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1 Introduction

Recent crises in the stock and housing markets have stimulated a new wave of macro-

finance models of risk-taking. A key challenge, and motivation, has been to find tractable

models of investor expectations that account not only for asset pricing puzzles such as

return predictability (Campbell and Shiller (1988), Fama and French (1988)) and excess

volatility (LeRoy and Porter (1981), Shiller (1981), LeRoy (2005)), but also for micro-

level stylized facts such as investors chasing past performances. As argued by Woodford

(2013), the empirical evidence suggests a need for dynamic models that go beyond the

rational-expectations hypothesis. In line with Woodford’s proposal, models of natural

expectation formation (Fuster, Hebert, and Laibson (2011); Fuster, Laibson, and Mendel

(2010)) and over-extrapolation (Barberis, Greenwood, Jin, and Shleifer (2015); Barberis,

Greenwood, Jin, and Shleifer (2016)) successfully capture a wide range of the stylized

facts. A core feature of these models is that agents over-weigh recent realizations of the

relevant economic variables when forming beliefs.

Another set of emerging stylized facts, which focuses on the long-lasting effects of

macro-financial shocks and their systematic cross-sectional differences, has been harder

to capture by these approaches. As conveyed by the notion of “depression babies” or the

“deep scars” of the 2008 financial crisis (Blanchard (2012)), macro-economic shocks ap-

pear to alter investment and consumption behavior for decades to come, beyond the time

frame of existing models, and there is significant cross-sectional heterogeneity. Younger

cohorts tend to react significantly more strongly than older cohorts. A growing em-

pirical literature on experience effects documents, for example, that personal lifetime

experiences in the stock-market predict future willingness to invest in the stock market

(Malmendier and Nagel (2011)), and the same for IPO experiences and future IPO in-

vestment (Kaustia and Knüpfer (2008); Chiang, Hirshleifer, Qian, and Sherman (2011)).

There is also evidence of experience effects in non-finance settings, e. g., on the long-term
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effects of graduating in a recession on labor market outcomes (Oreopoulos, von Wachter,

and Heisz (2012)) or of living in (communist) Eastern Germany to political attitudes

post-reunification (Alesina and Fuchs-Schundeln (2007)).1 In all of these applications,

researchers identify a long-lasting impact of crisis experiences on individual risk-taking

and illustrate their cohort-specific impact.

Much of the evidence on experience effects pertains directly to stated beliefs, e. g.,

beliefs about future stock returns (in the UBS/Gallup data), about future inflation (in

the Michigan Survey of Consumers), or about the outlook for durable consumption (also

in the MSC).2 A key difference relative to over-extrapolation and related approaches is

that experience-based learning generates cohort-specific differences in beliefs and in their

updating after a common shock. While more evidence on the exact process of household-

level learning is needed (see the discussions in Campbell (2008) and Agarwal, Driscoll,

Gabaix, and Laibson (2013)), the over-weighing of personal experiences appears to be

a pervasive and robust psychological phenomenon affecting belief formation, which is

related to availability bias as first put forward by Tversky and Kahneman (1974), as well

as the extensive evidence on the different effects of description versus experience.3

This growing empirical literature on experience effects and its strong psychological un-

derpinning raise the question whether experience-based learning and the implied dynamic

cross-cohort differences have the potential to explain aggregate dynamics. For example,

which generations invest in the stock market and how much? What are the dynamics of

stock market investment? How will the market react to a macro-shock?

Our paper develops an equilibrium model of asset markets that formalizes experience-

based learning and the resulting belief heterogeneity across investors. The model clarifies

1 See also Giuliano and Spilimbergo (2013), who relate the effects of growing up in a recession to
redistribution preferences.

2 Cf. Malmendier and Nagel (2011), Malmendier and Nagel (2016), Malmendier and Shen (2017).
3 See, for example, Weber, Böckenholt, Hilton, and Wallace (1993), Hertwig, Barron, Weber, and

Erev (2004), and Simonsohn, Karlsson, Loewenstein, and Ariely (2008).
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the channels through which past realizations affect future market outcomes by pinning

down the effect on investors’ own belief formation and the interaction with other genera-

tions’ belief formation. We derive the aggregate implications of learning from experience

and the implied cross-sectional differences in investor behavior. To our knowledge, this

model is the first to tease out the tension between experience effects and recency bias,

including the stronger reactions of the young than the old to a given macro shock. It aims

to provide a guide for testing to what extent experience-based learning can enhance our

understanding of market dynamics and of the long-term effect of demographic changes.

The key model features are as follows. We consider a stylized overlapping generations

(OLG) equilibrium model. Agents have CARA preferences and live for a finite number of

periods.4 During their lifetimes, they choose portfolios of a risky and a risk-free security.

We initially assume that agents maximize their per-period payoffs, i. e., are myopic.5 The

risky asset is in unit net supply and pays a random dividend every period. The risk-free

asset is in infinitely elastic supply and pays a fixed return. Investors do not know the

true mean of dividends, but learn about it by observing the history of dividends.

We begin by characterizing the benchmark economy in which agents know the true

mean of dividends. In this setting, there is no heterogeneity, and thus the demands of

all active market participants are equal and constant over time. Furthermore, there is a

unique no-bubble equilibrium with constant prices.

We then introduce experience-based learning. The assumed belief formation process

captures the two main empirical features of experience effects: First, agents over-weigh

their lifetime experiences. Second, their beliefs exhibit recency bias. We identify two

channels through which past dividends affect market outcomes. The first channel is the

4 The use of CARA preferences with Normal shocks allows us to keep our theoretical analysis tractable,
and is widely used in finance for this reason (see Vives (2010)).

5 Myopic agents omit the correlation between their next-period payoff and their continuation value
function. This yields behavior that is analogous to the commonly used assumption of short-term traders
(see Vives (2010)). In Section 7, we remove the myopia assumption and show that the first-order effects
of experience-based learning are identical to those derived for myopic agents.
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belief-formation process: shocks to dividends shape agents’ beliefs about future dividends.

Hence, individual demands depend on personal experiences, and the equilibrium price is

a function of the history of dividends observed by the oldest market participant. The

second channel is the generation of cross-sectional heterogeneity: different lifetime experi-

ences generate persistent differences in beliefs. Agents “agree to disagree.” Furthermore,

younger cohorts react more strongly to a dividend shock than older cohorts as it makes

up a larger part of their lifetimes. A positive shock induces younger cohorts to invest rel-

atively more in the risky asset, while a negative shock tilts the composition towards older

cohorts. Thus, the model has implications for the time series of trade volume: Changes

in the level of disagreement between cohorts lead to higher trade volume in equilibrium.

The model captures an interesting tension between heterogeneity in personal expe-

riences (which generates belief heterogeneity across cohorts) and recency bias (which

reduces belief heterogeneity). When there is strong recency bias, all agents pay a lot of

attention to the most recent dividends. Thus, their reactions to a recent shock are similar.

Price volatility increases, while price auto-correlation and trade volume decrease. The

opposite holds when the recency bias is weak, and agents form their beliefs using their ex-

perienced history. Hence, the reaction of prices and trade volume to changes in dividends

is tightly linked to the relative extent of recency bias versus experience-based differences

across cohorts in a given market, which are in turn influenced by demographics.

We explore the connection between market demographics and the dependence of prices

on past dividends by analyzing the effect of a one-time change in the fraction of young

agents that participate in the market. We find that the demographic composition of

markets significantly influences the dependence of prices on past dividends. For example,

when the market participation of the young relative to the old in the market increases,

the relative reliance of prices on more recent dividends increases. This is in line with

evidence in Cassella and Gulen (2015) who find that the level of extrapolation in markets
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is positively related to the fraction of young traders in that market.

We then turn to several tests of the empirical implications of our model. First, we show

that the model accommodates several key asset pricing features identified in prior liter-

ature. We follow the approach in Campbell and Kyle (1993) and Barberis, Greenwood,

Jin, and Shleifer (2015) to contrast CARA-model moments with the data. We show the

CARA-model analogues of return predictability (Campbell and Shiller (1988)) and of

predictability of the dividend-price ratio. This predictability of future price changes (and

dividend-price ratio changes) stems solely from the experience-based learning mechanism

rather than, say, a built-in dependence on dividends or past returns, and it depends on

the demographic structure of the market. Similarly, the model generates excess volatility

in prices and price changes as established by LeRoy and Porter (1981), Shiller (1981),

and LeRoy (2005), above and beyond the stochastic structure of the dividend process.

Experience-based learning generates new predictions for the cross-section of asset hold-

ings and trade volume, which we test in the data. Using the representative sample of

the Survey of Consumer Finance (SCF), merged with data from the Center for Research

in Security Prices (CRSP) and historical data on stock-market performance, we first

replicate and extend the evidence in Malmendier and Nagel (2011) on stock-market par-

ticipation. We show that cross-cohort differences in lifetime stock-market experiences

predict cohort differences in stock-market participation and in the fraction of liquid as-

sets invested in the stock market. In other words, cross-cohort differences both on the

extensive and on the intensive margin of stock market participation vary over time as

predicted by the time series of cross-cohort differences in lifetime experiences. We then

turn to the predictions regarding trade volume, and show that the de-trended turnover

ratio is strongly correlated with differences in lifetime market experiences across cohorts.

That is, changes in the experience-based level of disagreement between cohorts predict

higher abnormal trade volume, as predicted by the model.
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As the final step in our analysis, we argue that our qualitative results are still present

when we remove the myopic-agents assumption. We consider a version of our model where

agents re-balance their portfolios every period to maximize their final-period consump-

tion.6 The dynamic set-up allows us to analyze how hedging concerns and lifetime-horizon

effects interact with experience-based learning. Prior literature has shown that, in a

rational-expectations linear equilibrium, the agents’ multi-period investment problem can

be partitioned into a sequence of one-period ones (Vives (2010)). Under experience-based

learning, such partitioning is no longer possible. However, exploiting the CARA-Gaussian

setup, we are able to show that the demand of experience-based learners coincides with

the one in a different static problem where dividends are drawn from a modified Gaussian

distribution. That is, we can still partition the multi-period investment problem into a

sequence of one-period problems, albeit with a probability distribution of dividends that

differs from the original one. This latter result might also be of interest as an independent

technical contribution in solving belief dependencies beyond our specific model proposed.

Related Literature. There is a wide literature on the role of learning in explaining

asset pricing puzzles. Most closely related, Cogley and Sargent (2008) propose a model

in which the representative consumer uses Bayes’ theorem to update estimates of tran-

sition probabilities as realizations accrue. As in our paper, agents use less data than

a “rational-expectations-without-learning econometrician” would give them. There are

two important differences in our setup. First, agents are not Bayesian. Second, different

cohorts have different, finite experiences. Consequently, observations during an agent’s

lifetime have a non-negligible effect on beliefs and generate cross-cohort heterogeneity.

Our paper also relates to the work on extrapolation by Barberis, Greenwood, Jin,

and Shleifer (2015) and Barberis, Greenwood, Jin, and Shleifer (2016). They consider a

consumption-based asset pricing model with both “rational” and “extrapolative” agents.

6 This approach to modeling dynamic portfolio choices is again following a widely used approach in
the literature, see Vives (2010).
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The latter believe that positive price changes will be followed by positive changes. In

contrast, the heterogeneity in extrapolation in our model is linked to the demographic

structure of the market. In addition, while cross-sectional heterogeneity in their model

arises from the presence of both “rational” and “extrapolative” infinitely-lived agents,

in our model, it results from the different experiences of different finitely-lived cohorts.

This allows us to generate predictions about the cross-section of asset holdings and the

relation between extrapolation and demographics in line with the data.

More generally, our paper relates to the large asset-pricing literature that departs from

the correct-beliefs paradigm. For instance, Barsky and DeLong (1993), Timmermann

(1993), Timmermann (1996), Adam, Marcet, and Nicolini (2012) study the implications of

learning and Cecchetti, Lam, and Mark (2000) and Jin (2015) of distorted beliefs for stock-

return volatility and predictability, the equity premia, and booms and busts in markets.

At the same time, our approach is different from asset pricing models with asymmetric

information, as surveyed in Brunnermeier (2001). While in these models agents want

to learn the information their counter-parties hold, in our model of experienced-based

learning, information is available to all agents at all times.

Finally, there are contemporaneous papers on learning in OLG models (Collin-Dufresne,

Johannes, and Lochstoer (2016), Schraeder (2015)). Most closely related, Ehling, Graniero,

and Heyerdahl-Larsen (2015) explore the role of experience in portfolio decisions and as-

set prices in a complete-markets setting. They focus on trend chasing and the negative

relation between beliefs about expected returns and realized future returns, as shown by

Greenwood and Shleifer (2014). In our incomplete-markets setting, instead, we study the

cross-section of asset holdings and the relation between demographics, pricing, and trad-

ing dynamics. Our model futher incorporates recency bias in agent’s beliefs formation.

There is also a large literature that proposes other mechanisms, such as borrowing

constraints or life-cycle considerations, as the link from demographics to asset prices and
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other equilibrium quantities. We view these other mechanisms as complementary to our

paper. They are omitted for the sake of tractability of the model.

The remainder of the paper first presents the model setup and the notion of experience-

based learning in Section 2. We illustrate the mechanics of the model in a simplified

setting in Section 3. The main results are in Section 4. Section 5 extends the model

to study demographic shocks. Section 6 present empirical implications. We remove the

myopia assumption in Section 7. Section 8 concludes. All proofs are in the Appendix.

2 Model Set-Up

Consider an infinite-horizon economy with overlapping generations of a continuum of

risk-averse agents. At each point in time t ∈ Z, a new generation is born and lives for q

periods, q ∈ {1, 2, 3, ...}. Hence, there are q+1 generations alive at any t. The generation

born at t = n is called generation n. Each generation has a mass of q−1 identical agents.

Agents have CARA preferences with risk aversion γ. They can transfer resources

across time by investing in financial markets. Trading takes place at the beginning of

each period. At the end of the last period of their lives, agents consume the wealth they

have accumulated. We use nq to indicate the last time at which generation n trades,

nq = n+ q− 1. (If the generation is denoted by t we use tq.) Figure 1 illustrates the time

line of this economy for two-period lived generations (q = 2).

There is a risk-free asset, which is in perfectly elastic supply and has a gross return

of R > 1 at all times. And there is a single risky asset (a Lucas tree), which is in unit

net supply and pays a random dividend dt ∼ N (θ, σ2) at time t. To model uncertainty

about fundamentals, we assume that agents do not know the true mean of dividends θ

and use past observations to estimate it. To keep the model tractable, we assume that

the variance of dividends σ2 is known at all times.
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For each generation n ∈ Z, the budget constraint at any time t ∈ {n, ..., n+ q} is

W n
t = xnt pt + ant , (1)

where W n
t denotes the wealth of generation n at time t, xnt is the investment in the risky

asset (units of Lucas tree output), ant is the amount invested in the riskless asset, and pt

is the price of one unit of the risky asset at time t. As a result, wealth next period is

W n
t+1 = xnt (pt+1 + dt+1) + antR = xnt (pt+1 + dt+1 − ptR) +W n

t R. (2)

We denote the excess payoff received in t+ 1 from investing at time t in one unit of the

risky asset, relative to the riskless asset, as st+1 ≡ pt+1 + dt+1 − ptR. This is analogous

to the equity premium in our CARA-model. Using this notation, W n
t+1 = xnt st+1 +W n

t R.

We assume that agents maximize their per-period utility (i. e., are myopic). This

assumption simplifies the maximization problem considerably and highlights the main

determinants of portfolio choice generated by experience-based learning. In Section 7, we

show that the same determinants are at work when this assumption is removed.

For a given initial wealth level W n
n , the problem of a generation n at each time t ∈

{n, ..., nq} is to choose xnt to maximize En
t [− exp(−γW n

t+1)], and hence

xnt ∈ arg max
x∈R

En
t [− exp(−γxst+1)] . (3)

where En
t [·] is the (subjective) expectation with respect to a Gaussian distribution with

variance σ2 and a mean denoted by θnt . We call θnt the subjective mean of dividends, and

we define it below. Note that, when xnt is negative, generation n is short-selling.
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t t+1 t+2 t+3 t+4

(t− 2)-cohort
consumes

(t− 1)-cohort
trades

(t− 1)-cohort
consumes

t-cohort
is born and trades

t-cohort
trades

t-cohort
consumes

(t+ 1)-cohort
is born and trades

(t+ 1)-cohort
trades

(t+ 2)-cohort
trades

(t+ 3)-cohort
trades

Figure 1: A time line for an economy with two-period lived generations, q = 2.

2.1 Experience-Based Learning

In this framework, experienced-based learning (EBL) means that agents over-weigh re-

alization observed during their lifetimes when forecasting dividends, and that they tilt

the excess weights towards the most recent observations. For simplicity, we assume that

agents only use observations realized during their lifetimes.7 That is, even though they

observe the entire history of dividends, they choose to disregard earlier observations.8

EBL differs from reinforcement learning-type models in two ways. First, as already

discussed, EBL agents understand the model and know all the primitives except the

mean of the dividend process. Hence, they do not learn about the equilibrium, they learn

in equilibrium. Second, EBL is a passive learning problem in the sense that players’

actions do not affect the information they receive. This would be different if we had,

say, a participation decision that links an action (participate or not) to the type of data

obtained for learning. We consider this to be an interesting line to explore in the future.

