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1 Introduction

In standard models of decentralization, the principal delegates decision-making authority to agents
in order to take advantage of their superior information (Aghion and Tirole, 1997; Dessein, 2002;
Mookherjee, 2006). However, decentralization may be suboptimal for at least two reasons. First,
agents may pursue their own objectives and offset any gain from superior information. Second,
principals could acquire some of the information that agents hold and improve their own choices
without relinquishing control.

Moreover, these two issues are complicated by the fact that the value of information necessarily
depends on the scale of the program. For example, suppose that an organization plans to provide
assistance to low-income families. If resources are sufficient to cover all households, then decen-
tralizing the selection decisions has no value: the program can be rolled out from the center with
universal coverage. Correspondingly, if resources are so meager that only a few families can be
covered, then the aggregate gain to decentralization is necessarily small. The benefits to decen-
tralization live in the middle ground where resorting to local branches to screen, prioritize, and
ultimately ration access to households yields aggregate gains relative to using coarse information
and proxy-means testing. Thus, organizations face the jointly related questions of the amount of
resources to devote to new programs and how best to implement them.

How the state rolls out a new monitoring technology among its front-line providers—the subject
of this paper—poses similar challenges. In 2014, the government of Paraguay decided to distribute
GPS-enabled cell phones to agricultural extension agents (AEAs) and their supervisors to aid in
monitoring. AEAs are tasked with visiting farmers scattered over large tracts of land and giving
them access to various support services including timely information about prices and best farming
practices. The central government suspected that AEAs were shirking due to the monitoring diffi-
culties afflicting their supervisors. The authorities hypothesized that issuing GPS-enabled phones
to AEAs could help mitigate the problem by making it possible to spatially track AEAs.

However, the government had limited resources, which made rolling-out phones to all AEAs dif-
ficult. This motivates several questions: 1) Is supervisor discretion to assign phones to AEAs
valuable in light of their potentially superior information and potentially imperfect motives? 2)
Can the informational advantage of supervisors be replicated with the more limited information of
ministerial staff? 3) What should the scale of roll-out be, and should ministerial staff or supervisors
allocate the phones to AEAs?

In the context of real life organizations, answering questions about implementation scale and mode
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is difficult, even when experimental methods can be deployed. At best, standard RCT-based im-
pact evaluations inform researchers and policymakers about which individuals most benefit from a
program along typical demographic and economic characteristics. These indicators can guide or-
ganizations committed to a centralized implementation, but give little clue about the informational
gains from a decentralized approach or the scale at which a change of implementation mode will
lead to meaningfully different outcomes.

In this paper, we develop a model applied to a novel experimental design to overcome these dif-
ficulties. In particular, we utilize information collected on how supervisors prioritize AEAs for
roll-out in our study of the impact of enhanced monitoring on AEA performance. We show that su-
pervisors have valuable information about who to place under stronger monitoring. We then model
supervisor choices and measure the value of their discretion at different levels of roll-out. Next,
we predict the effects of the program under several centralized implementation schemes that vary
the amount of information that principals may plausibly acquire. Finally, under each scenario, we
compute the optimal roll-out scale and show that this scale varies with the amount of information
available.

We begin by addressing the standard impact evaluation question: does the new monitoring tech-
nology reduce shirking? We find that randomly assigned cell phones have a sizable effect on AEA
performance, increasing the share of farmers visited in the previous week by an average of 6 per-
centage points (pp). This represents a 22 percent increase over the AEAs in the control group. The
cell phones also improve farmer satisfaction with their AEAs by 0.13 standard deviations. Because
we do not find any impact of cell phones on AEAs who do not have supervisors, we interpret this
effect as a reduction of shirking following increased monitoring, as opposed to a direct improve-
ment in productivity due to the cell phones. Also consistent with our interpretation, we find that
treated AEAs perceive more monitoring from their supervisors. Finally, we find no evidence that
treated AEAs increased the number of visits at the cost of conducting shorter ones.

We then evaluate whether supervisors had superior information about which AEAs would be more
responsive to treatment using a novel feature of our experimental design. Prior to randomization
of treatment, we elicited the preferences of supervisors regarding which half of their AEAs should
be selected to receive the phone. We then randomly assigned phones to AEAs independently of
the supervisor opinion, generating a 2-by-2 treatment-by-selection matrix that is the basis of our
empirical analysis.

We find that supervisor-chosen AEAs respond more to increased monitoring, entirely driving the
average increase of 6 pp. Among these supervisor-chosen AEAs, treatment increased the likelihood
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that a farmer was visited in the past week by 15.4 pp compared to a statistically insignificant de-
crease of 3.6 pp among those who were not selected. This finding corroborates the notion that going
down the hierarchy from the top program officers to local supervisors could allow organizations to
leverage superior, dispersed knowledge about how best to allocate resources.

While the research design divorces treatment from supervisor-selection, supervisors maintain au-
thority over AEAs. If there are spillover or Hawthorne effects, the treatment effects we measure
might not be solely due to monitoring. We rule out these threats by relying on another feature of our
experimental design. For an auxiliary and random subset of AEAs, we implemented the supervisor
preferences, temporarily allocating phones only to supervisor-selected AEAs.

Besides lending credibility to the elicitation of supervisor choices, this feature allows us to compare
the performance of non-selected untreated AEAs depending on whether their selected coworkers
were treated with phones. Likewise we can compare the performance of selected treated AEAs de-
pending on whether their non-selected coworkers were treated with phones. We find no significant
differences in an individual’s performance depending on his coworkers’ treatment, suggesting that
spillovers from supervisors reassigning supervision effort are not important.

Finally, we compare impact in groups where supervisors had a meaningful selection to make—
several AEAs to choose from—versus cases with as few as a single AEA where no supervisor
selection was made. We again find no significant differences in the impact of the phone across
these groups. This suggests Hawthorne effects, such as a supervisor shifting supervision effort to
prove her choices had been right, are unlikely.

What underlies the informational advantage of supervisors? Only some of the AEA characteristics
are observable to the principal or an econometrician. Having collected a rich dataset on the AEAs
that includes information on both cognitive and non-cognitive traits, we develop a two-step estima-
tion procedure in the spirit of a sample selection model to decompose the value of information into
observable and unobservable AEA traits. We use this approach to compute a series of marginal
treatment effects under various selection rules and roll-out scales. The approach we develop would
allow program leadership to optimize the program’s roll-out scale. The marginal treatment effects
we estimate are critical inputs to such optimization and also for deciding whether to decentralize
treatment assignment in the first place.

We find that both commonly observed demographic traits (e.g., gender) and harder-to-measure
characteristics such as cognitive ability and personality type do a poor job of explaining super-
visors’ selection decisions. Among the few observable traits that predict an AEA being selected
for treatment by a supervisor, the AEA’s party affiliation is one of the most robust. Supervisors
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are much less likely to place members of the incumbent party under additional monitoring. But
whether this is evidence of preference bias is difficult to say, since members of the incumbent party
also tend to perform relatively worse when treated. Any evidence of preference bias seems to be
on the basis of age: older AEAs are significantly less likely to be selected, even though age is not
predictive of response to treatment. When we allow the treatment effects to vary by a rich set of
observable characteristics, the unobservable (to the econometrician) component of the supervisors’
choices is among the characteristics that most robustly predicts the responsiveness of an AEA to
the additional monitoring.

While our findings suggest that supervisors have valuable information, the convenience of decen-
tralizing the treatment assignment to them depends on the counterfactual allocation regime of the
principal. The latter regime depends on the information she has, the feasible allocation rules she
can adopt, and the extent of available resources. We construct a number of counterfactual scenar-
ios varying the information sophistication of the central authority for all possible roll-out scales
in order to measure effect sizes of centralized versus decentralized assignment. In particular, we
use our model estimates for the distribution of treatment effects to compare the improvement in
farmer visits when the supervisor selects AEAs against four hypothetical allocation rules: 1) a to-
tally uninformed principal who allocates randomly; 2) a minimally informed principal who targets
AEAs who have to travel longer distances to visit farmers; 3) a more sophisticated principal who
collects and analyzes baseline data on AEAs and targets predictably low productivity AEAs; and
4) the most sophisticated principal who pilots an experiment, learns about the connection between
observable characteristics and response to treatment, and thereafter targets AEAs in descending
order of predicted responsiveness to treatment.

We find that the value of supervisor information is substantial relative to a regime in which the prin-
cipal simply allocates phones at random and that this difference in program impact is maximized at
53 percent roll-out. At this scale, the supervisor allocation increases the share of farmers visited by
6.9 pp versus only 3.4 pp under random assignment. A slightly more effective approach compared
to random assignment would be to simply allocate the phones to the AEAs who have to travel the
longest distance to attend to their farmers. This method generally outperforms random assignment
(a 1.9 pp advantage at 50 percent coverage), but still underperforms relative to supervisor choice.

A more effective centralized policy identifies and treats workers who are expected to be the least
productive according to observable characteristics. We operationalize this policy by estimating the
relationship between AEA productivity and observable characteristics among the control AEAs
without GPS phones. We then utilize this relationship to rank all AEAs based on their predicted
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productivity. Governments that have the information and capacity to prioritize the AEAs with the
lowest predicted productivity are able to perform at least as well as, and in some cases better than,
the supervisors. Such a regime succeeds because the central government can make better use of the
information at hand despite not having as much information as a supervisor. This in turn suggests
that imperfect processing of information or bias prevents supervisors from being as effective as
they could be.

The most effective but most information-demanding centralized policy we consider uses AEA ob-
servables to predict response to treatment rather than to predict baseline productivity. Under such
a policy, the principal conducts a pilot experiment and uses the results to predict responsiveness
among the remaining untreated AEAs based on their observable characteristics. Treating AEAs
in descending order of predicted responsiveness, even when lacking information on unobservables
known only to the supervisor, vastly outperforms assignment by the supervisors. A sophisticated
principal would find it optimal to roll-out phones to 70 percent of AEAs, which is (weakly) lower
than the optimal scale under all other approaches we consider, indicating that a sophisticated prin-
cipal can attain a higher aggregate impact with a smaller scale intervention. The high performance
of the last two centralized methods highlights that innovations in information and communication
technologies as well as the introduction of experimental methods to inform policy can play a role
in reducing information frictions and alter optimal organizational structure.

Our study speaks to several literatures. First and foremost, our study contributes to a large but
mostly theoretical literature on why organizations decentralize decision-making authority.1 Re-
cently, some empirical progress has been made in understanding why private- sector firms decen-
tralize. For instance, based on the insight by Aghion and Tirole (1997) that organizations are more
likely to decentralize if the principal and agent have congruent preferences, Bloom et al. (2012) find
that firms are more decentralized when located in regions that are judged by those in the headquar-
ters location to contain more trustworthy people. The authors view trust as a proxy for congruent
preferences.

Given the standard assumption that agents are better informed than the principal, access to costly
information can also determine a firm’s decision to decentralize. For example, Acemoglu et al.
(2007) show using data on French and British firms in the 1990s that firms closer to the techno-
logical frontier, firms in more heterogeneous environments, and younger firms are more likely to
choose decentralization—settings that presumably proxy for environments where learning is more
difficult. Despite the progress that these and other studies have made, direct empirical evidence on

1Mookherjee (2006) provides an excellent review of the theory on decentralization.
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the existence of superior information by agents is still lacking.

One exception is Duflo et al. (2018) who conducted a field experiment that increased the frequency
of inspections of industrial plants in Gujarat, India. In the control group, plants were audited as
usual at the discretion of the inspectors, whereas in the treatment group, the audits were conducted
more frequently but at random. They found that despite the increased regulatory scrutiny, ran-
domized audits did not significantly reduce pollution emissions. This is because the discretionary
inspections targeted the plants with higher pollution signals. Because the largest penalties are re-
served for extreme pollution violations, these are the firms most likely to be impacted by audits.

We complement Duflo et al. (2018) in important ways. Our experiment was designed to identify
who the supervisors would target for monitoring without having to rely on strong functional form
assumptions. As a result, we can experimentally identify the decentralized counterfactual to a
centralized approach. Moreover, that counterfactual depends both on supervisors’ informational
advantage and on potential preference biases, which we allow for but are absent from the targeting
rules in Duflo et al. (2018). Thus, we incorporate elements that are crucial to the evaluation of the
relative merits of decentralization.

Similar to the public sector, private sector employers also need to monitor their employees. A paper
by de Rochambeau (2017) discusses the roll-out of GPS tracking devices in a trucking company.
She finds that managers choose to allocate the tracking device to drivers who perform less well at
baseline and that these truckers benefit most from the device.

The problem of how best to deploy monitoring technology to workers is also similar to the problem
of how best to target social programs. In this regard, our paper is most related to two studies. Alder-
man (2002) examines an Albanian social assistance program. He shows that even after controlling
for the assets that local officials used to target beneficiaries, household consumption was still pre-
dictive of who received the program. The author interprets this as evidence that officials relied on
their local information and discretion. Alatas et al. (2012) conducted a field experiment in Indonesia
comparing proxy-means testing against community-based targeting of a social program meant to
help the poor. They find that proxy-means testing does a better job at identifying the consumption-
poor than community-based targeting. They argue that this difference is not due to elite capture or
local information, but rather a difference in how local communities define poverty. Similar to dif-
ficulties in the context of social programs, banks could benefit from community knowledge to help
them lend to the most entrepreneurial people. Hussam et al. (2017) find that community members
have useful information on marginal returns and this information is useful above and beyond what
a machine learning algorithm would predict from observables.
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Our study also has parallels to the literature on the use of marginal treatment effects (MTEs) to
construct policy-relevant counterfactuals (Heckman and Vytlacil, 2005). As in the MTE literature,
we express the supervisor’s problem of how to prioritize AEAs for treatment as a joint model of
potential outcomes and selection as determined by a latent index crossing a threshold. In contrast
with the standard MTE setup, our selection equation does not model an AEA’s self-selection into
treatment but rather the selection by a supervisor. Crucially, treatment is not contingent on being
selected—only those AEAs who were randomized into treatment were in fact treated. Thus, when
we compute the MTEs, we do not have to extrapolate to subgroups of “always-takers” and “never-
takers” because we only have compliers by design. In this respect, our approach implements a
variant of the selective trial designs proposed by Chassang et al. (2012). In that paper, the authors
recast randomized control trials into a principal-agent problem and show theoretically how one can
recover the MTEs necessary to forecast alternative policies and treatment assignments by eliciting
subjects’ willingness to pay for the treatment. Instead of eliciting our agents’ willingness to pay
for the treatment, we elicit the targeting preferences of the supervisor, who in our context is the
relevant decision maker.

Finally, our study adds to a growing body of experimental evidence on the impact of new moni-
toring technologies for reducing shirking in the public sector. Similar to our setting, some of these
studies involve weak or no explicit financial incentives. For example, Aker and Ksoll (2019) moni-
tored teachers of adult education in Niger by calling both the teacher and the students to ask whether
the class was held and how many students attended. They found that the calls led to fewer canceled
classes and better student test scores. Callen et al. (2018) used a similar cell phone technology
to monitor health facility inspectors and found that this increased the frequency of inspections,
especially for those with ‘better’ personality traits.

Other studies have introduced new technologies for monitoring but have also overlaid financial
incentives. For instance, Duflo et al. (2012) required teachers to take a picture of themselves with
their students at the beginning and end of each school day using a camera with tamper-proof date
and time functions, whereas Banerjee et al. (2008) asked nurses to time-stamp a register at the
beginning, middle, and end of the day. Both studies found these treatments increased teacher and
nurse attendance, but in both cases, the impact was found to be mostly due to concomitant financial
incentives. Dhaliwal and Hanna (2017) found that fingerprint readers in health centers decreased
absence even though financial incentives provided by the monitoring technology were rather weak.
Banerjee et al. (2015) and Khan et al. (2016) look at on-the-job performance rather than attendance
(among police and tax collectors respectively) and employ both monitoring and incentives. These
papers do not give a definitive answer regarding whether most of the improvement in performance is
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due to the monitoring or the incentives. The first paper suggests a significant impact of monitoring
alone, while the second suggests an insignificant impact. We contribute to this literature by showing
that a cell phone technology can be effective in reducing shirking for individuals such as agricultural
extension agents whose job requires them to visit farmers who live out in rural areas, often quite
far from the local agricultural ministry offices in town.

