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This paper presents a dynamic general equilibrium model of a taxi market. The model is 
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geographical features of the matching process to back out unobserved demand through a 
matching simulation. This function exhibits increasing returns to scale, which is important to 
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although alternative dispatch platforms can be more efficient than street-hailing, platform 
competition is harmful because it reduces effective density.
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1 Introduction

This paper estimates a dynamic general equilibrium model of the New York City
(NYC) taxi-cab market. The estimated model is used to assess the importance of
regulatory entry restrictions and of matching frictions. The ability to overcome
these barriers to trade has been a key element for the success of new technology
entrants such as Uber, which have expanded supply in many local markets and
introduced a novel dispatch technology to reduce matching frictions. Our coun-
terfactual results isolate the relative importance of these two effects and highlight
the importance of density for matching frictions. We also show that segmenting
the market between traditional taxis and a dispatch platform such as Uber could
lead to a reduction in market thickness that can worsen matching frictions in the
aggregate.

Taxi services offer limited room for product differentiation. Moreover, a firm
in this market is of relatively low organizational complexity. In its simplest form,
it consists of a unit of capital (a car) plus the labor (a driver) needed to operate
it. The labor-skill requirements are relatively modest and the capital is in vast
supply. Finally, in a city like New York, taxi drivers make many decisions in-
dependently, with little real-time information about aggregate conditions. Thus,
absent regulatory interventions, this market has several of the features of text-
book examples of a “perfectly competitive” industry with many firms making
decisions independently, jointly affecting aggregate market conditions. It there-
fore presents an interesting case study of an important benchmark. However,
even absent regulatory restrictions, inherent matching frictions are present that
create barriers to trade. Furthermore, most taxi markets are subject to licensing
restrictions that limit entry and to regulations of fares.1

We first document some important patterns in this market that will then mo-
tivate some of the key ingredients of our model. We provide evidence that en-
try restrictions are strongly binding in NYC. If no other frictions were present,
one might therefore expect all taxis to be utilized at least during the daytime.
However, activity is often well below capacity, highlighting the importance of
understanding the labor-supply decisions of taxi drivers. Labor supply cannot
instantaneously adjust to market conditions, because drivers operate on a two-
shift system, leading to shift-indivisibilities in labor supply.

Because of regulations, this market does not feature any price flexibility. This,
inflexibility, together with capacity limits, implies that regular (and predictable)
patterns of variation in demand for rides during the day (e.g., rush hours) lead
to large fluctuations in costly delays for matches between passengers and taxis.
Drivers’ earnings and the number of active taxis vary during the day depending
on how long drivers need to spend searching for their passengers. The average

1As an important component of the urban transport infrastructure, the functioning of the taxi
market also has potential consequences for congestion and pollution.
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search time for an active taxi between dropping off a passenger and picking up
the next one ranges between 5 and 16 minutes depending on the time of day. To
appreciate the magnitude of these numbers, note the average duration of a trip
is 12 minutes. We report that the fraction of time taxis are “unemployed” ranges
between 30% and 70% depending on the hour of day. Passengers also wait to
obtain a taxi, and this wait time varies during the day. Absent price adjustments,
passenger wait times and taxi search times serve as (wasteful) market-clearing
variables.2

In our model, drivers make daily entry and hourly stopping decisions. Li-
censes to operate a taxi (medallions) are scarce, so entry is only possible for in-
active medallions. Hourly profits are determined by the number of matches be-
tween searching taxis and waiting passengers. Ceteris paribus, increasing the
number of taxis increases the search time for a driver to encounter the next pas-
senger and reduces expected hourly earnings. The number of taxis is determined
endogenously as part of the competitive equilibrium in this market. Stopping
(exit) decisions are determined by comparing a random, terminal outside op-
tion with continuation values determined by expected hourly earnings net of a
marginal cost of driving. Starting (entry) decisions result from comparing an out-
side option and the expected value of a shift (given expected optimal stopping
behavior).

To estimate the model we make use of rich data on the NYC taxi market from
2011 and 2012. These data include every trip of the yellow cab fleet in this time
span. The data entry of a trip includes the fare, tip, distance, and duration, as well
as the geo-spatial start and end points of the trip. We have a panel identifier for
the medallion as well as the driver which allows us to account for an important
source of heterogeneity in drivers’ characteristics (i.e., owner-operators vs. fleet
drivers) that affects the intensity of utilization.3

Prior papers have used the taxi market as a useful environment to study labor-
supply decisions because drivers have more flexibility in deciding when to stop
than workers employed in firms. However, we show that important rigidities are
tied to the two-shift structure of operation. Our model delivers responses to earn-
ings shocks that strongly depend on their timing during the day. Specifically, we
contrast the response to a uniform shock throughout the day to an hour-specific
shock for each hour. The former results in an elasticity estimate of 1.5, which,
interestingly, is remarkably close to the number (1.2) reported by Angrist et al.
(2017) from an experiment on Uber data. The latter results in estimates that vary
from 0.9 to 1.7 depending on the hour, with beginning- and end-of-shift elastici-
ties that are lower than those for the middle of the shift.

On the demand side, we face a challenge. Although we observe the number of
matches, neither the passengers’ wait time nor the number of hailing passengers

2This form of rationing is common in other markets.
3These identifiers are no longer available for more recent data from NYC.
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is directly observable in the data. However, we are able to recover these vari-
ables by using information about other observables as well as the nature of the
matching process. Our first step is to obtain the matching function that maps the
number of taxis and passengers (in addition to other observables such as traffic
speed) into the number of matches, as well as values for search time for taxis and
wait time for passengers. We develop an explicit description of the geographical
nature of the matching process, and we then recover, via simulation, a numeri-
cal representation of the matching function. We can then invert the function to
recover how many people must have been waiting for a cab given the number
of passenger pickups we observe (successful matches), how long taxis search for
passengers, the number of cabs on the street, and the speed at which traffic flows;
we observe all of these variables in our data. The empirical literature on search
and matching typically uses known inputs such as the number of job vacancies
and unemployed workers, as well as the observed number of matches, to estimate
parameters of an assumed functional form (e.g., Cobb-Douglas) for the matching
function.4 We proceed in the other direction by using a specific matching pro-
cess that defines a matching function, and we then use the observed matches and
the number of active taxis to infer the other key inputs to the matching function,
that is, the number of waiting passengers and their wait time. Interestingly, the
matching process displays varying degrees of returns to scale depending on the
level of activity. At low levels of activity, such as during the nighttime, returns
to scale are substantial. However, for daytime levels of activity, returns to scale
become essentially constant. This feature of the matching process has important
welfare consequences.

With the recovered demand data in hand, we proceed to estimate a demand
function in terms of the expected wait time for a cab (recall that fares are fixed).
We find that the demand elasticity with respect to wait time is not large, but
demand is sufficiently responsive that this plays a significant role in the counter-
factuals.

Our first counterfactual evaluates the effects of additional entry. A 10% in-
crease in the number of medallions leads to a 9.4% increase in the number of
active taxis.5 The reason for the less than proportionate increase relative to the
additional entry is that drivers respond to reduced earnings by choosing shorter
shifts, highlighting the importance of modeling the intensive margin on the sup-
ply side. However, the increase in activity would be a lot smaller if we did not
incorporate in the model the dependence of passenger demand on expected wait
times. The increase in the number of taxis leads to a reduction in wait time, which
leads to an increase in the number of passengers, which in turn moderates the re-
duction in earnings caused by the increase in the number of medallions.

4See, for instance, Petrongolo and Pissarides (2001)
5This number is an average across the day for a typical weekday. The extent of the increase in

activity at different hours of the day is somewhat heterogeneous.
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Our next set of counterfactuals concerns the magnitude of matching frictions
and possible ways to reduce them. Specifically, we consider an improved match-
ing technology in line with the dispatch system of the Uber platform and other
ride-hailing services. We first consider a polar opposite of the NYC decentral-
ized decision-making model by introducing a centralized dispatcher for the en-
tire fleet. We show relatively large gains for both sides of the market due to
reductions in wait times for both passengers and taxis. Interestingly, the num-
ber of active taxis increases by almost the same amount as in the counterfactual
with 10% more medallions, despite the fact that the number of medallions is left
unchanged. The number of matches increases by 11%, a larger amount than the
increase in the number of taxis. The difference is due to the fact that the dispatch
system reduces matching frictions.

We then consider what happens in the more realistic case in which the dis-
patch platform only achieves partial market penetration, with the remainder of
the market functioning according to the traditional street-hailing system.6 We
show that market segmentation on different platforms creates an inefficiency that
is due to a reduction in market thickness for both platforms.7 Partial coverage by
a dispatcher has two effects compared with a market with no dispatcher: on the
one hand, at the market sizes we consider, the partial dispatcher is a more effec-
tive platform for taxis and passengers that are served by it; on the other hand, seg-
mentation of the market makes both segments thinner, with the consequence of
longer average distances between a random taxi and a random passenger. When
we consider the case in which there is an equal number of potential taxis di-
vided between dispatch and decentralized platforms, we find the second effect
dominates, and therefore aggregate outcomes become worse than in the baseline
case. Interestingly, the effects are quite different during the daytime relative to
nighttime hours, reflecting the importance of the initial thickness of the baseline
market environment.

Finally, we consider the effects of density: we simulate a city that is otherwise
identical to Manhattan, but is one third as dense; that is, the same number of
potential passengers is spread over a larger territory covered by the same number
of potential taxis. We find our model predicts dramatic losses in efficiency due
to lower density. However, these inefficiencies are substantially alleviated by a
dispatch platform whose performance is (comparatively) much better in a less
dense environment.

The insights that we gain from our counterfactuals are of broader relevance
than the taxi market. Entry restrictions are related to the issue of occupational
licensing, which affects a large number of workers in the United States. For

6In order to isolate this effect we keep the total number of cabs the same and only change the
dispatch process.

7Uber seems to be well aware of this effect and therefore subsidizes drivers, especially when
they first enter a city. See, for instance, https://www.theguardian.com/technology/2016/apr/27/how-uber-
conquered-london.
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instance, Kleiner and Krueger (2013) report that 29% of workers are subject to
licensing regulations. Our results also speak to the effects of shift indivisibil-
ity and are therefore relevant to the literature studying the flexibility of work
arrangements.8 Our results are directly relevant for thinking about search and
matching frictions, which have been greatly emphasized in labor markets and
housing markets. In this respect, our paper is the first to offer an explicit simu-
lation of the matching process as deriving from spatial matching frictions. This
spatial simulation could be a useful metaphor for other markets in which match-
ing frictions are important.9 Finally, our results on competing dispatch platforms
speak to the literature on network externalities and trading platforms.10

2 Related Literature

This project combines elements from the entry/exit literature, neoclassical labor-
supply models, and search. Structural estimation of entry and exit models goes
back to Bresnahan and Reiss (1991). This entry/exit perspective on the problem
is motivated by the fact that drivers in the New York taxi industry, like in many
other cities, are private independent contractors and decide freely when to work
subject to the regulatory constraints. The labor-supply decisions of private con-
tractors have, for example, been studied in Oettinger (1999), who uses data from
stadium vendors. In the spirit of the entry/exit literature, we recover a sunk
cost, which in our case is the opportunity cost of alternative time use from ob-
served entry and exit decisions and their timing. One distinguishing feature of
our work relative to the prior work in Industrial Organization is that our market
contains tens of thousands of entrants. Entry is therefore competitive and en-
trants only keep track of the aggregate state of the market, which is summarized
in the hourly wage that is determined in equilibrium as a function of aggregate
entry and exit decisions. Another distinguishing feature is that previous papers
on the topic, for instance, Bresnahan and Reiss (1991), Berry (1992), Jia (2008),
Holmes (2011), Ryan (2012), Collard-Wexler (2013), and Kalouptsidi (2014), fea-
ture relatively long-term entry decisions (building a ship, building a plant, build-
ing a store, etc.), making both entry and exit somewhat infrequent. In our setting,
entry and exit decisions are made daily, creating a closer link between realized
payoffs and expected payoffs. Brancaccio et al. (2017) consider the related appli-
cation of exporters matching to ships. They develop and estimate a model that

8See, for instance, Chen et al. (2017), who discuss the value of flexibility for Uber drivers. See
also Mas and Pallais (2017).

9See Eckstein and Eckstein and Van den Berg (2007) for a survey on empirical work on la-
bor search, and Petrongolo and Pissarides (2001) for a survey on the matching function. On the
housing market, see Wheaton (1990)

10Cantillon and Yin (2008) discuss competing trading platforms in financial markets; Hendel et
al. (2009) discuss the role of competing platforms in the housing market.
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features geography, search frictions, and forward-looking optimizing ships and
exporters.

A direct application of spatial search to the taxi market is provided in Lagos
(2003), who calibrates a general equilibrium model (with frictions) of the taxicab
market, and includes some heterogeneity among locations. However, he assumes
all medallions are active throughout the day and thus does not model the labor-
supply decision, nor does he allow demand to be elastic to wait time.11 Using
the model, he quantifies the impact of policies increasing fares and the number
of medallions.

Buchholz (2018) also estimates a structural model of the NYC yellow cab mar-
ket but focuses on the spatial dimension of the drivers’ choice, while taking the
intertemporal supply of taxis as exogenous. Buchholz (2018) relies on spatial
variation in fares due to the two components of fares, namely, a fixed fare and
a fare that is variable in the travel distance, to estimate demand as a function of
price. By contrast, absent aggregate intertemporal variation in fares, we allow
demand to depend on the expected passenger wait time. Although we do not
study the spatial dimension of drivers’ choices, taxi activity is endogenous in our
model and we attempt to match the patterns of daily activity allowing for differ-
ent behavior for fleet versus owner operators. Hence, although Buchholz (2018)
can explore counterfactuals with respect to fare structure, our paper can investi-
gate the relaxation of entry restrictions and the extensive margin of supply more
broadly.

Some earlier papers have used NYC trip-sheet taxi data to investigate individ-
ual labor-supply decisions. Camerer et al. (1997) find a sizable negative elasticity
of daily labor supply and argue that this finding is inconsistent with neoclassical
labor-supply analysis. This interpretation has been challenged by Farber (2008).
Crawford and Meng (2011) estimate a structural model of a taxi driver’s stopping
decision, allowing for a more sophisticated version of reference-dependent pref-
erences. They do not consider a cab driver’s entry decision, and do not analyze
the industry equilibrium. We opted to stay within the neoclassical framework
to study the general equilibrium of the taxi market, in contrast to these papers
that all focus on the intensive margin of daily individual labor supply decisions.
We note that although some drivers might not fit this assumption, the aggregate
patterns are consistent with a standard model. Hence, a standard model of labor
supply seems to be a reasonable starting place.12 This perspective is also sup-
ported by the new evidence in Farber (2014), who uses the TPEP data and shows
that only a small fraction of drivers exhibit negative supply elasticities.13

11Lagos (2003) does not have data on hourly or daily decisions by taxi drivers.
12Note also that our models fits aggregate patterns relatively well; hence, any gains from al-

lowing for a richer labor-supply decision would be small in aggregate.
13Other papers that use these data are less directly related. For instance, Haggag and Paci

(2014) study the impact of suggested tips on the NYC taxi-driver payment screen for clients on
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3 Industry Details and Data

3.1 Industry Details

Operating a yellow cab in NYC requires ownership of a medallion. In the time pe-
riod covered by the data, only yellow cabs are allowed to pick up street-hailing
passengers.14 This regulation differentiates cabs from other transportation ser-
vices such as black limousines, for which rides have to be pre-arranged via a
phone call or the internet.15 The cab market is regulated by New York’s Taxi
and Limousine Commission (TLC), which sets rules such as the fare drivers can
charge, the qualifications for a taxi-driver license, the insurance and maintenance
requirements, and restrictions on the leasing rates (daily or weekly) medallion
owners can charge drivers.

