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ABSTRACT

The National Institutes of Health (NIH) plays a critical role in funding scientific endeavors in 
biomedicine that would be difficult to finance via private sources. One important mandate of the 
NIH is to fund innovative science that tries out new ideas, but many have questioned the NIH’s 
ability to fulfill this aim. We examine whether the NIH succeeds in funding work that tries out 
novel ideas. We find that novel science is more often NIH funded than is less innovative science 
but this positive result comes with several caveats. First, despite the implementation of initiatives 
to support edge science, the preference for funding novel science is mostly limited to work that 
builds on novel basic science ideas; projects that build on novel clinical ideas are not favored by 
the NIH over projects that build on well-established clinical knowledge. Second, NIH’s general 
preference for funding work that builds on basic science ideas, regardless of its novelty or 
application area, is a large contributor to the overall positive link between novelty and NIH 
funding. If funding rates for work that builds on basic science ideas and work that builds on 
clinical ideas had been equal, NIH’s funding rates for novel and traditional science would have 
been the same. Third, NIH’s propensity to fund projects that build on the most recent advances 
has declined over the last several decades. Thus, in this regard NIH funding has become more 
conservative despite initiatives to increase funding for innovative projects.
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1. Introduction  
 

The United States National Institutes of Health (NIH) both supports and sets the agenda 

of biomedical science.  With an annual budget of over $37 billion, NIH funds the work of 

300,000 researchers and scientists across the globe (National Institutes of Health, 2017a). 

As such, the NIH plays a pivotal role in setting the incentives that biomedical scientists 

have to try out novel ideas in their work, a vital aspect of fruitful scientific investigation 

(Collins 2015; Sampat 2012).  

The regular exercise of trying out new ideas, which we term edge science, is a key 

contributor to the advance of scientific disciplines (e.g. Marshall 1929; Usher 1920; Kuhn 

1962, 1977). The willingness of scientists in a field to try out new ideas generated by 

others is at least as important as the generation of ideas. For when new ideas are first 

born, they are often raw and poorly understood (Kuhn 1962, 1977). Hence, the attention 

of many scientists is needed to help an idea develop from the germ of an idea to a 

transformative idea. Extensive debate over a new idea is needed to develop it, to test its 

validity, and to determine the areas where the new idea might be worthwhile. Ideas that 

have been vetted at least partially are also more likely to be seen by fellow scientists as 

likely to produce important results, and thus draw the attention of other scientists. 

For scientists, however, edge science is inherently risky, since it can be difficult to 

predict whether a new idea will produce fruitful results. Working scientists often point to 

failure as a precursor to success, but there is no guarantee that a particular idea will work 

(e.g. Livio 2013; Firestein 2015; Popovian 2016; Zaringhalam 2016). Public support for 

edge science, even if failure is likely, can help establish appropriate incentives for novel 

work in biomedical science. 

Moreover, without explicit incentives to pursue edge science, there is too little novel 

work in science due to the coordination problem that is inherent in the formation of 

robust scientific communities to new areas of investigation (Besancenot and Vranceanu 

2015; Packalen and Bhattacharya 2017). Thus, in effect, NIH support for the trying out of 

new ideas in science can solve a failure in the market for the production of novel science. 

While NIH strives to “foster fundamental creative discoveries [and] innovative 

research strategies” (National Institutes of Health 2017b), some researchers have 
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questioned its ability to effectively recognize and cultivate truly groundbreaking science 

(e.g. Cook-Deegan 1996; Nicholson and Ioannidis 2012; Kolata 2009).  Based on the 

types of research and researchers that the NIH funds, some have even concluded that the 

NIH underfunds “discovery, creativity and innovation” (Cech 2015). 

Both scientific and political considerations may lead the NIH to underfund the trying 

out of new ideas. First, because the NIH visibly spends public money, it needs to show 

discrete manifestations of improvements in health, as well as technological 

breakthroughs, arising from its supported research (Hedge and Sampat 2015). This 

consideration leads to preference to support ideas that have already shown promise rather 

than edge science. Second, NIH scientific review panels, for reasons related to their 

constitution, tend to reward projects that are evidently feasible over projects that are 

novel (e.g. Langer 2012; Nicholson and Ioannidis 2012; Alberts et al. 2014; Geman and 

Geman 2016). In addition, the changing demographics of biomedical scientists can 

exacerbate potential gaps in support for novel work (e.g. Kaiser 2014; Daniels 2015; 

Lauer et al. 2017; Levitt and Levitt 2017). To the extent that early-career scientists pursue 

novel research paths more often than do experienced scholars, the graying of grant 

recipients can lead to decreased support for novel science. 