2 Background

Agricultural extension services in Paraguay are centered around the Ministry of Agriculture based
in Asunción. Below the central ministry are 19 Centros de Desarrollo Agropecuario (CDAs, which
exist at the department level, similar to a state in the United States) and below the CDA level
there are 182 Agencias Locales de Asistencia Técnica (ALATs, which are at the municipality level,
similar to a county in the United States). The Paraguayan Ministry of Agriculture has close to 1000
agricultural extension agents working within ALATs spread across four main agencies. We work
with the biggest of these agencies, Dirección de Extensión Agraria (DEAg).

The main job of extension agents is to help farmers access institutional services that will help them
improve their production. The goal is to increase farmers’ output directed both for own consump-
tion as well as the market. Another goal is to increase farmers’ participation in markets. The official
thematic areas in which extension agents work are soil improvement, food security, product diver-
sification, marketing, improving quality of life, and institutional strengthening. Extension agents
come from a variety of backgrounds including agricultural sciences, veterinary sciences, nutrition,
law, and teaching.

Much of what extension agents do resembles the role of middlemen, connecting farmers with co-
operatives, private enterprises, and specialists. Extension occurs both one-on-one and in group
meetings. Extension agents conduct farm visits in which agricultural problems are diagnosed and
addressed. Group meetings are used to lead demonstrations or talk about technical topics. AEAs
also organize farmer field trips. Each extension agent is assigned to work with approximately 80
producers. Extension agents do not usually offer free goods or services to farmers. Although the
ALAT headquarters are in towns, most of their daily work involves driving out to rural areas to visit
farmers.

Within every ALAT there is a supervisor who, in addition to working with his own farmers, must
also monitor the other extension agents working in the ALAT. We will refer to individuals who
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work purely as agricultural extension agents as ‘AEAs.’ By this definition, DEAg has over 200
AEAs working within the organization at any time.

In June 2014, the Ministry of Planning, in association with the Ministry of Agriculture, decided to
provide AEAs with GPS-enabled cell phones. While all AEAs already owned their own personal
cell phones, AEAs would be able to make work-related calls or send work-related messages for
free on the government-provided phone. This initiative had several objectives. One was to improve
coordination and communication between the AEAs and their supervisors. For example, it would
give the AEA a mechanism to take a picture of a farmers’ diseased crop, circulate it, and get
advice for the farmer from a specialist. But crucially, it would allow the supervisors to see where
AEAs were at all times, how long they spent in each place, and what they did there (since the
AEA is supposed to document every meeting in which he participates). AEAs can submit reports
and review reports they have already submitted through the phone. Supervisors can view reports
submitted by all the AEAs they oversee.

In the terms of the hierarchical agency model we lay out in the next section, we view the minis-
terial leadership introducing the new technology as the principal, we will refer to the ALAT-level
supervisors as “supervisors,” and the AEAs as the “agents.”

3 Model

Consider a hierarchy composed by a principal,a supervisor, and a continuum of agents with mass 1.
The supervisor is responsible for monitoring the agents. In such a hierarchy there are two possible
agency problems: that between the agent and his supervisor and that between the supervisor and
the principal. We will focus mainly on the problem between agent and supervisor, and analyze how
it changes when the agents are placed under a new monitoring technology. The question will be
whether the principal can obtain better results by relying on supervisors in deciding how to deploy
the technology.

Agents and monitoring Each agent caters to a mass 1 of farmers. Each visit by an agent i yields a
benefit to the visited farmer. Agents receive a fixed wage w and choose a share si ∈ [0,1] of farmers
to visit. The agent obtains an intrinsic motivation zisi from visiting a share si of farmers, but also
incurs a cost aisi + bi

s2
i
2 . The share si is a measure of agent effort, and the principal cares about

it because it constitutes a measure of socially beneficial service provision. From now on, we will
refer to si as effort and assume that it is noncontractible.
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The supervisor operates a monitoring technology that with probability qi ∈ (0,1) reveals si. The
principal then reprimands the agent in proportion to the amount by which his effort falls short,
1− si. The agent gets disutility from being reprimanded equal to (1− si)ri, with ri > 0.2 While
monitoring allows the supervisor to obtain information about the agent’s effort, it can potentially
weaken intrinsic motivation. When monitored, the intrinsic motivation payoff of agent i becomes
(zi− gi)si, which is potentially negative. It reflects the fact that agents may feel aggrieved to an
extent gi ≥ 0 when under close supervision. In sum, wages and effort costs accrue to the agent
regardless of supervision, while reprimand and intrinsic motivation payoffs accrue in relation to
monitoring intensity qi. Thus, agent i can be seen to maximize utility,

ui (si) = w−aisi−bi
s2

i
2
+qi [(zi−gi)si− (1− si)ri]+ (1−qi)zisi,

or, collecting terms,

ui (si) = ωi +µisi−bi
s2

i
2
+qisiρi,

where ωi ≡ w− riqi,µi ≡ zi− ai,ρi ≡ ri− gi. Agent i chooses the share si of farmers to visit to
maximize utility ui(si), and he does so after learning the level of monitoring intensity qi he is
under. Because ui(si) is concave, agent i’s optimal effort is s∗i (qi) = max

{
0, µi+qiρi

bi

}
. Since bi

only affects effort through ratios involving ρi and µi, parameters that can be scaled arbitrarily, we
normalize bi = 1, yielding,

s∗i (qi) = max{0,min{µi +qiρi,1}} . (1)

The term µi – a proxy for net-of-cost intrinsic motivation – is individual-specific and for some
agents potentially negative. Even more important for our purposes, the term ρi, which captures
both the agent’s distaste for being reprimanded (which raises effort) and his resentment at being
monitored (which lowers effort) is also potentially negative for some agents. We will assume ρi

to be drawn from a continuous distribution F(ρi) over a support [ρl,ρh], where ρh > 0 but ρl is
potentially negative.

New technology and treatment effects We assume that qi can take one of two levels {ql,qh} ∈

2Alternatively, one may assume that the supervisor draws a farmer at random, and finds he has not been visited with
probability 1− si, in the event of which she proceeds to reprimand the agent with a fixed intensity ri. It is also possible
to extend the model to make qi a function of monitoring effort by the supervisor. The choice of monitoring effort
remains unmodeled here, in order to stick with the simplest formulation that will deliver the results of interest. Such
an extension could also involve an agency problem in the supervisor’s choice of monitoring effort without affecting the
essence of our results. The only tension between supervisor and principal that may arise in our simpler setting relates
to the deployment of the monitoring technology to be described below.
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(0,1), with qh≡ ql +ti∆q , ∆q> 0, where ql denotes a status quo level of monitoring, and ti ∈ {0,1}
reflects whether agent i is “treated” with a new monitoring technology.3 Treating any given agent
costs an amount c. In order to characterize treatment effects neatly and avoid awkward truncation
issues, in what follows we will assume that µi +min{qhρl,qlρl} > 0 and µi + qhρh < 1, which
guarantees interior solutions for si.

While µi and ρi both affect the level of effort, only ρi affects the response of effort to a change
in monitoring technology. Thus, in the remainder of this section we will refer to different levels
of ρ as agents’ “types.” Under increased monitoring, an agent of type ρ increases his effort by
ρ∆q ≡ T (ρ), which captures the treatment impact of the new technology for that type. Note that
since ρl can be negative, T (ρ) can be negative for some types. In addition, the definition of T (ρi)

implies that equilibrium agent effort s∗i (weakly) increases in monitoring technology qi for all agents
with ρi > 0, and an improvement in monitoring technology (an increase in qi) has a larger effect on
the effort of agents with a higher type ρi. We use m to denote the roll-out scale of the intervention.
Given a continuum of agents, the total treatment impact from targeting a random sample with
measure m is m

∫
ρh
ρl

T (ρ) f (ρ)dρ , illustrated by the strictly increasing diagonal line in Figure 1,
achieved at a total cost mc.4

Consider an intervention treating a random selection of agents, and a typical impact evaluation
comparing performance between a treatment and a control group. What would that evaluation be
testing? Inspection of the expression for the average treatment impact

∫
ρh
ρl

T (ρ) f (ρ)dρ yields the
following:
Remark 1. If ρl ≥ 0, the total (and average) treatment impact is guaranteed to be positive. If

ρl < 0, the total (and average) treatment impact is positive if and only if, given ∆q > 0, the density

f (·) places enough weight on positive types.

Thus, when ρl ≥ 0, a standard impact evaluation tests our assumption that better monitoring tech-
nology increases detection rates (∆q > 0); and when ρl < 0, a standard impact evaluation jointly
tests that ∆q > 0 and that f (·) places enough weight on positive types.

Centralization In this section we define centralization as the benchmark case in which the principal
knows the distribution of types F(ρ), but does not know the type of any specific agent.5 Thus, she

3Here we assume treatment only affects the agent’s problem by raising monitoring intensity, although it could
in principle also affect µi via the agent’s cost ai. This is plausible as some technologies, like GPS phones, can be
productivity-enhancing. However, as we will show later, in our context the data do not support that possibility.

4Our definition of the total treatment effect abstracts from spillover effects across agents. As we report below, we
do not find empirical evidence of spillover effects. So we keep the theory consistent with the empirical measurement
of marginal treatment effects, which will likewise abstract from spillovers.

5Under centralization, the principal makes all decisions based upon her own information. Under decentralization,
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cannot determine whether any agent is more profitably treated than another. At roll-out scale m, the
principal selects treated agents at random and attains an impact equal to m

∫
ρh
ρl

T (ρ) f (ρ)dρ at cost
mc. If the principal could choose m, she would choose roll-out scale of either zero or 100%. The
principal will adopt, and do so at full scale, whenever

∫
ρh
ρl

T (ρ) f (ρ)dρ ≥ c (breaking indifference
in favor of adoption), i.e., whenever the average treatment effect of the new technology is larger
than its marginal and average cost, as represented in Figure 1.

Decentralization Under decentralization, the supervisor selects which agents will receive treat-
ment. The supervisor’s criterion is a function DS (ρ|m) ∈ [0,1] indicating the probability that a
type ρ is selected for treatment when a proportion m of agents must be treated. The total treatment
impact under decentralization is

∫
ρh
ρl

T (ρ)DS (ρ|m) f (ρ)dρ . Supervisors may have superior infor-
mation: they may know the distribution F (ρ) and also obtain a signal about each agent’s type. In
the extreme, the supervisor observes individual types perfectly. If benevolent, a fully informed su-
pervisor will select the highest set of types ρ ∈

[
ρm ≡ F−1(1−m),ρh

]
that make for a measure m,

and attain an impact equal to
∫ ρh

F−1(1−m)
T (ρ) f (ρ)dρ . The impact under decentralized supervisor

assignment is larger than that from random assignment.6

Remark 2. If supervisors know agents’ types and assign treatment to maximize visits to farmers,

the total (and average) treatment impact on agents selected by supervisors will be higher than on

agents selected at random, and on agents who were not selected by supervisors.

If f (ρ) is well behaved (is atomless and has full support), and ρl ≥ 0, then the impact attained by
the supervisor is continuously increasing and concave in m as illustrated in Figure 1.7 The total
treatment impact attained by supervisors coincides with that under random assignment for m = 0
and m= 1. At m= 0 nobody is treated, so total treatment impact is zero. At 100% roll-out, everyone
is treated, and there is no advantage of prioritizing high types for treatment. In both extremes, any
potential informational advantage of the supervisor is worthless.

The typical concern with decentralization is that supervisors may pursue their own objectives, and
select agents in a way that undoes, partly or completely, their informational advantage. An ex-
tremely biased supervisor who selected agents in order to minimize impact would select the lowest
set of types ρ ∈

[
ρl,ρm ≡ F−1(m)

]
, and attain an impact equal to

∫ F−1(m)
ρl

T (ρ) f (ρ)dρ (which,

the principal delegates decisions to supervisors, or, equivalently, supervisors submit information that mechanically
drives the principal’s decisions. Thus, we abstract from the interesting distinctions made by Dessein (2002) between
delegation and strategic communication.

6The condition m
∫

ρh
ρl

T (ρ) f (ρ)dρ <
∫ ρh

F−1(1−m)
T (ρ) f (ρ)dρ is equivalent to the condition∫ F−1(1−m)

ρl
T (ρ) f (ρ)

F[F−1(1−m)]
dρ <

∫ ρh
F−1(1−m)

T (ρ) f (ρ)
1−F[F−1(1−m)]

dρ which is clearly true from the fact that T (ρ)

is increasing –the left hand side is the average treatment effect among a lower set of types than the right hand side.
7If ρl < 0, then the total impact curve will have an interior maximum and be decreasing for m close enough to 1.
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under the same distributional assumptions as before, would yield a convex impact curve in Figure 1
lying below the straight line corresponding to random assignment). Real-life situations will likely
fall in between these extremes. Even partially informed supervisors will attain higher impact than
random assignment if they are not too biased – a situation in which we say supervisors have a “net
informational advantage.” To determine if supervisors have such a net informational advantage,
our experiment will compare the impact of treatment among agents that would be selected by a
supervisor against agents that would not be.

Optimal roll-out, and the optimal value of decentralization

When information about agent types is available, there will be gains to choosing the roll-out
scale judiciously. Consider the case of an informed and unbiased supervisor who has control
over the scale of adoption. That supervisor will choose the lowest treated type ρ ′ to maximize∫ ρh

ρ ′ T (ρ) f (ρ)dρ − c(1−F(ρ ′)), and that type satisfies T (ρ∗) = c. In words, the supervisor will
choose to treat every agent down to a type ρ∗ whose marginal treatment effect from the new tech-
nology equals the marginal cost, and whose type is weakly lower than that of a measure m∗ of
others, as illustrated in Figure 1. Thus, realizing the full value of decentralization depends on the
ability to choose the roll-out scale.
Remark 3. The value of decentralization varies with roll-out scale. In order to empirically deter-

mine the value of decentralization, it is necessary to estimate marginal treatment effects at multiple

roll-out scales.

There are at least three reasons why it may be important in practice to determine the optimal roll-
out scale. First, if decentralization is the organizational status quo, implementing a new program in
a decentralized way does not require costly organizational change, and the informational gains will
be an added benefit. But in some cases centralized assignment may be the status quo, and a shift to
decentralization would require investments in local organizational capacity. If the optimal roll-out
scale is very close to 0 or 100%, the informational gain may be too small to justify investing in an
organizational shift. Second, it may often be the case that limited resources make it infeasible to
roll-out an intervention at its optimal scale, in which case the effective gains from decentralization
may be lower than otherwise.

Third, there may be interventions that are not socially valuable when implemented by the principal,
but which would be socially valuable if implemented at a scale close to what is optimal under
decentralized choice by informed supervisors. To see this possibility, consider a costly intervention
with marginal cost c′, such that

∫
ρh
ρl

T (ρ) f (ρ)dρ < c′. In this case, the average treatment effect is
below marginal and average cost, and so both 100% adoption and random centralized adoption at
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any scale would lead to a loss. But as represented in Figure 1, suppose also that treatment impact
is larger than cost for a set of types ρ ∈ [ρ ′,ρh], for which (T (ρ)≥ c′), with T (ρ ′) = c′, so that∫ ρh

ρ ′ T (ρ) f (ρ)dρ > c′(1−F(ρ ′)), where m′ = 1−F(ρ ′) is the measure of treated agents. In this
situation, the principal would not gain by selecting any measure of agents to be treated at random,
but would gain by delegating to the supervisor if the latter will focus treatment on types (weakly)
larger than ρ ′.