We construct the subjective mean of dividends of generation n at time t following the

7 We only need agents to discount pre-lifetime relative to lifetime observations for our results to hold.
8 In our full-information setting, prices do not add any additional information. While it is possible

to add private information and learning from prices to our framework, these (realistic) feature would
complicate matters without necessarily adding new intuition.
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empirical evidence Malmendier and Nagel (2011):

θnt ≡
age∑
k=0

w(k, λ, age)dt−k, (4)

where age = t− n, and where, for all k ≤ age,

w(k, λ, age) =
(age+ 1− k)λ∑age
k′=0(age+ 1− k′)λ (5)

denotes the weight an agent aged age assigns to the dividend observed k periods earlier,

and w(k, λ, age) ≡ 0 for all k > age. The denominator in (5) is a normalizing constant

that depends only on age and on the parameter that regulates the recency bias, λ. For

λ > 0, more recent observations receive relatively more weight, whereas for λ < 0 the

opposite holds. Here are three examples of possible weighting schemes:

Example 2.1 (Linearly Declining Weights, λ = 1). For λ = 1, weights decay linearly as

the time lag increases, i. e., for any 0 ≤ k, k + j ≤ age,

w(k + j, 1, age)− w(k, 1, age) = − j∑age
k′=0(age+ 1− k′) .

Example 2.2 (Equal Weights, λ = 0). For λ = 0, lifetime observations are equal-

weighted, i. e., for any 0 ≤ k ≤ age, w(k, 0, age) = 1
age+1

.

Example 2.3. For λ→∞, the weight assigned to the most recent observation converges

to 1, and all other weights converge to 0, i. e., for any 0 ≤ k ≤ age, w(k, λ, age)→ 1{k=0}.

Observe that by construction, θnt ∼ N(θ, σ2
∑age

k=0(w(k, λ, age))2). Hence, θnt does not

necessarily converge to the truth as t→∞; it depends on whether
∑age

k=0(w(k, λ, age))2 →

0. This in turn depends on how fast the weights for “old” observations decay to zero (i. e.,

how small λ is). When agents have finite lives, convergence will not occur.
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We conclude this section by showing a useful property of the weights, which is used in

the characterization of our results.

Lemma 2.1 (Single-Crossing Property). Let age′ < age and λ > 0. Then the function

w(·, λ, age)−w(·, λ, age′) changes signs (from negative to non-negative) exactly once over

{0, ..., age′ + 1}.

2.2 Comparison to Bayesian Learning

To better understand the experience-effect mechanism, we compare the subjective mean

of EBL agents to the posterior mean of agents who update their beliefs using Bayes rule.

We consider two cases: Full Bayesian Learning (FBL), wherein agents use all the available

observations to form their beliefs; and Bayesian Learning from Experience (BLE), where

agents only use data realized during their lifetimes.

Full Bayesian Learners. To illustrate the comparison of EBL and FBL in a common

sample, just for this analysis, we start the economy at an initial time t = 0, since FBL use

all the available observations since “the beginning of time.” Then, all generations of FBL

agents consider all observations since time 0 to form their belief. We denote the prior of

FBL agents as N(m, τ 2). For simplicity, all generations have the same prior, though the

analysis can easily be extended to heterogeneous Gaussian priors across generations.9

The posterior mean of any generation alive at time t, denoted by θ̂t, is given by

θ̂t =
τ−2

τ−2 + σ−2t
m+

σ−2t

τ−2 + σ−2t

(
1

t

t∑
k=0

dk

)
.

The belief of an FBL agent is a convex combination of the prior m and the average of all

observations dk realized since time 0. The key difference to EBL agents is that differences

in personal experiences do not play a role: there is no heterogeneity in beliefs, and all

9 The assumption of Gaussianity is also not needed but simplifies the exposition greatly.
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generations alive in any given period have the same belief about the mean of dividends. In

addition, beliefs of FBL agents are non-stationary, i. e., they depend on the time period.

As t → ∞, the posterior mean converges (almost surely) to the true mean. That is,

with FBL the implications of learning vanish as time goes to infinity. With EBL, this is

not true. Since agents have finite lives and learn from their own experiences, our model

generates learning dynamics even as time diverges.

Bayesian Learners from Experience. For BLE agents, the situation is different. We

assume again that each generation has a prior N(m, τ 2) when they are born. Here, the

posterior mean of generation n at period t = n+ age, denoted by θ̃nt , is given by

θ̃nt =
τ−2

τ−2 + σ−2(age+ 1)
m+

σ−2(age+ 1)

τ−2 + σ−2(age+ 1)

(
1

age+ 1

t∑
k=n

dk

)
.

The belief of a BLE generation is a convex combination of the prior m and the average

of (only) the lifetime observations dk available to date. Note that this average coincides

with the belief θnt of experience-based learners when λ = 0. In this case, the posterior

mean of BLE agents differs from the subjective mean of EBL agents only due to the

presence of the prior. As a result, if the prior of BLE agents is diffuse, i. e., τ →∞, then

θ̃nn+a coincides with the θnn+a of EBL agents with λ = 0. The same is true as age→∞.

2.3 Equilibrium Definition

We now proceed to define the equilibrium of the economy with EBL agents.

Definition 2.1 (Equilibrium). An equilibrium is a demand profile for the risky asset

{xnt }, a demand profile for the riskless asset {ant }, and a price schedule {pt} such that:

1. Given the price schedule, {(ant , xnt ) : t ∈ {n, ..., nq}} solve the generation-n problem.

2. The market clears in all periods: 1 = 1
q

∑t
n=t−q+1 x

n
t for all t ∈ Z.
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We focus the analysis on the class of linear equilibria, i. e., equilibria with affine prices:

Definition 2.2 (Linear Equilibrium). A linear equilibrium is an equilibrium wherein

prices are an affine function of dividends. That is, there exists a K ∈ N, α ∈ R, and

βk ∈ R for all k ∈ {0, ..., K} such that

pt = α +
K∑
k=0

βkdt−k. (6)

Benchmark with known mean of dividends. For the sake of benchmarking our

results for EBL agents, we characterize equilibria in an economy where the mean of

dividends, θ, is known by all agents, i. e., En
t [dt] = θ ∀n, t. In this scenario, there are no

disagreements across cohorts, and the demand of any cohort trading at time t is

xnt ∈ arg max
x∈R

E [− exp(−γxst+1)] . (7)

The solution to this problem is standard and given by

xnt =
E [st+1]

γV [st+1]
(8)

for all n ∈ {t−q+1, ..., t}, and zero otherwise. Since there is no heterogeneity in cohorts’

demands and there is a unit supply of the risky asset, in any equilibrium, xnt = 1 for all

n ∈ {t− q + 1, ..., t}, and zero otherwise. Furthermore, there exists a unique bubble-free

equilibrium with constant prices pt = P ∀t where P = θ−γσ2

R−1
.

3 Illustration: A Toy Model

To illustrate the mechanics of the model, we first highlight the main results of the paper

in a simple environment, namely, for q = 2. We will solve the model for any q > 1 in the
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next section, and the non-myopic case in Section 7.

In the toy model with q = 2, there are three cohorts alive at each point in time: a

young cohort, which enters the market for the first time; a middle-aged cohort, which is

participating in the market for the second time; and an old cohort, whose agents simply

consume the payoffs from their lifetime investments. At time t, the problem of generations

n ∈ {t, t−1} is given by (3). It is easy to show that their demands for the risky asset are

xnt =
En
t [st+1]

γV n
t [st+1]

.

As one of our first key results in Section 4, we will show that (i) prices depend on

the history of dividends, and (ii) this price predictability is limited to the past dividends

observed (experienced) by the oldest generation trading in the market. In other words,

we show that K = q− 1 in equation (6). Anticipating this result here for q = 2, we have

pt = α + β0dt + β1dt−1. (9)

The dependence of prices on past dividends is an important feature of our model,

which is shared by many models of extrapolation and learning. A distinct feature of our

model is that this dependence is intrinsically linked to the demographic structure of the

economy. It matters which generations are participating in the market and how much.

The cross-sectional differences in lifetime experiences, and the resulting cross-sectional

differences in beliefs, determine cohorts’ trading behavior. Given the functional form for

prices, we can re-write the demands of both cohorts that are actively trading as

xtt =
α + (1 + β0)Et

t [dt+1] + β1dt − ptR
γ (1 + β0)2 σ2

xt−1
t =

α + (1 + β0)Et−1
t [dt+1] + β1dt − ptR

γ (1 + β0)2 σ2
.
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The difference between cohorts’ demand arises from their different beliefs about future

dividends, Et
t [dt+1] and Et−1

t [dt+1], given by

Et
t [dt+1] = dt,

Et−1
t [dt+1] =

(
2λ

1 + 2λ

)
︸ ︷︷ ︸
w(0,λ,1)

dt +

(
1

1 + 2λ

)
︸ ︷︷ ︸
w(1,λ,1)

dt−1.

These formulas illustrate the mechanics of EBL and the cause of heterogeneity among

agents. In the simplified setting, the younger generation has only experienced the divi-

dend dt and expects the dividends to be identical in the next period. The older generation,

having more experience, incorporates the previous dividend in their weighing scheme. An

implication of these formulas is that the younger generations react more optimistically

than older generations to positive changes in recent dividends, and more pessimistically

to negative changes. In Section 4.2, we show that this result continues to hold in the

general model. We also see that belief heterogeneity is increasing in the change in divi-

dends, |dt − dt−1|, and decreasing in the recency bias, λ. In Section 4.3, we exploit this

observation to link movements in the volume of trade to belief disagreements.

We now impose the market clearing condition, 1
2
(xtt + xt−1

t ) = 1, to derive the equi-

librium price given these demands. We use the method of undetermined coefficients to

solve for {α, β0, β1}. Setting the constants and the terms that multiply dt and dt−1 to

zero, we obtain a system of equations whose solution determines the price constant and
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the loadings of present and past dividends on prices,

α =− γ(1 + β0)2σ2

R− 1
, (10)

β0 =
2R2

(R− 1)
(

1 + 2R− 2λ

1+2λ

) − 1, (11)

β1 =
R
(

1− 2λ

1+2λ

)
(R− 1)

(
1 + 2R− 2λ

1+2λ

) . (12)

These solutions illustrate how the price loadings on past dividends depend on the de-

mographics of the economy and on the magnitude of the recency bias. It is easy to derive

the unconditional price volatility, which is σ(pt) = (β2
0 +β2

1)
1
2σ, and price auto-correlation,

which is ρ(pt, pt+j) = β0β1 for j = 1 and ρ(pt, pt+j) = 0 for j > 1. The variance of prices

is increasing in the recency bias λ while the price auto-correlation is decreasing in the re-

cency bias. The intuition is s traightforward: as the recency bias increases, prices become

more responsive to the most recent dividend, ∂β0
∂λ

> 0, increasing price volatility, and less

responsive to past dividends, ∂β1
∂λ

< 0, decreasing price autocorrelation. In Section 5, we

present an enriched version of the model with demographic shocks and discuss how these

price loadings vary with the demographic structure of the economy.

4 Results for General Model

We now return to the general case (i. e., allow for any q > 1) and characterize the

portfolio choices and resulting demands for the risky asset of the different cohorts when

agents exhibit EBL. We impose affine prices, then use market clearing to verify the affine

prices guess, and fully characterize demands and prices. Deriving the results in the

general model allows us to discuss in more detail the relation between demographics,

cross-sectional asset holdings, and market dynamics. We obtain testable predictions,
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which we bring to the data in Section 6.

4.1 Characterization of Equilibrium Demands and Prices

For any s, t ∈ Z, let ds:t = (ds, ..., dt) denote the history of dividends from time s up to

time t. For simplicity and WLOG, we assume that the initial wealth of all generations

is zero, i.e., W n
n = 0 for all n ∈ Z. At time t ∈ {n, ..., nq}, an agent of generation n

determines her demand for the risky asset maximizing En
t [− exp (−γxst+1)], as in (3).

The model set-up allows us to derive a standard expression for risky-asset demand:

Proposition 4.1. Suppose pt = α+
∑K

k=0 βkdt−k with β0 6= −1. Then, for any generation

n ∈ Z trading in period t ∈ {n, ..., nq}, demands for the risky asset are given by

xnt =
En
t [st+1]

γV [st+1]
=

En
t [st+1]

γ(1 + β0)2σ2
. (13)

The expression for the risky-asset demands in equation (13) allows us to derive equi-

librium prices. Note that equation (13) implies that demands at time t are affine in

dt−K:t. It is easy to see, then, that beliefs about future dividends are linear functions of

the dividends observed by each generation participating in the market, and thus prices

depend on the history of dividends observed by the oldest generation in the market:

Proposition 4.2. The price in any linear equilibrium is affine in the history of dividends

observed by the oldest generation participating in the market, i.e., for any t ∈ Z

pt = α +

q−1∑
k=0

βkdt−k, with (14)
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α = − 1(
1−∑q−1

j=0
wj
Rj+1

)2

γσ2

R− 1
(15)

βk =

∑q−1−k
j=0

wk+j
Rj+1

1−∑q−1
j=0

wj
Rj+1

k ∈ {0, ..., q − 1} (16)

where wk ≡ 1
q

∑q−1
age=0w (k, λ, age).

Proposition 4.2 establishes a novel link between the factors influencing asset prices and

demographic composition. For each k = {0, 1, ..., q − 1}, one can interpret wk as the

average weight placed on the dividend observed at time t− k by all generations trading

at time t. As the formula also reveals, the relative magnitudes of the weights on past

dividends, βk, depend on the number of cohorts in the market, q, on the fraction of each

cohort in the market, 1
q
, and on the extent of agents’ recency bias, λ.10

The main idea of the proposition is as follows. In a linear equilibrium, demands at

time t are affine in dividends dt−K:t. However, from these dividends, only dt−q+1:t matter

for forming beliefs; the dividends dt−K:t−q only enter through the definition of linear

equilibrium. The proof shows that, under market clearing, the coefficients accompanying

older dividends dt−K:t−q are zero. The proposition also implies that we can apply the same

restriction to demands and conclude that demands at time t only depend on dt−q+1:t.

Note that ∂βk
∂R

< 0 and ∂α
∂R

> 0 for any λ. That is, if the interest rate is higher, the

equilibrium price of the risky asset responds less strongly to past dividends. Furthermore,

higher risk aversion γ decreases the equilibrium price by lowering α.

The following proposition establishes that, as long as agents exhibit any positive re-

cency bias (i. e., λ > 0), the sensitivity of prices to past dividends is stronger the more

recent the dividend realization.

10 In our baseline model, cohorts are equally weighted. We remove this assumption in Section 5, where
we analyze demographic shocks. In those examples, there is no link between the number of cohorts and
the fraction of each cohort in the market.
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Proposition 4.3. For λ > 0, more recent dividends affect prices more than less recent

dividends, i. e., 0 < βq−1 < .... < β1 < β0.

This result reflects the fact that the dividends at time t are observed by all generations

whereas past dividends are only observed by older generations. At the same time, the

extent to which prices depend on the most recent dividends varies with the level recency

bias, as shown in the following Lemma.

Lemma 4.1. The effect of the most recent dividend realization on prices, β0, is increasing

in λ, with lim
λ→∞

β0(λ) = 1/(R− 1) and lim
λ→∞

βk(λ) = 0 for k > 0.

As λ→∞, the average weights wk (defined in Proposition 4.2) converge to 1{k=0} for

all k = {0, 1, ..., K}. Therefore, βk → 0 for all k > 0 and β0 → 1
R−1

. In other words, under

extreme recency bias (λ → ∞), only the current dividend affects prices in equilibrium,

while the weights on all past dividends vanish.

In Section 5, we show that the dependence of prices on more recent dividends is also

increasing in the fraction of young agents in the market; that is, β0 increases as the

relative measure of the youngest cohort in the market increases.

These results on price sensitivity to past dividends, as well as the dampening effect of

recency bias on cross-sectional heterogeneity, produce a range of asset pricing implica-

tions, from known puzzles such as the predictability of stock returns and excess volatility

to new predictions about the link between asset prices and demographcis. We will derive

and test these empirical implications in Section 6.

4.2 Cross-Section of Asset Holdings

Experience-based learning also has distinctive implications for the cross-section of asset

holdings. We show that positive shocks (booms) induce a larger representation of younger

investors in the market, while downward shocks (crashes) have the opposite effect. To
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illustrate this, we first show that younger investors react more optimistically than older

ones to positive changes in recent dividends, and more pessimistically to negative ones.

Proposition 4.4. For any t ∈ Z and any generations n ≤ m trading at t, there is a

threshold time-lag k0 ≤ t−m− 1 such that for dividends that date back up to k0 periods,

the risky-asset demand of the younger generation (born at m) responds more strongly to

changes than the demand of the older generation (born at n), while for dividends that

date back more than k0 periods the opposite holds. That is,

1.
∂xmt
∂dt−k

≥ ∂xnt
∂dt−k

for 0 ≤ k ≤ k0 and

2.
∂xmt
∂dt−k

≤ ∂xnt
∂dt−k

for k0 < k ≤ q − 1.

Proposition 4.4 establishes that, for any two cohorts of investors, there is a threshold

time-lag up to which past dividends are weighted more by the younger generation, and

beyond which past dividend realization are weighted more by the older generation.

