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1. INTRODUCTION

Auctions are one of the main selling mechanisms used online. Not only are

they employed to sell physical goods through sites such as eBay, but also to offer

advertisement space online, such as through Google’s DoubleClick. Display and

banner ads have become a common tool to target consumers, which is conducted

via real-time bidding, in which impressions are commonly sold via second-price,

sealed-bid auctions that last a fraction of a second. It is estimated that over $20

billion dollars are sold via real-time bidding per year (eMarketer 2016), providing

an abundance of data on bidding activity and reflecting the relevance and poten-

tial revenue gains from implementing the best auctions possible. Traditional ap-

proaches to empirical auctions would analyze such data by estimating underlying

distributions of bidder valuations and then computing counterfactual mechanisms

of interest, such as optimal reserve prices or other instruments of auction design.

These approaches, however, can be computationally demanding, in particular in

large data settings, and are unlikely to be implemented in real-time by online plat-

forms interested in optimal auction design. We provide a more direct approach to

obtaining the information required for optimal reserve prices in these online auc-

tions. The primary virtue of the approach is that it is simple to execute—a practical

approach to computing optimal reserve prices in certain environments without the

effort necessary to fully estimate distributions of bidder valuations.

The online auction environments we are interested in studying typically follow

a second-price-like format, where, unlike traditional ascending auctions, the high-

est bid is recorded. We show that this opens up a new and more direct approach

to obtaining the information required for computing optimal reserve prices. Our

starting point is the observation that seller profit is a simple-to-compute function

of the reserve price and the two highest bids—and thus profit can be computed

even with incomplete bidding data (i.e. where not all bids are observed) and with-

out observing the number of bidders. Although it is true that, in theory, complex
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auction design may be optimal—such as the Myerson (1981) auction for asym-

metric independent private values (IPV) settings—in practice, the seller’s primary

instrument of auction design in the real world is typically a single reserve price.

We demonstrate that the optimal single reserve price can be computed using only

historical observations of data on the two highest bids by simply maximizing the

seller profit function with respect to the reserve price.

We derive several properties of estimated reserve prices. We prove consistency,

demonstrate that the asymptotic distribution of the estimator of the optimal re-

serve price is non-normal, and derive its asymptotic distribution. Our interest in

deriving these results is not theoretical but is instead practical: we wish to provide

a clear notion of how many previous transactions the practicioneer needs to observe

in order for it be the case that designing an auction based on estimated reserves is

a good idea. In this spirit, we then provide a type of result that is relatively new

to the empirical auctions literature: we derive an explicit lower bound, based on

the empirical Rademacher complexity, for the number of auctions one would need

to observe in order to guarantee that the revenue based on the estimated reserve

price approximates the true optimal revenue arbitrarily closely.

All of our results allow for the number of bidders in each auction to be un-

known, a data complication which has precluded nearly all previous empirical

auction methods. When the number of bidders is unobserved, approaches relying

on inverting order statistic distributions (Haile and Tamer 2003; Athey and Haile

2007; Aradillas-López et al. 2013) cannot be applied. This has particularly been an

issue for online auctions, where the number of bidders is often unobserved to the

econometrician.1 Exceptions in the literature allowing for an unobserved number

of bidders in second-price-like/ascending auction cases include Song (2004), Kim

and Lee (2014), Platt (2017), and Freyberger and Larsen (2017), which each focus

on symmetric independent (or conditionally independent) private values settings.

Relative to our method, these approaches have the advantage of yielding estimates
1For example, on eBay, if a bidder intends to bid in an auction but sees that the price has already
exceeded her valuation, her bid will not be recorded, leading to a situation in which the number of
bidders placing bids differs from the true number of bidders.
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of the underlying valuation distributions, but at a higher computational cost. Our

method circumvents the need for estimating valuation distributions and instead

directly estimates the optimal reserve price. Also, it is important to emphasize

that the specific information environments and data requirements we consider

(asymmetric, possibly correlated, private values where the number of bidders is

unobserved to the econometrician and bidding data is incomplete) are settings for

which no identification results exist in the auction literature for obtaining distribu-

tions of valuations even if that were the desired object of interest.

The computational simplicity of this approach can be particularly attractive given

the recent advent of Big Data. Specifically, auctions for online advertising or e-

commerce often contain too many records to be feasibly analyzed using traditional

structural methods, which would typically involve 1) restricting to a sample of

data in a flat file which can be analyzed in standard statistical software; 2) fully re-

covering the underlying distribution of buyer valuations through maximum like-

lihood estimation or other approaches, which often require searching over multi-

dimensional parameter spaces; and 3) computing optimal reserve prices (e.g. Paarsch

1997; Bajari and Hortaçsu 2003). In contrast, our approach requires only searching

over a single dimension at once and can be performed with a simple grid search,

raising the possibility of computing optimal reserve prices directly on data stor-

age platforms (e.g. Teradata, Hadoop, Spark) without bringing the data into more

traditional analysis packages (e.g. Matlab, R, etc.).

We apply our approach to a sample of popular smartphone products sold through

eBay auctions. We find that implementing the optimal reserve price in these set-

tings would raise expected profit between 0.11–0.86% compared to an auction with

a reserve price equal to the seller’s value, depending on the product. In the data

we find that a history of at least 7–25 auctions are required in order for an auction

using the estimated reserve price to outperform an auction with the reserve price

set to the seller’s value.
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We also demonstrate an interesting extension of our methodology to the setting

of the Myerson (1981) optimal auction. If, in addition to the two highest bids, the

highest bidder’s identity is also known, we show how to recover bidder-specific

marginal revenue curves (as defined by Bulow and Roberts 1989) in asymmetric

IPV settings, enabling the Myerson (1981) optimal auction to be implemented. We

use simulated data to illustrate this approach and quantify the revenue gain from

optimal auction design. While the Myerson (1981) auction is not widely used in

practice, auctions with “soft floors” have been used explicitly to deal with poten-

tial asymmetry between bidders.2 However, as Zeithammer (2017) demonstrated,

this auction format can actually be detrimental to sellers, in which case implement-

ing the Myerson (1981) auction might be a preferred alternative. When there are

concerns about discriminating bidders, recovering marginal revenue curves allows

one to implement the symmetric auction proposed by Deb and Pai (2017), which

yields the same expected revenue to the seller as the original Myerson (1981) auc-

tion.

Our approach is related to a theoretical literature at the intersection of econom-

ics and computer science that examines approximately optimal auctions in a variety

of cases, as surveyed by Roughgarden (2014). In particular, several studies in this

literature employed the same tools from statistical learning theory we use to de-

rive our finite sample bound on the difference between the optimal expected rev-

enue and the one accrued from an auction using an estimated reserve price. For

example, Cole and Roughgarden (2014) derive the number of auctions needed to

approximate the optimal expected revenue as a function the number of bidders un-

der the asymmetric IPV setting of Myerson (1981); under the same paradigm, but

assuming that the number of bidders is either observed or drawn from a known

distribution, Cesa-Bianchi et al. (2015) introduce a regret minimization algorithm

to choose the reserve price; Alaei et al. (2013) extend the environment to allow for
2A soft floor is a threshold that effectively determines the auction format. If the highest bid is below
it, the winner pays her own bid, thereby characterizing a first-price auction. On the other hand, if at
least one bid is above the soft floor, the wininng bidder’s payment will be equal to the maximum of
the soft floor and the second highest bid, which constitutes a second-price auction. Reserve prices
in soft floor auctions are also known as “hard floors”.
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richer bidder preferences, including multi-dimensional types; Morgenstern and

Roughgarden (2015) allow for several units being auctioned at the same time;

Roughgarden and Wang (2016) consider the problem of choosing bidder-specific

reserve prices; Kanoria and Nazerzadeh (2017) consider a dynamic environment

of repeated auctions and how strategic bidder account for a seller using their past

bids to learn the distribution of valuation; and Balcan et al. (2018) extend the anal-

ysis to mechanisms other than auctions. Unlike these papers, we do not require

bidder valuations to be independent, nor do we impose any restrictions on the

number of bidders or the process behind which it is drawn. On the other hand, we

do not consider regret minimization, implementation algorithms, multiple units

or reserves, dynamics, or more general bidder preferences. Within this literature,

the paper to which ours is most closely related is Mohri and Medina (2016), who

introduced several results we leverage in this study. We reinterpret their learning

framework as a sample size-dependent implementation decision from the vantage

point of the seller.

Our paper also contributes to a literature in economics that provides direct in-

ference about reserve prices or other objects of interest to auction design rather

than attempting to estimate the full distribution of valuations, such as Li et al.