The broader implication is that impact evaluation should not abstract from the extent of roll-out and
its implementation mode, since the implementation mode affects who gets treated. In other words,
determining whether a technology is valuable – presumably the ultimate goal of an impact evalua-
tion – requires assessing the total treatment impact under different scales of roll-out using the best
assignment mechanism. The practical challenge for impact evaluation is that estimating treatment
effects at all roll-out scales requires a very demanding experimental design. Most experiments,
including ours, have one or at most two roll-out scales. In this paper we will develop a method to
estimate the gains from decentralization at all levels of roll-out.

The comparison between decentralization and centralization-as-random-assignment is stark. Richer
comparisons are possible. Once a treatment impact curve for all roll-out scales is estimated for de-
centralized assignment, we will consider less handicapped centralized approaches and ask how
much information is necessary for the center to do as well as or even outperform decentralized
choice. In an era of decreasing costs for information and communications technology (ICTs), cen-
tral authorities can increasingly collect and process data and bridge the informational gap.

Summarizing, our empirical study will investigate three claims stemming from the remarks in this
section. First, are there enough responsive types among AEAs such that the intervention at hand
delivers a positive treatment impact on average? Second, do supervisors have valuable knowledge
(net of potential preference biases) about which agents ought to be treated given partial roll-out?
If so, we should observe treatment effects among those selected by supervisors to be larger than
among agents who were not selected. Third, how does the scale of roll-out alter the impact of
decentralized assignment, and can a realistically informed principal attain the same impact? An-
swering these questions will require a special experimental design, a method for ascertaining the
marginal treatment effects on different types, and a characterization of centralization approaches
utilizing varying levels of information.
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4 Research Design

Our experiment was conducted on 180 local technical assistance agencies (ALATs, Agencia Local
de Asistencia Técnica). On average, each ALAT consists of a supervisor and three agricultural
extension agents (AEAs). Many ALATs have a single AEA. In those ALATs, the AEAs were
randomized to receive a phone either in the first wave, the second wave, or not at all.

There are 48 larger ALATs that have at least 2 AEAs. We asked the supervisors of the latter group
to indicate which half of her AEAs should receive the phones first given the program’s objective
to increase worker performance. We refer to these AEAs as “selected.” AEAs were not told that
their supervisor was asked to make such a decision, and were not told who was selected. These
48 ALATs were then randomly assigned into three groups according to how and when the agents
would receive their phones.

The main group of ALATs is in cells A, B, C, and D in Figure 2. The ALATs in cells B and D (a
quarter of the ALATs), serve as the treatment group. In these ALATs all AEAs, both selected and
non-selected, received the GPS-enabled cell phone which increased monitoring in the first round.
The ALATs in cells A and C, (half of the ALATs), serve as our control group as no AEAs received
the phones in these groups. The average difference in performance between AEAs in cells B and
D and AEAs in cells A and C estimates the average impact of treatment. And, the difference-in-
differences computed as the performance by AEAs in cells (B−A)− (D−C) estimates whether
the impact on selected AEAs is larger than the impact on non-selected AEAs. This difference-in-
differences allows us to determine whether supervisors had valuable information on how to direct
treatment.

A third group of ALATs (cells E and F) received partial treatment. Only those AEAs who had been
selected by their supervisors for treatment (cell E) received phones in the first wave. This design
helped make the elicitation of supervisors’ preferences credible and relevant. Eight months after
the delivery of these phones, a second wave of phones were delivered to the non-selected AEAs
in those ALATs, cell F . The difference in performance between the AEAs in cell F and in cell C

provides a test of whether allocating phones to the selected AEAs can also affect the performance
of non-selected AEAs in the same ALAT. This would be the case if the supervisors also responded
to the treatment of those in cell E by changing the intensity with which they monitored the AEAs
without the cell phone in cell F .
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4.1 Taking the Theory to the Data

Recall that the performance of AEAs whenever interior is given by equation (1):

s∗i = µi +qiρi.

To operationalize this equation, recall that the level of monitoring for each AEA, qi, is a function
of the monitoring technology ti, according to the expression qi = ql +∆qti where ti takes a value of
0 when AEAs do not get a cell phone and 1 when they do. Because our objective is to see AEAs
respond to exogenous changes in monitoring qi, we normalize ql = 0 and rewrite the expected
disutility of being reprimanded (net of monitoring grievance) as qiρi = βiti, where βi = ∆qρi.

The central goal of our approach is to model various selection criteria and estimate the marginal
treatment effects under each criterion for varying levels of roll-out. A key element is to consider
different degrees of observability of the individual parameters (µi,βi), in an individual AEA’s ef-
fort function in equation (1). In particular, we will map these parameters into a vector of fixed
characteristics (X i) and two independently random characteristics (εi,ηi), to write: µi(X i,εi) and
βi(X i,ηi), so that,

s∗i = µi(X i,εi)+βi(X i,ηi)ti. (2)

While the vector X i may be observable to both the principal and supervisor, the elements (εi,ηi),

may only be partially observed by the supervisor.

Average treatment effect We can estimate the average treatment impact of the cell phone on
effort by imposing some familiar (but mild) structure on individual parametric heterogeneity as
follows: µi = µ ′X i + εi and βi = β0. An individual AEA’s effort function becomes

s∗i = µ
′X i +β0ti + εi, (3)

where s∗i measures the share of farmers AEA i visited in the past week. The coefficient β0 provides
a causal estimate of the difference in performance between AEAs in both treated cells B and D

relative to AEAs in the control cells A and C. Thus, we can test whether the intervention yields
positive value (Remark 1 from Section 3) by contrasting the null hypothesis of β0 = 0 against the
alternative that β0 > 0.

Given our research design, we cluster the standard errors at the ALAT level. Because we have
relatively few clusters, the appendix reproduces our main tables with two sets of p-values: one
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computed using a wild cluster score bootstrap procedure (Wu, 1986; Kline and Santos, 2012), and
the other computed using Fisher’s permutation-based randomization inference (RI) test as imple-
mented by Heß (2017). In estimating equation (3), we can also include the single AEA ALATs,
which were assigned phones at random. In this randomization, one-third of AEAs initially received
a phone, with two-thirds serving as a control. When including these ALATs, the vector X i contains
an indicator for whether or not the ALAT has a single AEA.

Average treatment effect when supervisors choose To test whether supervisors are able to se-
lect those AEAs whose effort would most increase when monitored, we can simply re-parameterize
βi = β0+β1DS

i , where DS
i is an indicator for whether AEA i was selected to receive a phone. Equa-

tion (2) then becomes
s∗i = µ

′X i +β0ti +β1(DS
i × ti)+ εi, (4)

where the indicator DS
i is also included within the vector X i. With this specification, we can com-

pare the difference in performance between selected AEAs in the treatment and control groups
(cells B−A) net of the difference in non-selected AEAs in the treatment and control group (cells
D−C). Thus, we can test Remark 2 from Section 3, that supervisors have valuable information
about which AEAs should be targeted, by contrasting the null hypothesis β1 = 0 against the alter-
native β1 > 0. Because treatment ti is randomly assigned in cells A, B, C, and D unconditional on
supervisor selection, we can estimate µ ′ and β = (β0,β1) via ordinary least squares.

4.2 Estimating the Marginal Treatment Effects of the Program

A strictly positive value for β1 in estimating equation (4) is a necessary condition for a decentralized
approach to be preferred, but it is not a sufficient condition. Two other considerations are pertinent.
First, is β1 large enough to justify paying the cost d of decentralization? Second, what would the
average treatment effect be at scales other than 50 percent? We asked supervisors to select half
of their AEAs but this pilot implementation does not directly tell us what β1 would be at different
selection shares. In this section we develop a method for tracing out the impact for all possible roll-
out scales under different implementation regimes that vary the degree of informational advantage
associated with decentralization.
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Marginal treatment effects under different selection models

In order to lay out the main intuitions surrounding the value of decentralization, our theory con-
sidered the stark contrast between a totally uninformed principal and a fully informed, benevolent
supervisor. We will allow for intermediate cases in our empirical approach – the econometric op-
erationalization of the theory will in fact extend it in two directions. First, we allow for supervisors
to be less than fully benevolent. Second, we allow them to be less than perfectly informed about
the responsiveness of AEAs to treatment. In addition, this framework will allow us to consider a
principal who is partially informed.

Each organizational situation – decentralization or centralization under different informational ca-
pabilities of the principal – will be modeled as leading to the selection of AEAs according to a
suitably defined latent index model.

The supervisor’s perception of the value of treating a particular AEA is modeled as a function
of observables Xi and unobservables ui according to the function Γ′Xi + ui. In what follows, we
develop some structure to link this empirical object to the theory.

In the case of decentralization, supervisors select AEAs according to the value vi they believe would
be attained from treating AEA i,

vi = βi(X i,ηi)+ψi(X i,ζi), (5)

where βi(X i,ηi) represents the heterogeneous effect of receiving the cell phone and ψi is a pref-
erence for treating AEA i that depends on X i and an independent, idiosyncratic preference term
ζi. A benevolent supervisor would only select AEAs based on an index vi = βi(·). Thus, the ad-
ditional term ψi captures the potential non-benevolence of the supervisor. In addition, supervisors
may not observe ηi perfectly but, instead, observe a signal θi = ηi +ξi, where ξi ∼ Fξ (·) is a white
noise (hence mean zero) term. As the variance of ξi goes to zero, the supervisor gets closer to
being perfectly informed. Given the random element (ξ ), the supervisor faces uncertainty. A risk
neutral supervisor will assign monitoring technology to AEAs depending on the expected value
E{vi|X i,θi,ζi}. The expectation is taken over ξ , and conditional on ζ , since to the supervisor the
former represents noise while the latter captures preferences.

Given a selection criterion (such as vi), and a well-defined measure of diversity across AEAs as
given by a joint distribution over (X i,θi,ζi), the supervisor rank orders all AEAs according to the
expected value E{vi|X i,θi,ζi}, with minimum element Ev and maximum element Ev. We assume
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there is enough variation that the rank order is strictly monotonic. Therefore, any roll-out of scale
m under a selection criterion based on vi implies treating all AEAs who satisfy E{vi|X i,θi,ζi} ≥
cp(m), where cp(m) is a putative cost (hence the subscript). This cost is putative in the sense that it
is the marginal cost of treatment that the supervisor would have to perceive in order to decide to treat
a share m of AEAs. Thus, cp(m) satisfies dcp

dm < 0, limm→0 cp(m) = Ev, and limm→1 cp(m) = Ev.
These conditions say that for the supervisor to want to treat more AEAs, the putative cost of treat-
ment must be lower; for the supervisor to treat no AEAs, the putative marginal cost of treating a
single AEA must exceed the benefit of treating the most valuable AEA; and that for the supervisor
to treat all AEAs, the expected desirability of treating the least valuable AEA must cover the puta-
tive cost. When E{vi|X i,θi,ζi} ≥ cp(m), the selection indicator denoted by DM

i (X i,θi,ζi,cp) takes
the value 1, and 0 otherwise.

The fundamental difference between AEA characteristics X i and ηi is that elements in the vector
X i are potentially observable by a sophisticated principal who can gather and analyze data. Ele-
ments in X i could contain AEA-related demographic and psychometric data. The term ηi is fully
unobservable to the principal, and can potentially be known only to a supervisor who establishes
a more personal connection with the AEA. Thus, decentralization has two potential informational
advantages: supervisors may (or may not) know and use data on X i better than the principal, and
they are the only ones who can potentially know something about ηi. To the extent that ηi enters the
function βi(.), the supervisor will have an unassailable informational advantage over the principal.

To make further progress, we need to parameterize the dependence of µi(·) , βi(·), and ψi(·) on X i.
We parameterize each of these linearly. Slightly abusing notation, and anticipating our assumption
that η is mean zero, we can re-write equations (2) and (5) respectively as,

s∗i = (µ ′X i + εi)︸ ︷︷ ︸
µi(·)

+(β ′X i +ηi)︸ ︷︷ ︸
βi(·)

ti

= µ
′X i +(β ′X i)× ti + εi +ηi× ti. (6)

and
vi = (β ′X i +ηi)︸ ︷︷ ︸

βi(·)

+(ψ ′X i +ζi)︸ ︷︷ ︸
ψi(·)

. (7)

Marginal treatment impact under an uninformed principal An uninformed principal knows
nothing about individual values of βi, so she can only randomly select which AEAs should be
placed under the new technology. Using equation (6), given a scale of roll-out m (the share of
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AEAs to be treated), the total treatment effect on expected performance is∫
X i

((Eε,η(s∗|t = 1,X i)−Eε,η(s∗|t = 0,X i))m)dΞ(X i) = mβ
′X̄ ,

where Ξ is a cumulative distribution function describing variation in the vector X , which is unob-
servable to a fully uninformed principal. This equation says that if no AEAs are treated, the total
gains are zero. If all AEAs are treated, the total gains are equal to the average treatment effect of
the intervention. If a partial measure m∈ (0,1) is treated, the total gains are proportional to roll-out
m, and the marginal impact of enhancing roll-out is always the average impact β

′X̄ .

Marginal treatment impact under decentralization A supervisor observes each AEA’s char-
acteristics (X i,θi,ζi), and selects AEAs to treat according to the value of the expected index
E{vi|X i,θi,ζi} as given by,

E{vi|X i,θi,ζi} = (β ′X i +E{ηi|X i,θi})︸ ︷︷ ︸
E{βi(·)|θi,X i}

+(ψ ′X i +ζi)︸ ︷︷ ︸
ψi(·)

= (β ′+ψ
′)︸ ︷︷ ︸

Γ
′

Xi +(E{η |X i,θi,ζi}+ζi)︸ ︷︷ ︸
ui

. (8)

This equation is important for our linking the theory of AEA selection with the empirics. The
AEA observables in Xi matter both because they affect response to treatment (through β ′, as in the
theory), but also because supervisors may have biases (through ψ ′). Unobservables in ui may also
reflect components that affect response to treatment (through η) and biases (through ζ ).

A key hurdle is that we do not have a direct measure of E{vi|X i,θi,ζi}. We only observe the
supervisor selection decision DS

i . To recover Γ, we further assume that ηi, ξi, and ζi are mean zero,
normally distributed random variables with variances σ2

η , σ2
ξ

, and σ2
ζ

, respectively. Given all of
these distributional assumptions, the variable ui can be characterized as drawn from Φ, a cumulative
Normal (0,σ2

u =
σ2

η

σ2
η+σ2

ξ

σ2
η + σ2

ζ
) (this stems from the fact that the supervisor is Bayesian and

updates her expectation of η upon observing θ ). Since a supervisor selects an AEA for treatment
whenever u > −Γ′Xi + c(m), the supervisor’s selection criterion DS

i takes the familiar form of a
probit model:8

Pr{DS
i = 1|X i}= Φ

(
1

σu
(Γ′X i− cp(m))

)
8In our estimation, cp is not separately identified from the constant vector in X i and thus we normalize it to zero.

We revisit cp in section 7.
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Under our assumptions, standard arguments yield E{ηi|ui} =
σηu
σ2

u
ui, where σηu =

(
σ2

η

σ2
η+σ2

ξ

σ2
η

)
.