In this paper, we provide a quantitative assessment of whether NIH policies 

encourage or impede the trying out of new ideas. We first determine the novelty of each 

biomedical publication based on its textual content. We then compare the frequency of 

NIH funding for novel papers against the frequency of NIH funding for papers that build 

on well-established ideas. This comparison reveals to what extent NIH funding practices 

reward the pursuit of edge science.  

Our findings offer qualified support for NIH’s stated mission to support innovative 

research. We find that novel contributions are more often NIH supported than are 

contributions that only build on well-established ideas. But while this positive link 

between novelty and NIH funding is present for contributions that build on novel basic 

science ideas, it is absent from contributions that build on novel clinical ideas. Moreover, 

once we account for the differences in funding rates across idea types (for example, 

contributions that build on advances in genomics receive NIH support much more often 

than do contributions that only build on clinical ideas), we find that novel science and 
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traditional science receive NIH support at about the same rate. This finding suggests that 

typically the NIH is able to direct funds to innovative areas of investigation (such as both 

basic and applied work on genomics) but the NIH is not able to direct funds to innovative 

individual projects within fields. In addition to these substantive findings, our analysis 

contributes by putting forward a systematic approach that can be used to quantify the 

novelty preferences of any funding agency. 

Despite the importance of NIH support of edge science, there has been surprisingly 

little research quantifying its extent. Prior research has focused on measuring the effect of 

NIH funding on the productivity of scientists as measured by publications, citation 

counts, and patents (e.g. Murray et al. 2016; Jacob and Lefgren 2011a, 2011b; Azoulay et 

al. 2011, 2017; Blume-Kohout 2012; Blume-Kohout et al. 2015; Li 2017; Li and Agha 

2015; Li et al. 2017). Though these outputs are important, they are not quantifiable 

measures of edge science. 

The focus in citation analyses of NIH funding, for instance, has been on capturing 

the production of high-impact science rather than what kind of science is being produced 

– novel or more conventional. While work on identifying NIH support for such acts of 

genius is important, from the perspective of optimal science policy it is also valuable to 

understand whether NIH succeeds in its aim of favoring novel science. For, as argued 

above, advances that later turn out to be transformative are often not well elaborated 

when they are first born. Scientists who are willing to try out the new ideas as inputs to 

their research thus play an important role in developing the ideas to mature advances. As 

argued above, the NIH can serve a useful role by funding such edge science. It is thus 

valuable to offer a quantitative assessment of NIH’s novelty preferences.  

Our approach to identifying edge science follows Packalen (2018), which examines 

how the tendency to pursue edge science varies across countries. This approach allows 

each paper included in the analysis to contribute on multiple dimensions of knowledge, 

and the novelty of an idea input is determined relative to application of other comparable 

ideas in the same research area. This methodology extended the approach developed in 

Packalen and Bhattacharya (2016, 2017). 

The balance of the paper proceeds in the standard order: methods, results, discussion, 

and conclusion.  
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2. Methods 
 

Our analysis covers over 24 million research articles in the MEDLINE database. 

MEDLINE is a comprehensive database of published biomedical research articles 

published between 1950-2017. To determine the ideas upon which each paper builds, we 

employ the Unified Medical Language System (“UMLS”) metathesaurus, which is a 

curated and controlled vocabulary of over 5 million biomedical terms. For each paper in 

the MEDLINE database, we determine which UMLS terms appear and what idea type 

those terms represent. We determine the idea type based on the UMLS semantic category 

of each term. There are 127 UMLS semantic categories for terms; among these categories 

are “Gene and Genome”, “Neoplastic Process”, and “Quantitative Concept.”. In our 

analysis, each UMLS semantic category represents one idea type. We determine the 

research area of the paper based on the journal where the paper was published. Journal 

category is assigned by the National Library of Medicine. There are 125 categories, 

including “Cardiology”, “General Surgery” and “Molecular Biology.” 

We conduct our analysis at a contribution level, where contribution is defined as a 

link from a paper to an (idea type, research area) pair. The underlying assumption is that 

each paper that is linked to an (idea type, research area) pair contributes to the scientific 

debate of how the idea functions when applied to the specific research area. When a 

paper is linked to multiple (idea type, research area) pairs, we assume that the paper 

represents multiple contributions because the paper has the potential to contribute to 

multiple research areas and idea types – it can enhance our understanding on multiple 

dimensions. 

To determine which contributions represent novel science, we determine the 

vintage of each term based on the year that the term first appears in the MEDLINE 

database. We refer to the year of first appearance of each idea as the cohort of the idea. 