(2003), Haile and Tamer (2003), Tang (2011), Aradillas-López et al. (2013), Coey

et al. (2014), Chawla et al. (2014), and Coey et al. (2017). We also relate to other

work empirical focusing on online e-commerce auctions, such as Song (2004) or

Platt (2017), and online ad auctions. In this paper, we consider only private values

settings; in theory work, Abraham et al. (2016) model ad auctions with common

values. In extending our approach to address the Myerson auction empirically,

we also relate to Celis et al. (2014), which addresses non-regular distributions and

Myerson’s ironing in ad auctions, while we focus only on regular distributions. Fi-

nally, our work is related to the work of Ostrovsky and Schwarz (2016), where the

authors experimentally varied reserve prices in position ad auctions to measure

the improvement in profits from choosing different reserve prices.
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2. OPTIMAL RESERVE PRICES

We consider private value, second-price auctions. Values are independent and

identically distributed across auctions, but within auctions we allow for arbitrary

correlation in bidders’ values and asymmetric valuation distributions among bid-

ders. Let N be a random variable representing the number of potential bidders for

a given auction. Let Vpkq represent the kth highest value among these N bidders.3

As in the entry model of Samuelson (1985), in a given auction each potential

entrant observes the realization of her value and enters if her value exceeds the

reserve price r. We assume that bidders do not bid above their values, and that

if either of the two potential entrants with the highest values enter, they bid their

values.4 This implies that the two highest bids, if they exist, are Vp1q and Vp2q.5 We

will not require that the econometrician observe the number of potential or actual

entrants.

Each potential entrant i has a type t P t1, . . . , Tu. In the most general case, each

bidder has his own type. All potential entrants with type t have values that are

continuously distributed on some finite interval r0, ωts, with ω̄ � maxt ωt. Let

Ft denote this distribution, and ft the corresponding density. We use F and f to

denote the joint distribution and density of all potential entrants’ values.

3As in Song (2004), we use this notation, rather than the traditional notation Vn:n, Vn�1:n, etc.,
because in our case the order statistics come from samples of varying sizes. That is, Vpkq is the kth

highest bid among N bidders, unconditional on the realization of the random variable N, and is
thus a draw from the distribution

FVpkqpvq �
¸

n
PrpN � nqFVn�k�1:npvq (1)

where FVn�k�1:n is the distribution of the kth highest bid conditional on n, the realization of N.
4This is an implication of the dynamic bidding model in Song (2004). Athey and Haile (2002) also
argue, “...for many ascending auctions, a plausible ... hypothesis is that bids Vn�2:n and below do
not always reflect the full willingness to pay of losing bidders, although Vn�1:n does (since only
two bidders are active when that bid is placed).”
5This may not be true for other entry models. In Levin and Smith (1994), where bidders do not
observe their values before entering, the two highest value bidders need not enter even if their
values exceed the reserve price.
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Let j P t1, ..., Ju index a particular auction, and Vp1q
j and Vp2q

j represent the two

highest bids in auction j. We will follow the convention and denote random vari-

ables with upper case letters and realizations of random variables with lower case

letters. Let v0 ¥ 0 represent the seller’s fixed value from keeping the good.

We assume the researcher observes the top two bids from auctions without a

reserve price. The seller’s revenue from setting a reserve price r in auction j is

given by the following:6

πpVp1q
j , Vp2q

j , v0, rq � r1pVp2q
j   r ¤ Vp1q

j q �Vp2q
j 1pr ¤ Vp2q

j q � v01pr ¡ Vp1q
j q. (2)

Define expected profits as a function of the reserve as

pprq � E
�
πpVp1q

j , Vp2q
j , v0, rq

�
(3)

where we suppress dependence of p on v0 for notational simplicity. We use the

term optimal reserve to refer to a reserve price maximizing pprq, and denote such a

reserve by r�. Given realizations of Vp1q and Vp2q, one can obtain the optimal re-

serve price simply by maximizing (3), which we state as the following observation:

Observation 1. For a given v0, the seller’s optimal reserve price is identified from obser-

vations of Vp1q
j and Vp2q

j from auctions without a reserve price.

Importantly, this observation does not require knowledge of N nor of any bids

lower than Vp1q
j and Vp2q

j . This result holds true even if bidders are asymmetric

and have correlated values. We estimate profits and the optimal reserve price as

follows:

p̂prq � 1
J

J̧

j�1

�
πpVp1q

j , Vp2q
j , v0, rq

�
. (4)

r̂J � arg max
r

p̂prq. (5)

Remarks. Note that auctions with only one bidder—in which case, a realization of

Vp2q will be missing—should not be discarded from the sample for estimation of

6Throughout, we use the terms revenue and profit interchangeably.
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the optimal reserve price. Rather, these observations should be included as having

a realization of zero for the missing bid, as zero is precisely the contribution such a

bid would make to the seller’s profit in such cases. Auctions with zero bidders can

be ignored, as the seller receives zero profit from these auctions no matter what

reserve is chosen.

It is important to note that our approach implicitly assumes that historical re-

alizations of Vp1q
j and Vp2q

j are representative of future realizations; that is, we

assume that these distributions are stable over time. In practice, these distribu-

tions may change, for example, due to changes in the underlying demand for the

product. Our approach requires observations of auctions with no reserve price in

order to correctly estimate the reserve price; once the estimated reserve price is put

into practice, the practitioner will no longer observe the full distribution of second

highest bids (as the reserve price will bind in some auctions). In practice, there-

fore, the practitioner may find it useful to periodically remove or reduce reserve

prices in order to obtain anew data on second and first highest bids and recompute

the optimal reserve price. This issue is discussed in a different context in Chawla

et al. (2014), who proposed an alternative approach to auction design rather than

relying on reserve prices.

On par with the rest of the empirical auctions literature, we do not model how

distributions of bids could change due to bidders strategically accounting for how

these bids will be used to set reserve prices in the future. As pointed out by Ostro-

vsky and Schwarz (2016), these dynamic concerns disappear as the market grows

large.

In our empirical application, we highlight that the loss from using a non-optimal

reserve price is asymmetric, in that the loss from setting too high a reserve is much

larger than the loss from setting too low a reserve (see also Kim 2013 and Ostrovsky

and Schwarz 2016). The practitioner may find it useful, therefore, to scale down es-

timated reserves by some value less than one, and then increase this scaling factor
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as number of observed auctions grows.7 We do not consider this scaling approach

here but believe this would be a promising modification to directly implementing

estimated reserve prices.

The reserve prices we compute do not condition explicitly on auction-level het-

erogeneity. This can be considered either as a direct focus on homogeneous goods,

where reserve prices can be estimated separately for each distinct good (as in our

empirical application), or instead as a practical approach to computing reserve

prices in cases where auction designers know that auction-level heterogeneity is

present but cannot condition on it, and are restricted to choosing instead a single,

unconditional reserve price. An example of such a setting are some display ad auc-

tion platforms that, either for technological reasons or for purposes of keeping the

platform easy to understand for participants, set only a single reserve price for all

ads sold in a given timeframe. Our approach can be extended to account explic-

itly for auction-level heterogeneity, conditioning the estimation of reserve prices

on a vector of observed auction-level covariates, Wj. For example, one could use

kernel smoothing to estimate the expectation in (3) conditional on Wj, use these

estimates to construct the objective function in (4) and then proceed as before. The

underlying assumption would be that, conditional on Wj, the observed auctions

are independently and identically distributed.

3. PROPERTIES OF ESTIMATED RESERVES AND REVENUE

In this section we discuss the properties of estimated reserve prices and rev-

enue. We begin by providing traditional asymptotic results for the estimator and

discussing inference. We then provide a new bound on the number of auctions

that must be observed in order for the auction revenue using the estimated reserve

price to approximate the true optimal revenue arbitrarily closely. All proofs are

found in the Appendix.

7The field experiments of Ostrovsky and Schwarz (2016) were subject to a scaling factor enforced
by the auction platform because the platform feared setting too high of a reserve.
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3.1. Asymptotic Properties. We now present asymptotic results for the estimators

r̂J and p̂pr̂Jq. Standard M-estimation theory establishes the consistency of r̂J for r�.

We apply Theorem 2.1 from Newey and McFadden (1994), whose conditions we

show are satisfied.

Assumption 1. pprq is continuous, with pprq uniquely maximized at r�, where r� belongs

to a compact set.

Assumption 1 is common in the econometrics literature. Note that the assump-

tion that r belongs to a compact set is natural in our setting given that we model

valuations as belonging to a bounded interval.

Theorem 1. If Assumption 1 is satisfied, then p̂pr̂Jq pÝÑ ppr�q and r̂J
pÝÑ r�.

The proof, given in the Appendix, consists of showing that, under Assumption

1, suprPr0,ωs |p̂prq � pprq| pÝÑ 0. Hence, all the requirements from Theorem 2.1 of

Newey and McFadden (1994) are satisfied, which yields Theorem 1. Having estab-

lished consistency, we now derive the asymptotic distribution of the estimator r̂J ,

which is not standard. This ultimately implies that this estimator belongs to a class

of estimators that converge at a cube-root rate, of which an example is the maxi-

mum score estimator proposed by Manski (1975). To demonstrate this and derive

the asymptotic distribution, we show that the conditions in the main theorem of

Kim and Pollard (1990), adapted below, are satisfied.