Using iterated expectations, if E (η |u) = σηu
σ2

u
u, then E (η |D,Xi,m) =

σηu
σ2

u
E (u|D,Xi,m). And using

a basic property of truncated normals, we know that,

E (u|D = 1) = E
(
u|u >−Γ

′Xi + c
)
= σu

φ

(
−Γ′Xi+c

σu

)
1−Φ

(
−Γ′Xi+c

σu

) (9)

E (u|D = 0) = E
(
u|u >−Γ

′Xi + c
)
=−σu

φ

(
−Γ′Xi+c

σu

)
Φ

(
−Γ′Xi+c

σu

) . (10)

Plugging (9) and (10) into E (η |D,Xi,m), it follows that E{ηi|DS
i ,X i,m}=

σηu
σu

φ( 1
σu (Γ

′X i−cp(m)))

DS
i −Φ( 1

σu (Γ
′X i−cp(m)))

≡
σηu
σu

λ (DS
i ,Xi,m). This expression characterizes the expected value of the unobservable information

supervisors have about an agent’s responsiveness to treatment. This expression enters into the over-
all expected performance of an AEA conditional on being put into treatment. Taking conditional
expectations in equation (6), we get 9

E{s∗i |X i,DS
i , ti,m}= µ

′X i +(β ′X i)× ti +E{εi|Xi,DS
i }+E{ηi|Xi,DS

i ,m}× ti

= µ
′X i +(β ′X i)× ti +

σηu

σu
λ (DS

i ,Xi,m)× ti. (11)

Note that εi and ηi are independent of X i by definition and independent of ti by way of the random-
ized experiment. Thus we can estimate equation (11) via a two-step procedure using OLS. The
first step allows us to estimate the selection model that will yield λ (DS

i ,Xi,m) and the second step
yields estimates for the coefficients in equation (11). We show these estimates in Section 6.3.

Equation (11) is the crucial piece to estimate the marginal treatment impact of the intervention
under different scenarios of decentralization and informational advantage. To see this, consider
first the simplest case where neither the principal nor the supervisor can observe any AEA traits
so the vector X i is constant. The expected index on which the supervisor selects is E{vi|θi,ζi} =
E{η |θi,ζi}+ ζi = ui. Given the 50 percent roll-out in the experiment, we know that under de-
centralization, the total treatment impact of 50 percent roll-out is β0 +β1 from OLS estimation of
equation (4). In order to trace the marginal treatment impact at any other roll-out m, we only need

9We do not impose any restrictions on ui and εi and so also include λ (Di,Xi,m) as a main effect without any
interaction with ti. This parameter (along with µ) is not of direct interest to us and is not required for identification, but
may improve the efficiency of the other estimates.
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to consult the value of ui at the m percentile in the Normal distribution of ui.10 Thus, it is possible
to trace the total treatment gain from following the supervisor’s selection criterion for all m.

As the expression E{η |θi,ζi}+ζi = ui makes clear, we cannot tell whether a supervisor’s selection
is due to information on unobservables that affect true responsiveness to treatment (η) or due to
unobservables that make the supervisor select an AEA for other reasons (ζ ). But if β1 > 0 we know
the supervisor gets a precise enough signal on η , and places enough weight on it, so that even if
she is biased in her choices, her selection yields higher treatment impact than selecting the AEAs
at random.

In most situations, supervisors will know characteristics of their AEAs, and so the expected index
E{vi|X i,θi,ζi} on which supervisors select will indeed be a function of X i. In this situation, each
expansion of roll-out will imply extending treatment to new AEA types, where the type space as
seen by the supervisor is some unidimensional path in a higher dimensional space of traits X i and
the supervisor-only observed ui. The analyst does not observe ui, but can form an expectation
of it conditional on an AEA with traits X i being selected. Knowing traits X i and a conditional
expectation on ui for an AEA being selected at a given level of roll-out, equation (11) delivers
the treatment impact. Thus, it is possible to derive the total treatment gain from following the
supervisor’s selection criterion for all m.

Further uses of the model: evaluating supervisors, and the potential for sophisticated cen-
tralization We have now described ways to obtain marginal treatment impacts at varying roll-outs
for the cases of an uninformed centralized principal and an informed supervisor. But the selection
model laid out in this section can be put to other uses. First, it is possible to evaluate the supervisors
in a more complete way than simply checking whether they have an informational advantage over
the principal. We can ask how much of their advantage is due to their knowledge of traits observable
by the principal (X i) versus things the principal cannot expect to learn (η). Moreover, the analyst
can econometrically evaluate the extent to which supervisors make optimal use of observable data
in X i.

Second, with gains in the ability to gather and process data, a principal could learn some traits of her
AEAs, captured by X i. This opens up consideration to a new class of counterfactuals, with a natural
one involving the marginal treatment impact for varying m for a decision maker that knows X i but
does not observe θi. Thus, we can ask whether a sophisticated centralized principal can emulate or
surpass the performance of supervisors despite her informational disadvantage. We perform these
exercises in Section 7.

10We do not recover separate values for σu and ση , since all parameters are scaled by σu in the probit regression.
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Discussion We have presented a heterogeneous treatment effect model where supervisors have
private information about the treatment effects. Equation (11) shares the same functional form as
the “Heckit” selection model. However, in most settings where the Heckit is applied the treated
are also the selected, ti = DS

i . In most settings like ours where selection DS
i is assigned according

to εi or ηi, the control function λ (·) must be included in estimation to account for the non-random
censoring of potential outcomes, the raison d’etre for the literature on selection correction. How-
ever, control functions require credible instruments; without an instrumental variable that could be
excluded from the outcome equation, identification relies on the parametric assumption governing
ui. Stated differently, if one assumed ui was instead uniformly distributed and estimated the corre-
sponding selection equation via OLS, λ (·) would be collinear with the vector Xi (Olsen, 1980) and
thus would not be separately identified. Even in contexts where there are credible instruments that
generate experimental variation, treatment effect heterogeneity among never-takers and always-
takers are obtained by using selection models to extrapolate from instrument-implied local average
treatment effects (Heckman and Vytlacil, 2005; Kline and Walters, 2019).

In our context, however, treatment ti is independently and randomly assigned, and not equal to
selection DS

i . While supervisor preferences are elicited, they are not used to determine assignment
in our main sample. This means that we neither have censored potential outcomes nor always-
takers and never-takers. Instead, we have both a randomized experiment with full compliance and
also information about supervisor preferences that were not implemented, allowing us to credibly
estimate treatment effects along the full distribution of ηi, an exercise that requires no extrapolation.
Because we observe treatment effects for non-selected AEAs (i.e., those with DS

i = 0), even if
misspecified, λ (DS

i ,Xi) is just a transformation of DS
i and Xi , and with inclusion of controls, its

independent variation is driven primarily by DS
i .11

5 Data

We collected two main sources of data. The first is a survey of AEAs. Each AEA and supervi-
sor independently filled out answers on a paper questionnaire with survey enumerators available
to answer any questions. The survey contains questions regarding the AEAs’ demographics and
work history, the digit span test measuring cognitive ability, and the Big-5 inventory (John et al.,

11Thus, if one wanted to stick with OLS in the first stage rather than a Probit, while continuing to assume a linear
conditional expectation function E{ηi|ui}∝ ui, the coefficient on λ (·) in the second stage would be numerically equiv-

alent to estimating an OLS regression in one step with DS
i

2 in place of λ (·). This is a result that follows immediately
from the Frisch-Waugh theorem.
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2008). We combine this five-dimensional inventory into two higher-order personality traits called
stability and plasticity. Stability combines the traits neuroticism, agreeableness, and conscientious-
ness which have been found to predict earnings and job attainment, such as the tendency to remain
emotionally stable and motivated and be organized and thorough. Plasticity, which aggregates
extraversion and openness, is a measure of a person’s gregariousness and openness to new expe-
riences. These two meta-traits tend to account for much of the shared variance among the lower
order dimensions (DeYoung, 2006).

The second source of data we have is two rounds of farmer phone surveys. One round was con-
ducted after the first wave of phones was distributed and one round was conducted after the second
wave of phones was distributed. We called farmers who were beneficiaries of the AEAs and asked
questions about their interactions with the AEAs such as how often they saw the AEA and how
satisfied they were with his work.

The timeline of events is as follows. In March of 2014, the ALAT-level supervisors chose which
AEAs they would like to prioritize for receiving a phone with the objective of expanding effort in
service to farmers. The first wave of phones was distributed to the AEAs between May and July,
2014. These phones were given to AEAs in cells B and D (all AEAs in the 100% coverage ALATs)
and cell E (selected AEAs in the 50% coverage ALATs) as well as a randomly chosen third of
AEAs in the small ALATs. Individuals from the central ministry traveled across the country to
meet with the AEAs who were scheduled to receive phones, distribute the phones to them, and
teach them how to use the phones. This process took over two months because it involved 19
meetings spread across the country.

After the first wave of phones was distributed, we conducted two types of data collection. From
July through September, 2014 we conducted the first round of farmer phone surveys. Additionally,
during September 2014, we conducted the survey of all AEAs as well as their supervisors. We
treat AEA characteristics such as sex, age, years of education, and the personality indices as being
fixed and not affected by the roll-out of the phones. On the other hand, we treat variables such as
the AEAs’ perceptions of whether their supervisors know where they are during the working week
as potentially being affected by the roll-out of the phones. In the control group, AEAs in ALATs
where no AEAs received phones, these responses should not be impacted by the roll-out of the
phones.

After completing the first round of surveying, the second wave of phones was distributed in Febru-
ary and March, 2015. These phones were given to the AEAs in cell F (the remaining AEAs who
were not selected in the 50% coverage ALATs) as well as another randomly chosen third of AEAs
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in the small ALATs. We then conducted a second round of farmer phone surveys in April and
May, 2015. The Ministry of Agriculture planned to distribute phones to all AEAs who had not yet
received one before the end of 2015 but in the end did not do so.12

The ministry did not give any phones to AEAs who were not on our randomized list. There were
a few cases in which phones broke down or sick AEAs were not able to pick up their phones. For
this reason we look at intent-to-treat (ITT) estimates using our initial random assignment.

In early 2014, we were given full information, including job title, job location, and client names
and phone numbers for 368 agricultural extension agents - 139 supervisors and 229 AEAs. In
September 2014, we were able to interview 301 of these – 119 supervisors and 182 AEAs. We
interviewed 79% of the AEAs in our original administrative data, 15% no longer worked for DEAg,
and 6% were absent the day of the surveying.

The job description of an AEA involves working with 80 farmers. Thus, it is no surprise that
the median AEA in our data listed the names of 80 farmers with whom he worked; the mean of
the distribution is 75 with a standard deviation of 26. The median AEA in our data listed phone
numbers for 78% of the farmers he served, while the mean share listed is 73%. These numbers vary
very little for AEAs versus supervisors.

In total, we called 2,635 farmers in the first round and 2,642 in the second round for the 182 AEAs
who responded to the AEA survey.13 Of those, 68% led to completed surveys.14 Conditional on
completing the survey, 70% of farmers confirmed that the AEA that had provided their number
worked with them and thus were asked more detailed questions about their interaction with that
AEA.15 This leads to 2,519 completed farmer phone surveys.

12The government was very happy with the phones, but their priorities shifted to focusing on the extreme poor.
Thus phones were taken away from the AEAs of DEAg who work with the poor, and given to AEAs in a different
organization which focused on the extreme poor.

13We conducted two rounds of farmer phone surveys, but we wanted to leave open the possibility of conducting
three rounds. For AEAs and supervisors in multi-AEA ALATs who listed 75 or more farmer phone numbers, we
randomly chose 75 farmers to call and then randomly divided them to call 25 farmers in each of three rounds. For
those who listed fewer than 75 farmer phone numbers, we randomly divided their farmers into thirds to call in each
of the three rounds. Similarly, for AEAs and supervisors in single-AEA ALATs who listed 24 or more farmer phone
numbers, we randomly chose 24 farmers to call and then randomly divided them to call 8 farmers in each round. For
those who listed fewer than 24 farmer phone numbers, we randomly divided their farmers into thirds to call in each of
the tree rounds.

14In 18% of cases, we reached voicemail on all five tries, 7% of cases were wrong numbers, 4% were out-of service
phone numbers, and 2% of farmers did not agree to complete the survey.

15We first asked the farmers to talk about any AEAs with whom they worked and did not offer up the name of the
AEA we had on record for them. We only asked the farmer about the specific name we had on record if either the
farmer worked with an AEA whose name he couldn’t remember or if he did not list the name of the AEA we had on
record on his own.
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Table 1 presents sample means and a randomization check of the cellphone assignment for vari-
ous AEA characteristics. The table shows differences between treated and control small ALATs
(column 3) and 100% coverage and control large ALATs (column 6). Overall, the average AEA
age is 38, and 71% of AEAs are male. The AEAs were able to recall an average of 5.3 digits in
the memory digit span test, which is a commonly-used measure of cognitive ability.16 AEAs are
required to travel an average of 12 kilometers to visit a given farmer. Overall the results in Table 1
suggest that treatment, which was randomized at the ALAT level, is balanced.

We present some additional balance tables in the appendix. In Table A1, we show that balance
holds when we compare the 100% coverage ALATs (i.e. cells B and D) and the 50% coverage
ALATs (i.e. cells E and F) to the control group. In Tables A2 and A3, we also check for balance
on a set of ALAT-level characteristics from the population and agricultural censuses, as well as the
results of the 2013 presidential elections. In looking at 18 comparisons across the two tables, only
one shows significant imbalance across treatment and control. Across a different dimension, Table
A2 shows that large ALATs are located in larger and less rural districts than the small ALATs.

6 Results

In this section, we begin by estimating the impact of the cell phones on AEA performance. Ac-
cording to the model, under certain conditions (cell phones improve monitoring and there are suffi-
ciently many AEAs who respond positively to it), the increase in monitoring induced by the phones
should boost the effort levels of the AEAs and thus increase the number of farmers visited. Subse-
quently, we test whether the impact of cell phones was higher among the AEAs who were selected
by the supervisors, which would be the case if supervisors had the ability and willingness to target
the AEAs with highest responsiveness to treatment. Next we look for, but fail to find, evidence of
spillovers and Hawthorne effects. Finally, we estimate heterogeneous treatment effects, which we
use to evaluate impacts under various counterfactual scenarios with different scales of roll-out.

16For the digit span test, the enumerator read out loud a random number that the AEA was then required to recite
back. The test began with a number that was two digits long and incrementally increased the number of digits until the
AEA could no longer recall a number correctly on both of two chances.
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6.1 Increased Monitoring and Performance

As we discussed in Section 2, the primary task of an AEA is to visit farmers. In columns (1) through
(5) of Table 2, we estimate the impact of the phone on whether the farmer reported having been
visited by the AEA in the last week. In columns (1) through (3), our estimation sample includes all
AEAs in the small and large ALATs, excluding those randomized into the partial treatment ALATs
(cells E and F). In column (1), we present the estimates without any additional controls. In column
(2), we add a set of basic controls (e.g., age and gender), and in column (3), we further augment the
specification to include controls measuring AEA type (e.g., Big 5 personality meta-traits and digit
span). In column (4), we re-estimate the specification presented in column (3), excluding the small
ALATs.

We find that the increase in monitoring leads AEAs to visit their farmers more often. They are
approximately six percentage points more likely to have visited a given farmer in the past week,
which is an increase of 22% over the control group. As expected given the random assignment, the
estimated impact varies little with the different controls added and when we restrict estimation to
the large ALATs, which will be our main sample moving forward. Appendix Table A4 shows both
wild cluster bootstrap and randomization inference p-values which help account for the small num-
ber of ALATs under study and the coefficient on treatment status retains its significance. Overall,
the demographic and personality-based controls have little predictive power.17

Supervisors are in charge of both supervising the AEAs in their ALAT as well as serving their own
farmers. In column (5), we test the impact of the phone on supervisors’ visits to their farmers. We
find a small and insignificant impact (point estimate = -0.008; clustered standard error = 0.035).
This suggests that the impact of the phone is related to the greater monitoring ability it gives super-
visors and not due to productivity-enhancing functions of the phone (e.g., ease in communication),
which would have the same effect on both supervisors and AEAs. As a further check, AEAs were
asked whether they agreed with the statement that their supervisor usually knows where they are
during the work week. In column (6), we see that having a phone significantly increased the extent
to which AEAs agreed with this statement.

While the treatment led to more visits, this does not necessarily imply that the AEAs are exerting
more effort. AEAs could be making more visits but making them shorter. In column (7), we do not
find evidence support this idea. The point estimate is statistically insignificant and suggests that
treated AEAs spend only one percent less time (approximately one minute) on each visit.