Approximately 40% of the medallions, are owner-operated and require that
the owner of the medallion drive the taxi for at least 210 shifts in a year. The
remaining 60% of medallions, are called minifleets, and are operated by approxi-
mately 70 fleet companies that manage an average of 115 taxis each.16 Fleet com-
panies therefore manage many medallions and rent taxis out to drivers on a daily
or weekly basis.17 The presence of owner-operated medallions prevents concen-
tration of ownership and therefore guarantees a fraction of “small businesses” in
the industry. We later show that the requirement of owner-operated medallions
leads to less flexible rental arrangements and lower utilization, implying that al-
lowing for heterogeneity among ownership types in our estimation is important.

The TLC imposes several restrictions on the terms of the leases between medal-
lion owners and drivers. Leases can either be for a shift or an entire week. A
rental for a shift has to last 12 consecutive hours, and a weekly lease must last

the realised tip. Haggag et al. (2014) study how taxi drivers learn driving strategies based on
their experiences. Buchholz et al. (2016) argue that both “behavioral” and “neoclassical” wage
responses are present in the data, with the behavioral income-targeting story explaining shorter
shifts, and the standard neoclassical model explaining longer shifts. Methodologically, their pa-
per uses a different estimation procedure than we do: they develop a new closed-form estimator
for the stopping problem. Thakral and Tô (2017) find reductions in cab driver labor supply in re-
sponse to higher accumulated daily earnings and stronger effects for more recent earnings. They
argue that the income effect is inconsistent with the neoclassical model and the non-fungibility
of daily income rejects models invoking daily income targets. Hall et al. (2017) use fare changes
on Uber to explore short run and long run labor supply responses. Finally, Jackson and Schnei-
der (2011) find evidence of moral hazard in the behavior of taxi drivers and document that this
problem is moderated if drivers lease from fleets owned by someone in their social network.

14In the time period that we consider, Uber was not yet a significant presence.
15The TLC recently established an ability to hail cabs via a a mobile app, but this option was

not available during our observation period.
16Some fleet owners operate more than 1,000 taxis. Source:

http://www.nycitycab.com/Services/AgentsandFleets.aspx
17Fleet companies not only operate medallions that they own for themselves, but might also

operate medallions for medallion agents who lease them to the fleet companies.
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seven consecutive days. Minifleets must operate their cabs for a minimum of two
nine-hour shifts per day every day of the week.18 The TLC also specifies a cap on
the price medallion owners can charge that varies with the time of the lease and
the type of vehicle.19

3.2 Data

Our main data source is the TLC’s Taxicab Passenger Enhancements Project (TPEP),
which creates an electronic record of every yellow cab trip. For each trip, it
records a unique identifier for the driver as well as the medallion. It also records
the length, distance, and duration of the trip, the fare and any surcharges, and the
geo-spatial start and endpoint of the trip. The TPEP data can be obtained from the
TLC. In this project we only use a subset of the data which includes roughly four
months: October 1, 2011, to November 22, 2011, and August 1, 2012, to Septem-
ber 30, 2012. During the time spanned by our data we see the universe of 13,520
medallions. We also observe all 37,406 licensed drivers that have been active in
that period. We complement these data with information about the medallion
type (minifleet or owner-operated), and the vehicle type.

We focus our analysis on Monday through Thursday. The average activity
of these days looks almost identical whereas Friday, Saturday, and Sunday each
have some peculiarity. The reason we do not further differentiate between week-
days is that doing so would make obtaining counterfactuals computationally pro-
hibitive, and, as we will see, these days display very similar patterns.

4 Descriptive Evidence

We now provide some background information and descriptive evidence about
the functioning of the market. We also offer evidence for each of the following
features of the market that are later incorporated in the model and will be ad-
dressed in the counterfactual calculations: (1) entry restrictions, (2) daily patterns
of activity, and (3) search frictions.

4.1 Entry Restrictions

As we mentioned in the introduction, most taxi markets are subject to tight entry
restrictions. In NYC, the number of medallions during the time-period of our
data is 13,520. This number is an absolute limit on the number of possible taxis

18See TLC Rules and Regulations, paragraph 58-20 (a) (1) http://www.nyc.gov/html/tlc/html/rules/rules.shtml.
19The leasing-rate caps are between $115 and $141 depending on the weekday, the vehicle type,

as well as whether it is a night shift or day shift. Rate caps for weekly rentals vary between $690
and $812.
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on the street at any moment in time. Prices of medallions are an indicator of the
quantitative importance of the entry restriction.20 During the period we consider,
these prices exceeded half a million dollars. Of course, such medallions would
not be valuable in a market with no entry restriction. We have also verified that
the percentage of medallions that are driven at least once a day is close to 97%
during weekdays, and 92% even on Sunday. Given that some natural failure
rate of vehicles and other idiosyncratic reasons explain why taxis may fail to be
utilized, this seems to be a very intense rate of utilization. As we will see next, the
daily utilization rate is quite different from the utilization rate for a typical hour,
which is much lower and also depends on drivers’ hourly stopping behavior.

4.2 Daily Patterns of Activity

Figure 1 displays the fraction of taxis that are active at each hour of the day for
a typical weekday, distinguishing whether it is a minifleet or an owner-operated
medallion.21

Figure 1: Comparing Activity of Owner-operated and Fleet Medallions
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We wish to draw attention to several features of this figure. First, fleet medal-
lions are more intensely utilized for every hour of the day.22 To place the magni-
tude of the difference in utilization in perspective, this differnce is larger than the
difference between Uber and taxis reported by Cramer and Krueger (2016). Sec-
ond, substantial intra-day variation in activity exists, but this variation does not
seem to fully reflect expected patterns of intra-day variation of demand, despite
the fact that activity is well below capacity for the entire day.23 Third, a large

20Medallions are often traded in auctions and prices are public data.
21At most one owner-operated medallion can be owned at any time. However, owners can

lease the taxi to other drivers as long as the owner operates the taxi for a minimal number of
shifts.

22In Appendix G we discuss additional facts on the difference in utilization between fleet
medallions and owner-operated medallions.

23Below we provide evidence that activity is indeed less variable than demand.
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reduction in activity occurs precisely during the evening rush hour. This time is
known as the witching hour. The drop in activity is more pronounced for fleet
medallions.

Our model of the supply side of the market incorporates features that allow
it to match all these data patterns of daily activity. In particular, these patterns
imply the need to take into account the intensive margin of supply and its varia-
tion during the day, as well as the importance of allowing for differences between
fleet and owner-operated medallions. We have also explored these in differences
in counterfactual computations where we allow all medallions to be operated by
mini-fleets. Such a change would lead to similar improvements in consumer wel-
fare as a 10% increase (the same as in our entry counterfactual) in the number of
medallions (see Table 13).

4.3 Search Frictions

An important friction in this market relative to the ideal of a Walrasian market
arises from the fact that drivers and passengers have to physically search for trad-
ing partners. We now provide some indirect evidence that matching frictions are
important in this market. Figure 2 describes the fraction of time an average taxi

Figure 2: Search time Relative to Delivery Time during the Day
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Notes: This plot shows the ratio of the average time a taxi spends searching for
a passenger as a percentage of total time spent driving. The plot shows that
search time is highest in the nighttime hours and lowest during the “witching”
hour when demand picks up for the evening rush hour and many medallions
are transitioned between shifts.

spends searching for passengers relative to the total time it is active, that is, the
unemployment rate for taxis.

Two notable features are the following. First, the fraction of time taxis spend
searching is almost never lower than 30% and displays substantial variation dur-
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Figure 3: Search Time for Taxis (from data) and Wait Time for Passengers (from
simulation), in minutes
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Notes: The left panel shows search time for taxis in minutes, averaged for each hour of the
day. The right panel shows waiting time, also in minutes, for passengers as recovered by
our simulation, again averaged for each hour of the day.

ing the day, going as high as 65% at its peak. Note that, under the current system
of fixed fares, most inter-temporal variation in driver profits and customer wel-
fare are created by variation in delays in finding a partner. Indeed, a simple linear
model reveals that variation in taxi search time explains about 60% of the varia-
tion in drivers’ hourly wages.24 The low point of search time is reached at 5PM,
shortly after the shift change, when many medallions are still inactive. The high
point of search time is during the late night hours. For passengers, the wait time
increases at night relative to the late evening hours but is still lower than dur-
ing the peak of daytime values (the wait time for passengers is inferred from our
simulation, which is described in detail later). We will see that the negative re-
lationship between search time and wait time during much of the day is mostly
due to changes in the ratio of passengers and cabs. However, the fact that both
search time and wait time increase during the night relative to the evening hours,
illustrates an “economy of density” that implies that both market sides benefit
from the fact that density facilitates the matching process.

Additional evidence for the presence of search frictions can be obtained by
comparing the actual travel time between the observed drop-off location and the
subsequent pick-up location of a cab (the start and endpoint of the search process)
with the travel time of the fastest route between these points. To obtain the lat-
ter, we query Google’s distance API for the travel time between 1,500 randomly
selected drop-off and pick-up locations from our data. For each of these observa-
tions, we computed the ratio of the actual time taxis spent traveling between the
two points over the suggested fastest time and find that taxis spend on average

24Most of the remaining variation is explained by trip-length and the rate that is charged per
minute of driving. This rate varies with the speed of traffic due to the mixture of time-based and
distance-based metering.
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220% more time traveling between these points. The final piece of evidence for

Figure 4: Drop-off Order Against Pick-up Order
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search frictions emerges from examining the degree of predictability of the order
in which empty taxis find passengers in a given area: absent search frictions, one
would expect the pick-up order of taxis in a specific area to be highly correlated
with their drop-off order. In other words, focusing on a narrow enough area
with uniform demand conditions, the i-th cab to drop off a passenger in this area
should also be the i-th one to subsequently pick up the next passenger. Figure 4
displays the result of this exercise, along with the 45 degree line (steeper line and
the linear fit (flatter line). Although we find that the drop-off sequence and the
pick-up sequence are positively correlated, a large amount of dispersion is still
present. We interpret this dispersion as evidence of search frictions.

5 Model and Estimation

5.1 Demand-Side Model

In the estimation, we focus on trips that originate in Manhattan, which account
for most of the activity in the data (approximately 90% of trips).25

Because the NYC taxi market operates under a fixed-fare system, the endoge-
nous variables that adjust to clear the market are the wait time wt for passengers
to find a taxi and the search time st for taxis to find a passenger.

The estimation of the demand function presents two distinct challenges. The
first problem is that, although we observe the number of matches between pas-
sengers and taxis, we do not directly observe either the number of waiting pas-

25Most of the remaining trips originate at one of the two NYC airports.
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sengers (demand) or their wait time (price). The second problem is the issue of
simultaneity, which is the typical challenge in the estimation of demand. In this
subsection, we explain how we deal with the first problem to recover the demand
data we need to estimate a demand function. In section 5.1.3, we then describe
the instrumental variable approach to deal with endogeneity concerns.

Given a number of searching taxis (which we observe), the average time a taxi
spends searching (which we also observe) reveals information about the number
of passengers that must have been waiting on the street. To be more concrete,
imagine two scenarios in which the same number of searching cabs, c1 = c2,
have different search times, s1 > s2. If all other relevant factors (e.g., the speed of
traffic) are the same in the two scenarios, then, more passengers must have been
waiting on the street in scenario two. Our approach uses this basic intuition.

Let i ∈ {1, ..., I} be the index of an area in the city. We denote the total number
of waiting passengers in the entire city by dt. These passengers are distributed
across the areas of the city according to proportion {pd

i |i = 1, ..., I}.26 We denote
the vector of waiting passengers dt = (dt · pd

1, ..., dt · pd
I ).

The matching process is captured by a function g that maps a vector of waiting
passengers dt and searching taxis ct=(c1t, ..., cIt), as well as other exogenous time-
varying variables φt, into an aggregate search time st and wait time wt:(

st
wt

)
= g(dt, ct,φt) (1)

If we knew g (·), then, for given values of ct and φt, inverting this function
would allow us to infer dt, assuming, of course, the function is invertible. We
use our knowledge about the geographical nature of the matching process to infer
the form of g(·). In particular, we obtain an approximation of g by simulating
the matching process of waiting passengers and searching taxis on a grid that
represents an idealized version of the Manhattan street grid.

5.1.1 Implementing the Simulation

We assume passengers wait at fixed locations on a two-dimensional grid. The
map consists of nodes whose spacing is proportional to 1/20th of a mile. Each
of these nodes is a spot at which passengers potentially wait. Street blocks are
assumed to be 4/20th of a mile wide (east-west) by 1/20th of a mile long (north-
south), which corresponds to the approximate block size in Manhattan. Figure 5
shows the structure of the resulting grid. Gray nodes represent intersections be-
tween streets and avenues, at which cabs can change their direction of travel.
Turns at (gray) nodes are random with equal probability for each feasible travel
direction.

26These proportions are inferred from the data; see Section 5.1.1 below for more details.
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Figure 5: Schematic of the Simulation Grid
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We assume the effect of time-varying factors can be summarized by the speed,
mpht, at which the traffic flows and the average distance, milest, to deliver a pas-
senger from his fixed position on the grid to the destination.27 Both factors are
included in φt, and both are directly observed in our data by using the average
hourly speed of the entire taxi fleet as well as the average distance of all trips on
an hourly basis. For each combination of variables we feed into g, we simulate
the resulting average wait time for passengers and search time for taxis over an
hour-long time interval. Every ten minutes d/6 potential passengers are born and
placed on the map for a total of d passengers during the hour. We assume that the
maximal waiting time is 20 minutes. After 20 minutes, a passenger stops waiting
and counts as unmatched.28

To account for the fact that the number of trips originating from different parts
of the city varies, we divide Manhattan into eight equally spaced areas (see Fig-
ure 20 in Appendix B for details).29 Passengers appear on the corresponding parts
of the grid in proportion to the observed pick-up probabilities of those areas and
cabs reappear according to the observed drop-off probabilities. In other words,
for each of the passengers placed on the map, we first randomly determine an

27Note the trip distance is an important ingredient because it determines the effective supply.
Longer trips mean fewer taxis are available for the delivery of passengers.

28Our results are robust to changing the maximal value of the waiting time. See subsection D.2
in the Appendix for more details.

