URR

∂R

∂R−i
. (34)

Gathering terms,

pmptλq1 +
λ(pm

2ptUgc − pm2Ugg − pmURg)
∆

=
∂R

∂R−i
(35)

and noting from (30) that ∂R
∂R−i

= λpm(ptq1 + q2), equation (35) yields:

q2 =
pmptUgc − pmUgg − URg

∆
. (36)

With derivations for q1 and q2 in hand, we proceed to deriving (7) and (8) in the same

fashion. Totally differentiate the first order condition in (28) with respect to pt:

−pmUc − pmptUcc
[
− pm(R− λR−i)− pm pt

∂R

∂pt

]
− pm2ptUcg

∂R

∂pt
− pmptUcR

∂R

∂pt

+pmUgc

[
− pm(R− λR−i)− pm pt

∂R

∂pt

]
+ pm

2Ugg
∂R

∂pt
+ pmUgR

∂R

∂pt

+URc

[
− pm(R− λR−i)− pm pt

∂R

∂pt

]
+ pmURg

∂R

∂pt
+ URR

∂R

∂pt
. (37)

Gathering terms, and noting that Ri = R− λR−i, yields equation (7):

∂R

∂pt
=
−pm Uc

∆
− q1 pm Ri. (38)
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Totally differentiating the first order condition in (28) with respect to pm, we have:

−ptUc − pmptUcc
[
− pt(R− λR−i)− pmpt

∂R

∂pm

]
− pmptUcg

[
R− λR−i + pm

∂R

∂pm

]
− pmptUcR

∂R

∂pm

+Ug + pmUgc

[
− pt(R− λR−i)− pm pt

∂R

∂pm

]
+ pmUgg

[
R− λR−i + pm

∂R

∂pm

]
+ pmUgR

∂R

∂pm

+URc

[
− pt(R− λR−i)− pm pt

∂R

∂pm

]
+ URg

[
R− λR−i + pm

∂R

∂pm

]
+ URR

∂R

∂pm
.

Setting this equal to zero, using the above derivations for q1 and q2, and again noting

Ri = R− λR−i produces (8):

∂R

∂pm
=
−pt Uc

∆
− q1 pt Ri +

Ug
∆
− q2 Ri. (39)

A.2 Slutsky decompositions for et and em.

A.2.a Decomposition with respect to the tax-price.

We begin with the tax-price and the compensated demand response ∂RH

∂pt
. Consider

minimizing ci + ptpm R subject to U(ci, gi, R) = u0. As before we will optimize over

R, where R = Ri + λR−i and gi = pm(R − λR−i). (Of course, we cannot use the budget

constraint to substitute in for ci since there is no budget constraint for this problem.) We

thus minimize:

L = ci + ptpmR + µ(u0 − U(ci, pm(R− λR−i), R)) (40)
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where µ is a Lagrange multiplier. The first order conditions are:

1− µUc = 0

ptpm − µ(pmUg + UR) = 0

U(ci, pm(R− λR−i), R)) = u0 (41)

which describe the solutions for compensated demand RH and RH
i = RH − λR−i, where of

course λR−i is exogenously given. Combining the first two equations in (41) yields

− ptpmUc(ci, pm(R− λR−i), R) + pmUg + UR = 0 (42)

Totally differentiate this with respect to pt:

−pmUc − pmptUcc
∂cH

∂pt
− pm2ptUcg

∂RH

∂pt
− pmptUcR

∂RH

∂pt

+pmUgc
∂cH

∂pt
+ pm

2Ugg
∂RH

∂pt
+ pmUgR

∂RH

∂pt

+URc
∂cH

∂pt
+ pmURg

∂RH

∂pt
+ URR

∂RH

∂pt
. (43)

Next, totally differentiate the last equation in (41) with respect to pt:

Uc
∂cH

∂pt
+ pmUg

∂RH

∂pt
+ UR

∂RH

∂pt
= du0 (44)

By (44), we have that ∂cH

∂pt
= 1

Uc
(du0− (pmUg +UR)∂R

H

∂pt
). For compensated demand, du0 = 0.

By (42), we have that (pmUg +UR)/Uc = ptpm, so that ∂cH

∂pt
= −ptpm∂RH

∂pt
. Plugging this into

(43) yields:

− pmUc = ∆
∂RH

∂pt
(45)
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where as before ∆ = −p2
tp

2
mUcc + 2ptp

2
mUcg + 2ptpmUcR − 2pmUgR − p2

mUgg − URR. Recall

RH
i = RH − λR−i, and the last term is by definition exogenous, so

∂RH
i

∂pt
= ∂RH

∂pt
= −pmUc

∆
.