17In results not shown here we look at short and long-run impacts of the phones (using the first and second rounds
of farmer phone surveys), and find that they are quite similar. The impact of the phones does not diminish over time.
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In Appendix Table A5, we examine the effects of the treatment on other dimensions of AEA per-
formance. We consider four additional measures: 1) how satisfied the farmer is with the AEA
(1=not at all, 2=somewhat, 3=very); 2) an indicator for whether the farmer reported that the AEA
conducted a helpful training session; 3) an indicator for whether the farmer did not report that the
AEA was not helpful at all; 4) and the first principal component for the three measures, with higher
values indicating better performance. In general, we find that the additional monitoring improved
performance along these dimensions as well, although the estimates are measured with less pre-
cision. Based on our polychoric principal component measure, the treatment improved aggregate
performance by 0.13 of a standard deviation (clustered standard error = 0.07). 18

6.2 Do Supervisors Have Useful Information?

Recall that our model assumes AEAs differ in their responsiveness to enhanced monitoring and that
supervisors know the AEAs’ responsiveness. If supervisors wish to increase the number of farmers
visited, then when tasked with the responsibility of assigning increased monitoring, they should
target the AEAs for whom a larger increase in performance ought to be expected. Our research
design allows us to test this directly.

Prior to the randomization, supervisors identified which half of their AEAs they believed should
receive the phones. Given these selections, we test for the value of information using a simple
difference-in-differences estimator for our sample of large ALATs. We compare the performance
of AEAs who were selected and received the phone against those who were selected but did not
receive the phone, net of the difference in performance between those who were not selected and
received the phone against those who were not selected and did not receive the phone (i.e., (B−
A)− (D−C)).

From Table 3, we see that the effects of the phones on performance are entirely driven by the effects
on the AEAs selected to receive the phone prior to the randomization. These AEAs increased the
share of farmers visited in the last week by approximately 15 percentage points. Compared to the
selected AEAs in the control group, this effect represents a substantial increase of 58 percent. We
present this result with bootstrapped clustered p-values in Appendix Table A7 and with randomiza-
tion inference p-values in Appendix Table A8 and the significance remains. From column (4), we
also see that selected AEAs in the control group are 4 percentage points less likely to have visited

18All four measures are significantly correlated with our preferred measure of productivity, AEA visits (see Ap-
pendix Table A6). Farmers who receive more visits from their AEAs are also more satisfied with their AEAs, more
likely to think the AEA conducts helpful training sessions, and less likely to find the AEA useless.
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their farmers relative to the non-selected. This potentially suggests that supervisors target the least
productive AEAs, although this difference is not statistically significant. While our preferred spec-
ification focuses on cells A, B, C, and D, the 0% and 100% coverage ALATs, in Appendix Table
A9, we present results incorporating the AEAs from cells E and F (the 50% coverage ALATs) and
results are similar.

Spillover and Hawthorne Effects The theory we laid out in Section 3 assumes the absence of
spillovers across agents. An advantage of our experimental design is that we can test this assump-
tion directly. Recall from Figure 2 that for the ALATs assigned to the 50% coverage treatment, only
the selected AEAs (cell E) received phones in the first wave, while the non-selected (cell F) did
not. Therefore we can test for the presence of spillover effects on the untreated by comparing the
performance of the AEAs in the first survey round in cell F (i.e., non-selected AEAs who did not
receive a cell phone but whose selected coworkers did) to the AEAs in cell C (i.e., the non-selected
in the control group who, like their selected coworkers, did not receive a phone).

The main potential source of such spillovers is a reallocation of supervision effort from the treated
to the untreated when only a fraction of a supervisor’s AEAs are treated with phones. In that
case, not only would the non-selected workers without phones whose co-workers had phones per-
form better than those whose co-workers did not, but those selected workers with phones whose
non-selected co-workers also had phones would perform better than those whose non-selected co-
workers did not have phones. That is, AEAs in cell B would perform better than those in cell E in
the first round. We test for this second possibility as well.

In column (1) of Table 4, we add two new variables to the specification presented in column (4)
in Table 3. The first new variable, labeled ‘Spillover (Non-selected),’ is an indicator equal to one
for the AEAs in cell F in survey round one, i.e., those who were not selected but whose selected
co-workers received a phone, and zero otherwise. If there are spillovers resulting from supervisors
reassigning supervision effort from the treated in E to the untreated in F , this coefficient ought to
be positive. The second new variable, labeled ‘Spillover (Selected),’ is an indicator equal to one for
the AEAs in cell B in both rounds and cell E in survey round 2, i.e., for those who were selected
and treated, and have treated co-workers. The coefficient on this variable measures the additional
effect of having treated coworkers on the selected who were treated.

Neither the non-selected untreated, nor the selected treated, perform any differently whether or not
their coworkers are treated with phones. The spillover on the non-selected from having co-workers
with phones is small at −0.0137 and not statistically significant. This finding suggests the absence
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of spillovers, either directly in the form of peer effects, or through effort substitution by supervisors.
Meanwhile, the spillover on the selected from having co-workers with phones is of larger magnitude
at−0.0534 but this is not statistically significant. The overall effect of treatment for a selected AEA
whose non-selected co-workers do not have phones is 16 percentage points. This is consistent with
our interpretation that supervisors can supervise all AEAs with phones regardless of what share of
their AEAs have phones, and that supervisors possess useful information about their AEAs.

An alternative story, akin to a Hawthorne effect, is that supervisors may have increased their su-
pervision effort on those treated AEAs whom they had selected. They may have done this to make
sure their selected AEAs performed better under the new monitoring technology, sending a sig-
nal that their selection had been judicious. In this case, our findings would not necessarily reflect
supervisors’ informational advantage but rather their additional effort.

There are four reasons we find this explanation unlikely. First, an ancillary test points to the absence
of Hawthorne effects. We exploit the fact that some ALATs are small (a single AEA), and thus
supervisors were not asked to identify which half of the AEAs ought to be treated. If Hawthorne
effects are present, the average treatment effect in multi-AEA ALATs should be stronger than in the
single-AEA ALATs where no selection was made, as the signaling motive is absent in the latter. We
estimate the effects of the phone distinguishing between single and multi-AEA ALATs. As we see
in column (2) of Table 4, we cannot reject the hypothesis that the treatment effects are similar across
small and big ALATs. If anything, the point estimate of the interaction term is positive, suggesting
that the treatment effect might be slightly larger in the single-AEA ALATs. This test assumes that
the propensity to have been “selected” is balanced across small and large ALATs. In column (3)
we test whether our point estimates change when we control for our AEA characteristics, which
would be the case if AEAs are systematically different across the two types of ALATs. Based on
our rich set of observables, we do not find any evidence of AEAs sorting by ALAT size.

The data speak against potential Hawthorne effects in a second way. If Hawthorne effects were
present, then we might expect them to be more pronounced in the 50% coverage treatment arm
(where supervisors’ selection rule was enforced) relative to the 100% coverage treatment. Alter-
natively, one could conjecture that the Hawthorne effects would be less pronounced in the 50%
coverage treatment arm if, for instance, supervisors in the 100% coverage treatment felt slighted.
But as we noted from the results presented in column (1) of Table 4, the effects for the selected
AEAs across the two treatment arms are similar in magnitude in round 1, rejecting this possibility.

Third, the structure of incentives in the field makes Hawthorne effects unlikely. Supervisors had
little incentive to prove to the Ministry that they could select the most responsive AEAs. They
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had no reason to think that the Ministry would or even could evaluate their selection process, let
alone reward or punish supervisors for the selections made. Those beliefs would have been correct
since the Ministry never performed, nor planned to perform, such an evaluation. Given the lack
of incentives, it seems unlikely that supervisors would exert costly effort to make sure the selected
AEAs who were treated performed better.

Fourth, if Hawthorne effects were driving our results, then selected AEAs should have larger treat-
ment effects in both observable and unobservable dimensions. For example, we will see later that
being married significantly predicts being selected but is negatively associated with the treatment
effects. For such a result to be consistent with Hawthorne effects, the supervisor would have to
perceive that they were being judged primarily on dimensions that could not be predicted from a
simple probit model and respond in kind. We believe such a manipulation to be unlikely in our
context. We explore both predictors of selection and treatment effect heterogeneity in the next
section.

In sum, we find strong evidence that the phones increase AEA effort and that supervisors possess
useful information regarding which AEAs’ performance will improve most after receiving a phone.
This indicates that in the absence of enough phones to treat all AEAs, it may be valuable to decen-
tralize the assignment of phones to supervisors. This begs the question of what characteristics the
supervisors used to create their prioritized list and the extent to which supervisors used information
analysts could hope to obtain. The next subsection answers these questions.

6.3 Heterogeneous Treatment Effects

In Table 5, we present estimates from a Probit regression, in which the dependent variable is an
indicator for whether the AEA was selected by the local supervisor.19 Based on standard observable
characteristics, we find that supervisors tended to select AEAs who were younger, married, and had
to travel further distances to visit their farmers. In terms of their personality traits, supervisors were
more likely to select AEAs with lower levels of the Big-5 Stability meta-trait. Individuals with
higher stability scores may be more likely to stay motivated and have better relationships with their
supervisors without extra monitoring technologies.

Interestingly, we also find that supervisors of the large ALATs, all but one of whom are registered

19Appendix Table A10 shows the same regression with bootstrapped p-values. Our preferred specification uses
the estimation sample from Table 3, including only the 0% and 100% coverage ALATs. In Appendix Table A11, we
present similar results incorporating the AEAs from the 50% coverage ALATs.
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with the incumbent political party, are significantly less likely to place AEAs registered with the
incumbent party under increased monitoring. This either suggests that supervisors are acting non-
benevolently or, as we will subsequently test, that party affiliation serves as a marker for those who
are less likely to respond to treatment.

Despite the richness of our data, our ability to predict the choices of the supervisors is fairly low:
the highest pseudo R2 is only 18.5%. This opens the possibility that supervisors are also selecting
AEAs based on unobservable but productive characteristics (η) or unobservable and idiosyncratic
characteristics (ψ), features that are not captured by demographic traits or indicators of cognitive
and non-cognitive ability. Ultimately, the only way to determine whether there could be an advan-
tage to decentralization is to rely on our experimental design, and ask whether supervisors select
AEAs who will be more responsive to treatment.

In Table 6, we present a series of second stage estimates based on Equation 11.20 In column (1),
we present a specification without any additional controls or interaction terms, whereas in columns
(2) and (3) we include additional controls along with their interactions with the treatment indicator.
For columns (2) and (3), the first stage regressions correspond to the ones presented in Table 5.

The key finding in Table 6 concerns the inverse Mills ratio and particularly its interaction with
treatment. As we explained in Section 4, the inverse Mills ratio captures the expected unobservable
traits that recommended an AEA for selection by the supervisor. Because no controls were included
in column (1), the coefficient on the inverse Mills ratio interacted with treatment in that column
replicates the findings from Table 3 that supervisors are selecting individuals with higher treatment
effects.

When we allow the effects of the treatment to vary by the characteristics that we found were pre-
dictive of the likelihood of selection (columns (2) and (3)), we find that the inverse Mills ratio is
still highly predictive of responsiveness to treatment, direct evidence that the unobservable reasons
supervisors are selecting AEAs are, on balance, productive. In addition to the unobservable traits,
the treatment effect also varies by the cognitive ability of the AEAs; those who performed worse on
the digit span test exerted more additional effort in response to the treatment. Moreover, in column
(2) it appears that members of the incumbent party respond less to the treatment. But, once we
account for the differential effects of cognitive and non-cognitive ability in column (3), this effect
loses significance. We also do not find any differential effects by age, even though older AEAs
were much less likely to get selected. This suggests that some favoritism towards older AEAs may

20Appendix Table A12 shows the same regression with bootstrapped p-values. See Appendix Table A13 for similar
results including the 50% coverage ALATs.
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have influenced the supervisors’ targeting.

The results so far raise several questions. What is the basis for the supervisors’ informational
advantage? At a given cost of decentralization, does the informational advantage justify the cost?
To answer these questions, one needs to know two elements. First, what is the scale of roll-out
anticipated? Under decentralization, the anticipated scale of roll-out should be whatever is optimal,
and this motivates the need to identify that optimal level. Second, how much information does the
central authority have? In the next section, we apply the framework introduced in Section 4 to
provide answers to these questions.

7 Counterfactuals

In this section, we exploit our heterogeneous treatment effects model to compute counterfactual
treatment effects under alternative selection rules. This allows us to assess the benefits of decen-
tralization relative to centralization under different informational assumptions.

The first step is to define a counterfactual aggregate benefit under an arbitrary selection rule DCF
i

as:

∆YCF =
∫

E{β |DCF
i = 1,Xi}Pr{DCF

i = 1|Xi}dFX (12)

In keeping with the rest of our notation, we write our arbitrary selection rule as a threshold problem,
DCF

i (Xi,ui) = 1[Γ̃′X i+ ũi≥ cp]; because we have not made any distributional assumptions about ũi,
this does not impose additional assumptions. Note that the assumed cost cp is not directly observ-
able, and the threshold problem is not a unique representation of the selection rule—any monotonic
transformation of the latent index and cp will yield the same choices. However, we are not trying to
directly obtain either of these objects. We only predict the consequences Pr{DCF

i = 1|Xi,cp} and
E{β |DCF

i = 1,Xi}, which map into the scale of roll-out m and the aggregate counterfactual impact
∆YCF .

One example of a selection rule is the one implicitly applied by supervisors, DS
i (Xi,ui), which an-

chors our portrait of what can be achieved under decentralization. Note that from our estimation of
Equation 11, we have recovered E{βi(·)|Xi,ui}, and under distributional assumptions, the selection
rule under decentralization, DS

i (Xi,ui). Given this, we can use Equation 12 to trace out the ex-
pected treatment effects of the cell phones under decentralization for any given threshold cp or, by
extension, any scale of roll-out m. But, we can impose any other selection rule capturing different
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counterfactual scenarios corresponding to different forms of centralized assignment and trace out
the expected treatment effects for all roll-out levels in each scenario.

Uninformed Principal A natural, if extreme, benchmark is that of a principal who does not have
any information about how best to target roll-out. In this situation, the selection rule is random
allocation. At a roll-out level m, a fraction m of all AEAs receives a cell phone, and the expected
total treatment effect is m% of the average treatment effect (considering, as in the theory section, a
large number of AEAs who can then be approximated by a continuum).

The dotted line in Figure 3 plots this counterfactual selection rule at various roll-out levels. For
example, if the principal decided to allocate the phones to everyone, then the expected aggregate
treatment of the program would be 6.4 percentage points, which corresponds to the average treat-
ment effect in column (3) in Table 6. If instead she decided to treat only half of the AEAs, then we
would expect an aggregate treatment effect of only 3.2 percentage points. Thus, it is easy to see
that with a random selection rule, we get a set of counterfactuals that traces a straight line from zero
to the average treatment effect. In Table 7, we present our estimated treatment effects at different
roll-out levels for the various allocation rules we consider. The number displayed in bold represents
the largest treatment effect under a given allocation rule.

Supervisor We contrast the aggregate benefits from the random allocation rule with the benefits
from the supervisor’s selection rule. The supervisor’s selection rule is given by Pr{DS

i = 1|X i} =
Φ( 1

σu
(Γ′X i−cp)) and the expected aggregate treatment effect is ∆E{s∗i |X i,DS

i ,Ti}= β
′X i+

σηu
σu

λ (DS
i ,Xi).

The solid line in Figure 3 depicts this counterfactual. Note that, by construction, the curve must
cross three points: the origin (no impact with no roll-out), 0.064 at 100% roll-out, and 0.070 at
53.8% roll-out which corresponds to the share of AEAs that received the phones under the actual
research design.