We first introduce the following notation and assumptions. Let π̃p�, rq � πp�, rq�
πp�, r�q. Let PRp�q be defined as the supremum of |π̃p�, rq| over the class PR �
tπ̃p�, rq : |r � r�| ¤ Ru.

Assumption 2. The classes PR, for R near 0, are uniformly manageable for the envelopes

PR, and Erπ̃p�, rqs is twice differentiable with second derivative �Σ at r�.

Theorem 2. If Assumptions 1 and 2 are satisfied, and r� is an interior point, then the

process J2{3 1
J
°J

j�1 π̃p�, r� � αJ�1{3q converges in distribution to a Gaussian process Zpαq
with continuous sample paths, expected value �1

2 α2Σ, and covariance kernel H, where
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Hpβ, αq � limtÑ0
1
t Erπ̃p�, r� � βtqπ̃p�, r� � αtqs for any β, α in R. Furthermore, if Z

has nondegenerate increments, then J1{3pr̂J � r�q converges in distribution to the random

maximizer of Z.

The slow rate of convergence of r̂J (cube-root rate) suggests a strong data re-

quirement to obtain a precise estimate of r�. In other words, the econometrician

must observe many previous auctions in order to accurately estimate the optimal

reserve price. In Section 3.2 we provide an explict bound on this data requirement

and discuss how it relates to Theorem 2.

While estimating the optimal reserve price itself may require a large amount of

data, determining how much the auction designer could gain from optimally choosing

the reserve price does not. In fact, p̂pr̂Jq converges at a square-root rate to a normal

distribution, which we present in the following theorem:

Theorem 3. If the conditions from the previous theorems are satisfied, then
?

J
�
p̂pr̂Jq � ppr�q� dÝÑ N

�
0, Erπ̃p�, r�q2s�.

To conclude our discussion of traditional asymptotic results, we briefly discuss

inference. Simulating the asymptotic distribution of r̂J is impractical as Σ depends

upon the distributions of the two order statistics used to estimate r�, which mo-

tivates the use of resampling methods. Abrevaya and Huang (2005) showed that

the nonparametric bootstrap is not valid for this cube-root class of estimators. Al-

ternative resampling methods that may be used in this case include subsampling

(Delgado et al. 2001), m out of n bootstrap (Lee and Pun 2006), numerical bootstrap

(Hong and Li 2017), and rescaled bootstrap (Cattaneo et al. 2017). Another possibil-

ity is to replace the indicator in the objective function with a smoothed estimator,

which, along with further assumptions, might restore asymptotic normality and

achieve faster rates of convergence, akin to the Horowitz (1992) smoothed maxi-

mum score estimator. We leave this possibility as an avenue for future research.

However, the nonparametric bootstrap can be used for inference on the object

p̂pr̂Jq. Let p̂bprq be the objective function defined above calculated from a bootstrap
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sample of size J drawn with replacement from the original sample, and let r̂b
J be the

estimator calculated from this bootstrap sample. Results in Abrevaya and Huang

(2005) yield p̂bpr̂b
Jq � p̂bpr�q � OPpJ�2{3q and r̂b

J � r� � OPpJ�1{3q, which imply that

for the bootstrap analoga
J
�

p̂bpr̂b
Jq � p̂pr̂Jq

�
�
a

J
�

p̂bpr�q � p̂pr�q
�
� oPp1q,

which has the same limiting distribution as
?

J
�
p̂pr̂Jq � ppr�q� conditional on the

data due to a standard result from bootstrap theory.

3.2. Bound on Revenue Performance. We now provide a new theoretical argu-

ment establishing a probabilistic upper bound on the quantity ppr�q � ppprJq, which

shrinks to zero at the rate plog J{Jq�1{2. This argument is closely related to work by

Mohri and Medina (2016), although the bounds Mohri and Medina (2016) derive

are less explicit than ours.8

Given a sample of J auctions, we refer to the seller’s reserve price as being the

estimated reserve price if the seller chooses the reserve that maximizes profit on

past data, that is, in auction J � 1 they choose the reserve price prJ � arg maxr ppprq.
In expectation (over the possible bids in the J � 1th auction), this gives a profit of

ppprJq, which, by definition, is lower than the expected profit given by the optimal

reserve price, ppr�q. We study the size of this difference, and how it changes as the

number of observed auctions becomes large.

We state our bound in the following theorem. Its proof uses techniques from

statistical learning to probabilistically bound the difference between ppprq and pprq
uniformly in r. Specifically, the empirical Rademacher complexity (defined in the Ap-

pendix) plays a key role in obtaining this bound. These techniques are developed

in Koltchinskii (2001) and Koltchinskii and Panchenko (2002); Mohri et al. (2012)

provide a textbook overview.

8Mohri and Medina’s (2016) bounds are stated in terms of the Rademacher complexity and pseudo-
dimension of the class of possible reserve price functions mapping observables to reserves. The
authors consider reserve prices that may be a function of observable covariates, which we do not
do here.
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Theorem 4. Let 0 ¤ Vp1q
j ¤ ω   8. For any δ ¡ 0, with probability at least 1� δ over

the possible realizations of the J auctions, it holds that

ppr�q � ppprJq ¤ ω

�
8
?

log 2
J � 4

b
2�2 log J

J � 6

c
log 4

δ
2J

�
.

Equivalently, in order for the profit from the estimated reserve to be within ε of

the profit from the optimal reserve with probability at least 1� δ, the seller needs

to have observed approximately J auctions such that the expression in the right-

hand side of the expression in Theorem 4 equals ε. It can be shown that when

J � 1 the expression is positive and that it is strictly decreasing in J, which, in

principle, enables one to obtain the desired J for each pδ, εq via a simple bisection

procedure. The only assumption made on the first order statistic of bidders’ values

in this theorem is that it is non-negative and bounded above. Bidders’ values may

be arbitrarily correlated with each other and may be drawn from asymmetric mar-

ginal distributions. Note also that the right-hand side only depends on the value

distribution through its upper bound ω, and not, for example, its variance. It is

also important to note that the bound in Theorem 4 relates to the optimal reserve,

r�, and the true expected profit function, pp�q, without requiring these objects to be

known.

We illustrate the implications of Theorem 4 in Figure 1 below. For this illustra-

tion, we normalize ω � 1, and thus revenue is in units of fractions of the maximum

willingness to pay. We then plot “iso-data” curves in pδ, εq space, where each curve

represents the possible combinations of ε and δ that are possible given a fixed his-

tory of observed auctions. In this figure, a curve located further to the southwest

is preferable, as it represents a closer approximation to the true optimal revenue

(i.e. a smaller ε) with a higher probability (i.e. a lower δ). The top line represents

a sample size of J � 1, 000, the middle line represents J � 5, 000, and the bottom

line represents J � 10, 000. The middle line suggests that with a history of 5,000

auction realizations, one could guarantee a payoff within 0.348 (units of the maxi-

mum willingness to pay) of the optimal profit with probability 0.975; or, with the

same size history, one could guarantee a payoff within 0.3447 of the optimal profit
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FIGURE 1. Iso-data curves in pδ, εq space
Notes: Figure displays combinations of pδ, εq that can be achieved given a fixed sample size J
using the bound implied by Theorem 4. Top line represents J � 1, 000, middle line represents
J � 5, 000, and bottom line represents J � 10, 000.

with probability 0.70. The larger sample, J � 10, 000, can guarantee a payoff that

is much closer to the optimal profit. Each iso-data curve is relatively flat in the δ

dimension, reflecting the fact that the sample size requirements are more stringent

for achieving a given level of ε closeness to the optimal profit, and are less stringent

for achieving an improvement in δ (i.e. in the probability with which the revenue

is reached).

We now relate the explicit bound obtained in this subsection to the asymptotic

results obtained in the previous subsection. Theorem 2 implies that ppr̂Jq� ppr�q �
OppJ�2{3q.9 By definition, therefore, for any δ ¡ 0, there exists an M ¡ 0 such that

9Performing a second-order Taylor expansion yields ppr̂Jq � ppr�q � p2pr̃qpr̂J � r�q2 � OppJ�2{3q,
where r̃ is an intermediate value between r̂J and r�.
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PrpJ2{3|ppr̂Jq� ppr�q|   Mq ¥ 1� δ. The fact that the convergence result in Theorem

2 is achieved at a J�2{3 rate implies that the bound in Theorem 4 is conservative, as

it is expressed as a function of plog J{Jq�1{2. However, Theorem 2 does not allow

one to explicitly compute the number of auctions required in order to approach the

optimal revenue with a given probability; it simply states that such an M exists.

The advantage of the bound in Theorem 4, on the other hand, is that it is explicit,

allowing one to directly compute a conservative estimate of the number of auctions

J which must be observed for estimated reserve prices to perform well without

requiring knowledge of pp�q or r�.