In what follows, we extend this insight into predictions about relative stock-market

positions. We show that, as a result of the stronger impact of more recent shocks on the

beliefs (and thus, demands) of younger generations, the relative positions of the young

and the old in the market fluctuate. Let us denote the difference between generations n

and n + k in terms of their investment in the risky asset, as ξ(n, k, t) ≡ xnt − xn+k
t . By

Proposition 4.1, and some simple algebra, it follows that:

ξ(n, k, t) =
En
t [θ]− En+k

t [θ]

γ(1 + β0)σ2
∀k = {0, ..., t− n}, n = {t− q + 1, ..., t} (17)

This formulation illustrates that the discrepancy between the positions of different gener-

ations is entirely explained by the discrepancy in beliefs. For instance, if for some a > 0,

dn:t ≈ dn+a:t+a, then ξ(n+ a, k, t+ a) ≈ ξ(n, k, t).11

11 This last claim follows since the inter-temporal change in discrepancies between sets of generations
of the same age, ξ(n+ a, k, t+ a)− ξ(n, k, t) for a > 0, is given by (

∑t−n−k
j=0 {w(j, λ, t− n)− w(j, λ, t−

n− k)}(dt+a−j − dt−j) +
∑t−n
j=t−n−k+1 w(j, λ, t− n)(dt+a−j − dt−j))/(γ(1 + β0)σ2).
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The next result shows that, among generations born and growing up in “boom times,”

understood as periods of increasing dividends, the younger generations have a relatively

higher demand for the risky asset than the older generations. The reverse holds for

“depression babies,” i. e., generations born during times of contraction. In times of de-

pression, the younger generations exhibit a particularly low willingness to invest in the

risky asset, relative to older generations born during those times.

Proposition 4.5. Suppose λ > 0. Consider two points in time t0 ≤ t1 such that dividends

are non-decreasing from t0 up to t1. Then for any two generations n ≤ n+k born between

t0 and t1, the demand of the older generation for the risky asset (xnt ) is lower than the

demand of the younger generation (xn+k
t ) at any point n ≤ t ≤ t1, i.e., ξ(n, k, t) ≤ 0. On

the other hand, if dividends are non-increasing, then ξ(n, k, t) ≥ 0.

The proposition illustrates that, while boom times tend to make all cohorts growing up

in such times more optimistic, the effect is particularly strong for the younger generations.

This induces them to be overrepresented in the market for the risky asset. The opposite

holds during times of downturn.

4.3 Trade Volume

We now study how learning and disagreements affect the volume of trade observed in the

market. We consider the following definition of the total volume of trade in the economy:

TVt ≡
(

1

q

t∑
n=t−q

(
xnt − xnt−1

)2

) 1
2

(18)

with xtt−1 = 0. That is, trade volume is the square root of the weighted sum (squared) of

the change in positions of all agents in the economy. Using this definition, we characterize

the link between trade volume and belief heterogeneity.
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Proposition 4.6. The trade volume defined in (18) can be expressed as

TVt =

χ2

q

t∑
n=t−q

((
θnt − θnt−1

)
− 1

q

t∑
ñ=t−q

(
θñt − θñt−1

))2

+
1

q
(xtt)

2 +
1

q
(xt−qt−1)2

 1
2

, (19)

where χ = 1
γσ2(1+β0)

, θtt−1 = θt−qt = 0.

Expression (19) illustrates that the presence of EBL induces trade through changes

in beliefs, which in our framework are driven by shocks to dividends. More specifically,

when the change in a cohort’s beliefs is different from the average change in beliefs, trade

volume increases. That is, trade volume increases in the dispersion of changes in beliefs.

To understand the drivers of trade volume, we need to understand not only the demands

of agents that enter and exit the market, but, most importantly, how beliefs across

cohorts change in response to a given shock. From our previous analysis, it follows

that an increase (decrease) in dividends induces trade when it makes young agents more

optimistic (pessimistic) than old agents. This mechanism is solely due to the presence of

EBL, since it is essential that each generation reacts differently to the same dividend.

We formalize this insight in the following thought experiment capturing the reaction

to a dividend shock that occurs after a long period of stability.

Thought Experiment. Suppose that, for t − t0 > q, dt0 = dt0+1 = ... = dt−1 = d̄

and that dt 6= d̄. Hence, all generations alive at time t− 2 and t− 1 have only observed

a constant stream of dividends d̄ over their lifetimes so far. Therefore, En
t−2 [dt−1] =

En
t−1 [dt] = d̄ for all n ∈ {t − 1 − q, ..., t − 1} and thus trade volume in t − 1 is simply

given by the demand of the youngest (entering) and the oldest (exiting) agents.

What happens at time t, when a dividend dt 6= d̄ is observed? For each generation n

trading at time t and at time t − 1, i. e., for n = {t − q + 1, .., t − 1}, beliefs are given

by En
t [dt+1] = w(0, λ, t − n)(dt − d̄) + d̄ and En

t−1 [dt] = w(0, λ, t − 1− n)(dt−1 − d̄) + d̄,

which implies the following change in cohort n’s beliefs: En
t [dt+1]−En

t−1 [dt] = w(0, λ, t−
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n)(dt − d̄). Trade volume in t is therefore:

TVt =

χ2
(
dt − d̄

)2

q

t−1∑
n=t−q+1

(
w(0, λ, t− n)− 1

q

t−1∑
ñ=t−q+1

w(0, λ, t− ñ)

)2

+
1

q
(xtt)

2 +
1

q
(xt−qt−1)2

 1
2

.

(20)

This thought experiment pins down two aspects of the link between the volatility in

beliefs and trade volume: First, the trade volume increases proportionally to the change

in dividends, |dt − d̄|, independently of whether the change is positive or negative, and

also proportionally to a function that reflects the dispersion of the weights agents assign

to the most recent observation in their belief formation process. Second, the increase in

trade volume generated by a given change in dividends depends on the level of recency

bias of the economy, which is captured by λ. For example, as λ → ∞, the dispersion

in weights decreases as w(0, λ, age) → 1 for all age ∈ {0, ..., q − 1}. Thus, our results

suggest that higher recency bias, λ, should generate lower trade volume responses for a

given shock to dividends, and vice versa.

5 Market Participation and Equilibrium Prices

The results derived so far illustrate a key feature of experience-based learning: The

demographic structure of an economy, and in particular the cross-sectional composition of

investors, affect equilibrium prices, demand, and trade volume in a predictable direction.

In this section, we explore the link between market demographics and financial market

outcomes by considering an unexpected increase in the fraction of young market partici-

pants, e. g., due to a baby boom or a generation-specific event drawing a certain generation

into the stock market.12 The goal of this exercise is to understand how a larger fraction

12 We have also analyzed the implications of a growing market population, as opposed to a one-time
market demographic shock. In Online Appendix OA.3, we show that population growth generates a
positive trend in prices, which is independent of experience effects: The growing mass of agents increases

24



of young market participants affects market dynamics.

For ease of illustration, we focus again on our q = 2 economy. We denote the mass of

young agents at any time t by yt, and the total mass of agents at t by mt = yt + yt−1.

We consider a one-time unexpected (exogenous) shock to the mass of young agents in the

market at time τ .13 For all t < τ and t > τ + 1, instead, yt = y and thus mt = 2y = m.

We know from our previous results that when the market has equal-sized cohorts, prices

are given by pt = α+β0dt+β1dt−1, with {α, β0, β1} given by (10)-(12). Here, prices follow

this path for t > τ +1 and, since the shock at time τ is unexpected, for t < τ as well. For

these time periods, the market is as described in Section 3. We are left to characterize

demands and prices for τ and τ + 1, when the larger young generation enters the market

and when this generation becomes old, respectively. We make the following guesses:

pτ = aτ + b0,τdτ + b1,τdτ−1, (21)

pτ+1 = aτ+1 + b0,τ+1dτ+1 + b1,τ+1dτ . (22)

We solve the problem by backwards induction. Note that the form of agents’ demands

remains unchanged. By imposing market clearing in τ + 1, with mass y of young agents

and yτ of old agents, and using the method of undetermined coefficients we obtain

aτ+1 = α
1

R

[
1 +

R− 1

mτ

]
,

b0,τ+1 = β0

[
1 +

1

R

(
mτ − yτ
mτ

+
yτ
mτ

ω − y

m
(1 + ω)

)]
+

1

R

(
mτ − yτ
mτ

+
yτ
mτ

ω − y

m
(1 + ω)

)
,

b1,τ+1 = β1
yτ
mτ

m

y
,

the demand for the risky asset, and hence prices adjust to clear markets, since risky-asset supply is
assumed to be constant. While the positive trend is independent of experience effects, experience-based
learning does affect the path of the prices fluctuating around this trend. In particular, we find that the
relative reliance of prices on the most recent dividend is increasing in the population growth rate.

13 In reality, the participation of young agents in the market could also be determined endogenously
(e. g., by entry costs). While the forces described in this section would still be present in such scenario,
other forces may be at play as well. The study of these interactions is out of the scope of this paper.
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Figure 2: Demographic Shocks and Price Coefficients.

Note: This figure plots coefficients {β0, b0,τ , b0,τ+1}, {β1, b1,τ , b1,τ+1}, and {α, aτ , aτ+1}, respectively,
as a function of the demographic shock yτ . The results are for y = 0.5, γ = 1, λ = 3, σ = 1, and R = 1.1.

where ω ≡ 2λ

1+2λ
and mτ = y + yτ . Note that for yτ = y, the coefficients are as in the

baseline model (10)-(12). The above expressions show that the total mass of agents mτ

only affects the price constant, while the price loadings depend on the fraction of young

agents in the market, yτ/mτ . We impose market clearing in τ , with mass yτ of young

agents and y of old agents. Using the method of undetermined coefficients, we obtain

aτ =
1

R

[
aτ+1 −

γ (1 + b0,τ+1)2 σ2

mτ

]
,

b0,τ =
1

R
(1 + b0,τ+1)

(
yτ
mτ

+
mτ − yτ
mτ

ω

)
+

1

R2
(1 + β0)

yτ
mτ

(1− ω) ,

b1,τ =
1

R
(1 + b0,τ+1)

mτ − yτ
mτ

(1− ω) .

Figure 2 shows how the reliance of prices on past dividends changes with the fraction

of young agents in the market at time τ . From the first two panels, we can see that as

the fraction of young people in the market increases, the more current dividends matter

relative to past dividends for the determination of prices. Consistent with this, when
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the τ -generation becomes old, prices depend less on contemporaneous dividends and

more on past dividends. Finally, the third panel shows that an increase in the overall

market population generates a level increase in prices that is captured by the higher price

constant. This effect stems from the higher overall demand for the risky asset since there

are more people in the market. All predictions are reversed when the fraction of young

agents in the market decreases, as can be seen at the left side of each graph.

6 Empirical Implications

In this section, we analyze the empirical implications of our model. The analysis con-

sists of two approaches. On the one hand, we turn to existing evidence on asset-pricing

features established in prior empirical literature: the predictability of stocks returns, the

predictability of the dividend-price ratio, and the excess volatility puzzle. We show that

the experience-based learning model is able to quantitatively match these empirical find-

ings, and that it generates refined predictions about their relation with the demographic

composition of investors. On the other hand, we test the novel predictions generated by

our model regarding the implications of the demographic composition on the predictabil-

ity of the price-dividend ratio, trade volume, and the cross-section of asset holdings. We

show that these predictions are in line with evidence from micro-level data in the Survey

of Consumer Finances (SCF) and the Center for Research in Security Prices (CRSP).

6.1 Quantitative Implications for Asset-Pricing Moments

We first show that experience-based learning can explain several key asset-pricing puzzles.

As the CARA-Normal framework is not well suited for a thorough calibration exercise,

we follow the approach of Campbell and Kyle (1993) and Barberis, Greenwood, Jin, and

Shleifer (2015), among others, to compute the moments of interest generated by our
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model and contrast them with the data. As in these papers, we define quantities in terms

of differences rather than ratios. For example, instead of stock returns we measure price

changes ∆P , and instead of the price-dividend ratio we study the difference P −D.

A distinguishing feature of our model is that it establishes a link between the age

profile of agents participating in the stock market and the factors that determine prices.

Another feature of our model is the small number of parameters to be set for generating

numerical results. Following Barberis, Greenwood, Jin, and Shleifer (2015), we choose the

following parameter values for our numerical solutions: the gross risk-free interest rate

is R = 1.05, the volatility of dividends is σ = 0.25, and the coefficient of risk-aversion is

γ = 2. We show our estimates for λ ∈ {1, 3} and for q ∈ {2, 5}.

Predictability of Excess Returns. A prominent stylized fact about stock-market

returns, established by Campbell and Shiller (1988), is that the dividend-price ratio

predicts future returns with a positive sign. Experience-based learning rationalizes such

predictability and, at the same time, limits it to those dividend realizations experienced

by the oldest cohort participating in the market.

In order to relate the predictability generated in our model to the existing empirical

evidence, and to show how it varies with the demographic composition of investors, we

calculate the following measure of co-movement between the analogues of the dividend-

price ratio and returns, namely, between dividend-price differences Dt − Pt and price

changes Pt+z − Pt over return horizon z:

BR
t (z ) ≡ Cov(Dt − Pt ,Pt+z − Pt)

Var(Dt − Pt)
. (23)

We compute BR
t (z ) using equation (14) from Proposition 4.2.

We first calculate BR
t (z ) for different horizons z. Panel (a) of Figure 3 plots BR

t (z ) for

z ranging from 1 to 7, and different levels of recency bias (λ ∈ {1, 3}), in an economy with
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q = 5. As the panel shows, the experience-based learning model generates a positive (and

strong) relation between D−P and future price changes, which increases with the return

horizon. These predicted patterns are consistent with the empirical findings described

in (Cochrane 2011). We note that the predictability of excess returns under EBL is an

equilibrium phenomenon that stems solely from our learning mechanism and not from,

say, a built-in dependence on dividends or past returns. Similar to prior theoretical

approaches, such as the over-extrapolation model of Barberis et al. (2015) and Barberis

et al. (2016), our explanation relies on agents’ overweighting recent realizations.

Our model has the additional implication that different demographic structures gener-

ate different β’s, which directly determine the level of predictability (or extrapolation) of

stock returns. We show this by studying how the coefficient BR
t (1) varies with the frac-

tion of young market participants. Here, we use the results from Section 5 on the effect

of a one-time unexpected shock to the mass of young agents (in an economy with q = 2).

We assume that the fraction of young agents equals y at all times before and after t, but

there is a one-time exogenous shock in t, resulting in yt 6= y. The resulting variation in

next period’s return predictability (based on this period’s dividend-price ratio), BR
t (1),

and in the current period’s return predictability (based on last period’s dividend-price

ratio), BR
t−1(1), are shown in panels (b) and (c) of Figure 3. For both graphs we fix y at

0.5, and we plot yt over a range [0, 1].

As the plots show, the predictability of next period’s return, BR
t (1), decreases in the

number of young market participants (panel b), while the predictability of this period’s

return, BR
t−1(1), increases in their number (panel c). The key channel is the differential

impact on the variance of the dividend-price ratio. In both cases the covariance between

future returns and the dividend-price ratio increases in the fraction of young agents;

but only the variance of the dividend-price ratio at time t increases such that it off-sets

the increase in covariance. Thus, return predictability is affected by the demographic
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Figure 3: Predictive Power of Dt − Pt for Pt+z − Pt.

Note: This figure plots the coefficient BRt for two levels of recency bias, λ ∈ {1, 3}. Panel (a) shows how
BRt (z) varies with the return horizon z (for q = 5). Panel (b) shows how BRt (1) varies with the fraction
yt of young agents in the market at time t, and panel (c) with the fraction yt+1 of young agents in the
market at time t+ 1, in both cases for q = 2. The results are calculated for y = 0.5 and R = 1.05.

composition of market participants, and the effect is sensitive to the timing of the partic-

ipation shock. With a larger generation of market participants coming in at t, the return

experienced in that period is more predictable.

Predictability of Price-Dividend Ratio. In addition to the predictability of re-

turns, we can also compute the predictability of the price-dividend ratio implied by the

model. That is, we relate past P/D ratios to future P/D realizations, and analyze the

persistence of the price-dividend ratio. In particular, we study how this predictability of

P/D ratios varies with the investment horizon and with the fraction of young people in

the market. Our measure of predictability is constructed as follows:

BPD
t (z) =

cov (Pt+z −Dt+z, Pt −Dt)

var (Pt −Dt)
(24)

We first calculate how BPD
t varies with the horizon z. Panel (a) of Figure 4 displays how

BPD
t varies for z ranging from 1 to 7, and for different levels of recency bias (λ ∈ {1, 3}),
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Figure 4: Pt −Dt autocorrelation.

Note: This figure plots the coefficient BPDt for two levels of recency bias, λ ∈ {1, 3}. Panel (a) shows
how BPDt (z) varies with the investment horizon z (for q = 5). Panel (b) shows how BPDt (1) varies with
the fraction yt of young agents in the market at time t (for q = 2). The results are calculated for y = 0.5
and R = 1.05.

in an economy with q = 5. As in the data, P −D is highly autocorrelated at short lags,

with the autocorrelation being zero at longer horizons. Furthermore, BPD
t decreases in

the extent of recency bias present in the population.

We then turn to the demographic structure, using again the results from Section 5. As

shown in panel (b) of Figure 4, BPD
t increases with the fraction of young agents in the

market at time t, and the effect is weaker under higher recency bias. Furthermore, BPD
t

increases with the number of cohorts in the market. A direct implication is that P −D

is positively correlated only with lagged realizations where the number of periods lagged

is below the number of cohorts in the market.

Price Dynamics. A third set of asset pricing implications are related to the dynam-

ics of prices, and in particular the excess volatility puzzle. Campbell and Kyle (1993)

estimate the volatility of dividends to be 0.032 that of the change in prices. We calculate

the corresponding volatility of prices relative to that of dividends implied by our model.

