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ABSTRACT
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final exercise, we calibrate such frictions using clinical data. We estimate that, in this case study, 
payments benefit consumers.
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1 Introduction 
In many markets, consumers obtain expert advice before making a purchase decision. This 
is especially true in markets where decisions are complex or have large stakes. Firms of-
ten seek to influence those experts, and there is a small but growing body of empirical 
evidence from a variety of sectors—including insurance, financial services, and health care— 
that firm influence on experts' recommendations can harm consumers (Anagol et al. 2017; 
Bhattacharya et al. 2020; David et al. 2010; Egan et al. 2019; Robles-Garcia 2020). In health 
care, physicians receive payments from pharmaceutical and medical device firms. The inter-
actions that accompany those payments can provide valuable information about promoted 
products. However, concerns about conflicts of interest have led some states and numerous 
academic medical centers (AMCs) to enact policies to ban or limit payments and interactions 
between firms and physicians (King and Bearman 2017; Larkin et al. 2017). Despite large 
potential financial and health stakes, little is known about the effects of such policies. 

Payments from firms to physicians have long been a key component of drug promotions, 
and several studies have found a positive association between those expenditures and phar-
maceutical prescribing.1 The policy implications of such associations are difficult to interpret 
in light of several well-documented facts. First, physician treatment behavior varies widely 
(e.g., Cutler et al. 2019). Second, pharmaceutical firms spend large amounts of time and 
money targeting promotions to physicians; that is, payments are not allocated randomly 
(Fugh-Berman and Ahari 2007). Third, the equilibrium effects of payments depend on im-
portant features of the market, such as oligopolistic competition, insured demand, and other 
frictions—such as imperfect agency or behavioral biases—that might drive a wedge between 
the treatment a physician chooses and the treatment that maximizes patient welfare (Baicker 
et al. 2015; Besanko et al. 2020; Dickstein 2017; Inderst and Ottaviani 2012). 

In this paper, we address these challenges using detailed data, a new instrumental vari-
ables (IV) strategy to estimate physicians' heterogenous responses to payments from firms, 
and a flexible structural model of supply and demand that includes the role of payments as 
well as the possibility of choice frictions. We estimate wide variation in treatment effects 
across physicians, and we find that pharmaceutical firms target physicians with more pos-
itive expected responses to payments. We then use the estimated model, combined with a 
calibration exercise based on clinical trial results, to explore the equilibrium price, quantity, 

1See, e.g., Spurling et al. (2010) and Kremer et al. (2008) for reviews of early research on this topic. 
Other early research includes a marketing literature using data on "detailing" interactions for a subsample 
of physicians (Chintagunta and Manchanda 2004; Manchanda and Honka 2009; Narayanan and Manchanda 
2009). More recent papers using data like those used here—which have payments for all physicians but do 
not enumerate other detailing interaction details—include Datta and Dave (2016); DeJong et al. (2016); Yeh 
et al. (2016). 
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and welfare impacts of a ban on payments. 
This paper illustrates our approach using a detailed case study of the market for statins, 

one of only two large drug categories for which complete payment data was available in 
2011-12. Statins are also interesting in and of themselves as one of the largest-selling drug 
categories in history. We discuss the tradeoffs involved in scaling to many drug categories in 
the Conclusion. We combine prescribing data from Medicare Part D with payment data at 
the physician-drug-year level and numerous other physician, hospital, and market character-
istics related to payments and prescribing. The two branded statins in our sample, Pfizer's 
Lipitor and AstraZeneca's Crestor, were the first "strong statins" found to be differentiated 
from older generic statins in that they generated larger reductions in cholesterol. Lipitor 
and Crestor were heavily promoted drugs: over 75 percent of prescriptions in our data were 
written by a physician who received a meal from at least one firm (meals represent almost 
98 percent of payment instances between statin firms and physicians). Lipitor and Crestor 
made up nearly 40 percent of statin prescribing in 2011 while maintaining prices around 
seven times those of generic alternatives. Thus, statins also provide a representative exam-
ple of a market with firm payments promoting expensive branded drugs in conjunction with 
market power and other potential frictions. 

We construct a flexible structural model as a lens through which to view this setting 
and a tool to simulate welfare and counterfactual equilibria. Firms negotiate prices with 
insurers and allocate sales force time and payments as a function of drug, regional, and 
physician characteristics. Patients visit physicians and fill prescriptions as a function of the 
drug's benefit to the patient, the out of pocket price the patient must pay, the effect of any 
payment interaction on physician decisions, and a decision error that captures the potential 
for physician recommendations to deviate from what is optimal for the patient. 

Estimating the demand portion of the model proceeds in two steps. In the first step, we 
leverage Lipitor's patent expiration at the end of 2011. The ensuing generic entry generated 
a large shock to choice sets and relative prices: a new product with Lipitor's exact same 
molecule became available at a much lower price, and many insurers removed branded Lipitor 
from their formularies. This allows us to construct differences-in-differences style estimators 
for the parameters that determine price sensitivity and substitution across statins. The 
elasticity estimates that emerge are sensible and consistent with other estimates of pharma-
ceutical demand. This step also estimates a set of fixed effects for each physician-molecule, 
which encompass how drug quality, firm payment efforts, and any decision errors combine 
to determine physician prescribing conditional on price. 

In the second step, we regress the physician-molecule fixed effects on payments, specif-
ically meals. To obtain the causal effect of payments on prescribing, we use instrumental 
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variables based on variation in physicians' exposure to AMCs' conflict of interest policies, 
which restrict firms' ability to provide payments to affiliated physicians. We consider pay-
ments to be an observable proxy for a variety of related interactions. In our main specifica-
tions, we use an inclusive version of this proxy: an indicator for a physician ever receiving a 
meal from a manufacturer in our data. Motivated by geographic economies of scale in firms' 
marketing efforts, we document that the effects of such policies spill over to other physicians 
who are unaffiliated with the AMC but happen to practice nearby.2 The pattern of these 
spillovers matches our motivating theory: spillovers are stronger when a larger proportion 
of a region's cardiologists are affiliated with the AMC, and they are weaker for physicians 
who are located farther from the AMC. We also document that, for subsets of physicians 
where we expect (and observe) these policy spillovers to have no "first stage" effect on meals, 
the spillovers also have no "reduced form" effect on prescribing, providing more confidence 
that our instruments for meal receipt are not correlated with unobservable determinants of 
prescribing (Angrist et al. 2010). 

Our IV approach diverges from several recent papers on physician-industry interactions 
that approach the issue of physician selection using specifications with physician fixed ef-
fects (Agha and Zeltzer 2019; Carey et al. 2020; Shapiro 2018a). The fixed effect approach is 
valuable for estimating certain treatment effects, but has limitations for this paper's goal of 
evaluating the impact of policies that ban or restrict payments. First, a ban entails eliminat-
ing all payments from firms to physicians, and the effect of the overall steady-state payment 
relationship may be larger than the within-physician effect of an incremental payment. Sec-
ond, if firms target physicians based on their heterogeneous expected responses to payments, 
then the effect of a policy change on any measure of interest will depend on which physicians 
are treated in the baseline and counterfactual scenarios (Heckman et al. 2006). 

Given these concerns, we focus on the cross-sectional variation in which physicians re-
ceive payments, and we use quasi-exogenous variation driven by physician exposure to AMC 
policies to estimate the distribution of marginal treatment effects (MTEs; Heckman and 
Vytlacil 2007) of payments on prescribing. In order to gain the power needed to precisely 
estimate MTEs, and also to control for physician- and market-level prescribing differences, 
we allow for flexible functions of our instruments and a large number of potentially relevant 
control variables. This creates a dimensionality and sparsity problem, which we address by 
drawing on the recent literature at the intersection of machine learning and econometrics. 
We use Lasso regressions to select the most powerful set of predictors and sample splitting 

2This "spillovers" identification strategy is similar to that in Hastings et al. (2017), which relies on 
variation in sales force exposure driven by the characteristics of other nearby investors. See also Waldfogel 
(2007) for a broader discussion. Larkin et al. (2017) focuses on the direct effects of these policies and 
estimates significant reductions in prescribing of promoted drugs at the institutions that impose them. 
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to ensure that our estimates are robust to errors in the variable selection process (Belloni 
et al. 2017; Chernozhukov et al. 2018). 

This analysis yields an important new result: there is dramatic variation in physicians' 
responsiveness to payments. Our estimates imply that a meal payment relationship increases 
promoted statin prescribing by 41 percent for the average physician, which is roughly equiv-
alent to the impact of a $35 price decline or half of a standard deviation in the prescribing 
heterogeneity across physicians. However, for a physician in the 90th percentile, the effect is 
equivalent to one standard deviation, while the effect in the 10th percentile is not statistically 
different from zero. We also find that firms target physicians who: (i) have more positive 
expected treatment effects, (ii) would otherwise prescribe below-average shares of the firms' 
drugs, and (iii) have larger patient panels. As a result, among physicians who receive meals, 
the incremental revenue due to meals is large. For most physicians not targeted, though, we 
cannot reject the null that a meal would lead to zero extra revenue. 

To understand how the above demand parameters interact with other market frictions 
and ultimately influence welfare, we next analyze how prices are determined in equilibrium. 
We combine our demand estimates with a model of price negotiation between upstream man-
ufacturers/distributors and insurers, and with external data on marginal costs, to capture 
the forces driving the point-of-sale prices that insurers pay for pharmaceuticals and, in turn, 
the out-of-pocket prices paid by patients. Our bargaining parameter estimates are consistent 
with branded firms receiving a large portion of the surplus they create, while competition 
among many firms drives down margins on generics dramatically. 

The final element needed to connect our model to welfare is a "decision error" parameter 
that captures the various reasons why physician decisions could be suboptimal for patients: 
variation in physician information and skill (e.g., Currie and MacLeod 2020), imperfect 
agency not driven by payments (Jacobson et al. 2006), or various behavioral biases (Baicker 
et al. 2015) are examples from prior research that may play a role here. In our model, 
payments could reinforce or counteract such frictions.3 We simulate the welfare impact 
of a payment ban for a wide range of decision error values, and we combine our revealed 
preference utility estimates with clinical data on statin effectiveness to calibrate the sign and 
magnitude of the implied decision error in our estimated model. 

Our counterfactual simulations yield several additional insights. First, the equilibrium 
effect of meals is to increase statin use by around five percent, and to increase use of the 
focal branded statins by 29 percent, on average. These equilibrium calculations are smaller 

3In the former case, payments represent harmful kickbacks. For example, Novartis recently paid nearly 
$700 million to settle a whistleblower suit regarding physician payments under federal anti-kickback law 
(Morgenson 2020). In the latter case, payments are helpful, but expensive, nudges. Statins are still often 
cited as a class of drugs that is underprescribed relative to clinical guidelines (Walter 2020). 
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than the average treatment effects of meals on prescribing because they account for which 
physicians receive meals, and for the effects of business stealing in the case of physicians 
receiving meals from both firms. Second, high branded statin prices lead to prescribing 
below the efficient level in a world without meals. Our estimated model suggests that 
payments increase prescribing to near the efficient level (according to revealed preference 
demand estimates), though at high cost to consumers and payers. 

Considering a range of potential decision errors, we find that: If decision utility re-
flects true consumer utility, then meals result in large surplus gains to producers, negatively 
impact consumers, and have a small negative impact on total surplus on net. If, however, 
decision errors bias revealed willingness to pay for statins downward by a substantial amount 
(if there is enough under-prescribing), then consumer surplus increases in the presence of 
meals. Whether the behavioral or other frictions underlying decision errors are severe enough 
to justify the allowance of meals is an empirical question and likely varies widely across con-
texts. For the case study of statins, we shed light on this question by calibrating a decision 
error value that fits the difference between our estimates of the average revealed preference 
willingness-to-pay and conservative estimates of the dollar value of life-year gains due to 
statins from the clinical literature. Our calibrated decision error value implies substantial 
under-prescribing of statins, well into the region where payments increase consumer welfare. 
Under this calibration, the implied welfare impact of a meal payment ban is substantial—the 
total surplus effect is similar in magnitude to that of introducing generic atorvastatin, one 
of the largest generic introductions in history. 

In addition to detailed empirical estimates for an important case study, this paper con-
tributes a useful new instrumental variables strategy and a framework for estimating het-
erogeneous treatment effects of firm payments to physicians and mapping those treatment 
effects into equilibrium welfare effects. Our findings add to the literature on potential con-
flicts of interest among expert intermediaries across a range of markets (Anagol et al. 2017; 
Bhattacharya et al. 2020; Egan et al. 2019; Levitt and Syverson 2008; Schneider 2012) and in 
particular to the literature on drivers of physician treatment recommendations (Clemens and 
Gottlieb 2014; Dickstein 2017; Gruber and Owings 1996; Ho and Pakes 2014; Iizuka 2012). 
Our supply and demand model contributes to a nuanced literature on the nature of payments 
from firms to physicians in a range of important drug classes (Agha and Zeltzer 2019; Carey 
et al. 2020). Our focus on heterogeneity in treatment effects and targeted promotion adds 
new elements to a growing literature on the equilibrium effects of expert inducements in 
imperfectly competitive markets (e.g., Egan et al. 2020; Robles-Garcia 2020), and of direct-
to-consumer drug advertising (see, e.g., Shapiro (2018b) and Sinkinson and Starc (2019)). 
Finally, our approach to mapping demand into welfare in the presence of unobserved decision 
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frictions offers a new path forward in cases such as ours where outside data on the benefits 
of a product are available. We build on prior work that has allowed advertising to be infor-
mative or persuasive, especially Dubois et al. (2018)'s study of junk food advertising. More 
broadly, our approach adds to a literature that has so far required unique data on which 
decision-makers are less subject to such frictions (Allcott and Taubinsky 2015; Bronnenberg 
et al. 2015; Handel and Kolstad 2015; Handel and Schwartzstein 2018). 

The remainder of the paper is as follows: Section 2 describes our empirical setting and 
summarizes the high-level patterns in our data in order to motivate our empirical model. 
Section 3 presents our model of payments, pricing, and the demand for statins. Section 4 
steps through our empirical models, identification and estimation approaches, and results. 
Section 5 presents the results of counterfactual simulations of a ban on physician-firm pay-
ments, including calibrating decision errors using clinical trial data. Finally, our concluding 
Section 6 discusses the extent to which one might draw cautious policy implications from 
our estimates and extend the data and approach in future research to better inform policy. 

2 Setting, Data, and Summary Statistics 
This Section describes institutional details of pharmaceutical markets in the US, and in 
particular the Medicare statin market in 2011-2012. It also describes our sources, sample 
restrictions, and summary statistics for data on (1) drug prices and quantities, (2) payments 
from firms to physicians, and (3) other regional variation in the data, with a particular focus 
on our research design that makes use of the Lipitor patent expiration as well as regional 
spillovers from AMC conflict-of-interest policies. 

2.1 Medicare Statin Market, 2011-2012 

With prescription drugs accounting for more than 15 percent of personal health care expen-
ditures, and with 72 percent of that attributed to branded drugs, the potential financial and 
health consequences of branded drug manufacturers' payments to physicians are significant 
(ASPE 2016; Kesselheim et al. 2016). In this study, we focus on cardiologists' prescriptions 
of statins in the Medicare Part D program for the elderly in the U.S. in 2011 and 2012. This 
sample and time horizon are useful for several reasons: (1) Statins are one of the few drug 
categories for which we observe payments from all branded manufacturers. Pfizer (which 
produces Lipitor) and AstraZeneca (which produces Crestor) accounted for 49 percent and 
33 percent of statin revenue in Medicare Part D in our sample in 2011, respectively. (2) 
Statins are an important class of drug in their own right. While Lipitor was on patent, it 
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was the best-selling drug in the history of pharmaceuticals. (3) Though the data only specify 
the firm (not drug) associated with each payment, statins accounted for more than 80 per-
cent of cardiologist-prescribed revenue for both Pfizer and AstraZeneca, making it likely that 
they are an important subject of any firm interactions with cardiologists.4 Also, although 
cardiologists accounted for only 10 percent of Part D statin claims, specialist prescriptions 
are often the first prescription written for a patient, which is then sustained by primary care 
physicians (PCPs) (Fugh-Berman and Ahari 2007). This gives specialists an outsized impact 
on total prescribing, and also suggests that much of the prescribing we document will be new 
prescriptions, where an active choice of drug is made. (4) Finally, Lipitor's patent expiration 
generated a large shock to statin prices and formularies, helping to identify other features of 
demand curves separately from payment effects. 

Statin medications reduce blood levels of low-density lipoprotein cholesterol (LDL, or 
"bad" cholesterol), and in turn reduce the risk of coronary heart disease and heart attacks. 
Statins are generally considered to be effective; the American College of Cardiology (ACC)'s 
2013 guidelines recommended statin therapy for adults with elevated risk of atherosclerotic 
cardiovascular disease. Full adoption under these guidelines would have increased statin use 
by 24 percent (American College of Cardiology 2017). Statins are close substitutes for most 
patients, but atorvastatin (Lipitor) and rosuvastatin (Crestor) are available as high-intensity 
"strong" statins appropriate for some patients with elevated risk (ConsumerReports 2014). 

The structure of Medicare Part D (see Appendix A.1 for detail on the program) implies 
that enrollees should be sensitive to price variation across branded and generic drugs. This 
sensitivity may be muted by various frictions, including enrollees' limited understanding 
of coverage and physicians' imperfect agency (Abaluck et al. 2018; Goldman et al. 2007; 
Chandra et al. 2010). Part D plan issuers' strategies and profits are regulated by the Centers 
for Medicare and Medicaid Services (CMS), but they have both motive and opportunity to 
constrain costs through formulary design (i.e., drugs' placement on tiers) and negotiations 
with drug manufacturers (Duggan and Scott Morton 2010). 

2.2 Prescribing: Prices and Quantities 

We obtain data on physician specialties, affiliations, and demographics from the 2013 CMS 
Physician Compare database, which contains all physicians treating Medicare patients (CMS 

4In contrast, in interactions with primary care providers (PCPs) in 2011-2, Pfizer might have promoted 
Celebrex, Enbrel, Lipitor, Lyrica, Norvasc, Prevnar, Pristiq, Viagra, and Zyvox, and AstraZeneca might 
have promoted Synagis, Toprol, Seroquel, Atacand, Nexium, Prilosec, and Symbicort. Consistent with this, 
after Lipitor went off patent, payments from Pfizer to cardiologists sharply declined, but no such trend break 
was observed for primary care physicians (PCPs). Results for all of our main analyses run on PCPs are 
available by request. 
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2013). Each physician's practice location is matched to one of 3,436 local Hospital Service 
Area (HSA) markets for hospital care and one of 306 Hospital Referral Region (HRR) markets 
for major tertiary care, according to the Dartmouth Atlas (CECS 2012). 

Prescribing data are from publicly-available CMS Part D claims files for 2011 and 2012 
(CMS 2012). These claims data describe total prescriptions (in 30-day supplies) and spending 
for each prescriber-drug-year. The data include prescribing physicians' National Provider 
Identifiers (NPIs), which allows us to link claims data to other data sources. Drugs are 
defined by brand and molecule name (if the drug is "generic," these two are equivalent). 
Prescriptions may vary in terms of unobserved drug dosages and formulation. However, we 
are unaware of any evidence that industry payments target particular dosages or formula-
tions, so we follow prior studies in analyzing days supplied as the unit of quantity (Starc and 
Swanson 2020). 

Using the name of the drug, we also match branded drugs in the prescribing data to 
their respective manufacturers using the FDA's Orange Book and match all drugs to their 
WHO Anatomical Therapeutic Classification (ATC) codes, a hierarchy of drug categories 
that reflect similarities in drug mechanism and disease intended to treat. We focus on statin 
(ATC code = "10AAC") prescribing and use cardiovascular (ATC code = "C") prescribing 
as a proxy for the total number of patients seen by the cardiologist who might potentially 
need a statin in a given year. 

Starting with the full sample of cardiologists in the Medicare Physician Compare database, 
as identified by their self-reported primary specialty, we restrict our sample to "active" Medi-
care prescribers with at least 500 Part D cardiovascular prescriptions on average in 2011 and 
2012. This is approximately the 10th percentile of prescriptions per physician-year. We then 
restrict the sample to cardiologist-statin molecule pairs that have at least two non-zero ob-
servations (which is required to estimate the mean utility parameter). The final sample used 
in our analyses contains about 13,000 cardiologists. We restrict the sample to the six most 
popular statins (two branded, four generic), representing over 99 percent of Part D statin 
prescriptions and expenditures during 2011-2012. Appendix Table A2 details the impact of 
these sample restrictions on key summary statistics, which is small. 

Table 1 summarizes the average claim quantities and drug prices for our sample (we turn 
to variation across physicians below). On average, a physician in our sample writes about 
3,800 Medicare prescriptions in the cardiovascular class per year, and roughly 700 of these 
are for statins. The effect of entry by generic atorvastatin in December 2011 is dramatic—in 
its first full year of availability, this new alternative accounted for more than 25 percent of 
cardiologists' statin claims. 

The remaining columns of Table 1 summarize prices. In 2011, Lipitor and Crestor out-
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Table 1: Prescribing Summary Statistics 

Prescription Out-of-Pocket Point-of-Sale 
Count, mean Price ($), mean Price ($), mean 
2011 2012 2011 2012 2011 2012 

All Cardiovascular 3,602 4,156 
All Statins 626 733 

Crestor 90 102 31.86 31.85 137.09 160.33 
Lipitor 138 37 32.04 62.62 139.48 163.92 
Atorvastatin 189 9.67 32.45 

Other Generics (3) 398 404 4.55 3.84 13.31 10.30 

Notes: Based on a total of 89,754 cardiologist-drug-year observations, reporting statistics for those with non-zero 
use of any statin within a given year. Prescriptions (30-day equivalent) and prices derived from the Medicare 
Part D public use files. Out-of-pocket prices are plan enrollment-weighted averages of Part D enrollee cost-
sharing per 30-day supply. Point-of-sale prices are plan enrollment-weighted averages of the total retail prices 
paid per 30-day supply when prescriptions are filled. One month is the modal supply per claim. See Appendices 
A.2 and B for details on variable and sample construction. 

of-pocket (OOP) prices—the prices paid by the enrollee when filling a prescription—were 
about seven times those of generics. The full point-of-sale (POS) prices paid by insurers 
plus enrollees were three to four times OOP prices, and were similarly an order of magni-
tude higher for branded statins than generics. As in most studies of pharmaceuticals, it is 
impossible for us to observe confidential rebates negotiated between statin manufacturers 
and Part D plans, or to observe the unit price ultimately obtained by manufacturers (i.e., 
excluding markups applied by other supply chain intermediaries). However, average rebate 
data reported to CMS, taken together with several recent papers that infer average rebates 
and supply chain markups using SEC filings (e.g., Kakani et al. 2020; Sood et al. 2017; Yu 
et al. 2018; see Appendix E for details), suggest that 55-68 percent of POS prices would 
flow through to branded manufacturers. We incorporate these features in our pricing model 
in Section 3.3 and explore the robustness of our assumptions in Section 5. 

