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1. Introduction

The diversion ratio is one of the best ways economists have for understanding the nature of

competition between sellers. As the price of j increases, some consumers reduce purchases

of j:
∂qj
∂pj

, and a subset switch to a substitute product k: ∂qk
∂pj

. The diversion ratio is defined

as the ratio of these two demand derivatives Djk = ∂qk
∂pj
/
∣∣∣ ∂qj∂pj

∣∣∣. Diversion ratios are useful

because they arise in the first-order conditions for Nash-in-prices games when sellers offer

differentiated products. Two products with a high degree of differentiation face lower diver-

sion and softer price competition, whereas two products with a high degree of similarity to

competing goods face higher diversion and potentially tougher price competition.

Not surprisingly, diversion ratios are a central calculation of interest to antitrust author-

ities for analyzing horizontal mergers. The current U.S. merger guidelines, released in 2010,

place greater weight on diversion ratios relative to concentration measures more commonly

used to understand competition in settings with homogeneous goods (e.g., the Herfindahl-

Hirschman Index (HHI)).1 In the context of merger reviews, antitrust authorities identify

the concept of ‘unilateral effects’ as being important for understanding the impact of a pro-

posed merger. Unilateral effects of a merger arise when competition between the products

of the merged firm is reduced because the merged firm internalizes substitution between its

jointly-owned products.2 This can lead to an increase in the price of the products of the

merged firm, potentially harming consumers. Diversion ratios are the key statistic of interest

for measuring unilateral effects. The current U.S. merger guidelines, released in 2010, note:

Diversion ratios between products sold by one merging firm and products sold

by the other merging firm can be very informative for assessing unilateral price

effects, with higher diversion ratios indicating a greater likelihood of such effects.

Thus, holding competitive responses (and price-cost margins) fixed, antitrust agencies will

be more concerned about mergers that involve products with higher diversion ratios, because

the scope for price increases due to unilateral effects is thought to be greater.

Although the use of diversion ratios in antitrust policy is well understood theoretically, in

practice, one needs to estimate diversion ratios. The U.S. merger guidelines discuss diversion

1Researchers have pointed out a number of concerns with using concentration measures or other functions
of market share to capture the strength of competition. One concern is that such measures require one
to define a market; another is that they do not capture the closeness of competition when products are
differentiated, as most products are thought to be.

2In contrast, the concept of harm via ‘coordinated effects’ arises if a proposed merger increases the
probability that firms in the industry will be able to successfully coordinate their behavior in an anti-
competitive way.
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ratios as being calculated from an estimated demand system, or observed from consumer

survey data or in a firm’s course of business. We demonstrate that there is no single measure

of diversion, just as there is no single measure of elasticity. Estimates of both diversion and

elasticity depend on where one evaluates the demand curve. We provide a treatment effects

framework for interpreting different estimates of diversion. For a broad class of discrete

choice models (including both random and deterministic utility), an individual is considered

“treated” if they choose not to purchase a particular product j, and the outcome of interest

is whether they choose to purchase the substitute product k. This lets us construct an

alternate definition of diversion ratios as the fraction of treated individuals who choose the

substitute.

We then show how a wide variety of results from the treatment effects literature can

be applied to interpret diversion ratios. Our main theoretical result derives the so-called

LATE Theorem of Imbens and Angrist (1994) in our discrete-choice diversion ratio setting.

We show that a ceteris paribus change in the price of good j identifies a local average of

diversion ratios among a group of “compliers” or individuals who used to purchase good

j at the original price but no longer do so at the higher price. We then apply several

related results from the LATE toolkit. First, we show that while diversion ratios are defined

in terms of small price price changes, any product characteristic satisfying a monotonicity

requirement can be used to construct an estimate of a diversion ratio. This makes it possible

to identify and estimate diversion ratios in environments where quality (or distance from

the consumer, etc.) varies but prices do not. Second, we show that second-choice data

pertains to a different treatment effect parameter where all individuals who were previously

untreated receive treatment (not purchasing j). This is particularly relevant because it shows

how diversion ratios are related to out of stock events (Conlon and Mortimer, 2013) and the

second-choice survey data already being used by antitrust authorities. A 2017 commentary

on retail mergers released by the UK Competition and Markets Authority (CMA) describes

their use of diversion ratios for screening and analyzing mergers, saying:

Diversion ratios can be calculated in a number of different ways, depending

on the information available in a particular case. In retail mergers, the CMA

has most often used the results of consumer surveys to calculate diversion ratios.

The diversion ratio attempts to capture what customers would do in response to

an increase in prices. However, it can be difficult to survey a sufficiently large

number of customers who would switch in response to a price rise to estimate a

robust diversion ratio. Therefore, the CMA asks customers what they would do
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in response to the closure of a store (or stores).3

We further analyze diversion ratios using the marginal treatment effects (MTE) frame-

work of Heckman and Vytlacil (2005). We are able to decompose average diversion ratios

into individual diversion ratios, which we show are policy invariant structural parameters,

and weights on individuals (which are independent of the substitute product k). We show

that the former no longer depend on whether prices, quality, or availability is modified, while

the latter do.

This decomposition has several useful applications. One (obvious) implication is that

average diversion ratios are bounded by the range of underlying individual diversion ratios.

A second implication is that assuming constant diversion ratios imposes strong parametric

restrictions on the nature of demand and utility. Only two models exhibit constant diversion:

linear demand, and the plain IIA logit model. Thus treating diversion ratios as constant is

akin to assuming that demand is well described by these models. The third implication is

that we can derive explicit formulas for these weights under the workhorse random coefficients

logit model. This allows us to to show precisely how second choice data, small price changes,

and changes in other product characteristics trace out different subpopulations, and how the

average diversion ratios measured with these interventions relate to one another. This allows

us in principle to answer questions like: “If I am interested in the diversion ratio from a small

price change, how similar would second choice survey data be?” or “If I only have diversion

ratios measured from short run variation in quality? how might this be informative about

what would happen if a product were removed from the market entirely?”.

We also show how diversion to the outside good Dj0 is closely related to our notion of

consumer welfare in random coefficients logit type models. We provide novel results linking

willingness-to-pay calculations that are commonplace in models of Nash-in-Nash bargaining

(and hospital mergers in particular) to the question: “how many consumers would switch to

the outside option if product j were no longer available?”. We show that for the logit class

of models these WTP calculations can be simplified even further as a function of individual

own-share sij, and a set of Pareto weights. This is what enables welfare analysis using WTP

calculations, even in settings lacking an outside option (as is common in hospital demand).

We highlight the properties laid out above using the well-known examples of the Berry

et al. (1999) automobile data and the Nevo (2000b) (fake) cereal data. Our empirical ex-

amples examine the role of diversion to best substitutes and to the outside good. We show

that capturing both kinds of diversion ratios is important, and can at times be tricky. We

3See Competition and Markets Authority (2017).
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also illustrate that different interventions (price changes, quality changes, product removals)

produce different weighting schemes over individual diversion ratios that can at times be

quite different. For example, in the BLP automobile data, second choice diversion under-

states substitution to the outside good when compared to small price changes by around

30%. Moreover, small changes in parametric specifications can lead to large changes in out-

side good diversion (as well as markups and welfare) even when own-price elasticities appear

stable. Other commonly employed shortcuts such as estimating a nested logit with all prod-

ucts in a single nest do a good job recovering the outside good diversion but predictably

understate substitution to the closest substitutes.

Taken in total, we recommend that both academic researchers and antitrust practitioners

pay careful attention to diversion to the outside good and to close substitutes, even when

estimating parametric models of demand. Furthermore, we urge researchers to be aware

that the diversion parameter of interest need not coincide with the parameter that is easily

estimated from readily available data (such as consumer switching surveys, etc.) though

these extra data sources when carefully incorporated may substantially improve parametric

demand models.

1.1. Related Literature

A second goal of the paper is to bring together two literatures – the applied theoretical

literature that motivates the use of diversion for understanding merger impacts, and an

applied econometric literature that articulates estimation challenges in settings for which

the treatment effect of a policy can vary across individuals and may be measured with error.

By exploring the assumptions required for a credible (quasi)-experimental method of

measuring diversion, we connect directly to the theoretical literature discussing the use and

measurement of the diversion ratio.4 Farrell and Shapiro (2010) suggest that firms themselves

may track diversion in their ‘normal course of business,’ or that diversion ratios may be

uncovered in Hart-Scott-Rodino filings. Hausman (2010) argues that the only acceptable

way to measure a diversion ratio is as the output from a structural demand system. Reynolds

and Walters (2008) examine the use of stated-preference consumer surveys in the UK for

measuring diversion.

In spirit, our approach is similar to Angrist et al. (2000), which shows how a cost shock can

identify a particular local average treatment effect (LATE) for the price elasticity in a single

4The focus on measuring substitution away from product j (using second-choice data or stock-outs),
rather than on the direct effect of a proposed merger, is more in line with the public finance literature on
sufficient statistics Chetty (2009).
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product setting. That approach does not extend to a differentiated products setting because

the requisite monotonicity condition may no longer be satisfied. Our results demonstrate

how a ceteris paribus price change can identify substitution patterns in a multi-product

setting. We also highlight the economic content of (even partial) second-choice data, which

have been found to be valuable in the literature on structural demand estimation (e.g., Berry

et al. (2004)).

The paper proceeds as follows. Section 2 introduces the diversion ratio as an economic

object and compares its better known cousin the cross-price elasticity. We establish our

theoretical results linking diversion ratios to treatment effects in Section 3. We highlight the

theoretical properties of diversion ratios with empirical examples using the BLP auto data

and the Nevo (fake) cereal data in Section 4. Section 5 concludes.

2. What is a diversion ratio?

We begin by considering a Bertrand-Nash game where firm f sets the prices of prod-

ucts j ∈ Jf in order to maximize profits. The firm faces marginal costs cj and demand

curve qj(p) (where p is the vector of prices for all goods) and chooses price pj to solve:

arg maxpf∈Jf πf (p) =
∑

j∈Jf (pj − cj) · qj(p). The best responses for each product j are

given by:5

→ pj = qj(p)

[
− ∂qj
∂Pj

(p)

]−1

+ cj +
∑

k∈Jf\j

(pk − ck)
∂qk
∂Pj

(p)

[
− ∂qj
∂Pj

(p)

]−1

︸ ︷︷ ︸
Djk(p)

pj(p−j) =
1

1 + 1/εjj(p)︸ ︷︷ ︸
Markup

cj +
∑

k∈Jf\j

(pk − ck) ·Djk(p)

 . (1)

The best-response function in (1), shows the usual inverse elasticity εjj (Lerner) markup

applied to the marginal cost of j. In multi-product pricing problems this term is augmented

by the opportunity cost of selling other products
∑

k∈Jf\j(pk− ck) ·Djk(p) where the oppor-

tunity cost depends on the fraction of consumers who leave j for the substitute k (diversion

ratio) and the price cost margins for k. One way to think about what a merger does is that it

raises the opportunity cost of selling j, by incorporating diversion (and price-cost margins)

5It is common to write the denominator as the absolute value
∣∣∣ ∂qj∂Pj

∣∣∣ = − ∂qj
∂Pj

these are equal so long as

demand slopes down
∂qj
∂Pj

< 0.

5



to additional products. This is the central idea in Farrell and Shapiro (2010), and is the

reason that diversion features so heavily in the 2010 Horizontal Merger Guidelines.

There is some controversy about whether one should evaluate a merger by solving the

system of best responses defined by (1), as in Nevo (2000a), or by measuring how the merger

shifts the best-response for each product j in isolation.6 A common metric in the latter case

is Upward Pricing Pressure (UPP). This measures how the term in brackets from (1) changes

when f and g merge:

UPPj = ∆cj︸︷︷︸
efficiency

+
∑
k∈Jg

(pk − ck) ·Djk(pj, p−j)︸ ︷︷ ︸
∆opp cost

(2)

UPP trades off potential marginal cost reductions (efficiency gains) against the increased

opportunity cost that arises from diversion to additional products owned by firm g and

their respective price-cost margins. Only the sign of UPP is directly interpretable, as it

measures the effective change in marginal cost but not price.7 It is common in merger

analysis to compute the “compensating marginal cost reduction” or the value of ∆cj which

sets UPPj = 0 for each product j.

Whether one does full-merger simulation like Nevo (2000a) or simply looks at the UPP ,

Diversion ratios are a key feature in the first-order conditions of multi-product firms. In fact,

for any study of multi-product firm behavior, the diversion ratio is one of the most important

deliverables of any demand system. Later, in Section 3.8, we show how the the willingness-

to-pay (WTP) measure of Town and Vistnes (2001); Capps et al. (2003), commonly used in

evaluating hospital mergers, and an input into Nash-in-Nash bargaining models (Crawford

and Yurukoglu, 2012) is related to diversion to the outside good. In related work, Katz and

Shapiro (2003) show that the “aggregate diversion ratio” or total diversion to all products

except the outside option is related to the SSNIP and hypothetical monopolist tests that

antitrust authorities use to define relevant markets.