29To explore the robustness of the results with respect to the fineness of the division into areas,
we have also performed the simulation for 16 areas and results are almost identical. We report
these in Appendix B.
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area according to a multinomial distribution with probabilities { p̂d
i |i = 1, ..., 8}

and then a node within an area, where each node has equal probability. The
probabilities { p̂d

i |i = 1, ..., 8} are estimated as the fractions of trips originating
in these areas. Similarly, cabs re-appear on the map in area i according to multi-
nomial probabilities { p̂c

i |i = 1, ..., 8} and with equal probability on each node
within an area. The probabilities { p̂c

i |i = 1, ..., 8} are measured as the frequen-
cies of drop-offs in those areas.30 In subsection D.1, we discuss the robustness
of our inversion results to alternative (finer) divisions of the map. Although our
approach allows us to account for some of the heterogeneity in locations, we do
not consider endogenous location choices as in Buchholz (2018).

Note that, with the exception of the division into areas according to multi-
nomial probabilities, none of the steps so far required the use of observed data.
Our simulation simply generates an approximation of g() for any point in its do-
main.31 As long as the simulation approximates the true matching process closely
enough, we can use ĝ to back out dt for each combination of hourly averages of
search time st, number of taxis ct, traffic speed, and trip distance observed in the
data. Once the number of passengers is known we can insert it into ĝ to deter-
mine wait-time wt as well. Additional details on the simulation, including the
algorithm, are provided in Appendix D.

5.1.2 Properties of the Matching Function

Figure 6 graphically illustrates properties of the matching function. The figure
on the left shows what happens to wait time and search time as the market be-
comes thicker. On the horizontal axis, the number of taxis and passengers vary
while keeping constant the ratio between the two. Both passenger wait-time and
search-time decrease as the market becomes thicker, but the improvements de-
crease relatively quickly. For the numbers observed during the late hours of the
night, the returns to additional thickness are substantial. By contrast, at the scale
corresponding to the average number of daily taxis in the data (approximately
7,800 when averaging over the entire 24 hours), additional returns to market

30We therefore do not consider conditional drop-off and pick-up probabilities. These probabil-
ities would only be of interest if we wished to follow individual drivers. For the purpose of this
simulation, however, driver identities are irrelevant and only aggregates matter.

31Due to computational limitations, performing this simulation for each point in the domain of
g is not feasible. For example, if we assume that in an hour there are at most 70, 000 passengers
waiting, and multiply this number by the maximal number of medallions, we would already ob-
tain 945 million different points in the domain. Furthermore, there is variation in φ. We therefore
simulate g for a lower number of grid points, and we interpolate linearly between those points
to obtain the image for points in between. For each of the four independent variables of g(.), we
pick eight different evenly spaced grid points. Because the outcome of the matching process is
random, we have to repeat the simulation multiple times for each of those points. In practice, we
have found that the average of these simulations does not change much after 10 iterations, which
is therefore what we use to produce this average.
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Figure 6: Graphical Illustration of Matching Function
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thickness are fairly small, especially regarding search time. For a city with low
density, however, increasing returns would be significant at all hours of the day.32

All of this richness, which arises naturally from the physical structure of the
matching process, would be missed by assuming the standard matching function.
In particular, the variation in returns to scale across different times of the day
might have easily been missed under a parametric specification. Because density
is a crucial feature of this market, and an important ingredient in evaluating the
impact of various changes in the market as discussed in our counterfactuals, we
view our departure from standard parametric assumptions as a strength of our
approach.

The figures on the right give a sense of how market tightness affects outcomes
for taxis and passengers. In the top right panel, the number of passengers is
increased while holding fixed the number of taxis at the median observed in the
data. In the bottom right panel, the number of taxis varies, holding fixed the num-
ber of passengers at the median. Both figures also display level changes due to
differences in traffic speed, one of the exogenous inputs to the matching function.
The dotted line is obtained under a traffic speed that is one standard deviation
below the median, and the solid line is for a traffic speed that is one standard de-

32Regarding the number of matches, we consider a 10% increase for both taxis and passengers.
If this increase is applied to the numbers we observe late at night, (2,000 cabs, 5,000 passengers),
the resulting number of matches increases by 11%, so that the matching function displays modest
increasing returns. When instead we scale it to something closer to the daytime numbers (10,000
cabs, 25,000 passengers), then we obtain a 9.8% increase in the number of matches, implying, if
anything, a slight level of decreasing returns for matches at these higher values.
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viation above the median. Although a faster traffic speed is unequivocally good
for passengers, two contrasting effects exist for cabs. On the one hand, faster
traffic speed allows an individual cab to more quickly reach a waiting passenger,
thereby reducing search time. On the other hand, faster traffic speed speeds up
aggregate deliveries of passengers, and therefore leads to an increase in competi-
tion, effectively increasing the number of available cabs. At the median number
of observed passengers, the latter effect outweighs the former at less than 3,000
cabs.

Figure 7: Graphical Results of Demand and Wait Time
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Figure 7 displays the wait time and the number of passengers for an average
weekday as well as the number of passengers for an entire average week that is
inferred from our demand recovery. The passenger figures confirm an expected
pattern of strong rush-hour demand in the morning and evening hours on all
weekdays. We find that demand is lower on Sundays than during weekdays, and
no clear division exists between morning and evening rush hours. This, again,
appears to be reasonable. One can see that the wait time in the morning rush
hour spikes exactly when demand peaks between the hours of 7AM and 10AM.
This finding stands in contrast to the peak in wait time in the evening that occurs
at 5PM, before the spike in demand occurring at 7PM. We believe that the reason
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for this pattern is the coordinated shift change (witching hour) that spills over
beyond 5PM and leads to the more unfavorable ratio of active cabs to searching
passengers.

To provide additional validation for the results of our demand recovery, we
consider the effect of weather shocks, one of the important demand shifters in
this market. Appendix F shows that our inferred wait-times and demand are
both highly correlated with rainfall shocks, an external source of data that was
not used in the initial demand recovery.

5.1.3 Estimating the Demand Function

We now proceed to estimate a demand function that relates the number of pas-
sengers to wait time. We assume a constant elasticity demand function of the
following form.33

dt = exp(β0 +∑
ht

βht · 1{ht}+ xt ·βx) · wη
t · exp(ξt). (2)

The multiplicative component exp(β0 + ∑ht βht · 1{ht}+ xt ·βx) captures ob-
served exogenous factors that may shift demand, as well as persistent unob-
served components through dummy variables, and ξt captures unobserved time-
varying conditions that shift demand. The main parameter of interest is η, the
elasticity of demand with respect to wait time. Taking logs, demand can be esti-
mated as a linear model:

log(dt) = β0 +∑
ht

βht · 1{ht}+ x ·βx + η · log(wt) +ξt. (3)

A potential problem is that the wait time itself is a function of the number of
passengers as well as the number of cab drivers. In particular, unobserved factors
that shift demand will directly affect wt. Furthermore, drivers may condition
their decisions on factors included in the error term ξt, which would lead to a
decrease in wait time. For both of these reasons, the error term ξt and the wait
time wt may be correlated. This correlation would, of course, introduce a bias in
the estimation of η. To address this concern, we instrument for wait time. We
need a variable that is correlated with wait time and that affects demand only
through wait time. A supply shifter satisfies this requirement.

33Because we break up the data at the hourly levels and only use a subset of weekdays, we are
left with slightly more than 1,500 observations. The assumption of log-linearity is not unusal for
this type of problem; see, for example, Kalouptsidi (2014).
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Table 1: Demand Estimation

Dependent Variable: log(wt) log(dt)

Shift Instrument 0.179**

(0.00762)

log(wt) -1.225**

(0.0601)

Observations 1531 1531

2-Hour FE Yes Yes

R2 0.572 0.637

Note: + p < 0.10, ∗ p < 0.05, ∗ ∗ p < 0.01.
All regressions are based on our subset of 2011-12
TPEP data, excluding Fridays, Saturdays and Sun-
days. An observation consists of an hourly average
over all trips in that hour. Standard errors clustered
at the date level.

We make use of the shift change (or witching hour) as a supply shifter. In
Appendix I, we argue that the shift change is timed so that the day shift and the
night shift have similar returns on average. This equalization ensures both shifts
are attractive to potential drivers.34 Thus, the timing of the shift change is not
chosen to accommodate hourly demand shocks.35

Our demand analysis does not incorporate an explicit model of the consumer
choice problem among transportation options. Because this issue is not the main
focus of the paper, we model substitution to other modes of transport and to the
outside option via a reduced-form demand approach in which these modes of
transport are captured by varying demand intercepts of the log-linear demand
function. We have, however, made an effort to validate our demand estimates
with data on subway rides, which is the other major form of transportation in

34Because fleets face caps on the lease rates they can charge to drivers, an excess supply of
drivers in one shift does not lead to a higher ability to charge more for leasing a taxi during that
shift. Additional explanation is provided in Appendix I.

35We have also experimented with another instrument. We use the lagged number of active
taxis (every hour up to 6 hours before). As we argue in detail in our supply-side model, hourly
supply is determined by drivers’ longer-term decisions involving starting and ending a shift.
Early starting and stopping decisions therefore respond to unobserved shocks that are different
from later ones. Supply decisions that respond to these shocks will nevertheless shift supply
in later hours. For example, drivers who have made decisions to start because early hours are
profitable have sunk the entry cost and will tend to remain on the shift later even if subsequent
hours are not particularly profitable. From this instrument we get an elasticity of -0.7 (p < 0.001).
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Manhattan. Because the data on subway rides are only measured at four-hour
intervals, we aggregate data at a daily level. For the validation, we compute
the expected number of subway rides conditional on weekday, month, and year
fixed effects and we consider the residuals of these regressions as measure depar-
tures from routine subway travel conditions. We take two approaches to verify
the robustness of our results. First, we include these residuals as controls in our
specifications. This inclusion has no discernible effect on our results. Our second
approach uses the idea that the left tail of the residual distribution from this re-
gression can be interpreted as a shortfall in subway rides, possibly due to delays
or breakdowns. Conditioning our demand estimation on the data corresponding
to the lowest 20% of residuals, we find that, as expected, at these times, demand is
slightly less elastic, but that the average elasticities (computing these regressions
on both subsets and then taking the weighted average of the two elasticities) is
very similar to the one we obtain without conditioning.36

Figure 8: Demand Function Evaluated at the Mean of Wait-Time
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Figure 8 shows what demand would be if the wait time were held fixed at the
daily mean throughout the day. This finding highlights how the inelastic portion
of demand is varying throughout the day. In other words, it is a representation of
predictable hourly variation in demand. All else being equal, demand would be
highest in the evening hours between 5PM and 7PM and lowest in the morning
hours from 12AM to 6AM.

36Estimating the specification of Table 1 on the subset of days with the lowest 20% of residu-
als from the subway regression reduces elasticities from -1.225 to -1.19. For the purpose of our
counterfactuals, we are interested in the average elasticity in a stationary market environment,
which is almost unaffected (-1.224) by the omission of other transportation options. We have also
considered other values for the cutoff of the residuals and results are not very sensitive to this
definition.
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5.2 Supply-Side Model

Agents make their decisions in discrete hourly intervals; for each time point t in
our data, ht denotes the hour of the day from the set H = {0, ..., 23}. We interpret
ht as representative hours of a weekday. At each time point t, Nt medallions are
active and Mt are inactive summing up to the total number (13,520) of medal-
lions issued by the city. Each hour an empty medallion is probabilistically filled
with a driver, depending on the outside option of drivers and their entry deci-
sions. At each hour, active drivers choose whether to stop or continue driving.
As mentioned above, we focus on Monday through Thursday.

5.2.1 Accounting for Observed Medallion Heterogeneity

The model incorporates the main regulatory and organizational constraints im-
posed by the medallion system that we discussed in section 3. In section 3 and
section 4, we highlighted the fact that minifleet medallions are more heavily uti-
lized than owner-operated medallions, and are also slightly more likely to tran-
sition between shifts at 5PM. For a driver i, the index zi ∈ {Fleet, Own} denotes
the ownership type of the medallion. The model parameters are allowed to differ
by ownership type.37

In addition to ownership-type heterogeneity, we also allow for heterogeneity
in the type of shift patterns observed for different medallions. We capture this
heterogeneity by allowing for different times of shift-transitioning. The index
ki ∈ K captures the time at which the medallion transitions between day shift and
night shift. We allow each medallion to have one of four morning transition pat-
terns (3AM-6AM) and one of four evening transition patterns (2PM-5PM). Thus,
there are 16 possible shift-transition patterns. Drivers have to pay fines if they
return the car after the designated end of their shift. Such fines are very com-
mon to ensure drivers do not operate the cab longer than contractually specified.
Because fines are not directly observable, we estimate them as parameters. The
transition type determines when those fines need to be paid. If, for example, the
most common transition time in the morning (as measured by the mode for that
cab) is 5PM, we assume a driver has to pay a fine for handing in the medallion
later than this.38

37We could alternatively impose that cost parameters are the same for minifleets and owner-
operated medallions, but minifleets have a deeper pool of drivers to draw from. This is essen-
tially an equivalent problem and we expect that our results would be robust to this alternative
approach.

38Transition times are in principle endogenous, and one could imagine these times take into
consideration daily variation in the value of day shifts and night shifts to time the transition in a
negotiation process. Such a fully endogenous model is currently outside the scope of this paper.
However, as we argue in Appendix I, the current regulatory arrangements limit the flexibility of
transitions. Furthermore, as we show in Figure 16, the transition types we specify account for a
large fraction of observed transition patterns.
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5.2.2 Optimal Stopping for Active Drivers

We first discuss the optimal stopping decision for a driver who is already on
a shift, and then we discuss the decision to start a shift. At the beginning of
each hour, the driver decides whether he wants to collect the flow payoff from
driving plus the continuation value of an active shift, or the random value of an
outside option.39 The state vector is given by xit = (ht, lit, zi, ki), which includes
the hour of the day, ht, the number of hours the driver has been on a shift, lit,
as well as an idiosyncratic unobservable vector, εit = (εit0,εit1), assumed to be
distributed according to i.i.d. T1EV distributions with scale parameterσε.40 Note
ht as well as lit evolve deterministically and that zi and ki do not change over time.
Therefore, the only random component is εit.

We specify a cost of driving, Czi ,ht(lit), which is a function of lit and therefore
allows for a rising dis-amenity value as the shift progresses.41 The parameters
of this function are indexed both by the medallion type zi and by the hour of the
day ht. We interpret this cost function as a combination of the hourly opportunity
cost of driving, which may vary throughout the day, as well as the disutility of
driving. We assume the cost function takes the following form:

Czi ,ht(lit) = λ0,zi ,ht + λ1,zi · lit + λ2,zi · l
2
it.

42

The fixed components, λ0,zi ,ht , take one of four possible values for each type
zi, depending on the time of day. The term f (ht, ki) is a fine that has to be paid
in the event that the driver returns the taxi after the transition time; this time is
obtained from the classification into types that we describe above.43 A morning
driver has to pay a fine fzi whenever he goes past the common night shift starting
time and analogously for a night driver.44 The fine is indexed by zi to account for

39We assume no discounting because decisions occur hourly. In the estimation, the maximal
shift length that we allow is 13 hours, which is longer than the regulatory maximum of 12 hours
and is surpassed in the data only in very few cases.

40Thus, we do not include any persistence in these hourly shocks. The model could be modified
to incorporate persistence but, as we will see below, this additional generality does not seem
required in order to match the daily aggregate patterns of activity.