In 2012, generic atorvastatin was introduced by two manufacturers with 180 days of 
generic exclusivity (see Appendix A.2 for details on the entry environment). Atorvastatin 
had significantly lower OOP and POS prices than Lipitor, but prices were still higher than 
those of other generics due to initially limited generic competition. Other generic drugs' 
prices also decreased slightly between 2011 and 2012. Both Pfizer and AstraZeneca increased 
their POS prices in 2012. Crestor's OOP price was approximately the same in 2011 and 2012, 
but Lipitor's OOP price nearly doubled as insurers removed Lipitor from their formularies, 
thereby increasing patient cost sharing.5 

5Branded manufacturers are not passive when their drugs lose exclusivity. For example, there is evidence 
that Pfizer aggressively promoted a copay coupon program around this time (Aitken et al. 2018), and offered 
larger rebates to insurers after generic atorvastatin entry (Arcidiacono et al. 2013). Copay coupons cannot 
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2.3 Payments to Physicians 

More than 85 percent of pharmaceutical marketing expenditures are targeted to physicians 
(Pew Charitable Trust 2013). Typically, firms provide physicians with meals and other 
payments as part of a "detailing" relationship. These in-kind payments and their associated 
interactions may allow firms to inform physicians about a drug's characteristics. They may 
also encourage use of a firm's expensive branded drug, which might offer little clinical benefit 
relative to cheaper substitutes (Scott Morton and Kyle 2012). 

Although federally mandated reporting of pharmaceutical manufacturer payments to 
physicians did not begin until 2013, interest had been growing for some time. By 2010, 
several states had begun to institute their own payment limitations and/or public reporting 
rules; a number of high-profile lawsuits required payment disclosure as a remedy (Guo et al. 
2020); calls from politicians and patient advocacy groups were gaining momentum (Grassley 
2009); and a number of firms, including Pfizer and AstraZeneca, began to publicly release 
comprehensive data on payments to physicians (Ornstein and Grochowski Jones 2015).6 

These documents are the basis of our payments data, which were generously shared by 
Kyruus, Inc.7 

Table 2 summarizes our data on payments from firms to physicians. As shown in Panel 
A, meals account for 98 percent of the payments we observe in our data.8 Panel B shows how 
the distribution of meal payments very closely maps the distribution of overall payments. 
The only exception is at the very top of the distribution, where a few physicians receive very 
large payments due to consulting, speaking, and travel fees or research grants. While this 
is an interesting group, we focus our analysis on meals since they are clearly the dominant 
form of payment in this setting. 

Sixty-seven percent of physicians, representing 77 percent of cardiovascular prescriptions 
in our sample, received a meal from at least one of the branded statin manufacturers. Meal-
based relationships are highly persistent over time: for the firm-years in our estimation 

be used by Medicare Part D enrollees, so we omit them from our analysis. In our supply side estimation in 
Section 4.3, we allow for higher rebates by Pfizer in 2012 and test robustness of our results to this choice. 

6 The District of Columbia, Maine, and West Virginia required disclosure of payments and gifts to physi-
cians prior to our time horizon; Massachusetts, Minnesota, and Vermont required disclosure and had certain 
statutory gift bans (King and Bearman 2017). The Physician Payment Sunshine Act mandated disclosure 
nationwide at OpenPayments.CMS.gov beginning in August 2013, but was discussed for years prior to its 
implementation. 

7The raw disclosures were published in a wide variety of formats both across firms and within firms 
over time. In order to account for irregularities in formatting—primarily of names—a machine learning 
algorithm was developed by Kyruus to create a disambiguated physician-level dataset of payments from 
Pfizer and AstraZeneca in 2011 and 2012. 

8Among physicians who received meals in our sample, 17 percent also had non-meal payments. Among 
physicians who did not receive meals, very few (0.16 percent) received non-meal payments. 
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Table 2: Payments Summary Statistics 

Panel (a): Fraction of Cardiologists Receiving Payments, by Type 
Travel/ 

Any Kind Meal Speak/Consult Research 
Claim Claim Claim Claim 

Raw wgt. Raw wgt. Raw wgt. Raw wgt. 
Crestor 0.615 0.770 0.607 0.761 0.015 0.027 0.001 0.001 
Lipitor 0.338 0.443 0.317 0.417 0.014 0.027 0.001 0.001 
Either 0.685 0.782 0.670 0.766 0.027 0.042 0.002 0.002 

Panel (b): Payment Amount ($) if >0, by Type 

mean p10 p50 p90 p99 
Crestor Any 432.7 15.0 58.5 176.0 10,914.5 

Meal 81.3 15.0 54.0 159.3 540.0 
Lipitor Any 323.5 11.0 33.0 143.0 6,020.5 

Meal 51.2 11.0 25.0 120.0 313.5 
Either (+) Any 548.2 15.0 74.0 243.5 13,350.5 

Meal 97.9 15.0 65.0 203.5 596.5 

Notes: Statistics calculated on 25,318 cardiologist-drug observations. Claim-weighted means use 2011 claims 
for weighting. In Panel (a), the "Either" category reports whether the cardiologist received payments from 
either firm. In Panel (b), which reports the distribution of total payments per cardiologist-drug-year (excluding 
zeroes), the "Either (+)" category reports the sum of payments across both firms. 

sample, 73 percent of physicians receiving a meal in year t also receive a meal in year t + 1. 
Further, there is not a large amount of variation in the dollar amount of meals when outliers 
are excluded: the 90th percentile of the distribution of meal dollar values across (nonzero) 
observations at the physician-firm-year level was less than $134. While these dollar values 
are small, they represent only a fraction of the total cost of the overall relationship (see Liu 
et al. 2020 and further discussion below), and research has shown that small promotional 
efforts can have large effects on perceptions of drug quality (Grande et al. 2009). 

Motivated by these patterns in the data and institutional details, we focus most of our 
analysis on an indicator for whether a physician ever received a meal from a manufacturer 
in our data. This proxy for the physician-firm relationship is very inclusive, in that it is 
unlikely that any cardiologist in our sample has a significant relationship (detailing or oth-
erwise) with one of the paying firms without ever receiving a meal. During these meals (and 
other interactions for which meals proxy), sales representatives target prescribers with drug 
information regarding safety, efficacy, side effects, convenience, compliance, and reimburse-
ment. These in-the-field sales representatives are considered "the most expensive and, by 
consensus, highest-impact promotional weapon" in pharmaceutical firms' arsenals (Camp-
bell 2008). The cross-sectional indicator for a meal seems to comport best with our goal of 
estimating the treatment effect of any relationship to inform welfare simulations of a ban on 
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all such relationships. In Appendix G.5, we show that our results are robust to alternative 
definitions of the payment relationship. We find no meaningful differences in treatment ef-
fects as a function of meal dollar value, and our results are similar if we flag meals based 
only on what we observe in 2011, if we instead use an indicator for receipt of any type of 
payment (e.g., meals, consulting, speaking, travel, or research), and if we allow for spillovers 
across physicians in the same hospital or practice. 

2.4 Regional Variation and Conflict-of-Interest Policies 

2.4.1 Prescribing and Payments across the U.S. 

Figure 1 documents the geographic variation in utilization and meal payments across the 
U.S. Aggregating to the HRR level, Panel (a) plots the utilization of strong statins, and Panel 
(b) plots the share of cardiologists that receive meals from each branded drug manufacturer. 
Both show significant heterogeneity. For prescribing, cardiologists in the 90th percentile HRR 
were more than twice as likely than cardiologists in the 10th percentile HRR to prescribe a 
branded strong statin. Likewise, in the 10th percentile HRR, about 14 percent of cardiologists 
received a meal, while in the 90th percentile HRR about 36 percent of cardiologists received 
a meal (averaged across the two branded statin firms). 

There is large geographic variation in both prescribing and payments, but no strong 
visual pattern emerges in how the two may be correlated. This is borne out in the table at 
the bottom of Figure 1, which shows the distribution of the share of prescriptions written 
for Lipitor and Crestor, split by whether the physician received a payment from the focal 
firm. The two distributions are nearly identical in the raw data. If anything, there is slightly 
more prescribing of the focal drug among physicians who do not receive payments from its 
manufacturer. 

2.4.2 Conflict-of-Interest Policies 

To identify cardiologists who receive meals for plausibly exogenous reasons, we exploit the 
fact that, during the period we study, Academic Medical Centers across the U.S. had a wide 
range of policies intended to prevent conflicts of interest (CoI) by limiting physician-firm 
relationships. We hypothesize that these CoI policies decreased the likelihood of physician-
firm interactions not only for AMC faculty members directly subject to them, but also for 
cardiologists who happened to have practices located nearby these institutions due to regional 
economies of scale in sales force allocation. This strategy is closely related to research designs 
recently employed in other industrial organization studies of sales (Hastings et al. 2017), and 
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Figure 1: Regional Variation in Prescribing and Meal Payments, 2011 

(a) Prescribing Share (p.p.) (b) Share Doctors with Meal (p.p.) 

1.11- 2.64 2.64 — 3.04 3,04- 3.39 0.00 17.19 17.19 23.57 23.57 26.36 
• 339-3.78 • 3 . 7 8 - 4 50 •4.50-8.51 • 26.3ft - 30.20 •.10.20-34.00 • 34.00- 50.30 

(c) Prescribing Share (p.p.), by Meal Status 

mean s.d. p10 p50 p90 
Share Prescribing Focal Drug (Meal) 3.71 2.58 1.17 3.12 6.96 

(No Meal) 3.99 2.72 1.29 3.32 7.55 

Notes: (a) the 2011 HRR-level averages of cardiologist-level cardiovascular shares for Crestor and Lipitor, 
averaging over both drugs. (b) the HRR-level share of cardiologists receiving meals from AstraZeneca or Pfizer, 
averaging over both firms. (c) the 2011 distribution of cardiologist-level cardiovascular shares for Crestor and 
Lipitor, averaging over both drugs, split by whether the same firm that produces the drug gave the cardiologist 
a meal. All numbers are in percentage points. Based on 25,318 doctor-drug-level observations from 2011. 

to a broader literature that examines behavior of bystanders exposed to externalities driven 
by aggregate features of their region (Waldfogel 2007). 

The intuition of this approach is that drug firms, directly or via their marketing con-
tractors, typically first determine marketing budgets and strategies based on aggregate char-
acteristics of a geographic market for a given therapeutic area (Campbell 2008). Then the 
firms' "boots-on-the-ground" representatives use data analysis and their own knowledge of 
specific physicians to target high-value individuals. 

Firms' marketing models can be very detailed and data-driven, and pharmaceutical sales 
forces maintain rich databases on prescribers' practice characteristics, prescribing behavior, 
and history of interactions with the firm (Campbell 2008). The expected benefit of inter-
acting with a given physician depends on the size and appropriateness of the physician's 
patient panel, the physician's latent preferences over substitute products, and the physi-
cian's expected responsiveness to the payment and interaction.9 Costs include the labor 
costs of additional sales representatives, the opportunity costs of diverting sales effort from 

9For example, Alpert et al. (2019) document that Purdue Pharma avoided marketing OxyContin in 
states with strict prescription drug monitoring programs. 
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other physicians, and any direct costs of the interaction (e.g., meal expenditure). They also 
implicitly include factors that limit or prohibit access for sales representatives. For example, 
ZS Associates Access Monitor™ report notes several key factors restricting access: aca-
demic medical centers' restrictive access policies, specialty-specific physician employment by 
hospitals and health systems that have central purchasing or otherwise limit physicians' au-
tonomy, pressures on physicians that limit available time for firm interaction, etc. (Khedkar 
and Sturgis 2015). 

To operationalize these ideas, we link physicians to AMCs using the Association of Amer-
ican Medical Colleges (AAMC) faculty roster, and we obtain data on AMCs' conflict of in-
terest policies from the American Medical Student Association's (AMSA) conflict of interest 
scorecard. The AMSA scores, ranging from 11 to 32 in 2011-12, evaluate the strictness of 
AMC policies regarding physician interactions with pharmaceutical/device companies, in-
cluding salesperson access to AMC facilities, gifts to physicians, and enforcement of the 
policies.10 We hypothesize that regions where AMCs have strong conflict-of-interest policies, 
as captured by high AMSA scores, will see fewer meal payments to physicians overall, and 
even to physicians unaffiliated with the AMCs. We further hypothesize that these effects 
will be stronger when a larger portion of the region's cardiologists are affiliated with the 
AMC and for cardiologists located more closely to the AMC in geographical space. 

The binned scatterplots in Figure 2 illustrate the relationships between meal receipt and 
different measures of AMSA CoI scores. Faculty at AMCs with more stringent policies are 
less likely to receive meal payments (Panel (a)). This phenomenon is also observed for 
non-faculty physicians working at the same hospitals as faculty (Panel (b)). It also spills 
over at the regional level (at the HRR level shown here, and at the HSA level as shown 
in Appendix G.2)—cardiologists are less likely to receive meal payments from AstraZeneca 
and Pfizer if they work in regions where more cardiologists are affiliated with AMCs with 
more restrictive policies, even though those policies do not directly govern the focal cardiol-
ogists' own or own affiliated hospitals' behavior. These relationships are consistent with our 
conversations with current and former pharmaceutical sales executives and pharmaceutical 
marketing consultants regarding economies of scale in sales force allocation.11 

10In every school year since 2007, medical schools have been asked to submit their policies to the AMSA 
for rating. Each institution's policy is graded in 13 different categories, including Gifts, Consulting, Speak-
ing, Disclosure, Samples, Purchasing, Sales Reps, On-Campus, Off-Campus, Industry Support, Curriculum, 
Oversight, and sanctions for Non-Compliance. For each category except Oversight and Non-Compliance, 
the institution is assigned a numerical value ranging from zero to three. A zero is awarded if the institution 
did not respond to requests for policies or declined to participate; a one if no policy exists or the policy is 
unlikely to have an effect; two if the policy represents "good progress" towards a model policy; and a three if 
the policy is a "model policy." We generate aggregate AMSA scores for each institution by summing across 
all AMSA components. See Larkin et al. (2017) for more details on the scorecard. 

"Personal communications: George Chressanthis Jan 5, 2018 and Pratap Khedkar Feb 15, 2018. 
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Figure 2: AMSA-scored Conflict-of-Interest Policies and Meals 

(a) Faculty only, raw (b) Hospital-level, raw (c) HRR-level, raw 
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Notes: (a-c) display equally binned scatterplots of the unconditional correlation between meals and three 
different AMSA score metrics from (a) the cardiologists' own AMC (if faculty), (b) the faculty-weighted AMSA 
score of a cardiologist's hospital, or (c) the faculty-weighted AMSA score of a cardiologist's HRR, excluding 
the scores of faculty within their own HSA and hospital. The lefthand axis is for the scatterplots and linear fit 
lines, while the underlying histograms of the different scores are described by the righthand axis. The faculty 
weight is the share of all doctors in the hospital or region that are faculty. 

2.4.3 Physician-Level and Regional Characteristics 

The primary concern with using these CoI policies as instrumental variables is that the 
exclusion restriction may fail due to direct effects of conflict of interest policies on norms 
regarding prescribing, or due to unobservable factors correlated with selection into more 
restrictive policies (see discussion in Larkin et al. 2017). To help ensure that our identify-
ing variation is driven by spillovers from Col policies rather than these other factors (e.g., 
preferences, market structure, etc.), and to provide statistical power, we control for a rich 
set of observable physician and regional characteristics. Here, we outline how we use these 
controls in our research design below and provide an overview of the data. 

From the CMS Physician Compare data, we observe each cardiologist's gender, year of 
medical school graduation, faculty status, the numbers of different organizations and practice 
locations listed as affiliations, and whether the physician is enrolled in the CMS's programs 
for electronic prescribing, electronic health records, or quality reporting. 

We supplement this set of cardiologist-specific characteristics with: (1) ZIP code-level 
measures of local TV advertising for each of the two branded drugs from the Nielsen AdIntel 
database; (2) Hospital Service Area- (HSA) and Hospital Referral Region- (HRR) level 
aggregations of physician counts, practice counts, and utilization measures (e.g., total claims, 
cardiovascular claims per physician) from the Physician Compare and Part D data; (3) 
HSA- and HRR-level Medicare Advantage eligibility and penetration from CMS data; (4) 
HSA- and HRR-level measures of uninsurance rates, Medicaid enrollment rates, and cardiac 
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hospitalization rates from the Behavioral Risk Factor Surveillance System; (5) HSA- and 
HRR-level measures of teaching hospital densities from the American Hospital Association; 
and (6) state-level Part D plan enrollment and low-income-subsidy enrollment from CMS 
data. Appendix G.1 reports the summary statistics for all controls and instruments, along 
with the results from univariate regressions of our utilization and meal payment variables on 
each control and instrument. 

3 A Model of Payments, Pricing, and Demand for Statins 
This Section presents a flexible structural model, motivated by the above institutional de-
tails and economic theory, that we use to estimate demand for statins (in particular the 
causal effect of payments on demand) and quantify welfare under the status quo as well 
as counterfactual scenarios where payments are banned. In our model, insurers negotiate 
point of sale prices with upstream suppliers, manufacturer sales representatives target meals 
to physicians, and physicians prescribe drugs. Because prices and payments depend upon 
expected demand, our discussion begins there. 

3.1 Demand with Payments and Decision Errors 

This Section develops an explicit model of how physicians and patients trade off the influ-
ences of meals and out-of-pocket prices and substitute across competing drugs, allowing for 
potential "decision errors" that drive a wedge between prescribing decisions and true patient 
utility. Let the indirect decision utility of drug j E J = {0,1, . . . , J } , for use case i (a 
doctor/patient/visit combination) in each market defined by doctor d in year t, be given 
by: Uidjt = Sdjt + £idjt.12 The choice j = 0 represents the choice of treatment other than a 
statin, with mean utility normalized to 5d0t = 0. We measure the market size of potential 
statin patients for each physician-year as the number of all cardiovascular prescriptions, as 
a proxy for the number of patients who might potentially need a statin. The use-specific 
i.i.d. unobservable e id jt = eidt + (1 — A)eidjt is the random coefficients representation of the 
nested logit model (Cardell 1997), where eidt is a random component common to statins vs. 
alternative treatments, and eidjt is the standard type I extreme value error term (with scale 
normalized to one) that is i.i.d. across drugs. As the nesting parameter A E [0,1] approaches 

12The only molecule sold in both branded and generic format during the time period we study is Lipi-
tor/atorvastatin in 2012. They have different j indices, allowing preferences for the two to be potentially 
different. 
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1, there is less substitution outside the nest of statins.13 

We specify mean utility across use cases as: 

$djt — l imd j>0} - 0Ppdjt + XdjtOTj + Cdjt . ( 1 ) 

Here, 0dm l{mdj>0} is an indicator for whether cardiologist d received a meal from j ' s man-
ufacturer and its utility weight. Importantly, this utility weight may be specific to the 
drug-doctor pair, with arbitrary correlation patterns. It may even be negative and lead 
to decreased prescribing (e.g., due to new information received during the interaction ac-
companying the payment). While we are not able to micro-found the mechanisms underly-
ing this heterogeneity, it likely captures the net effects of several sources of variation that 
have been discussed in prior research (e.g., Inderst and Ottaviani 2012), such as: physician 
prior knowledge/ability, physician concern for patients, and the fraction of patients that are 
wary/sophisticated/informed. 

Turning to the other components of mean utility, 0ppdjt is the average out-of-pocket price 
paid by patients and its weight. Xdj-t0x is a rich set of covariates that captures perceived 
quality variation across drugs, as well as regional and cardiologist variation in prescribing 
patterns over time (we discuss this in detail when we turn to estimation of the model in 
Section 4.1). Finally, £dj-t is a cardiologist-drug-year-level unobservable term, which we allow 
to have two components: 

idjt — idjt + e% . ( 2 ) 

£dj-t is a typical demand unobservable that impacts both choices and true realized utility. e jt 

is a "decision error" in the spirit of Baicker et al. (2015) that affects consumer decisions but 
does not affect consumer surplus directly. 

The decision error parameter approach has some appealing features. It can capture many 
theoretical frictions in a reduced form way (Baicker et al. 2015; Mullainathan et al. 2012). 
It is empirically flexible in that one can estimate decision utility following typical revealed 
preference-based procedures and then consider how different types of decision errors affect 
welfare. In prior studies with decision errors, data on unbiased decision-makers are leveraged 
to estimate true equilibrium welfare for the whole sample (Allcott and Taubinsky 2015; 
Bronnenberg et al. 2015; Handel and Kolstad 2015). In Section 5, we discuss how outside 
data might be used to calibrate a decision error in (the many) empirical contexts such as 
ours where no unbiased decision-makers are identified. At this stage, we leave the decision 
error specification fully flexible in terms of the mean decision error, heterogeneity in errors 

13In Appendix G.4, we show the results of alternative specifications without a statin nest, and with a 
two-level nesting structure with a statin nest and another nest just for "strong statins." 
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across physicians and drugs, and the correlation with meal payment effects. 
Given a set of drugs Jdt available to a cardiologist and flow of choice opportunities Qdt , 

we assume the cardiologist/patient chooses the drug that maximizes decision utility, so that 
expected quantities demanded are given by: 

Qdjt = QdtPr[uidjt > Uikdt, Vk e Jdt] = Qdt-

ifcdtN 1 - A 

p IZ^fceJdt" j ' T , ^ P I - t t l^kGJdt p 

E J p 1 - A i + ( £ • - - p I r x 

Skdt\ 1 - x 

Jk£Jdt 
P 1 

Given this model, we represent expected consumer surplus as: 

C S J ) = Qdt I i n ( i + f £ e j ) - £ 9 d , f f ^ S S t o ) 
VjEJdt / / jEJdt 

CS implied by decision utility adjustment for "decision errors" and meals 

This is the standard formula derived by McFadden (1978), with a modification that cap-
tures the extent to which any meal payment effect causes prescribing to be more (vs. less) 
appropriate, conditional on all other variables. The first term reflects the consumer surplus 
that would be implied by our demand estimates if decision utility were equivalent to actual 
utility. The second term adjusts consumer surplus for the presence of a decision error that 
results in under- ( e j < 0) or over-prescribing ( e j > 0), as well as the countervailing (or 
reinforcing) effect of meals.1415 See Appendix C.2 for further discussion. 

b 

3.2 Targeting Meal Payments to Physicians 

The parameter in the demand model describes the effect of industry interaction on a 
physician's use of branded statins. We suppose that there is an underlying model of firms 
allocating meals to doctors as a function of the doctor-specific return on investment and 
regional economies of scale. Meal decisions are likely based on data we have available as 
researchers, plus other factors that are unobservable to us. We capture this by specifying 
a selection equation that is a semi-parametric representation of a model of strategic meal 

14A related (and not mutually exclusive) interpretation would be that physicians maximize a sum of 
physician (chooser) and patient (consumer) utility, with E ?̂ governing the difference between the physician's 
maximum and the patient's. 