For each contribution we then determine the cohort of the newest idea input that is linked 

to the contribution, which we refer to as idea input vintage. In our approach, we consider 

contributions that build on at least one relatively recent idea to be novel, while 

contributions that build on well-established ideas represent more traditional science. 
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This methodology for identifying novel contributions from the text of research 

articles builds on several earlier analyses. The closest related analysis is Packalen (2018), 

which introduced the contribution-level approach for identifying edge science. We refer 

the reader to this earlier work for lists of examples of ideas captured by this approach as 

well as descriptive statistics on the MEDLINE database in general and on the estimated 

vintage of these ideas and on how often the ideas have been used in the biomedical 

literature. A related previous analysis had employed a paper-level approach for 

identifying novel ideas using the UMLS metathesaurus and the MEDLINE database 

(Packalen and Bhattacharya 2017), which in turn built on Packalen and Bhattacharya 

(2016) in which an n-gram approach was used to identify ideas and novel contributions 

based on the text of articles in the MEDLINE database. This methodology identifies a 

nearly complete history of the ideas of biomedicine (both important and obscure), going 

back to the middle of the 20th century. 

We identify the NIH funding status of each paper from the MEDLINE database. 

A paper where any of its authors is reported to have acknowledged NIH funding for the 

project is assigned “with NIH funding” status, and any paper where none of the authors is 

reported to have acknowledged NIH funding for the project is assigned “without NIH 

funding” status. The advantage of using paper-level NIH funding acknowledgements as 

the source of NIH funding information, instead of data on funded NIH grant proposals, is 

that the former gives information on projects that were actually completed with NIH 

funding. This distinction matters because of a potential disconnect between funding 

proposals and actual research. If a scientist agrees with the commonly held perception 

that NIH review committees are conservative in funding decisions, but is inclined to 

pursue novel work nevertheless, it may make sense to hide the novelty – at least to some 

degree – in funding applications. In any case, the type of work scientists do is more 

important – as far as the social benefits of science are concerned – than the work that 

scientists promise to do when applying for funding. Grantmanship is an important topic 

but is largely separate from the focus of the analysis pursued here.  

We limit the analysis to papers which first author has a U.S. affiliation (for papers 

published before 2014 MEDLINE mostly has affiliation information for the first author). 

This restriction is important because scientists working in the U.S. are much more likely 
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to build on new ideas compared to the average across all countries in biomedicine 

(Packalen 2018) and because the NIH disproportionately funds U.S. biomedical 

scientists. Hence, if non-U.S. papers were included in the analysis, the results would 

reflect also the relative scientific frontier position of U.S. scientists on average and the 

NIH’s differential propensity to fund U.S. vs. non-U.S. scientists. By focusing only on 

papers which first author is in the U.S., our results will reflect a comparison of the 

vintage of ideas that NIH funded scientists tend to build on in their work (i.e. their 

propensity to pursue edge science) and the vintage of the ideas that comparable scientists 

without NIH funding tend to build on in their work.  

 

3. Results 

 

3.1 Aggregate Relationship Between Novelty and NIH Funding 

 

We first examine how the share of NIH funded contributions varies by the idea input 

vintage. Recall that idea input vintage captures the year that the newest idea that the 

contribution builds upon was introduced in the literature. Our goal is to uncover whether 

NIH funding is directed disproportionately to projects that try out ideas introduced to the 

literature more recently, in line with the NIH’s goal of supporting innovative science. The 

overall results for contributions across all idea types and research areas are shown in 

Figure 1 for contributions published between 2010 and 2016. The figure depicts the 

fraction of contributions that are in papers with NIH funding (the vertical axis) as a 

function of the idea input vintage (the horizontal axis). The horizontal dashed line in 

Figure 1 represents the average share of contributions funded by the NIH over all cohorts. 

The results in Figure 1 suggest an inverted “U” shape to the relationship between 

NIH funding and novelty of idea inputs. The share of research supported by the NIH is 

the highest for papers that build on ideas that are relatively new but not too recent; there 

appears to be a substantial time lag for funding work on a new idea. The NIH funding 

rate is lower for contributions that build on the most recent ideas (post-2005 cohorts) than 

it is for contributions that build on a bit more mature ideas (1990-2005 cohorts), but the 

share of NIH support is lowest for contributions that only reference well-established 
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knowledge i.e. ideas introduced to the literature a long time ago (pre-1970 cohorts). Thus, 

NIH funding practices seem to favor novel work with a 7 to 10-year delay. The 

magnitude of these idea-vintage related NIH funding differences is also considerable: the 

NIH funding rate is over 55% for contributions that make use of 10 to 25-year-old ideas, 

whereas it is only about 45% for contributions that either build on only well-established 

knowledge or build on some very recent ideas.  