41Also note the cost function absorbs the fuel costs, but does not include time varying compo-
nents. We do not incorporate data on fuel expenses because there is little variation in fuel costs
in our sample. We have verified that in our sample there is no significant relation between taxi
activity and fuel costs.

42We have also explored a specification with higher order polynomials, but it does not affect
the results.

43Because shift transitions are approximately 2-hours long on average, the fine is imposed for
those two hours.

44We view the fines as a reduced form of a potentially more complicated set of sanctions with-
out explicitly modeling the many possible arrangements between drivers and owners. Unfortu-
nately, we are not able to observe whether there are private arrangements to deviate from the
regular transition patterns. We elaborate on the role of these fines when we discuss identification.
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the fact that owner-operated medallions seem to have less stringent transition
times. We denote by hki the set of hours for which a driver of medallion ki is
subject to the fine when driving. We therefore have: fzi(ht, ki) = fzi · {ht ∈ hki}.
Putting all these ingredients together, the value function for a driver conditional
on state xit = (ht, lit, zi, ki) is given by:

V(xit,εit) = max{εit0, πht − Czi ,ht(lit)− f (ht, ki)

+εit1 +Eεi(t+1) [V(xi(t+1),εi(t+1))]}.
As is well known, T1EV distributions for the error terms lead to closed form

expressions for the choice probabilities. We obtain the conditional stopping prob-
abilities as:

p(xit) =
exp

(
1
σv

)
exp

(
1
σv

)
+ exp

(
πht−Czi ,ht (lit)− f (ht ,ki)+Eεi(t+1)

[V(xi(t+1) ,εi(t+1))]

σv

) .

5.2.3 Starting Decision for Idle Medallions

We now discuss the decision of whether to start a shift. For each hour t during
which a medallion is inactive, a driver i has an opportunity to be matched with
this medallion. He decides to enter if the value of driving, given optimal stop-
ping behavior, is higher than his outside option. If he decides not to enter, the
medallion will be available to another potential driver the following hour. We as-
sume the utility from the outside option consists of a fixed value µz that depends
on the medallion type and on whether it is a day or night shift, as well as an id-
iosyncratic random component vit0. The utility of driving depends on the entire
expected value of a shift (described below) as well as an idiosyncratic component
vit1. We assume vit0 and vit1 are i.i.d. random variables distributed according to a
type 1 extreme value (T1EV) with scale parameter σv.45 Drivers also have to pay
a daily rental fee r that depends on whether they drive during the day shift or the
night shift. If they own the medallion, they have an opportunity cost of driving
equal to r . We set rht equal to the rate caps, which, according to anecdotal evi-
dence, were always binding during the data period.46 To summarize, the utility
of the outside option is given by

uit0 = µht ,zi + vit0,

45The scale parameter σv is identified because Eεt [V(xt+1)] is a given value from the stopping
problem and not pre-multiplied by any parameter.

46Recall that the sample period precedes the time when Uber entry became substantial in NYC.
By 2015, rental rate caps were likely no longer binding. In our discussion of counterfactuals, we
discuss how the endogenous determination of lease rates may change our results.
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and the utility of starting a shift is given by:

uit1 = Eεi(t+1) [V(xi(t+1),εi(t+1))]− rht + vit1.

Denoting by q(xit) the probability that an inactive driver starts a shift at time
t, conditional on state xit, we obtain:

q(xit) =
exp((Eεi(t+1) [V(xt+1,εi(t+1))]− rht)/σv)

exp((Eεi(t+1) [V(xt+1,εi(t+1))]− rht)/σv) + exp(µht/σv)
.

5.2.4 Equilibrium Definition

Hourly earnings, πht , are determined by the equilibrium distributions of active
medallions, cht , and searching passengers, dht .

47 The number of actively search-
ing cabs and passengers (cht and dht) determine wait times, wht , and search time,
sht through g(·).

Definition 1 A competitive equilibrium in the taxi market is a set: {sht , wht , cht , dht , πht :
ht ∈ Ht}, such that:

1. dht results from the demand function d(·) under the wait time wht .

2. sht and wht result from dht and cht under the matching function g(·).

3. cht results from optimal starting and stopping under πht .

4. πht results from sht .

The idiosyncratic uncertainty on the supply side, such as the random outside
options, averages out across the large number of taxis.48 We do not allow for
autocorrelation in the shocks or earnings. In fact, it turns out that most of the
variation in demand and wait time is explained by hourly fixed effects. The same
is true for search time.

47Hourly earnings are determined as e(miles,mph)
e(miles,mph)+s(d,c,miles,mph) · 60 · π0, where e is the expected

trip length, and π0 is the rate that drivers earn per minute of driving. Search time, s, is determined
under the matching function g(d, c, miles, mph).

48Since we are interested in aggregate market condition, over the entire city, we use the sim-
ple concept of a competitive equilibrium. This distinguishes our work from settings with many
firms where firms still have some market power, in which case an equilibrium concept such as
Weintraub et al. (2008) would be more appropriate.
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5.3 Identification of Supply-Side Parameters

In this section, we briefly discuss how the primitives of the model are identified.
We need to identify six main objects: (1) cost-function terms that vary with the

duration of the shift, (2) an hourly fixed component of the cost function, (3) the
fines, (4) the standard deviation of the hourly outside option, (5) the mean of the
daily outside option, and (6) the standard deviation of the daily outside option.

The identification of (1) can be best understood by using backward induction
for the driver’s decision problem. At the maximum allowed shift length of 13
hours, the continuation value is zero; thus, the driver only compares expected
income in that last hour against the cost of driving. The value of the cost func-
tion for lmax is therefore determined to match the expected earning in the last
shift hour, which is a data object. Once the value of the cost function in the last
hour is identified, it determines the continuation value from the perspective of
the preceding hour. Hence, the second to last value of the cost function is identi-
fied: earnings in that hour and the continuation value are composed of data and
identified objects. We can repeat the argument until we reach the first hour of
the shift. However, (2) is also dependent on the hour of the day. This part of the
cost function is identified by systematic inter-temporal variation in the stopping
probabilities throughout the day after conditioning on shift-length and earnings.
For example, the stopping probability increases sharply after 12PM, even though
no contemporaneous sharp decline in earnings occurs. This kind of variation in
the data identifies the differences in the values of λ0.

(3) is identified by the increase in the stopping probabilities at shift-transition
times independently of the length of time a driver has been on a shift. While
drivers’ shift lengths vary, the arrangements with other drivers are very consis-
tent, and transitions occur mostly at the same hours. This is the data feature
that we would have difficulty explaining without the fines. For instance, we fre-
quently observe that some drivers start their day shift late, around 12:00, let’s
say, and then hand over the car to the next driver at four before the night shift
starts. If stopping times were purely rationalized by shift length, this pervasive
data pattern would not be replicated by our model. In aggregate, our model
would predict that too few people stop at the hours 15:00, 16:00, etc. To illus-
trate this point further, Appendix J shows that stopping probabilities rise during
3AM-6AM and 2PM-5PM even for short shifts.

(4) is identified by the variation in earnings. This concludes the identification
of the value function, which can be treated as a known object for the discussion
of the primitives of the entry decision. The varying values throughout the day of
Eεi(t+1) [V(xi(t+1),εi(t+1))]− rht , which is composed of data and identified objects,
identify the different values of µht (5) and their dispersion, that is, the value ofσv
(6). In Appendix J we show the conditional choice probabilities.
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5.4 Estimation

5.4.1 Constructing the Data for Supply-Side Estimation

To estimate the model, the trip based TPEP data have to be transformed into a
shift dataset in which the unit of observation is a medallion-hour combination.

Shifts are defined following Farber (2008) as a consecutive sequence of trips,
where breaks between two trips cannot be longer than five hours. This definition
might sometimes lead to long breaks within a shift if the interval between two
trips is long but shorter than five hours. We do not model breaks: instead, we
call a break a gap between a dropoff and a pickup that is longer than 45 minutes.
We assume breaks to be an exogenous process, we estimate the likelihood of a
break for each hour conditional on the state, and compute hourly earnings as
the expected wage that is earned while searching for passengers, multiplied by
the probability that the driver is not on a break.49 Formatting the data this way
leads to 9,562,892 medallion-hour observations during which medallions have
been active in a shift as well as 5,747,837 medallion-hour observations during
which medallions have been inactive. From these data we drop shifts that are
only one hour long, which make up less than 0.3% of the active shift data.50

The search time relates the aggregate market conditions to the hourly earnings
potential of drivers. Recall from the discussion above that earnings are a result
of a combination of time-based and mile-based metering. We first calculate the
actual hourly based rate π0

t for each trip by dividing the total fare of each trip by the
duration of a trip. These rates also include the tip that drivers earn. Because tips
are only recorded for credit card transactions, we impute tips for trips that have
been paid in cash.51 For each hour, we also compute the average trip length as
well as the average search time for a taxi to find a passenger. Before we compute
these averages, all variables are winsorized at the 1% level to avoid them being
driven by large outliers. The length of the ride et determines together with search
time the effective number of taxis searching on the street as the ratio of search ver-
sus delivery time. If the average ride length in an hour is et, the average search
time st, and there are ct active cabs on a shift then the number of searching taxis
is determined as ct · (st/(et + st)). Based on these hourly averages we can then
compute a realization of the hourly wage rate as πt = π0

t · (et/(et + st)), that
is, the actual hourly rate times the fraction of the time the driver is delivering a
passenger as opposed to searching. Note that st is the search time and an endoge-
nous variable, which will adjust in our counterfactual computations according to

49In subsection D.3, we report that our results are robust to alternative definition of breaks.
50These disparate hours might be part of an interrupted longer shift and may not be captured

by the shift definition used here.
51We first run a regression with hourly dummy variables predicting the tip rate for each hour of

the day. We then use predicted rates to impute the tips for trips for which the tip is not observed.
About 47% of all transactions are paid by credit card.
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demand, supply and the matching process.

5.4.2 Estimation Procedure

For the estimation of supply-side parameters, which we denote by θ, we make
use of the fact that we can compute the supply-side problem as if it were a single-
agent decision problem against given hourly equilibrium earnings πt. In other
words, because we observe equilibrium earnings directly in the data, we do not
need to compute equilibria in the estimation. We also make use of the fact that
the dynamic decision problem can be formulated as a constraint on the likelihood
for starting and stopping probabilities of drivers. This approach is known as
mathematical programming with equilibrium constraints (MPEC).52

In our case, constraints are derived from the assumption that the data are
generated by a model of decentralized optimal starting and stopping decisions.
MPEC allows the constraint imposed by the value function to be slack during the
search but requires that it be satisfied for the final set of recovered parameters.53

We specify a likelihood objective function. For a driver j, we allow two differ-
ent daily outside options µz j , one for the daytime shift, 5AM to 5PM, and one for
the evening/night shift. We also allow the fine, fht ,z j , to depend on whether the
driver is on a night-shift, f0,z j , or a day-shift, f1,z j . The constant part of the cost
function is allowed to take different values in four time intervals: from 12AM to
5AM, from 5AM to 12PM, and from 5PM to 12AM. The other two parameters of
the cost function, λ1,z j and λ2,z j , are assumed to be time invariant. The remaining
parameters are the standard deviation of the idiosyncratic shocks to the starting
decision, σv, and to the stopping decision, σε. We require those to be the same
across the two medallion types.

52Su and Judd (2012) demonstrates the computational advantage of MPEC over a nested fixed
point computations (NFXP) in the classical example of Rust (1987) bus-engine-replacement prob-
lem. Applications of MPEC to demand models and dynamic oligopoly models can be found in,
for example, Conlon (2010) and Dubé et al. (2012). An intuitive explanation for the computational
advantage of MPEC is that the constraints imposed by the economic model are not required to be
satisfied at each evaluation of the objective function.

53Because the latter is a dynamic decision problem, one would normally iterate on the con-
traction mapping to solve for the value function for each parameter guess θ̂. Note the literature
provides suggestions that would avoid the NFXP, such as Bajari et al. (2007), where value func-
tions are forward simulated. A second advantage of MPEC is that it provides a convenient way
of specifying an optimization problem in closed form, which allows the use of a state of the art
non-linear solver. In this paper, we use the JuMP solver interface (Lubin and Dunning (2013)),
which automatically computes the exact gradient of the objective function as well as the exact
second-order derivatives.
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5.5 Parameter Estimates

Table 12 gives an overview of the estimated parameters. Results are shown sepa-
rately for minifleet and owner-operated medallions. Standard error calculations
are bootstrapped: we drew 50 samples with replacement at the medallion level.

Table 2: Parameter Estimates (standard errors in parentheses)

parameter description minifleet (z j = F) owner-operated (z j = NF)
µz j ,0 outside-option, 6pm-4am 299.59 (8.029) 311.33 (1.321)
µz j ,1 outside-option, 5am-5pm 312.95 (7.249) 312.97 (2.343)
f0,z j fine (nightshift) 87.25 (2.174) 90.58 (8.721)
f1,z j fine (dayshift) 91.6 (2.897) 72.14 (7.759)
λ0,z j ,0 fixed cost (1am-5am), 82.46 (11.62) 80.22 (14.956)
λ0,z j ,1 fixed cost (6am-12pm), 62.15 (12.398) 44.96 (15.373)
λ0,z j ,2 fixed cost (1pm-5pm), 47.81 (11.672) 43.45 (14.61)
λ0,z j ,3 fixed cost (6pm-12am), 58.82 (11.142) 42.44 (14.204)
λ1,z j linear cost coefficient -14.08 (0.903) -6.63 (0.428)
λ2,z j quadratic cost coefficient 1.46 (0.09) 0.88 (0.052)
σε sd iid hourly outside option 59.1 (3.337) 59.1 (3.337)
σv sd iid daily outside option 54.15 (2.954) 54.15 (2.954)

The mean values of the outside option for the night shift (µz j ,0) and day shift
( µz j ,1) are estimated to be $312.95 and $299.59 for minifleet drivers, and $312.97
and $311.33 for owner-operators. As we discussed in the identification section,
these values are pinned down by the values of starting a shift. The value for
minifleets is therefore lower, consistent with the descriptive evidence that owner-
operator medallions are utilized less. The estimated fines, f0,z j and f1,z j , are
$87.25 (nightshifts) and $91.6 (dayshift) for minifleet medallions. For owner-
operated medallions, the night-shift fine is $90.58 and the day-shift fine is $72.14.
The fixed part of the cost function parameters for minifleets are estimated as
$82.46 from 1AM to 5AM, $62.15 from 6AM to 12PM, $47.81 from 1PM to 5PM,
and $58.82 from 6PM to 12AM. For owner-operated medallions, the correspond-
ing values are $80.22, $44.96, $43.45, and $42.44. The linear parameter of the
hourly increase in cost is estimated to be $ − 14.08 for minifleet and $ − 6.63
for owner-operated cabs; the quadratic parameters are 1.46 for minifleets and
0.88 for owner-operated medallions. Because the cost parameter values by them-
selves are not very informative about the shape of the cost function we provide a
graphical representation below (Figure 9). The standard deviation of the hourly
outside option is 59.1. The standard deviation of the daily outside option is 54.15.
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5.5.1 Discussion of Parameter Estimates

A few observations about the estimates are worth highlighting. As shown in Fig-
ure 15, minifleet medallions follow the 5AM to 5PM shift pattern more stringently
than owner-operated taxis. This pattern is reflected in the estimates. Figure 9
displays the cost functions for both fleets and owner-operated taxis at different
times of the day.54 The graph shows the cost functions for a typical day and night
shift (starting at 5AM and 5PM respectively). Owner-operated medallions have
higher costs but less convex cost functions, which leads to stopping behavior that
is “smoother”, than for minifleet medallions. It also means owner-operators have
a higher percentage of short shifts.