4. COMPUTING OPTIMAL RESERVE PRICES IN E-COMMERCE AUCTIONS

We apply our methodology to a dataset of eBay auctions selling commodity

products, which we define as those products which are cataloged in one of several

commercially available product catalogs. Examples of commodity products in-

clude ”Microsoft Xbox One, 500 GB Black Console”, ”Chanel No.5 3.4oz Women’s

Eau de Parfum”, and ”The Sopranos - The Complete Series (DVD, 2009)”. We will

refer to each distinct product as a “product” or “product-category.” Within each

product, the items sold are relatively homogeneous. For this exercise, we select

popular smartphone products listed through auctions in 2013. We consider only

auctions with no reserve price; specifically, we only include auctions for which the

start price was less than or equal to $0.99, the default start price recommendation

on eBay. We omit auctions in which the highest bid is in the top 1% of all highest

bids for that product and limit to products that are auctioned at least 500 times in

our sample.

Table 1 shows summary statistics at the product level. There are 18 distinct prod-

ucts in our sample, and each product category contains 961 auctions on average,

with the number of auctions ranging from 516 to 2,525. As reserve prices increase

revenue only when they lie between the highest and second highest bids, the size

of the gap between these bids is of particular interest. This gap ranges from $8.41

(8.7% of the mean second highest bid) for product 2 to $42 for product 18 (17.7%
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of the mean second highest bid). This gap suggests that reserve prices may be able

to increase bids somewhat over a no-reserve auction.

We estimate optimal reserves separately in each product category. We do this

exercise separately for the case where the seller’s outside option (v0) for the good

is set to zero and where v0 is set to half of the average second highest bid. Setting

v0 � 0 will yield the reserve price that will maximize the expected payment of

the winning bidder to the seller ignoring the seller’s outside option, which may

be the quantity that the auction platform is most interested in maximizing, as plat-

form fees are typically proportional to this payment. Setting v0 to some fraction of

the expected second highest bid is perhaps a more realistic representation of the

seller’s perceived value of keeping the good.

In Figure 2, we select one specific product in our sample, product #18, which

is the “Apple iPhone 5 16GB Black-Slate Verizon”. In the figure we plot expected

profit as a function of the reserve price given the empirical distribution of the first

and second highest bids. Panel A considers the setting where v0 � 0 and panel

B considers the setting where v0 is half the average second order statistic. Unsur-

prisingly for a product supplied elastically on other online or offline platforms, the

figure shows that there is a sharp drop-off in profit for reserves beyond a certain

point (about $150 in panel A and about $275 in panel B). This large drop off illus-

trates a point also discussed in Ostrovsky and Schwarz (2016) and Kim (2013): the

loss from setting a non-optimal reserve price is asymmetric, such that overshoot-

ing the optimal reserve has a much larger loss in magnitude than undershooting

it.

The vertical line represents the optimal reserve price computed using the first

and second highest bid distributions. The gain from the optimal reserve over a

reserve of r � v0 is 0.81% in panel A and 0.86% in panel B. Figures 3 and 4 display

the same measure for each product separately. In Figure 3, when v0 � 0, the gain

from using the estimated reserve price over setting r � v0 ranges from 0.27% to

0.81%, depending on the product. Similarly, in Figure 4, when v0 is set to half the
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TABLE 1. Product-Level Descriptive Statistics

Highest Bid Second Highest Bid

Product # Obs Average($) Std Dev ($) Average ($) Std Dev ($)

1 805 78.82 46.83 67.73 33.59

2 657 55.82 25.15 47.41 23.23

3 1309 239.02 108.41 219.80 101.87

4 594 211.78 123.20 185.56 81.98

5 877 235.99 93.59 213.46 86.74

6 1286 257.49 121.87 234.76 107.28

7 728 215.04 92.21 190.06 80.39

8 839 230.17 100.72 205.38 90.69

9 2525 199.06 92.55 181.10 76.90

10 2465 139.26 58.48 125.56 54.69

11 712 143.11 64.07 128.22 55.68

12 733 208.91 93.24 188.25 76.20

13 570 159.53 62.46 142.29 59.40

14 680 172.18 107.12 149.91 73.52

15 733 120.28 60.35 105.26 54.31

16 572 121.25 65.54 104.10 56.63

17 701 127.28 59.13 114.64 55.62

18 516 350.80 156.78 308.68 138.60

Notes: Table displays, for each product, the number of auctions recorded and the average and
standard deviation of the first and second highest bids.

average second highest bid, the gain from using the estimated reserve price ranges

from 0.11–0.86%.

We now turn to the question of how close optimal reserve prices will be to those

estimated using a finite history of first and second-highest bids. The theoretical

guarantee of Theorem 4 assures us that estimated reserve prices will eventually

perform close to optimally. We assess this feature through a simulation exercise.
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FIGURE 2. Profit Under Different Reserve Prices
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Notes: Seller expected profit as a function of the reserve price, given the empirical distribution of
first and second highest bids, for Apple iPhone 5 16GB Black-Slate Verizon. Panel A sets v0 � 0
and panel B sets v0 to half the average second highest bid. Vertical line displays location of
optimal reserve price.

For each product, we draw 1,000 sequences, each of length 250, at random with

replacement from the empirical distribution of all auctions observed for that prod-

uct over the sample period. Within each sequence, we then estimate the reserve

price suggested by our approach using only the first τ observations in the se-

quence, doing so separately for each τ P t1, ..., 250u. Thus, we begin with only

1 historical auction observation, then 2, then 3, and so on, for each drawn se-

quence. Next, at each of these estimated reserve prices, using the full sample of

historical observations for the product, we compute the expected profit the seller

would receive from using this computed reserve price. Therefore, for this exercise

we treat the empirical distribution of auctions in our sample as representing the

“true” distribution of first and second highest bids, and we treat sellers as only

having information on a history of τ auctions drawn at random from the full em-

pirical distribution.

Figure 5 shows the results of this exercise for the same product as in Figure 2.

The quantities on the y-axis are expressed as a fraction of the expected profit that
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FIGURE 3. Revenue Increase from Optimal Reserve Price When v0 � 0

Notes: Figure displays, for each product, the percentage increase in revenue from an auction using
the optimal computed reserve price vs. an auction with r � v0, where v0 � 0.

would be generated by using the optimal reserve price computed on the full sam-

ple of observations for the product (in the case of the Apple iPhone 5 16GB Black-

Slate Verizon, there are 516 total observations, as shown in Table 1). The three

non-solid lines in Figure 5 are the estimated expected profits (relative to the full

sample optimal profit) computed along three of these randomly drawn sequences,

progressively incorporating more observations in the sequence in computing the

reserve price, as described in the preceding paragraph. The solid red line is an

average across all such paths.
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FIGURE 4. Revenue Increase from Optimal Reserve Price When v0 �
0.5 � EpVp2qq

Notes: Figure displays, for each product, the percentage increase in revenue from an auction using
the optimal computed reserve price vs. an auction with r � v0, where v0 is set to half the average
second highest bid.

As expected, given Theorem 4, the non-solid and solid lines in Figure 5 do in-

deed converge to the optimal expected profit level. In the initial phases, estimated

reserve prices can be seriously suboptimal, even compared to setting a reserve of

r � v0. However, convergence to the optimal level appears to occur quite quickly.

Table 2 displays results from this simulation exercise separately for each product

for the two cases we consider for v0. For each product category, the q � 0.50

column displays the median number of auctions required for the computed reserve
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FIGURE 5. Expected Profit From Computed Reserve Prices Using
Different Numbers of Observed Auctions

0 50 100 150 200 250
0.9

0.92

0.94

0.96

0.98

1

1.02

R
el

at
iv

e 
Pr

of
it

(A) v0 � 0

0 50 100 150 200 250
0.9

0.92

0.94

0.96

0.98

1

1.02

R
el

at
iv

e 
Pr

of
it

(B) v0 � 0.5 � EpVp2qq

Notes: Expected profit (as a fraction of the optimal expected profit) as a function of the number of
auctions observed, where simulations are conducted by drawing sequences of auctions from the
empirical distribution of first and second highest bids from auctions for Apple iPhone 5 16GB
Black-Slate Verizon and computing the estimated expected profit progressively adding each
auction at a time. Non-solid lines represent expected profits estimates from this exercise for three
such randomly drawn sequences. Solid red line represents expected profits, averaged over all of
the 1,000 drawn samples. Panel A sets v0 � 0 and panel B sets v0 to half the average second
highest bid.

price to yield expected profit higher than an auction with r � v0. The median

is taken across the 1, 000 simulated samples for that product. The q � 0.05 and

q � 0.95 columns represent, respectively, the 0.05 and 0.95 quantiles rather than

the median.

For the example product considered in Figures 2 and 5, across all simulated

sample paths, the median number of auctions required for the computed reserve

price to yield a higher expected profit than simply setting r � v0 is 12 when v0 � 0.