Table 1 presents our results for σ(P − D), σ(P ), and the ratio σ(D)/σ(P ). We see
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Table 1: Excess Volatility.

that the experience-based learning model generates ample excess volatility in prices and

in the price-dividend differences, and this volatility is increasing in the recency bias and

decreasing with the number of cohorts in the market. Furthermore, in our calibration,

the volatility of dividends is between 0.03 and 0.05 that of the change in prices, consistent

with the 0.032 estimate of Campbell and Kyle.

6.2 Demographics on Price-Dividend Predictability

The predictability results in the previous subsection are consistent with the findings of

Cassella and Gulen (2015), who find a positive relation between their market-wide mea-

sure of return extrapolation and the relative participation of young versus old investors

in the stock market. Our model of experience-based learning goes beyond a rational-

ization of the evidence on agents extrapolating from past dividends (cf. also Greenwood

and Shleifer (2014)). It puts structure on the extent of such extrapolation exhibited by

different market participants and links it to market demographics. We now bring this

prediction to the data and show that is aligned with empirical observations.

We want to test whether the predictive power of the lagged P/D ratios for the current

one depends on the relative representation of younger versus older generations in the

market in the manner predicted by the model. Experience-based learning predicts that
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the correlation between future and current lags is higher when the current share of young

market participants is large. Moreover, the model generates the heuristic that young

people put little weight on observations of the “distant” past (cf. Proposition 4.4).

In order to test these predictions, we regress P/D onto lags of itself interacted with

a dummy variable that indicates a larger presence of young people in the market. As

the estimation model has to account for non-stationarity of the P/D process, we depart

from the standard linear AR models and postulate a Markov-Switching Regime (MSR)

model, which allows us to capture richer, non-linear dynamics in a tractable way.14 The

regression model is thus given by

Pt+1 −Dt+1 = µ(St+1) +
3∑
j=1

(Pt+1−j −Dt+1−j)(βj + δj × Yt) + σεt+1, (25)

where Pt and Dt denote the log of dividends and prices at time t, respectively, St+1 ∈

{0, 1} is an unobserved state that evolves according to a Markov transition kernel Q; Yt is

a dummy variable that takes value 1 if the share of young generations participating in the

market at time t is large relative to the participation of older generations, and 0 otherwise;

and we assume εt+1 ∼ N(0, 1). The parameters, ({µ(s)}s∈{0,1}, σ,Q, {βj, δj}3
j=1), are

jointly estimated using maximum likelihood (see, e. g., Hamilton (1994) for details).

We consider two dummies for the relative representation of younger generations in the

market. First, we compute the ratio of investors who are less than 50 years old in the

total population, and construct an indicator that equals 1 if their share is bigger than

50% (or, for robustness, bigger than 55% or 60%). Second, we calculate young investors’

share of liquid wealth, and use an indicator that equals 1 if their liquid-wealth share is

above its sample average (or, for robustness above 90% or 110% of the sample average).

Details on the variable construction and robustness checks are in Online-Appendix OA.4.

The theoretical prediction of our model is that the correlation between future and

14 For a more thorough discussion of MSR see Hamilton (1989).
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current lags should be higher when the current share of young market participants is

large. This translates into the hypothesis that δ1 > 0 in the estimation model in (25).

The estimated values are reported in Table 2. In column (1), we use the fraction of

young people in the population, and in column (2) the fraction of their wealth to proxy for

the relative representation of younger people in the market. In both cases, the estimates

provide evidence in favor of the model hypothesis. We estimate a positive δ1 coefficient,

which is either significant at the 5% or at the 10% level. Moreover, considering all three

coefficients (δi)
3
i=1 jointly, a roughly “decreasing” pattern emerges: δ1 is typically positive,

δ2 is typically non-significant, and δ3 is negative or insignificantly negative, consistent with

the heuristics that young people put little weight on observations of the “distant” past.

Thus, in periods when their share is relatively large, the correlation between future and

distant past values is weakened.

6.3 Cross-Section of Asset Holdings and Trade Volume

We now turn to the novel empirical predictions of the experience-based learning model

about the cross-section of equity holdings and stock turnover. We investigate two sets of

predictions that are directly testable and jointly hard to generate by alternative models.

The first prediction is that cross-sectional differences in the demand for risky securities

reflect cross-sectional differences in lifetime experiences of risky payoffs. That is, cohorts

with more positive lifetime experiences are predicted to invest more in the risky asset

than cohorts with less positive experiences (Proposition 4.1). We test this both in terms

of stock-market participation (extensive margin) and in terms of the amount of liquid

assets invested in the stock market (intensive margin). The second prediction is that

changes in the cross-section of experience-based beliefs generate trade (Proposition 4.6).

To test these model predictions, we combine historical stock returns data from Robert

Shiller’s website with SCF data on stock holdings and CRSP data on stock turnover.
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Table 2: Markov-Switching Regime (MSR) Model

Estimation results for model specification (25), where Pt−Dt is the log of the price-to-dividend
ratio, and regressed onto lags of itself interacted with a demographic dummy variable. Yt is
the fraction of young people, which we define as an indicator equal to 1 when the fraction
of investors under 50 is larger than 0.5 (in column 1), or as an indicator equal to 1 when the
fraction of wealth of investors below 50 is larger than their 1960-2013 sample average (in column
2).The demographic data including age and wealth (liquid assets) of stock market participants
is from the SCF, stock data from CRSP.

Dependent variable: Pt −Dt

(1) (2)
Yt age-based Yt age/wealth based

δ1 0.701** 0.475*
(0.154) (0.252)

δ2 -0.013 -0.115
(0.146) (0.366)

δ3 -0.745** -0.329
(0.115) (0.232)

β1 0.377** 0.622**
(0.120) (0.159)

β2 -0.216** -0.074
(0.088) (0.136)

β3 0.714** 0.249**
(0.093) (0.099)

µ(S1) 5.089** 5.741**
(1.554) (1.812)

µ(S2) 19.450** 18.350**
(3.070) (4.768)

σ 3.812 4.343
(0.388) (0.600)

Q11 0.956 0.978
(0.026) (0.017)

Q21 0.365 0.206
(0.204) (0.154)

N 51 51

Robust standard errors in parentheses. * significant at 10%; ** significant at 5%.
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The key explanatory variable is a measure of cohorts’ lifetime experiences of risky-asset

payoffs. Theoretically, dividends in the Lucas-tree economy capture the performance of

the risky asset, or the stock market. Empirically dividends payments do not necessarily

reflect how well firms are doing. For example, firms have incentives to smooth dividends,

and also to retain earnings rather than distribute them. In other words, dividends in

our model do not translate one-to-one to the dividend payments recorded in CRSP. We

therefore use an array of empirical measures to capture the performance of the risky

asset in our model: (1) annual stock market returns, (2) real dividends, (3) real earnings,

and (4) U.S. GDP. We obtain the first three series from Robert Shiller’s website, and

the nominal GDP data from the Federal Reserve Bank of St. Louis (for 1929-2016) and

Historical Statistics of the United States Millennial Edition Online (for 1871-1928). We

convert nominal GDP into real GDP using Shiller’s consumer price index variable.

Dividends in our model are best interpreted as the performance of the risky asset at

medium frequencies. Therefore, we use the Christiano and Fitzgerald (2003) band-pass

filter and remove stochastic cycles at frequencies lower than 2 years and higher than 8

years,15 for all non-stationary series (dividend, earnings, and GDP).

In order to construct the experienced returns, dividends, earnings, and GDP of different

generations over the course of their lives, we apply the formula from equation (5). We

calculate generation-specific weighted averages, employing both linearly declining weights

(λ = 1), and a steeper weighting function (λ = 3), corresponding to the range of empirical

estimates in Malmendier and Nagel (2011).

Stock market participation. We test the first prediction relating the differences in

lifetime experiences between older and younger cohorts (i. e., those above 60 and those

below 40 years of age) to the differences in their stock-market investment. Our source

15 These are the default frequencies for the CF-filter. We also remove a linear trend of the series before
applying the filter and, in addition, work with the natural logarithm of earnings and GDP to remove
non-linearities in these series. In unreported analyses, we also use the natural logarithm of dividends
and obtain very similar results.
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of household-level micro data is the cross-sectional data on asset holdings and various

household background characteristics in the Survey of Consumer Finances (SCF). We use

all waves of the modern, triannual SCF, available from the Board of Governors of the

Federal Reserve System since 1983. We follow the variable construction of Malmendier

and Nagel (2011) and extend their analysis to the most recently released data. In addi-

tion, we employ some waves of the precursor survey, available from the Inter-university

Consortium for Political and Social Research at the University of Michigan since 1947.

We use all survey waves that include age and stock-market participation.16

For the extensive margin of stock holdings, we construct an indicator of stock-market

participation. It equals 1 when a household holds more than zero dollars worth of stocks.

We define stock holdings as the sum of directly held stocks (including stock held through

investment clubs) and the equity portion of mutual fund holdings, including stocks held

in retirement accounts (e.g., IRA, Keogh, and 401(k) plans).17

For the intensive margin of stock holdings, we calculate the fraction of liquid assets

invested in stocks as the share of directly held stocks plus the equity share of mutual

funds, using all surveys from 1960-2013 other than 1971. Liquid assets are defined as the

sum of stock holdings, bonds, cash, and short-term instruments (checking and savings

accounts, money market mutual funds, certificates of deposit). In these analyses of the

intensive margin, we drop all households that have no money in stocks.

For both the young and old age group, we calculate their experience and their stock-

market investment as a weighted average across cohorts, with the weight variable provided

in the SCF. The weighted estimates are representative of the U.S. population.18

16 Those are 1960, 1962, 1963, 1964, 1967, 1968, 1969, 1970, 1971, and 1977.
17 For 1983 and 1986, we need to impute the stock component of retirement assets from the type of

the account or the institution at which they are held and allocation information from 1989. From 1989
to 2004, the SCF offers only coarse information on retirement assets (e. g., mostly stocks, mostly interest
bearing, or split), and we follow a refined version of the Federal Reserve Board’s conventions in assigning
portfolio shares. See Malmendier and Nagel (2011) for more details.

18 The 1983-2013 SCF waves oversample high-income households with significant stock holdings. The
oversampling is helpful for our analysis of asset allocation, but could induce selection bias. By applying
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We present the results graphically. We plot the relation between stock holdings (ex-

tensive and intensive margin) and experienced returns (Figure 5), dividends (Figure 6),

earnings (Figure 7), and GDP (Figure 8). Graphs 5.(a) and 5.(c) update the evidence on

the extensive margin and returns presented in Malmendier and Nagel (2011).)

The results for all four performance measures and both for the extensive and intensive

margin are in line with the predictions of our model. Starting from experienced returns

with λ = 1 in panel (a) of Figure 5, we see that the older age-group is more likely to hold

stock, compared to the younger age-group, when they have experienced higher stock-

market returns in their lives. The opposite holds when the returns experienced by the

younger generations are higher than those of the older generations. The slope coefficient

of the linear line of fit is significant at 5%. The steepness of the weighting function, and

hence the extent of imposed weight on recent data points, makes little difference, as the

comparison with graph (b) for λ = 3 reveals.

The analysis of the intensive margin of stock-market investment yields the same con-

clusion. Both graph (c) and graph (d) indicate that older generations invest a higher

share of the their liquid assets in stock, compared to the younger generations, when their

experienced returns have been higher than those of the younger age-group over their re-

spective life-spans so far; and vice versa when they have experienced lower returns than

the younger cohorts. Here, the slope coefficient is significant at 10%.

Figures 6 to 8 present the corresponding results for experienced dividends, earnings,

and GDP. For all measures, we observe a positive relation of differences in experienced

performance and stock investments between the young and the old. The fact that we

obtain very similar findings for a wide array of performance measures lends support to

the link between our theoretical model and the empirical facts, and ameliorates concerns

about dividends not translating one-to-one into an empirical performance measure.

SCF sample weights, we undo the over-weighting of high-income households and also adjust for non-
response bias.
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(a) Stock-market participation (λ = 1) (b) Fraction invested in stock (λ = 1)

(c) Stock-market participation (λ = 3) (d) Fraction invested in stock (λ = 3)

Figure 5: Experienced Returns and Stock Holdings

Difference in experienced returns is calculated as the lifetime average experienced returns of the S&P500
Index as given on Robert Shiller’s website, using declining weights with either λ = 1 or λ = 3 as in
equation (5). Stock-market participation is measured as the fraction of households in the respective age
groups that hold at least $1 of stock ownership, either as directly held stock or indirectly, e. g. via
mutuals or retirement accounts. Fraction invested in stock is the fraction of liquid assets stock-market
participants invest in the stock market. We classify households whose head is above 60 years of age as
“old,” and households whose head is below 40 years of age as “young.” Difference in stock holdings,
the y-axis in graphs (a) and (c), is calculated as the difference between the logs of the fractions of stock
holders among the old and among the young age group. Percentage stock, the y-axis in graphs (b) and
(d), is the difference in the fraction of liquid assets invested in stock. The red line depicts the linear fit.
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(a) Stock-market participation (λ = 1) (b) Fraction invested in stock (λ = 1)

(c) Stock-market participation (λ = 3) (d) Fraction invested in stock (λ = 3)

Figure 6: Experienced Dividends and Stock Holdings

Difference in experienced dividends is calculated as the lifetime average experienced real dividends as
given on Robert Shiller’s website, using declining weights with either λ = 1 or λ = 3 as in equation
(5). Stock-market participation is measured as the fraction of households in the respective age groups
that hold at least $1 of stock ownership, either as directly held stock or indirectly, e.g. via mutuals or
retirement accounts. Fraction invested in stock is the fraction of liquid assets stock-market participants
invest in the stock market. We classify households whose head is above 60 years of age as “old,” and
households whose head is below 40 years of age as “young.” Difference in stock holdings, the y-axis
in graphs (a) and (c), is calculated as the difference between the logs of the fractions of stock holders
among the old and among the young age group. Percentage stock, the y-axis in graphs (b) and (d), is
the difference in the fraction of liquid assets invested in stock. The red line depicts the linear fit.
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(a) Stock-market participation (λ = 1) (b) Fraction invested in stock (λ = 1)

(c) Stock-market participation (λ = 3) (d) Fraction invested in stock (λ = 3)

Figure 7: Experienced Earnings and Stock Holdings

Difference in experienced earnings is calculated as the lifetime average experienced log real earnings as
given on Robert Shiller’s website, using declining weights with either λ = 1 or λ = 3 as in equation
(5). Stock-market participation is measured as the fraction of households in the respective age groups
that hold at least $1 of stock ownership, either as directly held stock or indirectly, e.g. via mutuals or
retirement accounts. Fraction invested in stock is the fraction of liquid assets stock-market participants
invest in the stock market. We classify households whose head is above 60 years of age as “old,” and
households whose head is below 40 years of age as “young.” Difference in stock holdings, the y-axis
in graphs (a) and (c), is calculated as the difference between the logs of the fractions of stock holders
among the old and among the young age group. Percentage stock, the y-axis in graphs (b) and (d), is
the difference in the fraction of liquid assets invested in stock. The red line depicts the linear fit.

41



(a) Stock-market participation (λ = 1) (b) Fraction invested in stock (λ = 1)

(c) Stock-market participation (λ = 3) (d) Fraction invested in stock (λ = 3)

Figure 8: Experienced Log GDP and Stock Holdings

Difference in experienced GDP is calculated as the lifetime average experienced log real GDP, using
declining weights with either λ = 1 or λ = 3 as in equation (5). Stock-market participation is measured
as the fraction of households in the respective age groups that hold at least $1 of stock ownership,
either as directly held stock or indirectly, e.g. via mutuals or retirement accounts. Fraction invested in
stock is the fraction of liquid assets stock-market participants invest in the stock market. We classify
households whose head is above 60 years of age as “old,” and households whose head is below 40 years
of age as “young.” Difference in stock holdings, the y-axis in graphs (a) and (c), is calculated as the
difference between the logs of the fractions of stock holders among the old and among the young age
group. Percentage stock, the y-axis in graphs (b) and (d), is the difference in the fraction of liquid assets
invested in stock. The red line depicts the linear fit.

42



(a) Stock-market participation (λ = 1) (b) Stock-market participation (λ = 3)

Figure 9: Trading Volume and Standard Deviation of Changes in Experienced Returns

Trade volume. We now turn to the second prediction, which relates trade volume to

the dispersion of changes in disagreement among investors. We calculate changes in the

level of disagreement as the cross-cohort standard deviation of the change in experienced

performance between the current year and the previous year. We weight the cohorts by

their sizes when computing the standard deviation.19

As a measure of abnormal trade volume, we calculate the deviation of the turnover ratio

from its trend. Following prior literature (Statman, Thorley, and Vorkink (2006), Lo and

Wang (2000)), we first compute firm-level turnover ratio, i. e. the number of shares traded

over the number of shares outstanding, on a monthly basis. We require that firms be listed

on the NYSE or AMEX. We exclude NASDAQ-listed firms because the dealer market has

volume measurement conventions that differ from exchange-traded securities (Atkins and

Dyl (1997), Statman, Thorley, and Vorkink (2006)). Then, we aggregate these numbers

into a market-wide turnover ratio, weighting firms by their market capitalization.20 Since

the turnover ratio is non-stationary, we proceed in the same way as above and apply the

Christiano and Fitzgerald (2003) to the logarithm of the turnover ratio series, so that

19 For this, we obtain data on U.S. population by age between 1985 and 2015 from US Census Bureau.
20 This measure is equivalent to dollar turnover ratio, i.e., the ratio of the dollar value of all shares

traded and the dollar value of the market.
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we keep frequencies between 2 and 8 years. We examine the co-movement between the

aforementioned measure of disagreement, i. e., the standard deviation of the change in

experienced stock returns, and the above measures of (abnormal) trade volume.

