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1. Introduction

Measuring the value of labor market hires for stock prices is a fundamental question in

financial economics. Two labor markets are particularly important and widely studied. The

first is the market for underwriters when firms issue equity. Firms compete and spend

significant resources to hire reputable underwriters (typically investment banks with track

records of successful placements) for their initial public offerings (IPOs) so as to alleviate

adverse selection (see, e.g., Allen and Faulhaber (1989), Carter and Manaster (1990), Welch

(1989)). Measuring the value of prestigious underwriters is a long-standing goal in the IPO

literature (for reviews, see, e.g., Ritter and Welch (2002)). The second is the market for

Chief Executive Officers (CEOs). There is a large literature on the value-added of a CEO

(see, e.g., Bertrand and Schoar (2003)). In particular, valuing different attributes of a CEO,

be it intelligence or other personality attributes, remains a widely researched topic (see, e.g.,

Kaplan et al. (2012), Graham et al. (2013)).1

Regardless of the situation, quantifying these hires’ impact on stock prices is difficult

due to selection or sorting in competitive labor markets (Becker (1973) and Rosen (1974)).

Firms that hire better underwriters might have more opacity or information asymmetry

and higher costs of capital to begin with. So correlating a firm’s stock valuation with the

status of the underwriter it hired is potentially problematic due to this selection. Indeed,

recent empirical work suggests that such competitive selection effects between firms and

underwriters (Fernando et al. (2005), Akkus et al. (2013)) might inform the long-running

debate on IPO underpricing, the first-day return thought to compensate investors for adverse

selection. Prestigious underwriters were associated (correlated) with less underpricing before

the Internet period but became associated with more underpricing during and after the

Internet period. This change in the sign of this underpricing-prestige correlation remains

puzzling. Selection effects arising from assortative matching in a competitive labor market
1Due to CEO wage inequality, this question continues to be important in the popular press and across

various disciplines such as strategy and management (see, e.g., "Do CEOs Matter?" by The Atlantic in the
June 2009 issue which surveyed a variety of contrasting views of whether CEOs add any value.).
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for CEO talent are also problematic. Terviö (2008) and Gabaix and Landier (2008) point

to a positive assortative matching between managerial talent and firm productivity due to

complementarities in firm production functions.

To understand the role of selection from the direct effect of agent talent, we develop

an assignment model where firms compete to hire a talented agent, be it an underwriter

or a CEO, to raise their stock valuations. Specifically, the value of the match depends

on the role of the agent in the asset market. In the labor market for underwriters when

firms go IPO, our asset market follows the classical IPO underpricing set-up (Rock (1986),

Benveniste and Wilhelm (1990), Habib and Ljungqvist (2001)), in which adverse selection

generates underpricing. More prestigious underwriters are assumed to be able to bring in

more uninformed investors and hence alleviate the need for underpricing. In the labor market

for CEOs, a talented CEO raises long-term fundamental value as in Terviö (2008) and Gabaix

and Landier (2008).

We characterize the assignment equilibrium that maps (assigns) these multiple dimen-

sions of firms into agent talent and solve for the wage function and stock price. There are two

effects that shape the relationship between firm value, be it the underpricing or fundamental

value, and agent talent, be it a prestigious underwriter or a talented CEO. The first is the

"direct effect" of hiring a more talented agent: all else equal, a firm with a better agent

will have a lower cost of capital or higher value since the more prestigious underwriter will

bring more uninformed investors to the IPO or the more talented CEO will lead to a greater

increase in firm profitability. The second is the "selection effect". Firms with greater opacity

or more productivity benefit more and pay more for a better agent.

The strength of the selection effect increases with heterogeneity across firms (be it opacity

or firm productivity) relative to the talent distribution of agents. For instance, if firm opacity

is tightly distributed in the population, the highly opaque firms still hire the most talented

agents and so the direct effect dominates and firms with better agents have lower costs of

capital. As dispersion of firm types increases this association flips signs from negative to
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positive; i.e. firms with better agents have higher costs of capital. This selection effect

can potentially explain the change in the underpricing-prestige relationship during Internet

period to the extent there is greater dispersion in firm opacity as young Internet firms with

little cashflows went IPO. In the labor market for CEOs, the selection effect driven by the

desire of firms with high fundamental value to hire talented CEOs gives rise to a positive

correlation between firm size and CEO talent.

But dispersion in underlying opacity or productivity and heterogeneity in agent talent

are typically unobservable to the econometrician, which results in the challenge of separating

selection from talent effects. The key result of our paper is that we provide a decomposition

of these unobservable quantities using observable firm outcomes (underpricing or firm profit)

and agent wages.

Since the most talented workers work for the firms with the most opacity or productivity

and make the most compensation, we can rank agents based on their wages. We show that

the relative strength of the talent effect (or agent heterogeneity) can then be measured by

the ratio of the change in wages across agents divided by the change in output (underpricing

or profit) of the firms that these agents work for. Intuitively, suppose that workers are

homogeneous in talent, then their wages will be similar and this ratio is close to zero. In the

other extreme, suppose firms are similar, then the change in wages and output move one for

one across agents of different percentiles, i.e. the ratio is close to 1. This ratio is invariant

to scale effects, that is if all firms become equally more opaque or productive, it would not

affect this ratio.

Given that firm profits and wage distributions are often observable, empirical researchers

can use this decomposition to measure the relative strength of selection versus direct effects.2

We apply our decomposition to the IPO and CEO settings. The time variation in IPO un-

derpricing patterns has spawned competing explanations of selection effects versus structural
2Adjusting for selection (see, e.g., Heckman (1977), Roberts and Whited (2012)) is empirically challeng-

ing since it generally requires instrumental variables for the selection equation. Moreover, important firm
characteristics that might drive the selection, such as investors’ information asymmetry or uncertainty, are
also unobservable to econometricians and at a minimum difficult to measure.
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changes in underwriter technology or incentives (Loughran and Ritter (2002)). Using data

on IPO underpricing from 1990-2015, we find that the relative strength of talent or prestige

heterogeneity is for the median IPO in a typical year around 0.05% to 1%, a small fraction in

comparison to selection effects or firm heterogeneity. Moreover, we find a significant decline

in talent relative to selection effects from the early nineties into the dot-com period. That is,

the change in signs of underpricing and prestige is likely driven by the increasing importance

of selection effects due to time-variation in the heterogeneity of firm opacity.

Scale effects have been argued to explain the rise of CEO wages since the 1980s. The

main test is to show that the increase in the average size of the firm in the stock market (i.e.

a scale effect) can explain the rise in CEO wages (Gabaix and Landier (2008)). But there is

debate on whether this coincident trend is causal as Frydman and Saks (2010) find that in

the pre-1980s period wages of CEOs did not rise even though the average size of the firm in

the stock market rose. One way to frame alternative explanations is the level of CEO wages

in assignment models increase with both firm and talent heterogeneity as well as the scale.