In other words, a history of only 12 prior auctions may be sufficient for a seller to

benefit by computing the optimal reserve price based on this historical data. We

find that the 0.05 and 0.95 quantiles of the number of auctions required for the

computed reserve price to outperform r � v0 are 1 and 120, respectively. Thus,

observing 120 auctions of this particular product should be sufficient to ensure a

positive gain from using a computed reserve price. When v0 is instead set to half
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FIGURE 6. Computed Reserve Prices Using Different Numbers of
Observed Auctions
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Notes: Figure shows average (solid red line) and standard deviation (dashed blue line) of
estimated reserve prices over the simulated sequence of auctions drawn from the empirical
distribution of first and second highest bids from auctions for Apple iPhone 5 16GB Black-Slate
Verizon. Panel A sets v0 � 0 and panel B sets v0 to half the average second highest bid.

of the average second highest bid, even fewer auctions are required to achieve at

gain over the r � v0 case: the median number of auctions required is 9, and the

0.05 and 0.95 quantiles are 1 and 42, respectively.

The results for other products are similar, with the median number of auctions

required falling between 7 and 25 and the 0.95 quantile falling between 42 and

176, with fewer auctions required to achieve a positive gain in the case where the

seller’s outside option is higher. Given the large data settings in which we see

our approach being the most beneficial, these results are encouraging, as many

popular products accumulate long histories of sales rather quickly.

We now turn again to our example product and examine how the computed

reserve prices change as the length of the auction sequence used to compute the

reserve price increases. Figure 6 explains the poor initial performance of estimated

reserve prices. It shows the mean (solid red line) and standard deviation (dashed

blue line) of reserve prices for the Apple iPhone 5 16GB Black-Slate Verizon given

the number of auctions used to compute the reserve price. Reserve prices converge
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TABLE 2. Number of Auctions Required for Computed Reserve
Price to Outperform r � v0 Auction

v0 � 0 v0 � 0.5 � EpVp2qq

Product q=0.05 q=0.50 q=0.95 q=0.05 q=0.50 q=0.95

1 2 21 136 1 11 68

2 2 15 106 1 8 74

3 2 15 131 2 23 135

4 2 14 97 1 14 79

5 2 20 159 2 18 141

6 1 14 138 2 15 88

7 1 14 92 1 11 59

8 2 15 164 1 10 48

9 2 14 69 1 14 85

10 2 19 141 1 14 79

11 2 17 176 1 11 57

12 2 25 121 1 12 93

13 2 16 93 1 10 55

14 1 12 70 1 12 71

15 1 13 93 1 10 65

16 1 16 110 1 7 58

17 2 18 129 1 12 72

18 1 12 120 1 9 42

Notes: For each product, q � 0.50 column displays the median number of auctions required for
the computed reserve price to yield expected profit higher than an auction with r � v0. The
median is taken across 1, 000 simulated samples drawn with replacement from the full set of
observations for that product. The q � 0.05 and q � 0.95 columns represent, respectively, the 0.05
and 0.95 quantiles rather than the median. The first three columns consider v0 � 0 and the last
three consider v0 � 0.5 � EpVp2qq.

to the optimal reserve while their variance falls, and both appear to be monotonic.

The large standard deviation in reserve prices in the initial auctions implies that

the reserve prices recommended by optimization on a short history of auctions are

often too high. As seen in Figure 2, this can lead to sharply reduced profit.
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5. MYERSON OPTIMAL AUCTION CASE

We now shift our focus slightly and restrict our attention to asymmetric indepen-

dent (rather than correlated) private values, to focus on how our approach can be

extended to the setting considered by Myerson (1981). We demonstrate that our

approach to estimating reserves can be extended to estimate the objects required

for implementing the optimal auction (rather than just a single reserve price) in the

case considered by Myerson (1981), that of asymmetric bidders with independent

private values. In this case, we assume that, in addition to observing the top two

bids from auctions without a reserve price, the researcher also observes the iden-

tity of the highest bidder (the bidder’s type, t); this is a standard assumption in

asymmetric auctions (Athey and Haile 2007).

Following Bulow and Roberts (1989), we denote the marginal revenue curve of

bidder i with type t as MRtp�q. This marginal revenue curve has the same inter-

pretation as in a standard monopoly problem: it is the additional revenue that a

monopoly seller would expect to obtain from the buyer, when facing this buyer in

isolation (in which case demand is given by 1 � Ftpvq) by raising the price a small

amount. We assume here that Ft is regular, i.e. that ψtpvq � v � 1�Ftpvq
ftpvq

is increas-

ing, in which case MRtpvq � ψtpvq. In the Myerson (1981) optimal auction, all

bidders report their values and the seller assigns the good to the bidder with the

highest marginal revenue, as long as it exceeds v0. The winning bidder pays the

least value he could report that would still result in his winning the object, given

all other reported values. That is, if i is the winning bidder and i has type t, i pays

MR�1
t pmax tv0, maxs�ttMRspvsquuq. To implement this auction, it is necessary to

know the marginal revenue functions of each bidder.

5.1. Identifying and Estimating Marginal Revenue Curves. We now describe

how MRtp�q can be identified. We first describe the concept of type-specific re-

serve prices. The feature that the seller assigns the good to the bidder with the

highest marginal revenue as long as it exceeds v0 implies that each bidder faces a
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type-specific reserve price, which we denote r�t , given by r�t � MR�1
t pv0q. Contin-

uing with the standard monopoly pricing analogy from Bulow and Roberts (1989)

(see also Krishna (2009), p. 67–73), the seller’s value, v0, can be thought of as the

marginal cost of selling the good, and thus the seller facing demand by a buyer of

type t would choose a price r�t such that MRtpr�t q � v0.

Now consider a seller designing a second-price auction in which the highest

value bidder was known to be of type t. We will refer to such a second-price

auction as a type-t auction. Let imax � arg maxiPt1,...,nu Vi and denote i’s type as

tpiq. The condition that the highest value bidder being of type t is then denoted

tpimaxq � t. Using similar notation to (3) above, the expected profit of a seller in a

type-t auction is given by

ptprtq � E
�
πpVp1q

j , Vp2q
j , v0, rtq|tpimaxq � t

�
(6)

The optimal reserve price in this setting can be obtained simply by maximizing (6)

over rt. As highlighted above, arguments in Bulow and Roberts (1989) imply that,

in terms of marginal revenues, a seller designing such an auction should choose a

reserve price such that r�t such that MRtpr�t q � v0, equivalent to the bidder-specific

reserve prices in the Myerson auction. Therefore, maximizing (6) over rt at differ-

ent values of v0 will trace out the inverse marginal revenue curve. That is, it will

yield r�t pv0q � MR�1
t pv0q, and hence will identify the MRt curve.

We state this result as the following observation:

Observation 2. For any type t, the marginal revenue curve MRtp�q is identified from

observations of Vp1q
j and Vp2q

j from auctions without a reserve price, in which the winner

was of type t.

To estimate MRtp�q, we limit to the Jt auctions in which a type-t bidder was the

winner, and estimate the following for a given value of v0:

p̂t,Jtprt, v0q � 1
Jt

Jţ

j�1

�
πpVp1q

j , Vp2q
j , v0, rq

�
(7)
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r̂t,Jtpv0q � arg max
r

p̂t,Jtpr, v0q (8)

where we explicitly state the dependence of the procedure on v0 in this case. Re-

peating this process for a range of values for v0 yields M̂R�1
t p�q.

Once marginal revenues have been estimated, the Myerson auction can be im-

plemented for a given set of reported values by determining which bidder has the

highest marginal revenue and determining that bidder’s payment as the lowest

value that bidder could have reported and still won.

5.2. Monte Carlo Simulations: Implementing Myerson’s Optimal Auction. We

now provide Monte Carlo simulations illustrating the approach in the Myerson

case. In these simulations we work with three bidders, although nowhere in the

estimation do we require the researcher to know the number of bidders in any

given auction; we assume for each auction the researcher observes the top two

bids and the identity of the winning bidder.10 We choose each bidder’s values

from a different lognormal distribution: V1 � LOGNp.5, .25q, V2 � LOGNp.75, .25q,
and V3 � LOGNp1, .25q. We simulate 10,000 auctions. Kernel density estimates of

the simulated draws are displayed in Panel A of Figure 7.