15In their study of banning advertising for junk food, Dubois et al. (2018) also allow decision utility to 
diverge from welfare relevant utility, considering cases where advertising affects decisions but not utility or 
enters utility directly. In our model, payment effects never enter welfare directly per se, but they can be 
arbitrarily correlated with welfare improvements, depending on the correlation between payments and any 
underlying decision errors. 
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allocation. This first stage selection equation takes the form of a linear probability model: 

1 [mdj > 0} = ZdjY + XdjY + ^d j . (5) 

Appendix C.3.1 shows the tight relationship between Equation (5) and a structural version 
of this model for a particular cost function with increasing returns to scale. 

3.3 Pricing Pharmaceuticals 

The details of pharmaceutical supply chains are notoriously complicated. We seek to abstract 
from less relevant (for our purposes) details while capturing enough of the key economics 
of pharmaceutical pricing to generate credible estimates of the direction and magnitude of 
equilibrium price changes under a meal payment ban. To accomplish this, we develop a model 
of a supplier (an entity subsuming manufacturers, wholesalers, and pharmacies) negotiating 
with a buyer (subsuming pharmacy benefit managers (PBMs) and insurers).16 

Let the supplier's profit be: n(pj°st) = d e r qd j t ( j t^ l — j) — mcjt), where j is the man-
ufacturer rebate and mc j t captures the cost of manufacturing and distributing the marginal 
unit of drug j. p jS is the point-of-sale price insurers pay for the drug, which we model 
as constant across cardiologists within region r. We link the negotiated point-of-sale price 
and out-of-pocket price paid by enrollees via p j = csdjtpP°S, where csdjt is a cost-sharing 
parameter that varies across markets and years, depending on drug mix and insurer mix 
(discussed in detail in Appendix A.2). This reflects the practice whereby cost-sharing is 
applied to POS prices before rebates are taken out. We assume that csdjt is exogenous, and 
we hold it fixed in counterfactual analyses. We take the region r over which point-of-sale 
prices are negotiated to be the state. We do not observe the mix of Part D plans covering a 
given physician's enrollees, but this level of geography accounts for price variation driven by 
the entry and pricing decisions of standalone Part D plans and Medicare Advantage plans.17 

We assume that prices of substitute drugs in the market are determined in a simulta-
neous Nash Equilibrium of Nash Bargaining between suppliers and buyers (Crawford and 
Yurukoglu 2012; Collard-Wexler et al. 2017). In the model, each price maximizes the Nash 

16As discussed by Starc and Swanson (2020), both pharmacies and pharmaceutical manufacturers have 
market power, but relative market power of different suppliers varies by drug. These details are captured in 
a reduced form sense by the bargaining and cost-sharing parameters in our model below, which will be held 
fixed in our counterfactual analyses. This approach implicitly assumes that banning meals to physicians 
does not change the fundamental supply chain of the pharmaceutical industry or the general treatment of 
branded and generic therapies in insurance plan formularies. 

17Standalone Part D plans enter and negotiate prices in one of 34 Part D pricing regions, which are either 
single states or supersets of states. Medicare Advantage plans enter at the county level. States strike a 
balance between these two levels of aggregation. 
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Product of the gains from trade for each supplier and buyer pair, taking other prices as 
given. The first-order conditions of this model (see Appendix C for details) generate pricing 
equations that can be represented by: 

P j K 1 - j = m c j + j jrt 1 + £ 
dqdjt Pj — m c A Eder CSdt(Jdt) - CSdt(Jdt \ j ) 

der d p j Y^der qdjt Yder qdjt 

+ j t ( 1 — j — m c j 

Here, the term bjrt G [0,1] is a bargaining ability parameter, weighting the extent to which 
the optimal price depends on supplier profits (bjrt = 1) vs. the expected additional buyer 
surplus (bjrt = 0) in the case that a contract is agreed to for drug j: CSdt(Jdt) — CSdt(Jdt \ j). 

Notice that quantities and thus elasticities are driven by physician/enrollee decision-making 
based on out-of-pocket price under insurance coverage poop, but the insurer and supplier 
negotiate over point of sale price ppos. The CS function represents surplus from the insurer's 
perspective and thus differs slightly from CS as defined in Equation (4). We follow recent 
papers on insurer-hospital bargaining (Gowrisankaran et al. 2015; Ho and Lee 2017) by using 
a parameter acs G [0,1] to capture the relative weight insurers place on enrollee surplus and 
plan costs:18 

CSdt(Jdt) : = acs Qdt 1 l n ( 1 + ( J ] e j 

\jeJdt 

djt 

Y^ qdjt(ppo^(1 — j — p j ) . 

CS implied by decision utility insurer drug costs 

We assume that insurers negotiate drug prices as a function of consumer surplus as implied 
by decision utility; intuitively, insurers suppose "doctors know best" when negotiating prices. 
Appendix C.5 relaxes this assumption and Appendix H shows that our qualitative findings 
are unchanged even in the opposite extreme where insurers perfectly adjust consumer surplus 
for decision errors and meals. 

4 Demand and Supply Estimation and Results 
In this Section, we show how meal payments can be fit into a standard potential outcomes 
framework, integrated with the structural demand system. The primary results are the 

18In contrast to these papers, we model pricing of drugs within a single product class (statins), rather 
than pricing of a large bundle of products. Thus, a c s in our setting may also capture how plan enrollment 
would respond to disagreement in this particular product class. 
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demand parameter estimates, with a particular focus on the heterogeneous treatment effects 
of meals on prescribing. The Section concludes with estimating the pricing model that is 
used for computing counterfactual equilibrium prices in the next section of the paper. 

4.1 Demand Identification and Estimation 

Our demand estimation approach proceeds in two broad steps. We outline the strategy here 
and describe each step in more detail in the remainder of the Section.19 In the first step, we 
estimate the price and nest parameters and a set of drug-doctor fixed effects, instrumenting 
to account for the endogeneity of prices and nesting patterns. In the second step, we set 
up a potential outcomes framework where the drug-doctor fixed effects are the outcome of 
interest and the key endogenous variable is the indicator for meal payments. Within this 
framework, we use our policy-spillover instruments to estimate the distribution of treatment 
effects across the sample of drug-doctor pairs. 

We linearize the demand model, following Berry (1994). We set choice probabilities 
implied by the demand model in Equation (3) equal to observed market shares, and invert 
the system of equations to obtain mean utilities as a function of the market shares: 8djt = 
In(sdj t/sd0t) — Aln(sdj|gt). Combining this with Equation (1) yields the linear specification: 

ln(sdjt /sdct) = A ln(sdj|gt) — + ^ 1{m*>0} + X j j + j . (7) 

where sdjt is j ' s overall market share, sd0t is the market share of the outside good (non-statin 
treatments), and sdj|gt is j ' s market share within nest g, the set of statin treatments. During 
2011-2012, non-statin treatments included lifestyle changes such as dietary modification and 
exercise, and several pharmaceuticals with less cholesterol-reducing efficacy than statins such 
as ezetimibe, bile acid resins, niacin, and fibrates (Harvard Men's Health Watch, 2014). 

The following provides the empirical models and overview of the estimation routine, with 
the specifics detailed in Appendix D. 

4.1.1 Estimating Price and Nest Parameters 

In the first stage of estimation, we implement a differences-in-differences style estimator, 
leveraging the price and choice set variation resulting from the introduction of generic ator-
vastatin at the end of 2011 to identify the coefficients on price and within-nest share. We 
estimate: 

ln (sd j t / sdot ) = A l n ( s j t) — ^ p j + ^dj + 0t + #Lip12 + Cdjt (8 ) 

19Appendix D provides full step-by-step details on our algorithm. 
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where t^dj is a drug-doctor-specific fixed effect reflecting heterogeneity in doctors' mean 
decision utility over different treatments and 6t is a year fixed effect reflecting the (possibly 
evolving) average preferences over statins vs. the composite outside good of non-statin 
treatments over time. We further include 6Lip12, a coefficient for Lipitor in 2012, to capture 
the fact that demand for branded Lipitor is small and idiosyncratic in 2012 as it is removed 
from formularies over the course of the year. With a slight abuse of notation, we use a 
single fixed effect for both branded Lipitor and generic atorvastatin in order to leverage the 
within-molecule variation in price between 2011 and 2012 induced by generic entry. 

We account for the endogeneity of ln(sdj-|91) and pj by constructing instrumental vari-
ables that leverage both the average changes induced by generic atorvastatin entry and also 
the heterogeneity in insurer responses to this entry across geography (described in detail 
in Appendix A.2).20 When Lipitor's patent expired, some insurers instantly added generic 
atorvastatin to their preferred drug lists and/or removed Lipitor from their formularies, 
while others took more than a year, resulting in large variation in the relative prices and 
choice sets consumers faced. To utilize this variation, we create instruments for each plan-
drug-year-region as the average out-of-pocket price for that insurer-drug-year across other 

regions. We then average across plans, weighting by enrollment, to create an instrument for 
physician d's region. We also create an analogous instrument based on an average dummy 
for formulary inclusion. The instrument set is then: Zp = [p0jP'IV,1{j^formiv}]. These are 
similar in spirit to the bargaining ability instruments in Grennan (2013, 2014) and Dick-
stein (2017). We also follow much of the literature (e.g., Berry and Waldfogel 1999) in 
using a polynomial in the cardinality of the sets of statins and strong statins prescribed 
ZJ = [ln(|Jdt|), |Jdt|, |Jdt|2,ln(|Jd?l), |Jd?l, |Jd?|2] as instruments. This leverages the fact 

that more variety will mechanically affect within-group shares. 

4.1.2 Estimating the Effects of Meals on Prescribing 

The fixed effects ^dj- from the first step of our estimation capture all of the sources of 
persistent prescribing differences across doctors during our sample period. To estimate the 
extent to which these are influenced by meal payments from pharmaceutical firms, we project 
the drug-doctor fixed effects on our cross-sectional meal indicator and a rich set of controls 
for physician and market characteristics: 

4 = 6mmi{mdj>0} + 6j + Xdj6* + £dj . (9) 

20An additional challenge is that we observe average out-of-pocket prices at the drug-year-region level, 
implying that there is measurement error. Under the assumption that this is classical measurement error, 
our instruments for out-of-pocket price, which are primarily intended to address the endogeneity of price, 
will address this source of bias. 
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The idea of a secondary regression to uncover the determinants of fixed effects goes back at 
least to Mundlak (1978). To account for the fact that the fixed effects are measured with 
noise, we employ a version of the standard shrinkage approaches from the empirical Bayes 
literature.21 In our preferred specification, we construct 1{mdj>0} as a dummy for physician 
d receiving any payment from Pfizer over 2010-2012 (in the case of j=Lipitor/atorvastatin), 
or as a dummy for physician d receiving any payment from AstraZeneca over 2011-2012 
(in the case of j=Crestor).22 Intuitively, this approach aims to recover the steady-state 
effect of meal payments on prescribing. We estimate this equation only on observations for 
Lipitor/atorvastatin and Crestor, as generic firms do not provide meals to doctors. 

The outcome equation (9) and selection equation (5) fit into the canonical potential 
outcomes framework. In the context of the model, the unobservable in the selection equation 
^dj may be correlated with both £dj and the heterogeneous component of 9jj. In such a 
case, the standard 2SLS estimator will be a particular weighted average of the local average 
treatment effects on compliers, and this weighting may be of limited relevance for our policy 
simulations. We thus estimate the marginal treatment effects directly, using the mtefe 
package in Stata 16 (Andresen 2018). We can then estimate many treatment effects of 
interest as a function of these MTEs. 

The cross-sectional nature of our identification strategy and the data-intensive nature 
of our semi-parametric MTE estimation make a rich set of controls especially important. 
Relatedly, we have no a priori theory for the functional form relating our potential instru-
ments to meals. To address these issues, we include the large set of potential controls at the 
regional, hospital, and doctor level discussed in Section 2.4.3. Our instruments are built by 
starting with the aggregate AMSA scores of AMCs in the same region (HSA or HRR) as 
the focal cardiologist, excluding AMCs affiliated with the focal cardiologist, or the hospital 
where she works. We also interact each of these aggregates with variables that capture the 
intensity of spillovers at the individual cardiologist level: the percent of local cardiologists 
affiliated with the AMC and the drive time from the cardiologist's office to the AMC. Finally, 
we include linear, quadratic, and logarithm transformations of each instrument and control 
variable, and further interact each instrument with dummy variables for each manufacturer. 
This rich specification introduces issues with sparsity and collinearity that have been the 
topic of a growing literature at the intersection of econometrics and machine learning. We 
follow Belloni et al. (2017); Chernozhukov et al. (2018) and related literature in using Lasso 
regressions to select the controls and instruments which most strongly predict meals and 

21 See Chandra et al. (2016) for a recent application in the health care context. We modify the standard 
approach by resampling at the "use case" level to account for sampling error in market shares. Appendix 
D.4 provides a detailed description of the procedure and illustrates how it adjusts the distribution. 

22Payments from AstraZeneca in 2010 are not available in our data. 
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prescribing. 

4.1.3 Estimation Routine Overview and Inference 

After obtaining the point estimates for the price and nest parameters using the full sample, 
the remainder of our estimation and inference routine is performed using 500 bootstrap it-
erations. Within each iteration, we first drop a random sample of v N d cardiologists and 
resample each remaining cardiologist's prescribing choices. We then estimate price and nest 
parameters for that sample; our reported standard errors for those parameters are the stan-
dard deviations of the 500 point estimates. At this point, we shrink the physician-molecule 
fixed effects toward the mean to account for potential measurement error. For the MTE 
estimation, we follow Chernozhukov et al. (2018) by splitting each bootstrap sample into 
two subsamples, separately estimating the Lasso and MTE models on opposite halves of the 
data, and taking the median of those two estimates. Our reported point estimates and stan-
dard errors are the median and median deviation of the resulting 500 estimates. Appendix D 
presents the estimation routine in full detail, and also presents results on the most frequently 
selected instruments and controls. For the supply estimation and counterfactuals, we again 
follow the median-based approach of Chernozhukov et al. (2018), since these estimates are 
based on results from the Lassos. The variation in drug prices is across states over time, so 
we jackknife a random set of seven (v^50) states in each of the 500 bootstrap iterations for 
the purposes of constructing the standard errors. 

4.2 Demand Parameter Results 
4.2.1 Price Coefficients and Substitution Patterns 

Table 3 provides details on the estimates of the first step of the demand model, illustrat-
ing the importance of the rich fixed effects and instrumental variables in obtaining these 
results. (Appendix G.4 provides further details, including the robustness of these results 
to alternative specifications.) Focusing on our main model in the final column, the nesting 
parameter estimate of 0.42 is consistent with the knowledge that there are certain types of 
cardiovascular patients for whom statins are appropriate. The price coefficient is small but 
nontrivial, as we would expect given the muted incentives implied by insurance, and the 
related own-price elasticity np = fpp of —0.21 is within the range of prior estimates for the 
Part D setting (e.g., Abaluck et al. 2018; Einav et al. 2018). On average, cardiologists value 
the strong statins about $19 more than the generics, which is in line with the observed OOP 
prices (in 2011, the branded strong statins' OOP was about $27 more than the generics' 
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Table 3: Demand Estimates Step 1—Price and Nest Coefficients and 

OLS, Vd OLS, ^dj IV, ^dj 
QP 0.00106 -0.00025 -0.00753 

(0.00002) (0.00002) (0.00016) 
A 0.940 0.966 0.423 

(0.0004) (0.001) (0.010) 
mean(np) 0.262 -0.1098 -0.210 
s.d.(np) 0.296 0.124 0.226 
N 117,517 117,517 117,517 
F-stat. 476.9 
R2(5djt : ^dj - QPp) 0.809 
mean(^dj /1 Qp | 
mean(^dj /1 Qp | 
s.d.(Vd/|Qp|) 

) s t r o n g s tat ins 

) o t h e r g e n e r i c s 

-296.7 
-315.7 

74.6 

Notes: Reports parameter estimates from Eq. 8. Standard errors for the main parameters (Qp 

and A), in parentheses, are based on the standard deviation of the point estimates from the 
500 perturbed-bootstrap samples. 

OOP). The overall physician-molecule preference variation itself is large, with one standard 
deviation of the distribution equivalent to an OOP price differential of about $75. 

4.2.2 Meal Payments First Stage 

To explore the first stage effects of our AMSA instruments on meal payments, we first 
regress the meal payment indicator on the set of Lasso-selected controls and three intuitive 
transformations of the regional AMSA Col scores: (1) the average Col score for the AMCs 
in a region (excluding AMCs affiliated with a focal cardiologist's hospital), (2) the same 
score multiplied by the share of all doctors in the region that are faculty, and (3) the same 
score multiplied by driving time from a cardiologist's primary practice location to the nearest 
AMC. Figure 3 Panel (a) reports the results of this regression using the HRR-level IVs (see 
Appendix G.2 for similar results using the HSA-level IVs). We find that practicing in regions 
with AMCs with higher AMSA scores is negatively associated with receiving a meal; this 
effect is weaker if the focal physician's office is located farther from the AMC, and stronger if 
a larger percentage of doctors in the region are associated with the AMC. These patterns are 
consistent with our access costs and spillover hypotheses, and we find that they hold even 
when cardiologists who are faculty themselves are excluded from the sample (see Appendix 
G.6). Appendix D.3 provides more details on the most frequently selected controls and 
instruments from our full estimation routine. Across our bootstrap iterations, we estimate 
a median cluster-robust weak identification F-statistic of 136.7 (median deviation=40.4). 
However, in settings like ours, where we use Lasso to select from a high-dimensional set 
of covariates, the traditional statistical tests for IV relevance have been shown to perform 
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poorly. Thus, we also estimate versions of the sup-score weak identification tests proposed 
by Belloni et al. (2012) and implemented within the ivlasso Stata package (Ahrens et al. 
2020): all bootstrap subsamples are able to reject the null hypothesis of weak instruments 
at a critical value of 0.05. 

Figure 3: Explaining Variation in Meal Payments 

(a) First Stage IV 

HRR AMSA 

HRR AMSA x 
time to nearest AMC 

HRR AMSA x 
AMC faculty wgt. 

Incl. L(X) 
Avg. N 

Pr(Meal | X,Z) 

Never Ever meal 

Notes: (a) reports the results from an OLS regressions of a meal indicator on the vector of Lasso-selected 
controls, L(X) , and manually selected HRR-level instruments, which are standardized so that the coefficient 
indicates the percentage point change in predicted meal probability given a one s.d. change in the IV (b) displays 
the distribution of predicted meal probabilities, split by actual treatment status, from the full estimation routine 
where both controls and IVs are selected by Lasso. 

Our identification strategy requires that Col scores be powerful predictors of meal pay-
ments, and that they only affect prescribing through the channel of meal payments. While 
we cannot test the exclusion restriction directly, we explore its validity by conducting a set 
of placebo tests in the spirit of Angrist et al. (2010). In our context, there are subsamples 
of physicians whose observable characteristics make them very unlikely to receive a meal 
payment, such that the causal relationship between the IVs and meals is substantially shut 
down. We conduct several tests based on this logic, the results of which are in Appendix 
G.3. Briefly, in four distinct subsamples—cardiologists in states with restrictions on meals, 
faculty cardiologists facing strict CoI policies, cardiologists at hospitals with strict CoI poli-
cies, and cardiologists whose observables make them unlikely meal targets—the significant 
first stage and reduced form relationships disappear, as we would expect if the exclusion 
restriction were satisfied. 

Figure 3, Panel (b) shows histograms of the first stage propensity score estimates (pre-
dicted meal probabilities) from the full estimation routine, for physician-drug observations 
with and without meal payments. The model produces large overlapping support for the two 
groups across the unit interval. In our application, we have found that the rich specifica-
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-0.0470 
(0.0045) 
0.0127 
(0.0033) 
-0.0089 
(0.0017) 

Yes 
26,045 

O (n O 
>> 

(b) Predicted Meal Probabilities 

500-

400-

300-

200-

£ 100-

0 -
0.0 0.2 0.4 0.6 0.8 1.0 

27 



tion of controls and instruments enabled by the Lasso approach is critical to achieving both 
this rich overlapping support, and also sufficient variation in the instruments conditional 
on the propensity score. Appendix D.3 provides more details on the importance of a rich 
specification for the first stage. 

4.2.3 Marginal Treatment Effects of Meals on Prescribing 

Figure 4, Panel (a) plots our MTE estimates vs. the unobserved resistance to treatment.23 

The average treatment effect of 0.27 is roughly equivalent to the effect of a $35 price decline, 
but we reject the hypothesis of a homogenous treatment effect. At the 10th percentile of 
unobserved resistance (i.e., physicians that firms are very likely to pay), the effect is 0.53 
(equivalent to a $71 price decline or a 1.0 standard deviation increase in the underlying 
physician-molecule preference heterogeneity), while at the 90th percentile of unobserved 
resistance (i.e., physicians that firms appear to avoid), the point estimate is 0.02 (a $3 
price decrease or 0.04 standard deviations of the underlying heterogeneity) and it is not 
statistically distinguishable from zero. Appendix G.6 shows that the level and slope of these 
MTE estimates are similar under alternative samples and modeling decisions. 

Figure 4: Marginal Treatment Effects of Meal Payments 

(a) Treatment Effect Distribution (b) Treatment Effect Point Estimates 

0.75-

0.25- L(X,Z) Yes Yes Yes 
0.0 0.2 0.4 0.6 0.8 1.0 Avg. N 26,045 26,045 26,045 

Unobserved Resistance to Meals (U) 

MTE|U=u ATE 
LATE 2SLS 

Notes: (a) plots the MTE curve (E[0 m | U = u]) with 95 percent C.I. in shaded grey, alongside other point 
estimates of drn. (b) displays the estimates from the OLS (Col. 1), 2SLS (Col. 2) and MTE (Cols. 3-4) 
specifications, all of which include the Lasso-selected instruments and controls, L(X,Z). 