At each level of roll-out, the difference in impact between the supervisor counterfactual and the
random allocation rule measures the benefits of decentralization under the assumption that the
principal possesses no information about the AEAs. The figure shows that the difference in benefits
between random allocation and supervisor selection is maximized at a roll-out scale of 53% where
the additional treatment effect is over 3.5 percentage points. The optimal scale of roll-out under
decentralization is not 53%, however, but at 77% where the total treatment effect is 7.7 percentage
points. The total treatment effect starts to decline at a roll-out scale of 77% as we begin to assign
the treatment to individuals for whom the treatment effect is negative. The existence of individuals
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for whom the treatment effect is negative is consistent not only with our model (as ρ is allowed to
be negative), but with the findings in de Rochambeau (2017), who showed that the introduction of
a new monitoring device for truck drivers in Liberia lowered the productivity of the intrinsically
motivated.

What underlies the informational advantage of the supervisor? One way to tackle this question is to
ask how much of the supervisor’s advantage is predicated on the use of information on observables
X i versus information on unobservables ηi. The dot-dash line in Figure 3 traces out the counterfac-
tual treatment effect under the assumption that the supervisor does not use his signal of η . In other
words, the dot-dash line tells us what the treatment effects would be under a supervisor who cannot
use information on unobservables. In this case, the selection rule and expected treatments are only
computed based on the observable (to the econometrician) traits, setting λ = 0. The dot-dash curve
is much closer to the one under random assignment. This suggests that, in our setting, most of the
supervisor’s informational advantage is driven by access to information that is likely hard to collect
for a centralized authority lacking personal contact with the AEAs.

Giving Centralization A Chance: Counterfactual Treatment Effects With A Partially In-
formed Principal

Minimally informed principal: Assignment based on distance traveled Thus far, we have
assumed that the principal does not have any prior information about how AEAs will respond to the
program which, though extreme, may not be a wholly unreasonable approximation to the situation
facing the leadership of government programs when state capacity is low. This does not suggest
however that adopting a sensible heuristic might not outperform a random assignment mechanism,
which would of course affect the centralization versus decentralization calculus. One such heuristic
might be to simply allocate the phones to the AEAs who have to travel the farthest in order to visit
their farmers. This requires some information on the work environment of AEAs, and it constitutes
the case we associate with a minimally informed principal. This counterfactual is displayed in
Figure 4 with a dashed light gray line. We find that this method generally outperforms random
assignment (a 2.0 p.p. advantage at 50 percent coverage), but it cannot beat the supervisor at any
roll-out level.

Significantly informed principal: Assignment based on predicted baseline performance Next
we consider a partially-informed principal with the capacity to gather information on AEA char-
acteristics map them onto baseline productivity. To this end, we run a simple prediction model
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in which, among the AEAs in the control ALATs, we regress the share of farmers visited on our
set of basic and cognitive controls (see Appendix Table A14 for the estimation results). Using
the estimated coefficients, we can then compute an AEA’s expected productivity based on his or
her observable traits. Given this information, a sensible centralized policy would be to assign cell
phones starting with the AEAs who had the lowest predicted productivity, and as roll-out increases,
expand coverage to AEAs with higher productivity. As we see in Figure 4, under this approach
centralization would dominate decentralization at virtually all levels of roll-out. It is worth noting
that the data requirements to estimate our performance-prediction model are not trivial and often
beyond the capacity of government programs in several developing countries.

A sophisticated principal: Experimentation and assignment based on response to treatment
The approach in the previous section does not exhaust the possibilities open to a central authority
with the capacity to gather and analyze data. The key shortcoming of that approach is that baseline
performance may not be a strong predictor of responsiveness to treatment. While baseline perfor-
mance reflects individual heterogeneity in the cost of effort, response to treatment depends on other
cost drivers such as the disutility from receiving a reprimand.

To overcome this mismatch, a sophisticated principal can conduct a pilot experiment at a low roll-
out level and establish a map between AEA observable characteristics and response to treatment.
Using that, the principal can construct an assignment rule DCF

i (Xi) allocating phones to AEAs
predicted to have the highest response to treatment and working downwards to treat progressively
less responsive AEAs. Note that we are privileging principals in the “sophisticated” case because
they would need to have digit span and Big-5 measures for all of their workers, which may be as
much of a data constraint as running the pilot RCT.

As shown in Figure 4, this approach outperforms all others by a wide margin. The largest gap
relative to the decentralized supervisor-choice approach is above 1.7 percentage points and occurs
at a roll-out level of 38.4%. A sophisticated principal would be more interested in setting roll-out
at its optimal scale: the maximum total treatment effect for an ‘experimenting principal’ is 9.0
percentage points and is achieved at a roll-out of 70%.

Note that relative to “blind centralization,” which treats everyone and attains a total treatment effect
of 6 percentage points, this arrangement saves on almost a third of the phones and attains almost
1.5 times the total treatment impact. Relative to the decentralized supervisor choice, the sophisti-
cated centralized approach distributes roughly 10% fewer phones and attains roughly 1.3 additional
percentage points in total treatment effect.
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8 Conclusions

One of the primary benefits of decentralization is the possibility of exploiting information that is
dispersed throughout the organization. Nevertheless, many organizations choose not to decentral-
ize. Individuals in organizations pursue their own objectives, and even if there were an information
gain net of biased preferences, the value of decentralized information often depends on the scale of
activities, and on how costly it would be for the principal to acquire information directly. Despite
the fact that the informational advantage of agents and middle managers is a maintained assump-
tion in much of principal-agent theory, evidence of the presence and extent of that advantage has
been scarce. We also have little evidence on the effects of decentralization in a context in which
the scale of implementation affects average treatment effects.

In this paper, we establish that middle managers in the government hierarchy do have information
which can improve the targeting of an intervention. The context of our study is an initiative by
the federal government in Paraguay to introduce a new monitoring device that enables supervisors
in rural areas to track their agricultural extension agents. We show that supervisors have superior
information relative to central authorities about which agents should be placed under the new mon-
itoring. In addition, we show how the aggregate value of that information varies depending on the
share of agents that can be covered with the new technology. We develop an approach to trace
out the total treatment effect of the intervention at all levels of roll-out, and compare decentralized
assignment against centralized criteria predicated on different data requirements that the central
authorities could meet.

Our experimental design randomly assigned monitoring devices across AEAs and independently
elicited the preferences of their supervisors as to which AEAs should be prioritized for monitoring.
Crucially, in the main sample, treatment assignment was independent of supervisor recommenda-
tions. The AEAs selected by supervisors are far more responsive to treatment, establishing the fact
that supervisors have valuable knowledge. The informational advantage of supervisors is tied to
information other than observables that analysts might reasonably collect.

We argue theoretically that the value of the information advantage varies with the scale of antici-
pated roll-out for the new technology. We then write an empirical version of our theory with two
objectives. One objective is to decompose the information advantage of supervisors into the piece
stemming from AEA characteristics observable to an analyst, and the piece stemming from charac-
teristics only observable to supervisors. The other goal is to estimate the full schedule of marginal
treatment effects as roll-out scale is expanded from 0 to 100 percent. We do this for the selection
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rule that supervisors are seen to have used as well as several other counterfactual assignment rules.

Our counterfactual assignment rules approximate what principals with varying levels of informa-
tion might achieve when targeting AEAs for treatment in a centralized fashion. In our setting,
impacts resulting from treatment decided upon by a minimally informed principal are not as high
as those attained under decentralization. However, a reasonably well-informed principal can ap-
proach the level of impact of decentralization. And in the best case scenario for centralization, a
principal who can conduct a pilot RCT to obtain predictors of individual response to treatment can
outperform supervisor choices. Such a principal would substantially reduce the roll-out scale and
still attain larger aggregate gains in AEA performance.

Overall our findings suggest that, as information and communication technologies continue to im-
prove the capabilities of organizations, the benefits from harnessing decentralized information will
decrease. Although studies have shown that innovation in information technologies can lead to
more decentralization (Bresnahan et al., 2002; Bloom et al., 2014), our findings suggest the op-
posite may occur, particularly if these technologies primarily serve to reduce the information gap
between principals and agents (or middle managers such as supervisors).

Of course, the value of supervisor information is specific to the task and context, which may raise
concerns of external validity. But while our findings may not be generalizable, our method is, as it
can be easily exported to other settings. Our approach is designed for settings in which spillovers
across treatment units are minimal. Thus, it would be interesting to extend our framework to
incorporate the potential effects of spillovers in the calculus to decentralize. We view this as a
potential avenue for future research.
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The y-axis shows the total treatment effect at different scales of roll-out m on the x-axis. Treating
any agent costs c or c′.

Figure 1: Optimal Roll-Out and the Value of Information
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ALATs
Control Group 100% Coverage 50% Coverage

Selected AEA A B E
Non-selected AEA C D F

The columns correspond to the large ALATs, and the rows correspond to AEAs. The control group consists of cells A
and C, in which none of the AEAs received a cell phone. For the ALATs in the column labeled 100% Coverage (cells
B and D), every AEA received a cell phone independently of whether or not they had been selected by their
supervisor. For the ALATs in the column labeled 50% Coverage (cells E and F), the selected AEAs (cell E) received
cell phones in the first wave while the non-selected (cell F) received them in the second wave.

Figure 2: Experimental Design in Large ALATs
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The y-axis shows the total treatment effect at different scales of roll-out under different assignment rules. Under
random assignment, treatment is assigned randomly. Under supervisor preference without unobservables, supervisors
make the assignment decision based purely on observable AEA characteristics. Under supervisor preference,
supervisors make the assignment decision based on all information they have.

Figure 3: Supervisor versus Random Assignment
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The y-axis shows the total treatment effect at different scales of roll-out under different assignment rules. Under
random assignment, treatment is assigned randomly. Under supervisor preference, supervisors make the assignment
decision based on all the information they have. Under prioritize by distance, treatment is assigned first to those
AEAs whose beneficiaries live further from the local ALAT office. Under prediction (basic and cognitive controls),
the observable characteristics of the control group are used to predict baseline performance and AEAs who are
predicted to be the worst performers in the baseline are prioritized. Under sophisticated prediction, the principal runs
a pilot experiment at low roll-out to establish a map between treatment response and observables and then prioritizes
AEAs predicted to have the highest treatment response.

Figure 4: Supervisor versus Alternative Allocation Rules

44



Table 1: Covariate Balance Across AEAs and ALATs, AEA Characteristics

Pooled Small ALATs Large ALATs

All
(Wgt.)

Ctrl
(Unwgt.)

Diff
(T-C)

Ctrl
(Wgt.)

Ctrl
(Unwgt.)

Diff
(T-C)

Number of AEAs 4.647 3.091 -0.727
[2.862] [2.245] (0.722)

AEA Averages
Male 0.706 0.618 0.097 0.750 0.724 -0.065

[0.358] [0.485] (0.154) [0.275] [0.355] (0.136)
Age 38.412 36.412 1.398 37.838 37.934 3.271

[8.720] [10.642] (3.756) [7.295] [7.650] (2.992)
Married 0.412 0.265 0.092 0.441 0.396 0.081

[0.337] [0.437] (0.150) [0.286] [0.337] (0.119)
Average Distance 12.280 10.701 3.376 12.678 13.802 -2.151

[7.302] [8.673] (3.361) [6.328] [8.377] (2.702)
Incumbent Party 0.574 0.588 0.055 0.559 0.614 -0.114

[0.390] [0.476] (0.156) [0.359] [0.378] (0.143)
Digit Span 5.346 5.382 0.189 5.191 5.312 -0.016

[0.790] [0.928] (0.330) [0.652] [0.958] (0.333)
Big 5 — Stability 0.017 -0.053 0.375 -0.057 -0.086 0.233

[0.758] [1.097] (0.323) [0.682] [0.828] (0.282)
Big 5 — Plasticity -0.062 -0.390 0.620* -0.140 -0.241 0.352

[0.758] [0.923] (0.308) [0.679] [0.950] (0.313)

Num ALATs (Ctrl) 39 17 22
Num ALATs (Treat) 32 21 11
Num AEAs (Ctrl) 88 20 68
Num AEAs (Treat) 48 22 26

“Treatment” for small ALATs refers to ALATs that received phones in either round 1 or 2. “Treatment”
for large ALATs refers to the 100% coverage ALATs where all AEAs received a phone in round 1.
Columns 1 and 4 report AEA-average AEA characteristics (weighting ALAT averages by the number
of AEAs in the ALAT). Columns 2 and 5 report ALAT-average AEA characteristics. Unweighted and
weighted standard deviations are in square brackets. Columns 3 and 6 report mean differences in AEA-
average characteristics between treatment and control. Standard errors from a two-sample t-test are in
parentheses. Appendix Table A1 reports balance tests using randomization inference (RI), and also adds
in the 50% coverage large ALATs.
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Table 2: Average Effects of Receiving a Cell Phone on Productivity

Farmer was visited in the last week
Supervisor

knows
Log length of

meeting (mins)

(1) (2) (3) (4) (5) (6) (7)

Treated 0.0656∗∗ 0.0633∗∗ 0.0626∗∗ 0.0569∗ -0.00753 0.185∗ -0.00959
(0.0307) (0.0262) (0.0264) (0.0305) (0.0351) (0.103) (0.0589)

Selected 0.0111 0.0150 0.0173 0.0109 -0.0799 -0.0335
(0.0327) (0.0271) (0.0289) (0.0291) (0.138) (0.0365)

Male 0.0391 0.0387 0.0317 -0.0293 0.301∗∗ -0.0467
(0.0272) (0.0295) (0.0329) (0.0459) (0.147) (0.0420)

Age 0.00258∗∗ 0.00280∗∗ 0.00276∗ -0.000143 -0.00806 0.00437∗∗

(0.00125) (0.00138) (0.00152) (0.00172) (0.00824) (0.00168)

Married -0.00414 -0.00294 0.0198 -0.0409 0.0136 -0.0532
(0.0299) (0.0296) (0.0312) (0.0340) (0.141) (0.0424)

Distance to Farmers (log) 0.0386 0.0365 0.0316 -0.0693∗∗ -0.139 -0.0187
(0.0268) (0.0275) (0.0339) (0.0280) (0.119) (0.0469)

Incumbent Party -0.0216 -0.0206 -0.0397 0.0582 0.254∗ 0.00210
(0.0244) (0.0249) (0.0248) (0.0574) (0.151) (0.0524)

Digit Span 0.00987 0.0125 0.0303 0.0509 0.0125
(0.0117) (0.0129) (0.0185) (0.0516) (0.0181)

Big 5 — Stability 0.0118 0.0106 0.0351∗ 0.141∗∗∗ 0.0175
(0.0149) (0.0160) (0.0199) (0.0497) (0.0245)

Big 5 — Plasticity -0.0107 -0.0111 -0.0235 0.111∗ -0.0177
(0.0105) (0.0102) (0.0169) (0.0637) (0.0173)

Servicer AEA AEA AEA AEA Supervisor AEA AEA
Mean of Control Dep. Var 0.271 0.271 0.271 0.274 0.308 4.593 4.414
R2 0.005 0.012 0.013 0.012 0.032 0.199 0.012
Number of Phone Surveys 1842 1842 1842 1584 1173 1819
Number of AEAs 136 136 136 94 107 126 136
Number of ALATs 71 71 71 33 107 65 71
Includes Small ALATs X X X X X X

Outcomes in columns other than (6) are from farmer phone survey; these regressions include indicators for small ALATs
and survey round. Outcome in column (6) is from AEA survey; outcome is an index from (1) “Strongly Disagree” to (5)
“Strongly Agree;” this regression includes indicator for small ALATs. Big 5 stability and plasticity have mean zero and
unit variance. Cluster robust standard errors in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Appendix Table A4
reports results using wild cluster bootstrap and randomization inference (RI).
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Table 3: Do Supervisors Have an Informational Advantage?