To illustrate the simplicity of this method and its potential for use even in Big

Data settings, we take a very coarse approach to optimization and estimation, and

still find that it performs quite well. We begin by evaluating (6) on a grid of pos-

sible reserve prices for each bidder and choose the maximizing reserve prices. We

perform this step at different values on a grid of v0, yielding estimates of bidder-

specific marginal revenue curves. Panels B–D of Figure 7 displays, for each bidder,

the estimated marginal revenue curve and the true underlying marginal revenue

curve, demonstrating that the estimates coincide quite well with the truth. We

then implement the Myerson (1981) optimal auction using the same simulated data

10Alternatively, one could assume that, for each bidder i, the researcher knows the probability that
i is the winning bidder and knows quantiles of the marginal distributions of the first and second
order statistics from auctions in which i was the winner.
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FIGURE 7. Densities of Bidder Valuations and Estimated Marginal
Revenue Functions
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Notes: Panel A displays Bidder densities for simulations, where V1 � LOGNp.5, .25q,

V2 � LOGNp.75, .25q, and V3 � LOGNp1, .25q. Panels B-D display estimated marginal revenue
curves and true marginal revenue curves for bidders in Monte Carlo simulations.

draws, estimating marginal revenue through linear interpolation of the marginal

revenues at grid points.

Figure 8 displays the estimated seller revenue under three different auction de-

signs. The horizontal axis represents the seller’s valuation for the good (v0). The

flat, dashed (blue) line is the seller’s expected revenue in a no-reserve auction.

The solid (red) line is the seller’s expected revenue from choosing a single reserve

price. The final, highest line (marked with black circles) is the expected revenue
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FIGURE 8. Expected Seller Revenue
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Notes: Expected seller revenue, as a function of seller’s valuation of the good, v0, under an
absolute (no-reserve) auction, auction with a single optimal reserve, or Myerson’s optimal auction,
from Monte Carlo simulation exercise.

in the Myerson (1981) auction. Figure 8 demonstrates that the gains from imple-

menting a Myerson’s optimal auction (as opposed to a no-reserve auction) can be

nearly twice the gains of implementing a single reserve price, especially at lower

values of the seller’s outside option.

6. CONCLUSION

We study a computationally simple approach for estimating the single optimal

reserve price in asymmetric, correlated private values settings and for estimat-

ing bidder-specific marginal revenue curves in asymmetric, independent private

values settings (in order to implement the Myerson (1981) optimal auction). The

approach applies to settings with incomplete bidding data, where only the top two

bids are observed, and where the number of bidders is unknown. These data re-

quirements are frequently met in online (advertising or e-commerce) settings. We
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also derive a new bound on the number of auction records one needs to observe

in order for realized revenue based on estimated reserve prices to approximate the

optimal revenue arbitrarily closely. We illustrate the approach using eBay data for

cataloged products, and illustrate that revenue would increase if optimal reserve

prices were employed in practice. We find that approximately 7–25 auctions need

to be recorded prior to estimating reserve prices in order for the estimated reserve

price to outperform revenue in a no-reserve auction (or an auction with the reserve

set to the seller’s valuation). In simulated data, we demonstrate the simplicity of

our approach to estimating marginal revenue curves and implementing Myerson’s

optimal auction, and illustrate the revenue gain that this auction design entails.

While the approach abstracts away from a number of information settings or

real-world details (such as common values or inter-auction dynamics), we believe

the virtue of the approach is its simplicity, providing a tractable approach to com-

puting reserve prices even in large, unwieldy datasets where typical computation-

ally demanding empirical auction approaches would be infeasible.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 1.

Proof. We will show that p̂prq converges uniformly in probability to pprq. Note that

πpVp1q
j , Vp2q

j , v0, rq can alternatively be written as maxtr, Vp2q
j u � pv0 � rq1pVp1q

j   rq
(see Aradillas-López et al. (2013)). For simplicity, assume that v0 � 0 and let

p̂1prq � 1
J
°J

j�1 max
!

r, Vp2q
j

)
and p̂2prq � �1

J
°J

j�1 r1
!

Vp1q
j   r

)
, so that p̂prq �

p̂1prq � p̂2prq. Notice that p̂1prq is Lipschitz continuous because, for any r1 and r2,

it follows that |p̂1pr1q � p̂1pr2q| ¤ |r1 � r2|. Furthermore, for any r, it follows by

the law of large numbers that p̂1prq pÝÑ p1prq. Thus, we can invoke Lemma 2.9

in Newey and McFadden (1994) to obtain supr |p̂1prq � p1prq| pÝÑ 0. Finally, it is

straightforward to check that the function f px, rq � �r1tx ¤ ru belongs to a VC

subgraph class (see, for example, van der Vaart and Wellner (1996)), which guaran-

tees uniform convergence of p̂2p�q. Consequently, we have supr |p̂prq � pprq| pÝÑ 0,

which guarantees that r̂J
pÝÑ r� and p̂pr̂Jq pÝÑ ppr�q. �

A.2. Proof of Theorem 2.

Proof. Let p̃prq � 1
J
°J

j�1 π̃pξ j, rq. Throughout the proof we will use r1 and r2 such

that, without loss of generality, r1 ¡ r2 ¡ r�. Throughout this proof, we will denote

the joint density of the two highest bids as f1,2p�, �q and the marginals as f1p�q and

f2p�q.
By the main theorem of Kim and Pollard (1990), if Assumptions 1 and 2 are

satisfied, and r� is an interior point, and if the following conditions hold

(1) Hpβ, αq � limtÑ0
1
t Erπ̃p�, r� � βtqπ̃p�, r� � αtqs exists for each β, α in R and

lim
tÑ0

1
t

Erπ̃p�, r� � αtq21t|π̃p�, r� � αtq| ¡ ε{tus � 0

for each ε ¡ 0 and α in R;

(2) ErP2
Rs � OpRq as R Ñ 0 and for each ε ¡ 0 there is a constant K such that

ErP2
R1tPR ¡ Kus   εR for R near 0;
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(3) Er|π̃p�, r1q � π̃p�, r2q|s � Op|r1 � r2|q near r�;

Then the process J2{3 1
J
°J

j�1 π̃p�, r� � αJ�1{3q converges in distribution to a Gauss-

ian process Zpαqwith continuous sample paths, expected value�1
2 α2Σ, and covari-

ance kernel H, where Hpβ, αq � limtÑ0
1
t Erπ̃p�, r� � βtqπ̃p�, r� � αtqs for any β, α in

R. Furthermore, if Z has nondegenerate increments, then J1{3pr̂J � r�q converges in

distribution to the random maximizer of Z. We now prove that conditions (1)–(3)

above are satisfied.

To establish condition (1), we first characterize the limiting behavior of 1
t Erπ̃p�, r��

βtqπ̃p�, r� � αtqs as t Ñ 0. By the definition of π̃p�, rq, this amounts to studying

the behavior of four different terms, which we conduct separately below. Let

r1 � r� � αt and r2 � r� � βt. First, we consider the term

h1 �
�

maxtVp2q, r1u �maxtVp2q, r�u
	�

maxtVp2q, r2u �maxtVp2q, r�u
	

.

Notice that when Vp2q ¡ r2 then h1 � 0; when Vp2q   r� then h1 � pr1 � r�qpr2 � r�q;
and when r�   Vp2q   r2 then h1 � pr1 �Vp2qqpr2 �Vp2qq. Therefore,

1
t

E
��

maxtVp2q, r1u �maxtVp2q, r�u
	�

maxtVp2q, r2u �maxtVp2q, r�u
	�

� 1
t

!
pr1 � r�qpr2 � r�qPrpVp2q   r�q

�E
�
pr1 �Vp2qqpr2 �Vp2qq|r�   Vp2q   r2

�
Prpr�   Vp2q   r2q

)
� 1

t

#
αβt2

» r�

0
f2puqdu� r1r2

» r2

r�
f2puqdu� pr1 � r2q

» r2

r�
u f2puqdu�

» r2

r�
u2 f2puqdu

+

� 1
t

!
αβt2F2pr�q �

�
pr�q2 � pα� βqt� αβt2

�
r f2pr�qpr2 � r�q � opr2 � r�qs

� r2r� � pα� βqts rr� f2pr�qpr2 � r�q � opr2 � r�qs �
�
pr�q2 f2pr�qpr2 � r�q � opr2 � r�q

�)
� 1

t

!
αβt2F2pr�q � αβt2 f2pr�qβt� optq

)
� 1

t
optq � op1q.
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The second term we consider is

h2 �
�

r�1tVp1q   r�u � r21tVp1q   r2u
	�

maxtVp2q, r1u �maxtVp2q, r�u
	

.

When Vp1q   r�, h2 � pr� � r2qpr1 � r�q; when r�   Vp1q   r2 and Vp2q   r�, h2 �
�r2pr1 � r�q; and when r�   Vp1q   r2 and r�   Vp2q   Vp1q, h2 � �r2pr1 � Vp2qq.
Hence,

1
t

E
��

r�1tVp1q   r�u � r21tVp1q   r2u
	�

maxtVp2q, r1u �maxtVp2q, r�u
	�

� 1
t

!
pr� � r2qpr1 � r�qPrpVp1q   r�q � r2pr1 � r�qPrpVp2q   r�   Vp1q   r2q

�r2r1Prpr�   Vp2q   Vp1q   r2q

�ErVp2q|r�   Vp2q   Vp1q   r2sPrpr�   Vp2q   Vp1q   r2q
)

� 1
t

#
�αβt2F1pr�q � r2αt

» r2

r�

» r�

0
f1,2pu, vqdudv� r1r2

» r2

r�

» v

r�
f1,2pu, vqdudv

�r2

» r2

r�

» v

r�
u f1,2pu, vqdudv

*
� 1

t

"
�αβt2F1pr�q � r2αt

» r2

r�
Fvpr�, vqdv� r1r2

» r2

r�
rFvpv, vq � Fvpr�, vqsdv

�r2

» r2

r�
rF1,2pv, vq � F1,2pv, r�qsdv

*
� 1

t

!
�αβt2F1pr�q � r2αtrβtFvpr�, r�q � optqs � r1r2optq � r2optq

)
� 1

t
optq � op1q.