Figure 9: Night and day shift cost function
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Notes: The graph shows the cost functions for a typical day and night shift (starting at 5AM and
5PM respectively). Note that the model allows the intercept to take on two values depending on
time of day. Since the intercept varies not by hours on a shift but by time of day, this discontinuity
might happen at a different shift duration value for a drivers that starts at a different point in time
than those displayed.

The estimated value of the outside option may seem high. To evaluate this
value, comparing it to average daily earnings is useful. The hourly wage distri-
bution is centered around $38.7 and a shift is on average 9.4 hours. Thus, ex-
pected earnings during a shift are approximately $364. If we subtract the rental
rate of $112, we do indeed find the outside option is a bit large relative to the
expected monetary value of the shift. The way the model rationalizes this dis-
crepancy is via the relatively large standard deviation on the idiosyncratic error

54A potential anomaly is the slightly decreasing costs at the beginning of a shift. This reflects
higher stopping probability after one hour of driving than after two or three hours. We interpret
these extremely short shifts as due to drivers discovering problems with the car or being assigned
the wrong vehicle. After this, costs are increasing, except for the small blip for Fleet drivers, which
occurs at the time where the intercept of the cost functions changes (which varies by time of day)
on the typical day shift.
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for the hourly stopping decision. This standard deviation is large to rationalize
some early and sometimes erratic stopping behavior that cannot be explained by
monetary values. This feature, together with the “option value” nature of the
optimal stopping problem inflates the value of the shift for the typical driver. To
confirm that it is indeed the explanation, we re-estimated the model with a much
more flexible cost function, where we allow the constant term to depend on the
hour of the day. This approach helps to match the stopping patterns better and
indeed reduces the variance of the error, which in turn should reduce the total
value of the shift due to the decreasing unobserved option value. For this speci-
fication, we estimate the daily outside options for fleet drivers to be smaller.

5.5.2 Model Fit

To evaluate the model fit it is useful to transform aggregate drivers’ decisions
into a law of motion for medallions. Medallions that are “available” for start-
ing drivers are those that are unutilized or in the last hour of their shift. The
probability that an active medallion becomes inactive is given by the probabil-
ity that the driver using it stops and that no other driver decides to use it in
the same hour: p̂M(t) = p̂(ht) · (1 − q̂(ht)). The probability that an inactive
medallion becomes active is the probability that a driver starts utilizing an in-
active medallion q̂M = q̂(ht). The stopping probabilities unconditional on the
hours on a shift are obtained from the conditional stopping probabilities. Let
Nt be the number of inactive medallions and let Mt be the number of active
medallions. The law of motion for medallions discretized into hourly intervals
is: Nt+1 = (1− pM

t ) · Nt + qM
t ·Mt and Mt+1 = (1− qM

t ) ·Mt + pM
t · Nt.

The model fit for the aggregate law of motion is presented in Figure 10, which
shows we are able to replicate the daily pattern of supply activity quite well.

5.6 Labor-Supply Elasticity

We now discuss the supply elasticities implied by our model. Given the shift
indivisibilities and the dynamic nature of the labor-supply problem, the supply
responsiveness to earnings depends on the type of change (shock) to the earnings
process we consider. We contrast a uniform (anticipated) increase in earnings
throughout the day to an hour-specific (anticipated) increase that has the same
normalized value, and we describe the response of total daily supply to each of
these hourly shocks. Figure 11 displays the results. The uniform increase results
in an elasticity estimate of 1.5, which, interestingly, is remarkably close to the
number (1.2) reported in Angrist et al. (2017) in an experiment on Uber data.

The effect of the homogeneous daily increase is due to a combination of ad-
ditional entry and longer continuation decisions, as continuation becomes more
profitable at all hours relative to the (unchanged) outside options.

31



Figure 10: Model Fit
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The response to hourly increases varies from 0.9 to 1.7 depending on the hour,
with beginning- and end-of-shift elasticities lower than those for the middle of
the shift. The reason for this heterogeneity in the responsiveness of total labor
supply is complex, but we can highlight some of the forces at play. As we con-
sider hourly increase later in the shift, two of the contrasting effects on labor
supply are the following. The effect on daily entry decisions is highest for earn-
ings increases in the first few hours of the shift. This is because the probability
of actually receiving these earnings decreases as the shift becomes longer since
the probability of stopping increases (due to both increasing costs as well as re-
peated exposure to hourly outside options). This effect works against later hours,
which drivers are unlikely to reach. However, an earnings increase in hour t has
an effect on all continuation decisions in hours prior to t, because of the expected
future “bonus” at hour t. This effect penalizes earlier hours, although this is
made more complicated by the fact that the effects depends on the likelihood of
reaching those hours. In addition to those, there is a “mechanical” effect from a
“bonus” at time t that comes from the fact that now that a driver is active at hours
they would not have been active otherwise, they may receive an increase in those
hours that induces them to continue working. Finally, an additional effect at play
and working against hours that are very close to the end of the shift is that the
fines are a strong deterrent to ending a shift late, so we find little responsive-
ness of supply in those hours. All of these countervailing forces come together to
create the non-monotonic relation between hours in a shift and elasticities.

Comparing the pattern of hourly supply elasticities and of total taxi activity in
Figure 10, it is apparent that there are some important differences. In particular,
while supply in the early evening hours is high, the supply elasticity is relatively
low. This is explained by the fact that earnings are especially high in the early
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evening hours.

Figure 11: Labor-Supply Elasticity
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6 Counterfactual Experiments

As we argued earlier, two important sources of inefficiency in the taxi market are
regulatory entry barriers and matching frictions. Part of the success of startup
ride hailing services can be attributed to the fact that they address both of these
inefficiencies.55 Our counterfactuals attempt to distinguish the effects of addi-
tional entry from those of more efficient matching. We also investigate whether
market segmentation between different operators may lead to inefficiencies: the
introduction of a dispatch system à la Uber that only covers part of the market
may reduce overall market thickness and lead to overall inferior outcomes in
spite of an inherently superior dispatch platform. We then evaluate how match-
ing frictions are affected by density: we discuss how outcomes change if we con-
sider a city that is identical to Manhattan except that its passengers are spread
over an area that is three times as large.

For all counterfactuals, we highlight changes in the average number of active
cabs, the number of passengers, hourly driver revenues, discounted medallion
revenues, as well as consumer surplus (measured in minutes).56

55An additional effect is that surge pricing makes supply more responsive to demand shocks.
We do not address this issue here.

56Please note that the medallion revenues should not be confused with medallion price since
we have no direct measure regulatory uncertainty, and cost variables associated with owning
medallions. If we had bee able to compute the full medallion prices from our model one could
use observed medallion prices as additional identifying restrictions, such as in Heckman and
Navarro (2007) and Kalouptsidi et al. (2015).
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Medallion revenue streams are obtained via simulation: we compute the num-
ber of times a medallion is rented out in a year in equilibrium and then use this
number to compute the present discounted revenue under an annual interest rate
of 5%. Revenues are averaged over the different types of medallions according
to their observed fractions in the data.

All counterfactuals are computed in two steps. We first compute an equilib-
rium in which we fix demand. This scenario is then compared to the full coun-
terfactual in which demand is allowed to adjust to changes in wait time. This
computation highlights the impact of demand responsiveness to wait time.

The estimation did not require us to compute market equilibria because the
supply side parameters were estimated using the observed process of hourly
earnings. For the counterfactuals, we have to address the challenge of equilib-
rium computation. We iteratively solve for the supply- and demand-side param-
eters, holding the variables of the respective other side of the market fixed until
updates on both sides of the market fall below some specified tolerance. The
exact algorithm is described in detail in item H.

Recall that in the estimation, we set the daily lease rate a driver pays to rent a
taxi equal to the binding rate cap. In the counterfactuals, we do not allow lease
rates to adjust endogenously to changes in market conditions. This assumption
is innocuous when we consider changes that improve drivers’ earning, such as
the universal dispatch counterfactual. In such cases, the lease cap would be even
more binding. For the other counterfactuals, assuming the lease cap is still bind-
ing amounts to an assumption that the change is not large enough to move out
of the region in which the rate cap is binding. Unfortunately, we do not have
variation in the data that allows us to pin down where the lease cap would stop
being binding. However, we acknowledge that for large changes, once the cap
is no longer binding, lease rates would have to adjust to maintain drivers’ en-
try unchanged. Thus, if we consider a change in market conditions that is large
enough to affect lease rates, our model would potentially overstate the supply re-
sponse because the adjustment in lease rates would moderate the negative effects
on taxi aggregate supply. Stopping decisions would still be affected because for
these decisions, the rental rate is sunk. (Lower lease rates would have an indirect
offsetting effect through larger entry of reducing continuation earnings.)57

Our model does not account for the traffic externality and potential adverse
environmental effects due to additional taxis on the street. Note, however, that
when we view search times and wait times as measures of frictions, these times
indirectly incorporate concerns such as congestion: if moving to a dispatch model
reduces search time and wait time, this move also improves congestion because

57The natural model of lease determination would be one in which the market is competitive
on both sides (fleets and drivers), with rental rates equating the supply (daily entry) of drivers
with the demand for drivers. The demand for drivers should be completely inelastic because the
number of medallions is fixed and investment in taxis is sunk.
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empty taxis that do not deliver any passengers contribute to congestion with-
out any social value. Analogously, a policy that results in increases in wait time
and search time can be viewed as having a negative contribution to congestion.
Although environmental damage is hard to assess, the city recently investigated
this issue and found that ride-hailing services are only a minor contributing fac-
tor to the recent decline in NYC traffic speed.58 These findings stand in contrast
to Mangrum and Molnar (2017), who documents that the introduction of outer
borough green cabs has lead to a local decrease in traffic speed of about 9%.

58See http://www1.nyc.gov/assets/operations/downloads/pdf/For-Hire-Vehicle-Transportation-Study.pdf .
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Table 3: Counterfactual Results

Hourly Active Hourly Passenger Matches Taxi Hourly Taxi Consumer Medallion

Cabs Demand Wait Time per Day Search Time Revenues Surplus (Minutes) Revenue

Baseline 6727.0 23412.0 2.6 20728.55 7.6 40.37 1.65 1.53

Entry 7361.0 25449.0 2.43 22557.42 7.68 40.22 1.74 1.52

Entry (perc. change) 9.42 8.7 -6.41 8.82 1.07 -0.38 5.24 -0.41

Entry(PE) 7049.0 23412.0 2.33 23325.73 8.27 39.01 2.02 1.46

Entry(PE) (perc. change) 4.77 0.0 -10.21 12.53 8.81 -3.38 21.81 -4.35

Dispatch 7293.0 24370.0 2.56 23083.36 6.9 42.3 1.76 1.62

Dispatch (perc. change) 8.4 4.09 -1.44 11.36 -9.26 4.77 6.3 5.87

Dispatch(PE) 7014.0 23412.0 2.67 23025.2 7.37 41.59 1.8 1.57

Dispatch(PE) (perc. change) 4.27 0.0 2.67 11.08 -3.09 3.02 8.49 2.93

Segmented(50) 5843.0 18441.0 3.16 17057.26 8.87 38.12 1.47 1.35

Segmented(50) (perc. change) -13.14 -21.23 21.65 -17.71 16.71 -5.59 -11.08 -11.78

SegmentedEnd 5732.0 21591.0 2.8 20184.56 9.48 37.86 1.66 1.33

SegmentedEnd (perc. change) -14.8 -7.78 7.59 -2.62 24.71 -6.22 0.13 -12.79

Density 4373.0 12367.0 4.34 11008.06 12.2 32.24 1.07 1.06

Density (perc. change) -34.99 -47.18 66.97 -46.89 60.54 -20.13 -35.24 -30.55

DensityDispatch 6630.0 20898.0 2.87 19838.77 8.1 39.58 1.62 1.5

DensityDispatch (perc. change) -1.44 -10.74 10.29 -4.29 6.5 -1.97 -2.01 -2.02
Note: The changes are a mean over all 24 hours of the day. The wait-time and search-time averages over hours are weighted by the number of trips, and the hourly driver profits are weighted by
the number of active drivers across hours. PE means partial equilibrium and holds demand fixed to give a sense of how much the demand expansion changes counterfactual results. The percentage
changes ∆% are the changes in the means over all hours compared to the baseline. Consumer surplus is computed under the assumption that the demand function is truncated above the maximal
wait time observed in the data. The reason is that, for our parameter specifications, consumer surplus would be infinite if we integrated over all wait times. This issue results from the assumption
of constant elasticity, log-linear demand. A similar issues arises, for example, in Wolak (1994), who also truncates the demand distribution. Note, however, that except for the limit case, the absolute
difference in consumer surplus will be well defined and the same, no matter how high we choose the truncation point to be.
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6.1 Relaxing Entry Restrictions

To explore how additional entry affects the market, we consider a 10% increase
in the number of medallions, from 13,500 to 14,850. To place this magnitude in
context, note that Uber served 4% of the total number of trips in 2014 and 13% at
the beginning of 2015.59

Table 3 describes counterfactual outcomes aggregated at the daily level. Changes
for this counterfactual are of uniform sign at the hourly level, although the mag-
nitudes for daytime versus nighttime responses are somewhat different. For in-
stance, taxi activity changes less during the night. On average, taxi activity ex-
pands by 9.42%, which is proportionally less than the medallion increase, be-
cause earnings drop, causing drivers to work less. This increase in available taxis
reduces wait time for passengers, and demand expands. On average, the expan-
sion of demand is 8.7%, whereas the average reduction in wait time for passen-
gers over all hours is 6.41%.60 The demand expansion moderates the drop in
taxi earnings caused by increased supply. This effect is sizable: if demand were
held fixed, supply would only expand by 4.77%. The demand expansion almost
completely compensates drivers for the additional competition: taking the mean
over all changes in hourly income, the hourly wage of drivers decreases by only
0.38%. Earnings would instead fall by 3.38% if demand were held constant. The
increase in the number of matches (or total number of trips) is 8.82%, which is
very close to the increase in demand. The present discounted revenue stream for
a medallion decreases only by 0.41%, which is a lot lower than if demand did not
increase (in which case it would drop by 4.35%). Consumer surplus increases
by roughly 5.24% and, perhaps surprisingly, would be higher without demand
response. To understand this last result, note first that wait time drops a lot more
when demand does not adjust than when it does. Second, the additional gain in
the number of serviced trips when demand adjusts is relatively small. Thus, the
gain in the infra-marginal trips that are already served in the scenario with no
demand adjustment is larger.61

On a more speculative note, we have also explored what the socially optimal
number of medallions would be. A social planner would ideally also adjust fares
along with the number of medallions. However, this unconstrained planner’s
problem would require knowledge of the sensitivity of demand to price; and we
do not have enough fare variation to gain information on this. However, we can
conclude that if fares were fully flexible, then the optimal structure (absent con-
siderations such as congestion), is to allow free entry. We can still compute the
optimal number of medallions taking as given the current fare structure. Because

59See http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-
from-taxis/. This report is based on data the city obtained from Uber for a traffic study.