The remainder of the paper focuses on two key aspects of diversion ratios: (1) what

a ceteris paribus change in price or availability can tell us about diversion ratios; (2) what

restrictions are imposed on diversion ratios by parametric models of demand commonly used

6See, for example, Hausman (2010), Carlton (2010), Schmalensee (2009), Willig (2011), Carlton and Israel
(2010), Gotts (2010), and Farrell and Shapiro (2010).

7See, for example, Jaffe and Weyl (2013), which incorporates an estimated pass-through rate to map
anticipated opportunity cost effects of a merger into price effects. In related work, Miller et al. (2016) and
Cheung (2011) find that the price effects of a merger, and errors in predicting these effects, depend on the
nature of competition among non-merging firms, and whether prices are strategic substitutes or strategic
complements.
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by researchers and practitioners.

2.1. How is diversion different from cross-price elasticity?

An important question is whether the diversion ratio actually contains different information

when compared to the more common measure of substitution, the cross-price elasticity.

Recall that the cross price elasticity is defined as: εjk = ∂qk
∂Pj

pj
qk

and that the ratio of cross and

own price elasticities yields:
εjk
εjj

=
∂qk
∂Pj
∂qj
∂Pj

qj
qk

= −Djk
sj
sk

. That is, the diversion ratio can simply

be written as the ratio of cross and own price elasticities multiplied by the respective ratio

in market shares.

Unlike own-price elasticities where there is a natural relationship between the value of the

elasticity and the market power of the firm (Lerner Markup), there is no such relationship

for cross-price elasticities. That is, the cross-price elasticity alone is insufficient to calculate

a compensating marginal cost reduction. Moreover, larger cross-price elasticities may not

even signify closer substitutes. Consider two substitutes: the first has a cross elasticity with

j of εjk = 0.03 and sk = 0.1 while the second has a cross-price elasticity of εjk′ = 0.01 and

sj = 0.35. More consumers switch to k′ than to k, even though k has a larger cross-price

elasticity. In order to adjust this calculation, one must incorporate the shares (and implicitly

calculate the diversion ratio).

Perhaps the most important difference is that there may be cases where the diversion ratio

is identified, but the constituent parts ∂qk
∂Pj

,
∂qj
∂Pj

or εjk, εjj are not separately identified. Indeed,

we highlight several hypothetical experiments where the diversion ratio (or some average of

diversion ratios) can be recovered even when the underlying demands or consumer utilities

cannot be.8

3. A Treatment Effects Interpretation of Diversion Ratios

3.1. The Wald (1940) Estimator

Diversion ratios provide a way to answer the question: “What can a price change tell us

about substitution patterns?” We begin by considering a ceteris paribus increase in price of

good j from pj → p′j and define the corresponding Wald esimator which compares the ratio

8The UK CMA survey asking shoppers: “If this store were closed where would you shop?” is a prime
example. We could estimate a particular average diversion ratio, but would have no ability to estimate own-
or cross-price elasticities.
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of the change in sales of k to that of j.9 The Wald estimator has the advantage that it is

often readily observed from the data for a particular price change:

Wald(pj, p
′
j, x) =

qk(p
′
j, x)− qk(pj, x)

−
(
qj(p′j, x)− qj(pj, x)

) . (3)

The diversion ratio Djk(pj, x) ≡ ∂qk
∂Pj

(pj, x)/ − ∂qj
∂Pj

(pj, x) can be obtained as the limit of

the Wald estimator in (3) where the price increase (or decrease) becomes small, so long as

demand slopes strictly downwards
∂qj
∂Pj

< 0:10

lim
p′j→pj

qk(p
′
j, x)− qk(pj, x)

−(qj(p′j, x)− qj(pj, x))
→

∂qk
∂Pj

(pj, x)

− ∂qj
∂Pj

(pj, x)
≡ Djk(pj, x) (4)

A large literature establishes the connection between Wald estimators like (3) and local

average treatment effects (LATE).11

3.2. Discrete Choice and a LATE Theorem

An easy way to see the connection between the Wald estimator and local average treatment

effects is to assume that the demands in (4) are derived from a discrete-choice model of

demand, where consumer i has unit demand and faces prices (pj, p−j). Consumer i selects

product j from set J (which includes an outside or no-purchase option) in order to maximize

utility. Define dij as an indicator for choosing product j:12

dij(pj, x) =

1 uij(pj, x) > uij′(pj, x) for all j′ ∈ J and j′ 6= j.

0 o.w.

9Implicitly, x contains all other relevant characteristics including: prices of other goods p−j , product
quality and assortment, etc.. That p′j represents a price increase is arbitrary. We could simply exchange
(pj , p

′
j) and consider a price decrease.

10This is an application of L’Hôpital’s Rule and also requires that qk is differentiable (locally) about (pj , x).
We use Pj to denote the argument and (pj , p

′
j) to denote specific values.

11The typical Wald estimator with a binary instrument is E[Yi|Zi=1]−E[Yi|Zi=0]
E[Ti|Zi=1]−E[Ti|Zi=0] . Much of the literature

on LATE also establishes the equivalent between the Wald estimator and the linear IV estimator: yi =
α+ βTi + ui with E[ui|Zi] = 0. We are not interested in that connection in this paper.

12This setup includes most RUM’s including logit and logit variants. It also encompasses a broad class
of both random and deterministic choice models, including a variety of behavioral models where consumers
make “mistakes” or fail to consider all available products. Behavioral models fit into the same framework so
long as we measure only diversion and not consumer welfare.
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In the discrete choice setting, we can derive an equivalent to the LATE theorem of Imbens

and Angrist (1994). Our main theoretical result shows that under some relatively weak

discrete choice assumptions, a price change can be used to identify the average diversion

ratio among a particular set of consumers (compliers).

Proposition 1 (Analogue to LATE Theorem (Imbens and Angrist, 1994)).

Under the following conditions:

(a) Mutually Exclusive and Exhaustive Discrete Choice: dij ∈ {0, 1} and
∑

j∈J dij = 1.

(b) Exclusion: uik(pj, x) = uik(p
′
j, x) for all k 6= j and any (pj, p

′
j);

(c) Monotonicity: uij(p
′
j, x) ≤ uij(pj, x) for all i and any (p′j > pj); and

(d) Existence of a first-stage: Pr(dij(pj, x) = 0) 6= Pr(dij(p
′
j, x) = 0) for (p′j > pj);

(e) Random Assignment: (uij(Pj, x), uik(Pj, x)) ⊥ Pj.

then the Wald estimator from (3):

qk(p
′
j, x)− qk(pj, x)

−
(
qj(p′j, x)− qj(pj, x)

) = E[Djk,i(x)|dij(pj, x) > dij(p
′
j, x)]

(Proof in Appendix A.1)

Compliance Type (dij(pj), dij(p
′
j)) Description

Always Takers (0, 0) Don’t buy j at either price.
Never Takers (1, 1) Buy j at either price
Compliers (1, 0) Only buy j at lower price pj < p′j
Defiers (0, 1) Only buy j at higher price p′j > pj

Treatment Effects Parameter Abbreviation Expression

Average Treatment Effect ATE E[Djk,i(x)]
Average Treatment on the Treated ATT E[Djk,i(x)|dij = 0]
Average Treatment on the Untreated ATUT E[Djk,i(x)|dij = 1]
Local Average Treatment Effect LATE E[Djk,i(x)|dij(zj) = 1, dij(z

′
j) = 0]

Table 1: Description of Compliance Types and Treatment Effects Parameters

In words, the proposition says that the Wald estimator identifies the average diversion

ratio among “compliers,” those individuals who would buy j at pj but no longer buy j

at p′j (holding all else x fixed). In other words, the treatment is defined as “not buying

j” and define the compliance types in Table 1. To solidify the connection with the quasi-

experimental LATE framework, recognize that our hypothetical price change experiment can

be interpreted using the following definitions:

Outcome Yi ∈ {0, 1} denotes the event that consumer i purchases product k: dik(Pj) = 1.

9



Treatment Ti ∈ {0, 1} denotes the event that consumer i does not purchase product j. In

other words Ti = 0 implies dij(Pj) = 1 and Ti = 1 implies dij(Pj) = 0.

Instrument Zi = Pj the price of j induces consumers into not purchasing j.

The bottom panel of Table 1 reports the definitions of various treatment effects parame-

ters for the diversion ratio. We note that except under very specific circumstances, these

treatment effects estimates (ATE, ATT, ATUT, LATE) will not agree with one another.

The most common threat to the LATE approach is the presence of “defiers” who must

be ruled out by the monotonicity assumption. That is less of a concern here, because

monotonicity is guaranteed by the “Law of Demand.” The second challenge is the plausibility

of the exclusion restriction. Here this requires that the utility for k is unaffected by the price

of j, which is an uncontroversial feature of most discrete choice utility models.13

The controversial assumption in Proposition 1 is (e) Random Assignment which enables

the price Pj to function as an “instrument”. What (e) means in words is that the distribution

of consumer utilities as a function of price cannot differ with the observed realizations of

prices (pj, p
′
j). This is the usual simultaneity problem in demand and supply that dates

back to Working (1927), and would obviously be violated if an unobservable demand shock

is correlated with both prices and consumer preferences as in Berry (1994). This is also

violated if there is selection that leads to less price sensitive consumers facing higher prices

in data including but not limited to cases of price discrimination.

We are cautious to point out that there is no “free lunch” here and that LATE estimates

of diversion are not absolved from concerns about price endogeneity. At the same time,

assumption (e) does not present a problem for interpreting diversion ratios as treatment

effects when we analyze a ceteris paribus change in price in the same way that analyzing

the price-elasticity of a demand curve is not complicated by the problems associated with

endogeneity of price that arise in estimation of that elasticity.

3.3. Treatment Effect Heterogeneity

Different consumers are likely to exhibit different diversion ratios. We show how to decom-

pose a local average treatment effects measure into the underlying heterogeneous distribution

and a set of weights in a way that mirrors Heckman and Vytlacil (2005). We begin by re-

13A potential violation might be a behavioral model with framing effects such as preferences for the “second
cheapest” product.
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writing the Wald estimator:14

Wald(pj, p
′
j, x) =

∫ p′j

pj

Djk(ps, x)w(ps) ∂ ps with w(ps) =

∂qj(ps,x)

∂pj∫ p′j
pj

∂qj(pt,x)

∂pj
∂pt

(5)

This tells us that the average diversion ratio measured is just the weighted average of

diversion ratios at each Djk(ps, x), where the weights correspond to the consumers who

leave j at each price ps as a fraction of all consumers who leave j as the price increases from

(pj → p′j). All things being equal, as demand for j becomes more elastic, this will concentrate

more of the weight w(ps) towards the diversion ratios measured at prices closer to pj. As

demand becomes less elastic, the weight is spread more evenly across price increments.

We can further decompose the heterogeneity by observing that at each ps, Djk(ps, x)

implicitly integrates over a heterogeneous distribution of individuals as illustrated in Propo-

sition 1:15

(5) =

∫ p′j

pj

∫
Djk,i(ps, x)wi(ps, x) ∂ps ∂Fi with wi(ps, x) =

∣∣∣∂qij(ps,x)

∂pj

∣∣∣
qj(pj, x)− qj(p′j, x)

=

∫
Djk,i(x)wi(pj, p

′
j, x) ∂Fi with wi(pj, p

′
j, x) =

qij(pj, x)− qij(p′j, x)

qj(pj, x)− qj(p′j, x)
(6)

We’ve now provided two alternatives for decomposing the heterogeneity in diversion ratios.

In (5), we show that the average diversion ratio varies with price, and how Wald estima-

tor/LATE weights diversion ratios at different price increments. In (6), we show that that

the Wald estimator/LATE can be decomposed into diversion ratios of individual consumers

(which are now independent of price Pj) and a set of individual-specific weights wi(pj, p
′
j, x)

which depend on realizations of prices (pj, p
′
j) but not the substitute k. These weights de-

termine the (conditional) probability than an individual of type i is a complier under a

14Observe that Djk(ps, x) =
∂qk(ps,x)

∂pj∣∣∣ ∂qj(ps,x)

∂pj

∣∣∣ so that Djk(ps, x)
∣∣∣∂qj(ps,x)∂pj

∣∣∣ = ∂qk(ps,x)
∂pj

. Also notice that the

integral in the denominator of the weights is just the change in sales of j:
∫ p′j
pj

∂qj(pt,x)
∂pj

∂pt = qj(pj , x) −
qj(p

′
j , x).

15This requires the assumptions of Proposition 1 to be satisfied. The second integral arises because at each
ps we can write: Djk(ps, x) =

∫
Djk,i(ps, x) ∂Fi as the integral over heterogeneous individuals. To exchange

the order of integration we need Fubini’s Theorem to apply. This is straightforward as Djk(ps, x) ≥ 0 and
wi(ps, x) ≥ 0 everywhere. Less obvious is that Djk,i(x) = Djk,i(ps, x) for any ps. This is demonstrated in
Appendix A.2. For discrete choice models we need: Pr(uik > maxk′∈J\{j,k} uik′) ⊥ pj which is guaranteed
by the exclusion restriction and the random assignment assumption. In words, the price of j is unrelated to
an individual consumer’s relative ranking of k and some next best alternative.
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particular intervention (pj, p
′
j).

