NBER WORKING PAPER SERIES

FETAL SHOCK OR SELECTION? THE 1918 INFLUENZA PANDEMIC AND HUMAN
CAPITAL DEVELOPMENT

Brian Beach
Joseph P. Ferrie
Martin H. Saavedra

Working Paper 24725
http://lwww.nber.org/papers/w24725

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 2018, Revised April 2021

We are grateful for feedback from Douglas Almond, Alan Barreca, Ryan Brown, Walker Hanlon,
John Parman, Nick Sanders, Duncan Thomas, and Nic Ziebarth. We are also thank participants at
the 2017 NBER Summer Institute Development of the American Economy meeting and the 2018
World Economic History Congress. The views expressed herein are those of the authors and do
not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2018 by Brian Beach, Joseph P. Ferrie, and Martin H. Saavedra. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given to the source.



Fetal Shock or Selection? The 1918 Influenza Pandemic and Human Capital Development
Brian Beach, Joseph P. Ferrie, and Martin H. Saavedra

NBER Working Paper No. 24725

June 2018, Revised April 2021

JEL No. 11,J0,N12

ABSTRACT

Almond (2006) argues that in-utero exposure to the 1918 influenza pandemic lowered
socioeconomic status in adulthood, whereas subsequent work has argued that exposed cohorts
may have been selected. We bring new evidence on the lasting impact of in-utero exposure to the
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utero exposure to the pandemic lowered high school graduation rates.
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1 Introduction

In a seminal paper, Almond (2006) argued that the 1918 influenza pandemic offered a unique oppor-
tunity to examine whether shocks to the in-utero environment have lasting consequences for health
and human capital accumulation. The pandemic was severe, unexpected, but ultimately tempo-
rary. Almond’s cross-cohort approach tries to isolate the in-utero effect by comparing outcomes
from the 1919 birth cohort, whose mothers had the highest probability of contracting influenza dur-
ing pregnancy, to outcomes from adjacent cohorts (1912-1922). Almond’s dose-response approach
uses state-by-year maternal mortality rates as a proxy for intensity of exposure to the pandemic
to make within-cohort comparisons. Results from both approaches indicate that males from more

exposed birth cohorts completed fewer years of education and earned less as adults.

Almond (2006) is often cited as definitive and causal evidence on the lasting effects of in-
utero exposure to the pandemic, but a re-evaluation of the evidence is motivated by two factors.
First, the 1919 birth cohort may have had systematically different parents because the pandemic
corresponded with the height of US WWI deployment. To this point, Brown & Thomas (2021)
apply the cross-cohort methodology to the 1920 census (taking background characteristics as the
variable of interest) and find evidence that the 1919 birth cohort was born into families that
were measurably different. Second, there is evidence that fertility patterns were affected by both
the war and the pandemic (Chandra et al., 2018; Kitchens & Rodgers, 2020; Mamelund, 2004;
Vandenbroucke, 2014). These findings raise the possibility that parents that conceived children
during or after the pandemic may have been different from parents who conceived before the
pandemic.! While the dose-response analysis in Almond (2006) addresses these concerns to some
extent, they are based on data from 19 states and imprecisely estimated for some years. Almond
finds statistically significant negative effects for males in the 1960 census, but the “1980 estimates
are about half as large as the corresponding 1960 effects” and the 1970 census estimates “appear

different” and “do not approach statistical significance” (Almond, 2006, p. 706).

This paper uses linked data to provide new evidence on the consequences of in-utero exposure
to the 1918 influenza pandemic. Our efforts are made possible by the digitization of the entire 1920
and 1930 U.S. censuses, which allow us to construct an individual-level panel data set by linking

World War II enlistment records back to the census.

'See Beach et al. (2020) for a review of the economic effects of the 1918 influenza pandemic.



Linking makes a trade-off between population representativeness and precision. Relative to
Almond (2006), our sample only contains males, is slightly more likely to be white and slightly
more likely to have foreign born parents (see Table 1). The main advantage of our linked approach
is that it allows us to infer the in-utero environment based on where the individual resided at the
time of census enumeration. This allows us to improve upon Almond’s dose-response framework
by constructing a measure of pandemic exposure for nearly 300 cities. The second advantage of
using linked data is that we observe individuals with their parents and are able to control for a

comprehensive set of background characteristics.

The cross-cohort section of our paper has two main results. First, as in Brown & Thomas (2021),
we find evidence that the 1919 birth cohort was born into families that were measurably different.
We show these patterns in Almond’s 1960 sample, where we find that the 1919 birth cohort was
more likely to be nonwhite and more likely to be born in the South, but they were no more or
less likely to have foreign born parents. In our linked data set, nearly all of our 15 background
characteristics are measurably different for the 1919 birth cohort. These findings support Brown
& Thomas (2021) by providing evidence of parental selection that persists after conditioning on
surviving to adulthood. Our second finding is that failing to control for these differences leads
one to overestimate the impact of in-utero exposure on educational attainment. Estimates of the
1919 effect are 40-60% smaller after controlling for background differences, but the results remain
negative and statistically significant. For a subsample of our data we are able to make comparisons
between brothers by employing household fixed effects. Those results again indicate that the 1919

birth cohort was less educated, although the estimates are less precisely estimated.

The dose-response section of our paper also has two main results. First, we show that the
correlation between background characteristics and regional intensity of the pandemic is weak. This
suggests that a within-cohort or dose-response framework is more likely to recover the causal effect
of in-utero exposure to the pandemic. Second, we consistently estimate a negative relationship
between pandemic intensity and educational attainment. This effect appears to operate on the
dimension of high school completion. These patterns hold when we restrict comparisons to just
the 1918 versus 1919 birth cohorts as well as when we examine our sample of brothers and employ
household fixed effects. Our estimates suggest that those facing the average level of pandemic

intensity were 1-1.5 percentage points less likely to graduate high school.

We interpret the collection of results as follows. Our cross-cohort results suggest that the



qualitative claim that men from the 1919 birth cohort were less educated is robust to accounting
for background differences but the assumptions needed to interpret those estimates as causal are
stronger than previously thought. We show that a dose-response framework offers a more credible
identification strategy. Our dose-response results indicate that exposure to the pandemic lowered
educational attainment. All of these results were generated from a relatively selected sample (male
WWII enlistees that could be successfully linked back to the census). Whether the effects we
document extend to women or those born in areas without a record of pandemic intensity remains
an open question. Once the 1960, 1970, and 1980 censuses become publicly available, future
researchers should adopt a linked-data approach that exploits the intensity of the pandemic to

better assess the lasting consequences of early-life exposure to the pandemic.

2 Constructing a Linked Data Set

The last publicly available data set with identifiable information about individuals from the
1919 and adjacent birth cohorts is the WWII enlistment records.? The WWII enlistment records
contain information about the individual’s year and place of birth as well as their educational
attainment, height (a common proxy for health (Costa, 2015, Sec. 3.2)), and occupation at the
time of enlistment. We link men from these records that were born between 1912 and 1922 back
to the 1920 or 1930 censuses.® This creates a panel data set that allows us to examine parental

selection and adult outcomes at the individual level.

Unique identifiers are not available in the census and so we overcome this issue by focusing on
men who can be uniquely identified by their place of birth, first name, last name, and age. Our
linking procedure builds upon earlier work (Long & Ferrie, 2013; Beach et al., 2016) and follows
the best practices discussed by Bailey et al. (Forthcoming) and Abramitzky et al. (Forthcoming).
We first standardize all given names (e.g., recoding “Ed” and “Eddie” as “Edward”) in both data

sets.* After this standardization, we take each enlistment record and identify any and all census

2IPUMS.org and Ancestry.com have digitized and disseminated full count census data from 1940 and earlier.
Deanonymized records from 1950 and later are not yet publicly available. WWII enlistment records were digitized
and made available by the National Archives and Records Administration.

3Linking to the 1930 census allows us to maintain comparability with Almond (2006) by studying the 1912-1922
birth cohorts. In our dose-response analysis, however, we assume that the place of enumeration and the in-utero
environment were the same. Since the 1930 census was enumerated when the relevant cohorts were between the ages
of 7 and 18, this seems like a strong assumption. The 1920 census, however, was enumerated when the 1919 birth
cohort was less than 1 year old, which makes this assumption much more believable.