60All averages across hours are weighted in proportion to the number of trips taken in each
hour.

61The same logic applies to the other counterfactuals.
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we have measured consumer surplus in minutes and producer (driver) surplus
in dollar terms, we first need to find a translation in order to make these consis-
tent. We convert consumer wait-time according to the median hourly wage in
Manhattan. We also assume equal welfare weights on consumer and producer
surplus. Under these assumptions, we find that the optimal number of medal-
lions is approximately 21000, i.e., about 55% higher than under the cap in 2012.62

6.2 Improved Matching

6.2.1 Universal dispatcher

We now describe a counterfactual that considers an alternative matching technol-
ogy: a dispatch platform that matches each empty (searching) cab with a waiting
passenger. The dispatcher matches a passenger with the closest empty cab, if one
is available within a one-mile radius.63 This matching process is a natural alterna-
tive to the street-hailing system and approximates the one used, for instance, by
Uber in its first years of operation. Ideally, a matching algorithm would not only
search across empty taxis, but would also take into account the possibility that a
soon-to-be-empty taxi may be closest to a passenger. Such an algorithm would
be difficult to compute and is potentially difficult to implement, so we focus on a
simpler case. But, because our dispatcher does not optimize in a forward-looking
way, allowing for matches of passengers and cabs that are too far apart can be
very costly. The restriction to a one-mile radius alleviates this problem.64

Before presenting the results, we discuss how the dispatch matching function
differs from the matching function that results from the street-hail process that we
have assumed so far and modeled in subsubsection 5.1.2. We describe some key
features of a simulation of the dispatch matching function over a range of out-
comes. Results are displayed in Figure 12. This figure considers what happens to

62Allowing for flexible fares is likely to increase this number substantially. In our view, the two
biggest caveats for interpreting this number are the following. 1. A sizable increase in the number
of medallions may lead to significant externalities, such as traffic congestion and pollution, that
we do not consider; 2. The lease cap for rental rates for medallions may not be binding any longer
for such a large increase in medallions.

63Passengers who do not find an immediate match wait for taxis to become available. Taxis that
are unmatched drive randomly until matched. For the dispatcher we also count the time it takes
the taxi to get to the passenger as wait and search-time respectively.

64The following extreme case illustrates why a pure spatial global search may not be optimal.
Consider a scenario in which only one passenger is left waiting, only one empty cab is searching,
and they are on opposite ends of the grid. The remaining cabs are delivering passengers. If the
dispatcher were to commit them to a match, the chance is high that a better outcome could be
obtained by waiting. The passenger is likely to obtain a faster match by waiting for one of the
busy cabs to finish its trip and become available. Analogously, for the empty cab, a new passenger
may appear on the map closer to its position. A dynamic algorithm that searches spatially as well
as across time could account for these better match opportunities.
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Figure 12: Matching Function Comparison
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passenger wait time as the market becomes thicker, that is, when we increase the
market size (or density) while keeping constant the ratio of taxis to passengers.
(Recall that a taxi serves multiple passengers within an hour.) Several features
of this figure are worth noting. First, both matching functions display increasing
returns, implying that as the market becomes thicker, wait time falls. Second, the
dispatch matching function has a lower slope, implying that it is less sensitive to
density. Third, for high values of density, the search matching function is supe-
rior so that wait times can become longer under dispatch when density is high.
Point 3 may be surprising, but it is closely related to the non forward looking
nature of the dispatch platform: passengers may be better off waiting for a ran-
dom cab that is currently delivering a passenger and therefore not available for
dispatch. The street-hailing system implicitly incorporates this option value and
therefore can be superior to the dispatch matching function.

Figure 13: Dispatch Counterfactual

5 10 15 20
Hour of Day

2000

4000

6000

8000

Ca
bs

Base
Dispatch

5 10 15 20
Hour of Day

5.0×10³

1.0×10

1.5×10

2.0×10

2.5×10

3.0×10

3.5×10

Pa
ss

en
ge

rs

Base
Dispatch

5 10 15 20
Hour of Day

1

2

3

4

W
ai

t T
im

e

Base
Dispatch

We now describe results under the different dispatch scenarios, starting with
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the extreme case of the entire market operating under the dispatcher. Figure 13
gives an overview of the changes across different hours. The panel for each re-
spective variable shows the difference between what happens in the baseline case
minus what happens in the counterfactual. In this counterfactual, the number
of active taxis increases 8.4%, and the search time for taxis decreases substan-
tially (−9.3%). (If we did not allow for an expansion of demand in response
to reduced wait times, the supply increase would, by contrast, only be 4.77%.)
There are now 4% more passengers entering the market and the wait time for all
passengers drops by 1.44%, consumer surplus increases by 6.3%, and the num-
ber of trips increases by 11.36%, more than proportionally to demand. The rea-
son for the disproportionate change in consumer surplus and number of trips
(successful matches) relative to demand is that fewer unmatched passengers are
present. These passengers were previously unmatched because their wait time
would have exceeded 20 minutes.65 The value of medallions increases by 5.9%.
To summarize, averaging across hours, all stakeholders benefit from the intro-
duction of the dispatch technology, under the assumption that it is universally
adopted.

6.3 Partial Dispatching and Market Thickness

In reality, a new dispatch system is likely to only cover part of the market, at least
initially. Thus, the introduction of a new matching technology may result in a
segmentation of the market into multiple platforms. If consumers are divided be-
tween competing platforms, both segments of the market become thinner, which
could potentially lead to losses in matching and wait time that could offset the
improvements due to better matching within the dispatch platform.66 To explore
whether this outcome is plausible, we consider a scenario in which we divide the
medallions equally across platforms: half operate on the search platform (base-
line), half on the dispatch platform.67 We assume both drivers and passengers are

65We record the wait time of unmatched passengers as 20 minutes.
66In addition to segmenting the market between different platforms, Uber entry also added

capacity to the market. We also considered a counterfactual that combines entry and market seg-
mentation: 10% additional capacity is offered with a dispatch technology, whereas the remaining
stock of taxis remains on the street-hailing system. The results of this counterfactual are a hy-
brid of the two separate counterfactuals. Consumer surplus and wait times improved relative
to the baseline but less than if entry had all occurred on the street-hailing system as in our first
counterfactual.

67For this step, we also divide up potential demand exogenously across platforms, by simply
pre-multiplying the constant elasticity demand function d(wt) by the shares of 0.5. This procedure
ensures that if the wait time in the two platforms were the same, total demand would add up the
baseline total demand. Realized demand, of course, depends on the wait time in the relevant
platform. For the results we weigh wait times, driver earnings, and all the other variables by
the respective hourly number of trips taken on both market sides and report those averages. The
exception is medallion values, where we directly multiply the results by the respective share of
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committed to a match: neither can cancel should another match option become
available sooner.68 We also first assume that passengers are exogenously assigned
ex ante to one of the two platforms. We remove this assumption in what follows.

Figure 17 in Appendix C shows that the dispatch platform always serves more
than 50% of the rides and that this share is highest during the night, where it can
account for more than 60% of all rides. The advantage of the dispatch platform
is due to the fact that it has lower wait times, and therefore, higher demand.69

However, in the aggregate, compared to the baseline, the reduction in market
thickness has negative consequences that more than offset the improved match-
ing in the segment of market served by the dispatcher. Regardless of the hour, in
the aggregate we see substantially fewer active cabs (-13.14%) and lower demand
(-21.23%). Wait time and search time are much larger than baseline (+21.65% and
+16.71% respectively).

To separate the respective roles of the market-thickness externality and of the
dispatch platform, we perform the same exercise with two competing segmented
dispatch platforms as well as with two competing street-hailing systems.70 The
table below present the results of these scenarios.

Table 4: Different Types of Segmentation

Search/ Search/ Dispatch/
Baseline Dispatch ∆% Search ∆% Dispatch ∆%

Consumer Surplus (million minutes / day). 1.65 1.47 -11.08 1.29 -21.94 1.65 -0.46
Driver Revenue (hourly income) 40.37 $38.12 -5.59 $33.93 -15.96 39.85 -1.29
Medallion Revenue (PV in millions) 1.53 $1.35 -11.78 $1.2 -21.38 1.49 -2.18
Wait time (average in minutes) 2.6 3.16 21.23 3.64 40.1 2.84 9.27

The table shows that the two competing dispatch platforms perform substantially
better, whereas the two competing search platforms deliver the worst outcomes.
However, even the case with two competing dispatch platforms performs worse
than the baseline, highlighting the importance of market thickness.71

Finally, we allow passengers to sort themselves endogenously into either the
dispatch or the search platforms. Because we do not consider additional dimen-
sions of heterogeneity across the two platforms, passenger choice must induce

issued medallions, in this case 50% of each type.
68For example, we do not allow a waiting passenger who is matched to a dispatch cab to accept

a ride from a searching cab.
69The higher advantage of the dispatch platform in hours with lower demand density is related

to the findings in Cramer and Krueger (2016) who show Uber’s advantage in capacity utilization
(defined as the fraction of time delivering passengers) is relatively minor in NYC but large in
other cities that are less dense.

70This case is entirely hypothetical: what segmentation would mean for two street hailing plat-
forms is not clear.

71One caveat of our analysis is that it does not take into account the potential difference in
variance in wait times across platforms. It is likely that dispatch platforms deliver reduced un-
certainty in wait times.
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equal wait time across the two platforms. As more passengers move to the dis-
patch platform, it becomes more congested, while fewer passengers compete for
the search taxis resulting in increased wait time for the dispatch platform and
lower wait time for the search platform.72 Line SegmentedEnd in Table 3 presents
the results for this scenario. Compared to the case in which demand is segmented
exogenously, substantially more market share is captured by the dispatch plat-
form (especially during the night-time). This increased penetration of the dis-
patch platform moderates some of the negative effects of the market-thickness
externality for passengers but makes drivers worse of on average. On balance,
however, the number of matches per day only drops by 2.61% compared to the
baseline, much better than with exogenous demand division across platforms.
Allowing passengers to choose also increases drivers earnings disparity, roughly
doubling the earnings advantage that drivers on the dispatch platform enjoy.

6.4 Density Counterfactual

The last counterfactual explicitly addresses the spatial dimension of matching in
this market. We now assume matching takes place in an area that is three times
the area of our baseline simulation of Manhattan but is otherwise identical. We
first assume decentralized search (a street-hailing system) and compare outcomes
in this less dense market to the baseline outcomes. We then introduce a universal
dispatcher in order to evaluate how density affects the importance of the dif-
ferent matching technology. Table 5 reports the average welfare, driver income,
medallion revenue and wait time in these two scenarios. This demonstrates the
magnitude of the effects of density in our environment. For instance, wait time
increases by more than 60% and driver revenue decreases by about 20%. How-
ever, the dispatcher has a much more sizable, positive effect in this low density
scenario, leading to a large improvement in all dimensions. Figure 14 displays the
hourly number of active taxis, passengers, and wait time in these two scenarios
compared to the baseline.

Table 5: Density

Baseline Density ∆% Density Dispatch ∆%
Consumer Surplus (million minutes / day) 1.65 1.07 -35.24 1.62 -2.01
Driver Revenue (hourly income) 40.37 $32.24 -20.13 $39.58 -1.97
Medallion Revenue (PV in millions) 1.53 $1.06 -30.55 $1.5 -2.02
Wait time (average in minutes) 2.6 4.34 66.97 2.87 10.29

72For given numbers of taxis in the two platforms, this logic guarantees existence of such an in-
difference condition. In our setting, a complication arises because taxi supply is endogenous and
therefore responds to this process. However, in the simulation, this endogeneity is not sufficient
to lead to a corner solution.
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Figure 14: Density Intradaily
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7 Conclusion

This paper develops and estimates a dynamic general equilibrium model of the
NYC taxi market, which we use to understand the magnitude of the effects of
entry restrictions and matching frictions. Drivers hourly revenue is determined
by the equilibrium number of searching cabs and waiting passengers, mediated
by the time it takes to find the next passenger. Passengers’ demand is affected by
the wait time for a cab. To estimate the model, we first obtain a numerical repre-
sentation of the matching function by explicitly modeling the geographic nature
of the matching process. We then back out unobserved demand by inverting this
matching function. The number of active taxis is determined by daily starting
decisions and hourly stopping decisions given the anticipated level of earnings
from the equilibrium level of cabs and passengers.

Counterfactual results from the model show that an improvement in the match-
ing technology leads to substantial increases in consumers’ welfare as well as
drivers’ earnings. However, our results also point to the fact that competition
among dispatch platforms can lead to decreases in welfare because it leads to
market segmentation and lower market thickness. Our analysis of segmented
platforms is only suggestive, because the model does not incorporate any addi-
tional heterogeneity among the platforms and assumes exogenous assignments
of drivers. Including such richness is not within the scope of the current paper
but extending the analysis to study this issue in more depth would be interesting.