The third term is

h3 �
�

r�1tVp1q   r�u � r11tVp1q   r1u
	�

maxtVp2q, r2u �maxtVp2q, r�u
	

.

The term h3 � 0 when Vp1q ¡ r1 or Vp2q ¡ r2; h3 � �r1pr2 � r�q when Vp2q  
r�   Vp1q   r1; h3 � �r1pr2 � Vp2qq when r�   Vp1q   r1 and r�   Vp2q   r2; and

h3 � pr� � r1qpr2 � r�q when Vp1q   r�. Consequently,

1
t

E
��

r�1tVp1q   r�u � r11tVp1q   r1u
	�

maxtVp2q, r2u �maxtVp2q, r�u
	�
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� 1
t

!
�r1pr2 � r�qPrpVp2q   r�   Vp1q   r1q

�r1

�
r2 �ErVp2q|r�   Vp1q   r1, r�   Vp2q   r2s

	
Prpr�   Vp1q   r1, r�   Vp2q   r2q

)
� 1

t

#
�r1βt

» r1

r�

» r�

0
f1,2pu, vqdudv� αβt2F1pr�q � r1r2

» r2

r�

» v

r�
f1,2pu, vqdudv

�r1r2

» r1

r2

» r2

r�
f1,2pu, vqdudv

�r1

» r2

r�

» v

r�
u f1,2pu, vqdudv� r1

» r1

r2

» r2

r�
u f1,2pu, vqdudv

*
� 1

t

"
�r1βt

» r1

r�
Fvpr�, vqdv� αβt2F1pr�q � r1r2

» r2

r�
rFvpv, vq � Fvpr�, vqsdv

�r1r2

» r1

r2

f1,2pr�, vqpr2 � r�qdv

�r1

» r2

r�
rF1,2pv, vq � F1,2pv, r�qsdv� r1r�

» r1

r2

f1,2pr�, vqpr2 � r�qdv� orpr2 � r�q2s
*

� 1
t

!
�r1αβt2Fvpr�, r�q � αβt2F1pr�q � r1r2opr1 � r�q

�r1opr2 � r�q � r1β2t2
» r1

r2

f1,2pr�, vqdv� orpr2 � r�q2s
*

� 1
t

optq � op1q.

The fourth and final term is

h4 �
�

r�1tVp1q   r�u � r21tVp1q   r2u
	�

r�1tVp1q   r�u � r11tVp1q   r1u
	

.

The term h4 � 0 if Vp1q ¡ r2; h4 � r1r2 if r�   Vp1q   r2; and h4 � pr� � r2qpr� � r1q
if Vp1q   r�. Thus,

1
t

E
��

r�1tVp1q   r�u � r21tVp1q   r2u
	�

r�1tVp1q   r�u � r11tVp1q   r1u
	�

� 1
t

!
r1r2Prpr�   Vp1q   r2q � pr� � r2qpr� � r1qPrpVp1q   r�q

)
� 1

t

"
r1r2

» r2

r�
f1pvqdv� αβt2F1pr�q

*
� 1

t

!
r1r2r f1pr�qpr2 � r�q � opr2 � r�qs � αβt2F1pr�q

)
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1
t

!
pr�q2 f1pr�qβt� optq

)
� pr�q2 f1pr�qβ� op1q.

These four results show that the limit Hpβ, αq is well defined for each β, α in

R, which establishes the first part of (1). For the second part of (1), notice that

|π̃p�, r� � αtq| is bounded for any t, which means that there exists a t   8 such that

the indicator would be 0 for all t   t, establishing the result.

We now establish (2). Let R ¡ 0 and ř be the maximizer of π̃p�, rq such that

|r � r�|   R. We first need to show that Erπ̃p�, řq2s � OpRq. We will split the

analysis into three terms. First, notice that for the first term:

pmaxtVp2q, řu �maxtVp2q, r�uq2 � p|maxtVp2q, řu �maxtVp2q, r�u|q2 ¤ p|ř � r�|q2   R2

which implies that its expected value is OpR2q. Moving to the next two terms we

will assume that ř ¡ r�, as the calculations for the opposite case are analogous. For

the second one,

pr�1tVp1q   r�u � ř1tVp1q   řuq2 � pr�q21tVp1q   r�u � ř2
1tVp1q   řuq2 � 2r�ř1tVp1q   r�u

so taking expectations yields:

pr�q2
» r�

0
f1pvqdv� r�ř

» r�

0
f1pvqdv��ř2

» ř

r�
f1pvqdv� ř2

» r�

0
f1pvqdv� r�ř

» r�

0
f1pvqdv

� př � r�q2F1pr�q � ř2r f1pr�qpř � r�q � opř � r�qs

� Opř � r�q � opř � r�q � Opř � r�q   OpRq.

The third and last term is given by:

E
�
pmaxtVp2q, řu �maxtVp2q, r�uqpr�1tVp1q   r�u � ř1tVp1q   řuq

�
� E

�
pmaxtVp2q, r�ur�1tVp1q   r�u

�
�E

�
pmaxtVp2q, řuř1tVp1q   řu

�
�E

�
pmaxtVp2q, r�uř1tVp1q   řu

�
�E

�
pmaxtVp2q, řur�1tVp1q   r�u

�
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� pr�q2
» r�

0

» v

0
f1,2pu, vqdudv� ř2

» ř

0

» v

0
f1,2pu, vqdudv

� ř
» ř

0

» v

0
maxtu, r�u f1,2pu, vqdudv� r�ř

» r�

0

» v

0
f1,2pu, vqdudv

� rpr�q2 � ř2s
» r�

0

» v

0
f1,2pu, vqdudv� ř2

» ř

r�

» v

0
f1,2pu, vqdudv

� ř
» ř

r�

» v

0
maxtu, r�u f1,2pu, vqdudv

� pr� � řqpr� � řqF1,2pr�, r�q � ř2
» ř

r�
Fvpv, vqdv� r�ř

» ř

r�

» r�

0
f1,2pu, vqdudv

� ř
» ř

r�

» v

r�
u f1,2pu, vqdudv

� Opr� � řq � řpř � r�qrFvpr�, r�qpr� � řq � opr� � řqs � ř
» ř

r�
Gpvqdv

� Opr� � řq � řrGpr�qpř � r�q � opř � r�qs � Opř � r�q   OpRq,

which, along with the results for the previous two terms, establishes the first part

of condition (2). The second part of condition (2) follows directly from the integra-

bility of π̃p�, řq2.

To verify that (3) holds, notice that:

|π̃pξ j, r1q � π̃pξ j, r2q|

� |πpξ j, r1q � πpξ j, r2q|

�
���max

!
Vp2q

j , r1

)
� r11

!
Vp1q

j   r1

)
�max

!
Vp2q

j , r2

)
� r21

!
Vp1q

j   r2

)���
¤
���max

!
Vp2q

j , r1

)
�max

!
Vp2q

j , r2

)���� ���r21
!

Vp1q
j   r2

)
� r11

!
Vp1q

j   r1

)���
¤ |r2 � r1| � 1

!
Vp1q

j   r2

)
|r2 � r1| � r1

���1!Vp1q
j   r2

)
� 1

!
Vp1q

j   r1

)���
Taking the expectation, we obtain

E
��π̃pξ j, r1q � π̃pξ j, r2q

�� ¤ |r2 � r1| � |r2 � r1|PrpVp1q
j   r2q � r1Prpr2   Vp1q

j   r1q

� Op|r2 � r1|q � f1pr2qpr1 � r2q � opr1 � r2q � Op|r2 � r1|q.
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This establishes (3).

Finally, we derive Σ. Notice that:

Erπ̃p�, rqs � Erπp�, rqs �Erπp�, r�qs

�
» ω̄

0
maxtr, Vp2qu f2puqdu�

» ω̄

0
r1tVp1q   ru f1pvqdv�Erπp�, r�qs

� r
» r

0
f2puqdu�

» ω̄

r
u f2puqdu� r

» r

0
f1pvqdv�Erπp�, r�qs

Differentiating this expression with respect to r, we obtain

BErπ̃p�, rqs
Br

�
» r

0
f2puqdu� r f2prq � r f2prq �

» r

0
f1pvqdv� r f1prq

�
» r

0
f2puqdu�

» r

0
f1pvqdv� r f1prq

Taking the second derivative and evaluating at r�, we obtain

Σ � � f2pr�q � 2 f1pr�q � r� f 11pr�q.