Figure 9 displays trading volume and disagreement in experienced returns between

cohorts over time. Graph (a) shows the results when we apply linear weights for the

calculation of experienced returns, graph (b) displays the case with super-linear weights

(λ = 3). Since we work with annual data for our disagreement variable, we choose the

average of the turnover ratio in December of a given year and in January of the following

year as our measure for trading volume of the given year. That is, Figure 9 compares

the variation in changes in experienced returns in a given year to trading volume in

December of that year and January of the following year. We choose 1985 as the starting

year for this analysis, since individual investors were trading substantially less frequently

when trading cost were significantly higher up to the mid-1980s, making it less likely that

(individual) investors trade repeatedly based on experienced performance.

Table 3: Correlation between Trading Volume and S.D. of Changes in Experiences

Experiences constructed using: Returns Dividends Log Earnings Log GDP
λ = 1 correlation 0.5982 0.2008 0.3287 0.1699

p-value 0.0004 0.2786 0.0710 0.3610
λ = 3 correlation 0.5330 0.1635 0.3168 0.1844

p-value 0.0013 0.3794 0.0825 0.3206

Consistent with the predictions of our model, we observe a clear co-movement between

disagreement among cohorts and trading volume. Table 3 reveals that the co-movement is

statistically significant at 1%. The table presents the correlation between trading volume

and our return disagreement variable, as well as the correlations when disagreement

is measured using our alternative performance measures, i. e., using again dividends,

earnings, or GDP. In each case, the correlation coefficient is positive, albeit (marginally)

significant only for changes in disagreement in experienced earnings.
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All empirical findings are consistent with experience-based learning. Alternative mod-

els of belief formation in macro-finance cannot easily explain these findings jointly.

7 Extension: Non-Myopic Agents

As a final step, we analyze the model predictions when the assumption of myopic agents

is removed. We consider a version of our model where agents re-balance their portfolios

every period to maximize the expected utility of consuming their final wealth. Thus,

agents need to account for the dynamic nature of their portfolio problem. This approach

to modeling dynamic portfolio choices follows a widely used approach in the literature

(cf. Vives (2010)). The analysis reveals two additional determinants of risky-asset demand

that are at work when we remove the myopia assumption: the “discount effect,” due to

investment horizon considerations, and the “dynamic effect,” due to agents wanting to

hedge their exposure to future changes in beliefs.

We characterize equilibrium prices in the new economy, and show that the result of

Proposition 4.2 continues to hold: Prices are affine functions of past dividends observed

by the generations that are trading. To sharpen our predictions, we then return to the

two-generation model, q = 2, and compare the findings with those with myopic agents.

7.1 Characterization of Equilibrium Demands and Prices

For any s, t ∈ Z, let ds:t = (ds, ..., dt) denote the history of dividends from time s up to

time t. At time n, an n-generation agent solves the following problem:

max
x∈Rq

En
n

[
− exp

(
−γW n

n+q(x)
)]

(26)

s.t. W n
n+q(x) =

nq∑
τ=n

Rnq−τxτsτ+1 (27)
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where x ∈ Rq are the q trading decisions from n up to nq = n + q − 1. We continue to

assume that the initial wealth of all generations is zero, i. e., W n
n = 0 ∀n.

We can cast this problem iteratively — by solving from nq backwards — as

V n
nq(dnq−K:nq) = max

x∈R
En
nq [− exp (−γsn+qx)] and (28)

V n
τ (dτ−K:τ ) = max

x∈R
En
τ

[
V n
τ+1(dτ+1−K:τ+1) exp (−γsτ+1x)

]
∀τ ∈ {n, ..., nq − 1} (29)

Note that our definition of V n
nq omits the term exp{−γRW n

nq} since it does not affect

the maximization. The same applies for all τ < n + q − 1, and we thus omit the wealth

at time τ as well. The formulation of the maximization problem shows that, while the

n-generation’s problem is a static portfolio problem at nq, it is not static at any other

time τ ∈ {n, ..., nq−1} because V n
τ+1 is correlated with sτ+1 through dividends. Dividend

realization dτ+1 impacts (i) the net payoff obtained from investing xτ in the risky asset

at time τ , and (ii) the continuation value V n
τ+1(dτ+1−K:τ+1) by affecting the beliefs of

the n-generation at τ + 1 and the resulting portfolio decision. As a result, this dynamic

portfolio problem cannot be expressed as a succession of static problems, as is standard

in the literature for the rational model (see Vives (2010)).

Let EN(µ,σ2)[.] and VN(µ,σ2)[.] be the expectation and variance with respect to a Gaussian

pdf with mean µ and variance σ2. We can then characterizes agents’ demands:

Proposition 7.1. Suppose pt = α +
∑K

k=0 βkdt−k with β0 6= −1. Then, the demand of

any generation n at age j ∈ {0, ..., q − 1}, i. e., in period n+ j, is given by

xnn+j =
EN(mj ,σ2

j )[sn+j+1]

γRq−1−jVN(mj ,σ2
j )[sn+j+1]

, (30)

where mj ≡
θnn+j−σ2(bj+

∑K
k=1 bj(k)dn+j−k)

2cjσ2+1
, σ2

j ≡ σ2

2cjσ2+1
, and {{bj(k)}q−1

k=1, bj, cj} are con-

stants that change with the agent’s age j. (See the proof for exact expressions.)

46



The intuition of the proof is as follows. Solving the problem backwards, we note that, at

time nq (see equation (28)), the problem is in fact static. In particular, V n
nq is exponential-

quadratic in dnq . (See Lemma B.1 in the Appendix.) We then show (in Lemma C.1) that

the exponential-quadratic term times the Gaussian distribution of dividends imply a new

Gaussian distribution with a slanted mean and variance. Thus the problem at time nq−1

can be viewed as a static problem with a modified Gaussian distribution. As a result,

demands are of the form shown in (30), and V n
nq−1 is also exponential-quadratic. The

same process continues backwards until time n.

After straightforward algebra, we can cast equation (30), as21

xnn+j =
1

Rq−1−j ·
EN(θnn+j ,σ

2)[sn+j+1]

γVN(θnn+j ,σ
2)[sn+j+1]

− bj +
∑K

k=1 bj(k)dn+j−k

γRq−1−j(1 + β0)
(31)

≡ 1

Rq−1−j · x̃
n
n+j + ∆n

n+j

The term x̃nn+j coincides with the demand of a static portfolio problem for an agent with

beliefs θnn+j (see Proposition 4.1). We coin this term the myopic component of the demand

for risky assets. The scaling by 1/Rq−1−j arises because agents discount the future by

R. The second term, ∆n
n+j ≡ − bj+

∑K
k=1 bj(k)dn+j−k

γRq−1−j(1+β0)
, is an adjustment that accounts for

the dynamic nature of the problem. We denote it the dynamic component. It arises

because agents understand that they are learning about the risky asset, and that the

value function is therefore correlated with the one-period-ahead returns.

The following proposition shows that, in a linear equilibrium, prices at any time t

depend on past dividends, but only on those observed by the generations trading at t:

Proposition 7.2. For R > 1, the price in any linear equilibrium with β0 6= −1 is affine

in the history of dividends observed by the oldest generation participating in the market.

For any t ∈ Z, q ≥ 1, pt = α +
∑q−1

k=0 βkdt−k.

21 Note that EN(b+a,s)[sn+1] = EN(a,s)[sn+1] + (1 + β0)b.
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Figure 10: Comparative Statics: Sensitivity of Prices to Dividends for q = 2.

The proof follows along the same lines as the one for the myopic case.22 This result

shows that the insights in Proposition 4.2 continue to hold in the general setup.

7.2 Illustration: The q = 2 Case

We now return to the special case of agents who live for two periods, q = 2, to sharpen our

results on equilibrium prices and demands. We relegate the derivation of the coefficients

of the price function, {α, β0, β1}, to Online Appendix OA.2. (Lemma OA.2.1 solves the

corresponding system of linear equations.) With this result, we are able to establish:

Proposition 7.3. For λ > 0, prices react positively to dividends dt and dt−1, with α ≤ 0

and 0 < β1 < Rβ0.

This proposition is analogous to Proposition 4.3. It reflects the fact that the dividends

at time t are observed by both generations, whereas dt−1 is only observed by the old

generation. The relation between the recency bias λ and price loadings is as in the model

22 Regarding the restriction β0 = −1, note that, heuristically, an equilibrium with β0 = −1 is not
well-defined since, in this case, the excess payoff in a given period is deterministic given the information
in the prior period, and thus the agent will take infinite positions.
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with myopic agents, and is depicted in Figure 10 for different risk-free rates.23

The next proposition establishes that the demand of the young generation increases

and the demand of the old generation decreases, when current dividends increase, and

vice versa if current dividends decrease (as in Proposition 4.4). However, as we explain

below, there are now several partly off-setting motives at work.

Proposition 7.4. For λ > 0, (1)
∂xtt
∂dt

> 0 >
∂xt−1
t

∂dt
, and (2)

∂xtt
∂dt−1

< 0 <
∂xt−1
t

∂dt−1
.

The basic intuition for this result remains the same as in the myopic setting. However,

this is not the only effect to consider when agents solve a dynamic portfolio problem.

There are additional effects due to the fact that the young are confronted with a different

investment horizon; and that all agents have hedging motives due to the correlation

between future returns and beliefs. We show in the proof of Proposition 7.1 that the

force introduced by EBL dominates the other forces, generating the same prediction as

in the model with myopic agents.

Overall, the results of this section illustrate that our main findings are still present when

we remove the myopia assumption. At the same time, this setting reveals additional fac-

tors influencing agents’ decision-making due to their understanding of how future returns

relate to future learning and resulting investment decisions. An interesting question for

future research is whether such influences are indeed at work or whether a lack thereof

implies investor naivete about how future experiences affect future risk attitudes.

8 Conclusion

In this paper, we have proposed an OLG equilibrium framework to study the effect

of personal experiences on market dynamics. We incorporate the two main empirical

23 The values of {β0, β1} are independent of the process for dividends, σ2, and of the coefficient of risk
aversion, γ. Thus, the results shown in the figure do not depend on parameter values other than the
ones used for comparative statics, (λ,R).
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features of experience effects, the over-weighing of lifetime experiences and recency bias,

into the belief formation process of agents. We show that experience-based learning

not only generates several well-known asset pricing puzzles, that have been observed

in the data, but it also produces new testable predictions about the relation between

demographics, prices trading behavior, and the cross-section of asset holdings, which

are in line with the data. We highlight two channels through which shocks have long-

lasting effects on economic outcomes. The first is the belief formation process: all agents

update their beliefs about the future after experiencing a given shock. The second is

the cross-sectional heterogeneity in the population: different experiences generate belief

heterogeneity. We illustrate how the demographic composition of an economy can have

important implications for the extent to which prices depend on past dividends. We

consider this paper to be a first step into the exploration of the role of demographics in

understanding market dynamics.
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Appendix A Proofs for Results in Section 2

Proof of Lemma 2.1. Let ∆(k) ≡ w(k, λ, age) − w(k, λ, age′) for all k ∈ {0, ..., age}. We need
to show that ∃k0 ∈ {0, ..., age′} such that ∆(k) < 0 for all k ≤ k0, and ∆(k) ≥ 0 for all k > k0,
with the last inequality holding strictly for some k.

For k > age′, ∆(k) > 0 since w(k, λ, age′) ≡ 0, and hence ∆(k) = w(k, λ, age) > 0, for all
k ∈ {age′ + 1, ..., age}.

For k ≤ age′, we note that ∆(k) > 0 ⇐⇒ Q(k) := w(k,λ,age)
w(k,λ,age′) > 1. Hence, it remains to be

shown that ∃k0 ∈ {0, ..., age′} such that Q(k) < 1 for all k ≤ k0, and Q(k) ≥ 1 for all k > k0.
Since the normalizing constants used in the weights w(k, λ, age) are independent of k (see the
definition in (5)), we absorb them in a constant c ∈ R+ and rewrite

Q(k) = c · (age+ 1− k)λ

(age′ + 1− k)λ
= c ·

[ age+ 1− k
age′ + 1− k

]λ
= c · α(k)λ ∀k ∈ {0, ..., age′}. (32)

The function x 7→ α(x) = age+1−x
age′+1−x has derivative α′(x) = age−age′

(age′+1−x)2
> 0 for x ∈ [0, age′+1),

and hence Q(·) is strictly increasing over {0, ..., age′}. Thus, to complete the proof, we only
have to show that Q(k) < 1 or, equivalently, ∆(k) < 0 for some k ∈ {0, ..., age′}. We know that∑age

k=0 ∆(k) = 0 because
∑age

k=0w(k, λ, age) =
∑age′

k=0w(k, λ, age′) = 1, and we also know that∑age
k=age′+1 ∆(k) > 0 since ∆(k) = w(k, λ, age) > 0 for all k ∈ {age′+ 1, ..., age}. Hence, it must

be that ∆(k) < 0 for some k < age′.

Appendix B Proofs for Results in Section 4

Proposition 4.1 directly follows from the following Lemma.

Lemma B.1. Let z ∼ N(µ, σ2), then for any a > 0,

x∗ = arg max
x

E[− exp{−axz}] =
µ

aσ2

and

max
x

E[− exp{−axz}] =− exp

{
−1

2
(σax∗)2

}
= − exp

(
−1

2

µ2

σ2

)
.

Proof. See Online Appendix OA.1.1.

Proof of Proposition 4.2. We show the result for the guess pt = α + β0dt + ... + βKdt−K with
K = q. This case shows the logic of the proof; the proof for the case starting from an arbitrary
lag K ≥ q is analogous but more involved, and omitted for simplicity.

From Lemma B.1, agents’ demand for the risky asset is given by xnt =
Ent [st+1]
γV [st+1] . Plugging in

our guess for prices, and for β0 6= −1, we obtain:

xnt =
(1 + β0) θnt + α+ β1dt + ...+ βqdt−q+1 − ptR

γ (1 + β0)2 σ2
(33)
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By market clearing, 1
q

∑t
n=t−q+1 x

n
t = 1, which implies that

(1 + β0) 1
q

∑t
n=t−q+1 θ

n
t

γ (1 + β0)2 σ2
+
α+ β1dt + ...+ βqdt−q+1 − ptR

γ (1 + β0)2 σ2
= 1.

By straightforward algebra and the definition of θnt , it follows that

(1 + β0)
1

q

t∑
n=t−q+1

[
t−n∑
k=0

w (k, λ, t− n) dt−k

]
+
[
α− γ (1 + β0)2 σ2

]
+ β1dt + ...+ βqdt−q+1 = ptR.

Plugging in (again) our guess for pt and using the method of undetermined coefficients, we find
the expressions for α and the β’s:

−γ (1 + β0)2 σ2

R− 1
= α (34)

(1 + β0)
1

q

t−k∑
n=t−q+1

w (k, λ, t− n) + βk+1 = βkR ∀k ∈ {0, 1, ..., q − 1} (35)

0 = βqR. (36)

Let wk be the average of the weights assigned to dividend dt−k by each generation in the
market at time t, i.e., wk = 1

q

∑t
n=t−q+1w (k, λ, t− n). Given that a weight of zero is assigned

to dividends that a generation did not observe, i.e., for k > t − n, we can rewrite wk =
1
q

∑t−k
n=t−q+1w (k, λ, t− n). Also using βq = 0 from equation (36) we obtain:

(1 + β0)wk + βk+1 = βkR ∀k ∈ {0, 1, ..., q − 2} (37)

(1 + β0)wq−1 = βq−1R (38)

By solving this system of equations, we obtain the expressions in the proposition. In particular,
(1 + β0) (wq−2 +wq−1/R) = βq−2R for k = q−2, (1 + β0) (wq−3 +wq−2/R+wq−1/R

2) = βq−3R
for k = q − 3, and so on. This allow us to express (37) and (38) as

(1 + β0)

k−1∑
j=0

wq−(k−j)/R
j = βq−kR for k = 1, ..., q. (39)

The last expression (39) implies β0 =
∑q−1
j=0 wj/R

j

R−
∑q−1
j=0 wj/R

j
=

∑q−1
j=0 wj/R

j+1

1−
∑q−1
j=0 wj/R

j+1
(from plugging in k = q),

which in turn, plugged into (34) allows us to obtain the expression for α from (15) in Proposition

4.2. And expression (39) implies βk =
∑q−1−k
j=0 wk+j/R

j+1

1−
∑q−1
j=0 wj/R

j+1
(from substituting k with q − k, and

using the expression for β0) as expressed in equation (16) of the Proposition. The latter also
subsumes equation (38), solved for βq−1, and the above formula for β0, and hence holds for
k = 0, ...q − 1.

Proof of Proposition 4.3. For this proof, we use equations (37) and (38). In addition, note that
by construction, wk < wk−1 for λ > 0 since for all generations, w(k, λ, age) is decreasing in k
and more agents observe the realization of dt−(k−1) than dt−k. Given this, it follows that since
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β0 > 0 then βq−1 > 0 and

βq−1 =
1

R
(1 + β0)wq−1 <

1

R
[(1 + β0)wq−2 + βq−1] = βq−2 (40)

In addition, if βk < βk−1, then:

βk−1 =
1

R
[(1 + β0)wk−1 + βk] <

1

R
[(1 + β0)wk−2 + βk−1] = βk−2 (41)

Thus, the proof that βk < βk−1 for all k ∈ {1, ..., q − 1} follows by induction.

Proof of Lemma 4.1. To show that β0 is increasing in λ, let Gq(λ) =
∑q−1

k=0wk/R
k+1. We thus

have β0 =
Gq(λ)

1−Gq(λ) , and it suffices to show that G′q(λ) > 0 ∀q > 0 and ∀λ > 0. After some

algebra, the terms in Gq(·) can be re-organized as follows:

Gq(λ) =

q−1∑
age=0

1

q

age∑
k=0

w(k, λ, age)/Rk+1 (42)

Note that for any age ∈ {0, ..., q−1}: (i)
∑age

k=0w(k, λ, age) = 1 and (ii) for any λ1, λ2 such that
λ1 > λ2 > 0,

∑age
k=j w(k, λ1, age) <

∑age
k=j w(k, λ2, age). Thus, the weight distribution given

by λ2 first-order stochastically dominates the weight distribution given by λ1. Since 1/R >
1/R2 > 1/R3 > ... > 1/Rq−1, stochastic dominance implies that for all age ∈ {0, ..., q − 1},∑age

k=0 c
k+1w(k, λ1, age) >

∑age
k=0 c

k+1w(k, λ2, age), and thus Gq(λ1) > Gq(λ2).

To show the limit results, note that limλ→∞w(0, λ, age) = 1, while limλ→∞w(k, λ, age) = 0
for all k > 0.

Proof of Proposition 4.4. From Propositions 4.1 and 4.2, we know that, for any t, any genera-
tions m ≥ n both in {t− q + 1, ..., t} and any k ∈ {0, ...., q − 1},

∂(xnt − xmt )

∂dt−k
=

(1 + β0)

γV [st+1]

∂(θnt − θmt )

∂dt−k
.

We note that, for any n ∈ {t − q + 1, ..., t}, ∂θnt
∂dt−k

= w(k, λ, n − t) if k ∈ {0, ..., t − n}, and
∂θnt
∂dt−k

= 0 if k ∈ {t − n + 1, ..., q − 1}. (Observe that t − n ≤ q − 1.) Hence, it suffices to

compare w(k, λ, t−n) with w(k, λ, t−m) for any k ∈ {0, ..., q−1}. (As usual, here we adopt the
convention that for any age, w(k, λ, age) = 0 for all k ≥ age.) From Lemma 2.1, there exists a
k0 such that w(k, λ, t−n) < w(k, λ, t−m) for all k ∈ {0, ..., k0} and w(k, λ, t−n) ≥ w(k, λ, t−m)
for the rest of the k’s, k ∈ {k0 + 1, ..., q − 1}.

The proof of Proposition 4.5 relies on the following first-order stochastic dominance result:

Lemma B.2. For any a ∈ {0, 1, ...}, a′ < a and any m ∈ {0, ..., a}, let F (m, a) ≡∑m
j=0 w(j, λ, a). Suppose the conditions of Lemma 2.1 hold; then F (m, a) ≤ F (m, a′) for

all m ∈ {0, ..., a}.

Proof. See Online Appendix OA.1.1.
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Proof of Proposition 4.5. We first introduce some notation. For any j ∈ {t−n−k+1, ..., t−n},
let w(j, λ, t− n− k) = 0; i. e., we define the weights of generation n+ k for time periods before
they were born to be zero. Thus,

∑t−n−k
j=0 w(j, λ, t − n − k)dt−j =

∑t−n
j=0 w(j, λ, t − n − k)dt−j .

In addition, we note that (w(j, λ, t−n− k))t−nj=0 and (w(j, λ, t−n))t−nj=0 are sequences of positive
weights that add to one.

Let for any m ∈ {0, ..., t− n},

F (m, t− n− k) =
m∑
j=0

w(j, λ, t− n− k) and F (m, t− n) =
m∑
j=0

w(j, λ, t− n).

These quantities, as functions ofm, are non-decreasing and F (t−n, t−n−k) = F (t−n, t−n) = 1.
Moreover, F (m+ 1, t− n− k)−F (m, t− n− k) = w(m+ 1, λ, t− n− k) and F (m+ 1, t− n)−
F (m, t− n) = w(m+ 1, λ, t− n). Finally, we set F (−1, t− n) = F (−1, t− n− k) = 0.

By these observations, by the definition of ξ(n, k, t), and by straightforward algebra, it follows
that,

ξ(n, k, t)

=

∑t−n
m=0(F (m, t− n)− F (m− 1, t− n))dt−m −

∑t−n
m=0(F (m, t− n− k)− F (m− 1, t− n− k))dt−m

γ(1 + β0)σ2

=

∑t−n−1
j=0 (dt−j − dt−j−1)(F (j, t− n)− F (j, t− n− k))

γ(1 + β0)σ2
.

If the weights are non-decreasing, then dt−j − dt−j−1 ≥ 0 for all j = 0, ..., t − n − 1, and it
suffices to show that F (j, t− n) ≤ F (j, t− n− k) for all j = 0, ..., t− n− 1. This follows from
applying Lemma B.2 with a = t− n > t− n− k = a′.

If the weights are non-increasing, then dt−j − dt−j−1 ≤ 0, and the sign of ξ(n, k, t) changes
accordingly.

Proof of Proposition 4.6. By Propositions 4.1 and 4.2, it follows that for any t and n ≤ t,

xnt =
1

γσ2 (1 + β0)2

(
α0(1−R) + (1 + β0)θnt −Rβ0dt +

q−1∑
k=1

βk(dt+1−k −Rdt−k)
)
. (43)

Thus, for n ∈ {t− q + 1, ..., t− 1},

xnt − xnt−1 =
(1 + β0)(θnt − θnt−1) + T (dt:t−q)

γσ2 (1 + β0)2 (44)

where T (dt:t−q) ≡
∑q−1

k=1 βk(dt+1−k − dt−k − R(dt−k − dt−1−k)) − Rβ0(dt − dt−1). Note that
T (dt:t−q) is not cohort specific, i.e., does not depend on n.

The fact that xtt − xtt−1 = xtt and xt−qt − xt−qt−1 = −xt−qt−1, and market clearing imply

q−1

(
t∑

n=t−q
xnt − xnt−1

)
= 0. (45)
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This expression and the expression in (44) imply that

1

q

 t−1∑
n=t−q+1

(1 + β0)(θnt − θnt−1)

γσ2 (1 + β0)2 + xtt − xt−qt−1

 = −1

q

t∑
n=t−q

T (dt:t−q)

γσ2 (1 + β0)2 = − T (dt:t−q)

γσ2 (1 + β0)2 .

Letting θtt−1 = θt−qt = 0, it follows that

1

q

(
t∑

n=t−q
(1 + β0)(θnt − θnt−1)

)
= −T (dt:t−q).

Thus, we can express the change in individual demands for those agents with n = {t − q +
1, ..., t− 1} in expression (44) as follows:

xnt − xnt−1 = χ

[(
θnt − θnt−1

)
− 1

q

t∑
n=t−q

(
θnt − θnt−1

)]
, ∀n ∈ {t, ..., t− q} (46)

where χ ≡ 1
γσ2(1+β0)

. By squaring and summing at both sides and including the demands on

the youngest (n = t) and oldest (n = t− q) market participants the desired result follows.

Appendix C Proofs for Results in Section 7

In this section, we present the proofs to Propositions 7.1-7.4. In order to prove the first
two propositions, we first establish the following four lemmas. (The proofs of the lemmas
are relegated to the Online Appendix OA.1.2.)

Lemma C.1. Suppose z ∼ N(µ, σ2), then for any A,B ∈ R and C ≥ 0, z 7→ K−1 exp{−A−
Bz − Cz2}φ(z;µ, σ2) is Gaussian with mean m ≡ −Σ2B + Σ2σ−2µ and Σ2 ≡ σ2

2Cσ2+1
,

where

K = EN(µ,σ2)[exp{−A−Bz − Cz2}] =
1√

2σ2C + 1
exp{−(A+ 0.5σ−2µ2) +

m2

2Σ2
}.

Lemma C.2. Demands for the risky asset in the last two period of a cohort-n agent’s

life are given by xnn+q = 0 and xnn+q−1 =
Enn+q−1[sn+q ]

γσ2(1+β0)2
∀n ∈ Z, q ≥ 1.

Lemma C.3. Let z ∼ N(µ, σ2). Let A,B ∈ R and C ≥ 0, and z 7→ h (z) ≡ f + ez for
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any e, f ∈ R.Then

max
x
E[− exp{−A−Bz − Cz2} exp{−axh (z)}]

= − 1√
2σ2C + 1

exp

[
−A− 1

2

(
µ2

σ2
− m2

s2

)]
exp

[
−1

2

µ̃ (m, s2)
2

σ̃2 (m, s2)

]

and arg max
x
E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =

µ̃ (m, s2)

aσ̃2 (m, s2)
,

with m = s2 [σ−2µ−B] , s2 = σ2

2Cσ2+1
, µ̃ (m, s2) = EN(m,s2) [h (z)] , σ2 (m, s2) = VN(m,s2) [h (z)].

For Lemma C.4, let β(k) = βk+1 − rβk for k ∈ {0, ..., K − 1} and β(K) = −rβK .

Lemma C.4. Suppose pt = α +
∑K

k=0 βkdt−k with β0 6= −1. Then the demand for risky
assets of any cohort alive at time t is an affine function of past dividends, where the
coefficients associated with a given dividend depend on the agent’s age. That is,

xt−aget = δ(age) +
K∑
k=0

δk(age)dt−k for age ∈ {0, ..., q} (47)

with

δ(q) = δk(q) = 0 ∀k ∈ {0, ..., K} (48)

δ(q − 1) =
α(1−R)

γ((1 + β0)σ)2
(49)

δk(q − 1) =
(1 + β0)w(k, λ, q − 1) + β(k)

γ((1 + β0)σ)2
∀k ∈ {0, ..., q − 1} (50)

δk(q − 1) =
β(k)

γ((1 + β0)σ)2
∀k ∈ {q, ...,K}, (51)

and for age ∈ {0, ..., q − 2},

δ(age) =
α(1−R)− s2age(1 + β0)δ0(age+ 1)δ(age+ 1)(Rq−1−(age+1)γ)2((1 + β0)sage+1)2

Rq−1−(age)γ((1 + β0)sage)2
, (52)

δk(age) =
(1 + β0)s2age(σ

−2w(k, λ, age)− [(Rq−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)]) + β(k)

Rq−1−(age)γ((1 + β0)sage)2

(53)

∀k ∈ {0, ..., q − 1},

δk(age) =
−(1 + β0)s2age[(R

q−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)] + β(k)

Rq−1−(age)γ((1 + β0)sage)2
, (54)

∀k ∈ {q, ...,K − 1}

δK(age) =
β(K)

Rq−1−(age)γ((1 + β0)sage)2
, (55)
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and sq−1 = σ and s2
age ≡ σ2

(Rq−1−(age+1)γ)2((1+β0)sage+1)2(δ0(age+1))2σ2+1

We now prove Proposition 7.1. We first note that the expressions for bj, bj(k) and cj for
j ∈ {0, ..., q − 1} in the proposition are:

bj ≡(Rq−1−jγ)2((1 + β0)σj)
2δ(j)δ0(j)

bj(k) ≡δk(j)δ0(j)(Rq−1−jγ)2((1 + β0)σj)
2

and, cq−1 = 1 and

cj−1 = 0.5(Rq−1−(j+1)γ)(1 + β0)σj+1δ0(j + 1)

for j ∈ {0, ..., q − 2}.

Proof of Proposition 7.1. By Lemma B.1, it follows that xtt+q−1 =
E
N(mq−1,σ

2
q−1)

[st+q ]

γV
N(mq−1,σ

2
q−1)

[st+q ]
with

mq−1 = θtt+q−1 and σq−1 = σ, and that

V t
t+q−1 = − exp{−0.5

(
(1 + β0)σγxtt+q−1

)2}.

By Lemma C.4, xtt+q−1 is affine in dt+q−1−K:tq and thus V t
t+q−1 = − exp{−A−Bdt+q−1 −

C(dt+q−1)2}, where A, B, and C depend on primitives and on dt+q−1−K:t+q−2. In partic-
ular, B is affine in dt+q−1−K:t+q−1−1 and C is constant with respect to dt+q−1−K:t+q−1:

C ≡1

2
γ2((1 + β0)σq−1)2 (δ0(q − 1))2

B ≡γ2((1 + β0)σq−1)2

(
δ(q − 1) +

K∑
j=1

δk(q − 1)dt+q−1−j

)
δ0(q − 1)

A ≡1

2
γ2((1 + β0)σq−1)2

(
δ(q − 1) +

K∑
j=1

δk(q − 1)dt+q−1−j

)2

.

(See Lemma C.4 for the expressions for δ(q − 1) and (δk(q − 1))Kk=1.)
At time t+ q − 2, by equation (29),

xtt+q−2 = arg max
x∈R

Et
t+q−2

[
V t
t+q−1(dt+q−1−K:t+q−1) exp (−γst+q−1x)

]
where the expectation is taken with respect N(θtt+q−2, σ

2). Hence, by Lemma C.1, this
problem can be cast as

xtt+q−2 = arg max
x∈R

EN(mq−2,σq−2) [− exp (−Rγst+q−1x)] ,
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where mq−2 = σq−2(
θtt+q−2

σ2 −B) and σ2
q−2 = σ2

2Cσ2+1
. Hence, by lemma B.1

xtt+q−2 =
EN(mq−2,σ2

q−2)[st+q−1]

γRVN(mq−2,σ2
q−2)[st+q−1]

.

Also, by Lemma B.1, V t
t+q−2 = − exp{−0.5

(
VN(mq−2,σ2

q−2)[st+q−1]Rγxtt+q−2

)2

}. By Lemma

C.4, xtt+q−2 is affine and thus V t
t+q−2 = − exp{−A − Bdt+q−2 − C(dt+q−2)2}, where A,

B, and C depend on primitives and on dt+q−2−K:t+q−3. In particular B is affine in
dt+q−2−K:t+q−3 and C is constant with respect to dt+q−1−K:t+q−1:

C ≡1

2
(Rγ)2((1 + β0)σq−2)2 (δ0(q − 2))2

B ≡(Rγ)2((1 + β0)σq−2)2

(
δ(q − 2) +

K∑
j=1

δk(q − 2)dt+q−2−j

)
δ0(q − 2)

A ≡1

2
(Rγ)2((1 + β0)σq−2)2

(
δ(q − 2) +

K∑
j=1

δk(q − 2)dt+q−2−j

)2

.

(Observe that the A, B, and C here are not the same as the previous ones; the expressions
for δ(q − 2) and (δk(q − 2))Kk=1 can be found in the statement of Lemma C.4).

The result for j ∈ {0, ..., q − 3} follows by iteration.

Proof of Proposition 7.2. Market Clearing and Lemma C.4 imply that, for all k ∈ {0, ..., K},∑q−1
age=0 δk(age) = 0 and

∑q−1
age=0 δ(age) = q.

For k = K, it follows from equations (51) and (55)

q−1∑
age=0

δK(age) = β(K)

(
q−1∑
age=0

1

Rq−1−ageγ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2

)

therefore β(K) = 0 which implies that βK = 0 and β(K−1) = −RβK−1 and δK(age) = 0
for any age.

For k = K − 1, by equations (51) and (54), we have

q−1∑
age=0

δK−1(age) = β(K − 1)

(
q−2∑
age=0

1

Rq−1γ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2

)
,

and thus β(K − 1) = 0, which implies that βK−1 = 0 and β(K − 2) = −RβK−2 and
δK−1(age) = 0 for any age.

By induction, for any k ∈ {q, ...,K − 2}, taking βk+1 = 0, it follows by equations (51)
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and (54), that

q−1∑
age=0

δk(age) = β(k)

(
q−2∑
age=0

1

Rq−1−ageγ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2

)
,

and thus β(k) = 0 which implies βk = 0 and β(k− 1) = −Rβk−1 and δk(age) = 0 for any
age ∈ {q, ...,K}.

Proof of Proposition 7.3. Throughout the proof, let w0 ≡ w(0, λ, 0).
We know from Lemma OA.2.1 in the Online Appendix OA.2 that {α, β0, β1} solve the

system of equations given by (74) and (75) and (73) in Online Appendix OA.2.

Step 1. By equation (73),

2Rγ (1 + β0)2 σ2 = α (1−R)

[
R +

σ2

s2
− [(1 + β0)w(0, λ, 0) + β1 −Rβ0]

1 + β0

]
.

We note that R > 1 ≥ w(0, λ, 0). Thus, if 0 < β1 < Rβ0 and 1 + β0 > 0, then[
R +

σ2

s2
− [(1 + β0)w(0, λ, 0) + β1 −Rβ0]

1 + β0

]
> 0

and α ≤ 0.

Step 2. We show that if 1 + β0 > 0, then 0 < β1 < Rβ0.
For 1 + β0 > 0, equation (75) implies β1 > 0 and l (1, 1) > 0. Now assume that

β1 − Rβ0 > 0. This implies that l (0, 1) > 0. For equation (74) to hold it must be that

1− 1
R
l(1,1)
1+β0

< 0; but

1− 1

R

l(1, 1)

(1 + β0)2 = 1− 1

R
(1− w0) +

β1

1 + β0

> 0 (56)

since R > 1, w0 < 1, and β1 > 1. Contradiction. Then, 1 + β0 > 0⇒ β1 −Rβ0 < 0.

Step 3. We now show that 1 +β0 > 0. Let φ ≡ σ2

s2
> 1. From equation (75), we know

(1 + β0) (1− w0)

φ+R
= β1.

We plug this into equation (74) and obtain

φ

(
−β0R +

(1 + β0) (1− w0)

φ+R

)
+R

[
(1 + β0) (1− w0)

φ+ r
+ (1 + β0)w0 − β0R

]
+ ...