4Standardization reduces the likelihood that we discard any individual because they used a nickname in one
record and their legal name in another. Standardization also accounts for incorrect spelling variants (e.g., “Elliott”
and “Elliot”) that appear because 1920 and 1930 enumerators recorded information that was spoken to them.



records where the individual is of the same race, born in the same state, born around the same time
(plus or minus three years), and has a reasonably close name. Names are classified as reasonably
close if: 1) the standardized first name initial matches, 2) the last name initial matches, and 3)
the Jaro-Winkler string distance between the raw first names is between 0.8 and 1, and 4) the
Jaro-Winkler string distance between the raw last names is between 0.8 and 1.> The use of the
Jaro-Winkler string distance allows us to relax the “exact name match” criteria and accommodate
spelling variants among last names (e.g., Andersen and Anderson) and any minor transcription
errors that may have occurred during the process of digitizing the original handwritten records. A

successful enlistment-to-census link is one where only one census record satisfies the above criteria.’

Among the successful enlistment-to-census links, we restrict our attention to the subset of those
links whose age is consistently reported across the two sources. While the enlistment records asked
individuals to report their birth year, birth year in the 1920 and 1930 censuses has to be inferred
from the reported age. The 1920 census was enumerated as of January 1, 1920, and so when linking
to the 1920 census we require the inferred birth year in 1920 to match the reported birth year in
the enlistment records. The 1930 census was enumerated as of April 1, 1930, and so when linking
to the 1930 census the inferred birth year must match the enlistment records or be off by 1 year.

Requiring consistency helps alleviate concerns about intentional or unintentional misreporting.”

Our sample may be not be representative for two reasons. First, WWII enlistees were a non-
random subset of the population. One direct selection mechanism is that registrants could be
rejected for failing to meet the minimum education or physical standards. Second, those who
consistently report their names and birth years are more likely to be linked to their childhood record,

although this will be true for both the 1919 birth cohort and adjacent birth cohorts. Appendix Table

5The Jaro-Winkler string distance imposes a penalty for the number of character changes to move from one string
to the other. A Jaro-Winkler string distance of 1 implies that the two strings are an exact match.

SWe assess the false positive rate of our algorithm by modifying records in the full census sample to incorporate
the types of spelling errors, transcription errors, and misreporting of birth years outlined above and in Goeken et al.
(2017). Using our algorithm to link from the original census to the modified census yields a successful match rate of
36.5 percent and a false positive rate of 1.8 percent.

"Some young men intentionally misreported their birth year in order to meet the minimum age requirement for
enlistment. This is unlikely to be an issue in our setting, as most enlistment occurred between 1941 and 1944, when
the youngest cohort (1922) would have been between 19 and 22 years old. Moreover, while intentional misreporting
complicates our ability to obtain a unique link in the enlistment records, those men would not appear in our sample
unless their parents misreported the child’s age in 1920 or 1930 in the exact same way. Related, the age heaping
phenomenon (i.e., that innumerate parents are more likely to report round or even ages) may affect our ability to
link to the census, but is unlikely to affect our sample since the enlistment records asked for birth year. Appendix
Figure 3 plots histograms for our linked samples. Younger cohorts are slightly over represented, but there is little
evidence to indicate that misreporting is a major issue. The 1921 cohort is slightly larger than adjacent cohorts, but
the 1960-1980 censuses reflect this same pattern.



5 compares WWII veterans and non-veterans in the 1950 census. WWII veterans were younger,

whiter, and slightly less likely to have U.S.-born parents than non-veterans.

We also make comparisons among brothers. Since the enlistment records do not identify broth-
ers, we infer that two enlistees are brothers if they are observed in the same household when we
find each enlistee in the census. This sample is clearly selected relative to the broader population
as well as our linked sample. Nevertheless, with this subsample we are able to include household

fixed effects, which allows us to rule out whether estimates are explained by parental selection.

3 Revisiting the Cross-Cohort Approach

This section adopts variations of Almond’s cross-cohort specification to examine whether parents
of the 1919 birth cohort were differentially selected and whether those differences affect estimates

of deviation of the 1919 cohort relative to underlying trends. The estimating equation is:
yi=a+BxYOB+~yxYOB? +§1[YOB = 1919] + ¢ (1)

where y; is either a background characteristic or adult outcome for individual i. Y OB denotes year

of birth and § measures the departure for the 1919 birth cohort from the quadratic trend.

Figure 1 visualizes this approach for three samples by plotting cohort-level averages for the
1912 to 1922 birth cohorts, along with a quadratic cohort trend. The first sample is the 1% 1960
census examined in Almond (2006). The second sample comes from the 1930 census linked to
WWII enlistment records. The third sample is the 1930-WWII links restricted to individuals who
have a brother in 1930 that was also linked to the enlistment records. The top panels show that
for all three samples, the 1919 birth cohort is less likely to graduate from high school and attained
fewer years of schooling than the cross-cohort trends would predict. The bottom two panels use
the same data but display two background characteristics available in all three samples: whether
the individual was nonwhite and whether the individual was born in the South. The 1919 and 1920
birth cohorts are more likely to be nonwhite than trend would predict in the Almond sample. The
same is true for the 1919 cohort in the 1930-WWII links, but the effect size is considerably smaller.
There is no detectable selection for race in the brothers sample. For all three samples, the 1919
birth cohort was more likely to be born in the South, although the amount of selection is smaller

for the 1930 to WWII links than the 1960 census.



Figure 1: Comparing our linked samples to Almond (2006)
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3.1 Assessing Family Selection

Table 1 examines whether the 1919 birth cohort appears differentially selected relative to ad-
jacent birth cohorts. Each row corresponds to a parental characteristic.® Column 1 reports the
mean and standard deviation for men from the 1912-1922 birth cohorts in the 1% sample of the
1960 census. Column 2 reports the deviation of the 1919 birth cohort from underlying trends, i.e.,
estimates of § from equation 1. Columns 3 and 4 are analogous to columns 1 and 2 except that the
sample is now men from the 1912-1922 birth cohorts that we link from WWII enlistment records
to the 1930 census. Columns 5 and 6 correspond to the sample of men from the 1912-1919 birth

cohorts that we can link from WWII enlistment records to the 1920 census.

8Note that parental characteristics are observed when the children are at different ages. Appendix 8 asks whether
this is an issue by examining patterns of parental selection for a double linked sample, i.e., those that we observe in
both 1920 and 1930. Aside from fertility variables, age at observation does not appear to be an issue. The problem
with fertility variables (e.g., number of older or younger siblings in the household) is that older siblings may die
or leave the household before enumeration while, particularly for younger cohorts, the younger siblings variable is
mechanically censored because any younger siblings will be born after enumeration.



Table 1: Assessing background differences for the 1919 birth cohort

1912-1922 Birth Cohorts 1912-1922 Birth Cohorts 1912-1919 Birth Cohorts
(1960 Census) (WWII-1930 Links) (WWII-1920 Links)
Mean 1919 Deviation Mean 1919 Deviation Mean 1919 Deviation
[S.D/] From Trend [S.D.] From Trend [S.D.] From Trend
1) (2) 3) 4) (5) (6)
Dependent Variable
Southern born 0.345 0.018*** 0.267 0.006*** 0.258 0.015%**
[0.475) (0.005) [0.442] (0.002) [0.437] (0.003)
Nonwhite 0.095 0.013*** 0.052 0.005*** 0.038 0.003**
[0.293] (0.003) [0.222] (0.001) [0.191] (0.001)
Father born outside U.S. 0.223 0.000 0.279 0.006*** 0.248 0.010%**
[0.416] (0.004) [0.448] (0.002) [0.432] (0.003)
Mother born outside U.S. 0.198 0.000 0.241 0.005*** 0.213 0.011%%*
[0.399)] (0.004) [0.428] (0.002) [0.409] (0.003)
Father is second-gen. immigrant 0.189 -0.005%** 0.201 -0.010%**
[0.392] (0.001) [0.401] (0.003)
Father moved outside of birthplace 0.464 0.006*** 0.458 0.008%*
[0.499] (0.002) [0.498] (0.003)
Father’s age when child was born 32.206 0.366%** 32.765 0.489%**
[7.319] (0.026) [7.575] (0.051)
Mother’s age when child was born 27.843 0.312%** 28.312 0.331%**
[6.234] (0.022) [6.269) (0.042)
Father’s age minus mother’s age 4.364 0.054%** 4.453 0.158%**
[5.004] (0.018) [5.160] (0.035)
Father cannot read or write 0.057 0.004*** 0.048 0.003**
[0.231] (0.001) [0.214] (0.001)
Mother cannot read or write 0.060 0.003*%** 0.051 0.003*
[0.237] (0.001) [0.219] (0.001)
Father’s occupational income score 23.995 -0.194%** 23.220 0.020
[10.450] (0.040) [10.437) (0.077)
Family owns home 0.563 -0.000 0.428 0.003
[0.496] (0.002) [0.495] (0.003)
Child’s inferred birth order 2.482 0.100*** 2.904 0.147*%*
[1.495] (0.005) [1.909] (0.013)
Mother is in labor force 0.067 0.000 0.035 -0.004***
[0.249] (0.001) [0.184] (0.001)

Notes: * p<0.1; ** p<0.05; *** p<0.01. Each regression includes the reported “Born in 1919” indicator variable,
as well as year of birth and year of birth squared. Robust standard errors are reported in parentheses.