 

 
Figure 1: Share of NIH Funding by Novelty of Idea Inputs (2010-2016): All Idea Types. 
Calculated based on 1,478,475 biomedical research papers published during 2010-2016. 
The horizontal axis captures the idea input vintage (the cohort of a contribution is the year 
when the newest idea input used in the contribution was introduced to the literature). Later 
(earlier) cohort years represent more novel (more conventional) science. The vertical axis 
captures the rate of NIH funding. The markers capture the mean NIH funding rate for each 
idea input vintage. The solid line represents a non-parametric regression line estimate. The 
dashed line represents the average funding rate across all cohorts.  
 
 

Figure 2 shows the same relationship for two earlier decades, namely 1990s (top left 

panel) and 2000s (top right panel), as well as for two sub-periods of the current decade, 
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namely years 2010-2014 (bottom left panel) and 2015-2016 (bottom right panel). The 

results in Figure 2 show that also during the earlier decades the NIH funded novel science 

at higher rates than it funded traditional science. However, unlike in the 2010s, in the 

1990s the NIH funded even contributions that built on the most recent ideas at a higher 

rate than it funded contributions that only built on well-established ideas. That is, the 

funding penalty for the most novel work appears to be a recent phenomenon – in the 

1990s there was no delay in funding brand new ideas. Thus, in this regard the NIH 

appears to have become more conservative in its support for edge science over time.  

 

 
Figure 2: Share of NIH Funding by Novelty of Idea Inputs: for 1990s (top left), 2000s (top 
left), 2010-2014 (bottom left) and 2015-2016 (bottom right). Results in these panels are 
calculated based on 1,651,429 (1,049,553) [1,093,170] {385,305} biomedical research 
papers published during 1990-1999 (2000-2009) [2014-2015] {2015-2016}. In each panel, 
the horizontal axis captures the idea input vintage, with later (earlier) cohort years 
representing more novel (more conventional) science, and the vertical axis captures the 
rate of NIH funding. The markers capture the mean NIH funding rate for each idea input 
vintage. The solid line represents a non-parametric regression line estimate. The dashed 
line represents the average funding rate across all cohorts. 
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3.2 Link Between Novelty and NIH Funding by Idea Type and Research Area 
 

Figure 3 shows the relationship between novelty and NIH funding separately for four 

idea types:  Genes and Genome (top left panel), Amino Acid, Peptide, or Proteins (top 

right panel), Neoplastic Process (bottom right panel), and Pharmacologic Substance 

(bottom left panel). Like in Figure 1, these results are for papers published between 2010 

and 2016. The dashed line in each panel indicates that average level of NIH support for 

contributions that build on an idea from the idea type. 

 

 
Figure 3: Share of NIH Funding by Novelty of Idea Inputs for Four Examples of Idea 
Types: Genes and Genome (top left), Amino Acid, Peptide, or Proteins (top right), 
Neoplastic Process (bottom right), and Pharmacologic Substance (bottom left). Calculated 
based on biomedical research papers published during 2010-2016. In each panel, the 
horizontal axis captures the idea input vintage, with later (earlier) cohort years representing 
more novel (more conventional) science, and the vertical axis captures the rate of NIH 
funding. The markers capture the mean NIH funding rate for every idea input vintage. The 
solid line represents a non-parametric regression line estimate. The dashed line represents 
the average funding rate across all cohorts. 
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The results in Figure 3 show that NIH funding practices reward novelty for work on 

some idea types but not for other idea types. The top panels of Figure 3 show that work 

that references genes or proteins is more likely to receive funding when the it mentions a 

relatively new gene or protein compared to work that only mentions genes or proteins 

first introduced to the literature a long time ago. Bottom right panel of Figure 3 shows 

that papers that reference ideas in the neoplastic process category are somewhat less 

likely to receive funding when they build on an idea in this category that is of a more 

recent vintage. Bottom left panel of Figure 3 shows a similar finding for drugs: papers 

that mention a new drug are much less likely to be NIH funded than are papers that only 

mention older drugs. This last finding likely reflects a decision by the NIH to focus on 

funding research on drugs that are no longer under patent as pharmaceutical companies 

have a reduced incentive to investigate the properties of such drugs.  

The results in Figure 3 thus indicate that NIH overall preference for novel work is 

heterogeneous across idea types. This, together with the variance in average funding rates 

across idea types (as indicated by dashed lines in each panel of Figure 3), raises the 

prospect that the link between novelty and NIH funding (as shown in Figure 1) is driven 

by NIH’s preference for funding certain idea types and research areas where a lot of 

progress is taking place, rather than by NIH’s preference for funding novel work within 

idea types and research areas. Perhaps, for example, the results are driven by the fact that 

NIH is very favorable to any research that makes use of either novel or well-established 

advances in genomics (this fact is evident by the high average funding rate indicated by 

the dashed line in Panel A of Figure 3).  

