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1 Introduction

A long tradition in economics argues that the concentration of economic activity leads to

spillovers. For instance, dense cities are more productive thanks to agglomeration economies,

but are also more congested. These spillovers shape the distribution of city size and productivity.

Groups of workers with different skills arguably vary in how much they contribute to these spillovers

and in how much they are impacted by them, so that these forces also shape how heterogeneous

workers sort across cities. Being external in nature, spillovers likely lead to inefficient spatial out-

comes. In this paper, we ask: is the observed spatial distribution of economic activity inefficient?

If so, what policies would restore efficiency and what would be their welfare impact? Would an

optimal spatial distribution feature stronger, or weaker, spatial disparities and sorting by skill than

what is observed?

To answer these questions, we develop and implement a new approach. Our framework nests

two recent strands of general-equilibrium spatial research with spillovers: location choice models in

the tradition of Rosen (1979)-Roback (1982) with sorting of heterogeneous workers as in Diamond

(2016), and economic geography models in the tradition of Helpman (1998) applied to quantitative

setups as in Allen and Arkolakis (2014) and Redding (2016). Crucially, we generalize these models

to allow for arbitrary transfers across agents and regions. We characterize the set of transfers needed

to attain first-best allocations, alongside the labor income subsidies that would implement them.

We then combine the framework with data across metropolitan statistical areas (MSAs) in the

United States, and evaluate quantitatively the impact of implementing optimal spatial policies on

sorting by skill, wage inequality, and welfare. Under existing estimates of the spillover elasticities,

the results suggest that inefficient sorting may lead to substantial welfare costs, and that spatial

efficiency calls for more redistribution to low-wage cities and a greater share of high skill workers

in these locations.

The framework incorporates many key determinants of the spatial distribution of economic

activity. Firms produce differentiated tradeable commodities and non-tradeables using labor, in-

termediate inputs, and land. Locations may differ in fundamental components of productivity and

amenities, bilateral trade frictions, and housing supply elasticities. Productivity and amenities are

endogenous through agglomeration and congestion spillovers that may depend on the composition

of the workforce.1 Different types of workers may vary in how productive they are in each loca-

tion, in their ownership of fixed factors such as land, in their preference for each location, and

in the efficiency and amenity spillovers they generate on other workers. In the market allocation,

government policies may redistribute income across agents and regions.2

1As summarized by Duranton and Puga (2004), efficiency spillovers may result from several forces such as knowl-
edge externalities, labor market pooling, or scale economies in the production of tradeable commodities. A key
assumption of our analysis is that these effects are not internalized by the firms making hiring decisions. Amenity
spillovers may result from congestion through traffic or environmental factors such as noise or pollution; availabil-
ity of public services such as education, health, and public transport; availability of public amenities such as parks
and recreation; or specialization thanks to scale effects in the provision of urban amenities such as restaurants or
entertainment.

2A wide range of government policies lead to spatial transfers. Some of these are explicit “place-based policies”,
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In the model, the spillovers have complex general-equilibrium ramifications through factor mo-

bility and trade linkages. However, in the spirit of the “principle of targeting” pointed out by Dixit

(1985), the first-best allocation can be implemented by policies acting only upon inefficient margins.

Here, these margins consist of labor supply and demand decisions: workers do not internalize the

impact of their location choice on city-level amenities, and firms do not internalize the impact of

their hiring decisions on city-level productivity. We derive a necessary efficiency condition on the

joint distribution of expenditures, wages and employment across worker types and regions. Using

this condition we then characterize the transfers that must hold in an efficient allocation. Further-

more, we identify a condition on the distributions of spillover and housing supply elasticities under

which these optimal transfers are also sufficient to implement the efficient allocation.

This characterization generalizes the standard efficiency requirement from non-spatial envi-

ronments such as Hsieh and Klenow (2009), whereby the marginal product of labor should be

equalized across productive units. Here, the optimal spatial allocation balances the net benefit of

spillovers (in production or amenities) against the opportunity cost of attracting workers to each

location. Because the location and consumption decisions are not separable, these opportunity

costs are measured in terms of local consumption expenditures, and they vary across locations due

to the compensating differentials born of geographic forces (congestion in housing, amenities, trade

costs, and non-traded goods). Therefore, determining whether an observed allocation is efficient

and whether specific cities are too large requires information about expenditure per capita across

locations, in addition to the standard requirement of observing wages and employment.

We characterize the policies that lead to optimal transfers in special cases. We first apply the

results to a case where the elasticities of spillovers (in both amenities and productivity) are constant

with respect to population and identical across cities. Studies of place-based policies such as Glaeser

and Gottlieb (2008) and Kline and Moretti (2014a) suggest that, in this environment, there are no

gains from implementing policies that reallocate workers.3 We show that this prevailing view relies

on assuming away policies that redistribute income across space. When transfers are allowed, the

laissez-faire allocation without transfers is inefficient even under constant-elasticity spillovers that

are identical across locations, as long as there are compensating differentials across regions (such

as differences in amenities). Intuitively, starting from an equilibrium without transfers, differences

in marginal utility of consumption lead to gains from transferring tradeable goods. These transfers

in turn incentivize workers to move, leading to gains from reallocation. Under these assumptions,

we derive the labor income subsidies that restore efficiency.

such as tax relief schemes targeted at distressed areas (e.g. New Markets Tax Credit, or Enterprise Zones) or direct
public investment in specific areas (e.g. Tennessee Valley Authority). Other policies are not explicitly spatial, but end
up redistributing income to specific places (e.g., nominal income taxes and credits, state and local tax deductions, or
sectoral subsidies). Neumark et al. (2015) review the recent empirical literature on place-based policies and conclude
that the evidence on their success at creating local jobs in the U.S. is mixed depending on the specific policy and
area being treated. While some local enterprise programs have been found to be unsuccessful at attracting local jobs,
larger programs such as federal empowerment zones in high-poverty rate areas of the U.S. or the Tennessee Valley
Authority have been found to have positive effects (Busso et al., 2013; Kline and Moretti, 2014a).

3This view is echoed in literature reviews of the place-based policy literature, such as Kline and Moretti (2014b),
Neumark et al. (2015) and Duranton and Venables (2018).
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We apply our results to establish the normative properties of well-known economic geography

models corresponding to special cases of our framework with inelastic housing supply, a single worker

type, constant elasticity spillovers and no intermediate inputs. In this context, global efficiency is

characterized by the distribution of trade imbalances between regions. This distribution can be

implemented by a simple transfer rule that is independent from the distribution of fundamentals

or trade costs. We show that, because these models make different assumptions about transfers

in the laissez-faire allocation, they have different implications for whether the optimal government

intervention should redistribute income from high- to low-wage regions, or the reverse.

In the more general case with asymmetric spillovers, allocations without transfers are still

generically inefficient. In addition to the forces described in the case with homogeneous workers,

there are also gains from reallocating workers that generate positive spillovers to places where they

are more scarce. Thus, inefficient sorting creates an additional rationale for spatial transfers and

reallocation. For example, if low skill workers benefit in terms of productivity from high skill

workers, the decentralized pattern of sorting by skill may be too strong. The optimal subsidies

then increase the degree of mixing across locations relative to the competitive allocation.

Our theoretical analysis complements a body of research on optimal city sizes following Hender-

son (1974) that typically assumes homogeneous workers and limited heterogeneity across locations.4

Helsley and Strange (2014) characterize properties of the optimal sorting with heterogeneous work-

ers and spillovers, under the assumptions of homogeneous locations. We make progress by studying

the optimal allocation of a national planner who can implement transfers across cities, in an envi-

ronment with several dimensions of spatial heterogeneity and different sources of spillovers across

heterogeneous workers.5 A key feature of our approach is to provide a simple characterization of

efficiency in terms of the expenditure distribution. Being only a function of observable variables

and elasticities, this condition allows us to characterize optimal policies despite the generality of the

underlying framework, and to determine the set of statistics in the data that suffice to numerically

compute the optimal allocation.

We also show how to extend this approach to settings with richer spillovers, such as environ-

ments with cross-location spillovers in the spirit of Desmet and Rossi-Hansberg (2014) or with

commuting as in Monte et al. (2018). In the latter, individuals decide both where to work (sub-

ject to productivity spillovers) and where to live (subject to amenity spillovers). We find that

with only constant-elasticity productivity spillovers, optimal policies are identical to our bench-

mark case without commuting. When both amenity and productivity spillovers are present, the

first-best policies combine two location-specific transfers, one varying by residence and the other

4Flatters et al. (1974) and Helpman and Pines (1980) are early studies of optimal city sizes in models with
heterogeneous cities in either amenity or productivity. See Abdel-Rahman and Anas (2004) for a review. More recent
studies include Albouy (2012), Albouy et al. (2019) and Eeckhout and Guner (2017). A focus in some of these papers
is to study the extensive margin of city creation. We abstract from studying this margin, and take the number of
potentially populated locations as given.

5We only inspect policies set by a national government. Canonical frameworks of fiscal competition, such as
Wilson (1986) and Zodrow and Mieszkowski (1986), include features that are not present in our analysis such as
mobile capital across regions and local financing of public goods that are valued by individuals or firms.
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by workplace.

We quantify the model using data on the distribution of economic activity across MSAs in the

United States. A key motivation for our application is the well known empirical evidence on urban

premia: larger cities in the U.S. feature higher wages, higher share of skilled workers, and higher

skill premium, as documented among others by Behrens and Robert-Nicoud (2015). Moretti (2012)

points out a “great divergence” in these outcomes over the last decades. We ask whether, in the

presence of spillovers, these observed patterns of spatial disparities in the U.S. are too strong from

the perspective of spatial efficiency.6

In our benchmark analysis we allow for two skills groups, high skill (college) and low skill (non

college) workers. We combine data on labor and non-labor income, taxes and transfers at the city

level from the BEA, with Census data that allows us to break down these MSA-level totals by

skill group within cities. To parametrize the spillover elasticities we rely on existing estimates in

the U.S. based on spillover equations that are consistent with our model. We draw the amenity

spillovers and the heterogeneity in spillovers across workers from Diamond (2016), and the city-level

elasticity of labor productivity with respect to employment density from Ciccone and Hall (1996).

The quantification yields welfare gains of roughly 2% to 6% across a range of specifications of

the spillover elasticities. In our benchmark parametrization, these gains are attained through a

reallocation of 11% of the population. With homogeneous workers the welfare gains are negligible,

suggesting that inefficient sorting drives the welfare costs. We find similar welfare gains across alter-

native quantifications that incorporate three groups of skill, migration frictions based on worker’s

region of birth, and land regulations. We find that the distortions caused by land regulations may

be quantitatively as important as those caused by inefficient sorting due to spillovers.

These welfare gains are achieved by increasing income redistribution towards low-wage cities.

The optimal transfers can be implemented via higher labor income taxes in high-wage cities. In the

case of low skill workers, the higher taxes in high-wage cities arise because these workers generate

congestion and small productivity spillovers. In contrast, for high skill workers, they arise because

these workers generate positive spillovers onto low skill workers, who are more prevalent in low-

wage cities. This second force offsets the strong positive spillovers that high skill workers generate

among each other, which would call for a subsidy in high-wage cities.

The effect of these transfers is a reallocation of workers from currently large high-wage cities to

small low-wage cities. In terms of skill mix, the initially less skill intensive cities grow and see an

increase in the share of high-skill workers. The largest and the most skill intensive cities shrink, but

they too increase their skill share. The resulting optimal allocation features a greater share of high

skill workers in small cities compared to the observed allocation as well as lower wage inequality in

large cities, to the point that the urban skill premium (i.e., the higher return to high-skill labor in

larger cities) vanishes. In sum, in the optimal allocation, the patterns of urban premia described

before are all weakened: larger cities feature relatively lower wages, lower share of skilled workers,

6Recent papers such as Eeckhout et al. (2014), Behrens et al. (2014), and Davis and Dingel (2012) include spatial
sorting of heterogeneous individuals to rationalize some of these patterns.
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and lower skill premium compared to the observed allocation.

To further identify the key spillovers driving these results, we assume that the observed equi-

librium is efficient and use our optimal-transfers formulas to infer the spillover elasticities that best

rationalize the data. This procedure yields negative amenity spillovers of similar magnitude for

both skill groups, whereas the existing estimates used in the calibration imply that low-skill and

high-skill workers generate spillovers of opposite signs. In this sense, we identify a key role for the

heterogeneous amenity spillovers across skill types.7

The rest of the paper is structured as follows. Section 2 presents a stylized model to drive

intuition, then presents the general environment. Section 3 characterizes the optimal policies,

teases out their implications in specific cases of the theory corresponding to the models from the

literature, and determines the data that suffice to implement the model. Section 4 describes the data

and the calibration. Section 5 presents the quantitative implementation and Section 6 concludes.

Proofs, additional derivations and data construction are detailed in the appendix.

2 Economic Geography Model with Worker Sorting and Spillovers

2.1 A Simple Example with Homogeneous Workers

We start with a simple case nested in the environment we detail next. We use this case to show

that, starting from a market allocation without policies, there are gains from reallocating workers

across space. This is true even under identical and constant elasticity spillovers across space.