Therefore,

∂RH
i

∂pt

pt
Ri

=
−pm pt Uc
Ri ∆

(46)

which is equation (11) in the text.

And lastly, the uncompensated price effect given in (7) and derived in equation (38) is

∂R
∂pt

= −pm Uc

∆
− pmq1Ri. Putting this together with equation (46), we can write

et =
(−pm Uc

∆
− pmq1Ri

) pt
Ri

=
∂RH

i

∂pt

pt
Ri

− pmptRi

yi
q1
yi
Ri

= eHt − bRi
ey (47)

where bRi
≡ pmptRi

yi
and equation (12) is derived.

A.2.b Decomposition with respect to the match-price.

The derivation for the match-price is similar. Totally differentiate (42) with respect to

pm:

−ptUc − pmptUcc
∂cH

∂pm
− pmptUcg

[
pm
∂RH

∂pm
+ (R− λR−i)

]
− pmptUcR

∂RH

∂pm

Ug + pmUgc
∂cH

∂pm
+ pmUgg

[
pm
∂RH

∂pm
+ (R− λR−i)

]
+ pmUgR

∂RH

∂pm

+URc
∂cH

∂pm
+ URg

[
pm
∂RH

∂pm
+ (R− λR−i)

]
+ URR

∂RH

∂pm
. (48)

By differentiating the last equation in (41), we have ∂cH

∂pm
= 1

Uc
(du0− (pmUg +UR)∂R

H

∂pm
− (R−

λR−i)Ug). This is crucially different than before because of the last term on the right hand

side. We can simplify this expression noting that (a) R− λR−i = Ri (b) once again du0 = 0

and (c) using the first order condition to simplify (pmUg + UR)/Uc as before. This produces

∂cH

∂pm
= −ptpm∂RH

∂pm
−Ri

Ug

Uc
.
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Plugging this into (48) and rearranging yields:

∂RH

∂pm
=
−ptUc + Ug

∆
− ptpmUcg − pmUgg − URg

∆
Ri −

−ptpmUcc + pmUgc + URc
∆

Ug
Uc
Ri (49)

Using equations (33) and (36), this becomes:

∂RH

∂pm
=
−ptUc + Ug

∆
− q2Ri − q1

Ug
Uc
Ri. (50)

Equation (50) can be used to re-write the text’s equation (8)—reproduced here: ∂R
∂pm

= −pt Uc

∆
−

q1 pt Ri + Ug

∆
−q2 Ri — as: ∂R

∂pm
= ∂RH

∂pm
− (pt− Ug

Uc
)q1Ri. Converting this to elasticity form

(using as above ∂RH

∂pm
=

∂RH
i

∂pm
and as in the text the uncompensated version ∂R

∂pm
= ∂Ri

∂pm
),

yields:

em = eHm −
[
pm

(
pt −

Ug
Uc

)Ri

yi

] (
q1

yi
Ri

)
= eHm − b̃Ri

ey (51)

where b̃Ri
= p̃Ri/yi and p̃ ≡ pm(pt − Ug

Uc
). This is equation (13) in the text.

As an aside, convert equation (50) into elasticity form:

eHm =
−pm pt Uc

∆ Ri

+
pmUg
∆ Ri

− pm

(Ug
Uc

q1 + q2

)
= eHt +

pmUg
∆ Ri

− pm

(Ug
Uc

q1 + q2

)
(52)

where the second line uses equation (46) (equation (11) from the text). From equation (52)

it is straightforward to see that the match-price compensated demand also depends on the

unobserved Ug

Uc
as noted in footnote 3 in the text.
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A.3 Price effects with preferences U(ci, gi, Ri, R−i).

In this section we produce results for the utility function U(ci, gi, Ri, R−i). These results

do not change the prior intuition that tax- and match- price effects can differ, or the relevant

tests for different models of giving, or the normative result that changes in tax prices are

preferred.

Define total observable impact as R = Ri + R−i. Write the new utility function as a

function of R:

U(yi − τi − pmptR + pmptR−i, pm(R−R−i), R−R−i, R−i). (53)

Since the last term in the utility function is taken as given, the first order condition resembles

the one given in the text:

− ptpmUc(yi − τi − pmptR + pmptR−i, pm(R−R−i), R−R−i, R−i) + pmUg + URi
= 0. (54)

And the solution can be expressed as

R∗ = q(yi − τi + pmptR−i, pmR−i, pmpt, pm). (55)

which upon first inspection actually looks simpler than the q function used in the text, as

there is no unobservable λ parameter.