To investigate this possibility, we calculated the NIH funding rate by cohort of the 

newest idea while holding the average funding rate the same across all (idea type, 

research area) pairs. In this calculation, we allow the funding rate to vary only across 

cohorts within each (idea type, research area) pair. To achieve this objective, we first 

determine for each (idea type, research area) pair how often papers linked to it receive 

NIH support across all cohorts. We then determine, for each cohort, how much NIH 

funding papers linked to that cohort receive relative to the average among all cohorts 

linked to the same (idea type, research area) pair. We use this ratio to adjust the number 

of observed NIH funded papers accordingly for each (idea type, research area) pair. This 
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way, an NIH funded contribution linked to an (idea type, research area) pair where 

contributions receive funding, say, 80% of the time across all cohorts is only counted as 

half a contribution relative to a contribution linked to an (idea type, research area) pair 

where contributions receive funding 40% of the time across all cohorts. As a result, the 

funding rate for an (idea type, research area) pair is above the average funding rate only 

for those cohorts for which the funding rate of the cohort is above the average funding 

rate for that (idea type, research area) pair across all cohorts. The results for this 

calculation, which in effect controls for differences in NIH funding rates across idea 

types and research areas, are shown in Figure 4.  
 

 
Figure 4: Share of NIH Funding by Novelty of Idea Inputs: If Funding Rates Were 
Constant Across Idea Types and Research Areas. Calculated based on 1,478,475 
biomedical research papers published during 2010-2016. The horizontal axis captures the 
idea input vintage, with later (earlier) cohort years representing more novel (more 
conventional) science. The vertical axis captures the rate of NIH funding. The markers 
capture the mean NIH funding rate for each idea input vintage. The solid line represents a 
non-parametric regression line estimate. The dashed line represents the average funding 
rate across all cohorts. 

 



 12 

The results shown in Figure 4 still indicate an inverted U-shaped relationship 

between novelty of idea inputs and NIH funding, but quantitatively the results are now 

quite different. The highest NIH funding rate for novel work is now only a little above 

the funding rate for contributions that build on well-established ideas, and the funding 

rate for work that builds on the most recent ideas is now significantly below the average 

funding rate across all cohorts. Together with the unadjusted results shown in Figure 1, 

this result suggests that while the NIH has been successful in funding innovative science, 

this success has been due to its differential support for certain idea types where many 

ideas are relatively novel (such as genomics). Conversely, the results imply that within 

research areas and idea types the NIH has not been able to funnel resources to the most 

innovative projects.  

Table 1 summarizes the results for 28 largest categories of the 127 idea types 

represented by the UMLS semantic type taxonomy (by contrast with Figure 3 which 

showed idea type specific results for four idea types). The average of the results for the 

remaining 99 idea types are summarized in the last row. Columns 1a and 1b, respectively, 

list the idea type and whether the idea type represents basic science ideas, clinical ideas 

or miscellaneous ideas. Columns 2a-2d report descriptive statistics: the number of 

contributions linked to the idea type regardless of the cohort the contribution (column 

2a), the share of contributions with NIH funding (column 2b), the number of novel 

contributions linked to the idea type (column 2c), and the share of novel contributions 

with NIH funding (column 2d). For these calculations, a novel contribution is defined as 

a contribution that builds on an idea that is at most 15 years old at the beginning of the 

sample period (idea cohorts 1995-2016 for the 2010-2016 sample period). The numbers 

across the rows in column 2b indicate that there is a lot of variation in NIH’s propensity 

to fund ideas depending on the idea type, and that this propensity is generally higher for 

basic science idea types than it is for clinical idea types. The heterogeneity in NIH 

support across idea types also implies that our main results cannot be simply explained by 

the mechanical delay induced by the grant review process.  

Column 3 reports the main result: a summary statistic that captures NIH’s relative 

propensity to fund novel work. We refer to this statistic as the edge funding ratio. We 

calculate the edge funding ratio by dividing the share of novel contributions with funding 
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by the share of non-novel contributions with NIH funding. Here a novel contribution is 

defined as discussed above (i.e. a contribution that builds on an idea that is at most 15 

years old), and a non-novel contribution is defined as a contribution that builds only on 

ideas introduced to the literature in the year 1970 or earlier. An edge funding ratio of 1.10 

(0.90) means that the NIH’s propensity to fund novel science is 10% higher (10% lower) 

than is the NIH’s propensity to fund traditional science. We color each cell based on the 

relative propensity: red indicates an edge funding ratio above 1.20 (NIH’s funding 

practices strongly favor novel work), orange indicates an edge funding ratio between 1.10 

and 1.20 (NIH’s funding practices are favorable to novel work), and blue indicates an 

edge funding ratio below 0.90 (NIH’s funding practices favor traditional science). 