The table in Panel (b) compares several estimates of 0m : ordinary least squares (column 

23 The literature on MTE estimation defines the unobserved resistance to treatment as the quantiles of 
the distribution of residuals from the first stage propensity score estimation. 
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(1)), two-stage least squares (column (2)), and the LATE (column (3)) and ATE (column 
(4)) associated with the marginal treatment effects (see Andresen (2018) Table 3 for com-
parison of the weights in 2SLS and MTE-LATE). As Heckman et al. (2006) suggest for cases 
with positive selection on heterogeneous treatment effects, the 2SLS estimator overestimates 
the ATE obtained from the MTEs—that is, 2SLS would overestimate the effect of banning 
payments by a factor of two. Our estimated average treatment effects are still larger than 
those found in other papers that address physician selection into receiving payments with 
the inclusion of physician fixed effects (Agha and Zeltzer 2019; Carey et al. 2020; Shapiro 
2018a). For example, Shapiro (2018a) finds that a detailing visit increases prescribing of 
antipsychotics by 14 percent in the subsequent year,24 whereas the coefficients in our nested 
logit demand model imply that a meal-based relationship increases promoted statin pre-
scribing by about 40 percent for the average physician, but by 60 percent for the average 
physician actually targeted by firms and only 20 percent for physicians firms avoid. This 
could be due to differences between statins and other drug categories, or because the effect 
of the overall relationship may be much larger than the within-physician effect of an incre-
mental meal.25 Interestingly, the OLS estimate is smaller than the ATE, suggesting that 
firms target physicians that would have otherwise prescribed relatively low shares of strong 
statins. 

An advantage of the MTE estimation approach is that the resulting estimates can be 
paired with the data (i.e., physician observables and realized treatment) to derive the ex-
pected response to treatment E[9^] for any observation in the data.26 Figure 5, Panel (a) 
presents a histogram of expected treatment effects, normalized by the standard deviation of 
the physician-molecule preference variation, E[9" j } /SD(^ m ) , separately for physicians with 
and without meal payments. Payments are clearly directed to physicians with more positive 
expected responses to treatment. 

The median expected response of those receiving payments is roughly a 0.71 standard 
deviation change in the mean preference for prescribing the focal drug. By contrast, for 
those not receiving payments, the analogous median effect is roughly 0.24, and for roughly 
80 percent of these not-paid cardiologists the effect is not statistically different from zero. 
The difference between the centers of these distributions is driven to a great extent by the 
steepness of the gradient documented above in Figure 4 Panel (b), which implied a sizable 

24We credit Carey et al. (2020) for this calculation. 
25Chintagunta and Manchanda (2004); Shapiro (2018a); Agha and Zeltzer (2019) each consider the role 

of detailing "stock." Agha and Zeltzer (2019) also explicitly focus on diffusion of drugs at the beginning of 
their life cycles. 

26More formally, E^Jj | Xdj, 1{mdj > 0}]; see Appendix D.2, and Eq. 16 specifically, for more on how 
individual-level expected treatment effects are derived from the MTE model. 
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difference between the average treatment effect on the treated and the average treatment 
effect on the untreated. 

Figure 5: Heterogeneity in Expected Treatment Effects Across Doctors, by 
Actual Treatment Status 

(a) Prescribing Change with Payment (SD) (b) Prescribing Without Payments (share) 

0.00 0.25 0.50 0.75 1.00 0.000 0.025 0.050 0.075 0.100 0.125 

Never Ever meal Never Ever meal 

p10 p25 p50 p75 p90 pl0 p25 p50 p75 p90 
Never -0.004 0.118 0.241 0.352 0.458 Never 0.013 0.021 0.033 0.052 0.076 

(0.176) (0.174) (0.175) (0.174) (0.171) (.) (.) (.) (.) (.) 
Ever 0.485 0.601 0.706 0.812 0.908 Ever 0.006 0.010 0.016 0.026 0.040 
meal (0.146) (0.150) (0.151) (0.148) (0.149) meal (0.001) (0.001) (0.002) (0.003) (0.005) 

(c) Manufacturer Return to Payment ($) 

0 5,000 10,000 15,000 20,000 

Never Ever meal 

pl0 p25 p50 p75 p90 
No meal -1688.5 -1244.9 -441.5 1,085.2 3,447.5 

(620.9) (679.9) (1,044.6) (1,813.5) (2,851.1) 
Meal -731.7 11.3 1,623.7 4,551.6 8,739.9 

(187.4) (304.8) (550.6) (962.1) (1,519.5) 

Notes: Plots the posterior (dj-) cardiologist-drug-specific estimates of: (a) expected meal response parameters 
E[0djj], scaled by the standard distribution of the cardiologist-drug mean utility "fixed effects" r^dj; (b) the 
distribution of expected cardiovascular shares, setting each meal indicator to zero E[s™=0]; and (c) the distri-
bution of manufacturers' incremental profits due to meals (pp0t (l — Tjt — wjt) — mcrt) X E[qjj=1 — qjj=0] — Cj, 
given the price (ppos) paid by insurers and consumers, net of marginal production and distribution costs mc, 
costs of payment relationships Cj, rebates T, and markups charged by supply intermediaries w (see Section 4.3 
below and Appendix E for details). Beneath each plot are the point estimates and standard errors for select 
percentiles of these distributions by treatment status. Computed for 2011 to focus on cross-sectional variation. 

Panel (b) of Figure 5 plots a similar set of histograms for a different variable of interest, 
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the expected prescribing share of the focal drug with no meals, E[sdj(mdj = 0)]. This helps to 
solve the puzzle of why the summary statistics showed no clear difference between prescribing 
patterns for physician-drug observations with and without meals. Here, the histogram for 
those receiving meal payments is shifted to the left of those who do not, indicating that 
meal payments tend to go to physicians who would have otherwise prescribed below average 
amounts of the focal drug. Thus, on average, the effect of meals is to bring prescribing 
patterns by those who receive meals into line with those who do not. While this is indirect 
evidence, it is consistent with a story of meal payments (and the interactions surrounding 
them) providing information or reminders that counteract potential under-prescribing for 
some physicians. 

Panel (c) of Figure 5 plots the distribution of expected profits from targeting meal pay-
ments for each physician-molecule, bringing together several of the important dimensions 
of meal targeting—selection on patient volume, selection on expected response, and selec-
tion on expected counterfactual prescribing patterns—into one measure. The distribution 
for treated physicians is shifted significantly rightward from that of untreated physicians. 
Meals increased profits to drug firms by roughly $1,624 for the median treated physician. 
However, our estimates imply that counterfactually extending meals to all untreated cardi-
ologists would have led to net losses, with the incremental profit associated with the median 
untreated physician estimated to be -$442. These estimates provide insight regarding why 
some physicians are targeted by firms and others are not.27 

4.3 Supply Model Estimation and Results 

The demand model estimates provide the utility parameters needed to compute demand 
elasticities and consumer surplus in the equilibrium observed in the data. They can also be 
used to estimate market shares and consumer surplus under counterfactual scenarios where 
any given drug j is removed from the choice set, but prices of the remaining drugs stay the 
same. These are the critical inputs needed for the bargaining model. The remaining terms in 
the supply model are the bargaining ability weights (bjrt), the insurer concern for consumer 
surplus vs. profits (a c s ) , the decision error (ede), the manufacturer rebates (r j t) , and the 
marginal costs (mcjt). 

To estimate the model for a given vector (ede, Tjt, mc j t ) , we parameterize bargaining ability 
parameters as a function of drug and regional fixed effects, and specify the econometric 

27Liu et al. (2020) estimate that Pfizer (AstraZeneca) visited each detailed physician 9.79 (6.90) times per 
year in 2002-2004 to discuss Lipitor (Crestor), at an estimated cost of $150 ($187) per visit in 2003 dollars. 
This implies a "cost of relationship" of about $1,780.69 ($1,563.65) per physician-year in 2011 dollars, before 
accounting for the $50-$80 direct cost of payments. 
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unobservable as the residual variation in bargaining parameters needed to fit the model to 
the data. We then estimate the insurer concern for consumer surplus and bargaining ability 
parameters via GMM, using consumer surplus measures calculated at average prices in other 
regions as instruments to avoid potential simultaneity bias.28 In Section 5, we show welfare 
for a large range of potential values of £de. Unobserved rebates are an endemic challenge 
to research on pharmaceutical pricing, and the empirical difficulty of separately identifying 
bargaining weights and marginal costs is well-known (Gowrisankaran et al. 2015; Grennan 
2013). Our solution is to use estimates of rebates and marginal costs from recent research 
on pharmaceutical markets, and we test sensitivity of our results to alternative assumptions. 
For example, in our baseline analysis, we assume that rebates for branded drugs were 26.3 
percent, consistent with the average rebates for cardiovascular drugs reported to CMS in 
2014, and we increase rebates to 48.3 percent for Lipitor in 2012 based on the estimates 
of post-patent expiration rebate increases in Arcidiacono et al. (2013) (see Appendix E for 
details). We also assume that marginal costs for all jt are equal to 17 percent of the average 
POS price of generic statins: mc = 0.17 * pgm. The value of 17 percent is taken from the 
average production costs of generic drugs in Sood et al. (2017), assuming that the cost of 
producing a statin is invariant across molecules and branded/generic status. Appendix H 
tests robustness to a range of reasonable alternative assumptions regarding (rjt,mcjt) and 
our results are qualitatively unchanged. 

Table 4 summarizes our supply side parameter estimates. The most striking feature is 
the high bargaining parameter estimates for the branded drugs relative to generics. Because 
the generic sales are aggregated over firms, the bargaining parameters also capture within-
molecule competitiveness. This can also be seen in the slightly larger bargaining parameter 
for generic atorvastatin, where only two manufacturers compete during the first six months 
of 2012, after which eleven more manufacturers enter. The larger bargaining parameters for 
Lipitor and Crestor in 2012 reflect the fact that POS prices remain high in many regions for 
much of 2012 as insurers are slow to adjust formularies, despite the improved outside option 
with generic atorvastatin entry. 

Finally, we estimate that the weight insurers place on enrollee surplus in negotiations is 
larger than the weight they place on net costs: acs = 1.67. This may reflect that enrollees are 
sensitive at the plan choice stage to formulary inclusion of important drugs such as statins. 
Indeed, Olssen and Demirer (2019) document substantial plan switching based on which 
statin brands are on formulary in Medicare Part D. It may also capture the role of Medicare 
Part D program subsidies that limit insurers' financial gains and losses.29 

28 The fact that consumer surplus is a function of price can create an endogeneity problem where the 
surplus measures are correlated with the unobservable in the supply pricing equation. 

29We do not model such subsidies—e.g., risk corridors and reinsurance—because they are applied at to 
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Table 4: Supply Parameter Estimates 

Atorvastatin Lipitor Lovastatin Pravastatin Crestor Simvastatin 
B 2011 0.667 0.060 0.055 0.660 0.045 

(0.030) (0.004) (0.004) (0.029) (0.003) 
B2012 0.154 0.755 0.044 0.043 0.771 0.034 

(0.010) (0.020) (0.003) (0.003) (0.033) (0.002) 
acs 1.674 

(0.117) 

Notes: N = 124, 876 doctor-drug-brand-year observations with standard errors clustered at the doctor level 
(Nd = 15, 063) via delete-120 jackknife and state level via delete-7 jackknife. 

5 Equilibrium Welfare Effects of Meals 
The above results demonstrate that meals have heterogeneous effects on prescribing, and that 
they are targeted to more positively responsive physicians who would otherwise prescribe 
below-average amounts of branded firms' drugs. However, the equilibrium effect of meal 
payments from pharmaceutical firms to physicians also depends upon how they interact 
with distortions from other market imperfections. In this Section, we use our demand and 
supply parameter estimates to investigate the impact of a counterfactual meal ban on prices, 
quantities, and welfare in the presence of oligopoly competition, drug firm-insurer negotiated 
prices, and a range of assumptions regarding potential decision errors in prescribing. 

5.1 Price and Quantity Effects of a Counterfactual Meal Ban 

To better understand the economic effects of payments to physicians, we consider four coun-
terfactual scenarios. The first scenario ("Ban, fix p") bans meal payments and computes 
new equilibrium quantities, but holds all prices fixed at those observed in the data. This 
allows us to isolate the effects of a ban on choice patterns alone. The second scenario ("Ban") 
allows point-of-sale and out-of-pocket prices and quantities to adjust to a new equilibrium. 
We compare the "Ban" scenario to the observed data to understand the full effects of a meal 
ban—this comparison features prominently in the next subsection on welfare analysis. Our 
third and fourth scenarios set out-of-pocket prices equal to marginal costs with and without 
a ban ("Ban, p = mc" and "No Ban, p = mc", respectively), allowing us to explore the effects 
of a meal ban in the absence of a price distortion. These scenarios provide approximations 
of an "efficient" benchmark—a payment ban and poop = mc is efficient at one extreme where 
£de > 0, and no ban and poop = mc is efficient if £de is negative and large enough. Table 5 
displays several key results from these counterfactuals for 2011. 2012 results are qualitatively 
similar and shown in Appendix Table A l l . 

insurers' overall enrollee population rather than at the drug or drug class level. 
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Table 5: Equilibrium Quantity and Price Effects of Meal Payments (2011) 

Observed Ban, Ban Ban, No Ban, 
fix p p = mc p = mc 

Q statins 0.180 0.171 0.172 0.185 0.198 
(0.001) (0.002) (0.002) (0.002) (0.001) 

Q Lipitor 0.039 0.032 0.032 0.045 0.054 
(0.001) (0.001) (0.001) (0.002) (0.001) 

Q Crestor 0.025 0.017 0.017 0.023 0.035 
(0.000) (0.001) (0.001) (0.002) (0.000) 

OOPstatins 18.81 18.81 18.53 2.15 2.15 
(0.23) (0.23) (0.23) (0.1) (0.1) 

POSstatins 77.40 77.40 75.79 82.41 84.68 
(0.72) (0.72) (0.71) (1.29) (1.40) 

Notes: Authors' calculations of observed and counterfactual equilibrium statin quantities (share of cardiovas-
cular utilization) and prices (point-of-sale and out-of-pocket price per 30-day supply), per supply and demand 
model described in text. 2011 only. "Ban, fix p" eliminates meals, holding POS and OOP prices fixed. "Ban" 
eliminates meals and allows both prices and quantities to adjust. "Ban, p = mcC' eliminates meals and sets poop 

equal to marginal costs, then allows POS prices and quantities to adjust. Finally, "No Ban, p = mc" simply sets 
poop equal to marginal costs, then allows POS prices and quantities to adjust. N = 124, 876 doctor-drug-brand-
year observations with standard errors clustered at the doctor level (Nd = 15, 063) via delete-120 jackknife and 
state level via delete-7 jackknife. 

Table 5 shows total quantities of statins prescribed, OOP prices faced by consumers, and 
POS prices paid by insurers plus consumers, in the observed and counterfactual scenarios. 
The price and quantity results in the first three columns highlight several of the issues 
motivated in Section 3. A ban on meal payments reduces total statin usage as a share of 
cardiovascular claims by about 0.8 percentage points. This is a four percent reduction in 
total statin usage. For the focal branded statins, the decrease is 23 percent on average. This 
is smaller than the large meal treatment effects documented in Section 4.2.3 above because 
not all doctors receive meals, and some also receive meals from both firms in which case 
the business stealing effect mutes the overall effect of a meal ban on branded drug usage 
in equilibrium. The effect of a ban on utilization is similar whether or not we allow prices 
to adjust because, although meals shift the demand curve outward substantially, the effect 
of this demand expansion on price is dampened by the role of insurers as intermediaries 
negotiating point-of-sale prices. A ban on meals results in only a small decrease in POS and, 
in turn, OOP prices. 

Turning to the remaining columns of the Table, the quantity estimates also show that 
pricing above marginal cost reduces total statin usage by about 1.8 percentage points with 
meals (compare "Observed" to "No Ban, p = mc") and 1.3 percentage points without meals 
(compare "Ban" to "Ban, p = mc"). Intuitively, for both Lipitor and Crestor, meals coun-
teract the fact that patients face prices above marginal cost, resulting in total quantities 
that are closer to the efficient allocation. In the Lipitor case, meals cause utilization to un-
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dershoot the efficient allocation; in the Crestor case, meals cause utilization to fall between 
the allocations with p = mc with and without meals. The last two columns also illustrate 
how physician/patient sensitivity to OOP price factors into suppliers' market power—if we 
counterfactually set p = mc and divorce out-of-pocket prices from point-of-sale prices, point-
of-sale prices would increase substantially. 

In sum, for the statin market in 2011-12, meal payments from manufacturers to physicians 
increased demand for branded statins, and thus played an important role in generating 
profits for the manufacturers involved. They improved allocative efficiency by offsetting the 
distortion of high branded drug prices, but this was costly to consumers and insurers because 
promoting branded drugs is an expensive way to increase overall statin usage. 

5.2 Welfare Implications of a Counterfactual Meal Ban 

To evaluate policies that seek to ban or limit meals and associated interactions, we must 
quantify how price and quantity effects translate into welfare: consumer, producer, and to-
tal surplus. Consumer surplus depends on the extent to which payment effects correct for 
decision errors that would otherwise lead to underutilization. Motivated by the American 
College of Cardiology's position that statins are underutilized overall (American College of 
Cardiology 2017), we suppose in our baseline model that all statins and all physicians are 
equally subject to a unidimensional decision error £de that dictates the extent of under- or 
over-prescribing of statins relative to the outside option. (We explore alternative specifica-
tions in Appendix H.) Our counterfactuals allow for more or less substitution to the outside 
good, but implicitly hold the prices and qualities of the alternative treatments embodied in 
the outside good fixed. 

5.2.1 Welfare Effects as a Function of £de 

In our welfare simulations, we present two different measures of consumer surplus: CSdt( J) 
accounts for surplus net of out of pocket prices. CSdt(Jt) — qdjt(PpOS(1 — Tjt) — PdjT) 

(termed "Consumer Surplus net of transfers" below) further subtracts the portion of drug 
costs paid by the insurer, which would be consistent with these passing through fully to 
consumers (and/or the federal government, as Medicare Part D is a subsidized program) in 
the form of higher premiums. 

We compute Producer Surplus as the marginal profit as defined in Section 3.3, minus 
salesforce and meal costs: PSjrt = £ d e - ^ ( P p O t (1 — Tj t) — m c j t ) — C j ^ _ 1 , where T j t is the 

manufacturer rebate, mcjt captures the cost of manufacturing and distributing the marginal 
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unit of drug j, and C™dj=1 is the total cost of a meal-based relationship with a physician.30 

Total Surplus is the sum of Producer Surplus and Consumer Surplus net of transfers. We 
calculate surplus for both 2011 and 2012. This highlights how the welfare effects of meal 
payments differ in the case of a single branded drug providing payments. It also provides 
some context for the magnitude of meal effects in that we can compare them to the welfare 
impact of generic atorvastatin entry. 

The results are summarized graphically in Figure 6 with all measures represented as 
percent changes relative to the baseline of the observed outcomes in 2011. Thus, "Observed 
2011" is a flat line at zero, we compare "Observed 2012" to "Observed 2011" to quantify 
the welfare effect of atorvastatin entry, and we compare "Meal Ban t" to "Observed t" to 
quantify the welfare effect of a meal ban in year t. Appendix Table A12 provides estimates 
of Observed 2011 levels and standard errors on all estimates. The measures are represented 
in dollars per cardiovascular patient (many of whom will not receive a statin) in order to 
take into account changes on the extensive margin. 

First, consider our measures of consumer surplus in panels (a) and (b). "Observed 2012" 
is rotated clockwise relative to "Observed 2011," reflecting that the benefit of atorvastatin 
entry in 2012 (and the associated price effects) is decreasing in £de. Intuitively, the more 
negative £de is, the greater the implied benefit of taking statins, and in turn of the statin 
market expansion in 2012. At £de = 0, Consumer Surplus increased by $0.91 per patient due 
to generic atorvastatin entry, but Consumer Surplus net of transfers increased even more 
($3.17) due to the latter measure incorporating the full benefit of reduced POS prices. 

In each year t, Consumer Surplus (with or without transfers) under a meal ban is rotated 
counter-clockwise, relative to Observed Consumer Surplus. More negative £de implies that 
statins are more valuable to patients, and hence that a meal ban has more potential to be 
harmful. The point at which the line for "Observed t" crosses the line for "Meal Ban t" is the 
point at which the benefits of increased statin use driven by meals, which disproportionately 
increase expensive branded statin use, exactly justify the increased expenditures. Allowing 
meals improves consumer surplus in 2011 for £de/0p <-$72, but only improves consumer 
surplus net of transfers for the more extreme threshold value of £de/0p <-$268. In 2012, 
with a single branded firm offering meal payments, and another generic option available in 
atorvastatin, the decision error necessary to justify meals is less extreme, with cutoffs near 
-$68 for pure Consumer Surplus and -$204 for Consumer Surplus net of transfers. Intuitively, 

30As discussed previously, we assume that marginal manufacturing costs are 17 percent of the average 
POS price of generic statins, and that salesforce costs are $1,780.69 ($1,563.65) per physician-year for Lipitor 
(Crestor) based on the estimates in Liu et al. (2020). See Appendix E for construction of baseline and 
alternative rebate assumptions. As shown in Appendix H, Producer Surplus changes under alternative cost 
and rebate assumptions, but Consumer Surplus is largely unchanged. 
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the large negative cutoffs of -$268 and -$204 reflect that, with our specification of a flat £de 

across all drugs, the market expansion effect of meals on overall statin use (which is smaller 
than the effect of meals on use of promoted statins) must be valuable enough to justify 
increased utilization of expensive branded drugs. 

From a producer surplus perspective (Panel (c)), allowing meal payments is always pre-
ferred to a ban. This is not a foregone conclusion, as business stealing effects can generate 
a prisoner's dilemma in which firms would prefer to ban advertising. The effect in the case 
we estimate here is fairly large, with a meal payment ban resulting in an approximately 19 
percent decrease in producer surplus. 

Taken together with Consumer Surplus net of transfers, Panel (d) shows that, in the case 
of statins, meals increase Total Surplus as long as £de/9p <-$49. If there is no underlying 
decision error, a meal ban increases Total Surplus by $0.32 per patient. Alternatively, if 
decision errors are equivalent to the average effect of meals on revealed willingness to pay 
(£de /0p=-$41), such that meals cancel out decision errors on average among those receiving 
them, then the effect of meals encouraging statin use is almost exactly offset by the fact that 
meals encourage the use of expensive branded statins, resulting in a total surplus effect of 
meals that is economically small and statistically indistinguishable from zero. 