Farmer was visited in the last week

(1) (2) (3) (4)

Treated 0.0607∗ -0.0233 -0.0397 -0.0361
(0.0341) (0.0433) (0.0347) (0.0377)

Treated × Selected 0.142∗∗ 0.161∗∗∗ 0.154∗∗∗

(0.0582) (0.0509) (0.0503)

Selected 0.0113 -0.0332 -0.0445 -0.0409
(0.0328) (0.0363) (0.0274) (0.0282)

R2 0.00 0.01 0.02 0.02
Number of Phone Surveys 1584 1584 1584 1584
Number of AEAs 94 94 94 94
Number of ALATs 33 33 33 33
Includes Basic Controls X X
Includes Cognitive Controls X

Sample is 100% coverage and control large ALATs. Regressions include survey round
indicator. Basic controls are sex, age, marital status, average distance to farmers, and
incumbent party registration. Cognitive controls are digit span, Big 5 stability, and Big
5 plasticity. Cluster robust standard errors in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p< 0.01. Results using the wild bootstrap in Appendix Table A7, using randomization
inference (RI) in Appendix Table A8, and adding in the 50% coverage large ALATs
in Appendix Table A9.
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Table 4: Testing for Spillover and Hawthorne Effects

Farmer was visited in the last week

(1) (2) (3)

Treated -0.0241 0.0607∗ 0.0580∗

(0.0365) (0.0339) (0.0293)

Treated × Selected 0.161∗∗

(0.0762)

Treated × Small 0.0331 0.0302
(0.0793) (0.0738)

Spillover (Non-selected) -0.0137
(0.0490)

Spillover (Selected) -0.0534
(0.0605)

Selected -0.0465 0.0110 0.0171
(0.0377) (0.0326) (0.0289)

Small -0.0205 -0.0112
(0.0467) (0.0455)

R2 0.01 0.01 0.01
Number of Phone Surveys 2228 1842 1842
Number of AEAs 134 136 136
Number of ALATs 44 71 71
Includes Basic Controls X X
Includes Cognitive Controls X X

Sample in column (1) is all large ALATs. Sample in columns
(2) and (3) is 100% coverage and control large ALATs and all
small ALATs. Outcome is from farmer phone survey. Spillover
(Non-selected) indicates AEAs who were non-selected and not
treated but whose selected peers were treated. This is cell F
(non-selected, 50% coverage) in round 1. Spillover (Selected)
indicates AEAs who were selected and treated and whose non-
selected peers were treated. This is cell B (selected, 100% cover-
age) in both rounds and cell E (selected, 50% coverage) in round
2. Basic controls are sex, age, marital status, average distance
to farmers, and incumbent party registration. Cognitive controls
are digit span, Big 5 stability, and Big 5 plasticity. Regressions
include survey round indicator. Cluster robust standard errors re-
ported in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: First Stage Probit Regressions

AEA was selected

(1) (2)

Male -0.519 -0.511
(0.349) (0.395)

Age -0.0361∗∗ -0.0373∗∗

(0.0181) (0.0170)

Married 0.863∗ 0.791∗

(0.459) (0.441)

Average Distance 0.331∗ 0.318
(0.173) (0.197)

Incumbent Party -0.808∗∗ -0.840∗∗

(0.359) (0.367)

Digit Span -0.111
(0.142)

Big 5 — Stability -0.234∗

(0.124)

Big 5 — Plasticity 0.122
(0.154)

Pseudo R2 0.159 0.185
Number of AEAs 94 94
Number of ALATs 33 33

Sample is 100% coverage and control large
ALATs. Coefficients from probit of indi-
cator for the AEA being selected on AEA
characteristics. Cluster robust standard er-
rors in parentheses, ∗ p< 0.10, ∗∗ p< 0.05,
∗∗∗ p < 0.01. Results using the wild boot-
strap in Appendix Table A10, and adding
in the 50% coverage large ALATs in Ap-
pendix Table A11.
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Table 6: Treatment Effect Heterogeneity on Observable and Unobservable Characteristics

Farmer was visited in the last week

(1) (2) (3)

Main Effects:

Inverse Mills Ratio -0.0207 -0.0188 -0.0158
(0.0225) (0.0158) (0.0158)

Average Treatment Effect 0.0616∗ 0.0585∗∗ 0.0639∗∗

(0.0346) (0.0255) (0.0280)

Interactions with Treatment:

Inverse Mills 0.0880∗∗ 0.0640∗∗∗ 0.0636∗∗

(0.0362) (0.0217) (0.0250)

Male -0.0208 -0.00389
(0.0508) (0.0664)

Age -0.00334 -0.00524
(0.00311) (0.00350)

Married -0.0839 -0.0941∗

(0.0605) (0.0521)

Average Distance to Farmers (log) 0.101 0.104
(0.0675) (0.0774)

Incumbent Party -0.0812∗∗ -0.0695
(0.0384) (0.0477)

Digit Span -0.0638∗∗

(0.0274)

Big5 — Stability -0.0379
(0.0488)

Big5 — Plasticity 0.0349
(0.0253)

R2 0.009 0.023 0.028
p-value for Observable Interactions 0.031 0.001
Number of Phone Surveys 1584 1584 1584
Number of AEAs 94 94 94
Number of ALATs 33 33 33
Basic Controls X X
Cognitive Controls X

Sample is 100% coverage and control large ALATs. Dependent variable
for all regressions is whether the AEA visited the farmer in the week prior
to the phone survey. The inverse Mills ratio is the generalized residual—
the expected value of the error term—from the probit selection regression
in the same column of Table 5. Regressions include survey round indi-
cator. Main effects of basic and cognitive controls omitted for space.
The p-value in the bottom row for observable interactions is from the
joint Wald test for coefficients on treatment interacted with all included
controls. Cluster robust standard errors in parentheses, ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01. Results using the wild bootstrap in Appendix
Table A12, and adding in the 50% coverage large ALATs in Appendix
Table A13.
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Table 7: Treatment Effects by Roll-Out Levels and Allocation Rules

Rollout Random Supervisor Distance Prediction Sophisticated

0.25 0.016 0.042 0.032 0.049 0.059
0.50 0.032 0.067 0.051 0.074 0.082
0.53 0.034 0.069 0.049 0.075 0.084
0.70 0.045 0.076 0.054 0.076 0.090
0.75 0.048 0.077 0.057 0.079 0.088
0.76 0.048 0.077 0.057 0.079 0.088
0.77 0.049 0.077 0.057 0.077 0.088
0.97 0.062 0.069 0.069 0.069 0.071
1.00 0.064 0.064 0.064 0.064 0.064

Treatment effects for the various allocation rules as estimated at the dif-
ferent roll-out scales labeled in the first column. Bold numbers represent
the largest treatment effect under a given allocation rule. The allocation
rules are random - treatment is assigned randomly; supervisor - supervi-
sors make the assignment decision based on all the information they have;
distance - treatment is assigned first to those AEAs whose beneficiaries
live further from the local ALAT office; prediction - the observable char-
acteristics of the control group are used to predict baseline performance
and AEAs who are predicted to be the worst performers in the baseline
are prioritized; and sophisticated - the principal runs a pilot experiment at
low roll-out to establish a map between treatment response and observ-
ables and then prioritizes AEAs predicted to have the highest treatment
response.
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Table A1: Extended Covariate Balance, AEA Characteristics

Small ALATs Large ALATs

Diff
(T-C)

Diff
(T-C)

Diff
(T100-C)

Diff
(T50-C)

Number of AEAs -0.091 -0.727 0.545
(0.708) (0.861) (0.861)
〈0.898〉 〈0.403〉 〈0.530〉
J0.946K J0.449K J0.549K

AEA Averages
Male 0.097 -0.179 -0.065 -0.294

(0.154) (0.110) (0.133) (0.133)
〈0.535〉 〈0.112〉 〈0.630〉 〈0.034〉**
J0.579K J0.107K J0.640K J0.029K**

Age 1.398 3.148 3.271 3.026
(3.756) (2.643) (3.276) (3.276)
〈0.712〉 〈0.240〉 〈0.324〉 〈0.361〉
J0.738K J0.266K J0.314K J0.347K

Married 0.092 0.103 0.081 0.125
(0.150) (0.099) (0.123) (0.123)
〈0.542〉 〈0.306〉 〈0.514〉 〈0.316〉
J0.603K J0.304K J0.536K J0.283K

Average Distance 3.376 -0.619 -2.151 0.913
(3.361) (2.342) (2.873) (2.873)
〈0.322〉 〈0.793〉 〈0.458〉 〈0.752〉
J0.295K J0.785K J0.473K J0.732K

Incumbent Party 0.055 0.028 -0.114 0.169
(0.156) (0.118) (0.141) (0.141)
〈0.728〉 〈0.816〉 〈0.422〉 〈0.236〉
J0.725K J0.828K J0.439K J0.228K

Digit Span 0.189 -0.162 -0.016 -0.307
(0.330) (0.245) (0.301) (0.301)
〈0.571〉 〈0.512〉 〈0.957〉 〈0.313〉
J0.599K J0.512K J0.958K J0.301K

Big 5 — Stability 0.375 0.180 0.233 0.127
(0.323) (0.215) (0.266) (0.266)
〈0.253〉 〈0.406〉 〈0.386〉 〈0.634〉
J0.264K J0.405K J0.384K J0.637K

Big 5 — Plasticity 0.620 0.426 0.352 0.501
(0.308) (0.244) (0.302) (0.302)
〈0.052〉* 〈0.088〉* 〈0.250〉 〈0.105〉
J0.049K** J0.073K* J0.264K J0.115K

Num ALATs 38 44

Column 1 reports differences in small ALAT-average characteristics be-
tween treatment and control ALATs as in column 3 of Table 1. Column
2 reports differences in large ALAT-average characteristics between the
pooled 100% and 50% coverage ALATs and the control. Columns 3 and
4 compare the 100% coverage ALATs and 50% coverage ALATs to the
control respectively. Column 3 is as in column 6 of Table 1. Conventional
p-values in angled brackets, and p-values from randomization inference
(RI) in double square brackets. 52



Table A2: Covariate Balance Across AEAs and ALATs, ALAT Characteristics

Pooled Small ALATs Large ALATs

All
(Wgt.)

Ctrl
(Unwgt.)

Diff
(T-C)

Ctrl
(Wgt.)

Ctrl
(Unwgt.)

Diff
(T-C)

Number of Rural Hhds 3413.191 2297.824 320.129 3688.779 3218.182 878.636
[2316.480] [1977.709] (643.835) [2026.628] [1695.731] (833.460)

Share of Rural Hhds 0.712 0.809 -0.094 0.705 0.708 -0.039
[0.188] [0.104] (0.057) [0.200] [0.217] (0.077)

Average Hhd Size 4.753 4.705 0.008 4.758 4.699 0.143
[0.358] [0.335] (0.137) [0.315] [0.348] (0.132)

Land Per Farm (Hectares) 42.121 41.346 7.630 38.328 43.403 0.676
[48.311] [43.495] (18.661) [38.732] [42.478] (17.560)

Cropland Per Farm (Hectares) 7.280 12.578 -3.228 5.069 6.880 2.305
[11.746] [21.459] (5.610) [5.719] [8.155] (4.034)

Share of Farmers Working With DEAg 0.087 0.082 -0.020 0.087 0.096 0.014
[0.089] [0.109] (0.032) [0.064] [0.072] (0.036)

Corn Yield (metric tons) Per Hectare 2.008 2.142 0.160 1.804 1.967 0.264
[1.116] [1.490] (0.497) [0.682] [0.898] (0.393)

Share of Farms With Running Water 0.476 0.466 0.035 0.478 0.476 -0.051
[0.209] [0.247] (0.084) [0.200] [0.210] (0.075)

Colorado (Winner) Vote Share 0.452 0.455 -0.007 0.452 0.472 -0.023
[0.083] [0.093] (0.029) [0.073] [0.083] (0.034)

Num ALATs (Ctrl) 39 17 22
Num ALATs (Treat) 32 21 11
Num AEAs (Ctrl) 88 20 68
Num AEAs (Treat) 48 22 26

“Treatment” for small ALATs refers to ALATs that received phones in either round 1 or 2. “Treatment” for large ALATs
refers to the 100% coverage ALATs where all AEAs received a phone in round 1. Columns 1 and 4 report AEA-average
ALAT characteristics (weighting ALAT averages by the number of AEAs in the ALAT). Columns 2 and 5 report ALAT-
average ALAT characteristics. Unweighted and weighted standard deviations are in square brackets. Columns 3 and 6 report
mean differences in AEA-average characteristics between treatment and control. Standard errors from a two-sample t-test
are in parentheses. Appendix Table A3 reports balance tests using randomization inference (RI), and also adds in the 50%
coverage large ALATs. The first three variables come from the 2002 census, the next five come from the 2008 agricultural
census, and the final variable comes from the 2013 presidential elections.
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Table A3: Extended Covariate Balance, ALAT Characteristics

Small ALATs Large ALATs

Diff
(T-C)

Diff
(T-C)

Diff
(T100-C)

Diff
(T50-C)

Number of Rural Hhds 320.129 620.955 878.636 363.273
(643.835) (679.528) (839.447) (839.447)
〈0.622〉 〈0.366〉 〈0.301〉 〈0.667〉
J0.617K J0.356K J0.304K J0.671K

Share of Rural Hhds -0.094 -0.047 -0.039 -0.054
(0.057) (0.060) (0.074) (0.074)
〈0.106〉 〈0.443〉 〈0.601〉 〈0.474〉
J0.118K J0.444K J0.604K J0.447K

Average Hhd Size 0.008 0.071 0.143 -0.001
(0.137) (0.112) (0.138) (0.138)
〈0.953〉 〈0.530〉 〈0.305〉 〈0.995〉
J0.948K J0.529K J0.339K J0.995K

Land Per Farm (Hectares) 7.630 -3.916 0.676 -8.508
(18.661) (12.726) (15.727) (15.727)
〈0.685〉 〈0.760〉 〈0.966〉 〈0.591〉
J0.717K J0.783K J0.968K J0.623K

Cropland Per Farm (Hectares) -3.228 0.989 2.305 -0.326
(5.610) (2.965) (3.658) (3.658)
〈0.569〉 〈0.740〉 〈0.532〉 〈0.929〉
J0.573K J0.751K J0.573K J0.942K

Share of Farmers Working With DEAg -0.020 0.017 0.014 0.020
(0.032) (0.033) (0.041) (0.041)
〈0.550〉 〈0.605〉 〈0.731〉 〈0.623〉
J0.548K J0.620K J0.721K J0.624K

Corn Yield (metric tons) Per Hectare 0.160 0.368 0.264 0.472
(0.497) (0.311) (0.385) (0.385)
〈0.749〉 〈0.244〉 〈0.496〉 〈0.227〉
J0.754K J0.232K J0.498K J0.243K

Share of Farms With Running Water 0.035 -0.031 -0.051 -0.011
(0.084) (0.063) (0.077) (0.077)
〈0.678〉 〈0.625〉 〈0.518〉 〈0.887〉
J0.676K J0.605K J0.485K J0.870K

Colorado (Winner) Vote Share -0.007 -0.020 -0.023 -0.018
(0.029) (0.025) (0.031) (0.031)
〈0.804〉 〈0.422〉 〈0.467〉 〈0.568〉
J0.813K J0.394K J0.478K J0.578K

Num ALATs 38 44

Column 1 reports differences in small ALAT-average characteristics between treatment and con-
trol ALATs as in column 3 of Table A2. Column 2 reports differences in large ALAT-average
characteristics between the pooled 100% and 50% coverage ALATs and the control. Columns
3 and 4 compare the 100% coverage ALATs and 50% coverage ALATs to the control respec-
tively. Column 3 is as in column 6 of Table A2. Conventional p-values in angled brackets, and
p-values from randomization inference (RI) in double square brackets. The first three variables
come from the 2002 census, the next five come from the 2008 agricultural census, and the final
variable comes from the 2013 presidential elections.
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Table A4: Average Effects of Receiving a Cell Phone on Productivity, Wild Bootstrap and Ran-
domization Inference (RI)

Farmer was visited in the last week
Supervisor

knows
Log length of

meeting (mins)