Suppose that workers are homogeneous and that utility per worker in a location j equals uj =

ajcj , where aj is city-level amenities and cj is consumption of tradeable output. Amenities take

the form aj = AjL
γA
j , where Aj is exogenous and LγAj is a spillover that depends on the population

Lj of j with constant elasticity γA. Similarly, output per worker zj = ZjL
γP
j depends on exogenous

productivity Zj and on agglomeration economies governed by the constant elasticity γP .

An approach in the placed-based policy literature, such as Glaeser and Gottlieb (2008) and

Kline and Moretti (2014a), is to characterize efficiency assuming that cj = zj ; i.e., per capita

consumption of traded goods equals output in every location. Utility per worker in j becomes

vj (Lj) = AjZjL
γA+γP
j , and it is equalized across locations in equilibrium because workers are

perfectly mobile. In turn, the solution to a planner’s problem who chooses Lj subject to the

same no-transfers restriction also delivers equalization of utility.8 Given this formulation of the

planner’s problem, the market allocation is efficient. This result follows from the fact that, as long

7In our parametrization, these spillovers rely on numbers from Diamond (2016), who estimates a positive response
of an urban amenity index (including congestion in transport, crime, environmental indicators, supply per capita of
different public services, and variety of retail stores) to the relative supply of college workers, as well as a higher
marginal valuation for these amenities for college than for non-college workers.

8If the planner maximizes u ≡
∑
j Ljvj (Lj), the marginal return to adding a worker in j is

(
1 + γA + γP

)
vj .

Using a different notation, Proposition 1 of Glaeser and Gottlieb (2008) solves this planner problem, which leads to
equalization of marginal returns and therefore of vj . Kline and Moretti (2014a) make the similar point that if dL
workers are reallocated from i to j, then there are no gains from reallocation starting from any market allocation
with free mobility.
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as consumption equals output and there are constant elasticity spillovers, welfare is a constant-

elasticity function of city size. Then, equalization of marginal returns (the planner’s efficiency

condition) is equivalent to equalization of average returns (the market allocation). This result is

often described by saying that there are no gains to reallocation because the marginal productivity

gain in one location is exactly offset elsewhere.9

This analysis is made under a strong restriction in the planning problem, namely that each

region must consume the same amount of traded output it produces. This restriction rules out

government policies that tax and redistribute income across locations. When transfers of resources

between locations are allowed, the result and intuition described above no longer hold, as welfare

is no longer a constant elasticity function of city size.10

We now assume that the government can implement spatial transfers. With transfers, the

distribution of consumption per capita cj changes and workers move to equalize utility in space.

As shown in Appendix A.1, starting from transfers tj ≡ cj − zj received by workers in j, when a

transfer is implemented the common level of utility across workers changes according to:

du

u
=
γP
∑

j zjdLj + γA
∑

j cjdLj −
∑

j tjdLj

Y
, (1)

where dx is the infinitesimal change in x and Y is aggregate output. The no-transfers equilibrium

implies tj = 0. Combined with the definition of output (Yj = zjLj), this leads to:

du

u
=
(
γP + γA

)∑
j

(
Yj
Y

)
dLj
Lj

. (2)

Therefore, a transfer leading to a reallocation of dL workers from j to location i yields

du

u
=
(
γP + γA

)
(zi − zj)

dL

Y
. (3)

From (3), there are gains from implementing a reallocation whenever the market allocation without

transfers yields differences in output per worker (zi 6= zj). In turn, this will be the case whenever

there are differences in amenities (ai 6= aj), as the initial allocation without transfers equalizes

utility (aizi = ajzj).

This analysis shows that the laissez-faire allocation is inefficient even when spillovers have

constant elasticity, as long as there is dispersion in compensating differentials through amenities,

aj . In a more general model where the compensating differentials arise through costly trade or non-

9For instance, Duranton and Venables (2018) write: “When cluster expansion occurs because of labour relocation
from other areas, agglomeration gains in the targeted area will come at the expense of agglomeration losses elsewhere.
In the specific case where the agglomeration elasticity is constant, the gains in the targeted area will be exactly offset
by the losses elsewhere.”

10Intuitively, the no-transfer market allocation equates amenities times consumption per capita ajcj across loca-
tions, where consumption equals output, cj = zj . With constant elasticities and no transfers, the planner equates
(1 + γA + γP ) ajcj across locations, which gives the same result. But starting from this allocation, cj may be re-
allocated to locations with high amenity value. So there are incentives to transfer output, which in turn leads to
reallocation of workers.
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traded goods, the allocation is inefficient even with no dispersion in amenities. What matters is that

amenities, non-traded goods, or trade frictions lead to compensating differentials between cities.11

This result holds regardless of whether the source of the spillovers is amenities, productivities, or

both. If, for instance, congestion forces dominate (γP + γA < 0) then it is optimal to implement

transfers that reallocate workers to places with low output per worker and high marginal utility of

consumption. With this intuition at hand, we now set out to characterize first-best spatial policies

in the context of a more general spatial equilibrium model.

2.2 Environment

We consider a closed economy with a discrete number J of locations indexed by j or i. Each

worker belongs to one of Θ different types. Among other things, the type indexes each worker’s

preference and productivity in each location, as well as each worker’s capacity to generate and

absorb productivity and amenity spillovers. Workers are free to choose where to live. National

labor market clearing is: ∑
j

Lθj = Lθ, (4)

where Lθ is the fixed aggregate supply of group θ. The utility of a worker of type θ in location j is:

uθj = aθj
(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

)
. (5)

The function aθj (·) captures the valuation of a worker of type θ for location j’s amenities. Workers

may vary in how much they value amenities associated with exogenous features of each location, and

also in how much they value amenity spillovers created by each type. For example, a demographic

group may prefer living in locations with higher density of their own demographic group, or may

value urban amenities generated or congested by specific groups. To capture this feature, aθj (·)
depends on the distribution of workers of different types living in j. Workers also derive utility

from a bundle of differentiated tradeable commodities (cθj) and from non-tradeable services including

housing (hθj). The utility function U (c, h) is homogeneous of degree 1.

Every location produces traded and non-traded goods. Tradeable output uses an aggregate

technology Yj

(
NY
j , I

Y
j

)
requiring services of labor NY

j and intermediates IYj . Similarly, production

in the non-traded sector is Hj

(
NH
j , I

H
j

)
. The functions Yj and Hj may be city-specific and feature

constant or decreasing returns to scale, due to the use of fixed factors such as land. Therefore,

the framework allows for heterogeneous housing supply elasticities across cities through the city

specific decreasing returns to scale in Hj (·). The feasibility constraint in the non-traded sector in

j is:

Hj

(
NH
j , I

H
j

)
=
∑
θ

Lθjh
θ
j . (6)

11Our analysis assumes that the planner values the utility of ex-ante-identical workers in the same way, regardless
of where they live. The no-transfer allocation could be efficient if the planner had different Pareto weights for identical
workers who live in different locations, for a particular distribution of those weights.
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Goods in the traded sector can be shipped domestically or to other locations. The country’s

geography is captured by iceberg trade frictions dji ≥ 1. These frictions mean that djiQji units

must be shipped from location j to i for Qji units to arrive. The feasibility constraint of traded

goods dictates:

Yj
(
NY
j , I

Y
j

)
=
∑
i

djiQji. (7)

Traded goods may be differentiated by origin, reflecting either industrial specialization at the

regional level or variety specialization at the plant level.12 Specifically, the traded goods arriving

in i are combined through the homothetic and concave aggregator Q (Q1i, .., QJi). This bundle

of traded commodities may be used for final consumption or as an intermediate input in local

production:

Q (Q1i, .., QJi) =
∑
θ

Lθi c
θ
i + IYi + IHi . (8)

The standard assumptions in Rosen (1979)-Roback (1982) models is that products are perfect

substitutes, which implies Q (Q1i, .., QJi) =
∑

j Qji. Economic geography models assume differen-

tiation by origin using constant-elasticity of substitution (CES) functional forms. For now, we do

not impose these restrictions.

All workers supply one unit of labor with efficiency that may vary by worker type and location.

Each type-θ worker in location j supplies

zθj = zθj
(
L1
j , .., L

Θ
j

)
(9)

efficiency units. The function zθj captures exogenous differences in productivity between locations

and skill groups, as well as productivity spillovers across workers. Spillovers take place outside the

firm at the level of the city. For instance, the concentration of activity in a city gives rise to thick

local labor markets that allows better matches between firms and workers, as well as knowledge

spillovers –workers learn from each other through social interactions (see e.g. Duranton and Puga

(2004)). As with amenities, these spillovers may depend on the distribution of types. For example,

high-skill workers may benefit more than low-skill workers from being employed in the same city

as other high-skill workers, or in more densely populated areas. In both traded and non-traded

sectors, the services zθjL
θ
j of the various types of labor are combined through the possibly non-

homothetic aggregator N
(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
. This aggregator also captures imperfect substitution

across workers. Feasibility in the use of labor services then implies

NY
j +NH

j = N
(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
. (10)

We highlight two key features relative to an otherwise standard neoclassical environment with

a representative worker-consumer. First, the location of a worker drives both her marginal product

12We abstract from modeling multiple traded sectors with input-output linkages across them. Rossi-Hansberg
et al. (2019) studies optimal spatial policies in a framework with these features.
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(because productivity is place specific) and her marginal utility of consumption (through local

amenities). Therefore, production and consumption decisions are not separable.13 Second, the

framework features two potential sources of non-convexities through the amenity and productivity

spillover functions. The utility of each agent may change with the number of other agents in the

same location through aθj and the labor aggregator N (·) may feature increasing returns to the

number of workers in a particular group through zθj

(
L1
j , .., L

Θ
j

)
Lθj .

At this stage, it is convenient to define the productivity and the amenity spillover elasticities:

γP,jθ,θ′ ≡
Lθj

zθ
′
j

∂zθ
′
j

∂Lθj
, and γA,jθ,θ′ ≡

Lθj

aθ
′
j

∂aθ
′
j

∂Lθj
. (11)

These elasticities capture the marginal spillover of a type θ worker on the efficiency and utility of

each type θ′ worker in city j. The case without spillovers corresponds to γP,jθ,θ′ = γA,jθ,θ′ = 0. So far

we have not imposed functional forms, so that these elasticities can be variable.

2.3 Competitive Allocation

In the decentralized equilibrium each worker chooses location and consumption to maximize

utility, while competitive producers hire labor and buy intermediate inputs to maximize profits.

Being atomistic, these agents do not take into account the impact of their choices on the spillover

functions aθj

(
L1
j , .., L

Θ
j

)
and zθj

(
L1
j , .., L

Θ
j

)
.

Workers Conditional on living in j, a type-θ worker with expenditure level xθj solves

max
cθj ,h

θ
j

U
(
cθj , h

θ
j

)
s.t. Pjc

θ
j +Rjh

θ
j = xθj , (12)

where Pj is the price of the bundle of traded goods and Rj is the unit price in the non-traded

sector. As a result, utility per worker is

uθj = aθj
(
L1
j , .., L

Θ
j

) xθj
ψ (Pj , Rj)

, (13)

where ψ (P,R) is the price index associated with U . In equilibrium, all type-θ workers attain the

same utility uθ. Workers’ location choice implies that

uθj ≤ uθ, (14)

with equality if Lθj > 0.

13Allowing for commuting (as in Section 3.5) makes the production and consumption locations distinct. However,
they are still non separable, so long as commuting costs are non zero, because the choice of workplace depends on
the residential choice through commuting access.

9



Firms Producers of traded and non-traded commodities maximize profits:

ΠY
j = max

NY
j ,I

Y
j

pjYj
(
NY
j , I

Y
j

)
−WjN

Y
j − PjIYj , (15)

ΠH
j = max

NH
j ,I

H
j

RjHj

(
NH
j , I

H
j

)
−WjN

H
j − PjIHj , (16)

where pj is the domestic price of the tradeable commodity produced in j and Wj is the wage

per efficiency unit of labor. Workers collectively own a national portfolio of these returns, which

amounts to Π =
∑

j ΠY
j + ΠH

j .

Given a distribution of wages per worker
{
wθj

}
, the wage of type-θ workers in location j equals

the value of its marginal product taking as given the efficiency distribution
{
zθj

}
:

wθj = Wj

∂N
(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
∂Lθj

. (17)

We assume a no-arbitrage condition, so that the price in location i of the traded good from j

equals djipj . Free entry of intermediaries who can buy and resell goods between regions ensures

this condition holds. Given these prices, the trade flows are:

Pi
∂Q (Q1i, .., QJi)

∂Qji
= djipj , (18)

where pj is the domestic price of the tradeable commodity produced in j. In the competitive

equilibrium the prices of final goods, Pj and Rj , adjust so that the corresponding goods markets

clear.

Expenditure Per Worker The only component of the competitive allocation left to define is

the per capita expenditure for a type-θ worker who lives in j, xθj . Each type-θ worker in location

j earns the wage wθj and owns a fraction bθ of the national returns to fixed factors Π. Workers

of different types may differ in their ownership of fixed factors, but they hold the same portfolio

regardless of where they locate. In addition, we allow for government policies that tax and transfer

income across locations. As a result, expenditure per capita is

xθj = wθj + bθΠ + tθj , (19)

where tθj is the net government transfer to a type-θ worker living in j. Using balanced budget for

the government, expenditure equals net income:∑
j

∑
θ

Lθjx
θ
j =

∑
j

∑
θ

Lθjw
θ
j + Π. (20)
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Definition 1. A competitive allocation consists of quantities cθj , h
θ
j , L

θ
j , Qij , N

Y
j , I

Y
j , N

H
j , I

H
j , utility

levels uθ, prices Pj , Rj, pj , returns to fixed factors Π, wages per efficiency unit Wj, and wages per

worker wθj such that

(i) the consumption choices cθj , h
θ
j are a solution to (12) for expenditures xθi satisfying (19), and

employment Lθj is consistent with the spatial mobility constraint (14);

(ii) the labor, intermediate input choices NY
j , I

Y
j , N

H
j , I

H
j and profits Π are such that producers

maximize profits, labor demand is given by (17), and trade flows Qji are given by (18);

(iii) the government budget constraint is satisfied; i.e. (20) holds, and

(iv) all markets clear, i.e. (4) to (10) hold.

2.4 Planning Problem

Our aim is to contrast this decentralized allocation with the solution to the planner’s problem.

We consider a planning problem where the planner chooses the distribution of workers over locations

and types
{
Lθj

}
, consumption of traded and non-traded commodities

{
cθj , h

θ
j

}
, trade flows {Qij},

and the allocation of efficiency units and intermediate inputs,
{
NY
j , I

Y
j , N

H
j , I

H
j

}
. The planner

implements policies that treat all individuals within a type in the same way, and is bound by the

spatial mobility constraint (14). Along with that constraint, the market clearing conditions (4) to

(10) define a set U of attainable utility levels. The optimal planning problem is

max uθ

s.t.: uθ
′

= uθ
′

for θ′ 6= θ

uθ
′ ∈ U for all θ′

The set of solutions of this problem given an arbitrary θ for all feasible values of uθ
′ ∈ U

for θ′ 6= θ defines the utility frontier. Existence is guaranteed, since the planner optimizes a

continuous objective function over the compact nonempty set defined by the feasibility constraints.

Competitive equilibria according to Definition 1 may not correspond to a point on the frontier due

to spatial inefficiencies: workers do not internalize the impact of their location choice on amenities

through aθj and firms do not internalize the impact of their hiring decisions on efficiency through

zθj . We turn next to the solution and implementation of this planning problem.

3 Optimal Transfers

Before characterizing the optimal allocation in a general setup, we build intuition by augment-

ing our simple example from Section 2.1 with heterogeneous workers, which helps illustrate the

additional role played by inefficient sorting.
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3.1 Simple Example with Heterogeneous Workers

We return to the simplified setup of Section 2.1, now augmented with several worker types.14

We examine the effect of implementing small spatial transfers, starting from a market allocation

without transfers, such that the the welfare of every group but one (θ0) is kept constant. As shown

in Appendix A.2, the utility of this group changes according to:

duθ0

uθ0
=

1

Y θ0

∑
j

∑
θ∈Θ

(∑
θ′∈Θ

(
γPθ,θ′ + γAθ,θ′

)
wθ
′
j

Lθ
′
j

Lθj

)
dLθj , (21)

where dLθj is the population change triggered by the transfers, wθj is the wage of type-θ workers in

j, and Y θ0 are the aggregate wages of θ0 workers.

Naturally, it is better to reallocate workers into cities where they generate larger spillovers.

If type θ generates positive spillovers on type θ′ (γPθ,θ′ + γAθ,θ′ > 0), it is desirable to reallocate

type θ into cities where type θ′ is more productive (i.e., where wθ
′
j is high), much as in (2) in the

one-group case. Hence, as in the case with homogeneous workers from Section 2.1, the allocation

without transfers is generically inefficient even with constant-elasticity spillovers.

Furthermore, it is profitable to reallocate workers that generate positive spillovers into locations

where they are relatively scarce (i.e., where Lθ
′
j /L

θ
j is low), reflecting that sorting in the undistorted

equilibrium can be inefficient. This gain from reallocation happens even without compensating

differentials through amenities, which were necessary to obtain gains in the homogeneous-worker

case discussed in Section 2.1. Therefore, inefficient sorting creates an additional rationale for gains

from spatial transfers.

3.2 Efficiency Condition and Optimal Transfers

To characterize efficiency in the general model, it is useful to note that the competitive alloca-

tion can be determined given an arbitrarily chosen expenditure distribution
{
xθj

}
over types and

locations. We can then choose the transfers tθj to implement the arbitrarily chosen xθj using (19).

Therefore, we can obtain a condition over the expenditure distribution xθj that must hold in any

efficient allocation, regardless of what particular policy tools are used to achieve it. Comparing an

allocation with expenditures xθj to the outcomes of the planning problem, detailed in Definition 2

of Appendix A.3, we obtain the following result.

14Compared to the full framework, we assume that only tradeable output is valued in consumption (uθj = aθjc
θ
j ),

labor is the only factor of production, goods are perfect substitutes across origins and traded without frictions, and
the spillover elasticities defined in (11) are constant, γP,jθ,θ′ = γPθ,θ′ and γA,jθ,θ′ = γAθ,θ′ .
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Proposition 1. If a competitive equilibrium is efficient, then

Wj
dNj

dLθj︸ ︷︷ ︸
marginal product of labor

(private+spillovers)

+
∑
θ′

Lθ
′
j

Lθj
γA,jθ,θ′x

θ′
j︸ ︷︷ ︸

marginal amenities

(spillovers)

= xθj︸︷︷︸
consumption cost

(private)

+ Eθ︸︷︷︸
opportunity cost

of type θ

(22)

if Lθj > 0, for all j and θ and some constants
{
Eθ
}

. If the planner’s problem is globally concave

and (22) holds for some specific
{
Eθ
}

, then the competitive equilibrium is efficient.

Condition (22) defines a relationship between expenditure per capita and the labor allocation

that must hold in any efficient allocation. This condition shows the equalization of the marginal

benefits and costs of type-θ workers across inhabited locations. The first term on the left is the

value of the marginal product of labor, including both the direct output effect and the productivity

spillovers. Using the labor demand condition (17) we obtain that the value of the marginal product

of labor can be written as function of wages, employment and elasticities:

Wj
dNj

dLθj
= wθj

(
1 + γP,jθ,θ

)
+
∑
θ′ 6=θ

Lθ
′
j

Lθj
γP,jθ,θ′w

θ′
j . (23)

The second term in (22) is the marginal benefit (or costs if negative) through amenity spillovers on

each group of workers living in j, measured in expenditure equivalent terms.

These marginal benefits from allocating a type θ worker to location j are equated to the marginal

costs on the right. The first term, xθj , results from the non-separability between a worker’s location

and consumption: each type-θ worker in j requires xθj units of expenditures in that particular

location. From a social planning perspective this is a cost, because each additional worker in j

translates into lower consumption of traded and non-traded commodities for other workers in that

location. The last term, Eθ, is the multiplier of the national market clearing constraint (4) in the

planner’s problem and measures the opportunity cost of employing a type-θ worker elsewhere.

We can draw several useful implications from this result. First, asking whether the spatial

allocation is efficient is equivalent to asking whether the expenditure distribution in the market

allocation lines up with (22), because the set of equations defining the competitive allocation

coincides with the set defining the planner’s allocation, except potentially for the expenditure

distribution. Therefore, despite the multiple general-equilibrium ramifications of the spillovers,

market inefficiencies can be fully tackled through policies acting on xθj . This compartmentalization

of the inefficiencies reflects a broader “principle of targeting” noted by Bhagwati and Johnson

(1960) in trade-policy contexts and by Sandmo (1975) and Dixit (1985) in economies with external

effects.

Second, Proposition 1 extends a familiar efficiency condition from the misallocation literature
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to spatial environments. In our economy, “space” enters through trade costs, non-traded goods,

congestion and amenities. In the absence of these forces, there would be no compensating differ-

entials across locations and, as a result, the equilibrium would exhibit the same expenditure per

capita xθj for each type θ across locations. In that case, the model would be equivalent to one

describing the allocation of workers across firms, and (22) would collapse to the familiar condition

that the marginal value-product of labor is equalized across locations.

Third, information about the distribution of expenditure per capita xθj is needed to assess

the economy’s efficiency. In studies of misallocation across firms (Hsieh and Klenow, 2009), the

absence of compensating differentials justifies the practice of inferring allocative inefficiencies from

differences in income per worker. In our spatial environment with compensating differentials, the

non-separability of consumption and production means that the net marginal benefit of reallocating

a worker includes the local expenditure of that worker. As a result, assessing the efficiency of the

allocation requires data on the distribution of expenditure per capita xθj . Given knowledge of

this distribution, further information on how the returns to fixed factors Π are distributed is not

necessary to assess efficiency.15

Finally, we note that (22) is a necessary but not sufficient condition for efficiency. Even if

this condition holds, inefficient market equilibria could exist. However, the inefficient allocations

consistent with (22) can be ruled out if the planner’s problem is globally concave, as in that case only

one allocation that satisfies the first order conditions of the planner. In Section 3.6 we introduce

conditions for global concavity of the planner’s problem.16

Given the efficiency conditions (22), we now derive transfers that implement them. Combining

(19) and the definitions of the spillover elasticities (11) with Proposition 1 and labor demand (17),

we obtain the following proposition:

Proposition 2. The optimal allocation can be implemented by the transfers

tθ∗j =
∑
θ′

(
γP,jθ,θ′w

θ′∗
j + γA,jθ,θ′x

θ′∗
j

) Lθ′∗j
Lθ∗j
−
(
bθΠ∗ + Eθ

)
if Lθ∗j > 0, (24)

where the terms
(
xθ∗j , w

θ∗
j , L

θ∗
j ,Π

∗
)

are the outcomes at the efficient allocation, and
{
Eθ
}

are

constants equal to the multipliers on the resource constraint of each type in the planner’s allocation.

The optimal transfers tθ∗j take care of inefficiencies due to spillovers as well as of distributional

concerns.17 In the absence of spillovers we would still have tθ∗j = −
(
bθΠ∗ + Eθ

)
, so that the

15As it was noted early on in studies of optimal city size, assumptions about ownership of fixed factors are relevant
to determine the efficiency of the market allocation (Pines and Sadka, 1986). The expenditure distribution implied by
(22) that implements the efficient allocation is invariant to assumptions about ownership of fixed factors. A different
rule to distribute Π from that assumed in (19) would imply a different set of optimal transfers tθj to implement the
optimal expenditure distribution, but would not affect (22).

16At the current level of generality, it is possible that a market allocation does not exist or exhibits multiplicity
for an arbitrarily chosen distribution of expenditures. However, if a solution to the planner’s problem exists, then
there is a market allocation consistent with (22).

17These optimal transfers apply to populated locations. The planner could choose not to allocate some types to
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transfers would take care of redistribution across types, as implied by the second welfare theorem.

The burden of dealing with the spatial inefficiencies falls on the spatial component of the optimal

transfers, corresponding to the first term in (24).

We will use conditions (19) and (24) for two separate quantitative goals in Section 5. First, given

the spillover elasticities, we use them to determine the efficiency of the observed allocation from

data on wages, expenditures, and employment. Second, under the assumption that the observed

allocation is efficient, we use the condition to recover the spillover elasticities
{
γP,jθ,θ′ , γ

A,j
θ,θ′

}
from the

observed data.

3.3 Optimal Subsidies with Constant Elasticity Spillovers

The optimal subsidies formula takes a simple form when spillovers have constant elasticities.

We make this assumption from now on, and write: γP,jθ,θ′ = γPθ,θ′ and γA,jθ′,θ = γAθ′,θ. The optimal

transfers in (24) then simplify to tθj = sθjwj − T θ, where

sθj =
γPθ,θ + γAθ,θ

1− γAθ,θ
+
∑
θ′ 6=θ

γPθ,θ′w
θ′
j + γAθ,θ′x

θ′
j

1− γAθ,θ

Lθ
′
j

wθjL
θ
j

(25)

and

T θ = bθΠ +
Eθ

1− γAθ,θ
. (26)

This representation readily implies that the optimal transfers can be implemented by labor income

subsidies sθj coupled with lump-sum tax T θ. The labor income subsidy sθj is a function of wages,

expenditures and population. The labor subsidies tackle spatial inefficiencies due to spillovers,

while the lump-sum transfers take care of distributional concerns. Differences in the holdings of

the national portfolio across types affect the level of lump-sum transfers only. They do not create

a rationale for spatially differentiated policies. We now draw the implications of this formula in

special cases.

No Spillover Across Types We consider first a case with several worker types, but with γPθ′,θ =

γAθ′,θ = 0 for θ′ 6= θ, so that there are no spillovers across types. The optimal subsidy (25) becomes:

sθ =
γPθ,θ + γAθ,θ

1− γAθ,θ
. (27)

In the special case of a single worker type, the policy is further simplified to (s, T ) with s = γP+γA

1−γA .

This formula has a simple interpretation. Under negative congestion spillovers for type θ (γAθ,θ < 0),

if the agglomeration spillover of that type is not too strong (γPθ,θ < −γAθ,θ), then all workers of type

θ should pay as tax the same fraction of their income everywhere (a negative subsidy, sθ < 0).

some locations or to leave some locations empty. Implementing this extensive margin entails taxing away all the
income of those types.
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In this case, the net transfer tθj received by type-θ workers is smaller, and potentially negative, in

cities where their wage is higher.

The presence of compensating differentials is the key reason why, even with constant elasticity

spillovers, the laissez-faire allocation is generically inefficient. We made this point in Section 2.1

in a special case starting at an equilibrium without transfers. We have now shown that the global

optimum is obtained using a constant subsidy-cum-lump sum transfer scheme
(
sθ, T θ

)
that does

not vary across space. To see why this policy distorts the spatial allocation despite being space-

independent, we must again consider the role of the compensating differentials. From the mobility

constraint (14), indifference across populated locations j and j′ implies:

ψ
(
Pj′ , Rj′

)
/aθj′

(
Lj′
)

ψ (Pj , Rj) /aθj (Lj)
=

(
1 + sθ

)
Wj′z

θ
j′
(
Lj′
)

+ T θ + bθΠ

(1 + sθ)Wjzθj (Lj) + T θ + bθΠ
. (28)

The left hand side is the relative compensating differential (amenity-adjusted cost of living) and the

right hand side is the relative expenditure (equal to relative after-tax income) between locations

j′ and j for type θ. In the presence of amenities, non-traded goods or trade costs, the relative

compensating differentials vary across space. As a result, changes to the policy scheme (sθ, T θ)

lead to changes in the employment distribution of type θ. In the absence of these compensating

differentials, the indifference condition would collapse to Wjzj (Lj) = Wj′zj′
(
Lj′
)

for any
(
sθ, T θ

)
,

and these policies would cease to impact the spatial allocation.

Spillovers Across Types We already saw in the example at the beginning of this section that

inefficient sorting creates a rationale for transfers. To see how the optimal subsidies look like,

consider a polar case without amenity spillovers and without efficiency spillover on the same type.

Assume, furthermore, that there are only two types, θ = U, S for unskilled and skilled. Then, the

optimal subsidy to type-θ workers located in j simplifies to

sθj = γPθ,θ′

(
wθ
′
j L

θ′
j

wθjL
θ
j

)
. (29)

In this special case, the optimal subsidy for workers in group θ varies across locations according to

the distribution of relative wage bills, wθjL
θ
j . A positive cross efficiency spillover implies a higher

marginal gain from attracting a given worker type to locations where the economic size of the other

type is relatively larger. The result is a higher optimal subsidy for the types that generate spillovers

where they are more scarce. Relative to a laissez-faire equilibrium, this policy tempers the degree

of sorting across cities. Condition (29) also implies
dsSj
dsUj

< 0←→ γPS,Uγ
P
U,S > 0, so that subsidies of

both types are negatively correlated across cities if both types generate positive efficiency spillovers.

These basic intuitions will help us rationalize the quantitative findings about the spatial efficiency

of the current transfer scheme in the U.S. economy.
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Link to Henry George Theorem We discussed above an implementation of the optimal trans-

fers (24) with labor income subsidies (25) and lump-sum taxes (26). However, other implementa-

tions are possible. Is it possible, in our context, to tax only the returns to fixed factors Π (instead

of raising lump-sum taxes) in order to finance place-specific subsidies to mobile factors? This

question is motivated by the Henry George Theorem, which says that, in some environments, land

taxes raise just enough revenue to finance efficient government expenditures.18 This question is

only meaningful when the optimal labor income subsidies are positive, as otherwise the tax system

necessarily entails taxing mobile factors. Then, under some regularity conditions, our model implies

that the returns to the fixed factors Π add up to more than the total lump-sum taxes in (26).19

In this case, the tax system implementing optimal subsidies may feature aggregate redistribution

from fixed factors to mobile factors.

3.4 Economic Geography Frameworks

The environment laid out in Section 2 nests standard economic geography models, such as

Helpman (1998), Allen and Arkolakis (2014) and Redding (2016).20 These models are the basis

of a growing body of quantitative research studying the spatial implications of regional shocks,

summarized by Redding and Turner (2015) and Redding and Rossi-Hansberg (2017). However,

their normative implications have barely been explored.21 We now apply the previous results to

shed light on optimal policies in these environments.

To specialize our setup to these models we assume a single worker type, Cobb-Douglas prefer-

ences with weight αC on traded goods, and a constant amenity spillover elasticity γA. Utility per

worker in location j then is

uj = AjL
1+γA

j cαCj h1−αC
j (30)

18See Arnott (2004) for a review. In systems-of-cities models following Henderson (1974), if public goods are the
source of agglomeration then it is efficient to tax land rents and use the proceeds to finance public expenditures.
With increasing returns to scale in production, the theorem is cast as an equality between land rents and the value of
output times the degree of returns to scale at the level of a city (see Section III of Arnott, 2004). These results hold
at the city level, and are derived in models with homogeneous workers, identical locations, no spatial interactions
among cities, and free entry of cities.

19Using (26) we obtain:
∑
θ L

θT θ = Π +
∑
θ
LθEθ

1−γA
θ,θ

. Hence if the planning problem is convex (implying Eθ < 0),

and own-congestion spillovers are not too strong (γAθ,θ < 1), we get Π >
∑
θ L

θT θ.
20Our presentation so far has assumed that each location sells a different product under perfect competition. In

Online Appendix A we show that the analysis would be the same assuming free entry of producers of differentiated
varieties under monopolistic competition as in the standard Krugman (1980) model. The key reason why this
equivalence holds is that under CES preferences the number of producers Mj and the bilateral trade flows are
efficient given the allocation of labor Lj . Therefore, the labor allocation remains the only inefficient margin and our
propositions and results from Section 3.4 go through. These properties would not go through under monopolistic
competition outside of CES. In that case, the entry and bilateral pricing decisions would be inefficient (Zhelobodko
et al., 2012).

21In his review of the policy implications of empirical economic-geography studies, Combes (2011) notes the lack
of a general-equilibrium analysis of the optimal allocation of employment in a model of regional trade allowing for
geographic inter-dependencies. Other recent papers studying spatial policies in geography models include Allen et al.
(2015) who consider zoning restrictions within a city, Fajgelbaum and Schaal (2017) who consider transport network
investment, and Gaubert (2015) who characterizes the optimal allocation in a model heterogeneous firms and a
complementarity between city size and firm productivity.
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Production only uses labor and the efficiency spillover has a constant elasticity γP , so that tradeable

output in region j is

Yj = ZjL
1+γP

j . (31)

Supply of non-traded goods in location j is inelastic and equal to Hj . In a competitive allocation,

workers in j receive a wage wj equal to tradeable output per worker.

Applying Proposition 1 under these assumptions, we find that a linear relationship between

expenditure and wages implements the efficient allocation

xj = (1− η)wj + ηw̄, (32)

where w̄ is the average wage in the economy and η ≡ 1− αC(1+γP )
1−γA combines the spillover elasticities

and the expenditure share in traded goods. The corresponding optimal transfers are linear in wages:

tj = η (w̄ − wj). Barring knife-edge cases on the parameters (η = 0) or the fundamentals (such

that wj = w), the efficient allocation generically features trade imbalances. In particular, under

the empirically consistent case of η < 0, efficiency requires net trade deficits in high-wage regions.

Should the optimal policy that implements (32) redistribute towards or away from high-wage

locations? The answer depends on the distribution of non-labor income (the returns to land Hj).

To answer this question, we can assume like Caliendo et al. (2018) that a fraction ω of the returns to

fixed factors is distributed locally to the Lj workers in j and the remainder is evenly split across all

workers. The optimal policy can again be expressed as a constant labor subsidy s that is common

across locations and equal to

s =
1 + γP

1− γA
[1− (1− αC)ω]− 1, (33)

with lump-sum transfer equal T = −sw̄. Even in the absence of spillovers, the equilibrium is

inefficient as long as there is some local ownership (ω > 0). In this case, we obtain a non-zero subsidy

that corrects the distortion introduced by local ownership. With spillovers, the optimal policy

redistributes income away from low-wage regions when s > 0, and into low-wage regions under a

labor tax (s < 0). Assuming common ownership of the national portfolio (ω = 0) as in Helpman

(1998), and continuing to assume that η < 0, spatial efficiency requires income redistribution to

regions with above-average wage (s > 0). In contrast, assuming away trade imbalances as in Allen

and Arkolakis (2014) and Redding (2016), the optimal policy redistributes income to low-wage

regions (s < 0).

In sum, the details of the microeconomic structure and the country’s economic geography (rep-

resented by bilateral trade costs) do not impact the relationship between optimal trade imbalances

and wages, nor the policies that implement them, whereas the ownership of fixed factors determines

whether the optimal policies should redistribute income towards or away from high-wage regions.
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3.5 Additional Forces

Our results on optimal transfers can be extended to economic geography environments that

incorporate additional margins. We review here some of these extensions that correspond to popular

modeling choices in the literature.

Preference Draws within Types To incorporate that workers may have idiosyncratic prefer-

ences for location, we extend the model to assume that a worker l of type θ derives utility uθjε
l
j

from living in location j, where εlj captures idiosyncratic preferences that are i.i.d. and distributed

Fréchet, Pr
(
εlj < x

)
= e−x

−1/σθ . The preference draws are eliminated when σθ = 0, in which case

we return to the original formulation of the model. Every other aspect of the model remains the

same except for the spatial mobility constraint (14), which is is now replaced with the following

labor-supply equation:

Lθj
Lθ

=

(
uθj
uθ

)1/σθ

. (34)

Taking into account this difference, we can compute the optimal allocation and define optimal

transfers using the same definition of the planner’s problem as in 2.4. Then, Propositions 1 and

2 go through with only one modification: instead of γA,jθ,θ , the relevant amenity spillover elasticity

on the own type becomes γ̃A,jθ,θ ≡ γ
A,j
θ,θ − σθ. Hence, without spillovers we obtain a (negative) labor

subsidy sθ = − σθ
1+σθ

. These subsidies tackle distributional concerns rather than inefficiencies. The

incentives for redistribution arise from the combination of two reasons: i) different individuals l

within a group θ receive the same planner’s weight; and ii) the planner conditions outcomes on

location j and type θ, but not on individual preference draws εθj . As a result, the planner will

have incentives to re-distribute to locations where individuals have a higher marginal utility of

consumption of tradeables, driven by their preference draw. Because on average individuals have

higher draws conditional on having sorted into lower wage locations, the planner has incentives to

redistribute towards those locations.

Commuting We apply the analysis to a framework with commuting in the style of Ahlfeldt et al.

(2015) and Monte et al. (2018). We assume only one type of agent. The difference with our bench-

mark model is that now an individual l chooses the commuting pattern ji consisting of a residence

location j and a workplace i. The amenity spillovers depend on the number of residents LRj , and the

productivity spillovers depend on the number of workers LWi . The productivity of a commuter from

j to i is zi
(
LWi
)
, and the common component of utility (5) is uji = aj

(
LRj

)
Uji (cji, hji), where the

function Uji may vary by ji to capture disutility from commuting travel time. We also allow for

an idiosyncratic worker-level shock εlji according to a Fréchet distribution, Pr
(
εlji < x

)
= e−x

−1/σ
,

so that the utility of a commuter l from j to i is ujiε
l
ji. The resulting flow of commuters from j to

i is Lji = L
(uji
u

)1/σ
. In the market allocation, each of these commuters makes total expenditures

xji at j. Every other aspect of the model is the same as in the benchmark.
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We show in Appendix A.5 that the optimal transfers can be decomposed as the sum of two

types of transfers. The first component depends on the workplace,

tWi =
γPi − σ
1 + σ

w∗i , (35)

and the second component depends on the residence,

tRj =
γAj

1 + σ

∑
i′

L∗ji′x
∗
ji′

LRj
. (36)

The optimal transfer is t∗ji = tWi + tRj − T , where T is a lump-sum transfer that adjusts for

government budget balance.22 The workplace policy tWi is the Pigouvian tax fixing the inefficiency

in production, while the residence policy tRj isolates the role of amenity spillovers. The two policies

are additive. That is, even with commuting, the optimal transfer still varies by place rather than

by bilateral commuting pattern.23 Absent amenity spillovers (γA = 0), the workplace transfer tWi
is the only one active and takes the same form as in the benchmark model without commuting.

Spillovers Across Locations Recent studies such as Lucas and Rossi-Hansberg (2002) and

Rossi-Hansberg (2005) emphasize that economic activity in one location may generate spillovers in

other locations. We now derive the optimal transfers in this case. To simplify the exposition, we

consider a special case of our model with homogeneous workers and constant-elasticity spillovers

in amenities. However, we now extend our model to allow for the efficiency of location j to be an

arbitrary function of the number of workers in every location: zj = zj
({
Lj′
})

. This formulation

accommodates a commonly used specification where spillovers decay with distance between spatial

units.24 We define the efficiency spillover elasticity across locations,

γP,j,j
′

=
∂zj′

∂Lj

Lj
zj′
, (37)

as the elasticity of the efficiency of workers at j′ with respect to the number of workers located in

j. Following similar steps to propositions 1 and 2, the optimal transfers now are:

tj =
γP,j,j + γA

1− γA
wj +

∑
j′ 6=j

γP,j,j
′

1− γA
Lj′wj′

Lj
+ T. (38)

We find as before that the optimal transfers can be characterized as a function of spillover elasticities

and outcomes such as wages and employment, regardless of micro heterogeneity in fundamentals.

22These expressions assume that the returns to fixed factors Π are evenly distributed in the population.
23This result abstracts from congestion in commuting, which would bring a rationale to impose tax based on

commuting patterns.
24This type of spillovers has been used to study economic activity at different spatial scales. For instance, Ahlfeldt

et al. (2015) assume zj′ =
(∑

j Lje
−δtjj′

)α
where tjj′ is travel time between blocks j and j′ within a city and δ is a

decay parameter, while Desmet et al. (2018) study these spillovers at a broader scale.
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In particular, non-localized spillovers lead to the intuitive implication that the optimal transfers

should be higher in places that generate strong spillovers to larger locations, as measured by their

total wage bill.

3.6 Quantitative Implementation

Having established the theoretical characterization of an optimal allocation, we now lay out

a methodology to bring it to the data. Doing so requires imposing functional-form assumptions,

and identifying conditions under which the quantitative methodology is well-behaved - that is,

conditions under which optimal spatial policies lead to a unique equilibrium that can therefore be

unambiguously recovered. Finally, we identify the data requirement of the procedure. We will later

implement this quantitative methodology.

Functional Forms On the demand side, we assume that preferences for traded and non-traded

goods are Cobb-Douglas:

U (c, h) = cαCh1−αC , (39)

while the aggregator of traded commodities is CES,

Q (Q1i, .., QJi) =

(∑
i

Q
σ−1
σ

ji

) σ
σ−1

, (40)

where σ > 0 is the elasticity of substitution across products from different origins. On the supply

side, the production functions of traded and non-traded goods are

Yj
(
NY
j , I

Y
j

)
= zYj

(
NY
j

)1−bIY,j (IYj )bIY,j , (41)

Hj

(
NH
j , I

H
j

)
= zHj

((
NH
j

)1−bIH,j (IHj )bIH,j) 1
1+dH,j

, (42)

where dH,j ≥ 0 and
{
zYj , z

H
j

}
are TFP shifters. Traded goods are produced under constant returns

to scale, but we allow for decreasing returns in the housing sector. The coefficient dH,j is the inverse

housing supply elasticity of location j in the market allocation, which may vary across regions. The

aggregator of labor types is CES,

Nj =
I∑
i=1

∑
θ∈Θi

(
zθjL

θ
j

)ρi 1
ρi

, (43)
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where 1
1−ρi > 0 is the elasticity of substitution across types of workers. Finally, we impose constant-

elasticity forms for the spillovers:

zθj
(
L1
j , .., L

Θ
j

)
= Zθj

∏
θ′

(
Lθ
′
j

)γP
θ′,θ

, (44)

aθj
(
L1
j , .., L

Θ
j

)
≡ Aθj

∏
θ′

(
Lθ
′
j

)γA
θ′,θ

. (45)

These functional forms are consistent with studies that estimate spillover elasticities, allowing

us to draw from existing estimates. The Zθj capture exogenous comparative advantages in produc-

tion across types and Aθj capture preferences for location across types. We refer to
{
Zθj , A

θ
j

}
as

fundamental components of productivity or amenities. Together with the assumptions on produc-

tion technologies, these functional forms impose Inada conditions, which imply that all locations

are populated in the optimal allocation if the planner’s problem is convex.

Concavity Condition To ease the notation, we introduce the following composite elasticities of

efficiency and congestion spillovers:

ΓP = max
θ

{∑
θ′

γPθ′,θ

}
, and ΓA = min

θ

{
−
∑
θ′

γAθ′,θ

}
.

Also, we let D = minj {dH,j} be the lowest inverse elasticity of housing supply. Under the functional

form assumptions (39) to (45) we have the following property.

Proposition 3. The planning problem is concave if

ΓA > ΓP , (46)

ΓA ≥ 0 and γAθ,θ′ > 0 for θ 6= θ′. Under a single worker type (Θ = 1), the planning problem is

quasi-concave if:

1− γA >
(
1 + γP

)(1− αC
1 +D

+ αC

)
. (47)

Condition (46) ensures that congestion forces are at least as large as agglomeration forces.

Specifically, the congestion from the type that generates the weakest congestion, measured by ΓA,

dominates the agglomeration from the type that generates the strongest agglomeration, measured

by ΓP . These conditions are sufficient but not necessary for uniqueness, as the planner’s problem

can be concave outside of these strong parameter restrictions. In the case of a single type, condition

(46) simplifies to γP + γA < 0 ; further assuming Cobb-Douglas preferences over traded and non-

traded goods we obtain a weaker restriction that allows for spillovers to be net agglomerative

(equation (47)). 25

25The CES restriction (40) on the aggregator of trade flows Q (· ) is not needed for these results. Therefore, these
condition holds regardless of product differentiation across locations. Numerical simulations confirm the intuition
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Proposition 3 establishes conditions under which the market allocation is unique given the

optimal spatial policies. It extends existing uniqueness results in two dimensions. First, it comple-

ments results that characterize uniqueness of the spatial equilibrium under no policy intervention

and trade balance (Allen et al., 2014). Second, it holds in a context with heterogeneous workers and

cross-groups spillovers. We note that our uniqueness condition applies at the optimal expenditure

distribution. Multiplicity is still possible for sub-optimal policies or no policy intervention, but this

poses no limitation for our approach.

Implementation in Changes and Data Requirements To bring the model to the data, we

take the following steps. First, we assume that the observed data allocation is consistent with

our model. That is, it is generated by a decentralized equilibrium consistent with Definition 1,

subject to the functional form assumptions (39) to (45). Second, we solve for the planner problem

described in Section 2.4. We show in that section that, in the spirit of the exact-hat algebra

method developed by Dekle et al. (2008), this problem in levels is equivalent to a problem where

the endogenous variables are expressed relative to their initial value. Letting x̂ = x′

x , where x is

the value of a variable in the observed equilibrium and x′ is the value in an alternative equilibrium,

we solve for the changes in the endogenous variables
{
x̂θj , P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

to maximize

the welfare gains of one group, ûθ, for arbitrarily chosen welfare changes of the remaining groups.

We then vary the welfare changes of the other groups to trace the utility frontier relative to the

initial equilibrium. The following proposition summarizes our approach and the corresponding data

requirements.

Proposition 4. Assume that the observed data is generated by a competitive equilibrium consistent

with Definition 1 under the functional forms (39) to (45). Then, relative to the initial equilibrium,

the optimal allocation can be fully characterized as function of:

i) the distributions of wages, employment and expenditures across labor types and locations;

ii) the distribution of bilateral import and export shares across locations;

iii) the utility and production function parameters
{
αC , σ, ρ, b

I
Y,j , b

I
H,j , dH,j

}
; and

iv) the spillover elasticities
{
γAθ′,θ, γ

P
θ′,θ

}
.

This exact-hat algebra approach is convenient to take the model to the data because it sidesteps

the estimation of many parameters (the city-type shifters of amenities
{
Zθj , A

θ
j

}
, TFP shifters{

zYj , z
H
j

}
, and bilateral trade costs {dij}). These parameters turn out not to appear in the formu-

lation of the model solution in changes relative to the observed equilibrium. It is important to point

out that this approach is not without limitations. First, it assumes away measurement error. This

means that the procedure implicitly calibrates a combination of the previous parameters to exactly

match the data in points i) and ii) of Proposition 4 as an equilibrium outcome of the model from

Definition 1. Second, these parameters are treated as exogenous fundamentals which are invariant

that the amount of product differentiation between regions governed by the aggregator Q(.) helps make the planner’s
problem concave.
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between equilibria. Therefore, this approach ignores the possibility that some of these parameters

could change in response to reallocation of workers.

Importantly, the quantitative implementation laid out in Proposition 4 does not impose restric-

tions on the distributional policies across locations in the observed equilibrium. The net transfers

that generate the expenditure distribution xθj exactly match those in the data. In particular, they

are not constrained to match a specific tax rule. Nor do we impose that the observed allocation is

inefficient: the efficiency of the observed allocation depends on whether the distribution of expen-

ditures lines up with condition (22) in Proposition 1. It could be that the transfers in place are

such that the empirical relationship between expenditures, wages and employment is not far from

that relationship, in which case our implementation of the planner’s problem would predict small

welfare gains from implementing optimal policies.

4 Data and Calibration

To take the model to the data, we use as an empirical setting the distribution of economic

activity across Metropolitan Statistical Areas (MSAs) in the United States in the year 2007. We

identify worker types θ with observable skill groups. Specifically, following Diamond (2016), our

benchmark analysis studies the spatial allocation of two skill groups, high skill (college) and low

skill (non college) workers. Because of data limitations, our analysis abstracts from more detailed

definitions of skill types.26

4.1 Data

As established in point i) of Proposition 4, we need data on income and expenditures by group

and MSA. To that end, we rely on the BEA’s Regional Accounts, which report labor income, capital

income and welfare transfers by MSA. A complementary BEA dataset for the years 2000 to 2007

reports total taxes paid by individuals and MSA (Dunbar, 2009). Taken together, these sources

give us a dataset at the MSA level. We then apportion each of these MSA-level totals into two

labor groups: high skill, defined as workers who have completed at least four years of college, and

low skill, defined as every other working age individual. To implement this apportionment, we use

shares of labor income, capital income transfers corresponding to each group in each MSA from

the American Community Survey (IPUMS-ACS, Ruggles et al. (2017)) collected by the Census,

and use shares of taxes for each group in each MSA from the March supplement of the Current

Population Survey (IPUMS-CPS, Flood et al., 2017) . Our dataset covers 209 MSAs for which we

have both BEA and Census information.27

The model accommodates an arbitrary number of finely defined skill types θ. When going to

the data, to implement the analysis we reduce the number of types to only two groups defined by

26See Baum-Snow and Pavan (2013) and Roca and Puga (2017) for evidence on the role of heterogeneity within
observable types in accounting for wage dispersion and sorting.

27These areas correspond to 95% of the population and 96% of income of all US metropolitan areas. Metropolitan
areas in the US in turn cover 78% of the population, and 83% of personal income.
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education. Having made this choice, an important concern when measuring these variables is that

the model does not include heterogeneity across individuals within each group of skill θ, whereas in

reality these groups are heterogeneous across cities. If we did not control for this heterogeneity, our

procedure to implement the model would interpret the observed variation in net individual transfers

across MSAs within a group as place-based transfers, when they reflect, in part, differences in the

types of workers within each group across MSAs. In principle, this concern can be mitigated by

allowing for several θ groups corresponding to the fine individual characteristics observed in the

ACS. While potentially feasible, such an approach would increase the dimension of the problem

and the number of elasticities to calibrate. Alternatively, we choose to purge the observed measures

of income, expenditure, taxes and transfers by skill and MSA from compositional effects using a

set of socio-demographic controls at the MSA-group level built from individual level Census data

(IPUMS) on age, educational attainment, sector of activity, race, and labor force participation

status of individuals in a given MSA-group. In the quantification we then use measures of income,

expenditures, taxes and transfers that are net of variation in socio-demographic composition within

groups across MSAs. We discuss the details of this step in Online Appendix B.

We use the variables above to construct expenditure per capita, xθi , using its definition (19) as

labor plus capital income net of taxes and transfers, which also corresponds to the BEA’s definition

of disposable income. In the model we assume no variation in capital income across cities for each

type. Therefore, we use a group-specific measure of capital income consistent with the fact that

52% of non-labor income is owned by high skill workers according to the BEA/ACS data.28

As implied by ii) of Proposition 4, quantifying the model also requires data on trade flows

between MSAs. The Commodity Flow Survey (CFS) reports the flow of manufacturing goods

shipped between CFS zones in the US every five years. The CFS zones correspond to larger

geographic units than our unit of observation, the MSA. To overcome this data limitation, we

adapt the approach in Allen and Arkolakis (2014), who use estimates of trade frictions as function

of geography to project CFS-level flows to the MSA level. In our context, we use the gravity

equation predicted by the model to find the unique estimates of trade flows between MSAs that are

consistent with actual distance between MSAs, existing estimates of trade frictions with respect to

distance, and observed trade imbalances, computed as the difference between income in the traded

sector and expenditure on traded goods (for both final and intermediate use) in each MSA.

Finally, to calibrate the labor shares in production in part iii) of Proposition 4, we use ACS

data on employment in traded and non-traded sectors by MSA.29 We also adjust this measure to

remove variation from compositional effects following a similar approach to the one described above

for income, expenditure, taxes and transfers.

28This step involves setting a national share of profits in GDP consistent with the general equilibrium of the model.
See Online Appendix B for details.

29We define employment in the following NAICS sectors as corresponding to the non-traded sector in the model:
retail, real estate, construction, education, health, entertainment, hotels and restaurants.
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4.2 Calibration

Our model is consistent with Diamond (2016) and generates similar estimating equations to

those used in her analysis. We use the same definition of geographic units (MSA) and skill groups

(College and Non College), and we rely on similar data sources for quantification. Therefore, her

estimates constitute a natural benchmark to parametrize the model. In what follows, we discuss

these elasticities and several alternative specifications that are also used in the quantitative section.

Utility and Production Function Parameters
{
αC , σ, ρ, b

I
Y,j , b

I
H,j , dH,j

}
We use the Dia-

mond (2016) estimate of the Cobb-Douglas share of traded goods in expenditure (αC = 0.38), of

the inverse housing supply elasticity (dH,j in (42)) for each MSA, and of the elasticity of substitution

between high and low skill, estimated at 1.6 and implying ρ = 0.392.30

We calibrate the Cobb-Douglas share of intermediates in traded good production (bIY,j = 0.468

for all j in (41)) using the share of material intermediates in all private good industries production

in 2007 from the U.S. KLEMS data. Having calibrated the previous parameters, the Cobb-Douglas

share of labor in non-traded production in each city (1− bH,j in (42)) can be chosen to match the

share of workers in the non-traded sector of each MSA, as detailed in Section B.2. We assume an

elasticity of substitution σ among traded varieties in (40) equal to 5, corresponding to a central

value of the estimates reported by Head and Mayer (2014).

Efficiency Spillovers
{
γPθ′,θ

}
Previous empirical studies, such as Ciccone and Hall (1996),

Combes et al. (2008), and Kline and Moretti (2014a), estimate elasticities of labor productivity with

respect to employment density. Across specifications, these studies find elasticities in the range of

(0.02, 0.2).31 Hence, we set a a properly weighted average of the elasticities γPθ′,θ, corresponding to

what the empirical specifications of these previous studies would recover in data generated by our

model, to match the benchmark value for the U.S. economy of 0.06 from Ciccone and Hall (1996).

In addition, Diamond (2016) estimates an elasticity of MSA wages with respect to population by

skill group. As detailed in Online Appendix B.2, under the previous normalization, these estimates

can be mapped to the relative values of our γPθ,θ′ parameters using the wage equation (17) and the

elasticity of substitution between skilled and unskilled workers ρ.

As a result we obtain
(
γPUU , γ

P
SU , γ

P
US , γ

P
SS

)
= (.003, .044, .02, .053). This approach preserves

an aggregate elasticity of labor productivity with respect to density that is consistent with standard

estimates. It is also consistent with the cross-spillover elasticities implied by Diamond (2016), who

recovers there cross-spillovers from the elasticity of city-level wages by skill group with respect to

the supply of workers of each skill. These parameters imply stronger efficiency spillovers generated

by high skill workers, and close to zero spillovers from low skill workers.32

30For MSAs that we cannot match to Diamond (2016) we use the average housing supply elasticity across MSAs.
31Most of the studies reviewed by Combes and Gobillon (2015) and Melo et al. (2009) also fall in this range.
32Micro studies of peer effects note that policies designed to implement an optimal mixing of heterogeneous workers

may deliver undesired outcomes due to endogenous group formation decisions after the policy is implemented (e.g.,
Carrell et al., 2013). Our city-level analysis abstracts from these considerations.
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Amenity Spillovers
{
γAθ′,θ

}
Diamond (2016) estimates elasticities of labor supply by skill group

with respect to an MSA-level amenity index that includes congestion in transport, crime, environ-

mental indicators, supply per capita of different public services, and variety of retail stores. She

estimates a higher marginal valuation for these amenities for college than for non-college work-

ers. In addition, she estimates a positive elasticity for the supply of this MSA-level amenity

index with respect to the relative supply of college workers. As detailed in Online Appendix

B.2, we can combine these estimates and map them to our amenity spillovers γAθ′,θ using the

labor-supply equation implied by the spatial mobility constraint (14). As a result we obtain(
γAUU , γ

A
SU , γ

A
US , γ

A
SS

)
= (−.43, .18, −1.24, .77). These parameters imply strong positive amenity

spillovers generated by high skill workers and negative spillovers generated by low skill workers.33

Alternative Parametrizations of the Spillover Elasticities We implement all our coun-

terfactuals under different parametrizations of the spillover elasticities. The alternatives deviate

from the benchmark described so far in terms of the efficiency or amenity spillover elasticities.

In particular, we implement the model under: i) a more conservative parametrization that scales

down the amenity spillover elasticities γAθ,θ′ by 50% (referred to as the “Low amenity spillover”

parametrization); ii) mappings of the amenity spillovers γAθ,θ′ assuming values of the elasticity of

city amenities to the share of college workers that are either one standard deviation above or be-

low Diamond (2016) point estimates (referred to “High cross amenity spillover” and “Low cross

amenity spillover” parametrizations, respectively); iii) a less conservative parametrization that

scales up the efficiency spillover elasticities γPθ,θ′ to 0.12, i.e., twice the benchmark of 0.06 from

Ciccone and Hall (1996) (referred to “High efficiency spillover” parametrization); iv) a more con-

servative parametrization that scales down the efficiency spillover elasticities by a factor 2 (referred

to “Low efficiency spillover” parametrization); and v) parametrizations of efficiency spillovers that

correspond to alternative values of the complementarity parameter ρ, as detailed in the Online

Appendix D.5. The values of these alternative parametrizations are reported in Online Appendix

B.2.

4.3 Stylized Facts

Figure 1 revisits standard stylized facts on spatial disparities and sorting in the data, as well

as a relatively less known fact on the spatial structure of net transfers between cities. These facts

will serve as a benchmark to evaluate the impact of optimal spatial policies.

Panels A to C show the standard facts about spatial disparities and sorting as function of city

size, or “urban premia”. Panel A documents the urban wage premium, defined as the increase in

33At these values, all but one of the concavity conditions implied by Proposition 3 are satisfied. Specifically,
the conditions that ΓA > ΓP , ΓA > 0, and γPθ,θ′ > 0 for θ 6= θ′ are all satisfied, as well as the condition that

γASU > 0. However, our parametrization sets γAUS < 0. In principle, therefore, concavity of the planner’s problem
is not guaranteed. However, in the quantitative exercise we check for the possibility of multiple local maxima by
repeating the welfare maximization algorithm starting from 100 spatial allocations taken at random. Reassuringly,
we fail to find any alternative local maximum.
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Figure 1: Urban Premia

(a) Urban Wage Premium (b) Sorting

(c) Urban Skill Premium (d) Net Transfers

Note: each figure shows data across MSAs. All the city level outcomes reported on the vertical axes of panels (a) to
(c) are adjusted by socio-demographic characteristics of each city, as detailed in Online Appendix B.1.

average nominal wages with city size. The elasticity of wages to city size is 5.8%.34 Panel B shows

spatial sorting, in terms of the share of high-skill workers. The semi-elasticity of the share of high

skill workers with respect to city size is 2.5%. I.e., doubling population increases the skill share by

2.5 percentage points. Panel C shows the urban skill premium, defined as the increase in the ratio

of high- to low-skill wage as city size increases. The slope of 0.03 means that larger cities feature

a more unequal nominal wage distribution. The first fact suggests differences in productivity and

cost of living across cities, while the last two suggest complementarities between city size and skill.

Panel D shows a somewhat less known fact, the relationship between city size and net imbal-

ances. For each city we construct the net imbalance as the difference between expenditures and

total income (from labor and non-labor sources). The graph shows net imbalance relative to la-

34This elasticity includes the composition effect due to a higher share of high skill workers in larger cities. Con-
trolling for composition, the elasticity is 3.2%.
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bor income at the MSA level across MSAs. Given our construction of the expenditure variable,

these differences in imbalances across cities result purely from the government policies that we

measure (taxes and transfers). The negative slope reflects that government policies redistribute in-

come from larger, high wage, high skill cities to smaller, low wage, low skill cities. These transfers

are net of compositional effects according to detailed demographic characteristics in IPUMS, as

mentioned above. Therefore, distributive government policies that vary with these characteristics

across individuals do not underlie these patterns across cities.

5 Optimal Spatial Policies in the U.S. Economy

With this data in hand, we use the methodology laid out in Section 3.6 to solve numerically

for optimal spatial allocations in the empirical context of the U.S. Economy. We contrast these

optimal allocations with the current spatial equilibrium of the U.S., and quantify the corresponding

welfare gains.

5.1 Optimal Transfers, Reallocations, and Welfare Gains

To quantify an optimal allocation, we solve the planner’s problem in changes relative to the

observed equilibrium. We maximize over the change in utility of skilled workers, ûS , subject to a

lower bound for the change in utility of unskilled worker, ûU . Varying this lower bound traces the

Pareto frontier.

Aggregate Welfare Gains The left panel of Figure 2 shows the utility frontier of the U.S. econ-

omy in the benchmark parametrization, expressed in changes relative to the observed equilibrium.

The point (1,1) represented with a red diamond corresponds to allocations where the welfare of

skilled and unskilled workers is unchanged compared to the calibrated equilibrium. When the wel-

fare gain of unskilled and skilled workers is restricted to be the same, optimal transfers lead to a 4%

welfare gain for both types of workers. When only the welfare of one group is maximized subject

to a constant level of welfare for the other group, we find gains of 9.4% for high skill workers and

of 7.1% for low skill workers.

The right panel of Figure 2 shows the utility frontier for the benchmark and for each of the

alternative parametrizations discussed in Section 4.2. The frontier shifts up and down with little

change in slope. The welfare gains from implementing optimal policies are larger in the two frontiers

in red, corresponding to high efficiency and amenity spillovers. The gains are lower with low

amenity spillovers. Table 1 shows the welfare gains corresponding to the intersection between these

frontiers and the 45 degree line, such that skilled and unskilled workers gain the same. Across these

specifications, the common welfare gains range from roughly 2% to 6%. Lowering the amenity

spillover by 50% brings the common welfare gain down to 2.8%, while multiplying the efficiency

spillovers by 2 increases the gain to 4.3%.
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Figure 2: Utility Frontier of the U.S. Economy between High and Low Skill Workers

(a) Benchmark (b) Alternative Parametrizations

The figure shows the optimal welfare changes
(
ûL, ûH

)
between the optimal and observed allocation, corresponding

to the solution of the planner’s problem in relative changes described in Appendix A.7. Each point corresponds to
a maximization of ûH subject to a different lower bound on ûL. The benchmark parametrization on the left panel
corresponds to the black line on the right panel. The circles in the right panel represent intersections with the 45
degree line where the welfare of skilled and unskilled workers increase by the same amount.

Hence, we find sizable welfare gains from the optimal spatial reallocation. Inefficiencies in

sorting are a key driver of this magnitude. With homogeneous workers, the welfare gains from

implementing the optimal allocation are negligible at 0.06%. Similarly, implementing the analysis

on counterfactual data without differences across skill groups (with no spatial sorting by skill,

no urban skill premium, and no relative differences in expenditures), the welfare gains fall to

0.25%.35 Accounting for skill heterogeneity is therefore important for the aggregate welfare effects

of spatial policies. Our results also suggest significantly higher welfare gains compared to estimates

of removing dispersion in spatial polices or other spatial wedges in the U.S.36

35Figure A.3 in Online Appendix D.1 shows that, assuming homogeneous workers, the observed transfers across
MSAs in the optimal allocation are quite close the data. Figure A.4 shows that the welfare gains can be substantial
under counterfactual data with high wage dispersion. Section D.1 in the online appendix describes the details of the
calibration with homogeneous workers.

36Desmet and Rossi-Hansberg (2013) find welfare gains of 0.9% from eliminating frictions across U.S. cities, Albouy
(2009) finds losses of 0.2% from the tax dispersion created by federal income taxes, and Fajgelbaum et al. (2018)
find gains of of 0.6% from harmonizing state taxes. The small welfare gains to optimal reallocation without worker
heterogeneity are in line with results in Eeckhout and Guner (2017) and Ossa (2018).
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Table 1: Welfare gains under different levels of the spillovers

Spillovers Welfare Gain (%)

(1) Benchmark 4.0
(2) High efficiency spillover 4.3
(3) Low efficiency spillover 3.9
(4) Low amenity spillover 2.8
(5) High cross-amenity spillover 5.6
(6) Low cross-amenity spillover 3.1
(7) Lower production elasticity 2.4-3.9

The table reports the common welfare gains for skilled and unskilled workers under alternative parametrizations
described in Section 4.2. Row (2) corresponds to γPθ′θ that are twice as large as in the benchmark. Row (3) corresponds
to γPθ′θ 50% lower than the benchmark. Row (4) corresponds to γAθ′,θ 50% lower than the benchmark. Rows (5) and
(6) are configurations assuming higher or lower cross-amenity spillovers corresponding to the plus or less one standard
deviation of the estimates in Diamond (2016). See Online Appendix B.2 for details on these parametrizations. Row
(7) corresponds to efficiency spillovers calibrated using different values of the production function parameter ρ, as
detailed in Table A.3 in Online Appendix D.5.

Actual versus Optimal Transfers How does the optimal spatial income redistribution compare

to the data? Let tθj be the optimal transfers received by type θ according to (24) in Proposition

2. Figure 3 shows the net transfers per capita relative to wages tθj/w
θ
j by MSA and worker type

on the vertical axis, against the wage wθj of each MSA in both the data (blue circles) and the

optimal allocation (red diamonds), for low skill workers (hollow markers) and high skill workers

(solid markers). We represent the optimal allocation corresponding to the point on the Pareto

frontier in the left panel of Figure 2 where welfare gains are equal for both types of workers.37

The transfers in the data present a clear pattern of redistribution from high skill workers and

high-wage cities towards low skill workers and low-wage cities. Net average transfers are positive

for low skill workers and negative for high skill workers in most MSAs. Within skill groups, net

transfers decrease with the wage of the MSA. On average across MSAs, they equal 1.8 thousand

dollars for low-skill workers, or 12% of their average wage. For high skill workers, the corresponding

numbers are -3.8 thousand dollars or -10% of the average wage. In cities where high skill workers

earn on average more than $50k per year, net transfers of high skill workers are -8.9 thousand

dollars or -15% of wages. The observations in red show the efficient allocation, which satisfies

the optimality condition from Proposition 1. Across cities, the optimal transfers relative to labor

income decrease more steeply with wages than in the data for both labor types, implying a stronger

redistribution towards low-wage cities than what is observed empirically.38

To understand what drives these optimal transfers, we return to the expression for optimal

subsidies (25). The first term of (25) is driven by own spillovers, while the second term is shaped

37The main impact of a different Pareto weight is to shift the transfer schedules up and down depending on the
Planner’s preference for each group, without changing the qualitative patterns we discuss.

38Figure A.1 in Online Appendix C plots the optimal transfer scheme against labor income. It shows that income
alone is an imperfect predictor of the optimal tax, suggesting that second-best policies based on income alone could
not perfectly replicate it. Characterizing second best policies in our framework is an interesting avenue left for future
research.
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Figure 3: Per Capita Transfers by Skill Level and MSA, Data and Optimal Allocation

Note: each point in the figure corresponds to an MSA-skill group combination. The vertical axis shows the difference
between the average transfer relative to wage and the horizontal axis shows the average wage. For details of how the
data is constructed see Online Appendix B. The slopes of each linear fit (with SE) are: Low Skill, Data: -0.02 (0.001);
Low Skill, Optimum: -0.095 (0.004); High Skill, Data: -0.002 (0.001); High Skill, Optimum: -0.05 (0.002). The figure
corresponds to planner’s weights such that both types of workers experience the same welfare gain in Figure 2.

by cross spillovers. In our parametrization of spillovers for low skill workers, both of these terms

are negative. The negative cross-spillovers through amenities lead to the higher tax of low skill

workers in large, high-wage cities where a larger share of expenditures accrues to high skill workers.

The logic that rationalizes a higher labor tax in high-wage cities is different for high skill workers.

In our parametrization, high skill workers generate positive own spillovers. According to the first

term in (25), these positive spillovers would call for a labor income subsidy. However, this force

is more than offset by strong positive cross spillovers onto low skill workers, which calls for more

mixing of high-skill workers with low-skill workers. A higher tax in high-wage cities directs skilled

workers into small, low-wage cities that are relatively abundant in low skill workers.

While both low and high skill workers are on average reallocated towards lower-wage cities, it

is a priori ambiguous for which group this effect is stronger. We examine the question of optimal

sorting below.

Optimal Reallocation and Sorting The optimal transfers change the spatial distribution of

economic activity compared to the data. By changing the location incentives of workers, they affect

spatial sorting and the city size distribution. These reallocations in turn impact labor productiv-

ity and wages through agglomeration spillovers, and the distribution of urban amenities through

amenity spillovers. These effects feed back to location choices, changing the spatial pattern of skill
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Figure 4: Changes in Population, Skill Shares, and Skill Premium across MSAs

(a) Change in Total Population (b) Change in Population by Skill Group

(c) Histogram of High-Skill Shares across MSAs (d) Change in Skill Premium

Note: Panel (a) shows the change in population between the optimal allocation and the initially observed equilibrium
and the linear fit. Slope (SE): -0.16 (0.03); Rˆ2=0.15. Panel (b) displays the same outcomes for high and low skill
workers. Slopes (with SE): High Skill: -0.25 (0.03); Low Skill: -0.15 (0.03). Panel (d) displays in the vertical axis
the difference in the skill premium between the optimal and initial allocation. Slope (SE): -0.4 (0.07). The figures
correspond to planner’s weights such that both types of workers experience the same welfare gain in Figure 2.

premia and inequality. We now describe the spatial equilibrium resulting from this process. Figure

4 shows the pattern of reallocation. First, Panel (a) shows the initial total population of each MSA

on the horizontal axis and the change in population implied by the optimal allocation relative to

the initial allocation on the vertical axis, defined as L̂j−1. The stronger redistribution to low-wage

locations discussed in the previous section implies that, on average, there is reallocation from large

to small cities. However, there is also considerable heterogeneity in growth rates over the size

distribution, including middle- and small-MSAs that shrink alongside large MSA’s that grow, so

that initial city size is a poor predictor of whether a city is too large or too small in the observed
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allocation (the R2 of the linear regression is 15%).39

Even though the tax changes are large, only 11% of the population is reallocated to reach the

optimum. When moving to the optimal allocation, a regression of population changes on the change

in the net-of-tax rate (i.e., one minus the tax rate) across locations yields an elasticity of 1.2.40

Second, panels (b) and (c) illustrate changes in sorting patterns. Panel (b) shows changes in

population by skill, alongside the linear fit from panel (a), while panel (c) shows the histogram of

skill shares across MSAs in the initial and optimal allocation. On average, reallocations towards

initially smaller places is stronger within the high-skill group. As a result, the skill share distribution

becomes more compressed at the bottom of the distribution (panel (c)). However, the optimal

reallocations also result in more intensively high-skilled cities at the top of the distribution. These

shifts reflects that the share of high-skill workers grows both in cities with initially very low skill

share and in some large cities with very high skill share.41

At the same time, we find in panel (d) that the skill premium tends to increase in initially less

unequal cities, which tend to be smaller cities, and to decrease in initially more unequal and larger

cities. Together with the sorting patterns described above, this result suggests that two different

mechanisms drive the optimal sorting by skill. At the bottom of the city size distribution, optimal

sorting is dominated by the positive cross-spillovers generated by high-skill workers on low-skill

workers. At the top, optimal sorting is driven by positive amenity spillovers generated by high-skill

workers on their own group. This force leads to higher skill concentration in those locations, but

also to a lower skill premium.

The Urban Premia in the Optimal Allocation Changes in the spatial allocation can be

conveniently summarized by coming back to the urban premia from Figure 1 and computing them in

the optimal allocation. We contrast them in Figure 5: each pair of linked observations corresponds

to the same MSA in the data and in the optimal allocation.42 The optimal allocation features a

higher absolute value of the imbalances at the city level (panel (d)), since redistribution to smaller

MSAs is stronger in the optimal allocation.

The optimal allocation features a higher share of high skill workers in smaller cities (panel

(b)). At the same time, the figure shows that the initially largest MSAs shrink and become more

39Albouy et al. (2019) and Eeckhout and Guner (2017) argue that large cities are too small in models with
homogeneous workers, one-dimensional heterogeneity and spillover elasticities only.

40This general-equilibrium elasticity of population to taxes implied by the model falls within the [0, 2] range
corresponding to the quasi-experimental estimates of migration responses to taxes summarized by Kleven et al.
(2019). This literature estimates an elasticity of migration to taxes that does not account for general-equilibrium
outcomes. Our quantification relies in part on the labor supply elasticity estimated by Diamond (2016), who estimates
an elasticity of migration to wage changes (rather than taxes) of approximately 2 and 4 for college and non-college
workers, respectively.

41This pattern is illustrated in Figure A.2 in Online Appendix C. Weighting by initial population MSA, the
relationship between initial skill share and optimal growth in the skill share is U-shaped.

42Here, we compare the data to an optimal allocation corresponding to the same welfare gains to all workers.
The patterns of urban premia are almost identical as we move to extreme points of the utility frontier, because these
points are implemented through lump-sum transfers across types which have small effects on the urban premia. These
patterns are also similar under alternative parametrizations of the spillovers from Table 1.
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skill-intensive. Specifically, 8 of the 10 initially largest cities increase their skill share.43 The urban

skill premium vanishes (panel (c)), implying that the sorting pattern from panel (b) ends up being

detached from the urban skill premium. Instead, it is driven by stronger preferences for urban

amenities among high skill workers. As seen in panel (a), the wage premium in the large cities

is still noticeable, but lower than in the data. It is driven by an average productivity advantage

across both skill groups in larger cities, rather than by a relatively higher productivity of high-skill

workers in these places.

In sum, in the optimal allocation the urban premia are weakened: larger cities feature relatively

lower average wages, share of skilled workers, and skill premium compared to the data.

Figure 5: Urban Premia, Data and Optimal Allocation

(a) Urban Wage Premium (b) Sorting

(c) Urban Skill Premium (d) Net Transfers

Note: each panel reports outcomes across MSAs in the data and in the optimal allocation. Each linked pair of
observations corresponds to the same MSA.

43If the top 10 cities are excluded, the relationship between the share of high-skill workers and MSA population
in the optimal allocation becomes flat.
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Figure 6: Optimal Population Reallocation and Change in Skill Share

(a) Population

(b) Skill Share

The maps show the growth in population (top panel) and share of college workers (bottom panel) from the observed
to the optimal allocation. Cities are weighted by initial population. Red means positive growth and blue is negative
growth.

Regional Patterns Figure 6 shows the growth in population (left panel) and skill shares (right).

Cities are weighted by initial population, with darker red circles representing more positive growth.

As the economy moves to the optimal allocation, population tends to be reallocated away from

coastal regions. For example, in California cities like Los Angeles and San Francisco lose population

while smaller cities inland next to them grow. In terms of the skill shares, the 5 largest MSA’s (New

York, Los Angeles, Chicago, Dallas, and Philadelphia) as well as some other large MSA’s (such as

Washington, Boston and San Francisco) become more skill intensive despite losing population. In

these MSA’s the skill premium falls, reflecting the higher preferences of high-skill workers for those

locations. A few large MSA’s (such as Miami, Atlanta, and Detroit) shrink both in terms of overall

population and the skill share. Many small cities grow in their skill share, ultimately driving down

the urban skill share in Panel (b) of Figure 5.
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5.2 Inferring the Spillover Elasticities assuming Efficiency in the Data

Our logic so far was to discipline the model with existing estimates of the spillover elasticities,

and then use it to compute the efficient allocation. We now invert this logic, and instead ask:

what spillover elasticities would be consistent with assuming that the observed spatial allocation is

efficient? By comparing these inferred spillover elasticities with those used in the calibration, this

exercise allows us to identify the key elasticities behind our results.

Proposition 4 establishes that any observed allocation can be rationalized as an equilibrium

from the model. However, nothing guarantees that an observed allocation can be rationalized as

an efficient equilibrium for some set of spillover elasticities. Therefore, for this exercise, we have to

make further assumptions. First, we assume that there is measurement error in the data. Second,

we assume that the elasticities are constant. Assuming that the observed allocation is optimal, the

condition on optimal transfers (24) must hold. Combined with the definition of expenditure per

worker in (19), we obtain the following optimal relationship between transfers, wages, expenditures,

and employment:

tθj = aθ0 + aθ1w
θ
j + aθ2

(
wθ
′ 6=θ
j Lθ

′ 6=θ
j

Lθj

)
+ aθ3

(
xθ
′ 6=θ
j Lθ

′ 6=θ
j

Lθj

)
+ εθj , (48)

for θ ∈ {U, S}, where εθj is a measurement error term, and the reduced-form parameters have

the following structural interpretations: aθ0 ≡ −bθΠ∗ − Eθ

1−γAθ,θ
, aθ1 ≡

γPθ,θ+γAθ,θ
1−γAθ,θ

, aθ2 ≡
γP
θ,θ′

1−γAθ,θ
, and

aθ3 =
γA
θ,θ′

1−γAθ,θ
. We estimate the parameters

{
aθi
}

by running (48) as a regression in the cross-section,

and then infer the spillover elasticities
{
γAθ,θ′ , γ

P
θ,θ′

}
up to a normalization for each type.44 We

normalize the own-spillover elasticity for productivity to the benchmark level for the U.S. used in

Section 4.2.

This exercise yields
(
γAUU , γ

A
SU , γ

A
US , γ

A
SS

)
= (−.09, −.16, .06, −.32) and (γPUU , γ

P
SU , γ

P
US , γ

P
SS) =

(.003, .20, .− 08, .053) .45 The average level of both types of spillovers is similar to the parameters

implied by the empirical estimates used in the calibration. In both these inferred elasticities and the

calibrated ones, the amenity spillovers are larger than the agglomeration spillovers, and high-skill

workers generate stronger efficiency spillovers than low-skill workers. However, the assumption that

the observed allocation is optimal implies negative amenity spillovers both across and within skill

groups, whereas the calibrated elasticities imply positive amenity spillovers generated by high skilled

workers. Therefore, heterogeneity in the sign of spillovers across groups plays an important role in

44This normalization is needed because from (48) the own-spillover elasticities for productivity and amenities are
not separately identified. Assuming values for γPθ,θ we can then infer the remaining elasticities as follows: γAθ,θ =
aθ1−γ

P
θ,θ

1+aθ1
, γPθ,θ′ = aθ2

(
1− γAθ,θ

)
, and γAθ,θ′ = aθ3

(
1− γAθ,θ

)
.

45The regressions have an R-squared of 0.32 for high skill and of 0.15 for low skill. Therefore, the first-order
conditions of the planner are not exactly satisfied in the data even after choosing the revealed-optimal elasticities
that best fit (48). However, when we use these revealed-optimal elasticities to compute the efficient allocation relative
to the observed allocation, we obtain negligible welfare gains of 0.07%. Hence, the procedure confirms that, under
the revealed-optimal elasticities, the observed allocation is very close to optimal.