�

A.3. Proof of Theorem 3.

Proof. This theorem follows directly from Theorem 2. First, notice that p̂pr̂Jq �
ppr�q � 1

J
°J

j�1 π̃pξ j, r̂Jq� p̂pr�q� ppr�q. Since r̂J � r� � OPpJ�1{3q and 1
J
°J

j�1 π̃p�, r��
αJ�1{3q � OPpJ�2{3q, the term 1

J
°J

j�1 π̃pξ j, r̂Jq is also OPpJ�2{3q. A simple applica-

tion of the Central Limit Theorem establishes the result. �

A.4. Proof of Theorem 4. We will use slightly different notation in this proof than

elsewhere in the paper, letting SJ � pz1, . . . , zJq be a fixed sample of size J and

denoting quantities estimated on this sample by a subscript SJ .

We start with the definition of empirical Rademacher complexity:

Definition. Let G be a family of functions from Z to ra, bs, and SJ � pz1, . . . , zJq a fixed

sample of size J with elements in Z. Then the empirical Rademacher complexity of G with
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respect to SJ is defined as:

pRSJpGq � Eσ

��sup
gPG

1
J

J̧

j�1

σjgpzjq
��

where σ � pσ1, . . . , σJq, and each σj is an independent uniform random variable with

values in t�1,�1u.

We state a useful preliminary result.

Theorem 5. Let G be a family of functions mapping Z to r0, 1s. Then for any δ ¡ 0, with

probability at least 1� δ, for all g P G:

Ergpzqs � 1
J

J̧

j�1

gpzjq ¤ 2pRSJpGq � 3

d
log 2

δ

2J

Proof. See Mohri et al. (2012), Theorem 3.1. �

This result can be straightforwardly adapted to obtain a two-sided bound.

Corollary 1. Let G be a family of functions mapping Z to r0, 1s. Then for any δ ¡ 0, with

probability at least 1� δ, for all g P G:������Ergpzqs � 1
J

J̧

j�1

gpzjq
������ ¤ 2pRSJpGq � 3

d
log 4

δ

2J

Proof. Applying Theorem 5 above to G1 � t�g � 1 : g P Gu and noting thatpRSJpGq � pRSJpG1q, we obtain the result that for any δ{2 ¡ 0, with probability at

least 1� δ{2, for all g P G:

1
J

J̧

j�1

gpzjq � Ergpzqs ¤ 2pRSJpGq � 3

d
log 4

δ

2J
.

Theorem 5 also implies that for any δ{2 ¡ 0, with probability at least 1 � δ{2, for

all g P G:

Ergpzqs � 1
J

J̧

j�1

gpzjq ¤ 2pRSJpGq � 3

d
log 4

δ

2J
.
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Combining these two results and applying the union bound gives the desired re-

sult. �

Now for simplicity let v0 � 0 so that πpVp1q
j , Vp2q

j , rq � r1pVp2q
j   r ¤ Vp1q

j q �
Vp2q

j 1pr ¤ Vp2q
j q and G � tπp�, �, rq : r P r0, ωsu. We can now prove an upper bound

on ppr�q � ppprSJq in terms of the empirical Rademacher complexity of G.

Lemma 1. Let 0 ¤ Vp1q
j ¤ ω   8. For any δ ¡ 0, with probability at least 1� δ, it holds

that ppr�q � ppprSJq ¤ 4pRSJpGq � 6ω

c
log 4

δ
2J .

Proof.

ppr�q � ppprSJq � ppr�q � ppSJpprSJq � ppSJpprSJq � ppprSJq

¤ ppr�q � ppSJpr�q � ppSJpprSJq � ppprSJq.

¤ 2 sup
rPr0,ωs

|pprq � ppSJprq|.

The first inequality follows because prSJ maximizes ppSJ by definition. Applying

Corollary 1 with zj � pVp1q
j , Vp2q

j q we have that for any δ ¡ 0, with probability at

least 1� δ:

sup
rPr0,ωs

������ 1
ω

ErπpVp1q
j , Vp2q

j , rqs � 1
Jω

J̧

j�1

πpVp1q
j , Vp2q

j , rq
������ ¤ 2

ω
pRSJpGq � 3

d
log 4

δ

2J
,

or equivalently,

sup
rPr0,ωs

|pprq � ppSJprq| ¤ 2pRSJpGq � 3ω

d
log 4

δ

2J
.

Therefore for any δ ¡ 0, with probability at least 1� δ:

ppr�q � ppprSJq ¤ 4pRSJpGq � 6ω

d
log 4

δ

2J
.

�

Following Mohri and Medina (2016), define π1pVp1q
j , Vp2q

j , rq � Vp2q
j 1pr ¤ Vp2q

j q �
r1pVp2q

j   r ¤ Vp1q
j q � Vp1q

j 1pVp1q
j   rq and π2pVp1q

j , rq � �Vp1q
j 1pVp1q

j   rq, so that
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πpVp1q
j , Vp2q

j , rq � π1pVp1q
j , Vp2q

j , rq � π2pVp1q
j , rq. Define also G1 � tπ1p�, �, rq : r P

r0, ωsu and G2 � tπ2p�, rq : r P r0, ωsu. The following lemma is useful:

Lemma 2. Let H be a set of functions mapping X to R and let Ψ1, . . . , ΨJ be µ-Lipschitz

functions for some µ ¡ 0. Then for any sample SJ of J points x1, . . . , xJ P X , the following

inequality holds:

1
J

Eσ

��sup
hPH

J̧

j�1

σjpΨj � hqpxjq
�� ¤ µ

J
Eσ

��sup
hPH

J̧

j�1

σjhpxjq
�� .

Proof. See Lemma 14 in Mohri and Medina (2016). �

We now find an upper bound for the right hand side of Lemma 1, which is not

expressed in terms of Rademacher complexity and which makes the asymptotic

behavior of the term ppr�q � ppprSJq clear. This will lead to Theorem 4.

Lemma 3. Let 0 ¤ Vp1q
i ¤ ω   8. Then pRSJpGq ¤ ω

b
2

Jπ � opJ�1{2q.

Proof. Note that pRSJpGq ¤ pRSJpG1q � pRSJpG2q, as the supremum of a sum is less

than the sum of suprema. We give upper bounds on both of these terms. For the

first term, we have:

pRSJpG1q � Eσ

�� sup
rPr0,ωs

1
J

J̧

j�1

σjrVp2q
j 1pr ¤ Vp2q

j q � r1pVp2q
j   r ¤ Vp1q

j q �Vp1q
j 1pVp1q

j   rqs
��

¤ 1
J

Eσ

�� sup
rPr0,ωs

J̧

j�1

σjr

��
� 1

J
Eσ

�� sup
rPt0,ωu

J̧

j�1

σir

��
¤ 2ω

a
log 2

J

The first inequality follows from applying Lemma 2 with Ψjpxq � π1pVp1q
j , Vp2q

j , xq
and hpxq � x, and the observation that the functions Ψjprq are 1�Lipschitz for all

j. The equality follows because the supremum will always be attained at r � 0 (if
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j�1 σi ¤ 0) or at r � ω (if

°J
j�1 σj ¡ 0). The final inequality is an application of

Massart’s lemma (see for e.g. Mohri et al. (2012)).

For the second term, we have

pRSJpG2q � Eσ

�� sup
rPr0,ωs

1
J

J̧

j�1

�σjV
p1q
j 1pVp1q

j   rq
��

¤ ω

J
Eσ

�� sup
rPr0,ωs

J̧

j�1

�σj1pVp1q
j   rq

��
� ω

J
Eσ

�� sup
rPr0,ωs

J̧

j�1

σj1pVp1q
j   rq

��
¤ ω

d
2� 2 log J

J
.

The first inequality follows from applying Lemma 2 with Ψjpxq � Vp1q
j x and hpxq �

1pVp1q
j   xq, noting that Ψjpxq are ω-Lipschitz for all j. The equality follows be-

cause the distributions of σj and �σj are identical. Finally, the last inequality fol-

lows from Massart’s lemma (see Proposition 2 in Mohri and Medina (2016)).

Putting the bounds on pRSJpG1q and pRSJpG2q together, we have:

pRSJpGq ¤
2ω
a

log 2
J

�ω

d
2� 2 log J

J
.

�

This leads immediately to Theorem 4:

Theorem. Let 0 ¤ Vp1q
j ¤ ω   8. For any δ ¡ 0, with probability at least 1� δ over the

possible realizations of SJ , it holds that

ppr�q � ppprSJq ¤ ω

�
8
?

log 2
J � 4

b
2�2 log J

J � 6

c
log 4

δ
2J

�
.

Proof. Combine Lemmas 1 and 3. �




