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A CAUSAL BOOTSTRAP

GUIDO IMBENS KONRAD MENZEL

Abstract. The bootstrap, introduced by Efron (1982), has become a very popular method

for estimating variances and constructing confidence intervals. A key insight is that one can

approximate the properties of estimators by using the empirical distribution function of

the sample as an approximation for the true distribution function. This approach views

the uncertainty in the estimator as coming exclusively from sampling uncertainty. We argue

that for causal estimands the uncertainty arises entirely, or partially, from a different source,

corresponding to the stochastic nature of the treatment received. We develop a bootstrap

procedure that accounts for this uncertainty, and compare its properties to that of the

classical bootstrap.
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1. Introduction

1.1. Problem Description. Using the potential outcome framework, e.g., Imbens and Ru-

bin (2015), we are interested in the average causal effect of a binary variable Wi ∈ {0, 1} (the

“treatment”) on an outcome variable whose potential outcomes we denote with Yi(0), Yi(1),

for a population of N units i = 1, . . . , N . Implicitly we assume that the potential outcomes

Yi(w) for unit i do not vary with the treatment status assigned to other units, known as the

Stable Unit Treatment Value Assumption (SUTVA, Rubin (1978)). For all units in the pop-

ulation we observe the treatment Wi and the realized outcome Yi := Yi(Wi). One common

estimand is the average effect for the N units in the population:

τATE :=
1

N

N
∑

i=1

(

Yi(1)− Yi(0)
)

. (1.1)

We assume that the data arise from a completely randomized experiment, where n ≤ N units

are selected at random from the population as experimental subjects, of which n1 units are

then randomly assigned to receive the treatment, and the remaining n0 = n − n1 units are

assigned to the control group. We let Ri ∈ {0, 1} denote an indicator whether the ith unit

is included in the sample.

Date: March 2018.
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Specifically, for R := (r1, . . . , rN)
′ and W := (w1, . . . , wN)

′ we have

pr(R = r) =

{

(

N
n

)−1
if r ∈ {0, 1}N and

∑

ri = n

0 otherwise

pr(W = w|R = r) =

{

(

n
n1

)−1
if
∑

riwi = n1, w ∈ {0, 1}N and (1− ri)wi = 0 for all i

0 otherwise

1.2. Sampling Uncertainty and Design Uncertainty. We wish to distinguish between

two types of uncertainty in estimators, sampling uncertainty arising from the stochastic

nature of R, and design uncertainty arising from the stochastic nature of W.

To characterize sampling uncertainty we postulate the existence of a large, possibly infinite,

population. We draw a random sample from this population, and observe for each unit in

this sample a set of values, say, a pair (Yi,Wi). We may be interested in in the difference

between the population averages of Yi for the subpopulations with Wi = 0 and Wi = 1.

We can estimate this object using the difference in average outcomes by Wi values in the

sample. This estimator differs from the target because we do not observe all units in the

population. Had we drawn a different random sample, with different units, the value of the

estimator would have been different. See Table 1, where Ri is the sampling indicator, equal

to 1 for sampled units and 0 otherwise. The uncertainty arising from the randomness in R

is captured by the conventional standard error.

Table 1. : Sampling-based Uncertainty (X is observed, ? is missing)

Actual Alternative Alternative . . .
Unit Sample Sample I Sample II . . .

Yi Wi Ri Yi Wi Ri Yi Wi Ri . . .

1 X X 1 ? ? 0 ? ? 0 . . .
2 ? ? 0 ? ? 0 ? ? 0 . . .
3 ? ? 0 X X 1 X X 1 . . .
4 ? ? 0 X X 1 ? ? 0 . . .
...

...
...

...
...

...
...

...
...

... . . .
N X X 1 ? ? 0 ? ? 0 . . .

In a randomized experiment the uncertainty is not necessarily of this sampling variety.

Instead we can think of the uncertainty arising from the stochastic nature of the assignment,

W. For units with Wi = 0 we observe Yi(0), and for units with Wi = 1 we observe Yi(1).

In our sample units have a particular set of assignments. In a repeated sampling thought

experiment the units in the sample would have remained the same, but their assignments

would might been different, leading to a different value for the estimator. See Table 2.
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Table 2. : Design-based Uncertainty (X is observed, ? is missing)

Actual Alternative Alternative . . .
Unit Sample Sample I Sample II . . .

Yi(1) Yi(0) Wi Yi(1) Yi(0) Wi Yi(1) Yi(0) Wi . . .

1 X ? 1 X ? 1 ? X 0 . . .
2 ? X 0 ? X 0 ? X 0 . . .
3 ? X 0 X ? 1 X ? 1 . . .
4 ? X 0 ? X 0 X ? 1 . . .
...

...
...

...
...

...
...

...
...

... . . .
N X ? 1 ? X 0 ? X 0 . . .

1.3. The Bootstrap. The classical bootstrap corresponds to the case where the uncer-

tainty is purely sampling uncertainty. The bootstrap approximates the cumulative distribu-

tion function of the pairs (Yi,Wi), FYW (·, ·) in the population by the empirical distribution

function F̂Y W (·, ·), where

F̂Y W (w, y) :=
1

n

N
∑

i=1

Ri1l{Yi ≤ y,Wi ≤ w}.

It then calculates properties of the estimator given that approximate distribution F̂YW (·, ·).
One can interpret the standard bootstrap as imputing all the missing values of (Yi,Wi)

in the population by replicates of the observed values, and thus constructing an artificial

population from which we then draw random samples. This perspective is helpful to contrast

the different approach underlying the causal bootstrap.

1.4. Notation. In the following, we denote the distribution of potential outcomes in the

population with F p
01(y0, y1) := 1

N

∑N
i=1 1l{Yi(0) ≤ y0, Yi(1) ≤ y1} and the size of that pop-

ulation with N . The distribution in the sample of size n is denoted with F s
01(y0, y1) :=

1
n

∑N
i=1Ri1l{Yi(0) ≤ y0, Yi(1) ≤ y1}. F s

01(·, ·) is not quite the empirical distribution be-

cause we only observe one of the values in each pair (Yi(0), Yi(1)). We use p superscripts

throughout to indicate population quantities, and s superscripts to denote their sample

analogs. The number of treated units in the sample is denoted with n1, the number of

control units with n0 = n − n1, and the respective shares of treated and control units with

p := n1/n, so that 1 − p = n0/n. We also define the empirical c.d.f. for either potential

outcome given the randomized treatment as F̂0(y0) :=
1
n0

∑N
i=1Ri(1−Wi)1l{Yi(0) ≤ y0} and

F̂1(y1) :=
1
n1

∑N
i=1RiWi1l{Yi(1) ≤ y1}.
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2. The Causal Bootstrap for Average Treatment Effects

In this section we consider causal bootstrap inference for the population average treatment

effect τATE defined in (1.1). The estimator we use is the difference in sample averages by

treatment status:

τ̂ATE := Y 1 − Y 0,

where

Y 1 :=
1

n1

N
∑

i=1

RiWiYi, and Y 0 :=
1

n0

N
∑

i=1

Ri(1−Wi)Yi.

The repeated sampling perspective we take is one where the potential outcomes (Yi(0), Yi(1))

are fixed for all N units in the population. The stochastic properties of the estimator

arise from the stochastic nature of the assignment and sampling, which are both sources

of randomness in the average of realized outcomes by treatment status, where we regard

n, n0, n1 as fixed.

2.1. The True Variance of the Estimator for the Average Treatment Effect. Here

we present the true variance of the estimator τ̂ATE under random assignment of the treat-

ment. From the n experimental subjects, n1 are selected at random to receive the active

treatment, and the remainder are assigned to the control group. Define

Y (0) =
1

N

N
∑

i=1

Yi(0), Y (1) =
1

N

N
∑

i=1

Yi(1),

S2
0 =

1

N − 1

N
∑

i=1

(

Yi(0)− Y (0)
)2

, S2
1 =

1

N − 1

N
∑

i=1

(

Yi(1)− Y (1)
)2

,

and

S2
01 =

1

N − 1

N
∑

i=1

(Yi(1)− Yi(0)− τATE)
2 .

Then the exact variance of τ̂ , over the randomization distribution, is

V(τ̂) =
S2
0

n0
+

S2
1

n1
− S2

01

N
.

See, for example, Neyman (1923,1990), Aronow, Green, and Lee (2014), Ding (2017), and

Abadie, Athey, Imbens, and Wooldridge (2017).

2.2. An Analytical Variance Estimator. Define

Ŝ2
0 =

1

n0 − 1

N
∑

i=1

Ri(1−Wi)
(

Yi − Y 0

)2
, and Ŝ2

1 =
1

n1 − 1

N
∑

i=1

RiWi

(

Yi − Y 1

)2
.
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Then the standard variance estimator is

V̂Neyman :=
Ŝ2
0

n0
+

Ŝ2
1

n1
.

This estimator ignores the third term in the variance, which is negative, so V̂Neyman in

general overestimates the true variance. It is possible to give sharp bounds for S2
01 given

the respective marginal distributions of Yi(0) and Yi(1). Aronow, Green, and Lee (2014)

proposed a consistent estimator for the resulting bounds on V(τ̂ ) that can be expressed as

V̂AGL :=
Ŝ2
0

n0

+
Ŝ2
1

n1

− Ŝ01

N

where Ŝ
∗

01 is an estimator of the sharp lower bound for S2
01.

1

2.3. The Causal Bootstrap. Here we initially take the perspective that the uncertainty

is solely arising from the stochastic nature of the assignment, as in Table 2. In the spirit

of the above interpretation of the standard bootstrap, we use the observed data to impute

all the missing values in the population. Then we simulate the estimator using this partly

imputed population.

The difference with the standard bootstrap is in the nature of the missing data process,

and how we impute them. Consider unit 1 in Table 2. In the actual sample this unit receives

the active treatment, and so we observe Y1(1), but we do not know the value of the control

outcome for this unit, Y1(0).

A natural approach is to impute the missing value of Y1(0) using one of the observed values

for Yi(0), that is, one of the realized values of Yi for control units. The question is which one

to use. It turns out that it matters how we choose to impute the missing values from the

observed values. This issue is related to the term S2
01 in the true variance of the estimator τ̂

for the average treatment effect, the term that is not consistently estimable, and which we

typically ignore in practice.

To frame this question, it is useful to start with the joint distribution function of the pairs

of potential outcomes in the population,

F p
01(y0, y1) :=

1

N

N
∑

i=1

1l {Yi(0) ≤ y0, Yi(1) ≤ y1} .

The average treatment effect, and any other causal parameters of interest, can be written as

a functional of this distribution,

τ := τ(F p
01).

1Such an estimator is
Ŝ01 := Ŝ2

0 + Ŝ2
1 − 2σ̂H

N (y0, y1)

where σ̂H
N (y0, y1) is a consistent estimator for the upper bound for Cov(Yi(0), Yi(1)), see equation (8) of their

paper.
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Given F p
01, the assignment mechanism completely determines the distribution of any esti-

mator, for example the difference in averages by treatment status, τ̂ . This is similar to the

way in which in the sampling case knowledge of the joint population distribution allows us

to deduce the properties of any estimator.

The problem, and the main difference with the sampling case is that for each unit in the

population, at most one of the two potential outcomes Yi(0) and Yi(1) is observed so that

there is no consistent estimator for F p
01(·, ·): In general, the joint distribution of potential

values can be written as

F p
01(y0, y1) = C(F p

0 (y0), F
p
1 (y1))

where the copula C : [0, 1]2 7→ [0, 1] is a function that is nondecreasing in either argument

for each value of x. By Sklar’s theorem (e.g. stated as Theorem 2.3.3 in Nelsen (2006)), such

a copula exists even though it need not be unique unless the marginal distributions F p
0 , F

p
1

are continuous. In the following, we let

C :=
{

C : [0, 1]2 7→ [0, 1], C(u, v) nondecreasing in u and v
}

denote the set of all possible copulae.

It is important to note that although the marginal distributions F p
0 , F

p
1 can be estimated

consistently from a completely randomized experiment as sample size grows, the data on

realized treatments and outcomes impose no empirical restrictions on the copula C(u, v) for

the joint distribution of (Yi(0), Yi(1)). Hence, neither the parameter τ(F s
01) = τ(C(F s

0 , F
s
1 ))

nor the distribution of an estimator τ̂ need in general not be point-identified.

In the spirit of the variance estimator in Aronow, Green, and Lee (2014), we address

this challenge by simulating the distribution of τ̂ using an estimator for the population

distribution F p
01 that is conservative with respect to the copula in a sense to be made more

precise below. To illustrate the broader conceptual idea, consider an estimator

τ̂ := τ(F̂0, F̂1)

for a general functional τ(F01) of the distribution of potential values. Under regularity

conditions,2 such an estimator admits a stochastic expansion of the form

τ̂ − τ(F p
01) = µ(F p

01) + n−1/2σ(F p
01)Z + n−1κ(F p

01) + oP (n
−1)

where Z ∼ N(0, 1). The first-order “bias” term

µ(F p
01) := EF p

01
[τ̂ ]− τ(F p

01)

and the scale parameter

σ2(F p
01) := lim

N
nVarF01

(τ̂)

2See e.g. Bloznelis and Götze (2001) for regularity conditions for finite-population expansions of this type.
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are deterministic functions of the unknown distribution F p
01 = C(F p

0 , F
p
1 ), and the limit

for the asymptotic variance is taken as N and n := nN grow large. The second-order

approximation error κ(F p
01) is a tight random variable whose distribution also depends on

F p
01.

If the functional τ(F p
01) is not point-identified, then µ(F p

01) may take values in a set whose

bounds may be characterized in terms of the marginal distributions F p
0 , F

p
1 . Specifically,

given the marginal distributions F p
0 , F

p
1 we have sharp bounds of the form

µL(F
p
0 , F

p
1 ) := inf

C̃∈C

µ(C̃(F s
0 , F

s
1 ) ≤ µ(F s

01) ≤ sup
C̃∈C

µ(C̃(F s
0 , F

s
1 )) =: µU(F

p
0 , F

p
1 ),

that are generally available, see e.g. Heckman, Smith, and Clements (1997) and Manski

(1997). Similarly we can form bounds for the variance,

σL(F
p
0 , F

p
1 ) := inf

C̃∈C

σ(C̃(F s
0 , F

s
1 ) ≤ σ(F s

01) ≤ sup
C̃∈C

σ(C̃(F s
0 , F

s
1 )) =: σU(F

p
0 , F

p
1 )

For a given inference problem, the bootstrap has to estimate these quantities conservatively

with respect to the unknown copula C(·), which can be done iteratively as follows: we

first need to determine which couplings C∗
0 attain the value of µ(C∗

0(F0, F1)) which is least

favorable for the inference problem at hand. Within the (not necessarily singleton) set C∗
0 of

such couplings, we then determine the least-favorable value of σ(C∗
1(F0, F1)) for C

∗
1 ∈ C∗

0 . We

can apply this principle recursively either until the resulting set C∗
k contains a unique copula,

or until we reach the order of approximation desired for formal results regarding the bootstrap

procedure. This results in an estimate F̂ ∗
01 := C∗

k(F̂0, F̂1) for the population distribution

F p
01 that is conservative regarding the inference task at hand. The causal bootstrap then

approximates the distribution of τ̂ by sampling and randomization from a population F̂ ∗
01

using the known sampling and assignment mechanism.

2.4. Least Favorable Coupling for the Average Treatment Effect. In this paper, we

consider the special case of two-sided confidence intervals based on a t-ratio for the sample

average treatment effect. The case of the average treatment effect has been the main focus

of the previous literature. It is a special case for our problem in that the copula does not

matter for estimation - by inspection, the functional

τATE(F01) = EF01
[Yi(1)]− EF01

[Yi(0)] = EF1
[Yi(1)]− EF0

[Yi(0)] =: τ(F0, F1)

does not depend on the copula, and the default estimator

τ̂ATE := τ(F̂0, F̂1) ≡
1

n1

N
∑

i=1

RiWiYi −
1

n0

N
∑

i=1

Ri(1−Wi)Yi

7



is known to be unbiased for τ(C(F0, F1)) under any coupling so that µ(C(F0, F1)) ≡ 0 for

each C. In order to ensure that the estimand is well-defined and satisfies other regularity

conditions for the bootstrap, we make the following assumptions:

Assumption 2.1. The first four moments of F0(y0) and F1(y1) are bounded.