We know that the different “instruments” measure different LATEs by tracing out dif-

ferent groups of compliers. This means that we can construct some local average measure of

diversion ratios with respect to other characteristics. For example, consider a ceteris paribus

reduction in quality from ξj → ξ′j, or an arbitrary characteristic zj → z′j.
16 This lets us

re-write (6) as:17

Wald(zj, z
′
j, x) =

∫
Djk,i(x)wi(zj, z

′
j, x) ∂Fi with wi(zj, z

′
j, x) =

qij(zj, x)− qij(z′j, x)

qj(zj, x)− qj(z′j, x)
(7)

Here we exploit the fact that the individual specific diversion ratios don’t vary with price

(or even rely on a price change), but rather that the weights vary when we use quality

rather than price as the instrument. Any product characteristic zj is valid, so long as it

satisfies the monotonicity condition uij(z
′
j) ≤ uij(zj) for all i and any (z′j > zj).

18 This may

seem surprising at first, because we might expect cars to have one elasticity with respect to

price, and a different elasticity with respect to fuel economy. What (6) says is that at the

individual level there is only one diversion ratio and it is a deep structural parameter that

is invariant to whether we change price, quality, or availability. The choice of, or variation

in, the instrument simply determines the weights applied to the individual diversion ratios.

This is consistent with results in Heckman (2010); Heckman and Vytlacil (2005); Carneiro

et al. (2011) on Marginal Treatment Effects (MTE). Any treatment effect parameter from

Table 1 (LATE, ATE, ATT, ATUT, etc.) can be written as the integral of the non-parametric

MTE function (Djk,i(x) in our case) over some set of weights. As an example, the returns

to college attendance at the individual level are fixed and (assumed to be) policy invariant.

However, different policy interventions (instruments) such as merit scholarships, affirmative

action, or financial aid induce different students to attend college (different compliers) and

thus weight the underlying MTEs differently and measure different average effects.

3.4. Special Case: Second Choice Data

An important special case is that of second-choice data. In this case, all individuals are

treated: dij(Pj) = 0 for all i. In practice, this could be accomplished in one of several ways:

16Berry and Haile (2014) exploit the idea that quality functions as “minus price”.
17Now we treat pj as fixed and contained in x.
18In a random coefficients logit model, this would require that the sign of βi on zj is the same for all

individuals. For example, this would rule out cases where some consumers prefer “Mushy” cereal and others
do not.
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(a) by setting pj equal to the choke price qj(pj) = 0; (b) by reducing the quality (or some

other characteristic) such that no consumers choose j: qj(ξj, x) = 0; or (c) eliminating the

product j from the choice set J \ j. If we apply Proposition 1, we see that:

Wald(pj, pj, x) =
E[dik(pj, x)]− E[dik(pj, x)]

E[dij(pj, x)]− E[dij(pj, x)]︸ ︷︷ ︸
=0

= E[Djk,i(x)|dij(pj, x) = 1] = ATUT. (8)

We measure the average diversion ratio for all individuals who would have bought j at the

original price pj. Since our treatment indicator corresponds to “not buying j”, this is the

average treatment on the untreated (ATUT) and is equivalent to the gain in sales by k divided

by the lost (original) sales of j at pj.
19 The instrument we use to obtain second-choice data

is irrelevant as all manners of second-choice data identify the ATUT.20

If we revisit the example of the UK CMA asking customers: “If this store were to close,

where would you shop instead?” and ask whether this is useful for their purposes, we now

have a framework to answer that question. The answer depends on whether the ATUT

E[Djk,i(x)|dij(pj, x) = 1] is a good estimate for Djk(Pj, x) at whatever value of Pj they are

interested in (potentially the pre-merger price). This also provides a specific interpretation

for the substitution measured by natural disaster induced hospital closures in Raval et al.

(2019).

This also provides a framework to understand the value of second-choice data in para-

metric models of demand such as Berry et al. (2004) (microBLP). In microBLP, the authors

have access to the CAMIP survey data on consumers’ second choices. They report finding

extra moments from this second-choice data useful in estimating nonlinear (substitution)

parameters. Our expression in (8) explains why, these second choices are informative about

the average diversion ratios of those surveyed. If the survey is a random sample of buyers of

j, then it is informative about the ATUT, and “micro-moments” constrain the ATUT of the

parametric model to match that from the survey. Additional information on average diversion

ratios may be particularly useful for researchers if the corresponding counterfactuals (such as

prospective merger evaluation, recovery of implied price-cost margins, or willingness-to-pay

19As a matter of completeness, the ATT at pj is just
sk(pj)

1−sj(pj) . That is, since being treated is “not buying

j” the share of people purchasing k among all non j buyers at pj is merely the observed share. This may
look familiar as the rate of substitution from the IIA logit, though no parametric assumptions have been
made beyond those in Proposition 1. As we demonstrate later, the IIA logit exhibits constant treatment
effects and thus has the property that the ATE=ATT=ATUT.

20It is easy to see that wi are equal in (6) and (7) at the “choke price” and “choke quality” wij =
qij(x)
qj(x)

.
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calculations) depend on accurate measures of diversion.

3.5. Differences Among Treatment Effects Parameters

Often researchers want to know whether or not a LATE from the Wald estimator is a good

estimate of the ATT, ATE, ATUT, or marginal effect at some x. In the typical problem,

this depends on the heterogeneity in the individual treatment effects (Djk,i(x) in our case)

and the selection into treatment.21 Consider a second-order Taylor expansion of qk around

pj, where we define ∆pj = p′j − pj:

qk(p
′
j, x)− qk(pj, x)

∆pj
≈ ∂qk(pj, x)

∂pj
+
∂2qk(pj, x)

∂p2
j

∆pj +O(∆pj)
2. (9)

The difference between the Wald estimator or LATE, and its limit at ∆pj → 0, defined in

(4) as Djk(pj, x), is given by:

Wald(pj, p
′
j, x)−Djk(pj, x) =

qk(p
′
j, x)− qk(pj, x)

qj(pj, x)− qj(p′j, x)
−Djk(pj, x) ≈ −

Djk(pj, x)
∂2qj
∂p2j

+ ∂2qk
∂p2j

∂qj
∂pj

+
∂2qj
∂p2j

∆pj
∆pj

(10)

As one might expect, as ∆pj becomes larger, the difference between the Wald(pj, p
′
j, x)

estimator/LATE and Djk(pj, x) grows. As p′j increases, we treat more individuals (and

thus reduce the variance of our Wald estimator) but we begin to average over diversion

ratios at prices further away from pj. This has the effect of changing the weights in (6).

What is unique to diversion vis-a-vis other treatment effects applications is that we can link

differences in measures of diversion ratios to the underlying properties of demand; specifically

to the curvature of demand, which enters the numerator of (10).22 This makes it easy to sign

the difference or derive bounds for well known demand forms. We discuss several common

parametric forms (linear,log-linear, logit, nested logit, and mixed logit) in Appendix A.3.

For some treatment effects parameters, under the discrete-choice assumption (but without

additional parametric assumptions beyond those for Proposition 1) we can derive analytic

expressions. One example that does not depend on the parametric form is the ATT =

E[Djk,i(x)|dij(pj, x) = 0] =
sk(pj ,x)

1−sj(pj ,x)
. This is just the share of consumers choosing k as a

21For example, when asking whether the wage effect on the average college attendee is similar to that of
the marginal college attendee, this depends on the unobserved underlying distribution of “ability” among
other things.

22Also notice that we do not need to assume discrete-choice demand for this result.
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fraction of all those not choosing j. In the case of second-choice data (ATUT ), everyone

who purchased j at pj is treated, and we weight all individuals by wi(pj, x) = sij(pj, x)

(their initial purchase probability for j), although we cannot say anything at all about

Djk,i(x) without additional assumptions.23 Meanwhile the ATE (where everyone is treated)

is ATE = E[Djk,i(x)] = (1− sj) · ATT + sj · ATUT .24 We expect most practitioners to be

interested in the properties of small price changes under the LATE/Wald estimator and its

limit Djk(Pj, x), or second-choice data (ATUT), so we don’t spend additional attention on

the other treatment effects parameters (ATE and ATT).

3.6. Special Case: Constant Treatment Effects (Diversion Ratios)

There are some special models for which all of the treatment effects measures coincide, and

thus, whether one considers a small price (or quality) change or uses second-choice data,

one obtains the same diversion ratio. These are cases where the model exhibits constant

treatment effects and all individuals have identical diversion ratios.

Two examples for which the numerator of (10) is equal to zero and produce constant

treatment effects (diversion ratios) are: the linear model, for which ∂2qk
∂p2j

= 0 for all (j, k),

and the logit model, which sets the numerator of (10) to zero: Djk = −∂2qk
∂p2j

/
∂2qj
∂p2j

.25 This

has implications in both directions. If we assume linear demand or logit demand, we are

implicitly assuming that diversion ratios do not vary with price or across individuals. If we

treat the diversion ratio as if it were constant, we are implicitly restricting the true demand

system to be consistent with linear demand or IIA logit. Researchers should be just as

nervous about these restrictions as they would be about constant treatment effects in other

contexts such as assuming identical returns to college.

The nested logit model seems like it might have constant diversion ratios (as the product

23This provides an explanation for the perceived practice of antitrust agencies absent better data: “Assume
diversion ratios are proportional to pre-existing market share.” This is equivalent to assuming that the ATT
is a good estimate of the ATUT (which more generally implies no selection). In the example of college
attendance, this is akin to assuming that the returns to college attendance are the same for those who
chose to attend and those who chose not to attend. While this resembles the IIA logit, no such parametric
restrictions have been made.

24The expression is derived from ATE = Pr(Ti = 0) ·ATUT +Pr(Ti = 1) ·ATT where the probability of
being treated (not buying j) is just 1− sij(pj , x). Of course (1− sj)×ATT = sk

1−sj × (1− sj) = sk which is

just the share of k and exactly what one would expect.
25This is derived in the Appendix A.3. An easier way to see constant diversion under the IIA logit is to

observe that Djk,i = sik
1−sij = sk

1−sj for all individuals. One might be concerned that this is not the same

diversion ratio that one recovers under linear demand, and think that the ATT expression derived under
discrete choice ATT = sk

1−sj presents a contradiction. However, as is shown in Jaffe and Weyl (2010), linear

demand is inconsistent with discrete choice, and thus these measures are allowed to disagree.
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of two IIA logits) but in fact does not. It fails to satisfy the property in (10) which we show in

Appendix A.3. This means the diversion ratio from a small change in product characteristics

(inclusive of price) is not the same as a diversion ratio obtained from second choice data

(ATUT), a fact we have confirmed in simulations. One way to see this is to observe that

not all “individuals” have the same diversion ratios, and that diversion ratios vary with the

category of the initial product choice. There are different diversion ratios (for small changes

in the “index”) for products in the same nest:
sk|gZ(σ,sg)

1−sj|gZ(σ,sg)
and products in separate nests:

sk(1−σ)
1−sj|g ·Z(σ,sg(j))

where Z(σ, sg) = [σ + (1− σ)sg].

3.7. Application to Random Coefficients Logit

We show how the results in the previous sections can be applied to the workhorse random

coefficients logit model that is popular in industrial organization and for merger evaluation in

particular (Berry et al., 1995; Nevo, 2001). The random coefficients logit model parametrizes

the utility as:

uij = βizj − αiPj + ξj + εij with εij,∼ IID Type 1 EV (11)

where f(βi, αi; θ) is a parametric distribution known up to a parameter θ.26 This class of

models has an “index” so that an “individual” (fixing αi, βi but not εi) does not discriminate

among changes that make (zj, pj, ξj) worse so long as they change the index by an equal

number of units. We exploit this index property when computing the integration weights

wij(x). The decomposition from (6) allows us to write any treatment effects parameter for

diversion ratios under the random coefficients logit as:27

Djk(x) =

∫
Djk,i(x)wij(x)∂Fi =

∫
sik(x)

1− sij(x)
wij(x)∂Fi =

∫
sik(x) w̃ij(x)∂Fi (12)

We make use of several properties. First, when we integrate out over εi, each indivudal’s

diversion ratio follows a (different) logit such that Djk,i(x) = sik(x)
1−sij(x)

.28 Consistent with

(6) and holding for any discrete-choice model satisfying the assumptions of Proposition 1,

26The convention in Heckman and Vytlacil (2005) is to consider an “individual agent” as including the
error term (here εi). Instead, we follow the random coefficient logit convention an treat an “individual” as
a (βi, αi) but integrating over rather than conditioning on εi. Writing things the other way would prevent
us from getting analytic expressions.

27Observe that w̃ij(x) =
wij(x)

1−sij(x) . We abuse notation and suppress the (p′j , pj) or (ξ′j , ξj) arguments

because a variety of instruments (or none at all - as in second choice data) could be used.
28That individual demands follow IIA logit is well-known but a derivation is provided in Appendix A.3.
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wij(x) ∝ w̃ij(x) ∝

second choice data sij(x)
sij(x)

1−sij(x)
price change ∂

∂pj
sij(x) · (1− sij(x)) · |αi| sij(x) · |αi|

characteristic change ∂
∂xj

sij(x) · (1− sij(x)) · |βi| sij(x) · |βi|
small quality change ∂

∂ξj
sij(x) · (1− sij(x)) sij(x)

finite price change wi(pj , p
′
j , x) |sij(p′j , x)− sij(pj , x)|

|sij(p′j ,x)−sij(pj ,x)|
1−sij(x)

finite quality change wi(ξj , ξ
′
j , x) |sij(ξ′j , x)− sij(ξj , x)|

|sij(ξ′j ,x)−sij(ξj ,x)|
1−sij(x)

willingness to pay (WTP) =
sij(x)

|αi|·si0(x)
sij(x)

|αi|·si0(x)(1−sij(x))

Table 2: Weighting of Different Treatment Effects Parameters under RC Logit

Note: Weights are used to construct the weighted average diversion measure:
∑
iDjk,i(x)wij(x).