Appendix Table A14 shows how our welfare simulations vary with our modeling as-
sumptions, comparing the above ("Baseline") results to simulation results with alternative 
assumptions regarding rebates, marginal costs, the extent to which insurers internalize car-
diologist decision errors ("Pricing"), and decision errors correlated with meal responsiveness 
£d = Yde * instead of fixed across all physicians. For each alternative specification, we 
show the effect of a meal ban on 2011 surplus (in dollars per cardiovascular patient) for a 
range of possible values of £de. The effects of a meal ban are qualitatively and quantitatively 
similar across all modeling assumptions, with the exception that £d = Yde * implies that 
meals are more likely to be welfare improving (e.g., Total Surplus increases for £de < - $25 , 
vs. the lower threshold of -$49 in our Baseline specification). This is not unexpected—if re-
sponsiveness to meals were highest among physicians with particularly large decision errors, 
then meals would be most effective where consumers stood to gain the most. Even here, 
though, the qualitative pattern is robust: the effect of meal payments on consumer welfare 
depends critically on the extent to which meals simply increase usage vs. increase usage in 
cases where the drug would be severely underutilized £de << 0. 

5.2.2 Calibrating the Decision Error Magnitude using Clinical Data 

The extent of over- and under-utilization (absent meals) surely varies across drugs. For 
statins, many studies point to potential underutilization, and this perspective is consistent 
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with our result that meals tend to bring otherwise low prescribers closer to the prescribing 
behavior of those who do not receive meals. However, determining whether £de is sufficiently 
negative for meals to be welfare-improving requires additional data. 

We investigate this issue for our case study using estimates of the health benefits of 
statin regimens among indicated patients from clinical trials. The Heart Protection Study 
Collaborative Group indicates a benefit of a statin regimen of about 0.69 life years for 
Medicare-age enrollees if adherence is perfect over five years. Given conservative assumptions 
on adherence rates, benefits to non-adherent patients, and the dollar value of a life-year gain 
(see Appendix F for details), this implies that the decision-maker optimizing on behalf of 
an average indicated patient should compare the monthly out-of-pocket price of statins to a 
"flow" willingness-to-pay value of $516.31 This measure suggests that the £de /9p consistent 
with statin demand in our data would be -$356 (indicated by a vertical red line in each panel 
of Figure 6). This is well below the 2011 threshold value of -$268 at which Consumer Surplus 
net of transfers improves in the presence of meals. 

This calibration exercise is instructive if the Medicare cardiovascular patient population 
underlying our sample is similar to the population from which the life-year gain estimates 
are taken - UK adults over age 60, with blood total cholesterol concentrations of at least 
135 mg/dL, and with coronary disease, other occlusive arterial disease, or diabetes (Heart 
Protection Study Collaborative Group 2009). We cannot provide direct evidence on this 
mapping using patient characteristics, but our simulations indicate that eliminating meals 
would reduce statin utilization by 5 percent, and the American College of Cardiology indi-
cates that utilization of statins should increase by 24 percent from observed levels (American 
College of Cardiology 2017). That is, according to clinical guidelines, statin use is too low 
even with meals, and one might speculate that Medicare patients of cardiologists would 
be a natural population for the ACC's recommended expansion. We can also apply even 
more conservative assumptions to the mapping between the clinical data and the sample of 
Medicare cardiovascular patients we study. For example, Consumer Surplus net of transfers 
starts to decrease under a meal ban if more than 75 percent of (randomly selected) Medicare 
patients in our sample would experience the clinical benefits of statins from the medical 
literature, even if the remaining 25 percent experienced zero benefit. And so on. 

We find this flexibility an appealing feature of the "decision error" approach to modeling 
frictions between decision utility and welfare relevant utility in health care. One can use a 
relatively transparent set of assumptions to map clinical data to revealed preference demand 

31 To obtain the "flow" value, we divide the total value of expected life-years gained from adherence over 
five years by the multiplier on monthly out-of-pocket costs that is necessary to cover five years of prescription 
statins, in present discounted value. 
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estimates for a given sample. For illustrative purposes, we have done so at the aggregate 
level and using one specific clinical trial result previously used in the economics literature 
(Sinkinson and Starc 2019). However, one could alternatively take a meta-analysis approach 
and show where the Consumer Surplus (or Total Surplus) threshold value falls relative to 
the distribution of clinical findings. One could also, perhaps with richer claims and patient 
level clinical trial data, take further steps like matching patient observable characteristics 
in the prescribing data to those in the clinical trial data. Computing outcomes for a wide 
range of decision error values can also help explore robustness to assumptions. 

6 Conclusion 
In many industries, firms reach consumers through expert intermediaries. Interactions be-
tween firms and these experts, which can involve direct payments and other kinds of re-
muneration, risk creating conflicts of interest that can hinder efficiency. However, these 
interactions may also facilitate valuable information flows, reminders, or nudges, enhancing 
welfare. Further, they often take place in conjunction with other distortions due to agency, 
market power, and strategic interactions between firms. While recent theoretical work (In-
derst and Ottaviani 2012) has shed new light on these tradeoffs, it has remained challenging 
to identify these relationships empirically, in part because of the strategic targeting of ex-
perts by firms and in part due to the difficulty of mapping any estimated effects into welfare 
in light of other market frictions. These issues are particularly salient in light of recent policy 
debates over conflicts of interest in the U.S. health care and financial services industries. 

We propose a framework to address these challenges and implement it using an important 
case study in the health care industry. We introduce new instrumental variables, showing 
that local academic medical center conflict of interest policies influence the probability of 
payments from pharmaceutical companies for unaffiliated doctors in the same region. We 
employ machine learning methods to use this continuous instrumental variable to trace out 
the distribution of marginal treatment effects of firm payments to physicians in the market for 
statins. We also exploit variation in statin drug market structure over time, using the Lipitor 
patent expiration and ensuing generic entry to disentangle market power effects. Leveraging 
this approach with detailed data on prescriptions, prices, and payments for statins in 2011-
12, we are able to identify the impact of payments on prescribing behavior and welfare under 
a range of assumptions. Overall, we find substantial heterogeneity across physicians in the 
expected response to payments, and that firms target payments to physicians who will be 
responsive to their interactions and do not target those who do not appear to be worth the 
expense. 
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Interestingly, these payments seem to mostly raise prescribing among targeted physicians 
such that they resemble those not targeted. This is at least consistent with arguments that 
payments are paired with information or reminders that might improve prescribing. To 
investigate this more precisely, we introduce a "decision error" parameter governing the 
extent to which payments interact with any baseline over- or under-prescribing, and we 
compare welfare under the observed regime to a counterfactual regime with a payment ban. 
Payments improve allocation by offsetting the distortion of high prices for on-patent drugs. 
However, much of the gain accrues to manufacturers. When we calibrate the decision error 
parameter to clinical data on the value of statins, we find that, in our estimated model 
for statins, meal payments increase consumer surplus as well due to under-prescribing at 
baseline. The magnitudes of these effects are large in the sense that they are similar to the 
introduction of generic atorvastatin, one of the largest generic introductions of all time. 

There are limitations to our approach. We focus our case study on a particular market, 
cardiologists and statin prescriptions in the Medicare Part D program, during a two-year 
time period near the expiration of the Lipitor patent. The dynamics of this market could 
differ in important ways from other drug and device markets in health care, and other 
industries where expert intermediaries play an important role, such as financial services. 
Future research can help to expand the scope of contexts studied and accumulate further 
policy-relevant evidence. The framework we have developed here could be a starting point 
for these explorations. 

A study that measures responses of prescribing to payments across many drugs could be 
especially useful. Such a paper will likely require alternative strategies for estimating price 
elasticities in other contexts, and adaptations to allow for new drugs or other cases where the 
information environment might be changing during the time frame studied. Finally, scaling 
our decision error calibration approach for mapping effects into welfare would require careful 
analysis of the suitability of available clinical evidence. 

Can our current set of results inform policy about banning meals and accompanying 
interactions more broadly? Of course any extrapolation should be done with caution, but 
we think that there are some more general lessons that can be learned. Our results suggest 
that a ban could harm consumer welfare in some markets. To evaluate a blanket ban, these 
harms would have to be balanced against the benefits of eliminating meals in markets with 
small, null, or even positive underlying decision errors. For example, there is evidence that 
Purdue's marketing of OxyContin to physicians had devastating effects on welfare, with 
repercussions that endure today (Alpert et al. 2019). Alternatively, perhaps policies that 
allow meal payments based on the state of clinical evidence relative to the current market 
uptake would remove the need to balance harms across markets using blanket policy. Of 
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course, such policies would be much more difficult to administer. This idea is broadly 
consistent, though, with policies at some AMCs that try to encourage certain types of more 
educational interactions and information exchange between industry and physicians. 

Much can be gained from future research looking at similar phenomena in different con-
texts. In our results here, the ability of pharmaceutical sales to target physicians seems 
extremely important. Given the ubiquitous findings of heterogeneity in treatment patterns 
across areas of medicine, this phenomenon may also extend beyond just pharmaceuticals. 
The spillovers identification strategy used here is fairly general, suggesting it could also be 
used in many other cases. As data on payments and treatment at finer timing units becomes 
available, future research may even be able to more clearly understand some of the dynamics 
that underlie these processes. 

Finally, we find the approach of calibrating revealed preference estimates to clinical data 
a potentially promising one for health care research. It is relatively straightforward, clear, 
and simple to implement in the manner we have done here. With increasingly rich clinical 
and real world treatment data becoming available in health care more broadly, this may offer 
one way to model welfare in the presence of concerns about various frictions and potential 
errors in patient care decisions. 
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APPENDICES—FOR ONLINE PUBLICATION ONLY 

A Additional Institutional Background 

A.1 Medicare Part D 

37 million people, or 70 percent of eligible Medicare beneficiaries, enrolled in Part D plans 
in 2014 (Hoadley et al. 2014). Medicare-eligible individuals can acquire prescription drug 
coverage through standalone Part D plans or bundled with medical and hospital coverage in 
the form of "Medicare Advantage" plans. Utilization of drugs in the Part D program may 
in general depend on prescribers' training and knowledge, interactions with pharmaceutical 
firms, and preferences over cost control; the relevant drugs' effectiveness, side effects, and 
out-of-pocket costs; and Part D insurers' coverage policies. 

Part D plans are offered by private insurers, but the federal Centers for Medicare and 
Medicaid Services regulates plans in terms of actuarial value, types of drugs covered, and 
pharmacy network breadth. Enrollees are entitled to basic coverage of prescription drugs by 
a plan with equal or greater actuarial value to a standard Part D plan.32 

The majority of Part D enrollees are not enrolled in standard plans, but rather in ac-
tuarially equivalent or "enhanced" plans with non-standard deductibles and tiered copays 
where enrollees' out-of-pocket costs vary across drugs and pharmacies. Branded drugs with 
close generic substitutes (e.g., Lipitor and Crestor vs. simvastatin and pravastatin prior to 
Lipitor's patent expiration) generally have higher copays than generics, while branded drugs 
with generic equivalents (e.g., Lipitor after patent expiration) have even higher copays or 
may not be covered by plans at all. Approximately 30 percent of Part D enrollees qualify for 
low-income subsidies (LIS), which entitles them to substantial reductions in premiums and 
out-of-pocket costs on covered drugs; maximum copays for LIS enrollees are low or zero.33 

A.2 Regional Prices and Formulary Variation 

In our structural analyses, we identify the price sensitivity of demand using panel variation in 
out-of-pocket prices faced by Medicare enrollees. This variation is driven by Lipitor's patent 

32In 2011, the standard plan covered: none of the first $310 in drug costs each year (the deductible); 75 
percent of costs for the next $2,530 of drug spending (up to $2,840 total; the "initial coverage region"); 50 
percent of branded costs for the next $3,607 of drug spending (up to $6,447 total; the "donut hole"); and 95 
percent of costs above $6,447 in total drug spending (the "catastrophic region"). 

33Partial subsidies are available at 150 percent of the federal poverty level (FPL); full subsidies are 
available at 100 percent of FPL. LIS enrollees can enroll premium-free in "benchmark plans" or enroll in a 
non-benchmark plan and pay the difference between the chosen plan's premium and the benchmark premium 
out-of-pocket. 
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expiration and by regional variation in insurers' responses to Lipitor's patent expiration. 
Out-of-pocket prices are generally determined using insurance plan-specific formulas as 

a function of drug coverage, placement on tiers, point-of-sale price, and benefit phase. If 
a drug is covered, the unsubsidized out-of-pocket price will be either the tier-phase-specific 
copay or the product of the tier-phase-specific coinsurance and the point-of-sale price of the 
drug. Low-income subsidy enrollees face copay maximums as a function of their income.34 

For our model estimation, we use point-of-sale and out-of-pocket prices from the CMS 
Part D public use files for Q2 2011 and Q3 2012. In each file, we observe POS price for a 
30-day supply, formulary tier placement, and unsubsidized beneficiary cost-sharing for each 
plan-drug, where drugs are identified by national drug code (NDC). NDC uniquely identifies 
the labeler (roughly, the pharmaceutical manufacturer); the specific strength, dosage form 
(i.e, capsule, tablet, liquid) and formulation, and the package size and type. We use the public 
use files to calculate out-of-pocket price per 30-day supply for an unsubsidized enrollee in each 
coverage region of the Medicare Part D plan benefit design, for each plan-year-drug code. 
For off-formulary drugs (i.e., drugs not covered by the plan at all), we set the out-of-pocket 
price equal to the point-of-sale price. To calculate the average unsubsidized (non-LIS) out-
of-pocket price for each plan-drug-year, we feed the average spending for non-LIS enrollees 
in 2011 and 2012 from Starc and Swanson (2020) (Table 1) through the nonlinear benefit 
structure in each plan-year to determine the weight to be put on each coverage phase-specific 
price. We limit LIS out-of-pocket prices to not exceed the maximum copays for branded and 
generic drugs (as appropriate) for non-institutionalized LIS beneficiaries with incomes over 
100 percent of FPL.35 Finally, we calculate an average out-of-pocket price per plan-drug-year 
by aggregating across non-LIS and LIS out-of-pocket prices, weighting by enrollment at the 
LIS status-plan-year level.36 

Given that our prescription drug claims data are at the prescriber level and thus cannot 
be linked to plans, we aggregate up to the state-drug-year level using plan enrollment data 
to construct weighted averages. Standalone Part D plans enter, negotiate prices, and set 
beneficiary cost-sharing in one of 34 Part D pricing regions, which are either single states or 
supersets of states. In contrast, Medicare Advantage plans enter at the county level. States 
strike a balance between these two levels of aggregation. 

When Lipitor's patent expired in November 2011, generic atorvastatin was introduced by 

34In 2011, the maximum out-of-pocket price for LIS beneficiaries with income above 100 percent of 
the federal poverty level (FPL) was $2.50 for generic drugs and $6.30 for branded drugs, and many LIS 
beneficiaries qualified for more generous subsidies based on income. 

35https://q1medicare.com/PartD-The-2014-Medicare-Part-D-Outlook.php 
36 https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/MCRAdvPartDEnrolData 
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two generic manufacturers—the "authorized" generic firm Watson Pharmaceuticals and the 
paragraph IV challenger Ranbaxy Laboratories—that were afforded 180 days of exclusivity 
from other generic competition. After Lipitor's loss of exclusivity, essentially all Part D plans 
added atorvastatin to their formularies in 2012. Conversely, many plans did not immediately 
remove Lipitor from their formularies. In Q3 2012, 50 percent of plans still covered Lipitor. 
To the extent that some enrollees whose plans dropped Lipitor from their formularies were 
motivated to purchase Lipitor in cash (in which case the claim would not be recorded in the 
Medicare Part D data), this will bias our estimates of price sensitivity upward in magnitude. 
POS and OOP prices are summarized in Table 1 in the main text. 

Variation in prices is generated by plan-pharmacy negotiations over point-of-sale prices 
and by plan-specific decisions regarding drug coverage and tiering. The coefficients of varia-
tion for the point-of-sale (out-of-pocket) price across Part D regions in 2011 was 0.02 (0.19) 
for Lipitor and 0.02 (0.16) for Crestor. The coefficients of variation for Lipitor and Crestor 
were similar in 2012. For generic atorvastatin in 2012, there was significant variation in terms 
of both point-of-sale (CV =0.11) and out-of-pocket price (CV =0.24). This price variation, 
at the state-year-drug level, is presented for our focal drugs in Table A1 below. 

Table A1: Lipitor, Atorvastatin, and Crestor Prices—2011 to 2012 

2011 2012 2011 -2012 
mean s.d. ^cross -sec . s . e . c r o s s mean s.d. ^cross s . e . c r o s s ^pane l s e panel 

Lipitor OOP 
POS 

31.87 
140.0 

6.079 
3.460 

0.810 
2.529 

0.239 
1.889 

66.12 
163.6 

14.86 
8.960 

0.819 
1.950 

0.119 
1.049 

1.019 
0.970 

0.039 
0.050 

Atorva-
-statin 

OOP 
POS 

10.03 
31.28 

2.420 
3.420 

0.850 
0.819 

0.300 
0.200 

Crestor OOP 
POS 

31.11 
137.7 

4.869 
3.410 

0.579 
2.890 

0.189 
2.529 

31.22 
160.9 

5.019 
3.519 

0.500 
0.280 

0.250 
0.540 

0.500 
1.009 

0.250 
0.009 

Notes: Reports state-year-drug out-of-pocket (OOP) and point-of-sale (POS) prices (means and standard devi-
ations) and regressions of prices in one state (or state-year) on the prices of dominant insurers in other states, 
within-year ("cross") or across years within state ("panel"). 

Many of the determinants of both point-of-sale and out-of-pocket prices across regions 
at a point in time are likely driven by insurer-specific factors that are correlated across 
regions. These might include management, contracts with prescription benefit managers, 
and costs. Given this, we introduce another source of identifying variation—for each plan-
drug-state-year, we calculate the average price for that plan's issuer, for the same drug-year 
in other pricing regions, and we aggregate that instrument across plans within each state to 
generate a state-drug-year-specific instrument. The logic is as follows: if (for instance) United 
HealthCare were particularly slow to remove Lipitor from its formularies, then Lipitor prices 
in 2012 would be higher in regions dominated by United HealthCare for reasons unrelated 
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to those regions' latent price-sensitivity or willingness to substitute to generic equivalents. 
The association between the point-of-sale and out-of-pocket prices within-year and across 
time within-state is in the "cross" and "panel" columns in Table A1 (ft reports the "first 
stage" regression coefficient with the standard errors in the next column). There is a strong 
positive association between the pricing policies of the dominant insurers in each state and 
their pricing policies in other regions. This holds within each year, looking across states 
cross-sectionally ("cross"), and within states, looking across years, which we can see in the 
final "panel" column that pools years and controls for state fixed effects. These associations 
are generally more precise for OOP prices (which we use in our demand analysis) than for 
POS prices. This suggests that the correlation in "insurer-specific factors" across regions is 
stronger for benefit design (e.g., formulary structure) than for POS price negotiations. 

B Data Set—Construction and Context 

B.1 From Full to Estimation Sample 

Table A2 reports summary statistics for key prescribing and meal-payment variables. In 
terms of the two main regressions used to identify the demand parameters: the price and 
nest regression is based on data at the doctor-drug-year level (djt; Panel a) for all drugs 
and uses the sample corresponding to column (3); the meal regression is based on data 
at the doctor-drug level (dj; Panel b) only for Crestor and Lipitor and uses the sample 
corresponding to column (4). 

B.2 Linking Payments Data 

The payment data is based on publicly available data released by firms prior to the Sunshine 
Act, which began requiring reporting in 2013. In the data, physician-level identifiers were 
often limited to a name, city of address, and perhaps a specialty. Back when the reports 
were still posted on firms' websites, the enterprise software company Kyruus collected them 
as a part of their initiative to analyze physician-firm relationships. Kyruus utilized their 
proprietary machine learning algorithms to match each individual-firm data point with the 
physician most likely to be the true recipient. The resulting dataset, generously provided to 
us by Kyruus, connects each physician-firm-payment to the most probable unique National 
Provider Identifier. 

We construct two main categories of payments: "research" and "general" (all non-research 
payments). This scheme closely follows that of Open Payments and excludes all royalty 
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Table A2: Sample Descriptions 

(1) (2) (3) (4) 

Panel (a): Unit-of-analysis (djt, all drugs)—Claims data 

Cardiologists unique 19,817 14,449 14,449 13,793 
Cardiov. claims total 1.3e+08 1.1e+08 1.1e+08 1.0e+08 

mean 3,318 3,662 3,662 3,771 
median 2,581 3,002 3,002 3,123 

Cardiov. share, focal statins mean 0.197 0.187 0.187 0.190 
median 0.190 0.187 0.187 0.189 

Cardiov. share, Crestor mean 0.028 0.026 0.031 0.031 
median 0.020 0.021 0.025 0.025 

Cardiov. share, Lipitor-2011 mean 0.044 0.041 0.044 0.045 
median 0.035 0.036 0.038 0.038 

Cardiov. share, atorvastatin-2012 mean 0.055 0.050 0.052 0.053 
median 0.047 0.046 0.047 0.048 

Cardiov. share, other generic sum mean 0.115 0.110 0.111 0.111 
median 0.108 0.108 0.108 0.108 

N djt obs. unique 217,987 158,939 123,809 121,121 

Panel (b) : Cardiologist-drug (dj, Crestor or Lipitor) —Payment data 

Cardiologists unique 19,817 14,449 13,933 13,775 
AstraZeneca — Crestor Any type 0.518 0.593 0.721 0.722 

Total $ amount 485 435 435 437 
Any meal 0.511 0.585 0.712 0.713 
Meal $ amount 84.6 81.3 81.3 81.5 

Pfizer — Lipitor Any type 0.293 0.326 0.350 0.352 
Total $ amount 295 280 280 281 
Any meal 0.274 0.305 0.328 0.329 
Meal $ amount 53.8 51.2 51.2 51.3 

N dj obs. unique 39,634 28,898 25,323 25,156 

Panel (c) : Cardiologist (d, Crestor and/ or Lipitor)— Payment data 

Cardiologists (N d obs.) unique 19,817 14,449 13,933 13,775 
All Types either firm 0.580 0.660 0.685 0.689 

both firms 0.231 0.258 0.268 0.271 
$ sum 347 362 375 379 

Meals either firm 0.566 0.646 0.669 0.674 
both firms 0.218 0.244 0.253 0.256 
$ sum 57.9 63.2 65.5 66.1 

Notes: Reports select summary statistics for prescribing- and payment-related outcomes at three levels of 
observations (Panels (a—c)) and across four samples. Panel (a) describes prescribing for the full set of doctors 
and drugs as the data is used for the price and nest regressions. Panels (b) and (c) describe payments from the 
two branded manufacturers (AstraZeneca—Crestor, Pfizer—Lipitor) at either the doctor-drug level (Panel (b)) 
or aggregated to the doctor level (Panel (c)). Column (1) includes all cardiologists in Physician Compare; (2) 
restricts sample to those in (1) with >500 cardiovascular claims in both 2011 and 2012; (3) restricts sample to 
those in (2) with non-zero qdjt; (4) restricts sample to subset of cardiologists in (3) for which we estimate ^dj, 
which are then used in the MTE estimation. 

payments. Within general payments we identify three sub-categories: "meals," "travel or 
lodging," and "consulting, speaking or education." 
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C Additional Theory and Connection to Empirics 

C.l Graphical Framework 

To build intuition regarding the potentially complex effects of payments in the presence of 
other frictions, consider a simple model where payments shift the demand curve outward. 
Panel (a) of Figure Al presents a hypothetical demand curve in blue and a "biased" demand 
curve shifted outward in red. Assuming without loss of generality that the drug's marginal 
cost is zero, the welfare loss under perfect competition is shown in the shaded triangle below 
the line segment Qef f Qb—marginal patients prescribed the drug in the presence of payments 
to physicians receive negative health benefits. 

Figure A l : Welfare Analysis with Other Frictions 

( a ) Perfect. Oomp. ( b ) Market Power ( c ) Insur./Oligo. ( d ) Decision Error 

In a setting with perfect competition, this conceptual framework suggests that the causal 
effects of payments on prescribing are all that is needed. However, in many empirically rel-
evant settings with firm payments to experts, firms also have market power, and utilization 
is distorted away from the social optimum due to high prices. In prescription drug markets, 
branded drugs have patent protection, and they often compete with differentiated branded 
and generic substitutes whose manufacturers make their own strategic pricing and promotion 
decisions. Payments are typically only made for branded drugs as generic margins are too 
small to justify such costly marketing. A simple version of this model is presented in Panel 
(b) of Figure A l : a branded pharmaceutical manufacturer faces the residual demand curve 
in blue, which is again shifted outward in the presence of physician-firm payments. Market 
power causes "unbiased" quantities Qm to be too low; thus, payments may increase prescrib-
ing toward the optimum Qm < (/' < (pictured) or cause prescribers to overshoot the 
optimum Qm < Qe^ < Qb. In the former case, the overall welfare impact of payments 
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is positive, though consumer surplus declines; in the latter case, both total and consumer 
surplus decline. 

Finally, we must also account for reasons that the "effective" demand curve for a given 
drug may not represent the appropriate one for welfare analysis. A leading example is 
insurance, pictured in Panel (c) of Figure A1. The "true" demand curve is the solid blue 
line; the insured residual demand curve is the dotted blue line (which is significantly less 
elastic with respect to the point-of-sale price, as insurance enrollees bear only a fraction of 
that price out of pocket); and the "biased" demand curve is again in red. In this hypothetical, 
payments from firms reinforce the effects of insurance, each increasing consumption above the 
uninsured equilibrium: Qm < Qins < Qb.37 The welfare implications are again ambiguous, 
and the consumer surplus effects of firm payments will depend on pass-through of producer 
prices to enrollee premiums. 

In our supply analysis and counterfactuals, we account for the details of patient insurance 
and strategic interaction, and model point-of-sale prices as determined via bilateral bargain-
ing between insurance plans and differentiated pharmaceutical suppliers. Point-of-sale prices 
then pass through partially into consumer out-of-pocket costs via a fixed cost-sharing rate. 
In this way, the basic machinery of our supply and demand model accounts for several eco-
nomic forces that may cause inefficient utilization in equilibrium even absent payments to 
physicians. 

The general point of Panel (c) also extends beyond insurance, though. A large literature 
in economics and health services research has documented that health care decisions can 
be biased relative to the patient's optimum, due to a variety of potential frictions. These 
include physician information and skill (Abaluck et al. 2016; Chan Jr. et al. 2019; Currie 
and MacLeod 2020); imperfect agency (beyond the impact of payments); and "behavioral" 
errors such as present bias, symptom salience, and false beliefs (see Baicker et al. (2015) 
for a review). These biases could be positive or negative, depending on the context. In the 
case of statins, there is evidence of likely underprescribing relative to the clinical optimum 
(American College of Cardiology 2017). Motivated by this, Panel (d) of Figure A1 shows one 
hypothetical extension of Panel (c), grouping these "other" frictions under the term "Decision 
Error" for the sake of brevity and convenience. In this example, a negative decision error 
causes quantity to be too low absent payments, and payments increase quantity toward 
efficient levels, such that Qde < Qb < Qeff. The next Section describes how our welfare 
analysis incorporates a "decision error" parameter that allows for a range of assumptions on 

37Another relevant extension would include the effect of strategic behavior of competitors. For example, 
in oligopoly, the residual demand curve can be distorted due to competitor pricing or payment behavior. 
This is the phenomenon highlighted in Inderst and Ottaviani (2012), where payments may even increase 
consumer surplus by improving allocative efficiency. 
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how payments might counteract, overshoot, or reinforce any baseline biases. 

C.2 Consumer Surplus 

As outlined in Section 3, we want to take seriously the many potential ways in which de-
cision errors might drive a wedge between decision utility describing the combined physi-
cian/patient choice function and realized, welfare-relevant utility. We also want to consider 
how meals might counteract or reinforce such errors. To do so, we allow for the demand 
unobservable to have two components: 

Cdjt = Cdjt + e% 

where £dj-t is a typical demand unobservable that impacts both choices and true realized 
utility, but e j t is a "decision error" that impacts decision utility but not realized utility. 

Given this model, we represent expected consumer surplus as: 

C S d t J t ) = Qdt 1 l n ( i + ( E e j ) 1 - A ) - E qdjt ( ) . 
V j E J d t / } j^Jdt 

CS implied by decision utility adjustment for "decision errors" and meals 

The second term adjusts consumer surplus for the presence of a decision error that results 
in under- ( e j t < 0) or over-prescribing ( e j t > 0) as in Figure Al (d ) above, as well as the 
countervailing (or reinforcing) effect of meals. 

In our context, the important dimensions of the decision error specification are the mean 
decision error, heterogeneity in errors across physicians and molecules, and the correlation 
with meal payment effects. For example, e j t = 0 would be a case with no decision error at 
all, where meals simply bias utilization of promoted drugs upward. By contrast, e j t = — 6dj 
would be a case where meals perfectly correct prescribing errors among those who receive 
them. 

We study the welfare implications of two different specifications of decision errors. In our 
main specification, we set a constant decision error across all doctors and statins e j t := ede, 
and we simulate counterfactuals for a range of decision errors, from substantial underpre-
scribing to overprescribing.38 This specification, while simple, has the virtue of being easy to 
interpret, and accommodates the finding in the prior literature that statins as a drug class 

38This is similar to the approach in Handel (2013), which simulates counterfactual welfare over a range of 
assumptions regarding whether the friction underlying an inertial demand response represents a true social 
cost. An interesting feature of our specification is that the decision error need not be correlated with or 
bounded by the estimated friction. 
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are underprescribed (Baicker et al. 2015). 
In an alternative specification, we simulate welfare under the assumption that decision 

errors are a scaled function of estimated physician-specific meal responses e^ := YdeQj, 
varying scalar Yde to again allow for a range of potential under- or over-prescribing in the 
absence of meals. In this specification, Yde = — 1 represents a special case where meal 
payments perfectly correct for a given physician's average tendency to under/over prescribe, 
for those drugs for which meals are received. This specification also has cases where meals 
distort prescribing away from otherwise optimal behavior Yde = 0, undercorrect Yde < —1 

or overcorrect Yde S (—1,0) underprescribing, and so on. Ultimately, the two types of 
specifications we explore do not result in different qualitative takeaways regarding the overall 
welfare effects of meals, so we do not explore other potential decision error specifications. 

In both models of decision errors we study, we also compute the mean level of decision 
error that calibrates the expected total surplus a 30-day supply of statins generates in the 
model to the value of such a supply implied by the medical literature. We consider this the 
best outside estimate of the mean level of decision errors in statin prescribing in our sample. 

C.3 Meal Payments: Intuition 

Here, we provide a model of the decision by a given drug manufacturer to supply a meal to 
a given doctor. This model conditions on a global optimization of how to budget meals and 
the salesforce to execute them across geographic space. As neither our estimation strategy 
nor our counterfactuals will require solving that global problem, we do not consider it here. 
Given that global allocation, drug j ' s sales representative should supply a meal to doctor d 

if the return on investment exceeds whatever hurdle rate Rj the firm applies, which is if and 
only if: 

j — mcj) (E[qj= — j = ° | I d j ] ) > R j j = — j = ° ) . (10) 

Here we assume that the manufacturer price in a region will not change with a meal supplied 
to one more physician. The key terms are then what the sales representative expects to 
happen to quantity, given her information set I d j , and the effect of the meal (both direct 
and indirect) on total costs in the region. 

The institutional details in this setting suggest that the cost function Cjmdj=1 will have 
increasing returns to scale in the sense that the average cost of providing a meal will be 
decreasing in the total meals provided in a region. We would also expect the cost function 
to depend on other regional characteristics such as the density of candidate physicians in 
geographic space. Further, the incremental cost of providing a meal to doctor d is likely to 
depend on characteristics of that doctor or her employer that affect her willingness to accept 
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a meal. 
The expected quantity increase from the meal E[q j 1 — qdj^=°|Ij] will be a function 

of the expectation of total size of the doctor's patient flow Qdt and the choice probability 
function as given in (3). In particular, it will be a function of the expectation of the parameter 
9m which determines the effect of the meal interaction on the mean utility weight the doctor 
assigns to drug j. 

C.3.1 Meals Equation—Mapping Theory to Empirics 

Here, we show how the above theoretical model of meal provision can be simplified to moti-
vate the first stage specification and variables included in our instrumental variables analysis. 

We specified that a doctor d would receive a meal from drug j whenever 

j — m c j ) [qm=i—qm=°) > cm= i(Nj. r d , 0 ) — cm=° ( j , 0). (11) 

To deconstruct this expression, we use dq/d 1{m>°} as an approximation to (q^p1 — q1dj=°) .39 

We also specify a particular cost function Cdj (Njrd, 0) = 0Adj1/^Nj/^. Here Adj represents 
an access cost shifter that may be drug-doctor specific, N j r d represents the number of other 
doctors accessed in the region near d, and this function has increasing returns to scale 
(decreasing marginal costs of access) iff 0 > 1. Here we also use dC/dN as an approximation 

to cm= 1 (Nj /d ,0) — cm=°(Nj/d,0) . 
Substituting these values gives 

j — mcj )Qdj > A—* N ^ . (12) 
d1{mdj > ° } 

Taking logs and rearranging yields a relationship that maps rather cleanly into our linear 
first stage meals equation: 

I w ^ . A 1 — W ^ m / r , ( dsdj \ 

L{mdj > ° } , 
ln(Qdj) + - ln(A j) — - f - ) + l n ( j r — mcj) + ln d j > 0. (13) 

0 0 V d 1{mdj > ° } / 

f (Xj; g(Zdj; ^) ^dj 
flexible a pp r o x . v i a L a s s o residual: correlated with d™ + £dj 

39 For our primary demand specification, this partial derivative is given by: 
Qdj®djj sdj ( s d j + sdj\g 1-x 1-a) 
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C.4 Nash Bargaining Solution 
We assume that prices of substitute drugs in the market are determined in a simultaneous 
Nash Equilibrium of Nash Bargaining between suppliers (manufacturers/wholesalers/pharmacies) 
and buyers (PBMs/insurers). In the model, each price maximizes the Nash Product of the 
gains from trade for each supplier and buyer pair, taking other prices as given. The first-order 
condition on each price is: 

1 - b j 

pjO = argmax ( n ( j o S j mjdt))bj (CSt(Jt) - CSt (J \ j ) ) 

dqjt l j 7 - m c j t \ CSt(Jt) - CSt(Jt \ j ) mcjt + bjt 
1 + j qjt qjt + p j 0 ( 1 - j - m c j / ( I - Tjt) 

where qjt := d qjdt denotes the sum over physicians. The term bjt is a bargaining ability 
parameter, weighting the extent to which the optimal price depends on supplier profits vs. 
the expected additional buyer surplus in the case that a contract is agreed to for drug j: 
CS t(Jt) - CSt(Jt \ j ) . Tjt reflects the rebate rate to insurers off the posted price ppÔ . 

C.5 Alternative Model of Insurer Pricing 

In our main specification, we assume that insurers negotiate drug prices as a function of 
consumer surplus as implied by decision utility. In reality, it is possible that insurers are 
aware of over- or underprescribing of some drugs and take that into account when negotiating 
prices. In such a scenario, we would want to replace CSdt in equation (6) with the following: 

CSdt(Jdt ) : = a " Qdt 11n ( l + ( £ e 1 - A ) -ade ^ j ( * + >°>) 
\ \ j e J d t J jeJdt \ ) ^ ' V J 

CS implied by decision utility adjustment for "decision errors" and meals 

q j t j ( 1 - T j t ) - p j D . 
j 

insurer drug costs 

Here, we include a parameter ade E [0,1] that allows for a range of assumptions regarding 
how insurers incorporate decision errors and meals into their surplus measure. This model 
accommodates the fully "naive" case where insurers negotiate prices under the assumption 
doctors know best (ade = 0), the fully "sophisticated" case where insurers perfectly adjust 
consumer surplus for decision errors and meals (ade = 1), and every case in between. 

We present results for the fully "naive" case in the main text, and for the fully "sophisti-
cated" case in Appendix Tables A13 and A14. As shown in Appendix Table A13, if insurers 
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are sophisticated (ade = 1), then the effect of a meal ban on prices depends on the decision 

error. A ban leads to Crestor prices decreasing by $2 if ede = —350 and increasing by $2 

if ede = 0. In the former case, meals offset underutilization of a high-value drug and the 

insurer internalizes that, paying higher prices in the presence of meals. In the latter case, 

meals just decrease consumer surplus, and the insurer internalizes that and pays lower prices 

in the presence of meals. As shown in Appendix Table A14, the value of ade has little impact 

on the welfare implications of a meal ban. 

D Parameter Estimation Routine 
The following outline details the steps necessary to recover the demand parameters (9p , X, ^dj, 9m) 

and is followed by more in-depth discussions of the Lasso approach we use (Appendix D.1) , 

how the M T E s are estimated (Appendix D.2) , the important variables selected by the Lasso 

algorithm (Appendix D.3) , and the role of the perturbation and shrinkage procedures ( A p -

pendix D.4) . Note that for ease of notation, here we use 9m to refer to the distribution of 

meal treatment effects. 

Jackknife doctors and create bootstrap samples (main source of variation for inference, blocked to cluster at 
doctor level) 

1. Replicate the full sample of djt-level observations 500 times, dropping the observations for a randomly 
selected VWd doctors; samples indexed by k 

For each k, perturb quantities (allows for sampling error in prescribing shares in first step of demand 
estimation) 

2. Reshape the data to the "use-case" level with a dummy variable c =1 indicating each use (e.g., if 
qdjt = 50, this would translate to 50 rows of c = 1 use-cases for that djt) 

3. Sample with replacement 
4. Calculate perturbed quantities qdjt = Y1 cdjt 

For each k, estimate price, nest and Vdj parameters 

5. Estimate Eq. (8) to recover price (Qp'k) and nest (Ak) parameters, and doctor-molecule fixed effects 
(vj) 

6. Parameter estimates: for 0p and A, point estimates are from estimation on the full sample, standard 
errors are given by the standard deviation across the 500 k samples 

7. Shrink each Vj estimate towards the j-specific mean using the standard deviation of Vj across the 
500 k samples as the standard error in the standard empirical Bayes shrinkage formula 

For each k, estimate meal parameters 

8. Keep Vj estimates for Crestor and Lipitor observations 
9. Follow the split-sample Lasso approach described below in Section D.1 to select the relevant controls 

(X) and instruments (Z) 
10. Estimate MTEs for meal receipt, dm'k as described below in Section D.2 and based on Eqn. (9) 
11. Parameter estimate: for 6m (and all corresponding MTE-based estimates) point estimates and stan-

dard errors are given by the median and "median deviation" across the 500 k samples as described 
below in Appendix D.1 
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D.1 Split-sample Lasso Approach 

Our use of the Lasso draws heavily on Belloni et al. (2017) and Chernozhukov et al. (2018). 
The outline of our approach, used within each of the k bootstrap samples described above, 
is as follows: 

1. Randomly split the sample into two sub-samples s = {A, B} 

2. Within each sub-sample s, perform a lasso regression of the (dependent variable) ^ on the vector of 
possible controls (and transformations thereof) X, with the selected variables given by L (X 

3. Within each sub-sample s, perform a lasso regression of the (endogenous variable) 1(m>o) on the vector 
of possible controls (and transformations thereof) X and possible instruments Z, with the selected 
variables given by L (X ) m ' s and L(Z) m ' s , respectively 

4. Within each sub-sample s, estimate Qm>k>s (and other MTE parameters) using the variables selected 
in the opposite sub-sample s' taking the union of L ( X a n d L (X ) m ' s for controls 

5. Solve for the k-specific estimate dm'k = (dm'k'A + 0m'k'B )/2 

6. Parameter estimate: for 6m (and all corresponding MTE-based estimates) point estimates and stan-
dard errors are given by the median, Qm = median(9m'k), and the "median deviation", s.e.(0m) = 
\Jmedian(9m'k — 9m), respectively. 

To minimize functional form assumptions about how the controls enter these functions, 
squared and log transformations of all X variables are included as possible controls. To allow 
firm-specific responses to the instruments, all Z variables are interacted with drug-specific 
dummies.40 

All Lasso regressions use common machine learning protocols. We use 10-fold cross-
validation—split data set into 10 equal parts, and use each in turn as the holdout sample 
on which the model trained on the other 9 is tested—at 100 potential penalty parameters 
to select the simplest model (i.e., the largest penalty) that minimizes the mean RMSE 
in the hold-out samples of the 10-fold cross validation runs. The 100 potential penalty 
parameters range up to a maximum of MaxPenaltyGuess = 2 x max(x'y), where x is 
the pre-standardized regressor matrix and y is the vector of the outcome variable, from 
a minimum of [MaxPenaltyGuess/1000]; the 100 potential penalties are evenly spaced 
between the minimum and maximum penalty guess values over a log scale. Our preferred 
Lasso specification is a "two-step adaptive" model that performs one Lasso, followed by 
another where only variables selected in the first Lasso are possible controls in the second. 
Appendix G.6 shows that our results are not sensitive to minor tweaks to this approach. 

40We obtain qualitatively similar results if only using the levels of X variables as controls and/or not 
allowing instruments to be drug-specific. 
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D.2 MTE Estimation Approach 

We estimate MTEs using the mtefe package in Stata 16 (Andresen 2018). Andresen (2018) 
provides a useful overview of the MTE literature (e.g., Heckman et al. 2006; Heckman and 
Vytlacil 2007; Brinch et al. 2017) and describes the approach to estimating MTEs that we 
employ. Briefly put, and borrowing closely from Andresen (2018)'s description, one begins 
with a generalized Roy selection model, with i indexing individuals, Y denoting potential 
outcomes, D denoting realized treatment, d denoting potential treatments, with W and V 

denoting unobservables in the outcome and treatment equations, respectively: 

Yd = f d(Xi) + Wd for d = 0,1 

Y = DY1 + (1 — Dt)Y0 (14) 

Dt = 1{g(Xl, Z) > Vi}. 

Then we make the two necessary assumptions of conditional independence (Wd , V ± Z | X: 
the error terms in the outcome and treatment equations are orthogonal to the instruments 
conditional on the controls) and separability (E[Wd | V,X] = E[Wd | V]). Per this model and 
assumptions, MTEs are then defined as: 

MTE(x, u) = E[Y1 — Y° | Xi = x,Ui = u] 

= x(/31 — £ ° ) + E[W1 — W | Ui = u] ( 1 5 ) 

heterogeneity in observables (levels) heterogeneity in unobservables (slopes) 

where U, the unobserved resistance to treatment, is given by the quantiles of V.41 

We encourage the interested reader to see Andresen (2018) for a step-by-step process 
of the MTE estimation routine via the "separate" approach first outlined by Heckman and 
Vytlacil (2007). Two specification choices of note: (1) we estimate the propensity scores 
(meal probability as a function of X and Z) using a linear probability model since the large 
number of covariates often led to nonconvergence of probit and logit models; and (2) we use 
a nonparametric local linear function to estimate the control functions in the model (which 
are related to E[W1 — W° | Ui = u]). 

As shown by Andresen (2018), posterior estimates of doctor-specific treatment effects can 

41 This smoothing creates the unit interval that is the x-axis for all MTE curves. 
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be calculated using the following formula: 

E[Y1 - Y 0 | X = x,Di = d, Pi = p] = x(P1 - P0) 

+ dE[W1 - W 0 | Ui < p] (16) 

+ (1 - d)E[W1 - W0 | Ui >p], 

where Pi is the doctor's propensity score. 

D.3 Important Variables & the Importance of Many Variables 

Table A3 reports the top variables selected by the Lasso—specifically, the number of sub-
samples within which the variable is selected in either the outcome or treatment Lasso. With 
500 bootstrap samples, each with two split-samples, the total possible number of selections 
is 1,000. The Table reports only the top 15 controls ( X ) and top 10 instruments (Z) . 

Table A3: Frequently Lasso-selected Variables 

Num. subsamples 
selected in 

Controls (X) 
log(Doc. annual avg. cardiov. claims) 1,000 
log(Hosp. num. admissions) 996 
log(HSA % uninsured) 993 
Hosp. annual doc.-avg. cardiov. claims 981 
log(HSA annual doc.-avg. cardiov. claims) 980 
log(HSA Medicare Advant. eligibility) 980 
Ad spend2 978 
log(HSA % Medicaid) 975 
HRR Share AAMC faculty 975 
log(HRR % uninsured) 964 
log(Nearest AMC drive time) 963 
State low-income subsidy enroll. 957 
Doc. graduation year 955 
HRR num. AAMC faculty 949 
log(HSA share AAMC faculty) 947 

AMC AMSA Instruments (Z) 
Lipitor, HRR AMSA 1,000 
Lipitor, HSA AMSA 955 
Crestor, HRR AMSA X faculty-wgt. 886 
Lipitor, HRR AMSA X faculty-wgt. 819 
Crestor, HSA AMSA X faculty-wgt. 658 
Crestor, HRR AMSA 645 
Lipitor, HSA AMSA X faculty-wgt. 603 
Crestor, HSA X faculty-wgt. X drive time 426 
Crestor, HRR X drive time 391 
Lipitor, HSA X drive time 384 

Notes: Reports the number of subsamples the covariate is selected in either the outcome or treatment Lasso 
regression; the maximum is 1,000. 