(1) (2) (3) (4) (5) (6) (7)

Treated 0.066 0.063 0.063 0.057 -0.008 0.185 -0.010
〈0.036〉∗∗ 〈0.018〉∗∗ 〈0.020〉∗∗ 〈0.071〉∗ 〈0.831〉 〈0.076〉∗ 〈0.871〉
{0.028}∗∗ {0.020}∗∗ {0.023}∗∗ {0.089}∗ {0.843} {0.066}∗ {0.883}
J0.015K∗∗ J0.012K∗∗ J0.015K∗∗ J0.048K∗∗ J0.866K J0.174K J0.880K

Servicer AEA AEA AEA AEA Supervisor AEA AEA
Mean of Control Dep. Var 0.271 0.271 0.271 0.274 0.308 4.593 4.414
R2 0.005 0.012 0.013 0.012 0.032 0.199 0.012
Number of Phone Surveys 1842 1842 1842 1584 1173 1819
Number of AEAs 136 136 136 94 107 126 136
Number of ALATs 71 71 71 33 107 65 71
Includes Small ALATs X X X X X X
Includes Basic Controls X X X X X X
Includes Cognitive Controls X X X X X

Outcomes in columns other than (6) are from farmer phone survey; these regressions include indicators for small ALATs
and survey round. Outcome in column (6) is from AEA survey; outcome is an index from (1) “Strongly Disagree” to (5)
“Strongly Agree;” this regression includes indicator for small ALATs. Column (2) includes basic controls, and columns
(3)-(7) include basic and cognitive controls. Basic controls are sex, age, marital status, average distance to farmers, and
incumbent party registration. Cognitive controls are digit span, Big 5 stability, and Big 5 plasticity. p-values from cluster
robust standard errors in angled brackets (as in Table 2), from a wild cluster bootstrap with 100,000 bootstrap samples in
curly braces, and from randomization inference (RI) with 1,000 permutations in double square brackets. Significance stars
correspond to the adjacent p-values, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A5: Average Effects of Receiving a Cell Phone on Other Measures of Performance

Satisfied Received Training Useful PCA

(1) (2) (3) (4)

Treated 0.0747 0.0511∗ 0.0335 0.131∗

(0.0469) (0.0299) (0.0216) (0.0708)

Selected -0.0727 -0.0149 -0.0172 -0.0728
(0.0512) (0.0233) (0.0210) (0.0649)

Male 0.0601 -0.00163 0.0111 0.0450
(0.0569) (0.0297) (0.0247) (0.0805)

Age 0.00294 0.00247 0.00291∗∗ 0.00739∗

(0.00211) (0.00160) (0.00132) (0.00378)

Married -0.0627∗ -0.0224 -0.0244 -0.0854
(0.0365) (0.0295) (0.0212) (0.0659)

Distance to Farmers (log) 0.00454 -0.0270 -0.0244 -0.0522
(0.0533) (0.0275) (0.0227) (0.0734)

Incumbent Party -0.153∗∗∗ -0.0380 -0.0316 -0.159∗∗

(0.0511) (0.0240) (0.0246) (0.0670)

Digit Span 0.0267∗ 0.00161 0.00621 0.0236
(0.0152) (0.0106) (0.0102) (0.0271)

Big 5 — Stability -0.00742 0.000479 0.0101 0.00735
(0.0187) (0.0118) (0.00763) (0.0276)

Big 5 — Plasticity -0.0344 -0.0135 -0.0121 -0.0482
(0.0237) (0.0118) (0.0115) (0.0341)

Servicer AEA AEA AEA AEA
Mean of Control Dep. Var 2.542 0.765 0.817 -0.042
R2 0.025 0.017 0.025 0.017
Number of Phone Surveys 1838 1841 1841 1838
Number of AEAs 136 136 136 136
Number of ALATs 71 71 71 71
Includes Small ALATs X X X X

Sample is 100% coverage and control large ALATs and all small ALATs. Outcome
in column (4) is the first principle component from a polychoric principal component
analysis (PCA) of the outcome variables in the first three columns. Regressions in-
clude indicators for small ALATs and survey round. Cluster robust standard errors in
parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6: Correlation Matrix of Performance Measures

Visited Satisfied Recieved Training Useful PCA

Visited 1
Satisfied 0.174∗∗∗ 1
Received Training 0.147∗∗∗ 0.397∗∗∗ 1
Useful 0.145∗∗∗ 0.368∗∗∗ 0.722∗∗∗ 1
PCA 0.189∗∗∗ 0.704∗∗∗ 0.878∗∗∗ 0.860∗∗∗ 1

Correlation matrix for the 1248 control group observations from Table A5. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A7: Do Supervisors Have an Informational Advantage? Wild Bootstrap Inference

Farmer was visited in the last week

(1) (2) (3) (4)

Treated 0.061 -0.023 -0.040 -0.036
〈0.085〉∗ 〈0.595〉 〈0.261〉 〈0.345〉
{0.073}∗ {0.611} {0.280} {0.390}

Treated × Selected 0.142 0.161 0.154
〈0.021〉∗∗ 〈0.003〉∗∗∗ 〈0.004〉∗∗∗
{0.036}∗∗ {0.015}∗∗ {0.027}∗∗

Selected 0.011 -0.033 -0.044 -0.041
〈0.734〉 〈0.366〉 〈0.114〉 〈0.156〉
{0.756} {0.481} {0.188} {0.273}

R2 0.00 0.01 0.02 0.02
Number of Phone Surveys 1584 1584 1584 1584
Number of AEAs 94 94 94 94
Number of ALATs 33 33 33 33
Includes Basic Controls X X
Includes Cognitive Controls X

Sample is 100% coverage and control large ALATs. Regressions include sur-
vey round indicator. Basic controls are sex, age, marital status, average distance
to farmers, and incumbent party registration. Cognitive controls are digit span,
Big 5 stability, and Big 5 plasticity. p-values from cluster robust standard er-
rors in angled brackets (as in Table 3), and from a wild cluster bootstrap with
100,000 bootstrap samples in curly braces. Significance stars correspond to the
adjacent p-values, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8: Do Supervisors Have an Informational Advantage? Randomization Inference (RI)

Farmer was visited in the last week

(1) (2) (3) (4)

Treated 0.061 -0.023 -0.040 -0.036
〈0.085〉∗ 〈0.595〉 〈0.261〉 〈0.345〉
J0.028K∗∗ J0.634K J0.321K J0.398K

Treated × Selected 0.142 0.161 0.154
〈0.021〉∗∗ 〈0.003〉∗∗∗ 〈0.004〉∗∗∗
J0.011K∗∗ J0.001K∗∗∗ J0.010K∗∗

R2 0.00 0.01 0.02 0.02
Number of Phone Surveys 1584 1584 1584 1584
Number of AEAs 94 94 94 94
Number of ALATs 33 33 33 33
Includes Basic Controls X X
Includes Cognitive Controls X

Sample is 100% coverage and control large ALATs. Regressions include survey
round indicator. Basic controls are sex, age, marital status, average distance to
farmers, and incumbent party registration. Cognitive controls are digit span,
Big 5 stability, and Big 5 plasticity. p-values from cluster robust standard errors
in angled brackets (as in Table 3), and from randomization inference (RI) with
1,000 permutations in double square brackets. Significance stars correspond to
the adjacent p-values, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A9: Do Supervisors Have an Informational Advantage? Including 50% Coverage ALATs

Farmer was visited in the last week

(1) (2) (3) (4)

Treated 0.0503∗∗ -0.00818 -0.0196 -0.0175
(0.0249) (0.0336) (0.0319) (0.0331)

Treated × Selected 0.101∗ 0.113∗∗ 0.114∗∗

(0.0517) (0.0495) (0.0494)

Selected 0.0122 -0.0304 -0.0429 -0.0422
(0.0253) (0.0305) (0.0307) (0.0319)

R2 0.00 0.01 0.01 0.01
Number of Phone Surveys 2228 2228 2228 2228
Number of AEAs 134 134 134 134
Number of ALATs 44 44 44 44
Includes Basic Controls X X
Includes Cognitive Controls X

Regressions analogous to Table 3 but sample includes all large ALATs
(100% coverage, 50% coverage, and control). Regressions include survey
round indicator. Basic controls are sex, age, marital status, average dis-
tance to farmers, and incumbent party registration. Cognitive controls are
digit span, Big 5 stability, and Big 5 plasticity. Cluster robust standard
errors in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A10: First Stage Probit Regressions, Wild Bootstrap Inference

AEA was selected

(1) (2)

Male -0.519 -0.511
〈0.137〉 〈0.196〉
{0.163} {0.258}

Age -0.036 -0.037
〈0.046〉∗∗ 〈0.028〉∗∗
{0.029}∗∗ {0.028}∗∗

Married 0.863 0.791
〈0.060〉∗ 〈0.073〉∗

{0.046}∗∗ {0.066}∗

Average Distance 0.331 0.318
〈0.056〉∗ 〈0.106〉
{0.118} {0.112}

Incumbent Party -0.808 -0.840
〈0.024〉∗∗ 〈0.022〉∗∗
{0.044}∗∗ {0.043}∗∗

Digit Span -0.111
〈0.434〉
{0.472}

Big 5 — Stability -0.234
〈0.059〉∗
{0.084}∗

Big 5 — Plasticity 0.122
〈0.429〉
{0.431}

Pseudo R2 0.159 0.185
Number of AEAs 94 94
Number of ALATs 33 33

Sample is 100% coverage and control large
ALATs. Coefficients from probit of indi-
cator for the AEA being selected on AEA
characteristics. p-values from cluster ro-
bust standard errors in angled brackets (as
in Table 5), and from a wild cluster boot-
strap with 100,000 bootstrap samples in
curly braces. Significance stars correspond
to the adjacent p-values, ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A11: First Stage Probit Regressions, Including 50% Coverage ALATs

AEA was selected

(1) (2)

Male 0.107 0.117
(0.275) (0.309)

Age -0.0101 -0.00513
(0.0148) (0.0157)

Married 0.851∗∗∗ 0.771∗∗

(0.306) (0.317)

Average Distance 0.133 0.233
(0.167) (0.185)

Incumbent Party -0.667∗∗ -0.744∗∗

(0.319) (0.317)

Digit Span 0.0726
(0.118)

Big 5 — Stability -0.270∗∗

(0.118)

Big 5 — Plasticity 0.111
(0.129)

Pseudo R2 0.105 0.135
Number of AEAs 134 134
Number of ALATs 44 44

Regressions analogous to Table 5 but
sample includes all large ALATs (100%
coverage, 50% coverage, and control).
Coefficients from probit of indicator for
the AEA being selected on AEA charac-
teristics. Cluster robust standard errors in
parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A12: Treatment Effect Heterogeneity on Observable and Unobservable Characteristics, Wild
Bootstrap Inference

Farmer was visited in the last week

(1) (2) (3)

Main Effects:
Inverse Mills Ratio -0.021 -0.019 -0.016

〈0.366〉 〈0.245〉 〈0.325〉

Average Treatment Effect 0.062 0.058 0.064
〈0.085〉∗ 〈0.029〉∗∗ 〈0.029〉∗∗
{0.093}∗ {0.067}∗ {0.065}∗

Interactions with Treatment:
Inverse Mills 0.088 0.064 0.064

〈0.021〉∗∗ 〈0.006〉∗∗∗ 〈0.016〉∗∗
{0.036}∗∗ {0.017}∗∗ {0.035}∗∗

Male -0.021 -0.004
〈0.686〉 〈0.954〉
{0.717} {0.962}

Age -0.003 -0.005
〈0.292〉 〈0.144〉
{0.329} {0.210}

Married -0.084 -0.094
〈0.175〉 〈0.081〉∗
{0.241} {0.134}

Average Distance to Farmers (log) 0.101 0.104
〈0.143〉 〈0.187〉
{0.251} {0.361}

Incumbent Party -0.081 -0.069
〈0.042〉∗∗ 〈0.155〉
{0.054}∗ {0.149}

Digit Span -0.064
〈0.026〉∗∗
{0.036}∗∗

Big5 — Stability -0.038
〈0.442〉
{0.562}

Big5 — Plasticity 0.035
〈0.177〉
{0.315}

R2 0.009 0.023 0.028
p-value for Observable Interactions (Conventional) 0.031 0.001
p-value for Observable Interactions (Wild) 0.207 0.146
Number of Phone Surveys 1584 1584 1584
Number of AEAs 94 94 94
Number of ALATs 33 33 33
Basic Controls X X
Cognitive Controls X

Sample is 100% coverage and control large ALATs. Dependent variable is whether the AEA visited the farmer in

the week prior to the phone survey. The inverse Mills ratio is the generalized residual—the expected value of the

error term—from the probit selection regression in the same column of Table A10. Regressions include survey

round indicator. Main effects of basic and cognitive controls omitted for space. The p-values for observable

interactions are from the joint Wald test for coefficients on treatment interacted with all included controls. p-

values from cluster robust standard errors in angled brackets (as in Table 6), and from a wild cluster bootstrap

with 100,000 bootstrap samples in curly braces. Significance stars correspond to the adjacent p-values, ∗ p <

0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A13: Treatment Effect Heterogeneity on Observable and Unobservable Characteristics, In-
cluding 50% Coverage ALATs

Farmer was visited in the last week

(1) (2) (3)

Main Effects:

Inverse Mills Ratio -0.0190 -0.0223 -0.0240∗

(0.0191) (0.0136) (0.0135)

Average Treatment Effect 0.0477∗ 0.0432∗ 0.0471∗∗

(0.0244) (0.0231) (0.0224)

Interactions with Treatment:

Inverse Mills 0.0633∗ 0.0738∗∗∗ 0.0808∗∗∗

(0.0324) (0.0232) (0.0224)

Male -0.118∗∗ -0.102∗∗

(0.0447) (0.0459)

Age 0.00100 0.000332
(0.00251) (0.00278)

Married -0.0762 -0.0747
(0.0480) (0.0492)

Average Distance to Farmers (log) -0.0144 -0.0342
(0.0550) (0.0600)

Incumbent Party -0.122∗∗∗ -0.120∗∗∗

(0.0379) (0.0433)

Digit Span -0.0400∗

(0.0222)

Big5 — Stability 0.00882
(0.0227)

Big5 — Plasticity 0.00617
(0.0169)

R2 0.007 0.018 0.022
p-value for Observable Interactions 0.002 0.002
Number of Phone Surveys 2228 2228 2228
Number of AEAs 134 134 134
Number of ALATs 44 44 44
Basic Controls X X
Cognitive Controls X

Regressions analogous to Table 6 but sample includes all large ALATs
(100% coverage, 50% coverage, and control). Dependent variable for all
regressions is whether the AEA visited the farmer in the week prior to
the phone survey. The inverse Mills ratio is the generalized residual—the
expected value of the error term—from the probit selection regression
in the same column of Table A11. Regressions include survey round
indicator. Main effects of basic and cognitive controls omitted for space.
The p-value in the bottom row for observable interactions is from the
joint Wald test for coefficients on treatment interacted with all included
controls. Cluster robust standard errors in parentheses, ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A14: Predictors of Productivity in the Control Group

Farmer visited last week

Male 0.0398
(0.0405)

Age 0.00201
(0.00245)

Married 0.0700∗

(0.0371)

Average Distance to Farmers (log) 0.0188
(0.0337)

Incumbent Party 0.0139
(0.0307)

Digit Span 0.0317∗∗

(0.0127)

Big5 — Stability 0.00776
(0.0160)

Big5 — Plasticity -0.00979
(0.00962)

R2 0.018
p-value for Model 0.000
Number of Phone Surveys 1091
Number of AEAs 68
Number of ALATs 22

Sample is AEAs in large control ALATs. Dependent variable
is whether the AEA visited the farmer in the week prior to the
phone survey. Regressions include survey round indicator.
The p-value for the model reports the F-test for the null that
all coefficients equal zero. Cluster robust standard errors in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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