Weights must be normalized to integrate to one
∫
wij(x)dFi = 1, but note that

∫
w̃ij(x)dFi 6= 1.

The weights wij(x) for the WTP measure are as written (do not integrate to one).

individual diversion ratios don’t depend on Pj. This is because diversion already conditions

on individuals not buying good j.29 Whether one considers changes of prices, quality, or other

characteristics, and whether those changes are large (including second-choice data) or small,

affects only weighting and not individual diversion ratios. At the level of the individual i,

diversion ratios depend only on how i ranks k relative to some alternative k′.

The second property is that the diversion ratio is always bounded above by maxi
sik(x)

1−sij(x)
.

The average diversion ratio can never exceed the largest diversion ratio for any individual. In

practice this means the individual for whom the combination of sik(x) and sij(x) is largest.

Unless we see very large individual choice probabilities sik(x) we should not expect to see

very large diversion ratios, even for highly similar products (such as red and blue buses).

The third property, which is specific to the logit family, allows us to rewrite (12) as the

integral of two terms: i’s share for the substitute sik(x), and a re-defined weight w̃ij(x) =
wij(x)

1−sij(x)
, which depends on j. In Table 2, we compute the corresponding weights for (6) for

various treatment effects parameters and instruments. For expositional purposes, we focus

on the right hand side of (12) so that we are always integrating the individual’s share for

k : sik(x) over the adjusted w̃ij(x). We begin by considering a unit change in the index from

(11) which we could accomplish by reducing ξj. In this case, all individuals are weighted

proportional to their purchase share of the initial good sij(x), which seems intuitive. If

instead, we consider a unit change in a characteristic zj or price pj, we concentrate more

weight on those individuals more sensitive to the characteristic w̃ij(x) ∝ sij(x)|αi|. If all

individuals possess the same αi = α then this drops out and these are identical to weights

29Note: this is not the same thing as saying that sij(x) or sik(x) wouldn’t be different at a different value
of (pj , pk); they definitely would be!
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on the marginal change in the quality index sij(x). Second-choice data instead weights

according to w̃ij(x) ∝ sij(x)

1−sij(x)
. Relative to a small change in the index, it places more weight

on individuals with higher initial shares for sij(x). However, in many cases (such as the BLP

automobile example) individual purchase probabilities are small, so that the denominator

1 − sij(x) ≈ 1 and the second-choice weights are nearly identical to those from a marginal

change in product quality.30 When the share sij(x) becomes large, the second-choice weights

diverge from the marginal quality change weights. In practice, this tends to require a small

outside good share (at least for some individuals).

This decomposition highlights the role of random coefficients in diversion ratios. Random

coefficients have two effects: the first is to increase dispersion in the share of the substitute

sik(x) (or underlying diversion ratios sik(x)
1−sij(x)

), and the second is that when we consider

diversion ratios estimated from changes in characteristics with random coefficients it places

more weight on the individuals most sensitive to that characteristic. Under the random co-

efficients logit model, whether or not second choice data (potentially from surveys) produces

an estimate similar to that of a small price change depends on how much sij(x)|αi| differs

from sij(x) and how correlated sik(x) is with those weights. We illustrate these properties

in our empirical examples.

3.8. Relationship to Willingness to Pay

In addition to Upward Pricing Pressure (UPP) and merger simulation, another important

object is the Willingness-to-Pay (WTP) measure of Town and Vistnes (2001) and Capps et al.

(2003). WTP measures the value of including an option j in a consumer’s choice set, and

is an important input into the analysis of hospital-insurer networks (e.g., Ho (2006, 2009);

Ericson and Starc (2015)) and Nash-in-Nash bargaining between hospitals and insurers (e.g.,

Gowrisankaran et al. (2015); Ho and Lee (2019)). The WTP measure has also been used

outside the hospital-insurer context in the analysis of cable bundles (e.g., Crawford and

Yurukoglu (2012)).

We consider a simple version of the WTP measure under the same random coefficients

logit model as before. Consumer utility is given by (11) which we write as uij = Vij + εij.

There are well known results (Manski and McFadden, 1981) which show the expectation of

the maximum has a closed form: E[maxk∈J uik] = log
∑

k∈J exp[Vik]. If we follow Capps

et al. (2003) or Ho (2006) and ask: “What is the value to consumer i of including j in the

30This is not the same thing as saying that sj is small, there may still be “individuals” with a high purchase
probability for j even if the overall market share sj is small.
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choice set?” we obtain:31

WTPi(j) = E[max
k∈J

uik]− E[ max
k′∈J\j

uik′ ] = log

(∑
k∈J

exp[Vik]

)
− log

 ∑
k∈J\j

exp[Vik]

 (13)

We make use of the following relationships: (1) the individual outside good choice proba-

bility si0(J , x) = 1∑
k∈J exp[Vik]

; (2) that the outside good choice probability after removing

j increases by the individual share of j times the individual diversion ratio from j to the

outside good si0(J \ j, x) = si0(J , x) + Dj0,i(x) · sij(x); and (3) for members of the logit

family: Dj0,i(x) = si0(x)
1−sij(x)

. This lets us rewrite (13) as:32

= log

(
si0(J \ j, x)

si0(J , x)

)
= log

(
1 +

Dj0,i(x)sij(x)

si0(J , x)

)
= log

(
1 +

si0(J , x) · sij(x)

(1− sij(x)) · si0(J , x)

)
= log

(
1 +

sij(x)

1− sij(x)

)
≈ sij(x)

1− sij(x)
(14)

At the individual level, the amount i would pay to have j in his or her choice set is related to

the percentage change in the outside good share, or the diversion from j to the outside good

Dj0,i(x). This should be intuitive: products that add the most value are those without close

substitutes, which draw in consumers from the outside option. Perhaps surprising is that this

expression simplifies so that WTPi(j) can be written solely as a function of the individual

choice probability for j, sij(x). This result is of practical relevance because many hospital

network papers (e.g., Ho (2006, 2009); Capps et al. (2003)) omit the outside good, and (14)

shows us that WTPi(j) requires only an estimate of the individual choice probability sij(x).

It is common to further aggregate WTP (i, j) across individuals. One convention is

to follow Manski and McFadden (1981) and convert difference in utility to money-metric

equivalent variation (EV) and aggregate across individuals:33

WTP (j) =

∫
1

|αi|
WTPi(j)∂Fi ≈

∫
sij(x)

|αi|(1− sij(x))
∂Fi =

∫
Dj0,i(x)

sij(x)

|αi| · si0(J , x)
∂Fi

(15)

31We simplify by ignoring the probability that consumers face additional ex-ante risk over diagnoses. In
this sense, our version more closely resembles Crawford and Yurukoglu (2012).

32The approximation arises from the first-order Taylor expansion: ln(1 + x) ≈ x. This approximation is
valid when sij is small.

33Many papers do not identify a heterogeneous price coefficient and thus αi becomes a multiplicative
constant in (15).
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The last expression in (15) results in the same form as (7), in which we integrate diversion

from j to the outside good
∫
Dj0,i(x)wij(x)∂Fi. The difference is that (15) uses a different

set of weights wij(x) =
sij(x)

|αi|·si0(J ,x)
. Therefore, we include this as the final example of our

decomposition in Table 2. The connection between second-choice data and WTP is that

measures of diversion that use second-choice data integrate sik(x) over w̃ij(x) =
sij(x)

1−sij(x)
,

while in the absence of heterogeneous tastes for price, WTP integrates a constant 1 over the

same set of weights w̃ij(x) =
sij(x)

1−sij(x)
.

4. Applications using Nevo (2000) and Berry, Levinsohn, and Pakes (1999)

To illustrate our theoretical results on diversion ratios, we use the two well-known examples

from Nevo (2000b) and Berry et al. (1999). The data in Nevo (2000b) are simulated fake

data meant to mimic the cereal industry from Nevo (2001), and consist of T = 94 markets,

J = 24 products, and N = 2,256 observations.34 The Berry et al. (1999) data are annual

national aggregate automobile sales by make and model for T = 21 markets (each market

is a year),with up to J = 150 products per market and a total of N = 2,217 observations.

An advantage of the BLP data is that product names are attached, which help to interpret

results.35

The specifications of utility in the two models are given by:

uBLP
ijt = xjt (β + Σ · νi)︸ ︷︷ ︸

βit

−α · pjt
yit

+ ξjt + εijt

uNevo
ijt = xjt (β + Σ · νi + Π · dit)︸ ︷︷ ︸

βit

+dj + ∆ξjt + εijt

The main difference between the two specifications is that Nevo (2000b) contains product

fixed effects for each of the 24 brands dj, and allows for interactions between household

income and presence of children with tastes for product characteristics (the Π parameters).

In the Berry et al. (1999) example price is interacted with 1/yit where yit is a draw from a

lognormal distribution of income.36

We estimate these parameters using the PyBLP software package of Conlon and Gort-

34These data are posted online by the author, and are not the actual data used in Nevo (2001), which are
proprietary.

35This information is not available for the simulated Nevo (2000b) data.
36This is better behaved than α · log(yi − pjt) from Berry et al. (1995). In estimation, Berry et al. (1999)

also includes moment restrictions derived from an oligopolistic price-setting supply-side, which we include
in estimation but do not report.
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maker (2020). In doing so, we implement the recommended “best practices” which involve

calculating the nonlinear approximation to the optimal instruments. For the Nevo (2000b)

example, we use the same 20 simulation draws provided in the original data package. For

the Berry et al. (1999) example, the original draws are not available and we use 500 Halton

draws. In addition to the baseline “best practices” estimates for each model, we consider

three modified models in order to highlight how restrictions on parametric models are re-

lated to diversion ratios. In the first case, we eliminate all heterogeneous tastes for price

πp = σp = 0. In the second case we eliminate all heterogeneous tastes for the constant term

σ0 = π0 = 0 (which governs “inside” vs. “outside” good substitution). We consider these

two examples because many researchers consider these forms of heterogeneity to be among

the most important to capture when modeling demand. In the final case, we rescale the

market shares for all “inside” goods by a factor of three. This is meant to capture researcher

uncertainty about the overall size of the market. In the Nevo (2000b) case we multiply sjt · 1
3

and in the Berry et al. (1999) case we multiply sjt · 3.37

We report the parameter estimates in Table 3.38 The top panel reports estimates for

the Berry et al. (1999) example. Best practices estimates are reported in the first column.

The second column reports estimates that omit heterogeneity on the constant term, which

are similar. In the third column, we report estimates that omit heterogeneity on price,

which differ significantly from the estimates in the first two columns. The last column

rescales the market shares of all inside products, simulating a change in the assumed market

size. As expected, the parameter estimates are sensitive to this change too. In the bottom

panel, we perform the same comparisons for the Nevo (2001) example. In this case, we

find that omitting heterogeneity on the price term gives estimates quite similar to ‘best

practices,’ while omitting heterogeneity on the constant term and rescaling shares both lead

to significantly different estimates.

For later comparisons, we also include a simple nested-logit model with all ‘inside’ prod-

ucts in a single nest. The nested-logit model offers a helpful comparison because, unlike the

plain logit, it allows for a parameter that governs diversion to the outside good. Accordingly,

the nested-logit is often used by researchers or antitrust agencies to provide a “first cut,”

or to model demand under time and/or data constraints. There are no random coefficients

37In the BLP case this can be interpreted as people look for a new car at most once every three years
instead of every year. In the Nevo case this effectively triples the potential number of servings (breakfast,
lunch, and dinner, instead of breakfast only), that a household could consume each period.

38We only present the nonlinear parameters here. For the mean value of product characteristics consult
Table B.1 in Appendix B.
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to report for the nested-logit model, so we do not include it in Table 3. The only relevant

parameter is the nesting parameter. In the Berry et al. (1999) example, we estimate the

nesting parameter to be ρ ≈ 0.78. For the Nevo (2001) example, we cannot estimate a

nesting parameter because the fake data have the same number of products in all markets,

leaving us without an instrument for the nesting parameter, or any necessary variation for

estimation. Instead, we calibrate the nesting parameter to match the outside good diversion

(ρ = 0.375).39

In Table 4 we explore the relationship between parametric restrictions on random coef-

ficients logit models and the resulting effects on elasticities and diversion ratios. In both

the Nevo and BLP examples, the median own elasticity is relatively stable across random

coefficients specifications. The BLP and Nevo examples again struggle with different sets

of restrictions, suggesting the models capture important sources of heterogeneity through

different sets of parameters. Overall, the BLP example looks substantially different when

we restrict heterogeneity on prices, and the Nevo example looks substantially different when

we omit heterogeneous tastes for the constant, which governs inside vs. outside good substi-

tution. Absent the key dimension of heterogeneity, diversion to the outside good increases

from around 20% to around 89% in the BLP case, and from 33% to around 42% in the

Nevo case. We see a similar, though less interpretable effect on the aggregate elasticity in

both examples. The challenges with using aggregate elasticity as a diagnostic are highlighted

when we rescale the shares. In the BLP example, we effectively triple the share of inside

goods, which reduces outside good diversion to around 16%; however, the aggregate elas-

ticity doubles (from roughly 9% to 18%) because the outside good share has declined. In

the Nevo example, we effectively triple the share of the outside good, and thus outside good

diversion increases from around 33% to 78%, while the aggregate elasticity falls from about

53% to 38% (even though more consumers are diverted to the outside option). This suggests

that outside good diversion is a more useful diagnostic than the aggregate elasticity. In

general, the lack of stability in the outside good diversion (and aggregate elasticity) across

specifications suggests this might be helped by additional (micro) moments or second-choice

data.40

We also report (sales-weighted) substitution to the top 5 substitutes for each product.

39This calibration is meant to represent a “best case” scenario for nested logit, or what we might hope to
estimate if we had access to micro-moments or second choice data.

40As an example, consider demand for distilled spirits as in Conlon and Rao (2019) or Miravete et al.
(2018). We might also have quasi-experimental estimates (e.g., from a tax change on the total quantity sold
within a particular state), and could use this as additional information.
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Best Practices Σcons = πcons = 0 Σp = πp = 0 Rescaled Shares

BLP

price/inc -51.254 -49.175 -0.355 -11.277
(5.847) (7.104) (0.030) (2.218)

σcons 2.052 – 0.024 3.159
(1.111) – (35.915) (1.364)

σHP/weight 1.785 2.661 0.097 1.257
(2.061) (1.258) (33.495) (2.257)

σair 1.899 1.135 0.080 1.408
(0.439) (0.522) (133.351) (0.445)

σMP$ 0.708 0.157 0.003 0.151
(0.184) (0.223) (14.096) (0.361)

σsize 1.126 1.554 0.012 0.261
(0.917) (0.736) (29.555) (2.405)

Nevo

αprice -31.125 -42.642 -30.939 -36.280
(4.700) (3.627) (0.913) (2.507)

σprice 2.983 1.362 – 2.314
(0.650) (0.741) – (0.537)

σcons 0.217 – 0.246 0.016
(0.078) – (0.079) (0.070)

σsugar 0.027 0.055 0.055 0.028
(0.007) (0.012) (0.012) (0.007)

σmushy 0.294 0.720 0.835 0.172
(0.101) (0.339) (0.302) (0.089)

πprice×inc 92.746 49.645 – 214.812
(89.324) (66.938) – (40.954)

πprice×inc2 -5.266 -1.535 – -11.596

(4.621) (3.492) – (2.143)
πprice×kids 4.056 0.186 – 3.537

(2.260) (2.511) – (2.021)
πcons×inc 6.043 – 4.819 4.071

(0.538) – (0.357) (0.435)
πcons×age 0.161 – -0.049 0.018

(0.203) – (0.200) (0.194)
πsugar×inc -0.310 -0.088 -0.245 -0.287

(0.035) (0.030) (0.023) (0.035)
πsugar×age 0.049 0.023 0.036 0.046

(0.013) (0.016) (0.016) (0.015)
πmushy×inc 0.982 1.193 0.741 0.805

(0.279) (0.310) (0.261) (0.266)
πmushy×age -0.537 -0.029 -0.176 -0.508

(0.181) (0.237) (0.230) (0.180)

Table 3: Parameter Estimates for Berry et al. (1999) and Nevo (2000b).

Best practices refers to estimates with optimal instruments. See Conlon and Gortmaker (2020) for more
details.
BLP example uses 500 Halton draws to approximate the numerical integral and includes supply side.
Nevo (2000b) example uses the same 20 point distribution of heterogeneity included with the (simulated)
data.
Rescaled Shares takes sj × 3 for BLP and sj × 1

3 for Nevo.
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The badly misspecified models (lacking price heterogeneity for BLP, or heterogeneity on the

constant term for Nevo) understate substitution to the closest substitutes relative to the

baseline model. Rescaling the inside shares for BLP leads to a slight increase in diversion to

the best substitutes, and rescaling the outside share for Nevo leads to a substantial reduction

in diversion to the closest substitutes, from about 40% to 13%. In both cases these effects

appear to be related to the change in outside good diversion. Markups (shown in (1) to

be largely a function of own-elasticity and diversion to products of the same owner) appear

to be more stable, but are still sensitive to outside good diversion, with more outside good

diversion being associated with lower markups. As we showed in (15), consumer surplus is

largely a function of three things: own share sij(x), diversion to the outside good Dj0,i(x),

and price sensitivity αi. Thus, it should be unsurprising that specifications that estimate

different outside good diversion, also give wildly different consumer surplus calculations (as

does the BLP model with heterogeneous tastes for price).41

Although the nested-logit model matches the outside good diversion reasonably well in

both examples (by construction in the Nevo example), they do not capture the full extent

of diversion to the top 5 substitutes, because no parameters are left to explain similarities

among pairs of products.42 This also highlights that for these two examples, the “flexibility”

of the random coefficients specification is largely about capturing the inside/outside good

diversion margin rather than similarities across pairs of products, which even for the closest

substitutes are within 10% between the nested logit and baseline specifications.

4.1. Differences Among Treatment Effects Estimates

As we discussed in Section 3.5, different “instruments” will recover different average measures

of diversion ratios. An important question is how different these measures are from one

another. For example, if the UK CMA were interested in the effect of a horizontal merger

among retail supermarkets and surveyed potential customers asking about their second choice

(e.g., “If this store were to close, where would you shop?”), one might want to know the

difference between diversion estimated from a small price change Djk(pj, x) and diversion

estimated from the second-choice survey. As another example, suppose that we wanted to

41We need to be careful about consumer surplus comparisons because comparing utilities across specifi-
cations is not possible. However, these CS calculations are money-metric in that CSi(x) is scaled by 1

αi
for

each individual and then market averages are reported.
42The BLP nested logit has an additional problem because we omit the supply side. This leads to less

elastic estimates of demand, which also impact markups and consumer surplus. Estimating the nested logit
with all products in one nest and the same supply-side restrictions used by Berry et al. (1999), gives an
estimate of ρ ≈ 1.4, which is not necessarily consistent with random utility maximization. (See McFadden
and Train (2000).)
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Best Practices Σcons = πcons = 0 Σp = πp = 0 Rescaled Shares Nested Logit

BLP

Median Own-Elasticity -3.811 -3.481 -3.098 -2.632 -1.600
Median Aggregate Elasticity -0.096 -0.095 -0.258 -0.178 -0.033
Median Outside-Good Diversion 0.201 0.227 0.892 0.163 0.197
Mean Top 5 Diversion 0.182 0.165 0.022 0.191 0.165
Mean Markup 0.334 0.359 0.385 0.468 0.936
Median Consumer Surplus 2.071 2.005 0.323 14.726 2.827

Nevo

Median Own-Elasticity -3.654 -3.735 -3.686 -3.622 -3.995
Median Aggregate Elasticity -0.534 -0.683 -0.558 -0.383 -0.584
Median Outside-Good Diversion 0.329 0.418 0.341 0.780 0.342
Mean Top 5 Diversion 0.406 0.334 0.392 0.129 0.385
Mean Markup 0.402 0.384 0.402 0.324 0.363
Median Consumer Surplus 2.946 3.750 3.218 0.628 3.011

Table 4: Comparison of Diversion and Elasticities for Berry et al. (1999) and Nevo (2000b).

Mean markup and diversion are sales-weighted.
Nested Logit (BLP): all products in single nest and estimates ρ = 0.78.
Nested Logit (Nevo): all products in single nest and calibrates ρ = 0.375 to match outside good diversion.

know how consumers might respond to a reduction in the quality of cellular phone plans, but

we only had information from “number porting” data during a period in which consumer

switching was driven largely by price cuts from Sprint and T-Mobile.43

In Section 3.7 and Table 2 we derived expressions for how these different interventions

weighted different groups of individuals. Here we illustrate the implications of these different

weights for the BLP and Nevo examples under the baseline specifications from the prior

section. In our first exercise, we compare the diversion ratios obtained for every product in

every market under the various “instruments” or interventions (small price changes, small

quality changes, second-choice data, etc.).

In Table 5, we examine substitution to the best substitute for each product and to the

outside good. For the BLP example, we measure diversion ratios for the best substitute for

each vehicle, considering a small change in price or quality, or a product removal. All three

random-coefficient measures are similar for the best substitute. We predict somewhat less

substitution to each product’s closest substitute with the nested-logit specification. This is

expected, because the nested-logit model lacks parameters that make a Camry similar to

an Accord. The plain logit performs quite poorly, as it cannot properly capture diversion

43It is true that if we had a fully specified model parametric demand model we could answer these questions.
Though in the first example, it seems unlikely that the CMA could estimate a price parameter or elasticity
given the available data, and in the second example it might be challenging to estimate preferences for
“quality” if it were subsumed into provider intercepts.
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Djk(p) Small Quality Change Second Choice Logit Nested Logit Djk(p)

BLP

Med(Djk) 4.53 4.62 4.63 0.46 3.85
Mean(Djk) 5.11 5.30 5.33 0.53 3.97
% Correct 100.00 97.29 97.29 95.58 95.58

Med(Dj0) 20.08 14.40 14.33 89.26 19.66
Mean(Dj0) 20.29 14.95 14.88 89.36 19.71

Nevo

Med(Djk) 13.03 12.83 12.90 8.89 12.54
Mean(Djk) 15.29 14.79 14.90 9.84 13.82
% Correct 100.00 94.33 94.46 64.23 64.23

Med(Dj0) 32.91 34.13 34.00 54.43 34.20
Mean(Dj0) 32.88 34.08 33.85 53.46 33.73

Table 5: Diversion to Best Substitute and Outside Good

The first panel in each set reports diversion to each product-market pair’s best substitute. The second
panel in each set reports diversion to the outside good.

BLP Nevo

med(|y − x|) mean(y − x) med(|y − x|) mean(y − x)

Top 5 Substitutes

Small Quality Change 10.57 2.49 3.66 -2.73
Second Choice 10.47 2.81 3.34 -2.03
Logit 19.53 -22.38 38.80 -44.41
Nested Logit Djk(p) 19.06 -6.48 19.06 -6.48

All Products

Small Quality Change 21.25 27.94 4.92 -0.55
Second Choice 21.39 27.85 4.63 -0.64
Logit 191.18 -170.71 38.64 -29.47
Nested Logit Djk(p) 33.71 32.73 32.22 8.46

Outside Good

Small Quality Change 32.62 -31.63 3.86 5.40
Second Choice 33.03 -32.19 3.25 4.35
Logit 149.38 168.63 44.63 58.46
Nested Logit Djk(p) 39.28 17.46 29.95 12.33

Table 6: Relative % Difference in Diversion Measures

Baseline is small-price change measure: Djk(pj).
Observations are product-market pairs and are equally weighted.
Median Absolute Deviation med(|y − x|) and “Bias” E[y − x] where (x, y) are log-diversion.
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to the outside good, which in the case of the BLP data is extremely large.44 Diversion to

the outside good is larger when considering a small price change (around 20%) than when

considering a change in quality or second choice data (around 15%). This can be explained by

differences in the weights in Table 2, and theoretically could go in either direction. The only

difference between a marginal change in quality and second-choice data is a factor of 1
1−sij(x)

,

but for most products 1
1−sij(x)

≈ 1 because the outside share is so large (often greater than

90%). However, responses to small changes in prices are substantially different because they

place additional weight on more price sensitive consumers (large |αi|). In the BLP example,

price sensitivity is quite dispersed because it tracks income (αi = α
incomei

), and low-income

consumers have much larger outside good shares si0(x). We illustrate our decomposition of

individual diversion measures and weights in more detail in Section 4.2.

We see a different pattern with the Nevo example. Here measures of diversion to the best

substitute and diversion to the outside good are less sensitive to the particular weighting

scheme that is used. This is despite the fact that there is still quite a bit of heterogeneity in

the price sensitivity αi as demonstrated by the magnitude of σprice and πprice×inc and πprice×inc2

from Table 3.45 This result is due to the fact that there is not as much heterogeneity in

the underlying individual diversion ratios Djk,i(x) as demonstrated by two features of this

market. First, the diversion ratios to each product’s best substitute are similar between

the nested-logit model, which predicts substitution proportional to share, and the random-

coefficients model under any intervention. Second, beyond two discrete types of cereal (i.e.,

mushy and non-mushy), the extent of heterogeneous preferences for other characteristics in

the Nevo application (i.e., sugar) is not very large.

This last point is highlighted by the “% Correct,” which reports the fraction of obser-

vations for which each model predicts the same best substitute as the small-price change

measure of diversion Djk(pj, x). For the Nevo example, the three interventions identify the

same best substitute at least 94% of the time, while the nested-logit model does less well,

identifying the top substitute only 64% of the time.46 In the BLP example, nearly all inter-

ventions and specifications predict the same substitute for all products; thus, even the plain

logit agrees with Djk(pj, x) 95% of the time. What is perhaps disappointing for the BLP

example is that diversion ratios to best substitutes are generally quite small (around 5%).

This is in part driven by the larger number of products, but also suggests the possibility

44Berry et al. (1999) defines the market as every household in the United States purchasing up to one
automobile each year.

45We provide histograms of αi for both BLP and Nevo in Figure B.1 of the Appendix.
46This is mostly because the nested-logit model cannot distinguish between mushy and non-mushy cereal.
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that even more random coefficients or demographic interactions might have been helpful.

In Table 6, we provide a standard econometric comparison among the different diversion

measures. We use the small-price change case as our baseline, and compare (on the log-scale)

the discrepancies between average diversion ratios measured using small quality changes,

second-choice data, logit, and nested-logit models. We use two metrics for our comparison,

the mean difference (bias), and the median absolute deviation (dispersion).47 For the BLP

example, we find that diversion to the top 5 substitutes from alternative “instruments”

(second-choice data and small quality changes) are off by around 10% on average with

some being overstated and others being understated when compared to the small price

change measure. As in Table 5 there are substantial discrepancies among the different

“instruments” for the BLP data with second-choice and small-quality changes predicting

around 30% less diversion to the outside good than a small-price change, and around 27%

more diversion to “all inside goods.” The results are much more similar in the Nevo example,

with the various random coefficients diversion measures all within around 5% of the small-

price change predictions. As expected, the nested-logit model under-predicts substitution to

the top substitutes and over-predicts substitution to “the field” of all inside goods.48

This raises the question: why do we see substantial discrepancies in diversion measured

using small-price changes versus small changes in quality or second-choice data in the BLP

data, but not in the Nevo (fake) data?

4.2. Decomposition of Diversion Measures

In this section we demonstrate our decomposition from (7) which shows that we can decom-

pose any measure of diversion ratios (second-choice data, small price changes, small quality

changes) into two components: (1) an individual diversion measure Djk,i(x) that does not

depend on the policy instrument; and (2) a set of weights wij(x, zj, z
′
j) that depend on the

policy change, but do not depend on the identity of the substitute. The individual treat-

ment effects (diversion ratios) are considered structural parameters in the sense that they

are policy invariant aspects of consumer preferences, which do not depend on whether we

measure diversion by changing price or product quality (or by how much).

This policy invariance has led objects like Djk,i(x) to be described as marginal treatment

effects in the language of Heckman and Vytlacil (2005), as they can be integrated over

different sets of weights to calculate the well-known treatment effects parameters (ATE,

47In Appendix B we provide a pairwise correlation matrix for these measures.
48The nested logit does a good job matching the sales-weighted outside good diversion in Table 5.
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ATT, ATUT, LATE, etc.).49 To illustrate this connection, we present two sets of plots in

Figure 1 and Figure 2. These are meant to parallel those in Carneiro et al. (2011), which

plot the MTE(x) against the propensity score (i.e., the probability that an individual is

“treated”).

In the first panel of each plot, we compute Djk,i(x) = sik(x)
1−sij(x)

for each simulated “indi-

vidual” in the Berry et al. (1999) model. We plot this against each individual’s purchase

probability for product j, sij, because our treatment is “not buying j.” Figure 1 plots diver-

sion measures from a Honda Accord to two substitutes: Toyota Camry and Cadillac DeVille.

The plots reveal a large number of blue dots near the origin, representing individuals who are

unlikely to purchase either an Accord or a Camry. Indeed, most consumers in the BLP data

don’t purchase any automobile at all. As we move right across the graph, we find that indi-

viduals who are more likely to purchase an Accord are also more likely to purchase a Camry.

To help visualize this relationship, we provide a local linear smoothed line in blue, which

is clearly increasing. This increasing relationship tells us about the covariance between the

individual diversion measures and their weights in (6), and indicates that the products are

close substitutes beyond what would be predicted by share alone. What is also interesting is

that although these products are “close substitutes” even at the individual level, the highest

diversion ratio we observe is around 8%.

As a contrasting case, in green in Figure 1 we conduct the same exercise but with the best-

selling luxury car (the Cadillac DeVille) as the substitute instead. There are some individuals

with diversion ratios as high as 14% between the Accord and the DeVille. However, because

those individuals are on the left of the graph, these are individuals who are unlikely to

buy the Accord in the first place (presumably because they are luxury car buyers, rather

than economy car buyers). Although it is harder to see because of the large number of

non-car buyers towards the bottom of the figure, the smoothed green line slopes downwards,

suggesting that individuals who really like the Accord are less likely to switch to the DeVille.

In the second panel of Figure 1 we plot a histogram for two different sets of weights

across individuals. In blue, we plot the set of weights corresponding to a small price change

wij(x) = |αi|sij(x)(1 − sij(x)), while in red we plot the weights corresponding to second-

choice data (or product removal) wij(x) = sij(x). For the most part, the resulting histogram

is purple, suggesting that the weights are largely similar for the two interventions. However,

we see that second-choice weights tend to place slightly more weight on “more likely” Accord

buyers (towards the right of the figure) than the small price change weights do.

49This is demonstrated in (7).
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Figure 1: Decomposition of Diversion Measures for Honda Accord
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The four horizontal lines in the top panel of the figure indicate the average diversion

from Accord to Camry (two lines in grey) and from Accord to Cadillac DeVille (two lines in

black). The two measures for each pair of substitutes use the histograms in the lower panel

to weight observations. The average diversion ratio from Accord to Camry obtained from a

small price change is around 3.2%; measuring the same diversion ratio from second-choice

data gives an estimate of average diversion of around 3.8%. The second-choice measure of

average diversion is higher because the smoothed MTE for the Toyota Camry is upward

sloping, and the histogram of weights for the second-choice measure places more weight on

individuals to the right of the figure (with higher sij’s).

Even though there are some individuals with very high diversion ratios from the Accord

to the DeVille, the average diversion ratios from a small price change or second-choice data

are both quite small, < 1%, because the high diversion individuals receive such low weight

(presumably because they represent a tiny fraction of likely Accord buyers).50

We observe a similar pattern in Figure 2, which considers diversion from the BMW

7-series to the BMW 5-series and the Mercedes 420s (three of the most expensive luxury

vehicles in the dataset). Again, the majority of the points are around the origin, indicating

that most simulated individuals don’t purchase any of these high-end luxury vehicles. There

is an increasing trend for diversion to both substitutes, as both the 5-series and the Mercedes

are close substitutes to the 7-series. However, even among these close substitutes, the largest

individual diversion ratio is less than 2.5%, and the average diversion measures are closer to

1.5% for the BMW 5-series (and 0.5% for the Mercedes).

4.3. Wald Estimates of Diversion Measures

A different way to decompose heterogeneity in the diversion ratio measures is to start with

the same question we began this article with: what would we measure by considering a

ceteris paribus increase in price from pj → p′j? Different Wald estimators will produce

50We should caution that the figures can still obfuscate some of the underlying heterogeneity. Two in-
dividuals may have similar sij “propensity scores” for the Accord, but for different reasons. The first may
be on the margin of buying a car or not (low income, high price sensitivity). The second may be a buyer
who is primarily shopping for luxury cars. Our figures may place these individuals at the same spot on the
x-axis making this kind of multi-dimensional heterogeneity hard to visualize. This also explains why the
relationship between the Accord and DeVille can be downward sloping but still have second-choice diversion
that is higher than diversion from a small price change.
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different (local) average diversion ratio measures. Consider the Wald estimate from (3):

Wald(zj, z
′
j, x) =

qk(z
′
j, x)− qk(zj, x)∣∣qj(z′j, x)− qj(zj, x)

∣∣
For this example, we again focus solely on the BLP automobile data because there is less vari-

ation in the Nevo data in the underlying individual diversion measures Djk,i(x), and because

the BLP data include product names that make the diversion ratios more interpretable.

We consider an increase in price pj → p′j or reduction in quality ξj → ξ′j and plot the

results for the Honda Accord and the BMW 7-series respectively in Figures 3 and 4, where

the x-axis corresponds to the share of initial Accord (BMW) consumers who continue to

the purchase the Accord (BMW), and the y-axis corresponds to the Wald estimate of the

diversion ratio. As we move toward the right, we consider larger price increases (or quality

reductions) until the fraction of customers still purchasing the Accord or BMW approaches

zero (the choke price). Dots on the graph denote 5% and 10% price increases, and a horizontal

line marks the second-choice average (ATUT) diversion measure.

Figures 3 and 4 illustrate the fact that as we increase price (decrease quality) to the choke

price (quality), the LATE estimates of diversion coincide with the second choice (ATUT)

measure. The figures also show that the second-choice data and Wald estimates using quality

(ξj) are more similar to one another than they are to the Wald estimates from price. This

is likely to hold more generally, and is consistent with our findings in Table 5 because the

weights from Table 2 for a second-choice measure of diversion,
(
w̃2nd choice
ij (x) ∝ sij(x)

1−sij(x)

)
,

and for a quality measure of diversion (w̃quality
ij (x) ∝ sij(x)) are very similar, whereas the

price change intervention places more weight on more price-sensitive individuals (w̃price
ij (x) ∝

|αi|sij(x)).51 In Figures 3 and 4, the average diversion ratio from a finite price change is

smaller than the average diversion ratio obtained from quality changes or second-choice data.

However, for other pairs of products, this pattern could be reversed. Indeed, the relationship

between the LATE for a given finite price change, and a second-choice measure need not even

be monotone (e.g., the measured (local) average diversion ratio may be increasing for small

price changes, but decreasing for larger ones). More generally, the relationship between the

average diversion for a finite price change vs. second-choice data is driven by the covariance

between αi and the corresponding shares (weights) sij(x), as illustrated in the previous

51This is particularly true if
sij(x)

1−sij(x) ≈ sij(x) when shares are small. Here “price” is effectively any

characteristic with a random coefficient and “quality” is the utility index or any “vertical” characteristic
lacking a random coefficient. The correct LATE weights are proportional to q(zj , x) − q(z′j , x) rather than
the derivative of qj(Zj , x) at zj .
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section. Without placing strong restrictions on the underlying heterogeneity, it is impossible

to make statements like: “Small price changes lead to lower estimates of diversion ratios

than second-choice data.”52

4.4. Willingness to Pay Measures

Individual Aggregate
BLP BLP BLP BLP Nevo Nevo BLP BLP Nevo Nevo

log(sjt) 1.0749* 1.0519* 0.9955* 0.9955* 1.0255* 1.0353* 0.7669* 0.9265* 1.0144* 1.0105*
(0.0001) (0.0001) (0.0000) (0.0000) (0.0002) (0.0002) (0.0087) (0.0061) (0.0020) (0.0010)

log(Dj,0) -0.2233* -0.0032* 0.1090* -0.6733* 0.1786*
(0.0005) (0.0002) (0.0009) (0.0114) (0.0022)

log(‖αi‖) -1.0113* -1.0164*
(0.0005) (0.0004)

R2 0.9951 0.9967 0.9997 0.9997 0.9975 0.9981 0.7784 0.9139 0.9915 0.9978
Adjusted R2 0.9951 0.9967 0.9997 0.9997 0.9975 0.9981 0.7783 0.9138 0.9915 0.9978
Observations 436199 436199 436199 436199 45051 45051 2217 2217 2256 2256

Table 7: Correlation with WTP Measure for Nevo (2000b) and Berry et al. (1999).

For individual-draw specifications sijt(x) and Dj0,i(x) are used.
Approximately half of observations for BLP WTP (i, j) are excluded because WTP (i, j) ≈ 0 to machine
precision.

In Section 3.8, we demonstrate the relationship between the willingness-to-pay (WTP)

measure (often used to analyze bargained outcomes and hospital mergers), the individual

share sij(x), the diversion to the outside good Dj0,i(x), and the individual price sensitivity

αi. More specifically, in (15) we showed that WTPj = WTPij∂Fi =
∫
Dj0,i(x)

sij(x)

|αi|·si0(x)
∂Fi =∫ sij(x)

|αi|(1−sij(x))
∂Fi. We can illustrate this relationship by considering the following two (de-

composition) regressions:

lnWTPijt = β0 + β1 ln sjt,i(x) + β2 lnDjt0,i(x) + β3 ln |αit| +εijt

lnWTPjt = γ0 + γ1 ln sjt(x) + γ2 lnDjt0(x) +εjt

To run these regressions, we construct the WTP measure for every individual, in every

market, for each product. For example, WTPijt might represent the willingness to pay of

a particular consumer for having a Honda Accord in his or her choice set in 1990; or it

might represent the willingness to pay to have Apple Cinnamon Cheerios on the shelf of a

supermarket in a particular week. WTPjt represents the average of the individual measures

over all of the households i.

52In some sense, this should be obvious because diversion ratios must sum to one, and for one diversion
ratio to go up, others (including the outside good) must go down.
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Figure 3: Local Average Diversion Measures from Accord to Camry and Deville
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Figure 4: Local Average Diversion Measures from BMW 7-series to 5-Series and Mercedes
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We report the regression estimates in Table 7. At the individual level, we are able to

explain over 99% of the variance in the individual level WTPij measure using just sjt,i(x)

and Djt0,i(x) for both the BLP and Nevo examples. In accordance with (15), the third and

fourth columns demonstrate in the BLP application that once we control for the price sensi-

tivity ln(|αi|), diversion to the outside good at the individual level is no longer economically

meaningful.

What is perhaps more surprising is that we are also able to explain average market-level

willingness to pay. The average willingness to pay for access to a Camry or Cheerios in

the choice set can be explained using only the market level share sjt(x) and outside good

diversion Dj0(x). In the Nevo (fake) data, we are able to explain 99.1% of the variance

in WTPj using just sjt(x) and 99.8% of variance once we also include the (market-level)

diversion to the outside good. We see similar results for the BLP data where we explain

roughly 78% of the variance using just sjt(x) and 91.3% of the variance in WTPj using

sjt(x) and market-level diversion to the outside good Dj0t(x). We should caution that at

the aggregate level, this is neither a sufficient statistic representation nor a decomposition

in the sense that while the coefficient on ln sjt(x) is approximately one, the coefficient on

Dj0t(x) is not easily discerned without running the regression. In fact, it has a different sign

in the Nevo data and the BLP data (because of how it covaries at the individual level with

the price sensitivity |αi|).53

What this does highlight is that estimates of WTP are largely about own share sjt(x),

which is often observed as data at the market level (and possibly at the individual level for

some datasets – such as patient discharge data for hospitals). It also highlights the value

of accurately measuring diversion to the outside good, including possibly from additional

(micro) moments. Second-choice data, such as knowing what fraction of consumers would

switch to a hospital outside the geographic market if a particular hospital were to close, may

also be valuable such as in Raval et al. (2019).54

5. Conclusion

We provide a treatment effects interpretation of diversion ratios, and demonstrate how dif-

ferent ceteris paribus interventions (price changes, quality changes, characteristic changes,

53Individual outside good diversion is positively correlated with αi in the BLP data and negatively corre-
lated with αi in the Nevo data. This may seem surprising at first, but the demographics (kids and income)
and the relationship between price and the constant in the Nevo data induce the negative correlation.

54Recall that second-choice data integrates sik(x) over the weights
sij(x)

1−sij(x) , while WTP integrates 1
|αi|

over the same set of weights, as demonstrated in Section 3.8.
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and assortment changes) can be used to identify diversion ratios. While these measures of

diversion ratios will not in general agree with one another, we provide a framework to de-

compose these average measures into individual diversion ratios (policy invariant structural

parameters) and a set of weights, which vary with the intervention. We provide additional

results showing how willingness-to-pay (WTP) is related to diversion to the outside good,

and individual choice probabilities.

The object of interest may vary with the application. Sometimes the object of interest

is a price change from a merger simulation or UPP calculation for a horizontal merger, in

which case the researcher is likely interested in diversion ratios measured from small price

changes. In other cases the relevant object may be the substitution induced from quality

increases/reductions or from changes in product assortment. In an ideal world, the object of

interest would coincide with the data available to the researcher. In practice, researchers may

have access to additional data from customer surveys, win-loss data, or customer switching

behavior, which may or may not coincide with the diversion measure of interest. When these

measures do not perfectly coincide, our framework provides a way to interpret discrepancies

between different diversion measures.

In many cases researchers may still want to estimate a fully parametric model of demand

(or supply and demand) such as in Berry et al. (1995) or Nevo (2000a). We hope that a

better understanding of diversion ratios can help make the outputs of these models more

interpretable. In simulations, we find that the diversion ratios measured from parametric

models in two applications are perhaps more similar than one might have anticipated. For the

automobile example, second-choice measures of diversion ratios are within 20% of measures

based on small price changes, so that a 5% diversion ratio might be measured in the range

of (4%, 6%). For the simulated cereal data example, the estimated measures are even less

dispersed, so that they are generally within 5% of one another. We caution that these

findings are not guaranteed (or even likely) to hold in all potential examples, and that both

settings have relatively large outside good shares. This is important, because our simulations

also indicate that measures of diversion ratios that rely on parametric models tend to be

sensitive to the specification of the outside good share or market size, indicating a potential

need for additional data or moment restrictions (such as in Berry et al. (2004)) for this class

of models.
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Appendices

A. Theory Appendix

A.1. Proofs and Derivations

Analogue to LATE Theorem (Imbens and Angrist, 1994)]

Under the following conditions:

(a) Mutually Exclusive and Exhaustive Discrete Choice: dij ∈ {0, 1} and
∑

j∈J dij = 1.

(b) Exclusion: uik(pj) = uik(p
′
j) for all k 6= j and any (pj, p

′
j);

(c) Monotonicity: uij(p
′
j) ≤ uij(pj) for all i and any (p′j > pj); and

(d) Existence of a first-stage: Pr(dij(pj) = 0) 6= Pr(dij(p
′
j) = 0) for (p′j > pj);

(e) Random Assignment: (uij(Pj), uik(Pj)) ⊥ Pj,

then the Wald estimator from (3):

qk(p
′
j, x)− qk(pj, x)

−
(
qj(p′j, x)− qj(pj, x)

) = E[Djk,i(x)|dij(pj, x) > dij(p
′
j, x)].

Proof of Proposition 1:

We suppress x because everything is done conditional on x. We begin by observing under

the discrete choice assumption qk = M · sk where sk is the market share of good k (including

an outside option) and M is the size of the market:

qk(p
′
j, x)− qk(pj, x)

−
(
qj(p′j, x)− qj(pj, x)

) =
sk(p

′
j, x)− sk(pj, x)

−
(
sj(p′j, x)− sj(pj, x)

) (A.1)

We also use the definition that sk(Pj, x) = E[dik(Pj) = 1|x] = E[dik(Pj)|x]. This says

the market share is equal to the average purchase probability when choices are discrete,

exhaustive, and mutually exclusive and follows from (a).

Define ui = maxk′ uik′ for k′ ∈ J \{j, k} (the best product for i other than (j, k)). Notice
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that ui(pj) = ui(p
′
j) for any (pj, p

′
j) (the Exclusion restriction). Consider the numerator:

E[dik(Pj)|Pj = p′j] = Pr(uik(p
′
j) > uij(p

′
j) ; uik(p

′
j) > ui(p

′
j)|Pj = p′j)

= Pr(uik > uij(p
′
j) ; uik > ui|Pj = p′j) by exclusion

= Pr(uik > uij(p
′
j) ; uik > ui) by random assignment

E[dik(Pj)|Pj = pj] = Pr(uik(pj) > uij(pj) ; uik(pj) > ui(pj)|Pj = pj)

= Pr(uik > uij(pj) ; uik > ui|Pj = pj) by exclusion

= Pr(uik > uij(pj) ; uik > ui) by random assignment

This means we can re-write the numerator:

E[dik(Pj)|Pj = p′j]− E[dik(Pj)|Pj = pj] = Pr(uik > uij(p
′
j) ; uik > ui)− Pr(uik > uij(pj) ; uik > ui)

= Pr(uij(p
′
j) < uik < uij(pj) ; uik > ui) by Monotoncity

= Pr(uik > uij(p
′
j) ; uij(pj) > uik ; uik > ui)

= Pr(max{uik, ui} > uij(p
′
j) ; uij(pj) > max{uik, ui} ; uik > ui)

= Pr
(
uik > ui ; dij(p

′
j) = 0 ; dij(pj) = 1

)
by defn dij

The denominator, beginning with the exclusion restriction:

E[dij(Pj)|Pj = p′j] = 1− Pr(uij(p′j) > uik(p
′
j) ; uij(p

′
j) > ui(p

′
j)|Pj = p′j)

= 1− Pr
(
uij(p

′
j) > max{uik, ui}

)
by random assignment

E[dij(Pj)|Pj = pj] = 1− Pr(uik(pj) > uij(pj) ; uik(pj) > ui(pj)|Pj = pj)

= 1− Pr (uij(pj) > max{uik, ui}) by random assignment

And we can re-write the denominator:

E[dij(Pj)|Pj = p′j]− E[dij(Pj)|Pj = pj] = Pr (uij(pj) > max{uik, ui})− Pr
(
uij(p

′
j) > max{uik, ui}

)
= Pr

(
uij(p

′
j) < max{uik, ui} < uij(pj)

)
by Monotoncity

= Pr
(
max{uik, ui} > uij(p

′
j) ; uij(pj) > max{uik, ui}

)
= Pr

(
dij(p

′
j) = 0 ; dij(pj) = 1

)
by defn dij
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The ratio in (A.1) is:55

E[dik(p
′
j, x)]− E[dik(pj, x)]

E[dij(p′j, x)]− E[dij(pj, x)]
=
Pr
(
uik > ui ; dij(p

′
j) = 0 ; dij(pj) = 1

)
Pr
(
dij(p′j) = 0 ; dij(pj) = 1

)
= Pr

(
uik > ui | dij(p′j) = 0 ; dij(pj) = 1

)
by Bayes’ Rule

= E
[
1[uik > ui] | dij(p′j) < dij(pj)

]
= E

[
Djk,i(x) | dij(p′j, x) < dij(pj, x)

]
.

The last line is merely the definition of the individual diversion ratio: that individual i prefers

k to any non j alternative so that i’s “treatment effect” is given by: Yi(1)−Yi(0) = 1[uik > ui].

Notice this satisfies the “Independence” assumption of Imbens and Angrist (1994). That is,

Djk,i(x) = 1[uik(x) > ui(x)] does not depend on the “instrument” Pj.

In words, the Wald estimator delivers the expected treatment effect on the compliers (ie:

individuals for whom (dij(pj) = 1, dij(p
′
j) = 0). The compliers are the individuals who would

have purchased j at price pj and who do not purchase j at price p′j.

A.2. Link to marginal treatment effect: Derivation of (6)

Because we have a latent index model for the discrete choice problem this is straightforward.

The conventional definition of the marginal treatment effect is literally the treatment effect

for the individual indifferent between treatment and non-treatment:

MTE(vs) = E[Yi(1)− Yi(0) |Pr(Ti = 1) = νi]

= E [1[uik(νi) > ui(νi)] |uij(νi) = max{uik(νi), ui(νi)}]

= E [Djk,i(x, νi) |uij(νi) = max{uik(νi), ui(νi)}]

One possible interpretation of what νi means is that νi = εij in a random utility model so that

uij = uij + εij. That is we could hold all other εi,−j fixed (part of x) and integrate out over

just the distribution of unobserved tastes for j. In fact, this would be the convention from

Heckman and Vytlacil (2005). Their idea is to rank all individuals by their propensity score,

the probability of not purchasing j: H(νi) = Pr[dij(νi, x) = 1] and to plot the MTE(νi)

against the propensity score H(νi). This becomes awkward with multiple choices because

we consider the marginal distribution with respect to εi,j where εi,−j is integrated out.

For the random coefficients logit, it is easier to work with the “individuals” after inte-

55This requires the “first stage” assumption to avoid division by zero: Pr
(
dij(p

′
j) = 0 ; dij(pj) = 1

)
6= 0.
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grating out εi since that admits a closed form. In this case:

Djk,i(x) =

∂sik
∂pj

(x)

−∂sij
∂pj

(x)
=

−αisik(x)sij(x)

−αisij(x)(1− sij(x))
=

sik(x)

1− sij(x)

A.3. Diversion Under Common Parametric Demands

This section derives explicit formulas for the diversion ratio under common parametric forms

for demand, focusing on whether or not the diversion ratio implied by a particular paramet-

ric form of demand is constant with respect to the magnitude of the price increase. We show

that the IIA logit and linear demands model exhibit this property, while the log-linear and

mixed logit models do not necessarily exhibit this property. We go through several deriva-

tions below.

Linear Demand

The diversion ratio under linear demand has the property that it does not depend on the

magnitude of the price increase. We specify linear demand as:

Qk(P1, . . . , PJ) = αk +
∑
j

βkjPj.

where ∂Qk
∂Pj
≡ βkj is the increase or decrease in k’s quantity due to a one-unit increase in

prouct j’s price.

Djk(P1, . . . , PJ , x) =
βkj
βjj

(A.2)

Thus, for any change in pj from an infinitesimal price increase up to the choke price of j,

the diversion ratio Djk is constant. This also implies that under linear demand, diversion is

a global property. Any magnitude of price increase evaluated at any initial set of prices and

quantities will result in the same measure of diversion.
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Log-Linear Demand

The log-linear demand model does not exhibit constant diversion with respect to the mag-

nitude of the price increase. The log-linear model is specified as:

ln(Qk) = αk +
∑
`

εk` ln(Pj)

As is well known εjk = ∂Qk
∂Pj

Pj
Qk

and the diversion ratio can be re-written as:

Djk(Pj, x) =
Qk(Pj, x)

Qj(Pj, x)
· εkj
εjj

Under constant elasticity, the diversion ratio depends on where on the demand curve Pj we

are located. (This is similar to the fact that under linear demand, the own-price elasticity

depends where on the demand curve we are located). As an additional challenge, second-

choice data is not interpretable because we cannot expect to set Qj = 0 and take log(Qj).