The estimates from Table 1 suggest that the 1919 birth cohort came from families that were
measurably different. In the 1960 sample, we see that the 1919 birth cohort was more likely to be
nonwhite and born in the South but was no more or less likely to have foreign born parents. Our
linked samples also indicate that the 1919 birth cohort was more likely to be nonwhite and born
in the South, although the extent of the selection among the 1919 birth cohort is smaller. Our
linked samples also provide evidence that the 1919 birth cohort was more likely to have foreign
born parents. While this exhausts the background measures available in the 1960 census, we are

able to examine a more comprehensive set of background characteristics for our linked samples. 18



of the 22 additional regressions we run are statistically significant at conventional levels.

Table 1 also provides a look at the underlying differences between our linked sample relative to
the sample analyzed in Almond (2006). Roughly 25% of our linked sample was born in the South,
as compared to 35% in Almond (2006). As for nonwhite share, Almond’s sample was roughly 90%
white whereas our samples are roughly 95% white. Our linked sample is also more likely to have
foreign born parents; roughly 26% of our links have a foreign born father and 22% of our links have
a foreign born mother, while the corresponding numbers for Almond’s sample are 22% and 20%,

respectively.

3.2 Long-Run Estimates After Accounting for Family Selection

Table 2 estimates the deviation in educational attainment for the 1919 birth cohort before
and after accounting for parental background differences. Each panel corresponds to a different
outcome: total years of schooling, whether the individual completed some high school, and whether
the individual graduated high school.” We generate results using the 1960 census sample of men
(columns 1 and 2), our sample of male enlistees linked back to the 1930 census (columns 3-4),
the brothers subsample of our WWII to 1930 links (columns 5 and 6), and our sample of male
enlistees linked back to the 1920 census (columns 7-8). Columns 1, 3, 5, and 7 correspond to
baseline estimates, which include our Born-in-1919 indicator variable, as well as a quadratic time
trend. Columns 2, 4, 6, and 8 add all observable background characteristics, and in our brothers

subsample (column 6) we also include household fixed effects.

Table 2 shows that estimates of the 1919 effect are overstated when background differences are
unaccounted for. In general, point estimates fall by 40% or more once background controls are
added to the model. While the magnitude of the decline may seem large, it is not uncommon for
the new estimate to be contained within the confidence interval of the baseline estimate and vice
versa. In terms of qualitative conclusions, 11 of the baseline estimates are negative and significant
at the 1% level. Once controls are added, 7 of the 11 remain negative and statistically significant at
the 1% level; one remains negative and statistically significant at the 5% level, two remain negative
and statistically significant at the 10% level, and one remains negative but is no longer statistically

significant (the impact on high school graduation after including household fixed effects). Our

SWWII enlistees that did not complete at least one year of high school are coded as having a grammar school
education or less (i.e., 8 years of schooling) in the enlistment data. To maintain comparability across samples, we
re-code the 1960 census educational attainment variable to adopt this same classification.



analysis points to relatively precise but null effects on height. The estimates are negative and
significant for the WWII linked to 1930 sample, but statistically equal to zero for the other two
samples. Even when significant, the points estimates are small, suggesting the pandemic lowered

enlistee heights by approximately 3 one hundredths of an inch.

Table 2: Differences in adult outcomes of 1919 birth cohort relative to surrounding cohorts

WWII-1930 Links
1960 Census WWII-1930 Links Brothers Sample WWII-1920 Links

(1) 2) ®) “4) ®) (6) (7) ®)

Panel A: DV is Years of Schooling

Born in 1919 -0.109***  -0.070** -0.094%***  _0.054%** -0.065%**  -0.028* -0.110%**  -0.066***
(0.030) (0.028) (0.008) (0.007) (0.019) (0.016) (0.016) (0.014)

Panel B: DV is Some High School

Born in 1919 -0.019%**  -0.013%** -0.011%**  -0.006%** -0.005 -0.002 -0.018***  _0.010%**
(0.005) (0.005) (0.001) (0.001) (0.004) (0.004) (0.003) (0.003)

Panel C: DV is High School Graduation

Born in 1919 -0.021%**  -0.015%** -0.017***  -0.009%** -0.013***  -0.005 -0.015%** -0.006*
(0.005) (0.005) (0.002) (0.001) (0.004) (0.004) (0.003) (0.003)

Panel D: DV is Height at Enlistment

Born in 1919 -0.035%**  -0.023** 0.006 0.022 -0.022 -0.011

(0.010) (0.010) (0.029) (0.027) (0.020) (0.020)

Limited Controls Y Y Y Y

Other Controls Y Y Y

Household Fixed Effects Y

Notes: * p<0.1; ** p<0.05; *** p<0.01. Regressions also include a quadratic time trend. Robust standard errors
reported in parentheses. Limited controls: race, birth state, father’s country of birth, and mother’s country of birth
fixed effects. Other controls: whether the father is a second generation immigrant, whether the father moved outside
their birthplace before the child was born, father’s age when the child was born, whether the father is literate, fixed
effects for the father’s occupation, whether the family owns their home, the number of older siblings observed in the
household (a proxy for birth order), the difference between the age of the father and the age of the mother, mother’s
age when the child was born, whether the mother is literate, and whether the mother is in the labor force.

The results in Table 2 require a nuanced interpretation. One interpretation is that the 1919
birth cohort was less educated and those results are robust to accounting for background differ-
ences.!? Support for this interpretation comes from our linked data, which either accounts for 15
comprehensive background measures or through the inclusion of household fixed effects. A second

interpretation is that the selection documented in Table 1 raises concerns about the existence of

10Since the 1960 results have a more limited set of controls, it is an open question as to what the results in Column
2 would look like if the 1960 census included the same comprehensive background measures. Appendix Table 6 sheds
light on this by reweighting our 1930 links to look like the 1960 census, within each year of birth, southern born,
father is foreign born, and mother is foreign born cell. Those results indicate that background controls reduce the
point estimates by about 50%. The point estimates are statistically differentiable, but the point estimates remain
negative and statistically significant at the 1% level.



unobservable differences, which threatens the credibility of the identification strategy.

Brown & Thomas (2021) offers a natural point of comparison for the results presented thus
far. Brown & Thomas document parental selection in the 1920 census. The patterns of selection
are similar to what we find in Table 1. Their approach to correcting for background differences
is to control for birth-state-by-race-by-birth-year averages, as observed in the 1920 census. This
allows them to examine the same set of outcomes and samples analyzed in Almond (2006). By
drawing on 1920 data, the authors are unable to include the 1920-1922 birth cohorts in their
analysis, which tends to double the size of their standard errors. The controls are also less precisely
measured than ours. The inclusion of these controls tends to produce results that are negative
but smaller and statistically insignificant.!’ While the controlled confidence intervals often contain
zero, the confidence intervals also overlap substantially with the uncontrolled specifications, making

it difficult to reject whether the attenuation is statistically distinguishable from zero.