Differentiating (54) with respect to R yields the second order condition, which again

essentially matches the one used earlier:

−pmptUcc
[
− pm pt

]
− pm2ptUcg − pmptUcRi

+pmUgc

[
− pm pt

]
+ pm

2Ugg + pmUgRi

+URic

[
− pm pt

]
+ pmURg + URiRi

. (56)
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which we again assume is negative.

Differentiating with respect to yi yields

−pmptUcc
[
1− pm pt

∂R

∂yi

]
− pm2ptUcg

∂R

∂yi
− pmptUcRi

∂R

∂yi

+pmUgc

[
1− pm pt

∂R

∂yi

]
+ pm

2Ugg
∂R

∂yi
+ pmUgRi

∂R

∂yi

+URic

[
1− pm pt

∂R

∂yi

]
+ pmURg

∂R

∂yi
+ URiRi

∂R

∂yi
. (57)

And the resulting derivation is the same as before:

q1 =
−pmptUcc + pmUgc + URic

∆
. (58)

With this in hand, it is straightforward to derive the response for the tax-price:

−pmUc − pmptUcc
[
− pm(R−R−i)− pm pt

∂R

∂pt

]
− pm2ptUcg

∂R

∂pt
− pmptUcR

∂R

∂pt

+pmUgc

[
− pm(R−R−i)− pm pt

∂R

∂pt

]
+ pm

2Ugg
∂R

∂pt
+ pmUgR

∂R

∂pt

+URc

[
− pm(R−R−i)− pm pt

∂R

∂pt

]
+ pmURg

∂R

∂pt
+ URR

∂R

∂pt
(59)

producing as before:

∂R

∂pt
=
−pm Uc

∆
− q1 pm Ri. (60)
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Differentiating the first order condition in (54) with respect to pm, we now have:

−ptUc − pmptUcc
[
− pt(R−R−i)− pmpt

∂R

∂pm

]
− pmptUcg

[
R−R−i + pm

∂R

∂pm

]
− pmptUcRi

∂R

∂pm

+Ug + pmUgc

[
− pt(R−R−i)− pm pt

∂R

∂pm

]
+ pmUgg

[
R−R−i + pm

∂R

∂pm

]
+ pmUgRi

∂R

∂pm

+URic

[
− pt(R−R−i)− pm pt

∂R

∂pm

]
+ URg

[
R−R−i + pm

∂R

∂pm

]
+ URiRi

∂R

∂pm

so that:

∂R

∂pm
=
−pt Uc

∆
− q1 pt Ri +

Ug
∆
− q̃2 Ri (61)

where just as before

q̃2 =
pmptUcg − pmUgg − URig

∆
(62)

The expressions governing tax-price and match-price responses are thus the same as those

given with in the main text.

A.4 Elasticity estimates based on a state tax credit are unaffected by federal deductibility.

This section shows that the inclusion of the deductibility of gifts from federal taxable

income does not alter the elasticity estimate from a calculation based on a state-income tax

credit. Suppose the state tax rate is ts and the state tax credit is cs. The budget constraint

is then ci + gi = yi − yits + gics. State taxes paid are yits − gics.

Now suppose the federal government taxes income at rate tf , but that both giving and

state taxes are deductible. Then the budget constraint is ci + gi = yi − yits + gics − (y −

yits + gics − gi)tf = yi(1− ts − tf + tstf ) + gi(cs + tf − cstf ).

Denote the combined federal-state price of giving as pfs = 1 − cs − tf + cstf . The

“cstf” appears because state income tax paid is deductible from federal taxable income. The

federal-state price can be re-written as pfs = (1− cs) (1− tf ) = ps pf , where ps ≡ 1− cs is
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defined as the state price (in isolation from the federal price), and pf ≡ 1− tf is defined as

the federal price (in isolation from the state price).

Obviously, ln(pfs) = ln(ps) + ln(pf ) and
dln pfs
dln ps

= 1. It then follows from the chain rule

that elasticities with respect to pfs and ps are identical: d lngi
d lnps

= d lngi
d lnpfs

d lnpfs
d lnps

= d lngi
d lnpfs

.

A.5 Derivation of baseline bunching formula.