We have not considered the issue of surge pricing. To study this question, one
would need to estimate a richer demand system that allows for dependence on
both prices and wait time, allowing for correlation between consumers’ respon-
siveness to wait time and to prices. Uber data may be helpful for studying such
a question.
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A Additional Figures

Figure 15: Time Medallion is Unutilized Conditional on Hour of Drop-Off.
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Figure 16: Prevalence of Constrained Hours Throughout the Day
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Figure 17: Fraction of Rides Served by Dispatch
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B Multiplicity

A look at the inter-temporal patterns of the data shows that it follows a remark-
ably stable pattern. This clearly suggests that equilibrium multiplicity is not an
issue in the time dimension. To illustrate this we plot the same weekdays (for
those weekdays that we use in the data) on one plot (Figure 19), which allows a
comparison of intra-daily demand and supply patterns. We therefore believe that
a single equilibrium in the data is a reasonable assumption. Even across week-
days, the numbers at different hours are remarkably similar (one of the Mondays
is a holiday).
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Figure 18: Activity per Hour on Different Mondays and Tuesdays in our Sample,
Cabs
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C Full Table of Summary Statistics

Table 6: Summary Statistics by Hour, Mean and (Standard Deviation)

Hours Cabs Passenger Search time Wait time MPH (Manhattan) MPH (other)
(minutes) (minutes)

0 9188.2 (1311.6) 28849.74 (6536.2) 9.3 (1.7) 1.24 (.31) 15.13 (.907) 17.62 (1.05)
1 6997.4 (1273.6) 18201.71 (3401.0) 12.3 (1.0) 1.03 (.20) 16.6 (1.09) 18.44 (1.55)
2 4351.2 (904.2) 10481.33 (2307.3) 14.4 (1.1) 1.14 (.19) 17.58 (.77) 18.05 (1.07)
3 2744.3 (608.9) 6611.52 (1448.7) 15.6 (.86) 1.5 (.26) 18.24 (.59) 17.47 (1.03)
4 1875.7 (435.4) 4533.09 ( 1208.4) 16.4 (1.05) 1.94 (.24) 18.62 (.48) 17.21 (.75)
5 1652.1 (248.6) 4224.4 (831.1) 15.1 (.99) 2.00 (.14) 20.49 (.65) 18.28 ( .63)
6 2208.0 (132.4) 6056.1 (1344.2) 13.2 (2.0) 1.95 (.24) 21.08 (.74) 21.19 (1.25)
7 4699.1 (348.2) 14592.1 ( 1015.5) 10.1 (.74) 1.18 (.17) 17.51 (.60) 19.22 (1.04)
8 7541.5 (606.6) 27263.6 ( 2187.9) 7.5 (.60) 1.53 (.18) 13.86 (.77) 15.05 (1.07)
9 9081.8 (618.8) 36598.5 (3289.6) 5.8 (.55) 2.29 (.22) 10.89 (.79) 12.70 (1.28)

10 9824.1 (561.8) 36818.3 (3028.7) 6.2 (.53) 2.48 (.23) 10.03 (.76) 12.65 ( 1.30)
11 9903.3 (528.3) 31471.9 (2649.3) 8.2 (.69) 2.00 ( .24) 10.17 ( .82) 13.06 (1.58)
12 9722.8 (570.9) 28986.3 (2548.5) 9.1 (.77) 1.83 (.23) 10.25 (.80) 13.14 (1.23)
13 9775.4 (579.1) 31866.6 (3153.1) 7.9 (.81) 2.08 (.30) 10.03 (.82) 12.99 (1.26)
14 9650.0 (548.6) 31281.1 (3677.4) 8.0 (1.0) 2.05 (.36) 10.27 (.88) 13.34 ( 1.2)
15 9745.5 (475.2) 32456.2 (2929.8) 7.4 (.79) 2.23 (.35) 10.31 (.83) 13.55 (1.16)
16 9204.7 (345.0) 33786.9 (2233.8) 6.2 (.55) 2.71 (.35) 10.16 (.85) 12.99 (1.14)
17 8072.0 (207.8) 29813.4 (1011.3) 5.9 (.29) 2.88 ( .34) 10.86 (.87) 13.24 (.83)
18 8726.0 (296.2) 39035.8 (2479.2) 4.6 ( .4) 2.94 (.39) 10.73 ( .76) 13.01 (.81)
19 10320.8 (315.0) 45458.0 (3697.0) 4.9 ( .63) 2.65 (.39) 10.28 (.73) 12.74 (.84)
20 10872.3 (403.6) 45170.5 (4402.3) 5.6 ( .7) 2.12 (.40) 11.10 (.81) 13.90 (.97)
21 10767.6 (526.9) 40399.2 (4159.9) 6.7 (.92) 1.64 (.27) 12.68 (.90) 15.80 (1.04)
22 10457.3 (643.0) 37413.6 (4455.7) 7.3 (1.0) 1.49 (.25) 13.84 (.81) 16.89 (.83)
23 10027 (787.3) 34763.1 (4989.8) 7.7 (1.1) 1.44 ( .26) 14.47 (.75) 17.36 (.77)

D Details on Simulation

The goal of the simulation is to obtain a mapping of the number of waiting pas-
sengers and searching cabs within an hour to the wait time and search time of
those passengers and cabs. The mapping is used to infer the number of waiting
passengers from observed number of active cabs and their search time. Wait and
search time are also influenced by other exogenous factors, which therefore need
to be arguments of the matching function. These factors are the speed, mpht, at
which the traffic flows, and the average trip length, milest, requested by passen-
gers. Note that the average trip length determines how long a taxi is utilized
for each unit of demand, and therefore shifts effective supply. The longer the trip
length the higher the utilization. Table 6 provides an overview of taxi search time,
the number of taxis, as well as the recovered number of passengers and their wait
time.

The baseline simulation is performed under the assumption that cabs search
randomly for passengers. The search is performed on an idealized map of Man-
hattan. Figure 5 provides a schematic of the grid we use for the simulation. In line
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Figure 20: Division of Manhattan
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with the topography of Manhattan, we require the area to be four times longer
in the north-south direction (yt) than wide in the east-west-direction (xt). Cabs
move on nodes that are 1/20 mile segments apart from each other, which is based
on the average block length in the north-south direction. In the north-south di-
rection they can turn at each node whereas in the east-west direction they can
only turn at every fourth node. Figure 5 highlights nodes on which cabs can turn
as gray. This map corresponds to the block structure of Manhattan, where a block
is approximately 1/20 of miles long in the north-south and 4/20 of a mile wide
in the east-west direction. Under the random-search assumption, cabs take ran-
dom turns at nodes with equal probability weight on each permissible direction.
However, we assume they never turn back in the direction from which they were
coming (i.e., no U-turns).

Because we only model the Manhattan market (below 128th Street), our grid
corresponds to an area of 16 square miles. Figure 20 shows the modeled part on
the map and its division into the eight equally sized different areas for which we
separately compute the pickup and drop-off probabilities. Correspondingly, our
grid is divided into eight equal parts, which correspond to those areas.

Each node on the grid is a possible passenger location. For each hourly sim-
ulation, dt

6 passengers are placed in 10-minute intervals randomly on the map.
Those dt

6 are divided up and placed in proportion to the corresponding (observed)
pickup probabilities on the eight areas on the grid. Within those areas passengers
appear with equal probability on each node.

If a cab hits a node with a passenger a match occurs, implying no additional
frictions on a node, and so the number of matches is the minimum of the num-
ber of passengers and the numbers of taxis on the node, which corresponds to
the assumption of a Leontieff matching function on each node. Once the match
takes place the cab is taken of the grid for 60 · milest

mpht
minutes, that is, the average

measured delivery time from the data, after which is has delivered the passenger
and is again placed randomly on the map with a random travel direction. Cabs
reappear in locations on the grid in proportion to observed drop-off locations of
the eight areas (Figure 20).

The full algorithm is described in pseudo-code below. It takes the following
inputs: the number of cabs, c, the number of passengers, d, the trip length, miles,
and the trip speed, mph. A unit of time in the algorithm is scaled so that it always
represents the time it takes a cab to travel from one node to the next because a
smaller time unit is unnecessary. Passengers are added to the map for one hour
in 10-minute intervals. Because nodes are spaced 1/20 of a mile apart, the last
time passengers are added to the map is at t̄ = 20 ·mph. The set of times at
which new passengers arrive is given by {t̄/6 · k|k = 1, ..., 6}. The following ad-
ditional variables are used to describe the algorithm: npick refers to the number
of matches that have already taken place; deliverytimei, to the remaining delivery
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time of taxi i; searchtimei to the time that taxi i has spent searching since the last
delivery, total_searchtime refers to the total time taxis have spent searching for
passengers; and total_waittime to the total wait time that passengers have been
waiting.

while npick < d do
t = t + 1 (time units represent travel time from one node to the next,
scales with mph);

if t ∈ {t̄/6 · k|k = 1, ..., 6} then
add d/6 passengers to random nodes on map, stratified by eight
areas;

end
for i = 1 : c do

if deliverytimei = 0 (cab i is not occupied) then
update the node of cab i. Cabs only take turns on gray nodes
(Figure 5) and do not make u-turns. All feasible travel
directions are chosen with equal probability;

if new node of cab i has a passenger then
cab becomes occupied, set deliverytimei to 20 ·miles, and add

searchtimei to total_searchtime;
else

searchtimei = searchtimei + 1
end

else
deliverytimei = deliverytimei - 1;
if deliverytimei == 0 then

place cab in random area on map according to observed
drop-off probabilities (all nodes within area equal
probability), give cab random feasible travel direction;

end

end

end
Add one to total_waittime for each passenger that is on the map;
for j = 1 : p do

Increase counter for all passengers on the map; remove passengers
that have been waiting for 20 minutes.

end

end
Result: Use total_waittime and total_searchtime to compute the average

search time for taxis and average wait time for passengers.
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In the dispatcher simulation, we assume that, as soon as a cab has delivered
a passenger, it is matched with the closest passenger available. We also assume
that neither the driver nor the passenger has an option to cancel this match for an-
other match option. For example, a waiting passenger, who is promised to a cab,
may encounter another (previously unavailable) cab earlier than the promised
cab. The option to cancel might in some instances be beneficial to a market side
because our search for the optimal match is only over the currently available cabs
and passengers and does not take into account cabs and passengers that will soon
appear somewhere close on the map.

Performing the simulations for each point in the domain of the matching func-
tion is not possible. We therefore perform them for the Cartesian product of the
sets: c ∈ {500, 1000, ..., 17000}, d ∈ {3000, 6000, ..., 75000}, miles ∈ {1, 2, ..., 7},
mph ∈ {4, 8, ..., 24}. To obtain the search-time and wait time for other points we
interpolate linearly between the grid points.

D.1 Details on Heterogeneity across Areas.

In the current baseline simulation we allow for heterogeneity by dividing the city
map into eight different areas and we match pickup and dropoff probabilities by
area. To test how sensitive our results are to this subdivision, we recompute the
simulation, including inferred passenger waiting times and the demand function,
for two alternative subdivisions of the map. In one case, we double the number
of areas to 16; in the other, we only divide the map into four areas. We perform
this simulation in the same way in which we do it for the baseline, but instead
using drop-off and pick-up probabilities that are matched at different (higher and
lower respectively) levels of aggregation. We find aggregate numbers that look
almost identical when we move to 16 areas, whereas there are some differences
when we reduce the number of areas to 4. This can be seen in table Table 7. Since
the natural concern is about robustness with respect to finer subdivisions, we
feel comforted by this, and also feel justified in keeping our 8 area baseline. We
also re-estimate demand both for the 4-area division and for the 16-area division.
The demand estimates for all specifications do not change notably. For 4 areas,
the numbers are as follows. Mean wait-time: 1.88; mean number of passengers:
22234; elasticity: -1.08. For eight areas (current specification) we have the follow-
ing. Mean wait-time: 2.47; mean number of passengers: 23262; elasticity: -1.225.
For 16 areas the numbers are as follows. Mean wait-time: 2.61; mean number of
passengers: 23551; elasticity: -1.21. Lastly, taking the eight areas that we currently
use, search time is remarkably stable across locations (see Table Table 8).
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Table 7: Robustness to Number of Areas (from our simulated matching function)

Search Time Wait Time Matches

Passengers Cabs s4 s8 s16 w4 w8 w16 m4 m8 m16

15000.0 4000.0 4.83 5.58 5.77 4.05 4.8 4.93 13750.0 13201.0 13056.0
15000.0 6000.0 11.53 11.84 11.96 1.32 1.74 1.83 14747.0 14599.0 14534.0
15000.0 9000.0 23.34 23.48 23.51 0.35 0.46 0.47 14876.0 14826.0 14813.0
25000.0 4000.0 1.41 2.18 2.3 8.24 8.68 8.72 16998.0 16145.0 16013.0
25000.0 6000.0 3.51 4.42 4.59 4.09 4.9 4.99 22190.0 21014.0 20791.0
25000.0 9000.0 9.29 9.73 9.86 1.32 1.7 1.8 24204.0 23798.0 23675.0
35000.0 4000.0 0.75 1.17 1.29 10.7 10.79 10.84 17670.0 17251.0 17111.0
35000.0 6000.0 1.46 2.35 2.48 6.83 7.41 7.47 25272.0 23818.0 23606.0
35000.0 9000.0 4.2 5.05 5.19 2.89 3.6 3.68 31672.0 30234.0 29981.0

Note: superscript indicates number of areas.

Table 8: Taxi Search Time Across Areas (data)

Area Median Mean Median Day Mean Day

1 6.55 11.64 4.37 10.3
2 4.37 9.15 4.37 7.7
3 4.37 8.6 4.37 7.7
4 4.37 9.21 4.37 8.04
5 4.37 8.34 4.37 7.8
6 4.37 8.79 4.37 8.29
7 4.37 9.68 4.37 9.4
8 6.55 11.42 4.37 11.12
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D.2 Robustness Check on Maximal Wait Time

Table 9: Robustness to Different Maximal Wait Time (from our simulated matching function)

Search Time Wait Time Matches

Passengers Cabs s15 s20 s25 w15 w20 w25 m15 m20 m25

15000 4000 8.48 10.01 11.5 2.07 2.02 1.52 9809.04 10046.88 10072.36
25000 4000 10.97 13.5 15.97 1.03 1.0 0.99 10281.26 10386.78 10377.66
35000 4000 11.97 14.96 17.5 0.53 0.5 0.5 10420.64 10470.94 10453.68
15000 6000 4.99 5.12 5.68 5.25 5.25 4.95 13397.34 13579.86 13706.74
25000 6000 8.97 10.5 12.15 1.29 1.03 1.0 15174.32 15412.9 15457.64
35000 6000 10.46 12.52 15.01 1.03 0.63 0.5 15514.7 15650.06 15643.38
15000 9000 2.76 2.67 2.89 34.52 35.04 34.61 14529.56 14463.64 14666.5
25000 9000 5.47 5.55 6.29 2.9 2.97 2.65 21524.88 21686.48 22057.66
35000 9000 7.98 9.02 11.0 1.07 1.03 1.0 22894.04 23181.42 23315.9

Note: superscript indicates maximal wait time.

D.3 Robustness to Definition of Breaks

Our definition of a shift is a sequence of trips that have not been interrupted for
longer than 300 minutes (we follow Farber’s shift definition). However, within a
shift, cabs sometimes take breaks. In the paper, define a break every gap between
a drop-off and the next pickup that is longer than 45 minutes (note that we restrict
the sample to trips within Manhattan). Of course, the value of mean search-time
does depend to some extent on this choice, but it turns out not to be very sensitive
to it. The average search time under our current break definition is 7.5 minutes. If
instead we chose a 50-minute cutoff, it would be 7.73, whereas with a 40-minute
cutoff, it would be 7.22. An important question is how our demand recovery is
affected by the break-time cutoff. In this matter, a countervailing effect arises.
Note first that a change in the break cutoff changes both the search time that we
use to recover demand, but also the effective number of searching taxis. As an
example, if we lower the cutoff, search time is lower, but so is effective supply
since more cabs are on a break according to the new cutoff. To understand how
these two changes affect the inferred number of passengers, it is helpful to con-
sider how each change separately affects the inversion of the matching function.
First, decreasing supply, ceteris paribus, leads us to infer a smaller number of
passengers. Lower search time, on the other hand, implies a larger number of
passengers, all else equal. These two changes counteract each other. We now
report our computation of how different the inferred number of passengers is as
we change the cutoff. Moving the cutoff from 45 to 50 minutes, an 11% change,
leads to an inferred number of passengers that is 0.77% higher. A reduction in
the cutoff to 40 minutes, leads us to infer that the number of passengers is 0.89%
lower. Lastly, even if we consider a more drastic change, a cut-off of 30 minutes,
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a reduction of one third, we would infer 3.8% fewer passengers. Hence, the to-
tal effect on the implied number of passengers from varying the definition of a
break within reasonable values is quite small. Furthermore, the changes in our
counter-factuals should be even smaller because all scenarios would be similarly
affected by any such change.

E Details on Supply Side Estimation.