IIA Logit Demand

The plain logit model exhibits IIA and proportional substitution, which implies that the

diversion ratio does not depend on the magnitude of the price increase. The logit utility and

market shares qj(Pj, x) = sj(Pj, x) ·M are given by the well-known formulas:

uij(Pj, x) = βxj − αPj + ξj + εij

Sj(P1, . . . , Pj, x) =
exp[βxj − αPj + ξj]

1 +
∑

k∈J exp[βxk − αPk + ξk]

The logit derivatives also have well known formulas:

∂Sj
∂Pj

= αSj(1− Sj)
∂Sk
∂Pj

= −αSjSk

∂2Sj
∂P 2

j

= α2(1− 2Sj)(Sj − S2
j )

∂2Sk
∂P 2

j

= −α2(1− 2Sj)SjSk

This means that under a logit demand the diversion from an infinitesimal price change is

given by:

∂Sk
∂pj∣∣∣∂Sj∂pj

∣∣∣ =
αSkSj

αSj(1− Sj)
=

Sk
(1− Sj)

(A.3)
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Meanwhile the diversion ratio exhibits constant treatment effects IFF the numerator in (10)

is zero. This is true if Djk(Pj, x) = −
∂2Qk
∂P2
j

∂2Qj

∂P2
j

. This property is easily verified for the logit:

−
∂2qk
∂P 2

j

∂2qj
∂P 2

j

=
α2(1− 2Sj)SjSk

α2(1− 2Sj)(Sj − S2
j )

=
Sk

1− Sj
.

For second choice data, it is helpful to define exponentiated indirect utility: Vk = exp[βxj −
αPj + ξj] and write:

Sk(J , x)− Sk(J \ j, x)

Sj(J , x)
=

Vk
1+

∑
j′∈J\j Vj′

− Vk
1+

∑
j′∈J Vj′

Vj
1+

∑
j′∈J Vj′

=
Vk

1 +
∑

j′∈J Vj′
·

(
1 +

∑
j′∈J Vj′

1 +
∑

j′∈J\j Vj′
− 1

)
1

Vj
=

Sk(J , x)

1− Sj(J , x)

In both cases, diversion is the ratio of the change in the marketshare of the substitute good

divided by the share of consumers no longer buying the focal good (under the initial set

of prices and product availability). It does not depend on any of the estimated parameters

(α, β). It is also true that all individual diversion ratios are equal Djk,i = sk
1−sj . This is also

equal to the non-parametric discrete choice ATT = E[Djk,i(x)|dij = 0].

Nested Logit Demand

Recall the estimating equation for the nested logit from Berry (1994):

ln sjt − ln s0t = xjtβ − αpjt + σ ln sj|g,t + εjt

The derivatives of marketshare with respect to price are given by:56

∂sj
∂pj

= αsj

(
−1

1− σ
+

σ

1− σ
sj|g + sjt

)
∂sk
∂pj

=

{
αsj

(
σ

1−σsk|g + sk
)

for (j, k) in same nest

αsjsk otherwise

}
56See Mansley et al. (2019) for derivatives worked out.
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And second derivatives:

∂2sj
∂2pj

= α2

(
1

1− σ
− σ

1− σ
s̄j|g − 2sj

)(
1

1− σ
− σ

1− σ
s̄j|g − sj

)
sj

− α2 σ

(1− σ)2
sj s̄j|g

(
1− s̄j|g

)
∂2sk
∂2pj

= α2sksj

(
sj −

1

1− σ
(
1− σs̄j|g − (1− σ)sj

))
for different groups .

∂2sk
∂2pj

= −α2 1

1− σ
sk
(
1− σs̄k|g − (1− σ)sk

)(
sj +

σ

1− σ
s̄j|g

)
+ α2s2

k

(
sj +

σ

1− σ
s̄j|g

)
+ α2 σ

1− σ
1

1− σ
sks̄j|gs̄k|g for same groups .

It is helpful to define Z(σ, sg) = [σ + (1− σ)sg] ∈ (0, 1] and note that Z(0, sg) = sg and

Z(1, sg) = 1. When both products are in the same nest, the diversion ratio is given by:

−
∂sk
∂pj

∂sj
∂pj

= −
σ

1−σsk|g + sk
−1

1−σ + σ
1−σsj|g + sj

= −
σsk|g + sk|gsg(1− σ)

−1 + σsj|g + (1− σ)sj|gsg
= −

sk|g[σ + (1− σ)sg]

−1 + sj|g[σ + (1− σ)sg]

=
sk|g · Z(σ, sg)

1− sj|g · Z(σ, sg)
=

sk|g
Z−1(σ, sg)− sj|g

≡ D∗jk (A.4)

Observe that Z−1(σ, sg) ≥ 1. Also notice that we get diversion ratios proportional to within

group share sk|g.

If both products are in different nests, we need to re-scale the numerator by sk
σ

1−σ sk|g+sk
=

sg(1−σ)

σ+(1−σ)sg
= sg(1− σ)Z−1(σ, sg). We must also keep track of which product’s group share we

are referring to. It is helpful to use the second to last expression in the derivation for the

same nest:

−
∂sk
∂pj

∂sj
∂pj

=
sk|g · Z(σ, sg(k))

1− sj|g · Z(σ, sg(j))
· sg(k)(1− σ)Z−1(σ, sg(k))

=
sk(1− σ)

1− sj|g · Z(σ, sg(j))
≡ D∗∗jk (A.5)

Notice that we get diversion ratios proportional to overall share sk.

We can relate the diversion ratio of two products within the group D∗jk to the diversion
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ratio of two products in different groups D∗∗jk by:

D∗∗jk = D∗jk ·
sg(k) · (1− σ)

Z(σ, sg(j))

As σ → 1 everyone stays within the group and D∗jk =
sk|g

1−sj|g
and D∗∗jk = 0.

As σ → 0 we collapse to the logit and D∗jk = D∗∗jk =
sk|g

1
sg
−sj|g

· sg
sg

= sk
1−sj .

We can also check the curvature property in (9). We are interested in the ratio (check

for different groups):

−
∂2sk
∂2δj

∂2sj
∂2δj

= −
sksj

(
sj − 1

1−σ

(
1− σs̄j|g − (1− σ)sj

))(
1

1−σ −
σ

1−σ s̄j|g − 2sj
) (

1
1−σ −

σ
1−σ s̄j|g − sj

)
sj − σ

(1−σ)2
sj s̄j|g

(
1− s̄j|g

)
=

(1− σ)sk
(
1− σs̄j|g − 2(1− σ)sj

)(
1− σs̄j|g − 2(1− σ)sj

) (
1− σs̄j|g − (1− σ)sj

)
− σs̄j|g

(
1− s̄j|g

)
=

(1− σ)sk(
1− σs̄j|g − (1− σ)sj

)
− σs̄j|g(1−s̄j|g)

(1−σs̄j|g−2(1−σ)sj)

(A.6)

If the second term in the denominator were zero, observe that:

D∗∗jk =
(1− σ)sk(

1− σs̄j|g − (1− σ)sj
)

Since the second term is not equal to zero unless sj|g ∈ {0, 1} the nested logit does not

appear to satisfy the curvature property. This means that diversion ratios do not exhibit

constant treatment effects. We have confirmed via simulation that second choice diversion

ratios are not equal to diversion ratios measured by marginal price changes.

Random Coefficients Logit Demand

Random Coefficients Logit demand relaxes the IIA property of the plain Logit model, which

can be desireable empirically and leads to non-constant treatment effects measures of diver-

sion ratios. That is, a change in price or quality may lead to a different average estimate

of diversion ratios than second choice data. Intuitively, a small price increase might induce

diversion from the most price-sensitive consumers, while a larger price increase might see

substitution from a larger set of consumers. If price sensitivity is correlated with other tastes,

then the diversion ratio could differ with the magnitude of the price increase.
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We can repeat the same exercise for the logit model with random coefficients, by dis-

cretizing a mixture density over i = 1, . . . , I representative consumers, with population

weight wi:

uij =

Vijt︷ ︸︸ ︷
zjβ + ξjt︸ ︷︷ ︸

δj

+µij +εij

Using the chain rule (for an arbitrary zj including price) we can write:

∂Vijt
∂zjt

=
∂Vijt
∂δjt

· ∂δjt
∂zjt

+
∂Vijt
∂µijt

· ∂µijt
∂zjt

Because the random coefficients model is a single index model, any zj which affects only

the mean utility component δj and not the unobserved heterogeneity µij yields the same

marginal diversion measure. If all agents agree on their preferences for zj:
∂µij
∂zj
≡ 0 and

∂Vijt
∂zjt

= 1 · ∂δjt
∂zjt

= βz. This has the advantage that the (marginal/infinitesimal) diversion

ratio can be identified in the random coefficients logit model even when a (common) price

parameter α is not identified (as long as pj does not have a random coefficient). This can

be seen in (A.7) which does not depend on ∂Vij/∂pj.

∂Sk
∂pj∣∣∣∂Sj∂pj

∣∣∣ =

∫
sijsik

∂Vik
∂pj∫

sij(1− sij)∂Vij∂pj

→
∫
sijsik∫

sij(1− sij)
(A.7)

Sk(J , x)− Sk(J \ j, x)

Sj(J , x)
=

∫
eVik

1+
∑
l∈a\j e

Vil
− eVik

1+
∑
l′∈a e

Vil′∫
− eVij

1+
∑
l∈a e

Vil

→ 1

sj

∫
sijsik

(1− sij)
(A.8)

Even in the case where consumers have homogenous tastes for z so that βiz = βz, the

two diversion measures do not agree. Each individual exhibits constant diversion Djk,i =
sik

1−sij , but weights on individuals vary depending on how diversion is measures, so that

diversion is only constant if sij = sj. The more correlated (sij, sik) are (and especially as

they are correlated with αi) the greater the discrepancy between the two measures of average

diversion. The various weights are all described in Table 2 in the main text.

B. Additional Empirical Results

In this section we present some additional results from our empirical applications to the

Berry et al. (1999) automobile data and the Nevo (2000b) (fake) cereal data.
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In Table B.1 we present the mean taste parameters for various product characterisitcs.

These are sometimes referred to as the β or β parameters. By and large they have the

antcipated signs. In automobiles consumers prefer faster vehicles (more horsepower relative

to weight), air conditioning, and size. In the cereal example, consumers prefer sugary cereals

(on average) and dislike mushy cereals (on average).

In Table B.2 we compute the pairwise correlation between each of the treatment effects

parameters (price change, quality change, second choice data) as well as the simplified models

(Logit/ATT, and Nested Logit). For this exercise we consider diversion among all pairs of

products. As our weights predict, the correlation between the second-choice data and small-

quality changes is very high (even higher than correlation with the small price changes).

The correlation between small price change diversion and small quality change diversion is

much higher in the Nevo example than the BLP example and is driven by differences in the

distribution of |αi| which is more dispersed in the BLP example. This is a fact we highlight

below in Figure B.1.

As one might also expect, the correlation between the nested logit and logit models is

high, and the correlation between the nested logit (or logit) models and random coefficients

models (for any treatment effects parameter) is much lower. This is again more pronounced

in the BLP example than the Nevo example where there is less overall heterogeneity in the

Djk,i(x) measures.
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Best Practices Σcons = πcons = 0 Σp = πp = 0 Rescaled Shares

BLP

price/inc -51.254 -49.175 -0.355 -11.277
(5.847) (7.104) (0.030) (2.218)

βcons -5.372 -5.714 -9.608 -6.551
(0.521) (0.450) (1.577) (0.662)

βHP/weight 3.739 3.070 4.879 1.274
(0.810) (0.891) (2.746) (0.770)

βair 0.513 0.728 2.682 -0.050
(0.332) (0.282) (10.265) (0.287)

βMP$ -0.005 0.239 0.041 0.522
(0.156) (0.088) (0.157) (0.113)

βsize 3.614 3.567 2.585 4.209
(0.423) (0.438) (0.945) (0.242)

Nevo

αprice -31.125 -42.642 -30.939 -36.280
(4.700) (3.627) (0.913) (2.507)

βcons -2.925 0.373 -1.977 -4.165
(0.343) (0.331) (0.342) (0.337)

βsugar 0.234 0.109 0.188 0.211
(0.035) (0.035) (0.035) (0.034)

βmushy -0.886 -0.970 -0.867 -0.740
(0.439) (0.427) (0.436) (0.426)

Table B.1: Linear Utility Demand Parameters

Djk(p) Small Quality Change Second Choice Logit Nested Logit Djk(p)
Djk(p) 1.000 0.912 0.909 0.346 0.329
Small Quality Change 0.912 1.000 0.999 0.399 0.377
Second Choice 0.909 0.999 1.000 0.394 0.372
Logit 0.346 0.399 0.394 1.000 0.916
Nested Logit Djk(p) 0.329 0.377 0.372 0.916 1.000

Djk(p) Small Quality Change Second Choice Logit Nested Logit Djk(p)
Djk(p) 1.000 0.990 0.991 0.682 0.676
Small Quality Change 0.990 1.000 0.999 0.725 0.721
Second Choice 0.991 0.999 1.000 0.716 0.712
Logit 0.682 0.725 0.716 1.000 0.981
Nested Logit Djk(p) 0.676 0.721 0.712 0.981 1.000

Table B.2: Pairwise Correlation Among Treatment Effects Parameters
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Figure B.1: Density of αi for BLP (Blue) and Nevo (Red) Data
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