+

[
1 + β0 −

φ(1− w0) (1 + β0 − β0φR− β0R
2 + (1 + β0) (φ+R− 1)w0)

(φ+R)2

]
= 0.
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Note that this is a linear equation in β0. Therefore,

β0 = −
2− w0(1−R)− φ(1−w0)(1+(φ+R−1)w0)

(φ+R)2

2− w0(1−R)− φ(1−w0)(1+(φ+R−1)w0)

(φ+R)2
− (Rφ+R2)

[
1− φ(1−w0)

(φ+R)2

] ≡ − A

A− x,

where A ≡ 2 − w0(1 − R) − φ(1−w0)(1+(φ+R−1)w0)

(φ+R)2
and x ≡ (Rφ+R2)

[
1− φ(1−w0)

(φ+R)2

]
> 0.

Note that for x = 0 ⇒ β0 = −1. Then, it suffices to show that ∂β0
∂x

= A
(A−x)2

≥ 0, that

is, A ≥ 0. For w0 = 0.5, which corresponds to λ = 0, A is positive, i.e., A(0.5) > 0. In

addition, ∂A
∂w0

= (φ+R−1)(R2+φ(R−2(1−w0)))
(φ+R)2

> 0 for w0 ≥ 0.5. Therefore, A > 0 for w0 ≥ 0.5.

If we are interested in λ < 0 cases, since A(0) > 0, all we need to ensure that A is
positive, and thus the result holds for w0 ∈ [0, 0.5), is that R ≥ 2(1− w0).

In order to show Proposition 7.4, we need the two following lemmata. (Their proofs
are relegated to the Online Appendix OA.1.2.)

Lemma C.5. For λ ≥ 0, 1 + β0 + β1 − rβ0 > 0.

Lemma C.6. Given our linear guess for prices (6), when q = 2, at time t:

xt−1
t =

Et−1
t [st+1]

γR (1 + β0)σ2
=

α (1−R)

γ (1 + β0)2 σ2
+

l (0, 1)

γ (1 + β0)2 σ2
dt +

l (1, 1)

γ (1 + β0)2 σ2
dt−1 (57)

xtt =
EΦ(m,s2) [st+1]

R(1 + β0)s2
= δ(0) + δ0(0)dt + δ1(0)dt−1 (58)

with l(0, 1) ≡ [(1 + β0)w(0, λ, 0) + β1 −Rβ0] and l(1, 1) ≡ [(1 + β0)w(1, λ, 0)−Rβ1], and

δ(0) =
α(1−R)

[
1− s2

σ2
l(0,1)
(1+β0)

]
γR(1+β0)2s2

, δ0(0) =
β1−Rβ0+(1+β0) s

2

σ2

(
1− l(1,1)l(0,1)

(1+β0)
2

)
γR(1+β0)2s2

, and δ1(0) = − Rβ1
Rγ(1+β0)s2

.

Proof of Proposition 7.4. By Lemma C.6 and market clearing, it follows that

δ0(0) +
l (0, 1)

γ (1 + β0)2 σ2
= 0,

and

δ1(0) +
l (1, 1)

γ (1 + β0)2 σ2
= 0.

These expressions and Lemma C.6 imply that
∂xt−1
t
∂dt

= l(0,1)

γ(1+β0)2σ2
= −∂xtt

∂dt
, and

∂xtt
∂dt−1

= δ1(0) =

− ∂xtt
∂dt−1

. Therefore, it suffices to show that l(0, 1) < 0 and δ1(0) < 0.

By Proposition 7.3, β1 > 0 and β0 > 0 and thus δ1(0) = − Rβ1
Rγ(1+β0)s2

< 0. So it only remains
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to show that l(0, 1) < 0. To show this, note that from the equilibrium condition (74) we have

0 =

[
R− l(1, 1)

(1 + β0)

]
l (0, 1) +

l (0, 1)2

(1 + β0)2 (β1 −Rβ0) + [1 + β0 + β1 −Rβ0] .

From Lemma C.5, 1 + β0 + β1 −Rβ0 > 0. Let x = l(0,1)
1+β0

, then

0 = [R (1 + β0)− l(1, 1)]x+ x2 (β1 −Rβ0) + [1 + β0 + β1 −Rβ0] ,

or equivalently F (x) ≡ ax2 + bx + c, with a = β1 − Rβ0 < 0 (by Proposition 7.3), b =
R (1 + β0) − l(1, 1) = R (1 + β0) − (1 + β0)w(1, λ, 0) + Rβ1 > 0 (by Proposition 7.3) and c =
1 + β0 + β1 − Rβ0 > 0 (by Lemma C.5). Thus, F is concave and F (0) = c > 0. By definition
of F , l(0, 1)/(1 + β0) must be a root of F . Let x∗ = arg maxx∈R F (x), which is given by
x∗ = − b

2a > 0. Therefore, F (.) has two roots x1, x2 with x1 < 0 < x∗ < x2.

We now show that x2 = l(0,1)
1+β0

cannot hold. Suppose not, that is, assume that our solution

is the positive root l(0,1)
1+β0

= x2. Then, since x∗ < x2 and a < 0, we have b
2 < −a l(0,1)

1+β0
, or

equivalently, R(1+β0)−l(1,1)
2 < l (0, 1) Rβ0−β11+β0

.

Let Z ≡ −β1−Rβ0
1+β0

. Then the last inequality implies that R (1 + β0)−(1 + β0) (1− w0)+Rβ1 <
2l (0, 1)Z. (Recall that w0 ≡ w(0, λ, 0) and w(1, λ, 0) = 1− w0.) By replacing l(0, 1) and some
algebra, it follows that R (1 + β0) − (1 + β0) (1− w0) + Rβ1 < 2Z [(1 + β0)w0 + β1 −Rβ0], or

equivalently 1
2w0+ 1

2

[
R− 1 +R β1

1+β0

]
< Z (w0 − Z). We note that the RHS is bounded by w0/4

since no matter the value of Z, the function z 7→ z(w0−z) cannot be larger than (w0)2/4 < w0/4
(since w0 ∈ [0, 1]). Therefore,

w0

4
>
w0

2
+

1

2

[
R− 1 +R

β1

1 + β0

]
.

However, 1
2

[
R− 1 +R β1

1+β0

]
> 0; thus a contradiction follows. The solution must be the

negative root.
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Online Appendix

Appendix OA.1 Proofs of Supplementary Lemmas

OA.1.1 Proofs of Supplementary Lemmas in the Appendix B

Proof of Lemma B.1. Since z ∼ N(µ, σ2), we can rewrite the problem as follows:

x∗ = arg max
x
− exp

(
−axE[z] +

1

2
a2x2V [z]

)
= arg max

x
axµ− 1

2
a2x2σ2

From FOC, x∗ = µ
aσ2 . Plugging x∗ into − exp

(
−ax∗µ+ 1

2
a2(x∗)2σ2

)
the second result

follows.

Proof of Lemma B.2. From Lemma 2.1, we know that there exists a unique j0 where
w(j0, λ, a

′) − w(j0, λ, a) “crosses” zero. Thus, for m ≤ j0, the result is true because
w(j, λ, a′) > w(j, λ, a) for all j ∈ {0, ...m}. For m > j0, the result follows from the fact
that w(j, λ, a′) < w(j, λ, a) for all j ∈ {m, ...a} and F (a, a) = F (a′, a′) = 1.

OA.1.2 Proof of Supplementary Lemmas in the Appendix C

Proof of Lemma C.1. Let ϕ(z) ≡ K exp{−(A + Bz + Cz2)}φ(z;µ, σ2). By definition of
K,
∫
ϕ(z)dz = 1 and ϕ ≥ 0, so it is a pdf. Moreover,

ϕ(z) =
K−1

√
2πσ

exp{−A−Bz − Cz2 − 0.5σ−2(z − µ)2}

=
1

K
√

2πσ
exp{−z2(C + 0.5σ−2)− 2z(0.5B − 0.5σ−2µ)− (A+ 0.5σ−2µ2)}

=
1

K
√

2πσ
exp{−(A+ 0.5σ−2µ2)} exp{−0.5(2C + σ−2)

(
z2 − 2z

(−B + σ−2µ)

(2C + σ−2)

)
}.

Let Σ2 ≡ (2C + σ−2)−1, m ≡ Σ2(σ−2µ− b), and K = 1√
2σ2C+1

exp{−(A+ 0.5σ−2µ2) +
m2

2Σ2}:

ϕ(z) =
1

K
√

2πσ
exp{−(a+ 0.5

µ2

σ2
) +

m2

2Σ2
} exp{−z

2 − 2zm+m2

2Σ2
}

=
1

K
√

2πσ
exp{−(a+ 0.5σ−2µ2) +

m2

2Σ2
} exp{−(z −m)2

2Σ2
} =

1√
2πΣ

exp{−(z −m)2

2Σ2
}

=
1√

2πΣ2
exp{−(z −m)2

2Σ2
}

1



Proof of Lemma C.2. At time n + q, an agent born in n is in the last period of his life,
consuming all of its wealth. Therefore, he will sell all of his claims to the assets he holds
and consume. The gain from saving is zero, and therefore the holding of financial assets
is also zero by the end of this period: xnn+q = 0, ann+q = 0. Given this, we can compute
the portfolio choice of an agent of age q − 1, who will want to save for next period when
all wealth will be consumed. The agent’s problem is a standard static portfolio problem,
with initial wealth W n

nq :

max
x

Et
n+q−1

[
− exp

(
−γ
(
W n
n+q−1 + xsn+q

))]
= max

x
En
n+q−1 [− exp (−γxsn+q)] (59)

At time n + q − 1, the only random variable is dn+q, which is normally distributed, and
thus sn+q ∼ N

(
En
n+q−1 [sn+q] ; (1 + β0)σ2

)
. Given this, the agent’s problem becomes:

max
x

[
− exp

(
−γxEn+q−1

n [sn+q] +
1

2
γ2x2 (1 + β0)σ2

)]
(60)

⇐⇒ max
x

xEn+q−1
n [sn+q]−

1

2
γx2 (1 + β0)2 σ2. (61)

And therefore, by FOC:

xnn+q−1 =
En
n+q−1 [sn+q]

γσ2(1 + β0)2
. (62)

Proof of Lemma C.3. Note that E[− exp{−A−Bz−Cz2} exp{−axh (z)}] can be written
as: ∫

exp{−axh (z)} − exp{−A−Bz − Cz2} 1√
2πσ2

exp

{
−1

2

z − µ
σ2

}
dz

By Lemma C.1, we know that his can be re-written as:

1√
2σ2C + 1

exp

{
−A− 0.5

(
µ2

σ2
− m2

s2

)}∫
− exp{−axh (z)}Φ

(
m, s2

)
dz

with m = −s2B+sσ−2µ and s2 = σ2

2Cσ2+1
. Therefore, the maximization problem becomes:

max
x

EN(m,s2)[− exp{−axh (z)}]

with EN(m,s2) [·] being the expectations operator over z ∼ N (m, s2). Since h(z) is lin-

ear, we know that h (z) ∼ N
(
µ̃ (m, s2) , σ̃ (m, s2)

2
)

, with µ̃ (m, s2) = EN(m,s2) [h (z)],

2



σ̃ (m, s2)
2

= VN(m,s2) [h (z)], by Lemma B.1, we know that

arg max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =
µ̃
(
m, s2

)
aσ̃ (m, s2)

2

max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =− 1√
2σ2C + 1

exp

[
−A− 0.5

(
µ2

σ2
− m2

s2

)]
× exp

[
−0.5

µ̃
(
m, s2

)2
σ̃ (m, s2)

2

]

Let t 7→ ρ(t) ≡ γt2 and let

Λ(dt−K , ..., dt) ≡α(1−R) +
K∑
k=1

βkdt+1−k −R
K∑
k=0

βkdt−k (63)

=α(1−R) +
K−1∑
j=0

βj+1dt−j −R
K∑
k=0

βkdt−k = α(1−R) +
K∑
k=0

β(k)dt−k

with β(k) = βk+1 −Rβk for k ∈ {0, ..., K − 1} and β(K) = −RβK . We use Λτ to denote
Λ(dτ−K , ..., dτ ).

Proof of Lemma C.4. We divide the proof into several steps.

Step 1 It is straightforward that demand for risky assets can only be positive for a
generation that is alive. From Lemma C.2, we know that xt−qt = 0 and that xt−q+1

t =
Et−q+1
t [st+1]

γ((1+β0)σ)2
. Therefore,

δ(q) = δk(q) = 0, ∀k ∈ {0, ..., K}

δ(q − 1) =
α(1−R)

γ((1 + β0)σ)2
, δk(q − 1) =

(1 + β0)w(k, λ, q − 1) + β(k)

γ((1 + β0)σ)2
, ∀k ∈ {0, ..., q − 1}

δk(q − 1) =
β(k)

γ((1 + β0)σ)2
, ∀k ∈ {q, ...,K}.

We also know from Lemma B.1 that

V q−1(dt−K , ..., dt) = − exp

−1

2

dtδ0(q − 1) + δ(q − 1) +
K∑
j=1

δk(q − 1)dt−j

2

γ2((1 + β0)sq−1)2


where sq−1 = σ2. Henceforth, we denote V q−1(dt−K , ..., dt) by V t−q+1

t . In particular,
V t+1−q+1
t+1 = V t−q+2

t+1 = V q−1(dt+1−K , ..., dt+1).

Step 2. We now derive the risky demand and continuation value for generation aged

3



q − 2. The problem of generation aged q − 2 at time t is given by,

max
x

Et−q+2
t

[
V t−q+2
t+1 exp (−γRxst+1)

]
. (64)

By the calculations in step 1, and using Λt as defined in (63), this problem becomes:

V q−2(dt−K , ..., dt) (65)

= max
x

Et−q+2
t

[
− exp

(
−1

2

(
xq−1
t

)2
γ2((1 + β0)sq−1)2 − γRx((1 + β0)dt+1 + Λt)

)]
. (66)

with xq−1
t = dt+1δ0(q − 1) + δ(q − 1) +

∑K
j=1 δk(q − 1)dt+1−j.

Observe that

− 1

2

(
dt+1δ0(q − 1) + δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

)2

γ2((1 + β0)sq−1)2

=− 1

2
γ2((1 + β0)sq−1)2

(
δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

)2

− γ2((1 + β0)sq−1)2

(
δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

)
δ0(q − 1)dt+1

− 1

2
γ2((1 + β0)sq−1)2 (δ0(q − 1))2 d2

t+1,

and that future dividends are the only random variable, with dt+1 ∼ N
(
θt−q+2
t , σ2

)
.

Therefore, by Lemma C.3, and with:

A =
1

2
γ2((1 + β0)sq−1)2

(
δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

)2

B =γ2((1 + β0)sq−1)2

(
δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

)
δ0(q − 1)

C =
1

2
γ2((1 + β0)sq−1)2 (δ0(q − 1))2

we obtain:

x
t−(q−2)
t =

(1 + β0)s2
q−2(σ−2θ

t−(q−2)
t −B) + Λt

Rγ((1 + β0)sq−2)2

4



with s2
q−2 ≡ σ2

γ2((1+β0)sq−1)2(δ0(q−1))2σ2+1
. Therefore,

δ(q − 2) =
α(1−R)− s2q−2(1 + β0)δ0(q − 1)δ(q − 1)γ2((1 + β0)sq−1)2

Rγ((1 + β0)sq−2)2

For k ∈ {0, ..., q − 1} :

δk(q − 2) =
(1 + β0)s2q−2(σ−2w(k, λ, q − 2)− [γ2((1 + β0)sq−1)2δk+1(q − 1)δ0(q − 1)]) + β(k)

Rγ((1 + β0)sq−2)2
,

δk(q − 2) =
−(1 + β0)s2q−2[γ2((1 + β0)sq−1)2δk+1(q − 1)δ0(q − 1)] + β(k)

Rγ((1 + β0)sq−2)2
,

and δK(q − 2) =
β(K)

Rγ((1 + β0)sq−2)2
.

By lemma C.1, dt+1 ∼ N(mt, s
2
q−2) with mt ≡ −s2

q−2B+s2
q−2σ

−2θt−q+2
t . Thus, invoking

lemma B.1 for this distribution for dividends and a = Rγ(1 + β0) implies that

V q−2(dt−K , ..., dt) �− exp

(
−1

2

(
x
t−(q−2)
t

)2

(Rγ)2((1 + β0)sq−2)2

)

=− exp

−1

2

(
dtδ0(q − 2) + δ(q − 2) +

K∑
j=1

δk(q − 2)dt−j

)2

(Rγ)2((1 + β0)sq−2)2


(the symbol � means that equality holds up to a positive constant).

Step 3. We now consider the problem for agents of age age ≤ q − 3. Suppose the
problem at age age+ 1 is solved, that is, suppose

V t−age−1
t+1 = V age+1(dt+1−K , ..., dt+1)

� − exp

−1

2

dt+1δ0(age+ 1) + δ(age+ 1) +
K∑
j=1

δj(age+ 1)dt+1−j

2

(Rq−1−(age+1)γ)2((1 + β0)sage+1)2

 .

The maximization problem is given by:

V age(dt−K , ..., dt) ≡ max
x

Et−age
t

[
V t−age−1
t+1 exp

(
−γRq−1−agex((1 + β0)dt+1 + Λt)

)]
. (67)

By similar calculations to step 2 and Lemma C.3,

xt−aget =
(1 + β0)s2

age(σ
−2θt−aget −B) + Λt

Rq−1−(age)γ((1 + β0)sage)2

5



with s2
age ≡ σ2

(Rq−1−(age+1)γ)2((1+β0)sage+1)2(δ0(age+1))2σ2+1
, and

B ≡ (Rq−1−(age+1)γ)2((1 + β0)sage+1)2

(
δ(age+ 1) +

K∑
j=1

δj(age+ 1)dt+1−j

)
δ0(age+ 1).