Since our decomposition is invariant to scale, we can use it to see if the rise of CEO wages

might also be due to changing heterogeneity.

Using CEO wage data and firm value data from 1993-2014, we find that the relative

strength of talent effects is for the median firm in a typical year 2%. It peaks at 4% during

the Internet period, pointing to the importance of selection effects overall. We also find that

the relative strength of talent effects rose from the early nineties to the early 2000’s and has

declined subsequently. That is, the rise in CEO pay since the 1980s is not just simply due

to scale effects but also the changing composition of talent over the Internet period.3

Finally, we show that this decomposition can be thought of as a diagnostic test of the

relative strength of talent versus selection effects in other labor markets such as venture

capitalists who can affect both fundamental value and underpricing, i.e. the cost of capital.
3A simultaneous fall in the heterogeneity of talent effects along with an increase in scale effects during

the pre-1980s might then explain why the average firm size rose in this period but CEO wages did not as we
discuss in more detail below.
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Notably Sørensen (2007) uses a structural model to point to the talent effects of venture

capitalists in improving firm fundamental value, while Megginson and Weiss (1991) point to

venture-capital backed IPOs having lower underpricing. A number of literatures in corporate

finance involving the effect of talent on firm value have evolved largely separately but they

are united, as we have hoped to show, in fundamental ways through the role of selection in

labor markets.

Our paper proceeds as follows. We describe our assignment model in Section 2. We

provide the solution in Section 3. We derive the decomposition of talent versus selection

effects in the traditional multiplicative setting in Section 4. We provide some estimates of

this decomposition for IPO underpricing and CEO compensation in Section 5. We consider

more general settings in Section 6. We conclude in Section 7.

2. Model

The model lasts for three dates. There is a unit measure of heterogeneous firms that issue

equity through the stock market. Firms can hire agents (e.g., underwriters or executives)

via a competitive labor market at date 0. These agents, who differ in their ability, affect the

share price of the firm at date 1. Finally, at date 2, the cash flow is realized, and all players

in the economy consume their realized gains.

To proceed, we first introduce a general framework for the labor market. Firms, which

differ in multiple dimensions, choose the optimal agent to maximize the firm’s expected

payoff. They rationally anticipate how different agents affect their stock price at date 1. We

then specify the relationship between agents’ talents and share prices by considering two

classical models.

Agents: There is a distribution of heterogeneous agents whose ability is indexed by

h ∈ H ≡ [hL, hU ]. Let GA(h) denote the talent distribution. This ability in the context of

underwriters is prestige bringing in more uninformed investors to an IPO. In the context of
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CEOs, this talent increases fundamental value.

Firms: Each firm owns a risky project with capital stock k, which can be interpreted

as firm productivity or size. The payoff of the project for the firm with capital k, is given

by kθ, where θ is a firm-specific payoff with mean θ̂(h). The mean θ̂(h) aims to capture

firms’ long-term fundamental, which can potentially be affected by the type of agent a firm

hires. The riskiness of the project is indexed by σ. A firm originally owns (1 +ψ) measure of

shares and wants to raise capital by issuing one measure of its equity to investors at date 1.

In general, firms can differ in their size, volatility, or their proportion proportion of issued

shares. Let y ⊆ Rndenote the characteristics of a firm. The types of firms are distributed

according to a probability measure νF on Y, which is assumed to be absolutely continuous

with respect to the Lebesgue measure.

Labor Market: At date 0, each firm can hire at most one agent assuming it hires any at

all. The fee paid to the agent is denoted by ω(h), which will be determined competitively

in equilibrium, and is paid at the end-of-period. The end-of-period cash flows for firm y are

then the profit from its project minus the fee that it commits to pay: kθ − ω(h). All equity

holders are thus bearing the cost of fees.

At date 0, given the fee required to hire agent ω(h), a firm of type y chooses the optimal

agent to maximize its expected payoff. Let p̃hy denote the realized share price at date 1 for

firm y if it hires agent h. Given that the firm is issuing one share, he receives the share price

p̃hy at date 1, and retain
(

ψ
1+ψ

)
shares of the end-of-period profit, kθ − ω(h). The expected

profit of firm y who hires agent h is then given by

U(y, h) = Eθ
[
p̃hy +

(
ψ

1 + ψ

)
(kθ − ω(h))

]
(1)

The exact relationship between agents’ talents and share prices, p̃hy, depends on the

specified environment. Nevertheless, given the price function, the (unconditional) expected

asset return for investors is given by R(y, h) ≡ Eθ
[(

kθ−ω(h)
1+ψ

)
− p̃hy

]
. Thus, Equation (1)
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can be rewritten as

U(y, h) =
{
kθ̂(h)−R(y, h)− ω(h)

}
. (2)

Thus, the agent can affect firms’ expected profit through two channels: The first term

reflects how talent affects the expected payoff (i.e., firms’ long-term fundamental). The

second term can be interpreted as the firm’s cost of capital, which depends on both the

firms’ characteristics and the talent effect. Hence, the firm’s expected profit when hiring

agent h can be conveniently rewritten as simply the value generated by the agent minus the

agent’s fee.

Note that, since the investors ultimately bear the hiring cost ω(h)
1+ψ

at the end-of-period,

such cost is reflected in the share price at period 1. This explains why, from a firm’s view

point, the total cost is simply the agent’s fee. To fix the ideas, we now consider two classical

applications to show how they can be nested in our setup:

Labor Market for Underwriters: In the setting of Rock (1986), Benveniste and Wil-

helm (1990), and Habib and Ljungqvist (2001), the key friction is the asymmetric information

among investors, where informed investors know the quality of the firm, while uninformed

investors do not. As the winner’s curse increases in proportion to the fraction of informed

investors, so does the necessary amount of underpricing.

The main value of the underwriters is to reduce the cost of capital by attracting unin-

formed investors. One can thus interpret agents as the underwriters in this setting, who

differ in terms of their ability to attract uninformed investors. Specifically, let β(h) denote

the fraction of uninformed investors that are attracted by underwriter h. We assume that

the higher is h, the more prestigious the underwriter, the higher fraction of investors will be

uninformed participating in the IPO: β′(h) > 0. We further set θ̂(h) = θ̄, which captures

the fact that underwriters do not affect the fundamental and thus only increase the value of

forms by reducing the cost of capital.

Specifically, the payoff of the project is given by θ ∈ {θ̄−σ, θ̄+σ} with equal probability.
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Informed investors know the realized value of θ, but uninformed investors do not. For any

given fraction of uninformed investors, the price at which shares are sold to investors must

be such that uninformed investors expect to break even. The expression for the expected

return, which is interpreted as underpricing in the IPO literature, yields 4

UP (y, h) ≡ R(y, h) =

(
kσ

1 + ψ

)
(1− β(h))

(1 + β(h))
. (3)

Note that ∂UP (h,y)
∂h

= −
(

kσ
1+ψ

)
2β′(h)

(1+β(h))2
< 0. Since a better (more prestigious) underwriter can

attract more uninformed investors, a better agent helps reduce the amount of underpricing

by more than a worse agent.

Labor Market for CEOs: In (Terviö (2008), Gabaix and Landier (2008)), the role of

CEO is to increase the firm’s fundamental. To capture this, it can be nested in our model by

assuming that (1) a better CEO increases the average payoff of the project, i.e., θ̂(h) = θ̄h,

and (2) a perfectly competitive and frictionless stock market. Thus, the share price is the

expected fundamental value given by p̃hy = Eθ
[
kθ−ω(h)

1+ψ

]
= kθ̄h−ω(h)

1+ψ
.

Given that the price is simply the fair value of the share, the expected return R(y, h) is

thus always zero. Hence, Equation (2) then collapses to the standard CEO setting, U(y, h) =

kθ̄h− ω(h), where a CEO only affects the firm’s fundamental.

Other Applications: Our uniform model can be further applied to other labor markets

as well, such as the labor market for venture capitalists. In particular, venture capitalists

may affect both the firm’s fundamental as well as the underpricing. In this case, one can

set U(y, h) = kθ̄h− UP (y, h)− ω(h). That is, both forces identified above will affect firms’

hiring decision.

Equilibrium: Given any price function, the equilibrium in the labor market consists of

an assignment µ(y): Y → H ∪ {∅} and competitive fee for agents ω(h) : H → R+ such
4See Appendix A.1 for detailed derivation.
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that (1) the optimality conditions for both firms and agents are satisfied, i.e. given wage

ω(h), µ(y) is the type of agent that firm y optimally chooses to hire. That is, µ(y) ∈

arg maxh∈H∪{∅} U(y, h). And (2) the market-clearing condition holds for the labor market.

3. Labor Market Hiring

Taking into account how the agent affects the price in the asset market, we now characterize

the assignment function and wage function. The surplus between firm y and agent h, which

is the sum of their payoff minus their outside option, yields

Ω(y, h) ≡ U(y, h)− U(y, ∅) + ω(h)

= k
(
θ̂(h)− θ̂(∅)

)
+R(y, ∅)−R(y, h), (4)

where ∅ denotes the case in which a firm hires no agent (i.e., the firm’s autarky value) and

the workers’ unemployed value is normalized to zero. The first two terms thus represent the

gain of firm y when it hires agent h relative to no hiring. The third term represents the

payoff of a worker, which is the fee. Thus, the surplus is simply the change in fundamental

plus the reduction in the cost of capital (relative to no hiring).

Technically, given the multiple characteristics of a firm, our environment is a multidimensional-

to-one matching problem. As established in Chiappori et al. (2016), given our surplus func-

tion in (4) and that the measure of firms νF is absolutely continuous with respect to the

Lebesgue measure, stable matching exists and the assignment function µ(y) is unique and

pure. That is, each firm hires a unique agent instead of using mixed strategies.

Sorting Proposition 1 first establishes the property of the assignment function in terms of

firms’ characteristics.

Proposition 1. In the IPO setting, all else equal, a firm with a riskier project (σ), greater

productivity or size (k), and a higher proportion of issued shares ( 1
1+ψ

) hires a more talented
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agent. That is, µσ(k, ψ, σ) > 0, µk(k, ψ, σ) > 0 and µψ(k, ψ, σ) < 0. In the CEO market, a

more productive firm hires a more talented agent.

These results can be seen from the firms’ optimization problem. Specifically, given that

all firms face the same cost function ω(h), a firm that has a higher marginal benefit for

talent must hire a better agent in equilibrium. For example, in the IPO setting, given the

underpricing expression in Equation (3), the added value of talent h for firm y yields

∂U(y, h)

∂h
=

(
kσ

1 + ψ

)
2β′(h)

(1 + β(h))2
− ωh(h). (5)

In other words, there is a complementarity between the prestige of an agent and firms’ scale

and riskiness. Thus, firms with a higher scale or more volatility benefit more from hiring

a prestigious underwriter. Similarly, as standard in the market for CEO (Terviö (2008),

Gabaix and Landier (2008)), there is complementarity between the size or productivity of

the firm and talent; hence, a more productive firm hires a better CEO.

Characterization Observe that, for the market for underwriters, Equation (5) suggests

that firms’ marginal value for hiring can be simply summarized by the one-dimensional index

a(y) =

(
kσ

1 + ψ

)
. (6)

Thus, two different firms will choose the same agent in equilibrium if they have same index

a(y). With this particular feature, the model can be solved similarly as in the standard

model with one-dimensional heterogeneity, where firms with a higher a is matched with a

more talented agent.

In the market for CEO, the only firm heterogeneity is firm productivity or size. And,

a larger firm has a higher marginal value of hiring a more talent agent. That is, the one-

dimensional index for firm is given by a(y) = k.

In both cases, the assignment function µ(y) must then satisfy the familiar market clearing
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condition:

GF (a(y)) = GA(µ(y)), (7)

where GF (a) denotes the measure of firms with an index lower than a. Furthermore, as shown

in Terviö (2008), for any agent h, his marginal gain in equilibrium (represented by ωh(h)) is

his contribution to the surplus within the match, given his optimal assignment:

ωh(h) = Ωh(µ
−1(h), h), (8)

where µ−1 denotes the inverse of µ, representing the type of firm assigned to agent h. Note

that the continuity assumption is important for Equation (8). In a continuous model, all

agents and firms have arbitrarily close competitors. As a result, they do not earn rents over

their next best competitor.5

More generally, the sorting can be multidimensional. For example, when venture capi-

talists affect both the firm’s fundamental as well as the cost of capital, the sorting can no

longer can be reduced to one-dimensional index. In Section 6, we provide an algorithm to

characterize the assignment function and wages when type spaces are multidimensional and

discuss its implications.

4. Selection and Talent Effects in Multiplicative Setting

Given that firm value depends on both the characteristics of firms and talents, the existence

of sorting suggests that quantifying the impact of talent on firm value is fundamentally

difficult. Below, we consider an environment where the output of a firm is multiplicatively

separable in the characteristics of firms and agents, and establish how one can use both wage

and firm output information to disentangle these two effects.
5In a discrete model, on the other hand, there would be a match-specific rent left for bargaining.
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4.1. Joint Effects on Firm Output

The output function for a firm (underpricing outcome for IPOs or fundamental value) de-

pends on the talent of the agent (underwriters or CEOs) can be written as V (a, b) = ab,

where a represents the aggregate index of a firm’s type and b represents the effective type of

agent. That is, b can be understood as a monotonically increasing function in agent’s ability

h (i.e., b = f(h), where f ′(h) > 0).

Let a[j] represent the jth percentile firm sorted based on the one-dimensional index a

and let b[i] represent the value generated by the ith percentile agent, where a′[j] > 0 and

b′[i] > 0.6 Due to sorting and labor market clearing in Equation (7), positive sorting implies

that an i-th percentile agent thus match with an i-th percentile firm: j∗(i) = i. Hence, the

output created by the ith percentile agent can be expressed as

V [i] = a[j∗(i)]b[i] = a[i]b[i]. (9)

In our underpricing environment, for example, output is measured by underpricing V [i] =

−UP [i], where a[i] represents the i-th percentile firm sorted based on the one-dimensional

index of firm opaqueness given by Equation (6), and b[i] = −
(

1−β(h[i])
1+β(h[i])

)
represents the value

generated by underwriter of prestige h[i]. In the standard CEO literature (e.g., Gabaix and

Landier (2008)), a[i] = k[i] represents the firm size and b[i] = θ̄h[i] represents the ability of

the ith percentile CEO.

In either case, given that the output and wage depend on the characteristics of firms and

agents, it is thus difficult to tell whether the change in output/income is driven by either

talent or selection effects. Formally, V ′[i] = a′[i]b[i] + a[i]b′[i], thus the percentage change of
6As explained in Terviö (2008), a central feature of the assignment is that the characteristics a and b

are essentially ordinal. It is thus without loss of generality to consider a simple multiplicative function
V (a, b) = ab. Any separable function, for example, Aaγb1−γ , can be nested in this expression.
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output as function of the rank i yields

V ′[i]

V [i]
=
a′[i]

a[i]
+
b′[i]

b[i]
. (10)

The first (second) term is the selection (talent) effect, which captures the characteristics of

firms (agents).7

4.2. Decomposition

In either event, accurately assessing worker contribution to the surplus is challenging because

of selection effects. To separate selection from talent effects, we make use of the wage

distribution.

Let ω(b) denote the wage schedule with respect to the effective type b. According to

Equation (8), the marginal wage increase for an agent with type b is given by his contribution

to the surplus within the match, given his optimal assignment. That is, ωb(b) = Ωb(µ
−1(b), b).

The wage for the i-th percentile agent is thus given by ω[i] ≡ ω(b[i]). Given that the

optimal assignment for agent b[i] is the firm with index a[i] (i.e., µ−1(b[i]) = a[i]), the slope

of the wage profile as a function of the i-th percentile agent can then be rewritten as

ω′[i] = ωb(b[i])b
′[i] = Ωb(a[i], b[i])b′[i] = a[i]b′[i]. (11)

Recall that the surplus function defined in Equation (4) is given by the change in firm’s

output when the firm hire agent b relative to no hiring: Ω(a, b) = V (a, b) − V (a, ∅). Thus,

the last equality follows from the fact that Ωb(a, b) = Vb(a, b) = a.

Observe that, unlike the change in the firm output V ′[i] = a′[i]b[i] + a[i]b′[i], the wage

slope ω′[i] depends on the change in the characteristic of agent b′[i] but not the change in
7If agents and firms are matched randomly, then a[i], which represents the expected type of firm that

hires the ith agent, will be the same across all agents (i.e., a′[i] = 0). In other words, the first term in
Equation (10) no longer exists. That is, the expected value generated by the ith agent is driven by the talent
effect only.
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firm’s characteristic a′[i]. The reason is that, in the competitive market, the slope of the

wage for worker i in equilibrium is pinned down to keep the firm a[i] from wanting to hire

the next best individual. This explains the economics behind Equation (11): the marginal

cost of hiring the ith agent is simply the marginal benefit of firm a[i].

This observation thus implies that underlying heterogeneity of firms and talents will

affect these two variables in different ways. Specifically, the proportion driven by talent’s

heterogeneity can be measured by the ratio of the slope of the wage to the change in firms’

output:

φ[i] ≡ ω′[i]

V ′[i]
=

a[i]b′[i]

a′[i]b[i] + a[i]b′[i]
=

b′[i]
b[i]

a′[i]
a[i]

+ b′[i]
b[i]

. (12)

Since the talent (selection) effect is more important when talent’s (higher) heterogeneity

is higher, φ[i] thus measures the strength of the selection vs. talent effects, which can be seen

from Equation (12). One can see that φ[i] = 0 if and only if all workers are homogeneous

(i.e., b′[i] = 0), and φ[i] = 1 if and only if all firms are homogeneous. The general relationship

is summarized by Proposition 2.

Proposition 2. The measurement φ[i] decreases with the strength of the selection effect

(i.e., the heterogeneity of firms a′[i]
a[i]

) and increases with the talent effect ( i.e., heterogeneity

in agents b′[i]
b[i]

)

This quantity is robust to how we specify the outside option of agents as long as it is constant

across agents. To the extent these outside options vary across agents, this would change the

slope of the wage function.

It is this quantity that we will estimate in the data. Moreover, this ratio simply gives

us a sense of how important relatively are talent versus selection effects. Even if talent

heterogeneity is small, it can still give rise to large economic differences in output and wages

as we highlight below. Before we turn to implementing this decomposition, it is worth

highlighting what drives this quantity.
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Determinants of the Relative Strength of Talent versus Selection Effects We now

formalize how the heterogeneity of the underlying distributions of firms and agents affect the

observable wages, output, and the strength of the selection effect. First of all, Proposition

2 immediately implies that the scaling effect of firms does not change the strength of the

selection.

Corollary 1. When all firms are scaled by some constant λ > 1, that is, ã[i] = λa[i], both

wage and output also change by the same multiple: ω̃[i] = λω[i] and Ṽ [i] = λV [i]. But the

strength of the selection effect (i.e., φ[i]) remains the same.

Such an effect is considered in the CEO setting of Gabaix and Landier (2008), who

show that when all firms become bigger, the level of wage increases. Our result provides an

additional test for this hypothesis. If this were true, then the strength of the selection effect

(i.e., φ[i]) should stay constant.

In the underpricing setting, on the other hand, this means that when all firms become

uniformly more opaque, underpricing is scaled up by the same constant. Intuitively, the

demand for prestige increases when all firms become more opaque. However, since the

increase is uniform across firms, it will not change the matching pattern. That is, all firms

match with exactly the same underwriter, but the matching surplus within each pair is

simply scaled up by the same constant λ.

As a result, such a uniform change will not affect the strength of the selection effect.

Thus, our model predicts that the observable correlation between prestige and under-pricing

(i.e., UP ′[i]
UP [i]

) must remain the same. In other words, the scaling effect cannot explain why

the sign of the underpricing-prestige correlation changed signs from negative pre-Internet to

positive during and after the Internet period.

Hence, the change of the signs must be driven by the change of underlying distribution of

talents or firms, as it affects the strength of the selection effect. In particular, the strength

of the selection effect depends on a′[i]. Intuitively, a steep a′[i] means that an i-th quantile

firm has a higher a index relative to the competitor right below it. Similarly, the strength
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of the direct effect depends on b′[i]. As a result, which effect dominates crucially depends on

the ratio of these two, which can be mapped onto the ratio of the density function:

a′[i]

b′[i]
=
dGA(b[i])

dGF (a[i])
. (13)

A higher (lower) ratio means that firms are relatively dispersed (homogeneous) relative

to the talent distribution, resulting in a stronger (weaker) selection effect. For the sake of

illustration, consider a simple case where both firms and agents’ effective types (summarized

by a and b, respectively) follow a uniform distribution. This term is then a constant ratio

of the density function (i.e., a′[i]
b′[i]

= (aU−aL)
(bU−bL)

). This shows transparently that the selection

effect is stronger whenever firms are dispersed relative to the talent. The same intuition

holds for more general distributions: for any given distribution of talent, the selection effect

is stronger when firms are more heterogeneous in the sense that there is a smaller mass for

a given a. The proposition below formalizes this effect.

Corollary 2. Consider two distributions, where the heterogeneity of firms is higher under

ã[i] in the sense that ã′[i] ≥ a′[i] for i and ã[1] = a[1]. For any a[i] ≥ 0 and b[i] ≥ 0, φ[i]

is lower (and thus selection effect is stronger) under ã[i]. On the other hand, an increase in

the heterogeneity of agents leads to a weaker selection effect and thus a higher φ[i].

5. Estimates

The appealing part of this decomposition is that we do not need to measure underlying

firm and agent characteristics per se. By comparing the change in firm output and work

wages, we can deduce the relative strength of talent versus decomposition effects. This is

an alternative diagnostic test to the literature that tries to measure the sorting relationship

based on underlying firm and agent characteristics. In this section, we implement this

decomposition for IPO underpricing and CEO compensation. Since the data is better for

CEO compensation, we start with CEOs first and then consider IPO underpricing.
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5.1. Time Variation in CEO Wages

Implementing this decomposition for CEO compensation is relatively straightforward since

CEO wages are readily available. The data set with CEO compensation runs from 1993 to

2014. Data for CEO compensation typically covers firms in the S&P 1500, with less coverage

in the beginning of the sample and more at the end. Following the literature, we focus on

the top 1000 firms in terms of market capitalization (where capitalization includes market

equity plus book value of debt).

The only key decision variable is what constitutes firm output, which can be measured

using net income, firm sales or even market capitalization. We focus on net income but results

are similar using other metrics. More specifically, for each firm/year observation, we average

a firm’s net income for the five previous years including the year of the observation.8 This

intertemporal smoothing reduces measurement errors as annual fluctuations in net income

might be due to idiosyncratic capital expensing or other accounting choices.

In general it is hard to know exactly what is firm output in the context of assignment

models and hence any proxy we use is necessarily subject to measurement error. As a result

of this measurement error, one challenge of measuring φ for any given i-th percentile agent

is that the change in net income across agents might be close to zero or negative and hence

create ill-behaved estimates. With this caveat in mind, we propose a robust way of estimating

φt.

We sort each year CEOs and the firms that hire them into decile bins based on compen-

sation ranks (n = 1 is the top compensation bin and n = 10 the bottom compensation bin).

We take the median compensation and median smoothed net income in each bin. We then

calculate ω′ and V ′ across these decile bins and obtain

φt =
ωt(n)− ωt(n+ 1)

Vt(n)− Vt(n+ 1)
.

8If the firm does not have five years of net income information, we use four years. If it does not have four
years, then we use three years.
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In other words, we are shrinking compensation ω and V to the decile bins based on com-

pensation rank before calculating φt. It does not matter much whether we bin at deciles

or demi-deciles. An alternative which we have also tried is kernel smoothing of wage and

net income for each i-th percentile agent. This yields qualitatively similar results to this

decile-binning approach.

There is debate on whether selection effects due to firm productivity and CEO talent

can explain the rise of CEO wages since the 1980s in the CEO literature. The main test

in the literature thus far is to show that the increase in the average size of the firm in the

stock market can explain the rise in CEO wages (Gabaix and Landier (2008)). But Frydman

and Saks (2010)) find that in the pre-1980s period wages of CEOs did not rise even though

the average size of the firm in the stock market rose. They point out concerns regarding

coincident trends. Alternative explanations such as managerial talent might also be part of

the story (see Frydman and Jenter (2010) for a review).

Our decomposition offers an alternative test in Figure 1. In this figure, we plot the

median φ for each year along with bootstrap standard error bands for the 5-th and 95-th

percentiles. The standard error bands can be wide in some years but for most of the years,

we get a fairly sharp estimate of φ that is between 4% and 1%. The median estimate is 2%.

There does appear to be some trends. For instance, between 1997 and 2001, we see a near

doubling of our estimate of φ from 2% to nearly 4%. Whereas the 5-th percentile during

this sub-sample is around 1%, the 95-th rises to nearly 8%. That is, talent heterogeneity

or relative importance of talent effects seems to have nearly doubled during the Internet

boom of 1997-2001. But this is then followed by a steady drop in the importance of talent

effects post the Internet boom. In the recent period our estimates place talent effects at

around 1.5% with 5-th and 95-th confidence intervals of 1% and 3.5%, respectively. Our

decomposition suggests that part of the rise in CEO wages is due to time variation in talent

effects but clearly selection effects play a large role.

Moreover, the coexistence of a scaling effect and a decrease in talent heterogeneity can
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result in an increase in firm value but the level of wage remains the same.9 To see this,

when all firms become larger, the level of all firm value increases. However, from the wage

Equation (8), a mean-preserving shrink in talent’s distribution decreases the wage slope. It

can then offset the scaling effect of firm size, leaving the wage function the same. Such a

scenario might then explain why the average firm size in the stock market rose pre-1980s

but CEO wages did not. We leave verifying this possibility for future research. We have

emphasized the time variation in φ but our analysis provides a first estimate of the levels of

φ. Our results show that the heterogeneity in firm is much higher than the one in talent.

However, a relative small change in talent can still have large effect on firm firm value, as

its impact will be amplified by firms’ characteristics as pointed out by Gabaix and Landier

(2008).

5.2. Time Variation in IPO Underpricing-Prestige Relationship

We now implement our decomposition to understand time variation in the IPO underpricing-

prestige relationship. The stylized facts are well summarized in various review papers (see,

e.g. Ritter and Welch (2002), Loughran and Ritter (2002)). First, underpricing before the

Internet era of the late nineties averaged a few percent and firms that hired prestigious un-

derwriters had lower underpricing. Second, the underpricing became much larger after the

late nineties, averaging nearly 20% and coverage by a prestigious underwriter is associated

more underpricing. Explanations have typically centered on structural changes in firm ob-

jective functions, such as firms underpricing to benefit friends or family in the late nineties,

and changes in underwriter strategies, such as underpricing to pay buy-side clients.

We use our model to examine the extent to which selection effects induced by competitive

sorting in the labor market for underwriters can account for these stylized facts. Given that
9For example, consider that all firms are scaled up by λ > 1 (i.e., ã[i] = λa[i]). Assume talents follow

uniform distribution U ∼ [h̄ − ∆
2 , h̄ + ∆

2 ] with mean h̄. Thus, h[i] =
(
h̄− ∆

2

)
+ i∆. Suppose that the

dispersion of talent decreases ∆̃ = ∆
λ but the mean h̄ remains the same. This thus implies that the wage

level remains the same as ω̃[i] =
´ i

0
ω̃′ [̃i]dĩ =

´ i
0
λa[̃i]∆

λ dĩ = ω[i]. However, the value of firm increases since
Ṽ [i] = λa[i]

((
h̄− ∆

2λ

)
+ i∆

λ

)
= a[i](λ− 1)h̄+ V [i] > V [i].
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the Internet period produced a sizeable Internet (new technology) sector that had little

cashflows before going IPO, a plausible hypothesis is that the opacity (a) distribution most

likely has a higher mean, i.e. the average firm becomes more opaque, and also more dispersed

or heterogeneous. Indeed, as shown in Ritter and Welch (2002), the composition of firms

that go IPO changed during the Internet period. In particular, during this period, firms are

much younger and many of them have negative earnings, which thus leads to a higher level

of heterogeneity in opacity. While opacity is itself difficult to measure, we can evaluate the

importance of each of these changes to the firm distributions using our decomposition, i.e.

to estimate the φ.

We follow Loughran and Ritter (2002) and IPO literature in using the IPO underpricing

from SDC Platinum from 1990 through 2015. There are several years during that period

when there are a very small number of IPOs, so we only include years when there are at least

100 IPOs. This gives us 18 years of IPOs. For each IPO in our sample, we can calculate the

underpricing for each IPO offering following the literature as:

Underpricing = (ClosingPriceofOffering −OfferPrice)×NumberofShares.

In the IPO underpricing setting, to implement our decomposition, we ideally need the

underpricing data and the wages of security analysts working at the bank that the firm

hired for underwriting the IPO. While such detailed wage data are not readily available,

we can nonetheless gather financial analysts wages data for each year t using the American

Community Survey produced by the Census Bureau. We get information on the income of

analysts from the March supplements of the Current Population Survey. People sampled

in that supplement are asked to report their yearly income the previous calendar year. We

gather together the CPS data sets from 1991 to 2016. This gives us income information for

the years 1990 through 2015. The income variable we use is total personal wage and salary

income.
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We limit our sample in three ways. First, we look at people classified as being in the

occupation "Securities and financial services sales occupations" using the 1990 Census oc-

cupation codes. Next, we look at only at men since we want to compare time trends over

time and do not want other trends in terms of men-women pay differentials influencing our

comparisons. Finally, we only look at observations that have income above the median for

the year. We think the analysts that deal in any way with IPOs would be at the upper half

of the income distribution, suggesting that we should not look below the median.

With this sample, we collapse the data into quartiles each year. In contrast to the CEO

sample where we have more data in each cross-section, we have a smaller sample of wages

(around several hundred wages per year) and hence use quartiles to bin observations rather

than deciles. That is, we take the median total income of analysts by quartile for each year.

This gives us a data set with four observations each year. We can then use this data set to

calculate the ω′. That is, sorting on income quartile we calculate:

ω′ = MedianIncome(n)−MedianIncome(n+ 1),

where n corresponds to the income quartile. (Lower n is higher quartile.) We have also tried

smaller and larger binning groups. The primary difference is that bootstrap standard errors.

The median estimates are similar but the standard errors are the tightest when we bin by

quartiles.

While we do not know the underwriters that they work for, we know from earlier work

that underwriters with high Carter and Manaster (1990) prestige rankings (i.e. bulge-bracket

banks like Goldman, JP Morgan, Morgan Stanley) pay higher wages that lower tiered firms

(Stickel (1992)). From data from Jay Ritter, we have a dataset that includes IPO underpric-

ing and the Carter-Manaster ranking of investment bank prestige. We then collapse the data

by Carter-Manaster rankings into quartiles by year. That is, for each year/Carter-Manaster

ranking quartile, we calculate the median Underpricing of the IPOs in that bucket. With
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this data set, we can then calculate the change in the Underpricing across Carter-Manaster

ranking quartiles. Then V ′ is:

V ′ = MediumUnderpricing(n)−MedianUnderpricing(n+ 1),

where n corresponds to the Carter-Manaster quartile rank of the observation within the year

(lower n corresponds to higher Carter-Manaster quartile rank).

We then calculate the median φ for each year along with the bootstrap standard error

bands. The graph of this ratio is presented below in Figure 2. The bootstrap standard

error bands at the 5-th and 95-th percentile can be quite wide in certain years. But they

are precise over the period of interest, during the 1997-2000 Internet period. Notice that

φ is around 0.5% before 1997. It then drops to close to zero in 2000. That is, during the

peak of the Internet period in 2000, φ is close to zero when underpricing is highest and

the correlation between underpricing and prestige becomes positive. So it is likely that the

flip in the sign of the IPO underpricing-prestige is associated with much lower talent effects

or equivalently, much larger selection effects.10 Right after the Internet boom, the relative

talent effect rises again. It then falls as we enter into the recent period of 2013-2015 when

there are again many new IPOs with social media.

As in the CEO discussion, we have emphasized the time variation in φt. Our analysis

here, as in the CEO setting, gives a first estimate of the importance of selection effects.

While the proportion of talent effects is also small in this setting it does not mean that the

heterogeneity in talent cannot generate enormous differences in value as in the CEO context.

Moreover, our analysis focuses on just analyst wages but if wages for investment bankers were
10To see why, according to Equation (10), by setting V [i] = −UP [i], the percentage change of underpricing

for the ith quantile underwriter yields:

UP ′[i]

UP [i]
=
a′[i]

a[i]
− 2β′(h[i])h′[i]

((1− β(h[i])2)
. (14)

Under competitive sorting, we have have a′[i] > 0. And thus UP ′[i] > 0 if the selection effect dominates
(i.e., a′[i]

a[i] is large enough). On the other hand, without the sorting effect, underpricing is always negative
associated with prestige. To see this, under random matching a′[i] = 0 and thus UP ′[i] < 0.
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available, this could also be used to re-estimate φ. Our qualitative conclusions are unlikely

to change since wages of bankers and analysts are both higher at higher Carter-Manaster

ranking firms.

6. General Settings

More generally, the output function can be non-multiplicative and the sorting can be multi-

dimensional. Below, we highlight our prediction in a more general environment and discuss

how our measurements remain robust. For example, venture capitalists may affect both the

firm’s fundamental as well as the underpricing, so that we have

U(y, h) = kθ̄h−
(

kσ

1 + ψ

)
(1− β(h))

(1 + β(h))
− ω(h).

This is then an example where the output function is then non-multiplicative and the sorting

can no longer be reduced to one-dimensional index.

Characterization In Appendix A.2, we thus provide an algorithm to characterize the

assignment function and wages when type spaces are multidimensional. Intuitively, similar

to one-dimensional assignment model, the equilibrium wage ω(h) must be such that it is

indeed optimal for firm y to hire agent µ(y). Thus, the wage schedule ω(h) together with the

assignment function µ(y) must be such that a firm’s first-order condition is satisfied: if firm

y chooses to match with agent µ(y) in equilibrium, then his marginal benefit of precision

must equal the marginal cost. As illustrated in Figure 3, each line represents the set of firms

such that, given the wage schedule, ωh(µ(y)) = Ωh(y, µ(y)).

Furthermore, to make sure that the market-clearing condition is satisfied, ωh(h) must be

chosen so that the measure of firms below the line coincides with GA(h). That is, the wage

schedule must be constructed in a way so that the measure of firms that find a particular

talent type h too expensive coincides with the measure of agents below h. As long as this
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condition is satisfied, Chiappori et al. (2016) establishes that the constructed algorithm

guarantees a stable matching equilibrium.11

Robustness We now discuss how our measures change in the general setting. When firms’

types are multi-dimensional, there is no obvious ordering of the firms’ types. Thus, unlike

the one-dimensional case, firms can no longer be ranked by one index a. However, agents

can still be ranked by their skill index b[i]. So, the equilibrium solution still describes the

matching for any agent i. Specifically, when the characteristics of firms are m dimensional,

a[i] = (a1[i], a2[i], ..., am[i]) is now defined as the vector that describes the characteristics of

the firm that is matched with i-th percentile agent. The output of the firm associated with

i-th percentile agent is then given by V [i] = V (a[i], b[i]).

Furthermore, analogous to Equation (11), in the multidimensional environment, the slope

of the wage schedule for the i-th percentile agent is his marginal contribution to the surplus

within the match: ω′[i] = Ωb(a[i], b[i])b′[i], where the only difference is that a[i] is now a

vector. Given that Ωb(a, b) = Vb(a, b), φ[i] in the general setting thus becomes:

φ[i] =
ω′[i]

V ′[i]
=

Vb(a[i], b[i])b′[i]

Σm
n=1 (Van(a[i], b[i])a′n[i]) + Vb(a[i], b[i])b′[i]

. (15)

Similar to the one-dimensional sorting setting, this ratio captures the importance of talent

heterogeneity, as it increases with the marginal benefit of hiring the i-th agent relative to the

next best individual, captured by the term Vb(a[i], b[i])b′[i]. On the other hand, the first term

in the denominator captures the effect of firms’ heterogeneity, which is now multidimensional.

Notice that the result for the separable one-dimensional case can be understood as a special

case of this general setting by setting m = 1 and Va1(a[i], b[i]) = b[i] and Vb(a[i], b[i]) = a[i],

which gives the simpler expression in Equation (15). In other words, the φt measure even in

a general setting is a diagnostic of the relative strength of talent to selection effects.
11Chiappori et al. (2016) refers this nested condition. See Appendix A.2 for a detailed discussion.
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7. Conclusion

Firms hire in labor markets, be it underwriters when going public or executives on an on-

going basis, to improve firm value. But assessing the value of these hires for stock prices

is challenging because of selection since more opaque firms with higher costs of capital and

lower valuations to begin with might hire better agents. By developing an assignment model,

where matching surpluses, firm valuation, and wages emerge from a stock-market equilib-

rium, we derive a decomposition of selection from the direct effect of agent talent. We find

that talent of underwriters and CEOs account for 0.5% and 2% of the heterogeneity in firm

values, respectively. We also use this decomposition to understand changes over time in

IPO underpricing and the surge in CEO wages since the 1980s. This decomposition is easy

to implement when there is wage and firm profit data and can potentially applied in many

other settings as a diagnostic test for selection versus talent effects.
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A. Appendix

A.1. Detailed Derivation for Underpricing

For any given fraction of uninformed investors, the price at which shares are sold to investors

must be such that uninformed investors expect to break even on average. Thus p̃hy must

solve

0 =
1

2
β(h)

(
k(θ̄ + σ)− ω(h)

1 + ψ
− p̃hy

)
+

1

2

(
k(θ̄ − σ)− ω(h)

1 + ψ
− p̃hy

)
.

To interpret this break-even condition, if β(h) = 1, and all investors are uninformed, there is

no winner’s curse since the uninformed investor will with 50% chance get the asset when the

valuation is low and 50% chance get the asset when the valuation is high. But if β(h) < 1

and hence some fraction of the investors are informed, the informed investors will only buy

when the valuation is good. That is, from the viewpoint of an uninformed investors, when

the project has a high valuation, the probability that an order is filled is β(h) < 1. Hence,

the share price for firm y that hires an underwriter with ability h is then given by

p̃hy =
k
(
β(h)(θ̄ + σ) + (θ̄ − σ)

)
(1 + β(h))(1 + ψ)

− ω(h)

1 + ψ
.

This then gives us the expression in Equation (3).

A.2. Characterization for Multidimensional Sorting

As discussed in Chiappori et al. (2016), when type spaces are multidimensional, it is generally

not possible to derive a closed-form solution for the assignment function. Nevertheless, one

can see that the characteristics of firms can be further reduced to aggregated indices in

our setting, thereby simplifying our characterization. Facing equilibrium fee ω(h), ωh(h)

represents the marginal cost of a particular precision from the view point of firms. From

the first-order condition, if firm y chooses to match with agent µ(y) in equilibrium, then his

marginal benefit of precision must equal the marginal cost. That is, Ωh(y, µ(y)) = ωh(µ(y)).
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In other words, once we have figured out the value of ωh(h), one can then find the set of

firms matched to agent h. Note that when firms differ in multiple dimensions, two different

types of firms may have the same marginal value of h. To facilitate the analysis, define the

set of firms y whose marginal benefit of h is given by a value of m :

Υ(h,m) ≡ {y ∈ Y | Ωh(y, h) = m} .

That is, if the marginal cost of hiring agent h is given by ωh(h), then Υ(h, ωh(h)) is the set

of firms matched to agent h.

Clearly, ωh(h) is an equilibrium object that depends on the underlying distribution. We

now consider the following algorithm that allows us to construct an explicit solution for

this multi-dimensional environment. The basic idea of the equilibrium construction is the

following.

First, for each h, we will need to choose some level m ∈ R that satisfies the following

condition:

Y (h,m) ≡ νF ({y ∈ Y | Ωh(y, h) ≤ m}) = GA(h). (16)

By choosing m properly for each agent h, the measure of firms whose marginal benefit of

h is lower than m exactly coincides with the measure of agents below h. Intuitively, if m

were the price for ability h, all firms within (outside of) the set y ∈ Y (h,m) find this type

of agent to be too expensive (cheap).

Choosing m for each h is thus as if we are choosing the price for any given ability.

Equation (16) requires that, in equilibrium, the price for any particular ability must be

chosen in a way so that the measure of firms that find this type of agent to be too expensive

exactly coincides the measure of agents below this agent.

As established in Chiappori et al. (2016), this algorithm works only in the environment
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where the constructed ωh(h) in the above procedure satisfies the following nested condition:

Y (h, ωh(h)) ⊂ Y (h′, ωh(h
′)) ∀h′ > h. (17)

The construction of the fee schedule is such that if a firm finds that hiring agent h is too

expensive, then it must find a better agent h′ > h to be too expensive as well.

Observe that Condition (17) together with Condition (16) guarantee that (1) the set of

firms that found h to be too expensive are always matched to firms below agent h and (2) the

market clears in the sense that the measure that firms that hire agents below h coincides with

the measure of agents below h. As a result, the optimality condition of firms and market-

clearing condition are satisfied. The following Lemma summarizes the characterization.

Lemma 1. Let ωh(h) be the value that solves Y (h, ωh(h)) = GA(h). Under nested match-

ing (i.e., if condition (17) holds), the optimal assignment is characterized by µ−1(h) =

Υ(h, ωh(h)).

Proof. By construction, Equations (16) and (17) guarantee that the market clearing condi-

tion is satisfied: the measure of agents below h is the same as the measure of firms that hire

agents whose precision is lower than h. We now examine firms’ optimality condition.

Recall that Υ(h, ωh(h)) is the set of firms that are matched to agent h,

Υ(h, ωh(h)) ≡ {y ∈ Y | Ωh(y, h) = ωh(h)} .

Since U(y, h) = Ω(y, h)−ω(h), it thus shows that the FOC of firms is satisfied as Uh(y, µ(y)) =

Ωh(y, µ(y))− ωh(µ(y)) = 0.

We now show that µ(y) is indeed the maximum of U(y, h). Condition (17) suggests that,

for any h′ > µ(y), y ∈ Y (µ(y), ωh(µ(y)) ⊂ Y (h′, ωh(h
′)). That is, the marginal cost of a

hiring a better agent h′ is too high:

Ωh(y, h
′) < ωh(h) ∀h′ > µ(y).
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That is, U(y, h) decreases with h for h > µ(y). Similarly, hiring an agent with lower precision

is too cheap:

Ωh(y, h
′) > ωh(h) ∀h′ < µ(y).

Thus, U(y, h) increases with h for h < µ(y). Hence, the constructed µ(y) solves the firm’s

optimization problem.

A.3. Omitted Proofs

A.3.1. Proof for Proposition 1

Proof. From Equations (5), observe that Uh(k, ψ, σ, h) increases with k, σ, and 1
1+ψ

. Ac-

cording to Milgrom and Segal (2002), µ(k, ψ, σ), the solution to maxh U(y, h), must increase

with k, σ, and 1
1+ψ

. Since Uh(y, h) = Ωh(y, h) − ωh(h), this is equivalent to looking at the

complementarity of the surplus function, as is standard in matching models. Similarly, for

CEO case, Uh(k, h) increases with k. Thus, the firm with higher k will hire a more talented

CEO.

A.3.2. Proof for Proposition 2

Proof. This follows immediately from Equation (12).

A.3.3. Proof for Corollary 1

Proof. Given that ã[i] = λa[i], Ṽ [i] = ã[i]b[i] = λV [i] and ω̃[i] =
´
ã[j]b[j]dj = λω[i].

Furthermore, given that
ã′[i]

ã[i]
=
λa′[i]

λa[i]
=
a′[i]

a[i]
,

according to Equation (12), φ̃[i] = φ[i] ∀i.
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A.3.4. Proof for Corollary 2

Proof. For a change in the distribution that implies a higher heterogeneity (i.e., a higher

a′[i]) with the same maximum, it thus implies that ã[i] < a[i] ∀i < 1. And hence, for any

a[i] ≥ 0, ã′[i]
ã[i]

> ã′[i]
ã[i]

, and thus, by Proposition 2, a stronger selection effect (lower φ[i]).

Similarly, for any b[i] ≥ 0, an increase in b′[i] leads to a higher b′[i]
b[i]

and thus higher φ[i].
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Figure 1: Proportion of Talent Effect (φ) for CEOs. Sample period: 1993-2014. Each year we place
CEOs and firms into decile bins based on CEO compensation. We take the median values for compensation
and net income within each decile bin. We then calculate φ defined as the change in wage divided by the
change in net income across bins. We report the median value of the φ’s for each year along with bootstrap
standard errors at the 5-th and 95-th percentiles.
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Figure 2: Proportion of Talent Effect (φ) for IPO Underpricing. Sample period: 1990-2015. Each
year we sort analysts into quartiles based on compensation. We take the median compensation of analysts
in each quartile and calculate the change in these medians across quartiles. Each year we sort IPOs into
quartiles based on Carter-Manaster rankings of the underwriters. We calculate the median IPO underpricing
for each quartile and the change in these medians across quartiles. We calculate φ by taking the ratio of
the changes in wages and changes in underpricing across quartiles. We report the median φ each year along
with bootstrap standard errors at the 5-th and 95-th percentiles.
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Figure 3: Characterization for Multidimensional Sorting: Consider agents with ability hi, where
h3 > h2 > h1 and firms’ type are two-dimensional, summarized by two indices y = (a1, a2). Assume that
Ω13(a1, a2, h) > 0 and Ω23(a1, a2, h) > 0, so firms with higher index a1 or a2 will hire a better agent. Each line
represents the set of firms y that hires agent hi. The construction of the wage schedule schedule ω(h) together
with the assignment function µ(y) must satisfy (1) firms’ optimality condition: Ωh(y, µ(y)) = ωh(µ(y)) for
any firm y, and (2) the market-clearing condition: the measure of firms below the indifferent set for agent
hi is equal to the measure of agents below hi.
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