As defined in the text, let xit denote the observable part of the state (the hours on
a shift, the hour of the day as well as the medallion-invariant characteristics). Let
p(xit) be the theoretical probability that an active medallion/driver i stops at time
point t, and let q(xit) be the probability that an inactive medallion/driver i starts
at t. Correspondingly, let dA be the indicator that is equal to one if an active driver
stops and dI be an indicator that an inactive driver starts. Using this notation, we
maximize a constrained log-likelihood that we formulate as an MPEC problem.
MPEC does not perform any intermediate computations, such as value function
iterations, to compute the objective function. It instead treats these objects as
parameters. Therefore, the solver maximizes both over the parameters of interest
θ and an additional set of parameters δ. The parameter vector δ consists of all
p(xit), q(xit), Eε[V(xi(t+1),εi(t+1))] for xi(t+1) ∈ X. In other words, δ consists of
expected values and choice probabilities for each point in the observable state
space. With this notation in place we can express the maximization problem as
follows:

min
θ,p(xit),q(xit),Eε[V(xi(t+1) ,εi(t+1))]

∑
j∈J

∑
t∈Tj

dA
it · log(p(xit)) + (1− dA

it )

·(log(1− p(xit))) + dI
it · log(q(xit)) + (1− dI

it) · (log(1− q(xit))))

(4)

subject to

Eε[V(xi(t+1),εi(t+1))] = σε · log

(
exp

(
1
σε

)

+ exp

(
πht − Czi(lit)− f (ht, ki) +Eεi(t+1) [V(xi(t+1),εi(t+1))]

σε

))
+γ ∗σε ∀xit ∈ X (5)
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p(xit) =
exp

(
1
σv

)
exp

(
1
σv

)
+ exp

(
πt−Czi ,ht (lit)− f (ht ,ki)+Eεi(t+1)

[V(xi(t+1) ,εi(t+1))]

σv

)∀ xit ∈ X

(6)

q(xit) =

exp
(

Eεi(t+1)
[V(xi(t+1) ,εi(t+1))]−rht

σv

)
exp

(
Eεi(t+1)

[V(xi(t+1) ,εi(t+1))]−rht
σv

)
+ exp

(
µht+1
σv

) ∀xit ∈ X (7)

The constraint given by Equation 5 ensures the starting and stopping proba-
bilities obey the intertemporal optimality conditions imposed by the value func-
tions. The log-formula is the closed-form expression for the expectation of the
maximum over the two choices of stopping and continuing, which integrates out
the T1EV unobserved valuations. Equation 6 and Equation 7 are again the closed
form expressions for the choice probabilities under extreme-value assumption.

F Impact of weather on Demand.

One of the important demand shocks for taxi rides is weather patterns, most no-
tably, rainfall. To check whether our demand recovery picks up such patterns,
we have merged hourly rainfall data. We then regress both log-wait-times and
log-recovered-demand on a dummy for whether rainfall occurred in this hour.
As the table below shows, our recovered demand and wait-times are highly cor-
related with rainfall. Estimates from these regressions suggest that in an hour
with rainfall, our recovered demand is about 25% higher and wait times about
46% higher.
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Table 10: Demand Validation with Weather Data.

(1) (2) (3) (4) (5) (6)

log(dt) log(dt) log(dt) log(wt) log(wt) log(wt)

Rainfall Dummy 0.261** 0.247** 0.247** 0.355** 0.462** 0.463**

(0.0141) (0.00852) (0.00828) (0.0113) (0.00856) (0.00826)

Hour FE No Yes Yes No Yes Yes

Day of Week FE No No Yes No No Yes

Note: + p < 0.10, ∗ p < 0.05, ∗ ∗ p < 0.01. The dependent variables are the log of wait time and
demand. The rainfall dummy is an indicator whether is has rained in this hour.

G Medallion Ownership and Utilization

Figure 21: Density of Utilization Separated by Medallions
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Notes: These densities are based on medallion-level observations, where each observation is the
fraction of time this medallion spends delivering a passenger out of the total time we observe
these medallions. Note that the rest of the time the medallion could either be searching for a
passenger or be idle and not on a shift at all. The densities show a stark differences between
owner-operated and minifleet medallions. The lower tail of low utilization is much thicker for
owner-operated medallions.

Figure 21 shows the cross-sectional distribution of the fractions of time a medal-
lion spends delivering a passenger out of the total time that we observe a medal-
lion. The distribution for owner-operated cabs displays a much thicker left tail of
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low utilization rates and is overall more dispersed.73

The left panel of Figure 15 in Appendix C shows the length of time a medal-
lion is inactive conditional on the stopping time of the last shift. Because most
day shifts start around 5AM and most night shifts around 5PM, the time of non-
utilization is minimized for stops that happen right around these hours, whereas
a stop at any other time causes the medallion to be stranded for a longer time pe-
riod. We see that minifleets typically return a medallion to activity faster after
each drop-off. This difference is particularly large after the common night shift
starting times (6PM and later). This in turn suggests that minifleets have access to
a larger pool of potential drivers, making it easier for them to find a replacement
for someone who does not show up at the normal transition time. In the struc-
tural model, we allow for a different set of parameters for minifleets and owner-
operated medallions to capture these differences. The right panel of Figure 15 in
Appendix C shows the number of shifts that end conditional on the hour. We
see that minifleet medallions have a more regular pattern, with most day shifts
ending at 4PM. This pattern is also reflected in Figure 1, which shows a stronger
supply decrease for minifleets before the evening shift relative to owner-operated
medallions.

H Details on the Computation of Counterfactuals

Define the following six steps as Block1(i) for iteration i.

1. For each hour, simulate from the observed empirical distributions of speed of traffic
flow and the length of requested trips, under current guess ci

h and di
h to determine

the search time for taxis si
h, h ∈ {0, . . . , 23} under g(.).

2. Simulate drivers earnings π i
h, h ∈ {0, . . . , 23} from the ratios of passenger de-

livery time over delivery and search time (computed in step 2) and rate earned
per minute of driving. Simulate new expected number of passengers di

h, h ∈
{0, . . . , 23} from the wait times wi

h and the estimated demand function d(.).

3. Compute the optimal starting and stopping probabilities pi(x, π ;θ), qi(x;θ) under
the new earnings (computed in step 3).

4. Use pi(x, π ;θ) and qi(x;θ) to simulate a new law of motion for drivers ci
h, h ∈

{0, . . . , 23}. For each medallion type (z,k), we simulate 30 medallions, where each
medallion starts inactive at 12PM, and iterate forward for 48 hours. Across these
30 medallions, we then compute the fraction of times the medallion has been active

73The observed differences might be due to the fact that minifleets enable a more efficient uti-
lization; another plausible argument is a selection-effect.
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in this hour (using only the last 24 hours) and multiply this amount by the total
number of medallions.74

5. Compute sumsq1 = ∑h(ci
h − c(i−1)

h )2

Define the following four steps as Block2(i) for iteration i.

1. For each hour, simulate values from the observed empirical distributions of speed
of traffic flow and the length of requested trips, under ci

h , h ∈ {0, . . . , 23}, to
determine the wait times wi

h, h ∈ {0, . . . , 23} for passengers.

2. Simulate the new number of passengers di
h , h ∈ {0, . . . , 23} from the waiting

times wi
h , h ∈ {0, . . . , 23} and the estimated demand function d(.).

3. Compute sumsq2 = ∑h(dh
i − di−1

h )2

Using these definitions, the algorithm can be described as follows:

while STOP 6= 1 do
Compute sumsq1 using Block1(i).
if sumsq1 < tol then

STOP=1
else

while sumsq1 > tol do
Block1(i) (in each iteration guess new vector of cabs with some
non-linear solver)

end
end
Compute sumsq2 using Block2(i).
if sumsq2 < tol then

STOP=1
else

while sumsq2 > tol do
Block2(i) (in each iteration guess new vector of passengers with
some non-linear solver)

end
end
i = i + 1

end
74We have also experimented with different numbers in this step, for example simulating each

medallion for more than 48 hours or increasing the number of simulations. For the final counter-
factual results, these alternatives do not make a large difference.
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I Shift-Transition and the Witching Hour

We now argue that the timing of the shift transition is such a supply side driven
shifter. The dip in the number of active taxis in the later afternoon hours is clearly
visible in Figure 1. The right-hand panel of Figure 15 shows that this dip is mostly
due to taxis ending their shift. The left-hand panel shows that the transition to the
next driver is quite long. Together these suggest that this common shift transition
is responsible for a prolonged reduction in the number of cabs between 4 and 6
o’clock. Multiple reasons could explain why most shifts are from 5AM to 5PM
and 5PM to 5AM, but the data (and the rules) suggests some key factors.

Figure 22: Earnings of Day and Night Shift for Different Split Times
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Notes: This graph shows the average earnings that would accrue to the night-
shift and day-shift driver for each possible division of the day. The x-axis
shows the end-hour of the day shift and the start-hour of the night shift. Be-
cause these earnings are a function of the current equilibrium of the market,
they have to be understood as the shift-earnings that one deviating medallion
would give to day-shift and night-shift drivers. The graph shows that earn-
ings are almost equal at 5PM, the prevailing division for most medallions.

First, the rules are such that minifleets can only lease a medallion for exactly
two shifts per day: they must operate a medallion for at least two shifts of nine
hours and the lease must be on a per-day or per-shift basis.75 Second, a cap is
placed on the lease price for both day and night shifts. Anecdotal evidence from
the TLC and individuals in the industry suggests that these lease caps were bind-
ing during our sample period. Given these rules, minifleets may try to equate
the earning potentials for the day and night shifts, as a way to ensure they will
get a similar number of drivers willing to drive each shifts. A similar argument
applies for owner-drivers that want to ensure they always find a driver for the
second shift, which they do not drive themselves. Figure 22 shows the earnings

75See section 58-21(c) in TLC (2011).
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for night and day-shifts under different hypothetical shift divisions. The x-axis
shows each potential division-point, that is, each point at which a day shift could
end and a night shift start. The y-axis reports the earnings for the day-shift (black
dots) and night-shift (white diamonds).76 As can be seen, the 5-5 division creates
two shifts with similar earnings potential. Combined with the above observation,
the difference in rate caps for day and night shifts may reflect different disutility
from working at night. Hence, requiring two shifts and imposing a binding cap
on the rates results in most medallions having shifts that start and end at the same
time. Because transitions do not happen instantaneously, this correlated stopping
therefore leads to a negative supply shock at a time of high demand during the
evening rush hour.

J Table of Choice Probabilities

Table 11: Stopping probabilities by hour and hours on a shift.

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13 l = 14
h = 0 .18 .11 .13 .14 .14 .14 .15 .21 .32 .37 .43 .43 .41 .4
h = 1 .15 .18 .13 .15 .15 .16 .16 .19 .24 .35 .4 .42 .42 .37
h = 2 .07 .11 .22 .15 .17 .18 .17 .19 .23 .29 .44 .46 .39 .36
h = 3 .03 .04 .15 .32 .19 .22 .23 .24 .28 .34 .44 .58 .5 .42
h = 4 .02 .03 .08 .23 .53 .36 .4 .45 .51 .59 .73 .81 .78 .65
h = 5 .01 .01 .03 .07 .18 .42 .39 .46 .54 .61 .7 .79 .79 .64
h = 6 .01 0 .01 .02 .05 .12 .27 .32 .4 .53 .62 .71 .63 .52
h = 7 .01 0 0 .01 .01 .03 .06 .15 .21 .32 .42 .46 .41 .29
h = 8 .01 0 0 .01 .01 .01 .03 .07 .12 .2 .29 .27 .24 .19
h = 9 .02 .01 .01 .01 .01 .02 .03 .04 .11 .17 .21 .23 .14 .13

h = 10 .03 .01 .01 .01 .01 .02 .02 .04 .09 .16 .25 .25 .12 .1
h = 11 .04 .01 .02 .02 .02 .02 .02 .04 .09 .15 .22 .2 .16 .08
h = 12 .04 .02 .02 .02 .02 .02 .03 .04 .07 .17 .29 .28 .16 .1
h = 13 .05 .02 .03 .04 .04 .04 .04 .06 .08 .15 .29 .34 .22 .14
h = 14 .04 .03 .05 .07 .09 .1 .1 .13 .17 .22 .34 .38 .27 .14
h = 15 .03 .03 .06 .1 .15 .19 .24 .29 .37 .45 .5 .58 .46 .3
h = 16 .01 .02 .05 .09 .16 .24 .33 .44 .58 .68 .74 .73 .55 .4
h = 17 .01 .01 .02 .04 .06 .09 .12 .16 .22 .27 .3 .27 .17 .1
h = 18 .01 0 .01 .02 .04 .05 .08 .09 .12 .14 .15 .16 .14 .1
h = 19 .01 .01 .01 .01 .03 .05 .07 .09 .1 .14 .15 .16 .17 .15
h = 20 .02 .01 .01 .01 .02 .04 .07 .09 .11 .13 .16 .18 .18 .17
h = 21 .04 .02 .02 .01 .02 .03 .06 .09 .12 .14 .17 .19 .19 .19
h = 22 .06 .03 .03 .03 .03 .03 .06 .1 .14 .18 .2 .23 .22 .23
h = 23 .1 .05 .05 .05 .05 .05 .06 .11 .16 .2 .22 .23 .23 .23

Table 12: Starting probabilities by hour.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
.01 .01 .02 .05 .11 .22 .29 .26 .2 .17 .14 .12 .12 .14 .2 .43 .73 .47 .28 .15 .09 .05 .03 .03

76Clearly this comparison ignores any equilibrium effects of changing the shift structure. The
graph can therefore be understood as the earnings that one deviating medallions could have
under the current system.
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K Other Counterfactual Numbers

Table 13: Counterfactual Results for other Segmentations

hourly active hourly passenger matches taxi hourly taxi consumer medallion
cabs demand waittime per day searchtime revenues surplus (minutes) revenue

Segmented(2-Search) 5080.0 15521.0 3.64 13911.94 10.44 33.93 1.29 1.2
Segmented(2-Search) (perc. change) -24.49 -33.71 40.1 -32.89 37.36 -15.96 -21.94 -21.38
Segmented(2-Dispatch) 6606.0 21362.0 2.84 20202.57 7.82 39.85 1.65 1.49
Segmented(2-Dispatch) (perc. change) -1.8 -8.76 9.27 -2.54 2.86 -1.29 -0.46 -2.18
Fleet 7130.0 24661.0 2.49 21868.35 7.68 40.31 1.7 1.53
Fleet (perc. change) 5.99 5.34 -4.38 5.5 1.07 -0.17 2.79 0.03
Note: The changes are the mean over all 24 hours of the day. The wait time and search time averages are weighted by the number of trips, and the hourly driver profits are weighted by the number
of active drivers across hours. PE means partial equilibrium and holds demand fixed to give a sense of how much the demand expansion changes counterfactual results. The percentage changes ∆%
are the changes in the means over all hours compared to the baseline. Consumer surplus is computed under the assumption that the demand function is truncated above the maximal waiting time
observed in the data. The reason is that, for our parameter specifications, consumer surplus would be infinite if we integrated over all wait times. This issue results from the assumption of constant
elasticity, log-linear demand. A similar issues arises, for example, in Wolak (1994), who also truncates the demand distribution. Note, however, that except for the limit case, the absolute difference
in consumer surplus will be well defined and the same, no matter how high we choose the truncation point to be.
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