Obtaining precise MTE estimates requires substantial overlapping (and preferably full) 
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support of treatment propensities for both the treated and untreated sub-samples. It also 
requires significant variation in the instrumental variables at each neighborhood on this 
support in order to estimate the semi-parametric IV regressions. Comparing the common 
support of treatment propensities under specifications that only use a small subset of covari-
ates in Figure A2 clearly illustrates the value of the Lasso-based approach in that it allows 
us to generate greater overlapping support and more precision in the MTE estimates. 

Figure A2: Common Supports of Meal Propensity Regression using Different 
Control Sets 

(a) Linear only (b) Lasso selected (preferred) 
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Notes: Meal propensity scores based on the instrumental variables, molecule dummies, and 
(a) linear versions of the physician-, hospital-, and regional-level covariates, and (b) the Lasso-
selected subset of the linear, squared, and log transformations of all covariates (our preferred 
specification). 

D.4 Perturbation and Shrinkage 

We are concerned that the doctor-molecule mean utility parameters (the fixed effects) 
might be influenced by noise (since we only observe two years of utilization), especially for 
low-quantity prescribers. This motivates a "quantity perturbation" procedure. We then use 
the standard empirical Bayes shrinkage procedure (cf. Chandra et al. 2016) to account for 
potential estimation error driven by sampling variation. 

We used a delete-120 jackknife bootstrap, blocked at the cardiologist level to allow for 
arbitrary correlations within cardiologist, where we remove 120 physicians (which is the 
square root of the number of physicians in our sample) from each bootstrap sample. We 
then resample at the use case level to account for sampling error in market shares. For each 
subsample, we also follow the sample splitting procedure outlined in Chernozhukov et al. 
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(2018) to prevent contamination of our parameter estimates by overfitting in the machine 
learning model. 

Ultimately, about 94 percent of the observations are shrunk by less than 10 percent 
of their raw values, and whether or not we perturb market shares in this way does not 
substantially alter our demand estimates (see Table A9 below). 

E Role of Rebates 
The negotiation modeled in Section 3.3 is described as taking place between an abstract 
"supplier" and "buyer." The pharmaceutical supply chain is complex, in that there are 
both supply (wholesalers, distributors, pharmacies) and demand (PBMs) intermediaries with 
market power, and multiple bilateral negotiations take place between these parties (The 
Health Strategies Consultancy LLC 2005). Like nearly all pharmaceutical research, we only 
observe the point-of-sale price paid by buyers when prescriptions are filled—we do not observe 
confidential rebates remitted back to insurers/PBMs, and we do not observe the unit price 
paid directly to manufacturers. In practice, we account for these issues using average data 
on rebates and intermediary profits. 

This assumption comes to bear in two parts of our analysis. First, the prices jl that 
suppliers receive, and that insurers pay after cost-sharing is applied, are net of rebates T. This 
is an approximation, as we are collapsing a set of bilateral negotiations between upstream 
and downstream firms into a single negotiation over a unit price, and the "producer surplus" 
is split between manufacturers, wholesalers, distributors, and pharmacies. Second, Panel 
(c) of Figure 5 plots the distribution of expected changes in firm revenue from targeting 
meal payments. We expect drug manufacturers to determine meal targeting as a function of 
their own revenue only. Thus, in this analysis, we allow for unobserved rebate T and "other 
suppliers' markup" w, so that manufacturer revenue becomes R ( j l ) = der qdjtjl(1 — 

w — T). In the supply side estimation, welfare simulations, and simulations of manufacturer 
revenue, we rely on researchers' estimates of T and w, and we test the sensitivity of our 
results to our decisions on how to use these estimates. 

To obtain the components T and w, we rely on multiple sources.42 CMS has reported 

42We are aware of several sources of information on T + w: Yu et al. (2018) use 2016 list price and net price 
estimates from IQVIA. IQVIA's estimates are themselves based on manufacturers' filings with the Securities 
and Exchange Commission (SEC), publicly reported net sales, and information provided by these companies 
directly in support of IQVIA's analysis, for a large sample of pharmaceutical companies. Kakani et al. (2020) 
use similar data from SSR Health, LLC going back to 2012. Sood et al. (2017) report data collected directly 
from sources such as SEC filings. In each case, the researchers report prices obtained by manufacturers after 
rebates, discounts, concessions, etc. The results are very similar: Yu et al. (2018) reports an overall net price 
of pmfr = ppos * (1 — w — T) = 0.673*ppos, suggesting T + w = 0.327. Kakani et al. (2020)'s estimates suggest 
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average manufacturer rebate percentages overall (T = 0.175) and for cardiovascular drugs 
specifically (T = 0.263) going back to 20 1 4.43 Arcidiacono et al. (2013) assume T = 0.151 and 
estimate that (in the antiulcer drug market) rebates increase to 48.3 percent after branded 
drugs' patents expire. Similarly, Aitken et al. (2018) suggest that Lipitor rebates increased in 
2012. One can also infer w from Yu et al. (2018), as they pulled together aggregate data on 
profits to PBMs, wholesalers, pharmacies, providers, and insurers. We ignore the profits of 
PBMs and insurers, as those are "buyers" in our calculation. We also ignore provider profits, 
as those refer to physician-administered drugs such as chemotherapy and are not relevant 
for statins. That leaves wholesalers and pharmacies, which are estimated to obtain profits 
of 0.037 * pp o s and 0.152 * pp o s , respectively. Thus, the work in Yu et al. (2018) suggests that 
w = 0.190. 

For our simulations of manufacturer revenue, the above papers suggest T + w = 0.32 
if statin markups and rebates look like those of the average drug in the US. If statins 
instead follow other cardiovascular drugs in having relatively high rebates, then T + w = 
0.263 + 0.190 = 0.453 would be more appropriate. For our supply side estimation and 
counterfactuals, the above papers suggest T = 0.32 — 0.037 — 0.152 = 0.131 as a lower 
bound based on patterns observed for a wide range of pharmacy-dispensed drugs (Kakani 
et al. 2020; Yu et al. 2018) and T = 0.263 based on cardiovascular drugs only. We use 
(T = 0.263, T + w = 0.453) in the main text. As a robustness check, we consider (T = 
0.131, T + w = 0.32) in Table A4 below. These figures refer to the values used for branded 
drugs pre-patent expiration. For Lipitor in 2012, we decrease the pass-through to Pfizer in 
the main text by using (T = 0.483, T + w = 0.673) (based on Aitken et al. (2018); Arcidiacono 
et al. (2013)); we stick with the alternative assumptions (T = 0.131,T + w = 0.32) in our 
robustness check below. Finally, for generic drugs, we rely on Sood et al. (2017), which is 
the only source explicitly breaking out generics, and assume (T = 0.24, T + w = 0.41). 

Comparing Table A4 to the results from our preferred specification in the main text 
(Figure 4, Panel c), this alternative (larger) pass-through assumption yields larger revenues. 
But the differences are not substantial, as we cannot statistically reject differences between 
the two pass-through assumptions at any of the points of the distribution that we report 
here for either the never- or ever-treated physicians. 

an average T + w = 0.32 across a wide range of drugs that (unfortunately) explicitly excluded statins. Sood 
et al. (2017) suggests T + w = 0.42 across a range of branded and generic drugs. 

43https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Information-on-Prescription-Drugs/PartD_Rebates 
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Table A4: Heterogeneity in Revenue Effects, Alternative Rebate Assumption 

p10 p25 p50 p75 p90 
Never -20.9 546.6 1,573.8 3,525.8 6,544.8 

(794.0) (869.6) (1335.3) (2318.7) (3647.2) 
Ever 1,203.3 2,153.9 4,216.7 7,960.9 13,320.4 
meal (239.7) (389.4) (705.0) (1,231.1) (1,944.3) 

Notes: Plots the distribution of marginal revenues due to meals. Revenues are based on our 
estimate of the net price pmfr paid to manufacturers, net of rebates and markups charged by 
supply intermediaries. Here, we assume pmfr = 0.68 * pp o s . Beneath each plot are the point 
estimates and standard errors for select percentiles of these distributions by treatment status. 

F Dollar Value of Health Gains 
In this Appendix, we estimate the dollar value of the health benefits of statins based on 
evidence in the clinical literature. We take the perspective of a decision-maker deciding 
whether to have an indicated patient initiate statin therapy given the expected health benefits 
and out-of-pocket costs. Unfortunately, many individuals initiating a medication regimen do 
not adhere to that regimen long enough to experience health benefits. For our analysis, we 
assume 37 percent adherence at five years, which is the bottom of the range in Deichmann 
et al. (2006)'s meta-analysis and is close to the adherence level implied by Colantonio et al. 
(2019) (78 percent adherence year over year for five years) and Colantonio et al. (2017) (40 
percent of statin initiates seeing a full 5-year benefit). 

The Heart Protection Study Collaborative Group indicates a benefit (of taking a statin, 
vs. nothing) of about 0.69 life years for Medicare-age enrollees if adherence is perfect over 
five years; the estimated benefit drops to 0.31 life years if adherence declines to 35 percent 
by the sixth year (Heart Protection Study Collaborative Group (2009)). Based on this, we 
make two conservative assumptions. First, we assume that 37 percent of patients initiating 
therapy under a given regime are perfectly adherent and receive health benefits; all others 
receive no health benefit. Second, we focus on the benefits of expanding statin use overall, so 
we do not differentiate generic statins and "strong statins," for which there is clinical evidence 
that strong statins lead to an additional 0.09 life-year gain among indicated patients (see, 
e.g., Wagner et al. 2009). 

Finally, we use a value of $75,000 per life-year gained, which is at the bottom of the 
$75,000-$100,000 range in Cutler (2004). We do not inflation-adjust, for the sake of simplic-
ity. 

Taken together, the above estimates indicate a dollarized health benefit of 0.69*0.37*75,000 
= $19,147.50 is associated with indicated patients initiating a statin regimen. The appro-
priate out-of-pocket cost comparison is with the total out-of-pocket cost of a statin regimen 
over five years, in present discounted value and with 78 percent adherence each year. In 
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contrast, the out-of-pocket cost in our demand analysis is out-of-pocket price for a single 
month. Accordingly, to obtain the "flow" value of taking statins, we divide the dollar value 
above by the multiplier on monthly out-of-pocket costs that is necessary to cover five years 
of prescription statins. Using a 3 percent interest rate, this multiplier is: 

Thus, the "flow" dollarized health benefit of statins, for a patient who is clinically indicated, 
is $19,147.50/37.13 = $516. 

Mapping these numbers into our demand analysis requires taking a stand on the extent 
to which the patients being prescribed statins are indeed clinically indicated. Given the 
American College of Cardiology assertion that full adherence to clinical guidelines would in-
crease statin use by 24 percent relative to baseline (American College of Cardiology 2017), we 
start from the assumption that patients being prescribed statins in the Medicare population 
in our analysis are indeed clinically appropriate. However, we also discuss how our results 
can be recalibrated using X percent of patients as appropriate, for the reader's preferred 
X e [0,100]. 

G Additional Tables and Figures 

G.1 Summary Statistics 

Tables A5 and A6 report the summary statistics and univariate regression coefficients for 
the 75 variables that form the basis of our potential control and instrument sets in the Lasso 
regressions. Both tables are based only on doctor-drug observations for 2011 and either 
Lipitor (Pfizer) or Crestor (AstraZeneca). 

69 



Table A5: Summary of Potential Controls—Doctor, Hospital, and Zip 

mean s.d. 
f 

meal 

f 

cardiov. 
share 

Doctor level: 
log(Claims, cardiov.) 7.81 0.858 0.290 -0.191 
ERx = 1 0.709 0.454 0.121 -0.049 
Num. hospitals 3.64 1.42 0.078 -0.118 
Med. school grad. year 1,985 9.86 0.044 -0.062 
Num. orgs. 1.54 0.838 0.041 -0.016 
EHR = 1 0.632 0.482 0.039 -0.020 
Num. zipcodes 1.69 1.74 0.003 -0.017 
PQRS = 1 0.534 0.499 0.003 -0.009 
Num. specialties 1.40 0.550 -0.031 -0.0042 
Female = 1 0.088 0.284 -0.096 0.016 
Drive time to nearest AMC (sec.) 877 1,900 -0.016 -0.053 
AAMC Faculty = 1 0.096 0.295 -0.226 0.120 
AMSA faculty wgt. 2.27 7.46 -0.234 0.118 

Hospital level: 
Cardiol. annual avg. cardiov. claims 2,949 2,109 0.219 -0.116 
Cardiol. annual avg. all claims 3,745 2,819 0.211 -0.108 
Cardiol. annual sum all claims 53,923 53,353 0.134 0.106 
Doc. annual avg. all claims 1,592 940 0.133 -0.157 
Cardiol. annual sum cardiov. claims 42,385 40,811 0.132 0.103 
Doc. annual avg. cardiov. claims 719 475 0.127 -0.130 
Doc. annual sum all claims 506,158 395,076 0.054 0.049 
Doc. annual sum cardiov. claims 229,650 180,194 0.052 0.062 
AMSA avg. 23.9 7.44 0.003 0.076 
Num. beds 357 347 -0.064 0.093 
Num. admissions 17,719 17,452 -0.067 0.100 
Num. AMCs 4.41 3.68 -0.070 0.212 
Num. cardiologists 18.0 19.7 -0.082 0.204 
Num. doctors 390 357 -0.140 0.183 
Num. AAMC faculty 61.3 171 -0.252 0.177 
Share AAMC faculty 0.081 0.152 -0.280 0.171 
AMSA faculty-wgt. 2.11 4.05 -0.285 0.169 

Zipcode-drug level: 
Ad spend 33,876 48,266 -0.162 0.261 
Ad duration 64,115 23,172 -0.654 0.279 
Ad units 1,070 386 -0.656 0.278 

Notes: e-RX: participates in Medicare's electronic prescribing incentive program; PQRS: participates in Medi-
care's Physician Quality Reporting System; EHR: participates in Medicare's electronic health records incentive 
program. The "f meal" and "f cardiov. share" columns report the coefficient from a regression of either 
a dummy for meal receipt (f meal) or the standardized cardiovascular share of a drug (f cardiov. share) 
regressed on the standardized variable. 
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Table A6: Summary of Potential Controls and I .V.s—HSA, H R R , and State 

mean s.d. 
f 

meal 

f 
cardiov. 

share 

HSA level: 
Uninsured share 10.7 4.36 0.156 -0.082 
Cardiac hospitalizations per 1K 66.4 11.6 0.097 -0.072 
Cardiol. annual avg. cardiov. claims 1,468 7,488 0.039 0.0082 
Cardiol. annual avg. all claims 1,868 9,458 0.039 0.0091 
Medicare Advant. eligibility 118,746 196,160 0.016 0.109 
Doc. annual avg. cardiov. claims 432 5,108 0.001 -0.001 
Doc. annual avg. all claims 949 12,099 -0.003 -0.001 
Cardiol. annual sum all claims 120,896 215,909 -0.007 0.084 
Cardiol. annual sum cardiov. claims 93,604 161,980 -0.008 0.079 
Medicaid share 22.0 8.50 -0.014 0.055 
Doc. annual sum all claims 132,2391 1,994,115 -0.057 0.074 
Num. cardiologists 49.4 85.8 -0.059 0.121 
Medicare Advant. penetration 23.3 13.7 -0.059 0.022 
Doc. annual sum cardiov. claims 579,322 879,976 -0.063 0.076 
Num. AMCs 8.09 11.4 -0.073 0.096 
Num. doctors 1,599 2,384 -0.087 0.115 
Num. AAMC faculty 282 626 -0.092 0.134 
Teaching hosp. admissions share 0.122 0.214 -0.097 0.093 
Teaching hosp. bed share 0.112 0.192 -0.101 0.085 
Share AAMC faculty 0.036 0.024 -0.120 0.162 
AMSA avg. 25.8 2.07 -0.094 0.040 
AMSA faculty wgt. 3.59 1.93 -0.102 0.142 

HRR level: 
Teaching hosp. bed share 0.145 0.151 -0.051 0.073 
Num. AAMC faculty 421 850 -0.065 0.030 
Num. doctors 4,592 4,589 -0.078 0.066 
Uninsured share 10.7 4.36 0.143 -0.073 
Cardiac hospitalizations per 1K 66.5 11.6 0.094 -0.067 
Medicare Advant. eligibility 117,983 197,103 0.025 0.100 
Cardiol. annual avg. cardiov. claims 1,024 4,753 0.018 0.004 
Cardiol. annual avg. all claims 1,332 6,104 0.018 0.005 
Doc. annual avg. cardiov. claims 326 2,884 0.014 -0.007 
Doc. annual avg. all claims 886 7,926 0.008 -0.006 
Cardiol. annual sum cardiov. claims 64,548 114,387 0.001 0.060 
Cardiol. annual sum all claims 85,736 158,674 0.001 0.066 
Medicaid share 22.0 8.49 -0.011 0.042 
Doc. annual sum all claims 1,098,171 1,703,701 -0.042 0.059 
Doc. annual sum cardiov. claims 422,471 668,739 -0.044 0.062 
Num. cardiologists 48.2 83.8 -0.048 0.104 
Medicare Advant. penetration 23.3 13.7 -0.053 0.023 
Num. AMCs 7.98 11.3 -0.066 0.082 
Num. doctors 1,566 2,349 -0.072 0.097 
Num. AAMC faculty 272 602 -0.074 0.117 
Teaching hosp. admissions share 0.119 0.212 -0.080 0.082 
Teaching hosp. bed share 0.110 0.190 -0.084 0.076 
Share AAMC faculty 0.036 0.023 -0.101 0.133 
AMSA avg. 25.6 3.16 -0.034 -0.0098 
AMSA faculty wgt. 2.45 1.29 -0.086 0.122 

State level: 
Plan enrollment 992,164 689,303 0.070 0.062 
Plan enroll., low income subs. 410,867 301,107 0.069 0.078 

Notes: HSA-level: summarizes HSA-level aggregates for each physician, excluding physician's affiliated hospital. 
HRR-level: summarizes HRR-level aggregates for each physician, excluding the HSA of physician's affiliated 
hospital. The " f meal" and " f cardiov. share" columns report the coefficient from a regression of either a dummy 
for meal receipt (f meal) or the standardized cardiovascular share of a drug (f cardiov. share) regressed on the 
standardized variable. 
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G.2 HSA-level First Stage for Meals 

Table A7 replicates Figure 2 Panel (c) in the main text, here showing the HSA-level results 
of the policy spillover first stage regressions. See the table notes for details. 

Table A7: HSA-level IV First Stage 

(1) (2) (3) (4) 

AMSA avg. -0.0158 -0.0158 -0.0146 -0.0145 
(0.0011) (0.0012) (0.0012) (0.0012) 

AMSA avg. X time to nearest AMC -0.0002 -0.0003 
(0.0005) (0.0005) 

AMSA avg. X faculty-wgt. -0.0062 -0.0062 
(0.0015) (0.0014) 

Notes: Reports the OLS regressions of meal indicator on the vector of Lasso-selected controls 
(of which own- and hospital-level AMSA scores are a potential control) and manually selected 
HSA-level instruments. All instruments are standardized; the interactions with the driving 
time to the nearest AMC are the products of the standardized variables. Point estimates and 
standard errors are based on the perturbation-bootstrap approach described in the text. 

G.3 Placebo Tests of AMSA Instruments 

While a direct test of the exclusion restriction is not possible, empirical researchers often 
employ "placebo" tests where, for reasons unrelated to the focal identification strategy, cer-
tain subsamples of individuals are forced into treatment or non-treatment and are therefore 
immune to the instrumental variables (Bound and Jaeger 2000; Altonji et al. 2005; Angrist 
et al. 2010). If the researcher can show that, for such subsamples, the "first stage" relation-
ship (effect of the IVs on treatment propensity) and the "reduced form" relationship (direct 
effect of the IVs on the dependent variable) no longer exist, this is encouraging evidence that 
the reduced form relationship in the full sample is not driven by unobservables. 

While we do not have a perfect subsample of cardiologists for whom all meal payments are 
shut down for exogenous reasons, we perform this exercise for four samples that we expect 
to be particularly insensitive to the AMC policy spillovers we use as instruments. The four 
samples are defined as follows: 

1. Restricted states: cardiologists in Vermont, Minnesota, and Massachusetts, which either had a com-
plete (VT) or partial ban on certain forms of gifts from pharmaceutical firms to physicians (MN, 
MA). 

2. Hi-AMSA Faculty: faculty cardiologists in the top 25 percent of AMSA scores 

3. Hi-AMSA Hospital: cardiologists at hospitals in the top 5 percent of faculty-weighted hospital AMSA 
scores 
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4. P(1m>o | X) < 0.1: cardiologists with meal propensity scores (based only on the X controls) below 

For subsamples (1-3), we expect either the state-based bans or direct institutional policies 
to have a dominating effect on firms' (representatives') decisions to pursue relationships with 
the doctors for whom these policies apply. For subsample (4), we leverage our large set of 
covariates and the support of meal propensities it creates to pursue a generalized version of 
these placebo tests, looking only at observations who (per their observables) have a very low 
probability of meal receipt. We examine both first stage regressions using meal payments as 
the dependent variable, and reduced form regressions using cardiovascular shares (sdjt) and 
the doctor-molecule mean utilities defined in Section 4.1.1 (ipdj) as dependent variables. 

To conduct these tests, we use the same bootstrap and Lasso-based approach as in all 
main specifications, but we also interact the selected instruments with an indicator for 
whether or not the observation belongs to a particular placebo sample. Then, instead of 
reporting the coefficient on every instrument, we report the average change in the dependent 
variable that would be associated with a 1 s.d. change in all A M C AMSA scores given the 
estimated coefficients on the instruments for the placebo and non-placebo observations. The 
p-values reported in the table are based on the joint test of significance of the instruments 
in each regression. 