4 Revisiting the Dose-Response Approach

A dose-response framework offers a viable path for overcoming cohort-level selection. While the
cross-cohort framework asks whether individuals born in 1919 performed worse than individuals
from adjacent birth cohorts, the dose-response framework goes further by asking whether the impact
was larger for individuals from areas where the pandemic was more widespread. This additional
comparison narrows the set of threats to identification, as the identifying assumption is that other

key factors of long-run outcomes do not vary with the intensity of pandemic exposure.

Almond (2006, Section VI) adopts a dose-response framework to examine the impact of in-utero
pandemic exposure. Almond relies on state-level variation in pandemic intensity, as all censuses
record an individual’s state of birth, and so this is the finest geographic level in which one can infer
the in-utero environment. Almond constructs a measure of pandemic intensity based on annual
state-level maternal mortality information for 19 states. He then adopts an empirical framework
that includes state-of-birth and year-of-birth fixed effects. These fixed effects help account for

average differences in parental characteristics across cohorts. Lastly, Almond restricts attention to

" The preferred specification in Brown & Thomas (2021) shows that the cross-cohort estimates of the 1919 effect
flip sign once background controls were included. After working with the authors to understand why our findings
were at odds, it appears that the sign flip is driven by the use of the family size variable “number of father’s children
in the household”. This variable reports the number of older and younger siblings in the household at the time of
enumeration. Unfortunately, the number of younger siblings component of this variable is censored for young cohorts
(see Appendix 8 for more). If one uses a more age-invariant measure of family size (i.e., the number of older children
in the household) the sign flips tend to go away. A replication of these findings appears in Appendix Section 7.

10



the 1918 through 1920 birth cohorts in order to isolate the effect of fetal exposure.

The existing dose-response evidence is mixed. Almond finds statistically significant and negative
effects for males in the 1960 census, but he also notes the effects in 1980 are smaller and the effects
in 1970 are not statistically significant. Brown & Thomas (2021) replicate this analysis and present

12° Only 2 of the 45 estimates they present show a

results for males, females, and nonwhites.
negative and statistically significant impact on long-run outcomes. These results highlight the need
for new evidence, in turn motivating the remainder of our paper, which generates new dose-response

evidence leveraging variation in pandemic intensity across nearly 300 cities.

4.1 An Improved Measure of Exposure

Our linked data allow us to derive a more localized measure of pandemic exposure. We assume
that the city of enumeration in 1920 is the same as the individual’s in-utero environment. We
then construct a measure of pandemic intensity based on city-level influenza deaths, which were
systematically collected and published in the Census Bureau’s “Mortality Statistics” publications
starting in 1900. Although the data only include information for Registration states and cities, this

data source allows us to leverage variation from nearly 300 cities.!3

Influenza mortality data provide a rich set of variation, but one concern is that influenza mor-
tality will capture more than just the severity of the pandemic.'* Clay et al. (2018) show that
during the pandemic, mortality rates were higher in places with more coal pollution and worse
water quality. These relationships are attributable to the fact that air pollution and poor water
quality compromise an individual’s immune system, making them more susceptible to influenza.
Thus, observing high influenza mortality rates in 1918 could mean that a city was hit relatively
hard by the pandemic, that a city had relatively worse water and air quality, or some interaction
of the two. This is concerning since early-life exposure to air pollution (Sanders, 2012; Isen et al.,

2017) or poor water quality (Beach et al., 2016) also impairs human capital development.

2Brown & Thomas (2021) also correct a data transcription error for Virginia and add data for Washington, D.C.

13Registration states and cities are those with laws requiring that mortality statistics be collected. In 1900 the
Census Bureau worked with those areas to establish uniform reporting standards. The result of this was the adoption
of a standardized death certificate and the international classification standard, as well as the distribution of “The
Manual of International Classification of Causes of Death,” which cross referenced terms appearing in causes of death
from 1890 and 1900 reports with the new uniform classification standard.

1 Appendix Figure 4 shows that influenza fatality rates track the case rates reasonably well on a weekly basis but
with a bit of a lag. This lag is unlikely to matter for our analysis, which uses an annual measure of mortality. The
underlying data come from the Public Health Service, which went door-to-door collecting morbidity and mortality
information for 12 cities in the fall of 1918.
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Our solution is to generate a counterfactual estimate of influenza mortality in 1918. To do
so, we transcribe all city-level mortality statistics spanning 1900-1930 from the annual Mortality
Statistics reports. We then run a series of city-level regressions where we restrict the sample to the
1900-1917 period and regress In(influenza deaths) on a city-specific linear time trend.'> Taking the
exponential of the predicted values from this regression yields a prediction of influenza fatalities in
the absence of the pandemic for post-1917 years.'® Subtracting predicted influenza deaths in 1918
from actual influenza deaths in 1918 gives us the unanticipated increase in influenza mortality due
to the pandemic. Our options to normalize this measure are to divide by population or to divide by
predicted influenza deaths. While the two numbers are correlated, dividing by population ignores
the fact that cities of similar sizes may have different underlying disease and pollution environments.
Because of this, and also because accurate population data are only available in census years, we
use predicted influenza deaths as our denominator. Mechanically this measure is simply the ratio of
unexpected influenza deaths occurring in 1918 relative to the number of expected influenza deaths
in 1918, where that expectation captures underlying trends in population growth and intrinsic

differences in disease and pollution environments.

Appendix Figure 5 plots the average excess influenza ratio by year. The figure spans 1900-1917
(the sample period) as well as 1918 through 1930 (our out-of-sample predictions).!” There we see
the severe and temporary nature of the 1918 pandemic as well as the overall fit of our model.
Excess influenza remains close to zero until 1918, during which approximately 35 influenza deaths
occurred for every expected influenza death. Influenza deaths are slightly higher than expected
during the 1920s, but by 1921 influenza appears to have reached a new steady state and even 13

years after 1917, excess influenza deaths are not far above zero.

4.2 Empirical Approach

Figure 2 displays patterns in the raw data. The top panels correspond to adult outcomes:
high school graduation and total years of schooling. The bottom panels correspond to background

characteristics: whether the individual is nonwhite and whether the individual was born in the

15We only run these regressions for the 287 cities that appear in every report.

16The natural logarithm ensures that predicted influenza deaths is always greater than zero.

17 Alternatively, we could have used data from the 1900-1917 and 1920-1930 years, omitting the years during which
the pandemic occurred. However, if the pandemic had lingering effects on influenza rates or city population counts,
then data from the 1920-1930 period may be endogenous.
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South.'® We plot cohort-level averages as well as underlying trends.!? This information is displayed

separately for those with above-median versus below-median exposure to the pandemic.

Figure 2: Raw patterns in the dose-response data
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Notes: High exposure cities had an excess flu ratio greater than 28.2.

Figure 2 conveys two key points. First, while there are compositional differences between
cohorts from above-median versus below-median exposure cities, underlying trends are similar.
This increases our confidence in using “below-median exposure” cities as a counterfactual. Second,
the ability to use members from the same cohort as a counterfactual allows us to difference out any

1919-specific changes (e.g., changes in the nonwhite share), which is useful for identification.

The below estimating equation offers the starting point for the remainder of our analysis:

Yibe = 0 + Bp + Ve + 01 [yob = 1919] x Excess Flu, + €. (2)

where y;p. is outcome y of individual ¢ from birth year b in birth city ¢ (either a background

18 Appendix Figure 6 maps the variation in our sample. While most of our data come from the Northeast, the key
takeaway is that there is meaningful sub-state variation in our measure of flu intensity, as there are many situations
where neighboring cities had different exposure to the pandemic.

19Trends are obtained by regressing each outcome on a quadratic cohort trend and a 1919 indicator. We then
obtain the predicted values omitting the 1919 estimate.
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characteristic or a long-run outcome). The parameters /3, and 7, are birth year and birth city fixed
effects, respectively. The variable Excess Flu. measures pandemic intensity in city ¢ in 1918. Our
main measure is the ratio of total influenza deaths relative to expected influenza deaths, which we
normalize by dividing by the sample mean (36.42). This normalization allows coefficients to be

interpreted as the average effect of pandemic exposure.