Also for a two-sided confidence interval constructed from inverting a t-test based on τ̂ATE ,

the least favorable coupling must attain the upper bound for the asymptotic variance,

σ2
U (F0, F1) = sup

C∈C

σ2(C(F0, F1)) =: σ2(F0, F1)

We next show that σ2(C(F0, F1)) is uniquely maximized at the joint distribution correspond-

ing to the isotone assignment which matches values of Yi(0) to values of Yi(1) while preserving

their respective marginal distributions. More formally, the joint distribution of the potential

outcomes under the isotone coupling is characterized by the copula

C iso(u, v) := min{u, v}

We find that the upper bound on the variance is in fact uniquely attained at the isotone

coupling. Therefore an estimator for the distribution of τ̂ATE which assumes the isotone

coupling is asymptotically conservative at any order of approximation.

Proposition 2.1. (Least Favorable Coupling for the ATE). Suppose that Assumption

2.1 holds. Then, given the marginal distributions F0, F1, the variance bound is uniquely

attained at

σ2(F0, F1) := lim
N

nVarF iso
01
(τ̂ )

where F iso
01 := C iso(F0, F1) is the joint distribution corresponding to the isotone coupling.

The fact that the variance bound is attained at the isotone coupling is widely known (see

e.g. Becker (1973), Fan and Park (2010), Stoye (2010), and Aronow, Green, and Lee (2014)),

for expositional purposes we provide a proof in the appendix. We establish the slightly

stronger conclusion that the distribution under the isotone coupling is in fact maximal with

respect to second-order stochastic dominance. For our approach it is also important to

establish that this maximum is unique in the sense that the joint distribution resulting from

any other coupling yields a variance that is strictly lower than σ2
U(F0, F1). In particular,

for confidence intervals based on the Gaussian asymptotic distribution, the isotone coupling

does indeed constitute the least favorable coupling.

2.5. Related Literature. Worst case bounds on the distributions of potential outcomes and

treatment effects and their quantiles have been analyzed by Heckman, Smith, and Clements

(1997), Manski (1997), Firpo and Ridder (2008), Fan and Park (2010), Fan and Park (2012),

and Fan and Wu (2010). This literature uses theoretical results on dependency bounds for
8



functions of several random variables which were developed among others by Makarov (1982),

Frank, Nelsen, and Schweizer (1987), and Williamson and Downs (1990). Stoye (2010) estab-

lishes that a class of spread parameters is monotone with respect to conventional stochastic

orders of distribution, and shows how to derive parameter bounds for causal inference. Sev-

eral of these studies also propose inference procedures that account for sampling uncertainty

rather than randomization error. In contrast, for our problem we need to explicitly construct

the respective couplings that achieve the lower and upper bounds to the parameter, and in

addition the largest randomization variance for an estimator of either bound.

Robins (1988) proposes a confidence interval for a causal parameter based on the least-

favorable coupling for a binary outcome variable. Aronow, Green, and Lee (2014) pro-

pose an estimator of the sharp upper bound for the randomization variance of the average

treatment effect in completely randomized experiments. Our approach of embedding the

finite-population randomization distribution into an asymptotic sequence of sampling ex-

periments closely follows Abadie, Athey, Imbens, and Wooldridge (2017). Our results make

use of a finite-population CLT for the empirical process developed by Bickel (1969) for the

two-sample problem. Finite-sample central limit theorems for randomization inference were

also provided by Li and Ding (2017). Bootstrap methods for sampling from finite popula-

tions (without replacement) have been proposed by Bickel and Freedman (1984) and Booth,

Butler, and Hall (1994). For this problem the main challenge in generating the finite boot-

strap population is that the size of the super-population N may be a non-integer multiple

of n. We propose a new alternative for estimating the potential outcome distribution for

a super-population of exact size N and for which the marginal distributions coincide with

their empirical analogs up to rounding error.

2.6. Comparison to Fisher’s Exact Test. Bootstrap inference on the average treatment

effect as proposed in this paper bears some conceptual similarities with Fisher’s exact test

of the sharp null of no unit-level treatment effect (see e.g. Rosenbaum (2002), Imbens and

Rubin (2015), Ding (2017)), Yi(0) = Yi(1) with probability 1. One important distinction is

that the justification for our procedure is only asymptotic, whereas the Fisher exact test is

valid in finite samples.

Furthermore, the Fisher exact test evaluates the randomization distribution of the esti-

mated ATE under the sharp null of no or a constant unit-level treatment effect. The sharp

null not only implies that the joint distribution of Yi(0) and Yi(1) corresponds to the isotone

assignment, but also equality of the marginal distributions F0(y) = F1(y), which may in

fact be rejected by the data under the null of a zero average treatment effect. In that case

even a conservative estimator of the randomization variance may in fact be smaller than

that implied by zero, or constant, unit-level effects. More generally, when Fisher’s sharp null

fails and F0(y) 6= F1(y), the bootstrap estimate of the randomization variance can in several
9



important scenarios be smaller than that implicit in Fisher’s exact test, in which case our

procedure is asymptotically more powerful.

Specifically, standard variance calculations (see e.g. Ding (2017)) imply that the implicit

variance estimate for Fisher’s exact test under the null of no average effect is

VF isher(τ̂ATE) = Var(Yi)

(

1

n1

+
1

n0

)

=
n0S

2
0 + n1S

2
1

n

(

1

n1

+
1

n0

)

.

We can compare this to the actual variance stated in Section 2.1,

V(τ̂) =
S2
0

n0
+

S2
1

n1
− S2

01

N
.

Our bootstrap procedure implies a conservative estimate, i.e. a sharp lower bound for

S2
01 from the isotone coupling of the potential outcomes, which is strictly positive whenever

the marginal distributions of Yi(0) and Yi(1) are not the same. The comparison between

the terms
S2
1

n1
+

S2
0

n0
and Var(Yi)

(

1
n1

+ 1
n0

)

is generally ambiguous - Ding (2017) describes

several cases in which the randomization variance implied by Fisher’s test is strictly larger,

and his conclusions carry over to the bootstrap procedure in this paper. On the other

hand it is important to note that when
S2
1

n1
+

S2
0

n0
> Var(Yi)

(

1
n1

+ 1
n0

)

, Fisher’s exact test

over-rejects under the null hypothesis of no average treatment effect, so that this potential

power advantage for the Fisher test only arises in situations in which the exact test does not

provide a valid test of that null. We illustrate this possibility using Monte Carlo simulations

in Section 4.

The relationship between Fisher’s sharp null and Neyman’s null hypothesis of no average

effect is clarified in Ding (2017), who also shows that Neyman’s test of the null of no average

effect is weakly more powerful against alternatives than Fisher’s exact test. Fisher’s exact

null also implies that the distribution of ∆i is degenerate at a constant, however the power

comparison for the ATE does not carry over to set-identified objects like quantiles or the

c.d.f. of ∆i since the bounds for the identified set are typically not attained at the isotone

coupling that is implied by the sharp null.

3. General Setup and Bootstrap Procedure

The proposed bootstrap procedure allows for sampling and randomization uncertainty,

where we consider a sampling experiment under which the researcher observes n units that

are selected at random out of a population of N units. For the purposes of asymptotic

approximations, we assume that the population of interest in turn consists of N i.i.d. draws

from an encompassing distribution F01.

Assumption 3.1. (Sampling Experiment) The population consists of N units with po-

tential values (Yi(0), Yi(1))
N
i=1 which are i.i.d. draws from the distribution F01(y0, y1). The n

10



observed units are sampled at random and without replacement from the population,

Yi(0), Yi(1)⊥⊥Ri

where we denote q := n
N

∈ (0, 1].

We assume throughout that the treatment Wi ∈ {0, 1} is binary, and that the outcome

Yi(Wi) for unit i does not vary with the treatment status assigned to other units. The latter

requirement is also known as individualistic treatment response, or Stable Unit Treatment

Value Assumption (SUTVA). We assume furthermore that the experiment is completely

randomized:

Assumption 3.2. (Complete Randomization) Treatment assignment is completely ran-

domized, that is for each unit with Ri = 1 we have

(Yi(0), Yi(1))⊥⊥Wi

where Wi = 1 for n1 units selected at random and without replacement from the n observa-

tions with Ri = 1, and the propensity score p := n1

n
satisfies 0 < p < 1.

For greater clarity of exposition we also assume that the researcher observes no further co-

variate information. The approach of this paper can be generalized to observational studies

under unconfoundedness, and experiments with imperfect compliance for which unconfound-

edness fails, but intention to treat is (conditionally) independent of potential outcomes and

can serve as an instrumental variable to identify causal effects on a population of compliers.

Given a sample generated according to Assumptions 3.1 and 3.2, we denote the point

estimate for the average treatment effect

τ̂ := τ(F̂0, F̂1)

and the upper variance bound

σ̂ := σ(F̂0, F̂1)

For the purposes of this paper, the main target of interest for the causal bootstrap is the

distribution of the t-ratio

T :=
√
n
τ̂ − τ

σ̂

3.1. Bootstrap Algorithm. The proposed bootstrap algorithm proceeds in four main

steps:

(1) We obtain nonparametric estimates of the potential outcome distributions F0(y0)

and F1(y1) from the units for which Wi = 0 (Wi = 1, respectively) in the actual

experiment.
11



(2) We create an empirical population of size N ,
(

Ỹi, W̃i

)N

i=1
by generating an appropriate

number of replicas of the sample of n draws forWi, Yi. If the sample is the population,

n = N , we can skip this step.

(3) We then impute potential values Ỹi(0), Ỹi(1) for each unit i = 1, . . . , N , where

Ỹi(W̃i) = Ỹi and Ỹi(1− W̃i) is obtained from the estimated potential outcome distri-

butions and the least-favorable copula for the parameter of interest.

(4) Finally, we simulate the randomization distribution by repeatedly drawing n units

Y ∗
i (0), Y

∗
i (1) out of that empirical population without replacement and generating

randomization draws W ∗
1 , . . . ,W

∗
n . We then evaluate the sample average treatment

effect for the bootstrap sample (Y ∗
i (W

∗
i ),W

∗
i )

n
i=1 obtained using the imputed potential

outcomes.

Given the simulated randomization distribution for the estimated bounds, we can esti-

mate the percentiles of the t-ratios that are needed to construct confidence intervals for the

functional. We next describe each of these steps in greater detail.

3.2. Generating the Empirical Population. To obtain the empirical population of size

N , we generate replicates of the n observed units, however not necessarily of the same

number for each observation when N is not an integer multiple of n. We propose the

following procedure for doing so:

• We create the samples
(

Y 0
j , Û

0
j

)n0

j=1
of values for Yi for the n0 units with Wi = 0,

and
(

Y 1
j , Û

1
j

)n1

j=1
with values Yi for the n1 units with Wi = 1. We assume that each

sample is ordered, Y w
k ≤ Y w

k+1 for all k, and the rank variable Ûw
j = j

nw
for w = c, t.

• Let N0 = ⌈n0

n
N⌉ and N1 = N−N0. We generate the empirical population

(

Ỹi, W̃i

)N

i=1

by including M0
j := ⌈Û0

j+1N0⌉ − ⌈Û0
j N0⌉ copies of Y 0

j with W̃j = 0 and M1
j :=

⌈Û1
j+1N1⌉ − ⌈Û1

j N1⌉ copies of Y 1
j with W̃j = 1.

Since the respective maxima of Û0
j , Û

1
j are equal to 1 for either of the two strata (cor-

responding to Wi = 0 and Wi = 1, respectively),
∑n

j=1((1 − W̃(j))M
0
(j) + W̃(j)M

1
(j)) =

⌈N0⌉ + ⌈N1⌉ = N so that this procedure ensures that the empirical population has size

equal to N . Also, for n and N sufficiently large, the respective empirical distributions of

Ỹi among units with W̃i = 0 and Ỹi among units with W̃i = 1 are, up to an approximation

error of the order n−1, equal to F̂0 and F̂1, respectively.

3.3. Imputing Missing Counterfactuals. For the specific case of two-sided inference

for the average treatment effect, the least favorable coupling corresponds to the isotone

assignment C iso(u, v) := min{u, v}, as argued before. In order to generate an empirical

population with joint distribution F̂ iso
01 := C iso(F̂0, F̂1), we can simply impute the missing

12



counterfactuals according to:

Ỹi(0) :=

{

Ỹi if W̃i = 0

F̂−1
0

(

F̂1(Ỹi)
)

otherwise

Ỹi(1) :=

{

Ỹi if W̃i = 1

F̂−1
1

(

F̂0(Ỹi)
)

otherwise
(3.1)

For functionals τ(F01) of the potential outcome distribution other that the average treatment

effect, or inference problems other than two-sided confidence intervals, the least favorable

coupling will be of a different form, so this step would have to be replaced by a procedure

imputing the missing counterfactuals from a different coupling.

3.4. Resampling Algorithm. For the bth bootstrap replication, we initially draw n units

(Y ∗
ib(0), Y

∗
ib(1)) from the empirical population at random and without replacement.

Given a known propensity score p := P (Wi|Ri = 1), for the bth bootstrap replication we

can generate W ∗
1b, . . . ,W

∗
nb as independent Bernoulli draws with success probability P (W ∗

ib =

1) = p and obtain the bootstrap sample Y ∗
1b, . . . , Y

∗
nb, where Y ∗

ib := Y ∗
ib(W

∗
ib).

We can then compute the bootstrap analogs of the estimated c.d.f.s F̂ ∗
0b(y0) :=

1
n0

∑N
i=1R

∗
ib(1−

W ∗
ib)1l{Y ∗

ib ≤ y0} and F̂ ∗
1b :=

1
n1

∑N
i=1R

∗
ibW

∗
ib1l{Y ∗

ib ≤ y1}, the corresponding estimates of the

average treatment effect, and the variance bound,

τ̂ ∗b := τ(F̂ ∗

0b, F̂
∗

1b)

σ̂∗

b := σ(F̂ ∗

0b, F̂
∗

1b)

We then record the studentized values of the bootstrap estimates,

T ∗

b :=
√
n
τ̂ ∗b − τ̂

σ̂∗
b

Repeating the resampling step B times, we obtain a sample (T ∗
1 , . . . , T

∗
B) that constitutes

independent draws from the bootstrap estimator of the randomization distribution and can

be used to construct critical values for tests or confidence intervals.

3.5. Confidence Intervals. We consider confidence intervals constructed by inverting a t-

test based on the point estimate τ̂ := τ(F̂0, F̂1) and given the variance bound σ̂ := σ(F̂0, F̂1)

introduced before. The proposed confidence intervals for τ are then of the form

CI(1− α) :=
[

τ̂ − n−1/2σ̂ĉ(1− α), τ̂ − n−1/2σ̂ĉ(α)
]

(3.2)

We use bootstrap approximations to the randomization distribution of the t-ratio n1/2(τ̂ −
τ)/σ̂ under the least favorable coupling in order to determine the critical values. Specifically,

let Ĝ(z) := 1
B

∑B
b=1 1l{T ∗

b ≤ z} denote the empirical distribution for the bootstrap samples
13



obtained from the previous step. We then estimate the critical values using ĉ(α) := Ĝ−1(α)

and ĉ(1− α) := Ĝ−1(1− α).

4. Monte Carlo Simulations

We next compare the performance of this causal bootstrap with the standard bootstrap

and other alternative methods based on sampling or randomization designs. Specifically, we

consider confidence intervals using Gaussian critical values the respective analytic estimators

of the sampling variance V̂Neyman and the causal variance V̂AGL given in Section 2.2. We also

consider Gaussian inference using the variance estimators V̂s−boot and V̂c−boot obtained from

the classical (sampling) bootstrap, and the causal bootstrap proposed in this paper. We

compare these to confidence intervals from inverting Fisher’s exact test, and confidence

intervals from the standard and the causal bootstrap for the t-statistic based on either

sampling or causal variance estimate. Throughout we will restrict our attention to the case

n = N , i.e. when the full population of interest is observed.

We first consider three different simulation designs to illustrate the main points of com-

parison between the causal bootstrap and its main alternatives.

• Design I sets n0 = n1 = 100 and draws potential outcomes according to Yi(0) ∼
N (0, 1), Yi(1) = Yi(0). In this setting, treatment effects are constant at Yi(1)−Yi(0) ≡
0 and the marginal distributions F p

0 (y) ≡ F p
1 (y), so that all procedures should be

expected to do well.

• For Design II we again have n0 = n1 = 100, but generate potential outcomes as

Yi(0) ∼ N (0, 1), and Yi(1) = 0. In that case, the marginal distributions F p
0 (y) and

F p
1 (y) are different, so that causal standard errors and the causal bootstrap should

do better than their sampling analogs.

• For Design III, n0 = n1 = 10, and we generate non-Gaussian potential outcomes

where Yi(0) is mixture, with probability 0.9 it is N (0, 1) and with probability 0.1 it

is N (0, 16), Yi(1) = 0. This design highlights the difference between the bootstrap

and the Gaussian distribution, which is no longer exact for this design.

Simulation results are shown in Table 4, where we compare coverage rates of nominal 95%

confidence intervals, and the corresponding standard errors for each of the three designs. If

a particular method does not directly calculate standard errors, we calculate the standard

errors by taking the ratio of the difference between the upper and lower limit of the confidence

interval and dividing by 2 times 1.96. As expected, all methods do well for the first design.

In the second design, only inference based on V̂AGL and the causal bootstrap (pivotal or not)

do well. In the third design the pivotal causal bootstrap does better than Gaussian inference

using either V̂AGL or V̂c−boot as an estimator for the asymptotic variance.
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Table 3. 95% Confidence Intervals And Standard Errors

Design I Design II Design III
Variance Bootstrap Pivotal Cov Med Cov Med Cov Med
Estimator Version Statistic Rate s.e. Rate s.e. Rate s.e.

V̂Neyman N/A No 0.9928 0.0997 0.9524 0.1410 0.9588 0.4487

V̂AGL N/A No 0.9480 0.0705 0.9476 0.1394 0.8858 0.3173

V̂s−boot Standard No 0.9922 0.0993 0.9502 0.1403 0.9506 0.4255

V̂c−boot Causal No 0.9472 0.0703 0.9480 0.1390 0.8792 0.3090

Fisher’s Exact Test 0.9584 0.0997 0.9772 0.1410 0.9644 0.4494

V̂Neyman Standard Yes 0.9938 0.1011 0.9600 0.1421 0.9758 0.6212

V̂AGL Standard Yes 0.9938 0.1011 0.9576 0.1444 0.9758 0.6212

V̂Neyman Causal Yes 0.9492 0.0714 0.9564 0.1407 0.9224 0.4375

V̂AGL Causal Yes 0.9492 0.0714 0.9560 0.1423 0.9224 0.4375

We next illustrate the role of the coupling of the potential values where we draw (Yi(0), Yi(1))

from a bivariate Gaussian distribution with variances Var(Yi(0)) = 0.5 and Var(Yi(1)) = 2

and correlation coefficient of the two potential values, ̺01 ∈ {−1, 0, 1}. From our theoretical

results, we should expect Gaussian inference using causal standard errors and the causal

bootstrap to have asymptotically exact coverage under the isotonic coupling ̺01 = 1 and be

conservative when ̺01 < 1. Furthermore, for any coupling this design implies heterogeneous

treatment effects, so that Fisher’s exact test does not in general control nominal confidence

size for the average treatment effect. Given the calculations in Section 2.6 we designed the ex-

periment deliberately to illustrate the potential of Fisher’s exact procedure to underestimate

the spread of the randomization distribution, where n0 > n1 and Var(Yi(1)) > Var(Yi(0)).

Since the potential outcomes follow a Gaussian distribution, we should not expect refine-

ments for the bootstrap relative to Gaussian inference.

In Table 4 we report simulated coverage rates for nominal 95% confidence intervals for

the average treatment effect, where for either sample size we report the lowest coverage rate

across the three different couplings in a separate column. The simulation results broadly

confirm the theoretical predictions. Overcoverage from using sampling-based, rather than

causal estimators for the variance or the bootstrap is not evident from the design with smaller

sample sizes (n0 = 50, n1 = 20), but becomes clearly visible once we move to the design with

a larger number of units (n0 = 200, n1 = 80). The confidence interval based on Fisher’s

exact test has coverage that is consistently below the nominal 95% level.

Next we compare coverage rates of these confidence intervals as the size of the sample in-

creases, where we choose a design with non-Gaussian distributions for the potential outcomes.

Specifically, we let Yi(0) ≡ 0 and Yi(1)|Si(1) ∼ N(0, S2
i ), where Si = 1 with probability 0.9,

and Si = 4 with probability 0.1. Since the marginal distributions for Yi(0) and Yi(1) are
15



Table 4. Coverage of nominal 95% Confidence Intervals, Gaussian Potential
Outcomes with Different Couplings

Variance Bootstrap Pivotal (n0, n1) = (50, 20) (n0, n1) = (200, 80)
Estimator Version Statistic ̺01 = 1 ̺01 = 0 ̺01 = −1 minimum ̺01 = 1 ̺01 = 0 ̺01 = −1 minimum

V̂Neyman N/A No 0.9560 0.9656 0.9832 0.9560 0.9650 0.9796 0.9880 0.9650

V̂AGL N/A No 0.9352 0.9510 0.9730 0.9352 0.9462 0.9664 0.9818 0.9462

V̂s−boot Standard No 0.9508 0.9616 0.9804 0.9508 0.9636 0.9778 0.9878 0.9636

V̂c−boot Causal No 0.9308 0.9490 0.9706 0.9308 0.9452 0.9654 0.9838 0.9452

Fisher’s Exact Test 0.9332 0.9112 0.8948 0.8948 0.8624 0.8638 0.8616 0.8616

V̂Neyman Standard Yes 0.9652 0.9754 0.9878 0.9652 0.9660 0.9792 0.9886 0.9660

V̂AGL Standard Yes 0.9632 0.9744 0.9878 0.9632 0.9656 0.9786 0.9886 0.9656

V̂Neyman Causal Yes 0.9444 0.9610 0.9776 0.9444 0.9492 0.9684 0.9836 0.9492

V̂AGL Causal Yes 0.9432 0.9608 0.9774 0.9432 0.9490 0.9684 0.9832 0.9490

different, the difference between sampling variance and the upper bound for the causal vari-

ance is nontrivial. Furthermore, while we do not give formal results, under certain regularity

conditions the pivotal causal bootstrap should be expected to provide refinements over the

Gaussian limiting approximation to the randomization distribution.

Table 5. Coverage of nominal 95% Confidence Intervals, non-Gaussian Po-
tential Values with Isotone Coupling

Variance Bootstrap Pivotal (n0, n1) (n0, n1) (n0, n1) (n0, n1) (n0, n1)
Estimator Version Statistic (20, 20) (50, 50) (100, 100) (200, 200) (500, 500)

V̂Neyman N/A No 0.9768 0.9866 0.9914 0.9932 0.9924

V̂AGL N/A No 0.9186 0.9358 0.9396 0.9450 0.9436

V̂s−boot Standard No 0.9752 0.9864 0.9912 0.9928 0.9924

V̂c−boot Causal No 0.9144 0.9336 0.9378 0.9436 0.9436

Fisher’s Exact Test 0.9752 0.9652 0.9672 0.9560 0.9592

V̂Neyman Standard Yes 0.9870 0.9912 0.9940 0.9942 0.9934

V̂AGL Standard Yes 0.9870 0.9912 0.9940 0.9942 0.9934

V̂Neyman Causal Yes 0.9470 0.9532 0.9582 0.9548 0.9482

V̂AGL Causal Yes 0.9470 0.9532 0.9582 0.9548 0.9482

Table 4 shows simulated coverage rates for the different confidence intervals at the nominal

95% significance level under this design. The results show that coverage rates for both the

sampling-based variance estimators and bootstrap are higher throughout than for their causal

analogs. The comparison between Gaussian confidence intervals using the causal variance

estimators, V̂AGL and V̂c−boot, respectively, to the pivotal causal bootstrap is also indicative

of refinements, where the confidence interval based on the pivotal causal bootstrap has
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coverage rates much closer to the nominal level for small sample sizes, but that advantage

vanishes as n0, n1 grow large.

5. Large Sample Theory

To characterize the asymptotic properties of the bootstrap procedure, we can cast the

statistical experiment of sampling from a finite population with subsequent randomization

of treatment among the sampled units as a two-stage scheme of sampling without replace-

ment from nested finite populations. Specifically, in a first step we draw n units without

replacement from the population of N units. In a second step, we draw n1 units at ran-

dom and without replacement from that sample to receive the treatment Wi = 1, whereas

the remaining n0 = n − n1 units are assigned Wi = 0. This second step is conditionally

independent of the first.

To characterize the contribution of sampling uncertainty to the distribution of the func-

tional we define

F p
01(y0, y1) :=

1

N

N
∑

i=1

1l{Yi(0) ≤ y0, Yi(1) ≤ y1}

F s
01(y0, y1) :=

1

n

N
∑

i=1

Ri1l{Yi(0) ≤ y0, Yi(1) ≤ y1}

with corresponding marginals F p
0 , F

p
1 , F

s
0 , F

s
1 . In particular,

F s
01(y0, y1)− F p

01(y0, y1) =
1

n

N
∑

i=1

(Ri − q) 1l{Yi(0) ≤ y0, Yi(1) ≤ y1} (5.1)

Turning to the contribution of design uncertainty, we define

F̂0(y0) :=
1

n(1− p)

n
∑

i=1

Ri(1−Wi)1l{Yi(0) ≤ y0}

F̂1(y1) :=
1

np

n
∑

i=1

RiWi1l{Yi(1) ≤ y1}

where we can rewrite

F̂0(y0) =
p

n(1 − p)

N
∑

i=1

Ri

(

1− Wi

p

)

1l{Yi(0) ≤ y0}

Hence, we have
(

F̂0(y0)− F s
0 (y0)

F̂1(y1)− F s
1 (y1)

)

=
1

np

N
∑

i=1

Ri(Wi − p)

(

− p
1−p

1l{Yi(0) ≤ y0}
1l{Yi(1) ≤ y1}

)

(5.2)
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Taken together, (5.1) and (5.2) characterize the uncertainty from sampling and random-

ization in estimating the respective marginal distributions of Yi(0) and Yi(1) as a two-stage

process of drawing without replacement from nested finite populations. An asymptotic

Donsker Theorem for empirical processes based on sampling without replacement from a

finite population is available from Bickel (1969).

We now state the limiting properties of the bootstrap as N and n grow large. Specifically,

we derive the limits of the randomization and bootstrap distributions. We then show that the

latter is an asymptotically conservative estimator of the former for the purposes of forming

confidence intervals.

5.1. Consistency and Randomization CLT. Consistency of the estimated bounds fol-

lows from consistency of F̂0(y0) and F̂1(y1) for F0(y0) and F1(y1), respectively, and the

continuous mapping theorem, noting that the conditions in Assumption 2.1 are sufficient for

the parameter bounds to be continuous functions of F0(y0) and F1(y1).

Theorem 5.1. (Consistency) Suppose Assumptions 2.1, 3.1, and 3.2 hold. Then τ̂ and

σ̂ are consistent for τ(F p
0 , F

p
1 ) and σ(F p

0 , F
p
1 ), respectively.

For a randomization CLT for the estimated bounds we first establish a functional CLT for

the randomization processes

Ĝ0 :=
√
n(F̂0 − F p

0 )

Ĝ1 :=
√
n(F̂1 − F p

1 )

for conditional distributions of potential outcomes. We argue that Assumption 2.1 is suffi-

cient to establish Hadamard differentiability of the functionals τ(F̂0, F̂1), σ(F̂0, F̂1) so that

asymptotic normality of
√
n τ̂−τ

σ̂
follows from the functional Delta rule and Slutsky’s theorem.

Theorem 5.2. (Randomization CLT) Suppose Assumptions 2.1, 3.1, and 3.2 hold. Then

the asymptotic distribution of the t-ratio for τ̂ATE is given by

√
n
τ̂ − τ

σ̂

d→ N

(

0,
σ2(F p

01)

σ2(F p
0 , F

p
1 )

)

where σ(F01)
2 := limn nVarF01

(τ̂).

The proof of this result is given in the appendix. The formal argument adapts a finite-

population CLT for the empirical process developed by Bickel (1969) for the two-sample

problem to the case of sampling and randomization in a finite population.

5.2. Bootstrap CLT. For a bootstrap replication, denote the empirical distributions of

Y ∗
i |W ∗

i = 0 and Y ∗
i |W ∗

i = 1 with F̂ ∗
0 and F̂ ∗

1 , respectively. Also, let τ̂ ∗ = τ(F̂ ∗
0 , F̂

∗
1 ) and

σ̂∗ = σ(F̂ ∗
0 , F̂

∗
1 )
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We then establish a CLT for the bootstrap analogs

Ĝ∗

0 :=
√
n(F̂ ∗

0 − F̂0)

Ĝ∗

1 :=
√
n(F̂ ∗

1 − F̂1).

A CLT for the bootstrapped bounds
√
n τ̂∗−τ̂

σ̂∗
then relies again on Hadamard differentiability

of the variance bounds and the Delta rule for the bootstrap.

A bootstrap CLT can be shown using analogous steps as in a proof for Theorem 5.2,

where the randomization distribution is generated based on an estimator for F p
01 based on

the estimated distributions F̂ p
0 (y0), F̂

p
1 (y1) and the respective least-favorable coupling C iso(·).

Theorem 5.3. (Bootstrap CLT) Suppose Assumptions 2.1, 3.1, and 3.2 hold. Then the

asymptotic distribution of the bootstrapped t-ratio for τ̂ATE is given by

√
n
τ̂ ∗ − τ̂

σ̂∗

d→ N (0, 1)

Most importantly, by Theorem 5.1 the bootstrap estimator for the randomization distri-

bution for τ̂−τ
σ̂

has asymptotic variance equal to 1, whereas the asymptotic variance of the

randomization distribution is
σ2(F p

01)

σ2(F p

0 ,F
p

1 )
which is less than 1 by construction. That is, the

bootstrap algorithm in section 3.1 converges to a “least-favorable” limiting experiment in an

appropriate sense. Note also that the formal argument in the proofs of Theorems 5.1-5.3 im-

mediately apply to any other functional τ(F0, F1) that is Hadamard-differentiable in F0, F1,

and for which the variance bound σ2(F0, F1) is continuous in F0, F1.

5.3. Asymptotic Validity of Confidence Intervals. It remains to show that confidence

intervals of the form (3.2) that are constructed under the “least-favorable” limiting ex-

periment are indeed conservative given the CLT under the true randomization distribu-

tion in Theorem 5.2. This can be proven by combining the randomization and bootstrap

CLTs, replacing the unidentified randomization variance with an estimate of the bound

σ(F0, F1) ≥ σ(F01).

Corollary 5.1. (Asymptotic Validity of Confidence Intervals) Under Assumptions

2.1, 3.1, and 3.2, the 1−α confidence interval (3.2) using bootstrap critical values is asymp-

totically valid,

lim
n

inf
F p

01

PF p

01
(τ(F p

01) ∈ CI(1− α)) ≥ 1− α a.s.

Given Theorems 5.2 and 5.3 this result follows immediately from the definition of the

variance bound σ(F0, F1).
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Appendix A. Randomization Distribution for F̂0(y0), F̂1(y1)

We first compute the randomization covariance CovpW,R(F̂0(y0), F̂1(y1)) given the population distribution

F p
01(y0, y1), where

F̂0(y0) =
1

n(1− p)

N
∑

i=1

Ri(1−Wi)1l{Yi(0) ≤ y0}

F̂1(y1) =
1

np

N
∑

i=1

RiWi1l{Yi(1) ≤ y1}

In the following we write A0i := 1l{Yi(0) ≤ y0} and A1i := 1l{Yi(1) ≤ y1}, and take any moments to be with

respect to the distribution of Ri and Wi and conditional on the values of (Yi(0), Yi(1))
N

i=1 in the population.

We then have

Cov(F̂0(y0), F̂1(y1)) =
1

n2p(1− p)





N
∑

i=1

N
∑

j=1

RiRj(1 −Wi)WjA0iA1j





=
1

n2p(1− p)

N
∑

i=1

N
∑

j=1

E [RiRj(1−Wi)Wj ]A0iA1j

=
1

n2p(1− p)

N
∑

i=1

∑

j 6=i

E [RiRj ]E [(1 −Wi)Wj ]A0iA1j

=
1

n2p(1− p)

N
∑

i=1

∑

j 6=i

n(n− 1)

N2
E [(1−Wi)Wj ]

n2p(1− p)

n(n− 1)
A0iA1j

=
1

N2

N
∑

i=1

∑

j 6=i

A0iA1j =
1

N2





[

N
∑

i=1

A0i

]





N
∑

j=1

A1j



−
N
∑

i=1

A0iA1i





= − 1

N
(F p

01(y0, y1)− F p
0 (y0)F

p
1 (y1))

To evaluate Cov
(

F̂0(y0), F̂0(y1)
)

, let B0i := 1l{Yi(0) ≤ y0}−F p
0 (y0) and B0i := 1l{Yi(0) ≤ y1}−F p

0 (y1). We

can then write

Cov
(

F̂0(y0), F̂0(y1)
)

=
1

n2(1− p)2

N
∑

i=1

N
∑

j=1

E [RiRj(1−Wi)(1 −Wj)]B0iB1j

=
1

n2(1− p)2





n
∑

i=1

n

N

n(1− p)

n
B0iB1i +

N
∑

i=1

∑

j 6=i

n(n− 1)

N2

n(1− p)(n(1− p)− 1)

n2
B0iB1j





=
1

n(1− p)N

N
∑

i=1

B0iB1i +
(n− 1)(n(1− p)− 1)

n2(1− p)





1

N2

N
∑

i=1

∑

j 6=i

B0iB1j





=

[

1

N

N
∑

i=1

B0iB1i

]

(

1

n(1− p)
− (n− 1)(n(1 − p)− 1)

Nn2(1− p)

)

= (min{F p
0 (y0), F

p
0 (y1)} − F p

0 (y0)F
p
0 (y1))

(

1

n(1− p)
− 1

N
+O

(

1

nN

))
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Similarly,

Cov
(

F̂1(y0), F̂1(y1)
)

= (min{F p
1 (y0), F

p
1 (y1)} − F p

1 (y0)F
p
1 (y1))

(

1

np
− 1

N
+O

(

1

nN

))

Furthermore,

Cov
(

F̂0(y0), F̂0(y1)
)

=
1

n
min{F p

0 (y0), F
p
0 (y1)} − F p

0 (y0)F
p
0 (y1)

Cov
(

F̂1(y0), F̂1(y1)
)

=
1

n
min{F p

1 (y0), F
p
1 (y1)} − F p

1 (y0)F
p
1 (y1)

We let H denote the covariance kernel of the randomization process with elements

H00(y0, y
′
0) = lim

n
nCov(F̂0(y0), F̂0(y

′
0)) =

(

1

1− p
− n

N

)

(min{F p
0 (y0), F

p
0 (y

′
0)} − F p

0 (y0)F
p
0 (y

′
0))

H01(y0, y1) = lim
n

nCov(F̂0(y0), F̂1(y
′
1)) = lim

n

n

N
(F p

01(y0, y1)− F p
0 (y0)F

p
1 (y1)) (A.1)

H11(y1, y
′
1) = lim

n
nCov(F̂1(y1), F̂1(y

′
1)) =

(

1

p
− n

N

)

(min{F p
1 (y1), F

p
1 (y

′
1)} − F p

1 (y1)F
p
0 (y

′
1))

Note also that 1
1−p

≥ 1 ≥ n
N

≥ 0 and 1
p
≥ 1 ≥ n

N
≥ 0, so that H00(·, ·) and H11(·, ·) are nonnegative.

Appendix B. Proofs for Section 2.4

B.1. Least Favorable Coupling for the Average Treatment Effect. We first prove a more general

result than Proposition 2.1 by showing that the isotone coupling of potential outcomes in fact results in a

distribution for the ATE parameter which dominates that under any other coupling in the sense of second-

order stochastic dominance (SOSD):

Lemma B.1. (Ordering of Distributions) Let F01 be an arbitrary joint distribution with marginal dis-

tributions F0 and F1, and let F iso
01 := Ciso(F0, F1) be the joint distribution under the isotone coupling. Then

for any convex function, the randomization distribution for τ̂ATE satisfies

EF iso
01

[v(τ̂ATE)] ≥ EF01
[v(τ̂ATE)]

For any strictly convex function v(·) this inequality is strict whenever F01 6= F iso
01 .

This result is a straightforward consequence of the familiar observation that the isotone (assortative)

coupling of potential outcomes results in the distribution of Yi(0) + Yi(1) which second-order stochastic

dominates that resulting from any other coupling (see e.g. Becker (1973), Fan and Park (2010), and Stoye

(2010)). For illustrative purposes, we give a complete proof here.

Proof: In order to establish second-order stochastic dominance of the isotone assignment Yi(1) =

F−1
1 (F0(Yi(0))), consider the expectation of v(τ̂ATE) for any convex function v(u). Note that for any pair

of observations i, j we can write

τ̂ATE =
1

n
(B−ij +RiWi (Yi(0)/(1− p) + Yi(1)/p) +RjWj (Yj(0)/(1− p) + Yj(1)/p))

where B−ij :=
∑

k 6=i,j Rk (Wk(Yk(0)/(1− p) + Yk(1)/p)− Yk(0)/(1− p))− (Yi(0) + Yj(0))/(1− p).

We can now consider the change in E[v(τ̂ATE)] from pairwise substitutions of potential outcomes between

units i and j. Specifically suppose that under the initial coupling, the potential outcomes for unit i are

given by Yi(0), Yi(1), and the potential outcomes for unit j are Yj(0), Yj(1). We then consider the effect of

switching the assignment to potential outcomes Yi(0), Yj(1) for unit i, and potential outcomes Yj(0), Yi(1)

for unit j.
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Since Wi,Wj are independent of Wk, that change leads to an increase in E[v(τ̂ATE)] if and only if

0 ≤ P (Wi = 1,Wj = 0)
{

v(B−ij + Yi(0)/(1− p) + Yi(1)/p)− v(B−ij + Yi(0)/(1− p) + Yj(1)/p)
}

+P (Wi = 0,Wj = 1)
{

v(B−ij + Yj(0)/(1− p) + Yj(1)/p)− v(B−ij + Yj(0)/(1− p) + Yi(1)/p)
}

= p(1− p)
{

v(B−ij + Yi(0)/(1− p) + Yi(1)/p) + v(B−ij + Yj(0)/(1− p) + Yj(1)/p)

−v(B−ij + Yi(0)/(1− p) + Yj(1)/p)− v(B−ij + Yj(0)/(1− p) + Yi(1)/p)
}

for any pair of observations with Ri = Rj = 1. Noting that for any convex function v(·), v(b + x0 + x1) is

supermodular in x = (x0, x1)
′, this difference is nonnegative if and only if Yi(0) − Yj(0) and Yi(1) − Yj(1)

have the same sign. Furthermore, if in addition v(·) is strictly convex, the first inequality is strict.