Across the four placebo tests we conduct (Table A8), we always find that in the non-
placebo subsample, the instruments behave as we expect, leading to fewer meals and corre-
sponding declines in both cardiovascular shares and the doctor-molecule mean utilities (Cols. 
1, 3, 5). In the placebo subsamples (Cols. 2, 4, 6), we consistently estimate smaller and/or 
statistically insignificant first stage and reduced form relationships. These tests are not 
high-powered, due to the relatively small subsamples that are identifying the placebo-specific 
effects. Still, these results—that, among cardiologists less affected by A M C policy spillovers, 
such spillovers are not predictive of either meal payments or our dependent variables—are 
reassuring regarding our exclusion restriction. 

G.4 Demand Estimation Results: Details and Robustness 

Table A9 shows the demand parameter estimates for several different specifications to help to 
illustrate how our instrumental variables move coefficient estimates and the effects of different 
nesting structure assumptions. Column (1) replicates our preferred specification with a statin 
nest, and uses instruments for both the price parameter and the nest parameter. Columns 
(2-3) instrument only the nest or price parameter, respectively. While they yield relatively 
similar price elasticities, we estimate noticeably different nest and price parameters that 
imply significantly different substitution patterns. 
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Table A8: First Stage and Reduced Form Estimates—Placebo Tests 

F S : 1 m > 0 RF: s djt RF: ^ d j 
Non-plac. Plac. Non-plac. Plac. Non-plac. Plac. 

(1) (2) (3) (4) (5) (6) 

Panel (a): Placebo in States with Payment Restrictions 
S D . V . X 1 0 0 

S A M S A I.V. 
p-value 

-5.796 
[<0.001] 

2.618 
[0.857] 

-0.140 
[<0.001] 

1.072 
[0.059] 

-1.427 
[0.003] 

22.195 
[0.134] 

mean D.V.X 100 52.99 6.29 3.88 4.30 -226.74 -208.27 
avg. N obs. 24,201 349 24,201 349 24,001 346 

Panel (b): Placebo with High own -AMSA Faculty 

S D . V . X 1 0 0 
S A M S A I.V. 

p-value 
-5.824 

[<0.001] 
0.810 
[0.208] 

-0.130 
[<0.001] 

0.378 
[0.337] 

-1.240 
[0.003] 

12.039 
[0.502] 

mean D.V.X 100 52.96 25.61 3.86 4.87 -226.94 -207.69 
avg. N obs. 23,979 570 23,979 570 23,782 565 

Panel (c): Placebo in High own-AMSA Hospitals 

S D . V . X 1 0 0 
S A M S A I.V. 

p-value 
-5.559 
[0.003] 

-1.416 
[0.011] 

-0.125 
[<0.001] 

-0.046 
[0.006] 

-1.123 
[0.003] 

-1.753 
[0.271] 

mean D.V.X 100 53.6 25.14 3.83 5.17 -227.55 -203.51 
avg. N obs. 23,456 1093 23,456 1093 23,263 1084 

Panel (d): Placebo with E(1m>0 | X) < 0.1 

S D . V . X 1 0 0 
S A M S A I.V. 

p-value 
-5.823 

[<0.001] 
-4.442 
[0.21] 

-0.128 
[<0.001] 

-0.043 
[0.026] 

-1.237 
[0.006] 

2.652 
[0.276] 

mean D.V.X 100 53.75 8.32 3.84 5.49 -227.47 -195.84 
avg. N obs. 23,781 768 23,781 768 23,586 761 

Notes: Reports the first stage (FS) and reduced form (RF) OLS regressions using the same 500 bootstrap 
variable selection and estimation procedure used in the main specifications. d ^ M S A I°V indicates the change in 
the dependent variable (D.V.) if all AMCs increased their Col policies by one standard deviation per the AMSA 
scores (multiplied times 100 for ease of viewing). The FS D.V. is meal probability. In RF: sdjt, the D.V. is 
the 2011 focal drugs' share of cardiovascular claims, and in RF: ^dj, the D.V. is the estimated doctor-molecule 
intercept from the price and nest regression (^dj). p-values are based on a test of joint significance of the set of 
selected instruments. Within each panel, each pair of columns (1-2, 3-4, 5-6) reports the estimates of ^QAM^A00 

from a single regression where the instruments are interacted with an indicator for the placebo sample indicated 
in that panel (e.g., "States with Payment Restrictions", "Hi-AMSA Faculty", etc.). The mean D.V. and the 
average number of observations across the 500 bootstrap samples are also reported. 

Not performing our quantity-perturbation procedure, dropping AMC faculty from these 
regressions, and not including a statin nest all yield estimates similar to our preferred spec-
ification (columns 4-6). A two-level nesting structure with a statin nest and another nest 
just for strong statins (Lipitor, Crestor, and generic atorvastatin; column 7) yields results 
very similar to our preferred specification. 
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Table A9: Alternative Demand Specifications 

(1) (2) (3) (4) (5) (6) (7) 
Qp -0.00753 -0.00708 -000033 -0.00753 -0.00757 -0.01316 -0.00744 

(0.00016) (0.00013) (0.00002) (0.00003) (0.00017) (0.0001) (0.00017) 
A s t a t i n 0.423 0.279 0.965 0.423 0.426 0.441 

(0.011) (0.012) (0.001) (0.002) (0.011) (0.011) 
A s t r o n g s ta t in -0.026 

(0.008) 

mean(np) -021 -0.16 -0.14 -0.21 -0.21 -0.22 -0.21 
s.d.(np) 0.23 0.17 0.16 0.23 0.23 0.23 0.23 
F-stat. 476.9 655.2 14980.3 476.9 402.2 45652.6 344.6 
mean(^dj/|Qp|) str. s tat ins -296.7 -350.9 -4634.3 -296.7 -296.8 -211.2 -298.1 
mean(^dj/|Qp|) o t h e r gen . -315.7 -368.2 -4730.2 -315.7 -315.6 -228.6 -315.8 
s.d.(Vj/|Qpl) 74.6 91.2 1161.8 74.6 73.8 63.1 74.3 
R2(sdjt • Vj) 0.287 0.304 0 0.287 0.290 0.293 0.289 
R2(sdjt • Vj + Qpp) 0.425 0.408 0.011 0.425 0.430 0.425 0.426 
R2(Sdjt • Vdj + Qpp) 0.809 0.834 0.147 0.809 0.807 0.881 0.803 
Specification 

Instrument Qp Y Y Y Y Y Y 
Instrument A Y Y Y Y Y Y 
Perturb q Y Y Y Y Y Y 
Drop AMC faculty Y 

Notes: Replicates the price and nest regression using the preferred specification (Col. 1) and 
six alternate specifications. Parameter estimates based on Eq. 8. Standard errors for the main 
parameters (Qp and A), in parentheses, are based on the standard deviation of the 500 point 
estimates from the perturbed-bootstrap samples. R2(5djt • •) reports the R2 from a regression 
of 5djt = ln(sd j t /sd 0 t) on some combination of the molecule- (Vj) or molecule-doctor-level (Vdj) 
fixed effects, and possibly the price effect (0pp). 

G.5 Exploration of Treatment Effects of Payments 
In the following analyses, we explore alternative indicator variables for payments, an alter-
native approach to capturing business stealing, the potential existence of intensive margin 
(dollar value) meal effects, and the potential existence of within-practice spillover effects of 
meals. 

Figure A3 plots MTE estimates of 9m and, in the table below, the ATE and LATE 
implied by the MTEs, using: our preferred indicator for meal-based relationships (Col. 1, 
"Preferred"); and an indicator for receiving any kind of payment (e.g., meals, consulting, 
speaking, travel, or research) from the firm (Col. 2). The results are somewhat smaller for "all 
payment types," but are not statistically significantly different from our main specification. 

To investigate business stealing, intensive margin, and spillover effects, we resort to a 
traditional 2SLS model, since each of these questions involve multiple endogenous variables 
and estimating MTEs with multiple endogenous variables in a single equation is beyond 
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Figure A3: Alternative Payment Indicators 

Unobserved Resistance to Meals (U) 

(1) Inferred meal (Preferred) 
(2) All payment types 

(1) (2) 
ATE 0.271 0.165 

(0.0686) (0.0718) 
LATE 0.337 0.255 

(0.0718) (0.0813) 

F-stat 21.50 20.99 

Notes: The columns in the table correspond to the MTE curves indicated by the legend in the figure; see 
the accompanying text for details of the two specifications (1—2). The shaded gray indicates 95% confidence 
intervals. 
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the scope of this paper. Columns 1 and 2 of Table A10 report the 2SLS results where we 
include the same meal indicator from our preferred models, but we also include the average 
dollar amount of the meal-based payments (per year) as a second endogenous variable, 
again instrumented by the Lasso-selected Col policy instruments. Since this is effectively an 
interaction term (it equals zero for all non-paid physicians), we demean the dollar amounts 
using either sample-wide (Col. 1) or firm-specific (Col. 2) average dollar amounts. In both 
cases, we estimate precise zero effects of meal dollar value on prescribing, conditional on the 
dummy variable for meal receipt. 

We next explore the role of business stealing between the two branded manufacturers 
in column 3 of Table A10. The nested logit model in the main text already incorporates a 
role for business stealing in the net effects of meal payments; the gains in market share to a 
paying firm come at the expense of the other drugs (and the outside good). But the nature 
of this substitution is constrained by the logit functional form. A more flexible specification 
would allow the receipt of a meal from one branded firm to have a direct effect on the market 
share of the other branded firm's drug (e.g., as in Sinkinson and Starc 2019). 

We explore this by adding an additional endogenous variable in the model shown in 
column 3 that indicates whether the physician was paid by the focal drug's rival firm. The 
model remains identified because we have multiple instruments and we allow each to be 
interacted with a firm-specific dummy. Theoretically, this specification would be justified 
by, for instance, differential costs of payment relationships or strategic responses to AMC 
effects by the two firms in question. When including this additional term, we estimate a larger 
own-firm effect of meals. The effect of rival firm meals on own-drug prescribing is estimated 
to be negative (-0.040), which would indicate more business stealing than suggested by the 
nested logit functional form. However, neither of these changes are statistically significant, 
or meaningfully different relative to the baseline specification. 

Lastly, we explore the possibility of spillovers between physicians within the same hospital 
(or practice). Recent work by Agha and Zeltzer (2019) found such spillovers to be important 
for the diffusion of new drugs. Column (4) of Table A10 reports the 2SLS results where 
we include the share of a physician's fellow cardiologists in the same hospital or medical 
practice that have meal-based relationships with the focal firm. In this specification, the 
point estimate on the main effect of the physician's own meal receipt is similar to all other 
specifications, although estimated less precisely. The point estimate of the coefficient on 
"Share colleagues..." equals 0.26. However, our coefficients are imprecisely estimated, so we 
hesitate to draw strong conclusions about the presence of spillovers in this setting. This lack 
of precision is driven by the fact that our identification approach assumes all physicians in 
the same hospital or practice are impacted similarly by spillovers from AMCs in terms of 
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their meal propensities; i.e., we have little independent variation to identify the effects of 
"own meal" and "colleagues' meal spillovers." 

Table A10: Extensive/Intensive Margins, Business Stealing, and Spillover Tests 

(1) (2) (3) (4) 
Meal, own firm 0.396 0.438 0.456 0.317 

(0.116) (0.122) (0.086) (0.220) 
Meal $-value, 0.0005 -0.0006 

own firm (0.0016) (0.0013) 
Meal, other firm -0.040 

(0.138) 
Share colleagues 0.257 
w/ meals, own firm (0.264) 
$-value demean Full-sample Firm-specific n/a n/a 

Notes: Replicates the 2SLS-version of the results reported in Figure 4 with additional en-
dogenous variables. "Share colleagues w/ meals" is a variable that indicates the share of a 
cardiologists' fellow physicians (also cardiologists) within their hospital or practice that also 
have meal-based interactions with the focal firm. 

G.6 Alternative MTE Results and Specifications 

Figure A4 recreates the MTE curves and displays the ATE / LATE estimates corresponding 
to our preferred specification shown in the main text (1), as well as five alternative specifi-
cations (2-6). Specification (2) includes the hospital-level AMSA controls (Xs) from all of 
each cardiologists' secondary affiliations (only the AMSA scores of their primary affiliation 
hospital are used in the preferred model). Specification (3) uses a "one-step" Lasso regression 
using the penalty that minimizes the cross-validated MSE in the variable selection routines 
(the preferred model uses a "two-step" Lasso regression and a penalty that is the largest 
penalty tested that yields a cross-validated MSE within one standard error of the MSE-
minimizing penalty). Specification (4) excludes all AMC faculty from the entire estimation 
routing (the preferred model includes them). Specification (5) does not perturb the annual 
claim quantities at the use-case level (the preferred model does). 

H Additional Counterfactual Results and Robustness 
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Figure A 4 : A l t e r n a t i v e M T E Spec i f i cat ions 

Unobserved Resistance to Meals (U) 

(1) Preferred (2) Extra AMSA controls 
(3) 1-step Lasso (4) Drop Faculty 
(5) No quantity perturb. 

(1) (2) (3) (4) (5) 
ATE 0.271 0.165 0.175 0.141 0.164 

(0.0686) (0.0718) (0.0635) (0.0869) (0.0708) 
LATE 0.337 0.255 0.249 0.218 0.241 

(0.0718) (0.0813) (0.0757) (0.0857) (0.0783) 

Notes: The columns in the table correspond to the MTE curves indicated by the legend in the 
figure; see the accompanying text for details of the five specifications (1-5). 
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Table A11: Payment and Pricing Distortions Table, 2012 

Observed Ban, Ban Ban, No Ban, 
fix p p = mc p = mc 

Q statins 0.188 0.178 0.178 0.188 0.202 
(0.001) (0.002) (0.002) (0.002) (0.001) 

Q Lipitor 0.060 0.050 0.050 0.058 0.068 
(0.001) (0.002) (0.002) (0.002) (0.001) 

Q Crestor 0.024 0.016 0.017 0.024 0.036 
(0.000) (0.001) (0.001) (0.002) (0.000) 

OOPstatins 17.56 17.56 17.38 2.15 2.15 
(0.21) (0.21) (0.21) (0.1) (0.1) 

PO S j OSstatins 63.88 63.88 63.15 80.85 82.74 
(0.71) (0.71) (0.73) (1.68) (1.58) 

Notes: Authors' calculations of observed and counterfactual equilibrium statin quantities 
(share of cardiovascular utilization) and prices (point-of-sale and out-of-pocket price per 30-day 
supply), per supply and demand model described in text. 2012 only. "Ban, fix p" eliminates 
meals, holding POS and OOP prices fixed. "Ban" eliminates meals and allows both prices and 
quantities to adjust. "Ban, p = mc" eliminates meals and sets poop equal to marginal costs, 
then allows POS prices and quantities to adjust. Finally, "No Ban, p = mc" simply sets po o p 

equal to marginal costs, then allows POS prices and quantities to adjust. N = 124,876 doctor-
drug-brand-year observations with standard errors clustered at the doctor level (Nd = 15,063) 
via delete-120 jackknife and state level via delete-7 jackknife. 
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Table A12: Welfare and Counterfactual Estimates — Supplement to Figure 6 

(-Transfers) 

£de -350 -100 -50 0 
Observed, 2011 89.80 44.75 35.74 26.73 

(0.69) (0.55) (0.53) (0.52) 
Ban, 2011 -2.73 -0.53 -0.10 0.32 

(0.37) (0.04) (0.03) (0.08) 
Observed, 2012 3.31 1.29 0.89 0.48 

(0.10) (0.09) (0.09) (0.10) 
Ban, 2012 -0.11 0.61 0.75 0.89 

(0.52) (0.12) (0.06) (0.06) 
Observed, 2011 87.65 42.61 33.59 24.57 

(0.66) (0.55) (0.53) (0.49) 
Ban, 2011 -2.54 -0.34 0.08 0.52 

(0.29) (0.04) (0.10) (0.17) 
Observed, 2012 3.74 1.72 1.31 0.91 

(0.10) (0.09) (0.09) (0.09) 
Ban, 2012 0.54 1.25 1.39 1.49 

(0.46) (0.07) (0.06) (0.11) 
Observed, 2011 78.96 33.94 24.94 15.94 

(0.65) (0.55) (0.53) (0.52) 
Ban, 2011 -0.68 1.48 1.92 2.36 

(0.06) (0.32) (0.39) (0.46) 
Observed, 2012 6.01 3.98 3.58 3.17 

(0.12) (0.11) (0.10) (0.10) 
Ban, 2012 4.40 5.03 5.16 5.30 

(0.28) (0.21) (0.29) (0.37) 
Observed, 2011 10.82 10.82 10.82 10.82 

(0.09) (0.09) (0.09) (0.09) 
Ban, 2011 -2.03 -2.03 -2.03 -2.03 

(0.36) (0.36) (0.36) (0.36) 
Observed, 2012 -2.68 -2.68 -2.68 -2.68 

(0.04) (0.04) (0.04) (0.04) 
Ban, 2012 -4.43 -4.43 -4.43 -4.43 

(0.32) (0.32) (0.32) (0.32) 

Notes: Authors' calculations of equilibrium surplus measures, in dollars per cardiovascular 
patient. For Observed 2012, Ban 2011, and Ban 2012, surplus measures are shown relative 
to that Observed in 2011. "Meal Ban" counterfactuals allow both prices and quantities to 
adjust, per supply and demand model described in text. N = 124,876 doctor-drug-brand-year 
observations with standard errors clustered at the doctor level (Nd = 15,063) via delete-120 
jackknife and state level via delete-7 jackknife. 
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Table A13: Naive ade = 0 vs. Sophisticated ade = 1 Insurer Pricing (2011) 

"Naive' ade = 0 (main text) "Sophisticated" ade = 1 (alternative) 
€-DE -350 -100 -50 0 -350 -100 -50 0 

Q Statins Observed 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Ban -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Q Lipitor Observed 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Ban -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Q Crestor Observed 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Ban -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

OOP Statins Observed 18.81 18.81 18.81 18.81 18.85 18.41 18.17 17.94 
(0.23) (0.23) (0.23) (0.23) (0.21) (0.31) (0.40) (0.30) 

Ban -0.29 -0.29 -0.29 -0.29 0.94 2.14 2.72 3.78 
(0.04) (0.04) (0.04) (0.04) (0.23) (0.52) (0.67) (1.04) 

POS Statins Observed 77.04 77.04 77.04 77.04 77.34 75.65 74.48 73.34 
(0.72) (0.72) (0.72) (0.72) (0.64) (1.07) (1.59) (1.28) 

Ban -1.27 -1.27 -1.27 -1.27 4.11 9.33 11.92 16.49 
(0.17) (0.17) (0.17) (0.17) (1.01) (2.28) (2.87) (4.55) 

Notes: Authors' calculations of observed and counterfactual equilibrium statin quantities 
(share of cardiovascular utilization) and prices (point-of-sale and out-of-pocket price per 30-day 
supply), per supply and demand model described in text (left panel: ade = 0) and in Appendix 
C.5 (right panel: ade = 1). 2011 only. "Ban" surplus measures are shown relative to that in the 
Observed scenario. Results shown for select values of ede. N = 124, 876 doctor-drug-brand-year 
observations with standard errors clustered at the doctor level (Nd = 15,063) via delete-120 
jackknife and state level via delete-7 jackknife. 
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Table A14: Robustness of Welfare Estimates to Modeling Assumptions 

ede -350 -100 -50 0 
Total Surplus, Ban 2011 Baseline -2.73 -0.53 -0.10 0.32 

(0.37) (0.04) (0.03) (0.08) 
Rebates -2.72 -0.53 -0.10 0.32 

(0.37) (0.04) (0.03) (0.08) 
MC -2.72 -0.55 -0.12 0.29 

(0.37) (0.04) (0.03) (0.08) 
Pricing -3.03 -0.77 -0.28 0.21 

(0.42) (0.06) (0.03) (0.06) 
£DE -3.89 -0.89 -0.28 0.32 

(1.75) (0.47) (0.23) (0.08) 
Consumer Surplus, Ban 2011 Baseline -2.54 -0.34 0.08 0.52 

(0.29) (0.04) (0.10) (0.17) 
Rebates -2.52 -0.34 0.08 0.51 

(0.29) (0.04) (0.10) (0.17) 
MC -2.50 -0.33 0.08 0.52 

(0.28) (0.04) (0.10) (0.17) 
Pricing -2.91 -0.71 -0.28 0.15 

(0.35) (0.03) (0.04) (0.11) 
£DE -3.68 -0.68 -0.09 0.52 

(1.68) (0.44) (0.23) (0.17) 
Consumer Surplus, Ban 2011 Baseline -0.68 1.48 1.92 2.36 
(-Transfers) (0.06) (0.32) (0.39) (0.46) 

Rebates -0.65 1.50 1.93 2.37 
(0.06) (0.32) (0.40) (0.46) 

MC -0.59 1.54 1.97 2.40 
(0.06) (0.33) (0.39) (0.46) 

Pricing -1.32 0.58 0.88 1.13 
(0.11) (0.17) (0.22) (0.26) 

£DE -1.84 1.08 1.73 2.36 
(1.48) (0.45) (0.35) (0.46) 

Producer Surplus, Ban 2011 Baseline -2.03 -2.03 -2.03 -2.03 
(0.36) (0.36) (0.36) (0.36) 

Rebates -2.05 -2.05 -2.05 -2.05 
(0.37) (0.37) (0.37) (0.37) 

MC -2.10 -2.10 -2.10 -2.10 
(0.37) (0.37) (0.37) (0.37) 

Pricing -1.70 -1.36 -1.18 -0.92 
(0.31) (0.24) (0.21) (0.20) 

£ d e -2.03 -2.03 -2.03 -2.03 
(0.36) (0.36) (0.36) (0.36) 

Notes: Authors' calculations of the effects of a meal ban on equilibrium surplus measures in 
2011, in dollars per cardiovascular patient, for baseline specification (as in Figure 6 and Ap-
pendix Table A12), and alternative specifications: "Rebates" (alternative rebates as described 
in Appendix E); "Marginal Costs" (extreme alternative assumption that mc = 0); "Pricing" 
(ade = 1 in model in Appendix C.5 with insurer sophistication, whereas baseline specification 
sets ade = 0); and "e D E " (an alternative specification with e^ = Yde * Q^ rather than fixed ede 

across all physicians). For the ede = Yde*fi™ specifications, the column value of ede is the average 
across sample physicians, given their average meal responsiveness 0™. N = 124, 876 doctor-
drug-brand-year observations with standard errors clustered at the doctor level (Nd = 15,063) 
via delete-120 jackknife and state level via delete-7 jackknife. 
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