This derivation follows Saez (2010). Preferences are given by:

U = x+
θ

1 + 1/e

(
R

θ

)1+1/e

and are maximized subject to x+ pR = Y − τ , where p is the price of giving. The optimal

choice of giving is then R = θ pe, where the price elasticity e < 0.

Note that θ is a preference parameter that indexes generosity; individuals with a higher

value of θ will give larger amounts. Suppose that the price of giving is initially p0 and it

is then raised to a higher price p1 above Rk. Consider individuals initially at an interior

solution above Rk when facing p0; those individuals with θ values between (Rk/p
e
0, Rk/p

e
1)

would choose an optimum above Rk when the price is low and below Rk when the price

is high: they will bunch. Note the “marginal buncher” on the high end, with θ = Rk/ pe1,

would in a world with low prices p0 choose R = Rk (p0 / p1)e. The low-end marginal buncher

would choose Rk. Thus, the range of bunching is Rb − Ra = Rk

(
pe0
pe1
− 1
)

where Rb and Ra

are taken from Figure 1.

Let h0(R) be the density of giving when p0 applies to all levels of giving; e.g., p0 = (1

– t) and the cap at R = Rk is counterfactually removed. Let H 0(R) be the corresponding

cumulative distribution function. Denote giving in this counterfactual as R0. Then R0 =

θpe0 → θ =R0/p
e
0 , and the counterfactual h0(R) = f(R/pe0) 1

pe0
, where f () is the density of

θ. This follows since H0(R) = P [θp−e0 < R] = F (Rpe0), where F is the cdf of θ, and then

61



differentiating by R.

Let h(R) be the density of giving we observe. Over the range R < Rk below the kink the

observed density h(R) corresponds to h0(R). But for R > Rk the observed density h(R) is

not h0(R). Giving over the range R > Rk is R = θpe1 . This can be rewritten R = R0p
e
1/p

e
0,

where R0 is the counterfactual amount of giving for R > Rk that would be observed if the

cap at R = Rk was removed. Therefore, the observed density of R for R > Rk can be

expressed in terms of the counterfactual h0(R): h(R) = h0(R pe0/ pe1) pe0 / pe1.

Define hR−
k

to be the limit of the observed density h(R) as R approaches Rk from below,

and define hR+
k

to be the limit as R approaches Rk from above. Then hR−
k

= h0(Rk). The

limit from above is hR+
k

= h0(Rkp
e
0/p

e
1)pe0/p

e
1, implying that the limit of the counterfactual

density from above is hR+
k
pe1/p

e
0; (pe1 /pe0) is the adjustment to the observed density, to get

the counterfactual density, discussed in Section 2A. Using a trapezoidal approximation to

the integral as in Saez (2010), the amount of bunching β at the kink can be expressed as a

function of observables and the counterfactual density of giving. Then using the relationships

just described, β can be expressed in terms of the observed density of giving:

β =

∫ Rk

(
pe0
pe1

)
Rk

h0 (R)dR ∼=
h0 (Rk) + h0 (Rkp

e
0/p

e
1)

2
Rk

(
pe0
pe1
− 1

)
=
hR−

k
+ hR+

k

(
pe1
pe0

)
2

Rk

(
pe0
pe1
− 1

)

which is equation (23) in Section 3C.

A.6 Nearest neighbor bandwidth compared to the bandwidth in Saez (2010).

As noted in Section 3C, our use of three bins of equal width w in the nearest neighbor

method differs slightly from the bandwidths used in Saez’ (2010) original method. In the

original method, if the bandwidth is w the mass point around the kink is defined to be the

amounts falling in the interval ($400 − w, $400 + w) and the counterfactual density below

and above the kink is estimated using the amounts in the respective intervals [$400 − 2w,
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$400 − w ] and [$400 + w, $400 + 2w ]. Accordingly, bunching at the kink is estimated as

the fraction in the 2w -wide interval around the kink minus the sum of the fractions in the

intervals below and above the kink, each of which are w -wide.

In our implementation (Table 4, rows 2 and 3) the interval around the kink is ($400 −

w, $400 + w), the counterfactual density below and above the kink is estimated using the

intervals ($400 – 3/2 w, $400 − w ] and [$400 + w, $400 + 3/2 w), and bunching at the kink

is estimated according to (24): the fraction in the w -wide interval around the kink minus

the average of the fractions in the w -wide intervals below and above the kink. Using equal

width bins for nearest neighbor established the same definition of “bandwidth” across the

three methods of Section 3C—nearest neighbor, polynomial, and nearest round neighbor.

Redoing the Table 4 nearest neighbor estimates in rows 2 and 3 but implementing the

nearest neighbor estimator exactly as in Saez (2010) with bandwidths of $12.50 (matching

row 2 in the table) and $25 (matching row 3 in the table) produces similar but slightly

smaller estimates of −.283 (.026) and −.116 (.014), respectively.

A.7 Placebo kinks for the uncompensated elasticity estimates: An example.

Consider quasilinear preferences, where the optimal choice of giving is R =θpe for e < 0.

As elsewhere, let the low price of giving created by the credit be p0 and the higher post credit

price be p1. Outside of Indiana, where there is no credit, the price of giving is always p1.

The kink level of giving is denoted Rk. In Indiana, individuals with θ < Rkp
−e
0 will choose

giving levels below the kink, those with θ > Rkp
−e
1 will choose giving levels above the kink,

and those with θ ∈ [Rkp
−e
0 , Rkp

−e
1 ] will bunch. For both Indiana and the control states, let

F be the distribution function of θ defined over Θ.

Consider first the true kink estimator êu . Here, the person in Indiana giving just below

the kink valueRk will have a θ ∼= Rkp
−e
0 , and their percentile value will then be ρ = F (Rkp

−e
0 ).

In a control state, the donor with this θ will again have percentile value ρ in the distribution
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of giving, but they face price p1. Hence, their level of giving will be R(ρ)=θpe1 = Rk

(
p1
p0

)e
.

Recall that equation (27), reproduced here, uses an arc-elasticity formula:

êu = −(Rk −R(ρ))/((Rk +R(ρ)) /2)

(p1 − p0)/((p1 + p0) /2)
.

It is straightforward to verify that applying R(ρ)=Rk

(
p1
p0

)e
to equation (27) will yield, for

reasonably small values of e (such as between -2 and zero), a result very close to e.

Now consider a placebo kink placed above Rk: denote this placebo kink R̃ > Rk. For

the person in Indiana giving this amount, we have θ = R̃p−e1 and ρ = F (R̃p−e1 ). In the

control states the person at this percentile of giving will have the same θ value and will

face the same price as the Indiana giver. They thus will have the same level of giving:

R (ρ) =θpe1 = R̃ p−e1 pe1 = R̃. Applying this to the equation (27) will thus yield an elasticity

of zero for any giving value above the kink.

The situation is different for a placebo kink placed below Rk, because individuals in the

control states with at giving levels below g∗ face a different price than they do in Indiana.

Denote the placebo kink Ř < Rk. Then for someone giving this level in Indiana θ = Řp−e0

and ρ = F (Řp−e0 ). In a control state, the person at this percentile of giving has θ = Řp−e0

and giving level Ř(ρ) = θpe1 = Ř
(
p1
p0

)e
. Plugging this into equation (27) will not produce

the elasticity estimate e. However, as the placebo kink approaches the true kink Ř −→ Rk

from below, the estimator will approach the true elasticity value.

In short, under the identifying assumptions, an individual at a given percentile value of

giving in Indiana will have the same θ as the person at this percentile of giving in the control

states. Above the kink, these two individuals not only have the same taste for giving but

they also face the same price. All else equal, the person in Indiana above the kink will be

$200 richer (because of the credit), but if income effects are negligible (or zero, as they are

in the present example) their choice of giving will be the same and a placebo kink should

return a zero estimate. Below the kink, an individual at a certain percentile of the giving
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distribution in Indiana has the same θ as a person at this percentile in the control state

distribution, but they face different prices, so that their level of giving will be different.

However, as the placebo kink approaches the true kink, the difference in their giving will

approximate a difference in giving that can recover the true elasticity.
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A.8 Further estimation results.
This section contains the supplemental tables.

Table AT1. Match-price elasticity: Difference-in-differences estimates using the number 
of donations (extensive margin). 

 
 

Baseline 
Month by year 

dummies 
State 

dummies 
State by year 

dummies 
Class 
trends 

Matching treatment -.119 -0.098 -0.102 -0.118 -.131 
   for the 1960 class (δ) (.083) (.081) (.097) (.097) (.092) 
Implied elasticity of the number of .0593 .049 .051 .059 .065 
   donations (.125) (.122) (.146) (.146) (.138) 
Matching treatment placebo 
   for the other classesa 

Yes Yes Yes Yes Yes 

25th, 50th, 75th graduation 
   anniversary dummies 

Yes Yes Yes Yes Yes 

Month dummies Yes Yes Yes Yes Yes 
Year dummies Yes Yes Yes Yes Yes 
Class dummies Yes Yes Yes Yes Yes 
State dummies No No Yes Yes No 
Month by year dummies No Yes Yes Yes No 
State by year dummies No No No Yes No 
Class trends No No No No Yes 

 
Notes: The dependent variable is the total number of donations by each class in a state, month, and year. There 
are 156,589 class x state x month x year cells. The first row presents the estimates on a dummy that equals one 
for the 1960 class during the time period of the match; standard errors are clustered by graduating class cohort 
(in parentheses). The second row converts the row 1 coefficients into elasticity estimates using equation (22) 
with pm = 1/2 and p1 = 1 and is calculated relative to the sample mean number of donations; delta method 
standard errors are in parentheses. 
 
a A dummy that equals one for the other classes during the 19 month period around their 50th anniversaries. 
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Table AT2. Rebate-price elasticity: Compensated elasticity – Additional nearest round neighbor 
   estimates. 
 

Row Sub-sample Lower bound 
estimate 

       Point estimate 
   (linear interpolation) 

Upper bound 
estimate 

1 Baseline (from Table 4) −.121 
(.021) 

−.197 
(.024) 

−.293 
(.033) 

     
2 Lottery-ineligiblea −.223 

(.051) 
−.231 
(.051) 

−.242 
(.063) 

     
3 2004 – 2006b −.074 

(.042) 
−.171 
(.045) 

−.293 
(.063) 

     
4 2007 – 2015b −.133 

(.023) 
−.204 
(.024) 

−.293 
(.032) 

     
5 Number of years giving = 1 to 5c .108 

(.100) 
−.058 
(.143) 

−.438 
(.276) 

     
6 Number of years giving = 6 to 12c −.152 

(.023) 
−.211 
(.023) 

−.281 
(.028) 

     
7 Number of years giving = 1 to 5d −.118 

(.113) 
−.191 
(.176) 

−.338 
(.408) 

     
8 Number of years giving = 6 to 12d −.121 

(.024) 
−.197 
(.025) 

−.289 
(.031) 

 
Notes. Mass points at $300 and $500 used to identify counterfactual bunching at the kink. The lower bound is based 
on the mass point at $300, the upper bound is based on the mass point at $500, and the point estimate is based on 
linear interpolation between the mass points. Donation amounts are placed in bins of width $25. One bin below and 
one bin above the kink used to estimate the counterfactual density. Bootstrapped standard errors are in parentheses. 
The estimates use equation (23) where pt = 1/2 and p1 = 1. 
 
a This estimate uses the sub-sample not made eligible for the football lottery with a donation of $200 (e.g., recent 
alumni, senior alumni, and non-alumni). 
b During 2004-2006 most alumni became eligible for the football lottery with a smaller, $100, donation. During 2007-
2015 the necessary donation was $200. 
c The split of the sample into number of years giving “1 to 5” and “6 to 12” uses the only the years the person gave a 
donation designated as joint. 
d The split of the sample into number of years giving “1 to 5” and “6 to 12” uses the years the person gave a 
donation designated non-joint as well as years in which the person gave as joint. However, the years used in the 
estimation of the elasticities are only those in which the person gave as joint. 
  



Table AT3. Rebate-price elasticity: Uncompensated elasticity – Additional percentile-based  
  estimates. 
 

    Row Method Estimate 
1 Baseline (from Table 6) −.265 

(.042) 
2 Lottery-ineligible −.31 

(.062) 
   
3 Different ranges of donations  

       (a) Donation range: $100 - 1,000 −.38 
(.061) 

       (b) Donation range: $200 - 1,000 −.31 
(.047) 

       (c) Donation range: $300 - 1,000 −.20 
(.026) 

       (d) Donation range: $201 - 500 −.27 
(.04) 

       (e) Donation range: $201 - 5,000 −.31 
(.05) 

 
Notes: The estimates use the percentile-based estimator: equation (27) with pt = 1/2 and p1 = 1. In row 2 the range of 
donations Θ  = [$201, $1,000] (as it is in row 1), but the sub-sample is restricted to people not made eligible for the 
football lottery with a donation of $200 (e.g., recent alumni, senior alumni, and non-alumni). Row 3 uses the full 
sample, but varies the range of donations Θ  as indicated. Bootstrapped standard errors are in parentheses. 
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