Therefore

δ(age) =
α(1−R)− s2age(1 + β0)δ0(age+ 1)δ(age+ 1)(Rq−1−(age+1)γ)2((1 + β0)sage+1)2

Rq−1−(age)γ((1 + β0)sage)2
,

δk(age) =
(1 + β0)s2age(σ

−2w(k, λ, age)− [(Rq−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)]) + β(k)

Rq−1−(age)γ((1 + β0)sage)2

k ∈ {0, ..., q − 1},

δk(age) =
−(1 + β0)s2age[(R

q−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)] + β(k)

Rq−1−(age)γ((1 + β0)sage)2
, k ∈ {q, ...,K − 1}

δK(age) =
β(K)

Rq−1−(age)γ((1 + β0)sage)2
.

By lemma C.1, dt+1 ∼ N(mt, s
2
age) with mt ≡ −s2

ageB + s2
ageσ

−2θt−q+2
t . Thus, invoking

lemma B.1 for this distribution for dividends and a = Rq−1−ageγ(1 + β0) implies that

V age(dt−K , ..., dt) �− exp

(
−1

2

(
x
t−(age)
t

)2
(Rq−1−(age)γ)2((1 + β0)sage)

2

)

=− exp

−1

2

dtδ0(age) + δ(age) +

K∑
j=1

δk(age)dt−j

2

(Rq−1−(age)γ)2((1 + β0)sage)
2

 .

Proof of Lemma C.5. Assume it is not the case, i.e. 1 + β0 + β1−Rβ0 ≤ 0. This implies
that l(0, 1) = (1 + β0)w0 + β1 −Rβ0 ≤ 0. From condition (74) we have:

0 =

[
R− l(1, 1)

(1 + β0)

]
l (0, 1) +

l (0, 1)2

(1 + β0)2 (β1 −Rβ0) + [1 + β0 + β1 −Rβ0]

Then, since β1−Rβ0 ≤ 0 by proposition 7.3, for the previous equation to hold it must

be that
[
R− l(1,1)

(1+β0)

]
≤ 0. However, replacing l(1, 1), this inequality implies that[

R− (1 + β0) (1− w0)−Rβ1

(1 + β0)

]
=

[
R +

Rβ1

1 + β0

− (1− w0)

]
> 0.

By Proposition 7.3, Rβ1
1+β0

> 0 and R > 1 by assumption, so we obtained a contradiction.

Hence, it must be that [1 + β0 + β1 −Rβ0] > 0.

Proof of Lemma C.6. From Lemma B.1, we know that xt−1
t =

Et−1
t [st+1]

γ(1+β0)σ2 . Therefore, given

6



our guess for prices and Lemma 7.2, we have:

xt−1
t =

Et−1
t [dt+1 + pt+1 − ptR]

γ(1 + β0)σ2
(68)

=
(1 + β0)θt−1

t + α(1−R) + (β1 −Rβ0)dt −Rβ1dt−1

γ(1 + β0)σ2
(69)

since θt−1
t = w0dt + (1 − w0)dt−1, we obtain equation (57), where l(0, 1) = (1 + β0)w0 +

β1 −Rβ0 and l(1, 1) = (1 + β0)(1− w0)−Rβ1. We also know from Lemma C.2 that

V t−1
t =− exp

(
−1

2

Et−q+1
t [st+1]2

γ(1 + β0)σ2

)

=− exp

(
−1

2

(α(1−R) + l(1, 1)dt−1 + l(0, 1)dt)
2

γ(1 + β0)σ2

)

=− exp

(
−1

2

(Lt(1, 1) + l(0, 1)dt)
2

γ(1 + β0)σ2

)

where Lt(1, 1) ≡ α(1 − R) + l(1, 1)dt−1. Thus, we can write the value function of the
generation that is investing for the last time on the market as follows:

V t−1
t = − exp(−At −Btdt − Cd2

t ) (70)

where At ≡ Lt(1,1)2

2γ(1+β0)2σ2 , Bt ≡ Lt(1,1)l(0,1)
γ(1+β0)2σ2 , C ≡ l(0,1)2

2γ(1+β0)2σ2 . Using these results to obtain

V t
t+1, the problem of the young generation at time t is given by

max
x

Et
t

[
V t
t+1 exp (−γRxst+1)

]
. (71)

From Lemma C.3

xtt =
µ̃ (m, s2)

γRσ̃ (m, s2)2 ,

where

µ̃
(
m, s2

)
= EN(m,s2) [h (z)] = α(1−R) + (β1 −Rβ0)dt −Rβ1dt−1 + (1 + β0)m

σ̃
(
m, s2

)2
= VN(m,s2) [h (dt+1)] = (1 + β0)2s2

with m =
θtt−σ2Bt+1

2Cσ2+1
, s2 = σ2

2Cσ2+1
. Incorporating the fact that Bt+1 = (α(R−1)+l(1,1)dt)l(0,1)

(1+β0)2σ2

and θtt = dt we obtain equation (58) and the respective δ’s.
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Appendix OA.2 Proposition 7.2 for the q = 2 case

The next lemma specializes the results in Proposition 7.2 for the q = 2 case. It helps
illustrate the expressions needed to compute α, β0 and β1.

Lemma OA.2.1. For R > 1 in any linear equilibrium prices are given by:

pt = α + β0dt + β1dt−1 ∀t ∈ Z (72)

where the coefficients {α, β0, β1} are uniquely determined by the following set of non-linear
equations:

0 = α (1−R)

[
R +

σ2

s2
− l (0, 1)

1 + β0

]
− 2Rγ (1 + β0)2 σ2 (73)

0 = l (0, 1) +
1

R

σ2

s2
(β1 −Rβ0) +

1

R
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)
(74)

0 = l (1, 1)− σ2

s2
β1 (75)

where l(0, 1) ≡ [(1 + β0)w(0, λ, 0) + β1 −Rβ0] and l(1, 1) ≡ [(1 + β0)w(1, λ, 0)−Rβ1].

Proof of Lemma OA.2.1. By Proposition 7.1, we have the following demands:

xt−2
t = 0 (76)

xt−1
t =

Et−1
t [st+1]

γR (1 + β0)σ2
=
α (1−R) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2
(77)

xtt =
EΦ(m,s2) [st+1]

γR (1 + β0) s2
=
α (1−R) + (β1 −Rβ0) dt −Rβ1dt−1 + (1 + β0)m

γR (1 + β0)2 s2
(78)

where l(0, 1) ≡ (1 + β0)w(0, λ, 0) + β1 −Rβ0, l(1, 1) ≡ (1 + β0)w(1, λ, 0)−Rβ1,

m =
s2

σ2

[
dt − σ2Bt+1 (1)

]
s2 =

σ2

2C (1)σ2 + 1
,

and

Bt+1 (1) =
α (1−R) l (0, 1)

(1 + β0)2 σ2
+
l(1, 1)l (0, 1)

(1 + β0)2 σ2
dt

C (1) =
l (0, 1)2

(1 + β0)2 σ2

8



Therefore:

m =
s2

σ2

[
dt −

α (1−R) l (0, 1)

(1 + β0)
2 − l(1, 1)l (0, 1)

(1 + β0)
2 dt

]
=
s2

σ2

[
−α (1−R) l (0, 1)

(1 + β0)
2 +

(
1− l(1, 1)l (0, 1)

(1 + β0)
2

)
dt

]

s2 =
σ2

2 l(0,1)2

(1+β0)
2σ2σ2 + 1

=
(1 + β0)

2

l (0, 1)
2

+ (1 + β0)
2σ

2.

Plugging this in the expression for xtt, it follows that

xtt =
α (1−R) + (β1 −Rβ0) dt −Rβ1dt−1 + (1 + β0) s2

σ2

[
−α(1−R)l(0,1)

(1+β0)2
+
(

1− l(1,1)l(0,1)

(1+β0)2

)
dt

]
γR (1 + β0)2 s2

=
α (1−R)

[
1− s2

σ2

l(0,1)
(1+β0)

]
+
[
β1 −Rβ0 + (1 + β0) s2

σ2

(
1− l(1,1)l(0,1)

(1+β0)2

)]
dt −Rβ1dt−1

γR (1 + β0)2 s2
.

By Market clearing:

1 =
1

2

(
α (1−R) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)
2
σ2

)

+
1

2

α (1−R)
[
1− s2

σ2

l(0,1)
(1+β0)

]
+
[
β1 −Rβ0 + s2

σ2 (1 + β0)
(

1− l(1,1)l(0,1)

(1+β0)
2

)]
dt −Rβ1dt−1

γR (1 + β0)
2
s2


=

1

2

(
α (1−R) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)
2
σ2

)

+
1

2

α (1−R) σ
2

s2

[
1− s2

σ2

l(0,1)
(1+β0)

]
+
[
σ2

s2 (β1 −Rβ0) + (1 + β0)
(

1− l(1,1)l(0,1)

(1+β0)
2

)]
dt − σ2

s2 Rβ1dt−1

γR (1 + β0)
2
σ2

 ,

which implies

2γ (1 + β0)
2
σ2 = (α (1−R) + l (0, 1) dt + l (1, 1) dt−1)

+
1

R

[
α (1−R)

σ2

s2

[
1− s2

σ2

l (0, 1)

(1 + β0)

]]
+

1

R

[[
σ2

s2
(β1 −Rβ0) + (1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)
2

)]
dt −

σ2

s2
Rβ1dt−1

]

=α (1−R)
1

R

[
R+

σ2

s2
− l (0, 1)

(1 + β0)

]
+

[
l (0, 1) +

1

R

σ2

s2
(β1 −Rβ0) +

1

R
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)
2

)]
dt +

[
l (1, 1)− σ2

s2
β1

]
dt−1.
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Therefore {α, β0, β1} solve the following system of equations:

0 = α (1−R)

[
R +

σ2

s2
− l (0, 1)

1 + β0

]
− 2Rγ (1 + β0)2 σ2 (79)

0 = l (0, 1) +
1

R

σ2

s2
(β1 −Rβ0) +

1

R
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)
(80)

0 = l (1, 1)− σ2

s2
β1 (81)

where l(0, 1) ≡ [(1 +β0)w(0, λ, 0) +β1−Rβ0] and l(1, 1) ≡ [(1 +β0)w(1, λ, 0)−Rβ1].
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Appendix OA.3 Population Growth

In addition to considering the effects of a one-time shock to population structure, we also
explore the implications of population growth.

In this section of the Online Appendix, we consider an OLG model two-period lived
agents where the mass of young agents born every period grows at rate g. For this growth
setting, we need to set an initial date for the economy, which we define to be t = 0. Let
yt denote the mass of young agents born at time t; then yt+1 = (1 + g) yt = y0(1 + g)t.
We further denote the total mass of people at any point in time t > 0 as nt, and hence
nt = yt + yt−1 = (2 + g) yt−1. It is easy to check that nt = (1 + g)nt−1; that is, total
population grows at rate g.

The framework is otherwise as in the ‘toy model” in Section 3 of the main paper. The
main difference is that now population is growing over time. As a result, we make a
different guess for the price function:

pt = α0 (1 + g)−t + β0dt + β1dt−1

We verify this guess using our market clearing condition, which requires the demand of
the young and the old to add up to total supply of the asset, one:

1 = yt
Ett [pt+1 + dt+1]−Rpt
γV [pt+1 + dt+1]

+ yt−1
Et−1
t [pt+1 + dt+1]−Rpt
γV [pt+1 + dt+1]

⇐⇒

1 =
y0 (1 + g)t−1

γ (1 + β0)2 σ2

[
(1 + β0)

[
(1 + g)Ett [dt+1] + Et−1

t [dt+1]
]

+ (2 + g)
[
α0 (1 + g)−(t+1) + β1dt −Rpt

]]

and after simple algebra,

Rpt = (1 + β0)

{
1 + g

2 + g
dt +

1

2 + g
[(1− ω) dt−1 + ωdt]

}
+

α0

(1 + g)t+1 + β1dt −
γσ2(1 + β0)2

y0 (2 + g) (1 + g)t−1

We plug in pt = α0 (1 + g)−t + β0dt + β1dt−1 and we use the method of undetermined
coefficients to obtain:

α0 = −γ (1 + β0)2 σ2

R− 1
1+g

(1 + g)

y0 (2 + g)

Rβ0 = (1 + β0)

(
1 + g

2 + g
+

1

2 + g
ω

)
+ β1

Rβ1 = (1 + β0)
1− ω
2 + g

Let αt ≡ α0(1 + g)−t and γ ≡ yt
nt

denote the fraction of young agents, which is easy to
verity is constant over time. Then, we can rewrite the above equations as

11



αt = −γ (1 + β0)2 σ2

R− 1
1+g

1 + g

nt

Rβ0 = (1 + β0) (γ + (1− γ)ω) + β1

Rβ1 = (1 + β0) (1− γ)(1− ω).

The latter expressions reveal that the total mass of agents in the market is reflected
only in the price constant, while the fraction of young people in the market determines
the dividend loadings β0 and β1. Overall, we see that adding population growth generates
to our model generates a positive trend in prices. The relative reliance of prices on the
most recent experiences (dividends) is increasing in the population growth rate.
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Appendix OA.4 Empirical Analysis

We use two alternative approaches to measure the fraction of younger agents (below
50 years of age) in the market. First, we compute an indicator variable that equals
one when the fraction of young agents in the market is above 0.5 and zero otherwise,
I{Fraction of young investorst > 0.5}. Here, the fraction of young investors is based on
their relative cohort sizes, with

Fraction of young investorst =

∑
j I(agej,t < 50) · wscf

j,t∑
j=1 w

scf
j,t

,

where agej,t is the age of household head j in year t, and wscf
j,t is the weight given to

household head j in year t in the Survey of Consumer Finance to compensate for unequal
probabilities of household selection in the original design and for unit nonresponse (failure
to obtain an interview).

Our second proxy captures the wealth of younger generations of investors. We construct
an indicator variable that equals 1 when the fraction of liquid wealth owned by agents
below 50 is above the 1960-2013 sample average of their liquid wealth and zero otherwise,
I(Fraction of young investors’ wealtht > Sample average),24 i. e.,

Fraction of young investors’ wealtht =

∑
j I(agej,t < 50) · wscfj,t ·Wealthj,t∑

j w
scf
j,t ·Wealthj,t

For robustness, we also consider thresholds 0.55 and 0.60 for the age-based first proxy,
and 0.9×Sample average and 1.1×Sample average for the age- and wealth-based second
proxy. Results are presented in Online-Appendix Table OA.1. We estimate a positive δ1

coefficient, which is significant when requiring a fraction of 0.6 for the age-based coefficient
and when requiring wealth above 0.9 of the sample average for the age- and wealth-based
coefficient.

24 The SCF documents the age and wealth (liquid assets) information of each respondent in 1960,
1962, 1963, 1964, 1967, 1968, 1969, 1970, 1971, 1977, 1983, 1986, 1989, 1992, 1995, 1998, 2001, 2004,
2007, 2010, and 2013. We use linear interpolation to fill the missing years and construct a yearly sample
from 1960 to 2013. The liquid assets variable is defined to be the sum of assets in an investor’s checking,
savings, and money-market accounts, as well as any call accounts at brokerages and prepaid cards.
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Table OA.1: Markov-Switching Regime (MSR) model

Robustness checks of the estimation results in Table 2. Pt−Dt is the log of the price-to-dividend
ratio, and regressed on its lagged values interacted with the demographic indicator variable Yt
for the fraction of young investors. We use different thresholds to construct Yt. In column (1),
Yt equals 1 when the fraction of investors below 50 is larger than 0.55, and in column (2), the
threshold is 0.60. In column (3), Yt equals 1 when the fraction of wealth of investors below 50
is larger than 90% of their 1960-2013 sample average, and in column (4), the threshold is 110%
of the sample average. As in Table 2, the demographic data including age and wealth (liquid
assets) of stock-market participants is from the SCF, stock data from CRSP.

Dependent variable: Pt −Dt

Yt age-based Yt age/wealth-based
(1) (2) (3) (4)

δ1 0.430 1.134** 0.681** -0.339
(0.288) (0.188) (0.209) (0.268)

δ2 0.016 -0.194 -0.082 -0.137
(0.304) (0.322) (0.210) (0.422)

δ3 -0.460** -0.778** -0.629** 0.428*
(0.225) (0.282) (0.161) (0.220)

β1 0.623** 0.297** 0.417** 1.084**
(0.259) (0.134) (0.177) (0.081)

β2 -0.099 -0.132 -0.168 -0.223**
(0.219) (0.140) (0.166) (0.100)

β3 0.298** 0.452** 0.580** -0.044
(0.151) (0.106) (0.140) (0.064)

µ(S1) 4.925** 5.780** 5.734** 5.430**
(1.541) (2.915) (1.513) (1.683)

µ(S2) 19.590** 14.100** 20.310** 19.670**
(3.399) (2.959) (3.144) (3.102)

σ 3.948 3.259 3.792 3.737
(0.392) (0.393) (0.397) (0.375)

Q11 0.953 0.779 0.956 0.931
(0.030) (0.152) (0.026) (0.035)

Q21 0.374 0.115 0.365 0.473
(0.214) (0.068) (0.210) (0.220)

N 51 51 51 51

Robust standard errors in parentheses. * significant at 10%; ** significant at 5%.
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