The results in column 3 show that among work linked to basic science idea types, the 

NIH generally funds work that builds on novel ideas considerably more often than it 

funds traditional science. This link between novel work and NIH funding is not present 

for clinical idea types (with the exception of the Laboratory Procedure category) but the 

link appears to be present for some miscellaneous idea types including the category 

Quantitative Concept. These findings reinforce the findings drawn earlier based on Figure 

3. The NIH’s propensity to fund innovative science varies considerably across idea types, 

and while its propensity to fund novel science is robust for basic science idea types (most 

notably genetics and proteomics) it is not present for most clinical idea types.  

Column 4a reports adjusted estimates from a specification which controls for 

differences in funding rates across idea types. The results correspond to the hypothetical 

scenario that NIH funding rates were equal across all idea types but may vary across 

research areas and across idea cohorts. The cells for individual idea types are empty 

because the results are the same as in the baseline specification (column 3) when only 

one idea type is included in the analysis. Column 4b reports estimates from a 

specification which controls for differences in funding rates across research areas 

(identified from journal categories). The results correspond to the hypothetical case that 

NIH funding rates were equal across research areas but might vary across idea types and 

across idea cohorts.  Column 4c reports estimates from a specification which controls for 

differences in funding rates across idea types and research areas, similar to the approach 

employed in the analysis reported in Figure 4. The results correspond to the hypothetical 
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scenario that funding rates are equal for all (idea type, research area) pairs but may vary 

across idea cohorts within each (idea type, research area pair).  

Together with the result in the first row of column 3, the results in the first row of 

columns 4a, 4b and 4c imply that the overall positive link between novelty and NIH 

funding rates is largely driven by funding difference across idea types, rather than 

funding differences across research areas or funding differences within specific idea 

types or research areas. For controlling for only differences across idea types decreases 

the edge funding ratio from 1.26 to 1.05, controlling for only differences across idea 

types decreases the edge funding ratio from 1.26 to 1.14, and controlling on both 

dimensions decreases the edge funding ratio to 1.04. Controlling for differences across 

idea types thus has the largest impact. Quantitatively, the fact that the edge funding ratio 

is only 1.04 after controlling for differences in funding rates across idea types and 

research areas implies that, on average in biomedicine the NIH’s ability to direct 

resources to innovative projects within idea types and research areas is at best only 

modest. A comparison of the results in the other rows of column 3 against the results in 

the corresponding row of column 4b further demonstrates that controlling for funding rate 

differences across research areas has only a modest impact on the edge funding ratio.  

Columns 5a-5d report results for four time periods: 1990s, 2000s, 2010-2014, and 

2015-2016. For most idea types, the results are relatively stable over time, indicating that 

variation across idea types reflects systematic differences in NIH’s propensity to fund 

novel work rather than random variations.  

Table 2 reports the edge funding ratio for different (idea type, research area) pairs, 

with idea type on the vertical axis and research area on the horizontal axis. By contrast, 

Table 1 showed edge funding ratios by idea type.  The columns of Table 2 report the edge 

funding ratio for each of the 22 largest research areas, as determined by the number of 

contributions linked to each journal category; the last column summarizes the result for 

the 103 remaining research areas. The cells are left empty for those (idea type, research 

area) combinations for which there are less than 100 novel contributions linked to it. The 

results in the first and last row, as well as the rows for the three idea types with the most 

novel contributions linked to them (genes, proteins, and drugs) show little variation 

across research areas. 
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This result reinforces the earlier finding that most of the variation in the novelty-NIH 

funding link is driven by differences across idea types rather than by differences across 

research areas. For other idea types, there is a bit more variation across research areas 

(and also many more empty cells) but this likely mostly reflects random variations due to 

the small number of novel contributions based on which the estimates for many such cells 

are calculated rather than systematic variations in the link between novelty and NIH 

funding across research areas.  

 

4. Discussion  
 

Taken together, our results show that, while the NIH continues to provide support for 

work on new ideas in biomedicine, its support for the most novel ideas has waned in 

recent decades. Furthermore, much of NIH’s support for novelty stems from field-

specific funding priorities, with fields that are more likely to have featured fast progress 

in recent decades (such as genomics) receiving greater NIH support compared to fields 

that have not experienced as fast a rate of scientific progress in recent decades. Less 

positively, our results show that within fields, the NIH generally does not discriminate in 

its support between newer and older ideas. 