Since any coupling of potential outcomes can be obtained from the isotone assignment by pairwise sub-

stitutions of this form, the isotone assignment maximizes the expectation

E[v(τ̂ATE)] = E

[

v

(

1

n

N
∑

i=1

Ri {WiYi(1)/p− (1 −Wi)Yi(0)/(1− p)}
)]

for all convex functions v(·). Therefore the distribution of τ̂ATE under the isotone assignment dominates

that under any alternative coupling, as claimed above. �

Proof of Proposition 2.1: The claim in the proposition follows immediately from Lemma B.1 and the obser-

vation that the function v(y) = y2 is strictly convex �

Appendix C. Proofs for Section 5

C.0.1. Proof of Theorem 5.1. From standard results (see e.g. Example 19.6 in van der Vaart (1998)), the

class F := {(−∞, y] : y ∈ R} is Glivenko-Cantelli, so that (F̂0 − F p
0 , F̂1 − F p

1 ) converges to zero almost

surely as an element of the space of bounded functions on R. Since Assumption 2.1 is sufficient to guarantee

that the functionals τ(F0, F1) and σ(F0, F1), are continuous in F0, F1, the claim of the Theorem follows

immediately from the continuous mapping theorem (see e.g. Theorem 18.11 in van der Vaart (1998)) �

For the proof of Theorem 5.2, we need to characterize functional convergence of the randomization process.

To that end, we first introduce some standard notation from empirical process theory (see van der Vaart

and Wellner (1996)). Let F := {1l{y ≤ (−∞, t]} : t ∈ R} be the class of indicator functions for the

left-open half-lines on R and let ℓ∞(F) be the space of bounded functions from F to R endowed with

the norm ‖z‖F := supf∈F |z(f)|. Also, let BL1 denote the set of all functions h : ℓ∞F 7→ [0, 1] with

|h(z1)− h(z2)| ≤ ‖z1 − z2‖F .

Lemma C.1. Suppose that (Yi(0), Yi(1))
iid∼ F01. Then the randomization process

Ĝn :=
√
n

(

F̂0 − F p
0

F̂1 − F p
1

)

converges in outer probability to G under the bounded Lipschitz metric,

sup
h∈BL1

|EWh(Ĝn)− Eh(G)| → 0

in outer probability, where G is a Gaussian process with covariance kernel H.
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Proof: As before, denote the joint c.d.f. of potential outcomes (observed and counterfactuals) for the n

units included in the sample with

F s
01(y0, y1) :=

1

n

N
∑

i=1

Ri1l{Yi(0) ≤ y0, Yi(1) ≤ y1}

and the empirical c.d.f. among the units included in the sample for which Wi = 1,

F t
01(y0, y1) :=

1

np

N
∑

i=1

RiWi1l{Yi(0) ≤ y0, Yi(1) ≤ y1}

Using this notation we can write

√
n(F t

01(y0, y1)− F p
01(y0, y1)) =

√
n(F t

01(y0, y1)− F s
01(y0, y1)) +

√
n(F s

01(y0, y1)− F p
01(y0, y1))

Since Ri,Wi are drawn at random and without replacement, it follows from Theorem 3.1 in Bickel (1969)

that

√
n(F t

01(y0, y1)− F s
01(y0, y1))  GF s

01√
n(F s

01(y0, y1)− F p
01(y0, y1))  GF

p

01

for Brownian bridges GF s
01

and GF
p

01
. Since for any joint distribution F01(y0, y1) the marginals satisfy

limy1→∞ F01(y0, y1) = F0(y0) for each y0, weak convergence of the joint process implies weak convergence of

the marginal empirical processes,

√
n(F t

0 − F p
0 )  GF s

0
+GF

p

0√
n(F t

1 − F p
1 )  GF s

1
+GF

p

1

Finally, F̂1(y1) ≡ F t
1(y1) and F̂0(y0) ≡ 1

(p−1) (F
s
0 (y0)− pF t

0(y0)), establishing the claim, where the structure

of the covariance kernel follows from the point-wise calculations in the derivation of (A.1) �

C.0.2. Proof of Theorem 5.2: From Assumption 2.1 it is immediate that τ(F0, F1) is Hadamard-differentiable.

Lemma C.1 and the functional delta method, see e.g. Theorem 20.8 in van der Vaart (1998), then imply

asymptotic normality of
√
n(τ̂ − τ)/σ(F0, F1). Theorem 5.2 then follows from Slutsky’s theorem and consis-

tency of σ̂ from Theorem 5.1 �

We next turn to the bootstrap distribution: Consider the bootstrap replicates

F̂ ∗
0 (y0) :=

1

n(1− p)

n
∑

i=1

R∗
i (1−W ∗

i )1l{Y ∗
i (0) ≤ y0}, F̂ ∗

1 (y1) :=
1

np

n
∑

i=1

R∗
iW

∗
i 1l{Y ∗

i (1) ≤ y1}

by randomizing from F̂01. We also define the asymptotic covariance kernelHiso corresponding to the coupling

Ciso in analogy to (A.1) where F01 is replaced with Ciso(F0, F1). We first show the two following Lemmas:

Lemma C.2. Suppose that (Yi(0), Yi(1))
iid∼ F01. Then for any copula C : [0, 1]2 → [0, 1],

sup
y0,y1∈R

∣

∣

∣C(F̂0, F̂1)(y0, y1)− C(F p
0 , F

p
1 )(y0, y1)

∣

∣

∣

a.s.→ 0

Proof: From standard results, the class F := {(−∞, y] : y ∈ R} is Glivenko-Cantelli, so that (F̂0 −
F p
0 , F̂1 − F p

1 ) converges to zero almost surely as an element of the space of bounded functions on R. Noting

that any copula C : [0, 1]2 → [0, 1] is a bounded nondecreasing function in each of its arguments, it follows
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that

sup
y0,y1∈R

∣

∣

∣C(F̂0, F̂1)(y0, y1)− C(F p
0 , F

p
1 )(y0, y1)

∣

∣

∣

a.s.→ 0

establishing the claim �

Lemma C.3. Suppose that (Yi(0), Yi(1))
iid∼ F01. Then the bootstrap process

Ĝ∗
n :=

√
n

(

F̂ ∗
0 − F̂0

F̂ ∗
1 − F̂1

)

converges in outer probability to G under the bounded Lipschitz metric, that is

sup
h∈BL1

∣

∣

∣EWh(Ĝ∗
n)− Eh(G)

∣

∣

∣ → 0

in outer probability, where G is a Gaussian processes with covariance kernel H.

Proof: By construction of the coupling (Y ∗
i (0), Y

∗
i (1)), the marginal distributions of Y ∗

i (0) and Y ∗
i (1)

are equal to F̂0 and F̂1, respectively. By construction of the bootstrap, the bootstrap replications F̂ ∗
0 , F̂

∗
1

are generated by randomization from the samples (Ỹi(1), Ỹi(1))
n
i=1 corresponding to the joint distribution

F̂01 := Ciso(F̂0, F̂1).

Now let Ĥiso the covariance kernel obtained from (A.1) replacing F0 with F̂0, F1 with F̂1, and F01 with

Ciso(F̂0, F̂1), respectively. By construction, the bootstrap distribution of Ĝ∗
n conditional on F̂0, F̂1 have

covariance given by Ĥiso. Finally, Ĥiso is a continuous function of Ciso(F̂0, F̂1). Hence by Lemma C.2 and

the continuous mapping theorem we have that

‖Ĥiso −Hiso‖ a.s.→ 0

which completes the proof.

The claim of the Lemma then follows from the same arguments as in Lemma C.1 and the continuous

mapping theorem �

C.0.3. Proof of Theorem 5.3: It follows from Assumption 2.1 that τ(F0, F1), σ(F0, F1) are Hadamard differ-

entiable, so that Theorem C.3 follows from Lemma C.3 and the functional Delta method (e.g. Theorem 20.8

in van der Vaart (1998)) �
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