The identifying assumption embedded in Equation 2 is that in the absence of the pandemic,
changes in outcomes among cohorts with high exposure would have looked similar to what we
observe among cohorts with low exposure. This assumption is not testable. However, it is common
to use a generalized difference-in-differences or “event study” design to see if there are meaningful
deviations prior to treatment. Those results, which are presented in Appendix Figure 7 show little
evidence of a differential pre-trend. The point estimate for the 1918 cohort is negative but less
pronounced than the point estimate for the 1919 cohort. However, the 1918 cohort is not a clear
placebo cohort as anyone born between October and December of 1918 may have also had in-utero
exposure to the pandemic. After dropping potentially treated individuals from the 1918 birth

cohort, the 1918 estimate is much closer to zero and still statistically insignificant.

4.3 Assessing Family Selection

Table 3 examines whether background characteristics were measurably different for treated
cohorts. As before, we draw on 15 comprehensive background characteristics. Each row corresponds
to a different parental characteristic. We present results from two samples. Columns 1 and 2
correspond to a wide set of cohorts (1912-1919), with column 1 reporting the sample mean and
standard deviation and column 2 corresponding to the result from estimating equation (2). Columns

3 and 4 mirror this organization but for only the 1918 and 1919 birth cohorts.

Table 3 provides evidence that the dose-response framework offers a more credible identification
strategy when considering bias from parental selection. Relative to Table 1, the estimates are largely
statistically insignificant and the point estimates are often smaller. In the WWII-1920 columns of
Table 1, 13 of the 15 estimates were statistically significant at the 5 or 1 percent level. Among
the corresponding results in column 2 of Table 3, only two estimates are significant at the 5 or 1%
level. In terms of magnitudes, the cross-cohort estimates indicated that fathers of the 1919 birth
cohort were about half a year older (significant at the 1 percent level). Our dose-response estimates

indicate that, in the average pandemic city, fathers were 0.12 years older, but the effect is no longer
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Table 3: Assessing whether background differences are correlated with pandemic intensity
1912-1919 Cohorts 1918-1919 Cohorts
Mean  Std. Flu x Mean  Std. Flu x
[S.D.] Born in 1919 [S.D.] Born in 1919

Dependent Variable

Southern born 0.098 -0.000* 0.098 0.000***
[0.297] (0.000) [0.297] (0.000)
Nonwhite 0.028 -0.001 0.030 -0.001
[0.164] (0.001) [0.170] (0.001)
Father born outside U.S. 0.440 0.002 0.427 -0.000
[0.496] (0.004) [0.495] (0.005)
Mother born outside U.S. 0.387 0.001 0.368 0.003
[0.487] (0.005) [0.482] (0.005)
Father is second-gen. immigrant 0.247 -0.002 0.250 -0.000
[0.431] (0.006) [0.433] (0.004)
Father moved outside of birthplace  0.602 0.002 0.600 -0.001
[0.489] (0.003) [0.490] (0.004)
Father’s age when child was born 32.108 0.137 32.130 0.105
[6.970] (0.128) [6.926) (0.096)
Mother’s age when child was born  28.204 0.131 28.287 0.119
[5.961] (0.094) [5.887] (0.086)
Father’s age minus mother’s age 3.904 0.006 3.843 -0.014
[4.694] (0.053) [4.644) (0.044)
Father cannot read or write 0.052 0.002 0.051 -0.001
[0.222] (0.002) [0.221] (0.003)
Mother cannot read or write 0.074 0.004** 0.071 0.003
[0.261] (0.002) [0.257) (0.002)
Father’s occupational income score  28.692 -0.169* 28.538 -0.206%*
[9.172] (0.093) [9.039] (0.112)
Family owns home 0.306 -0.009* 0.267 -0.007
[0.461] (0.005) [0.442] (0.005)
Child’s inferred birth order 2.620 0.049%* 2.660 0.040**
[1.750] (0.020) [1.790] (0.018)
Mother is in labor force 0.035 -0.003 0.026 -0.006*
[0.183] (0.003) [0.158] (0.003)

Notes: * p<0.1; ** p<0.05; *** p<0.01. Standard errors (clustered at the city level) in parentheses. Each entry is
the coefficient obtained from regressing the indicated outcome variable on our standardized measure of flu intensity
as well as cohort fixed effects and birth city fixed effects.
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statistically significant. We see consistent evidence that the 1919 birth cohort with more intense
exposure had more older siblings and had fathers that were employed in lower paying occupations.

In terms of magnitude, these deviations are about 2% of a standard deviation.

4.4 Long-Run Estimates

Table 4 uses our dose-response framework to examine the impact of pandemic intensity on
educational attainment. Each row corresponds to a different outcome variable: total years of
schooling, an indicator for whether the individual had some high school education, and an indicator
for graduating high school. Columns 1 and 2 examine patterns among the 1912-1919 birth cohorts.
To strengthen identification, columns 3 and 4 focus on just the 1918 and 1919 birth cohorts, while
columns 5 and 6 focus on our brothers subsample. Our baseline estimates are presented in columns
1, 3, and 4. Columns 2 and 4 add the same parental controls that were included in our preferred

cross-cohort regressions, while column 6 goes further and includes household fixed effects.

The results in Table 4 point to a negative relationship between in-utero exposure to the pandemic
and educational attainment. That effect appears to be operating through high school graduation.
We see little evidence that exposure affected high school attendance; while the coefficients are

negative the point estimates are small and imprecise relative to high school graduation.

The dose-response results are less sensitive to the inclusion of background controls. Our baseline
estimates suggest that, relative to exposure between the ages of 0 and 8, an individual born in
1919 with the average level of pandemic exposure would be about 1.7 percentage points less likely
to complete high school. Including our background controls reduces the point estimate to 1.3
percentage points, but the effects are statistically indistinguishable. In column 4, we restrict our
comparison to just the 1918 and 1919 birth cohorts, and thus try to isolate the in-utero effect by
making comparisons with individuals that were exposed between the ages of 0 and 1. This is a
strong test, as anyone born between October and December of 1918 may have been exposed as well.
Nevertheless, baseline estimates indicate that in-utero exposure lowered high school graduation
rates by 1.2 percentage points. Once we adjust for background differences, the point estimate
falls to 0.9 percentage points and only remains significant at the 10% level, but the two effects are
statistically indistinguishable. In our brothers sample, our baseline estimate is that exposed cohorts
were 2.3 percentage points less likely to complete high school, but once we include household fixed

effects and other background controls (e.g., birth order and maternal /paternal age when the child
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Table 4: Impact of pandemic intensity on adult outcomes for 1919 birth cohort
Brothers Sample
1912-1919 Birth Cohorts 1918-1919 Birth Cohorts 1912-1919 Birth Cohorts
(1) 2) () 4) (%) (6)
Panel A: DV is Years of Schooling

Std. Excess Flu X Born in 1919  -0.066*** -0.045%** -0.037* -0.023 -0.074 -0.104%**
(0.020) (0.017) (0.020) (0.019) (0.049) (0.049)

Panel B: DV is Some High School

Std. Excess Flu X Born in 1919  -0.006* -0.004 -0.001 -0.000 0.008 -0.003
(0.004) (0.003) (0.003) (0.003) (0.010) (0.013)

Panel C: DV is High School Graduation

Std. Excess Flu x Born in 1919  -0.017*** -0.013%** -0.012%* -0.009* -0.023** -0.039%**
(0.004) (0.004) (0.005) (0.005) (0.012) (0.012)

Panel D: DV is Height at Enlistment

Std. Excess Flu x Born in 1919 0.034 0.047%* -0.013 -0.014 -0.048 -0.046
(0.021) (0.020) (0.030) (0.038) (0.099) (0.099)

City Fixed Effects
Cohort Fixed Effects
Background Controls
Household Fixed Effects

Y Y Y
Y Y Y

<
<
e

Notes: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors, clustered at the city-level, errors are reported in
parentheses. Background controls include the limited and other controls defined in Table 2.

was born) the deficit increases to 3.9 percentage points. The height results generally point to null
effects. Most estimates are statistically insignificant and all point estimates are smaller than one

twentieth of an inch in absolute value.

Our main robustness tests are presented in Appendix Table 7. That table presents results using
alternative measures of pandemic intensity (i.e., In(excess flu), high vs low, and allowing effects
to vary across each quartile of the distribution). The 1912-1919 sample as well as the narrow
comparisons (1919 versus 1918) are robust to alternative measures of exposure, while the brothers
subsample remains negative but is less precisely estimated. The 1912-1919 results are robust to
including city-specific time trends, but the inclusion of birth-state-by-birth-year fixed effects yields

negative but imprecise estimates.

5 Conclusion

This paper uses new data and a new identification strategy to re-evaluate the impact of in-utero
exposure to the 1918 influenza pandemic on educational attainment in the United States. We linked
males in WWII enlistment records to their childhood selves in either the 1920 or 1930 censuses,

which allows us to observe parental socioeconomic and demographic characteristics. Like Brown &
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Thomas (2021), we find that the 1919 cohort had measurably different background characteristics.
While estimates of the 1919 effect appear to be overstated when these differences are ignored,
controlling for these differences does not appear to alter the qualitative conclusion that the 1919

birth cohort in our linked sample was less educated.

Next, we turn to an identification strategy that uses geographic variation in pandemic intensity
using data from 287 cities. Since we observe children during their early childhoods, we observe
not only their state of birth, but what is likely their city of birth. By using geographic variation
in influenza, we are able to include birth-year fixed effects, which will capture any national effect
of WWI. We find less evidence that city-level pandemic intensity is related to observable paternal

characteristics. Using this approach, we find that the pandemic lowered educational attainment.

We now take stock of the evidence and try to separate facts supported by strong evidence from
interpretations of those facts. Our reading of the data is that there is strong evidence for the
following claims: The 1919 birth cohort did have lower educational attainment than surrounding
birth cohorts, but also had parents who were systematically different, and that selection tends to be
negative. After controlling for the observed background differences, the 1919 birth cohort was still
worse off, but the effects are smaller. Similarly, those born in cities with high influenza exposure
had less educational attainment. There is less selection when using geographic variation in influenza
intensity, but some selection is still detected. After controlling for background characteristics, the
evidence still suggests that those born in high-exposure cities were less likely to graduate from high

school, but the estimates do shrink in size (although not as much as in the cross-cohort analysis).

One interpretation of those facts is that these differences in adult outcomes were caused by
the 1918 influenza pandemic, and the estimates of the pandemic are robust to controlling for
what parental differences did exist. Another possible interpretation is that the observed parental
differences may have been only part of the selection. If we could observe additional parental
characteristics, then the estimates of the effect of the pandemic would shrink further, possibly to

zero. We see no reason why either interpretation is unreasonable.

Our paper is not without its limitations. Our sample is selected relative to the broader popu-
lation. Further, due to privacy restrictions, we are not able to observe these cohorts after WWII,
and thus we observe these cohorts before some enlistees have completed their years of schooling.

Furthermore, income is not available in the WWII records, and even if it were, it would likely not
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reflect peak mid-career earnings. Whether these effects continue to later censuses is an open ques-
tion, but once those censuses become publicly available, future researchers can and should answer

that question by using our record-linking approach and dose-response framework.
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6 Appendix A: Additional Results and Figures

6.1 Examining sample selection

Figure 3 shows the distribution of our links by birth year for each linked sample. The samples
are somewhat younger on average than the 1912-1922 birth cohorts, as observed in census data.
The main takeaway, however, is that there is little evidence of stacking on younger cohorts or on
attractive (i.e. round) birth years. This suggests that age heaping or selective misreporting are not
major issues for our sample. This is perhaps not surprising, as our linking requirement that age and
birth year be consistently reported works to limit contamination of our sample from intentional or
unintentional misreporting. Note that the 1921 cohort is somewhat larger than the 1920 and 1922
cohorts. This pattern is also reflected in census data for 1940, 1960, 1970, and 1980.

Figure 3: Distribution of links by census and birth year
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Table 5 uses the IPUMS 1% sample of the 1950 census to examine the margins on which WWII
veterans and non-veterans from the 1912-1922 birth cohorts differ. We see that veterans are about

2 years younger, more likely to be white, and slightly less likely to have foreign born parents.
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Table 5: Differences of WWII veterans and non-veterans in the 1950 census

1) @)
WWII veterans Non-WWII veterans

Year of birth 1917.893 1916.006
White 0.925 0.865

Black 0.072 0.130

Other race 0.001 0.002
U.S.-born mother 0.804 0.822
U.S.-born father 0.779 0.795
Observations 20941 14824

Notes: Data are from males born between 1912 and 1922 in the 1950 census.

6.2 Additional Cross-Cohort Results

Table 6: Differences in adult outcomes of 1919 birth cohort relative to surrounding cohorts
WWII-1930 Links
1960 Census WWII-1930 Links Reweighted

(1) 2) 3) 4) @) (6)

Panel A: DV is Years of Schooling

Born in 1919 -0.109%%%  -0.070%* -0.094%%%  _0.054%%* 0.114%%%  _0.057%%*
(0.030) (0.028) (0.008) (0.007) (0.009) (0.007)
R-Squared 0.011 0.116 0.002 0.242 0.002 0.252

Panel B: DV is Some High School

Born in 1919 20.010%F%  _0.013%% 20.011%%%  _0.006%%* 20.017FFF 0,007+
(0.005) (0.005) (0.001) (0.001) (0.002) (0.001)
R-Squared 0.011 0.115 0.004 0.179 0.005 0.198

Panel C: DV is High School Graduation

Born in 1919 -0.021%**  -0.015%** -0.017**¥*%  -0.009%** -0.021%**  -0.010%**
(0.005) (0.005) (0.002) (0.001) (0.002) (0.002)
R-Squared 0.011 0.094 0.003 0.174 0.004 0.185
Limited Controls Y Y Y
Other Background Controls Y Y

Notes: * p<0.1; ** p<0.05; *** p<0.01. Following Almond (2006), each regression includes the reported “Born
in 1919” indicator variable, as well as year of birth and year of birth squared. Robust standard errors are reported
in parentheses. Limited controls include fixed effects for: race, birth state, father’s country of birth, and mother’s
country of birth. Other parental controls follow from Table 1 and include: whether the father is a second generation
immigrant, whether the father moved outside their birthplace before the child was born, the father’s age when the
child was born, whether the father can read or write, fixed effects for the father’s occupational income score, whether
the family owns their home, the number of older siblings observed in the household (a proxy for birth order), the
difference between the age of the father and the age of the mother, mother’s age when the child was born, whether
the mother can read or write, and whether the mother is in the labor force.
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6.3 Additional Dose-Response Framework Results
Figure 4 (reproduced from Frost (1920)) illustrates that influenza mortality rates track influenza

morbidity rates reasonably well. The slight lag observed in Figure 4 is not a concern for us because

we use annual rather than weekly data to construct our measure of excess influenza deaths.

Figure 4: Weekly morbidity and mortality for five cities in the fall of 1918
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Notes: Figure reprinted from Frost (1920).

Figure 5 plots average excess influenza ratios by year. Note that our sample period is 1900-1917
whereas the 1918-1930 observations are our out-of-sample predictions. Our model fits the data very
well in the pre-pandemic period. The excess influenza ratio in the post-pandemic period (1922 and

beyond) is noisier, but not far above zero. There is no indication of a post-pandemic trend.

Figure 6 illustrates the spatial variation in our sample. We plot separate markers for cities that
had above-median versus below-median exposure to the pandemic. The key takeaway from Figure
6 is that there is meaningful sub-state variation in our measure of flu intensity: there are many

situations where neighboring cities had different exposure to the pandemic.
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Figure 5: Excess influenza mortality ratio by year
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Notes: Excess influenza ratio is calculated by taking actual influenza deaths minus predicted influenza deaths and
then dividing by the predicted influenza deaths. City-specific trends in annual In(influenza mortality) are estimated
over the 1900-1917 period.

Figure 6: Spatial variation in flu intensity
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Notes: High exposure cities had an excess flu ratio greater than 28.2.
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Table 7 presents the dose-response results with alternative functional forms of influenza intensity.
For comparison, Panel A displays our results from Table 4 in which excess influenza enters the
regression equation linearly. Panel B replaces the treatment variable with the log of excess influenza.
Panel C includes a dummy variable for whether a city was exposed to above-median excess influenza
in 1918. Panel D includes dummies for quartile of excess influenza exposure, omitting the first
quartile. For all panels we present results examining the 1912-1919 birth cohorts with and without
background controls, city time trends, and cohort-by-birth-state fixed effects. We also include
specifications that limit the sample to only the 1918 and 1919 birth cohorts (columns 5 and 6).
Columns 7 and 8 limit the sample to brothers and include brother fixed effects. For Panels A, B, and
C, the coefficients are negative for every specification, however, not all are statistically significant.
This is especially true for the brothers-only sample and when including birth state-by-cohort fixed
effects. In Panel D, we see that the effect is mostly driven by cities that were in the worst quartile

of excess influenza exposure.

Figure 7 presents estimates of the effect of the influenza pandemic over the course of the life
cycle using an identification strategy that is analogous to an event study. All cohorts from 1912
to 1919 (which compose our 1920 to WWII links) are potentially affected by the pandemic. While
the 1919 cohort would have only been affected through in-utero exposure, the last quarter of the
1918 birth cohort was possibly affected by in-utero exposure as well, and the rest of the 1918
cohort would be have been exposed during infancy. Older cohorts may have also been affected by

childhood exposure to the pandemic.

We estimate the following model:

Yibe = 00 + By + Ve + Z dyob1[b = yob] x Excess Flu, + €. (3)

yob#£1917
where d,,y, is the effect of the pandemic on a particular birth cohort relative to the effect on the 1917
birth cohort. We let 1917 be the omitted group because it is the closest cohort to 1919 for whom no
one in that cohort would have been exposed to the pandemic in utero. To increase precision, we also
estimate only one parameter for the 1912 to 1914 birth cohorts. We also include our background

controls, as defined in Table 4.
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Table 7: Assessing robustness of dose-response results

Brothers
Baseline Links 1912-1919 1918-19 Only (1912-1919)
M @ ® @ ®) ©) @ ®

Panel A: Treatment is Standardized Excess Flu

Exposure x 1919 -0.017%%%  -0.013***  -0.013*** -0.011** -0.012**  -0.009* -0.023**  -0.039**
(0.004) (0.004) (0.003) (0.005) (0.005) (0.005) (0.012) (0.017)

Panel B: Treatment is In(Excess Flu)

Exposure x 1919 -0.019%%*  _0.014***  -0.012** -0.011 -0.014**  -0.011* -0.025 -0.038
(0.006) (0.005) (0.006) (0.008) (0.006) (0.006) (0.020) (0.030)

Panel C: Treatment is Above Median Exposure

Exposure x 1919 -0.023%*%*%  _0.017** -0.014** -0.006 -0.014* -0.012 -0.027 -0.035
(0.008) (0.007) (0.007) (0.008) (0.008) (0.008) (0.021) (0.030)

Panel D: Treatment is Relative to 0-25th Percentile Exposure

1[flu 25-50th] x 1919 0.002 0.005 -0.002 -0.008 -0.019%* 0.005 0.025 0.025
(0.012) (0.009) (0.008) (0.014) (0.011) (0.009) (0.032) (0.033)

1[flu 50-75th] x 1919 -0.016 -0.009 -0.012 -0.008 -0.020 -0.009 -0.008 -0.008
(0.012) (0.011) (0.010) (0.013) (0.014) (0.011) (0.042) (0.044)

1[flu 75+] x 1919 -0.028%**  -0.020** -0.017* -0.013 -0.027%%  -0.020** -0.045 -0.042
(0.010) (0.010) (0.010) (0.013) (0.011) (0.010) (0.044) (0.045)

Background Controls Y Y Y Y Y

City Time Trends Y Y

Birth State by Cohort Fixed Effect Y

Notes: * p<0.1; ** p<0.05; *** p<0.01. Following Almond (2006), each regression includes cohort fixed effects and city fixed effects. Robust standard
errors (clustered at the city-level) reported in parentheses. Background controls follow Table 2



The results from estimating Equation 3 are in the top panels of Figure 7. Relative to exposure
between 1 and 2 (i.e., the 1917 cohort) there is no statistically significant effect of the pandemic on
high school graduation rates for any cohort from 1912 to 1916. There is also no clear trend among
these cohorts and the point estimates are close to zero. The point estimate for the 1918 cohort,
which could be thought of as partially treated, is negative, suggesting the pandemic lowered high
school graduation by approximately three quarters of a year, but is statistically insignificant. The
effect of the 1919 cohort is negative with a coefficient around -1.5 percentage points and is highly
significant. While these results do not necessary imply that other cohorts were unaffected by the
pandemic (because these estimates are relative to the 1917 birth cohort), they do suggest that the

1919 cohort was disproportionately affected.

One way to address the partial treatment of 1918 is to use census information about the indi-
vidual’s age in months. Census enumerators were instructed to obtain the age in years and months
for any individual under the age of 5 at the time of census enumeration. Unfortunately, not all
of the census enumerators recorded this information. For instance, among those aged 1 (i.e., the
1918 birth cohort) this information is missing for 13.9% of our sample. Many of those are likely
individuals that are close to 1 year. Only 2% of our 1-year-olds show up as 1 year and 0 months,

whereas 6.6% show up as 1 year and 1 month and 8.6% show up as 1 year and 2 months.

Our solution to address the partial treatment is to drop from the sample any individual that
appears as 1 year and 0, 1, 2, or 3 months. Those individuals would have been born between
October of 1918 and December 31, 1918. We also drop anyone with missing information. The
bottom panels of Figure 7 present results after implementing these restrictions. The results suggest
that the negative point estimates that we saw in the top panels of Figure 7 for the 1918 birth cohort
were, to some extent, driven by the inclusion of individuals that were potentially treated by the

pandemic.
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ExcessFluin 1919 X Birth Year

Figure 7: Event study estimates of the dose-response effect
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Notes: Regressions include city-of-enumeration and birth year fixed effects as well as the background controls from
Table 4. Standard errors are clustered at the city-level.

7 Appendix B: Revisiting Brown & Thomas (2021)

This section examines the sensitivity of the Brown & Thomas (2021) approach to accounting
for background differences. Their approach to accounting for selection is to take birth-state-by-
birth-year-by-race averages of each background characteristic. The averages are calculated using
the 1920 census, where birth year is calculated as 1920 — age — 1.20 The authors then include these

measures as controls to assess the robustness of Almond (2006).

Table B.1 replicates this approach for various sets of aggregate background controls. The three
panels correspond to the 1960, 1970, and 1980 censuses examined in Almond (2006). Each row
corresponds to a different outcome. Column 1 corresponds to the results as reported in Brown
& Thomas (2021, Table 4). Column 2 is our replication of those results. Column 3 omits the
number-of-children control. Column 4 adds inferred birth order (i.e., the number of older siblings

in the household). Column 5 includes aggregate versions of our 15 background measures. Finally,

20Individuals were asked to report their age as of January 1, 1920.
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Column 6 reports the baseline Almond result, but restricting to the 1912-1919 birth cohorts.

The main takeaway from Table B.1 is that the sign flips documented in Brown & Thomas (2021)
are largely driven by the inclusion of the “number of father’s children in the household” variable.
When that control is omitted or replaced with birth order, the sign flips are much less pronounced,
although the confidence intervals often contain zero. The standard errors in these specifications

are so large that it is often difficult to reject whether the results in columns 3, 4, or 5 are different

from what Almond would estimate if he omitted the 1920-1922 birth cohorts (Column 6).

The results in Table B.1 raise the question as to whether the number of children in the household

variable is trustworthy.

We explore this issue further in Appendix Section 8.

Table B.1: Assessing whether selection for the 1919 birth cohort varies over time

BT (2018) Our No w/ Birth 15 BFS Almond
Table 4 Replication # child Order Controls 1912-19
(1) (2) 3) (4) (5) (6)
Dependent Variable
Panel A: 1960 Census (IPUMS 1% Sample)
Years of Schooling 0.266%** 0.240%** -0.047 -0.034 -0.046 -0.168***
(0.062) (0.056) (0.054) (0.054) (0.055) (0.056)
HS Graduation 0.035%** 0.036%** -0.012 -0.010 -0.008 -0.022%*
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Wage Income 2160%** 2110.149*** 669.142 721.513 1113.786** -243.665
(452) (453.543)  (439.918)  (439.678)  (446.067)  (447.049)
Total Income 2790%** 2984.563*** 231.053 339.557 637.820 -531.312
(504) (495.880)  (479.229)  (478.741)  (485.353)  (491.203)
Panel B: 1970 Census Form 1 (IPUMS 3% Sample)
Years of Schooling 0.242%%%* 0.248%** -0.038 -0.028 -0.031 -0.136***
(0.038) (0.034) (0.033) (0.033) (0.034) (0.034)
HS Graduation 0.041%** 0.045%** -0.007 -0.005 0.000 -0.018%**
(0.006) (0.006) (0.005) (0.005) (0.005) (0.005)
Wage Income 2314%%* 2036.630*** 126.768 204.379 540.663 -895.703**
(397) (390.393)  (377.639)  (377.378)  (381.500)  (381.842)
Total Income 3060%** 3565.502%*** 289.566 418.613 541.503 -651.284
(433) (436.612)  (422.585)  (421.965)  (426.579)  (427.723)
Panel C: 1980 Census (IPUMS 5% Sample)
Years of Schooling 0.258%** 0.247*** -0.037 -0.024 -0.026 -0.141%**
(0.033) (0.029) (0.028) (0.028) (0.028) (0.029)
HS Graduation 0.045%** 0.054%+* -0.000 0.002 0.008* -0.012%**
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Wage Income -132 -15.130 -994.376%*%  -942.474%*  -1035.327**  -1121.454**
(447) (459.510)  (453.280)  (453.279)  (454.358)  (455.166)
Total Income 1770*** 1903.330*** -766.472 -665.869 -701.427 -801.548
(489) (502.173)  (495.636)  (495.406)  (496.630)  (502.377)

Notes:

parentheses.
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8 Appendix C: Examining Parental Selection with a Double-Linked Sample

This section uses our linked data to examine whether the individual’s age at the time of census
enumeration affects our estimates of parental selection. We focus on individuals that we can link
between the 1920 census, the 1930 census, and the WWII enlistment records. We further restrict
attention to those that are residing with their parents in both censuses. This yields a final sample

of 274,640 individuals.

Figure B.1 provides a graphical assessment of the age-at-observation issue. Each panel plots
cohort-level averages based on information observed in both the 1920 census and the 1930 census.
This graphical assessment gives us a sense of whether the data are exhibiting expected patterns,

which speaks to the trustworthiness of our underlying links.

The first 4 panels of Figure B.1 correspond to characteristics that, if perfectly observed, would
not change between the 1920 and 1930 censuses. These characteristics are: whether the individual
is nonwhite, whether the father was born outside of the United States, the father’s age when the
child was born, and the child’s birth order. Each panel corresponds to a different characteristic,
with 1920 cohort-level means plotted as black diamonds and 1930 cohort-level means plotted as

grey circles.

The first takeaway from Figure B.1 is that our linked data are of high quality. The cohort-level
averages for nonwhite and whether the father is foreign born are nearly identical, which is not an
artifact of linking because these pieces of information are not part of our linking procedure. The
extent to which markers do not perfectly overlap often reflects some combination of transcription
errors, errors in enumeration (e.g., relying on information from a neighbor or another member of
the household rather than the individual of interest), or errors in the linking. These do not appear

to be major issues.

While father’s age at the time of birth and birth order are time invariant, the patterns do differ
between the two censuses. Fathers in 1920 are about 0.25 years older on average at the time of the
child’s birth relative to 1930. This is likely due to changes in enumeration procedures. Since the
1920 census was enumerated as of January 1 while the 1930 census was enumerated as of April 1,
there may be slight discrepancies in age. It is worth noting that if we restrict to the set of records
where the child’s age in 1930 is equal to the reported age in 1920 4+ 10 we see almost complete

overlap between the two data series. Birth order, which is inferred based on the number of older
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siblings in the household, also changes between 1920 and 1930. On average, all of our cohorts have
fewer older siblings in the 1930 census relative to the 1920 census. This pattern reflects the fact
that older siblings may leave the household or die by 1930, particularly for older cohorts (the 1912

birth cohort is roughly 18 at the time of enumeration in 1930).

The bottom four panels of Figure B.1 plot characteristics that may vary over time. The charac-
teristics are father’s occupational income score, an indicator for whether the mother is in the labor
force, an indicator for whether the family owns their home, and the total number of father’s own
children in the household. Between 1920 and 1930 cohort-level averages change in the following
ways: father’s occupational standing increases, maternal labor force participation increases, home
ownership rates increase, and (aside from the 1912 cohort) total number of children in the house-
hold increases. For the first three panels, the change between the two censuses reflects a level shift
(but not a change in trend) that is predictable based on life-cycle patterns. The patterns for total
number of children in the household are slightly different. In 1920 we see that younger cohorts were
from smaller families, but by 1930 there is much less of a distinction. The decline in family size in
1920 likely reflects the inherent truncation of the “number of younger siblings” component of the
family size variable. That is, for the 1912 birth cohort, family size will be a function of both the
number of older siblings in the household and any younger siblings born between 1913 and 1920.
For the 1919 birth cohort, the family size variable will only be a function of the number of older

siblings in the household because any younger siblings will be born after enumeration in 1920.

Table B.2 examines whether our estimated deviations of the 1919 birth cohort vary based on
the census year. Each row corresponds to a different background characteristic. Columns 1 and
2 correspond to the 1930 census, columns 3 and 4 correspond to the 1920 census, and column 5
tests whether the estimated deviations are statistically equal. The majority of selection patterns
that we observe in 1920 are stable over time and are thus unlikely to be an artifact of observing
different birth cohorts at different ages. Across the 16 outcomes, only two estimates are statistically
distinguishable based on whether we use the 1920 census or the 1930 census. The first is the total
number of father’s children (as discussed above). The second variable is inferred birth order. It is
worth pointing out that while we can reject equality between the estimates of selection on birth
order, the point estimates are not meaningfully different from each other (0.16 in 1920 and 0.12 in
1930). For these reasons, and because family size plays an important role in determining long-run

outcomes, we choose to include birth order as one of our background controls.
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Figure B.1: Patterns of parental characteristics by birth cohort for those observed with parents in
1920 and 1930
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Table B.2: Assessing whether selection for the 1919 birth cohort varies over time

WWII-1930 Links WWII-1920 Links
Mean 1919 Deviation Mean 1919 Deviation Reject
From Trend From Trend (2)=(4)?
() 2) 3) (4) (5)
Dependent Variable
Southern Born 0.225 0.013%%* 0.225 0.013%** 1
(0.004) (0.004)
Nonwhite 0.026 0.003** 0.026 0.003** 1
(0.001) (0.001)
Father born outside U.S. 0.242 0.009** 0.241 0.008** 0.958
(0.004) (0.004)
Mother born outside the U.S. 0.206 0.008** 0.205 0.009** 0.802
(0.004) (0.004)
Father is second-gen. immigrant 0.220 -0.009** 0.224 -0.010%*** 0.861
(0.004) (0.004)
Father moved outside of birthplace  0.435 0.003 0.436 0.003 0.964
(0.004) (0.004)
Father’s age when child was born 32.523 0.481%** 32.320 0.479%** 0.985
(0.066) (0.065)
Mother’s age when child was born ~ 28.301 0.3217%** 28.078 0.288%** 0.677
(0.056) (0.056)
Father’s age minus mother’s age 4.222 0.159%** 4.242 0.190%** 0.623
(0.045) (0.045)
Father cannot read or write 0.039 0.002 0.034 0.004** 0.488
(0.002) (0.002)
Mother cannot read or write 0.041 -0.000 0.035 0.002 0.301
(0.002) (0.002)
Father’s occupational income score  23.531 -0.057 24.698 -0.115 0.704
(0.106) (0.107)
Family owns home 0.447 0.003 0.616 -0.007 0.119
(0.005) (0.004)
Child’s inferred birth order 2.845 0.164*** 2.317 0.124*** 0.062*
(0.017) (0.013)
Number of father’s children in HH  3.399 0.353%** 4.092 0.140%** 0.000%**
(0.018) (0.019)
Mother is in labor force 0.029 -0.004*** 0.063 -0.003 0.706
(0.001) (0.002)

Notes: * p<0.1; ** p<0.05; *** p<0.01. Following Almond (2006), each regression includes the reported “Born in
1919” indicator variable, as well as year of birth and year of birth squared. Robust standard errors are reported in
parentheses.
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