Our results provide indirect support for the idea that the NIH review committees are 

risk-averse: within given fields, biomedical research contributions that build on brand 

new ideas report having NIH support less often than do contributions that build on ideas 

that are relatively new but have had some opportunity to mature. A plausible explanation 

for this pattern is that contributions in the former category – the most novel projects – are 

the most likely to be seen as infeasible or too risky. 

However, our evidence also suggests that there is considerably heterogeneity in the 

NIH’s attitude toward novelty depending on the type of the idea that a project builds 

upon. Projects that build on a novel basic science idea (especially a recently discovered 

gene or protein) are more likely to be funded than are projects that build on comparable 

older ideas. By contrast, the novelty-NIH funding link is not present for clinical ideas. 

Thus, while we find consistent NIH support for edge science linked to genomics and 

concepts in subcellular biology more generally, other types of edge science in 
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biomedicine are generally less likely to be NIH supported than are comparable projects 

that build on more traditional ideas. 

Our analysis does not reveal the mechanisms behind this heterogeneity. It is well 

known that NIH has provided generous support for research linked to genomics in recent 

decades (e.g. Joyner et al. 2016).  But this preference to fund genomics related work does 

not explain the positive link between novelty and frequency of NIH support among 

projects that build on advances in genomics. Hence, further research on the mechanisms 

that determine the presence of a link between NIH support and edge science is warranted.  

The fact that, after controlling variations in in funding rates across idea types and 

research areas, there is no link between novelty and NIH funding suggests, taken as a 

whole, NIH review panels are either unwilling to reward novelty or are not able to 

discern which research projects are more novel. This is true despite the fact that 

innovation is one of the main criteria that review panels are asked to use in evaluating 

grant applications. To the extent that rewarding novelty within idea types and research 

areas is infeasible, it may be that the only feasible approach for directing funds to novel 

work is to provide ample funding to entire scientific fields that are thought to be 

advancing at a faster rate than others. For example, current funding rates for genomics 

related work – which are significantly higher than funding rates are in general – could be 

justified by the fact that in recent decades this area has advanced at a faster rate than have 

other areas. 

There are, of course, inherent risks in directing a disproportionate share of funds to 

certain scientific fields. Many of these risks have been discussed in the context of 

examining the desirability of projects that exemplify “big science” and “big biology” 

(e.g. Rosbash 2011; Alberts 2012; Petsko 2009; Vermeulen et al. 2010; Peifer 2017; 

Joyner et al. 2016). When a top-down approach to research resource allocation is 

adopted, the funds may end up being directed to areas that turn out to be less fruitful than 

expected, at the expense of funding a more diverse and thus less risky portfolio of 

research projects. Moreover, inertia in funding decisions will likely keep some areas 

well-funded long past the eventual stagnation of these fields. It is also questionable 

whether funding agencies or anyone can know in advance which discipline or organism 

holds the key to the next important development in biomedicine.  
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These risks of a less diversified funding portfolio must be weighed against the 

benefits. Our finding that the novelty-NIH funding link is at best fragile when comparing 

contributions within idea types and research areas suggest that the alternative to top-down 

research resource allocation – letting individual scientists choose research directions 

more freely and trying to direct funds to innovative projects rather than innovative fields 

– may not be any better an approach in terms of facilitating vibrant scientific 

communities that have strong incentives to pursue also novel research paths.  

There are at least two potential explanations for our finding that over the last three 

decades NIH has become more conservative in its support for work that builds on the 

very latest ideas. First, it may be that review committees have become more cautious in 

terms of funding very novel work. This is consistent with related recent results that have 

indicated that biomedical researchers themselves have become more conservative in their 

research choices (Rzhetzky et al. 2015). Second, perhaps the newest ideas that scientists 

have generated in the 2000s have not been as widely and rapidly accepted by the 

scientific community as the newest ideas that were generated during 1990s. This second 

explanation is consistent with concerns about stagnation in technological progress during 

the 2000s in general, and in medicine more specifically (e.g. Le Fanu 2011), a hypothesis 

that is supported by empirical evidence showing that health advances have become less 

common and harder to achieve in recent decades (Bloom et al. 2017). 

We cannot tell which of these explanations is correct (or if either are correct) from 

the results we present in the paper, though our results contribute to this discussion. 

However, if researchers and funding agencies have become more conservative at the 

same time as biomedical research has stagnated, it is that much more important to 

identify ways to incentivize researchers and funding agencies to pursue and support novel 

work that builds on new ideas. The approach employed in this paper is useful for this 

purpose as it demonstrates how to identify innovative research based on research texts 

and how to use that as a basis for evaluating which funding agencies and funding 

practices reward innovative research projects. 
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5. Conclusion  
 

The trying out of new ideas is a fundamental feature of healthy scientific disciplines; 

scientific progress depends upon a scientific community being open to trying out new 

ideas continuously and systematically. Absent the attention of many scientists, promising 

new ideas cannot be effectively evaluated, developed, and tested for unexpected 

applications. Yet, for an individual scientist the decision to try out a new idea is risky. 

Work that builds on well-established ideas is often the safer choice, as the results the 

latter be more predictable and materialize sooner, even as innovative work that builds on 

newer ideas may ultimately prove to have a higher impact. 

The United States National Institutes of Health (NIH) has played a pivotal role in 

advancing public health and medical research in the past several decades. As the world’s 

largest source of medical research funding, it has supported the development of numerous 

groundbreaking medical technologies and pharmaceuticals that are in common use today.  

One of the primary goals of NIH funding is to support innovative biomedical 

research, including work that tries out new ideas, which we term edge science. But 

because the NIH faces pressure to deliver short-term successes and because identifying 

successful novel projects may be more difficult, many have questioned the NIH’s ability 

to fund innovative science. At the same time, quantitative analyses of whether NIH 

actually achieves this important mission have been scarce in the published literature. 

Our analysis of published biomedical research articles in the comprehensive 

MEDLINE database finds strong support for the preference that the NIH has for 

innovative work. Those contributions that build on relatively recent ideas are 

substantially more likely to have been funded by the NIH compared to contributions that 

only rely on older, well-established, ideas. On average, the NIH thus succeeds in 

providing support for edge science. 

Despite this rosy evaluation, our findings suggest that there is room for the NIH to 

do more to promote innovative science. We find that in the current funding environment, 

there is a time lag for NIH funding of papers that rely on new ideas: work that builds on 

brand new ideas is funded at a lower rate than is work that builds on ideas that have had a 

chance to mature at least 5-10 years. One reason for this may be that NIH review 
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committees are risk averse; they are less likely to support projects that rely on brand new 

ideas (which may be the riskiest) than ideas that have had some opportunity to mature 

(which properties have thus become a bit better understood). 

This pattern has not always been true of NIH funded papers. In the 1990s, papers 

that relied on brand new ideas were the most likely to have received NIH funding. NIH 

review committees and funding decisions have thus have become more conservative and 

risk-averse over time, despite a variety of policies that the NIH has implemented in the 

past two decades to reward innovative and high-risk project proposals (e.g. Larkin 2003; 

Steinbrook 2009; Avorn and Kesselheim 2011; Woodward 2011). 

We also find that NIH’s ability to fund innovative science is driven mostly due to 

its decision to fund rapidly advancing areas of investigation such as genomics and its 

applications. By contrast, our findings imply that the NIH’s ability to direct funding to 

novel projects over comparable more traditional projects within the same area of 

investigation is quite limited. An important implication of this finding is that a move to a 

more egalitarian funding model – one that doesn’t favor some areas of investigation as 

much as the current model does – would likely lead to a significant decrease in novelty of 

NIH supported research, unless such a funding policy change is accompanied by a drastic 

shift in funding review procedures. The shift in review policies would have to render the 

process much more favorable to novel work within each area of investigation. Hence, the 

decision regarding the level of funding to each area of investigation should not be 

separated from the decision regarding how to arrange the review process within each area 

of investigation.   

Our text-based approach for identifying innovative research suggests a fruitful 

agenda for the quantitative analysis of funding agencies.  Constructively, the quantitative 

measurement of new idea adoption can help the NIH better understand the impact that its 

review practices and funding decisions have on the scientific enterprise. The 

methodology that we introduce in this paper can help design policies to counteract the 

long-term trend that we identify in the funding of work that builds on brand new ideas, 

and thus potentially speed scientific advance. Our methods could also be applied to NIH 

grant application data – especially applications that have just missed the funding 

threshold – to gain insights into what an increase in the NIH budget would yield in terms 
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of increased pursuit of innovative science.  While we have focused on work that is novel 

in the sense that it builds on new ideas, the analysis could be extended to capture also 

work that tries out novel combinations of old ideas. Finally, the methodology we have put 

forward in this paper for evaluating the novelty preferences of a funding agency can also 

be applied to agencies such as the National Science Foundation that operate on scientific 

fields outside of biomedicine. 
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Table 1: Edge Funding Ratios by Idea Type and Time Period.	

	
Notes to Table 1: Numbers in Columns 2a-2d, 3 and 4-4c are calculated based on biomedical research articles published during 2010-2016. Please see the main text for explanations and 
interpretations of each column.  



Table 2: Edge Funding Ratios by Research Area. 

 
Notes to Table 2: Numbers in all columns are calculated based on biomedical research articles published during 2010-2016. Please see the main text for explanations and interpretations of 
each column. 