37



shaping optimal policies. This result is consistent with our previous finding that heterogeneity in

spillovers between groups matters, obtained from the contrast between the quantified model under

homogeneous and heterogeneous workers.

5.3 Alternative Specifications

To gauge the sensitivity of our findings, we now turn to implementing the calibration and

counterfactuals for alternative specifications. Each of these cases formally extend our benchmark

quantification. We re-calibrate the model each time, compute the welfare gain common to all

workers on the utility frontier, and compare it to the benchmark case. We defer the details of the

implementation to the online appendix.

Land Use Regulations Several papers (Bunten, 2017; Herkenhoff et al., 2018; Hsieh and Moretti,

2019; Parkhomenko, 2018) argue that local land use regulations create spatial distortions by low-

ering the housing supply elasticity. In our benchmark procedure, we have interpreted the housing

supply elasticity as a technological restriction in the planner’s problem. We now extend the model

to capture the notion that the housing supply elasticity can be endogenous to local regulations,

and to allow the federal planner to change these regulations. We model land use regulations as a

local tax rate imposed on the sales of non-traded goods in each city j:

1− 1

1− τH,j
(RjHj)

−τH,j (49)

As a result, the housing supply elasticity becomes:

∂ lnHj

∂ lnRj
=

1− τH,j
dH,j + τH,j

. (50)

This specification microfounds a housing supply elasticity that includes both a technology constraint

dH,j due geographic characteristics as in Saiz (2010) as well as land regulations τH,j as in the

previous papers. The higher the parameter τH,j , the lower the housing supply elasticity compared

to its undistorted level. Our benchmark parametrization is nested when τH,j = 0 for all locations,

in which case there is a zero tax rate.

We evaluate the welfare effects of two policy exercises: (i) implementing optimal transfers while

keeping local taxes τH,j unchanged (τ̂H,j = 1); and (ii) implementing optimal transfers while at the

same time removing distortions (τ̂H,j = 0). The first exercise asks whether accounting for wedges

in the initial allocation due to land regulations matters for the welfare gains from implementing

optimal transfers designed to deal with spillovers. In turn, by construction, the second exercise

must deliver greater gains than implementing optimal transfers alone.
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Table 2: Welfare gains of Implementing Optimal Transfers under alternative specifications

Cases Welfare Gain (%)

(1) Benchmark 4.0
(2) Land Regulations, keeping distortions 3.7
(3) Land Regulations, removing distortions 8.6
(4) Three skill groups 3.9
(5) Imperfect Mobility 4.3

Note: The table shows the welfare gains from implementing the optimal transfers in different parametrizations. We
report the common welfare gains to all workers on the utility frontier. See the online appendix for details.

The results are presented in rows (2) and (3) of Table 2. Implementing optimal transfers while

keeping the initial distortions lowers the welfare gains to 3.7% from 4.0%. Hence, accounting for

land regulations does not fundamentally affect the gains from optimal redistribution. However,

row (3) shows that removing land distortions on top of implementing optimal transfers more than

doubles the welfare gains compared to leaving local regulations unchanged. This result suggests

that both margins (optimal redistribution, and land use regulations) are roughly equally important

sources of misallocation.46

Multiple Skills with Non-Homothetic Production The benchmark calibration features two

skill groups (college and non-college graduates). We now implement an extension with three skill

groups. Instead of the aggregator (43) applied to unskilled and skilled workers, we model three skill

groups indexed by their ability, θ = {L,M,H} standing for low-, medium-, and high-skill workers.

Their output is aggregated to the city level according to:

Nj =
((
zLj L

L
j

)ρ
+
(
zHj L

H
j

)ρ)λ
+
(
zMj L

M
j

)ρ
. (51)

This production function follows Eeckhout et al. (2014), who propose this nesting to capture that

larger cities disproportionally attract both high- and low-skill workers, while smaller cities feature

relatively more medium-skill workers. Assuming λ > 1, this production function is non-homothetic

between the medium-skill workers and the nest of low and high-skill workers. Hence, as production

increases, the relative demand for the second group increases. Empirically, we define high skilled

workersH in the same way as the skilled workers in our two-groups case, but split our previous group

of unskilled workers (without complete college) into those with some college education (M) and

those with no college education (L). We continue to assume the same structure for the spillovers

as in our benchmark case, on the basis of U = {L,M} and S = {H} types.As shown in row

46In terms of optimal city sizes, in the counterfactual that removes the wedges in addition to implementing
optimal transfers we find that larger cities grow relative to small cities, reverting the pattern from panel (a) of Figure
4. Therefore, the positive impact of removing wedges on the growth of the largest cities more than offsets the negative
impact of the optimal transfers. In this case, the flattening of the urban wage premium and the pattern of sorting
from panels (a) and (b) of Figure 5 is even stronger due to an inflow of low-skill workers to large cities. This inflow in
turn leads to lower wages for low-skill workers in large cities, and to an increase in the urban skill premium relative
to the data.
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(4) of Table 2 the welfare effects are very similar to the benchmark case, while Figure A.5 in

the Online Appendix shows that the patterns of transfers and reallocation are also similar. The

optimal transfers on average reallocate workers to smaller cities but even more so for skilled workers,

without a strong difference between the reallocation patterns of low- and medium-skilled workers.

This result suggests that our conclusions are robust to refining the substitution patterns between

skills in the production function. We note that, compared to the two-groups case, this extension

has only changed the production function but not the spillovers structure. It would be interesting

in future work to re-visit our analysis in a context with richer spillovers across extreme skill groups.

Imperfect Mobility Our benchmark case assumed that workers are perfectly mobile across

regions. We now incorporate two forces to account for imperfect mobility. First, we redefine a type θ

to include not only a worker’s skill but also her region of origin o ∈ O. Workers from different origins

may vary in their preference for locations and productivity. Specifically, to account for migration

frictions, we assume that a worker may face a disutility cost from living in a place different from

her region of origin. This additional margin of heterogeneity allows the model to capture a salient

fact from the data, namely that that place of birth is a strong predictor of region of residence.

In production, we assume that workers with the same skill level are perfect substitutes regardless

of origin. Second, following our discussion in Section (3.5), we also incorporate preference draws

within types according to a Fréchet distribution with parameter σθ.
47 Turning to the quantification,

we classify workers as being born in one of 5 different Census regions, and compute the welfare

gains of implementing optimal transfers taking into account heterogeneous preferences for location

of workers of different origins. As shown in Table 2, we find welfare gains across all groups of 4.3%,

close to the 4% from the baseline case. Furthermore, once aggregated by skill across origins, the

reallocation patterns are also similar to the baseline case. We conclude that the main takeaways of

the benchmark analysis are robust to incorporating this form of mobility frictions.

Other specifications We have also implemented the analysis under additional alternative as-

sumptions. First, our theoretical results imply that matching the observed expenditures distribu-

tion is relevant. Indeed, when we ignore the transfers in the data and set worker expenditures

equal to income, the welfare gains increase to 6.3% from 4% in the baseline.48 Second, we re-do

the quantification assuming that the returns to fixed factors are locally distributed to residents

of each location.49 Our theoretical discussion from Section 3.4 shows that this assumption entails

47This formulation nests our benchmark specification in the case of a single origin of workers and σθ → 0. Because
we have assumed that workers are perfect substitutes in production regardless of origin, the curvature introduced by
these draws allows us to pin down the number of workers from each origin living in a given destination. Formally,
these draws introduce a notion of congestion at bilateral level. An alternative assumption leading to a similar
property would have been assume that workers of different origins are imperfect substitutes in production. Our
current specification with extreme-value draws is closer to static models capturing migration frictions such as Bryan
and Morten (2015) and Diamond (2016).

48Because the transfers tend to be negative in larger cities, ignoring transfers leads to an under-estimation of the
amenity levels implied by the model in larger cities.

49The weak correlation between capital income in the data and a proxy for housing profits across cities computed
as γj/(γj + 1)Xj , where Xj is total expenditure in the city from the data and γj is the housing supply elasticity in
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an additional distortion. Consistent with this result, we find that the common welfare gains of

implementing optimal expenditures increases to 4.9% relative to 4% in the baseline. Finally, the

welfare results are quantitatively very close to the baseline if we assume away trade costs. In this

case, we use counterfactual data in which expenditure shares are equally distributed across cities

of origin, rather than relying on bilateral trade shares that decay with distance as in our baseline

quantification. The reason why the welfare implications of both quantifications are very similar

is that the procedure fully recalibrates the model (including amenities and productivity), so that

wages, transfers and employment are perfectly matched in all cities in both cases. These moments

play a key role in pinning down the potential welfare gains of moving to an efficient allocation.

6 Conclusion

We study optimal policies in a spatial framework with spillovers and sorting of heterogeneous

workers. The framework accommodates many key determinants of the spatial distribution of eco-

nomic activity such as geographic frictions and asymmetric amenity and productivity spillovers

across workers.

We derive the set of optimal transfers across workers and regions. There exists scope for welfare-

enhancing spatial policies even when spillovers are common across locations. In that case, constant

labor income subsidies and lump-sum transfers over space implement the efficient allocation, re-

gardless of micro heterogeneity in fundamentals. When workers are heterogeneous and there are

spillovers across different types of workers, spatial efficiency requires place-specific subsidies to

attain optimal sorting.

We apply the model to the distribution of economic activity across MSAs in the U.S. using

existing estimates of the spillover elasticities. The results suggest that inefficient sorting may lead

to substantial welfare costs. Spatial efficiency calls for more redistribution to low-wage cities and

a higher share of high-skill workers in these locations. It also calls for the currently largest MSAs

to shrink and to become more skill intensive, but with lower wage inequality.

Overall, we find that accounting for skill heterogeneity and spillovers across different types of

workers is important for the design and aggregate welfare effects of spatial policies. Our analysis

abstracted from various margins that could be important for future work. We implemented the

analysis in a closed economy, but optimal spatial policies within a country could interact with

international migration and trade. We only considered first-best policies set by a national planner

and abstracted from second-best policies or from fiscal competition between local jurisdictions.

Finally, we only considered a static model, where each worker type is fixed regardless of location.

We leave it to future work to study dynamic and long-run implications of spatial policies when

worker productivity or tastes can change over time through skill formation or as a function of the

skill mix in the community.

city j, suggests that the assumption of common ownership is a reasonable benchmark. Other assumptions on the
distribution of profits with some degree of local ownership generate an inefficiency. Results are formally equivalent
under local ownership and in a model with absentee landlords where the planner maximizes welfare of workers.
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A Proofs and Additional Derivations

A.1 Appendix to Section 2.1

We show that (1) holds. The market allocation in the case considered in this section is defined by the following

conditions:

u = aj (Lj) cj , (A.1)∑
j

Ljcj =
∑
j

Ljzj , (A.2)

∑
j

Lj = L. (A.3)

The first condition says that utility is equalized, the second condition is goods market clearing, and the last condition

is labor market clearing. Solving for cj from the first condition and replacing in (A.2) we obtain the following

expression for utility:

u =

∑
j Ljzj (Lj)∑
j

Lj

aj(Lj)

. (A.4)

The planner maximizes this term subject to (A.3). Totally differentiating this expression with respect to employment,

after a few manipulations we obtain:

û =
(

1 + γP
) ∑

j zjdLj∑
j Ljzj

−
(

1− γA
) ∑

j
1
aj
dLj∑

j

Lj
aj

.

Further using (A.1) and (A.2) we obtain (1).

45



A.2 Appendix to Section 3.1

We derive (21). The market allocation is the solution to the following conditions:

uθ = aθjc
θ
j , (A.5)∑

θ

∑
j

Lθj

(
cθj − zθj

)
≤ 0, (A.6)

∑
j

Lθj = Lθ. (A.7)

Combining the first two conditions and following similar steps to Section (A.1), utility of group θ0 can be written:

uθ0 =

∑
θ

∑
j L

θ
jz
θ
j −

∑
θ′ 6=θ0 u

θ′∑
j

Lθ
′
j

aθ
′
j∑

j

L
θ0
j

a
θ0
j

(A.8)

Taking a first order approximation to this expression while keeping uθ
′

constant and using the mobility constraints

(A.5) we obtain:

duθ0

uθ0
=

∑
θ

∑
j L

θ
jz
θ
j

(
dLθj

Lθj
+
∑
θ′ γ

P
θ′,θ

dLθ
′
j

Lθ
′
j

)
−
∑
θ

∑
j c
θ
jL

θ
j

(
dLθj

Lθj
−
∑
θ′ γ

A
θ′,θ

dLθ
′
j

Lθ
′
j

)
∑
j c
θ0
j L

θ0
j

. (A.9)

which, after some manipulations, becomes:

duθ0

uθ0
=

∑
θ

∑
j

[
−tθjLθj +

∑
θ′

(
γPθ0,θ′L

θ′
j z

θ′
j + γAθ0,θ′c

θ′
j L

θ′
j

)]
dLθj

Lθj∑
j c
θ0
j L

θ0
j

, (A.10)

where tθj ≡ cθj −zθj is the transfer to group θ in j. Imposing no transfers (cθj = zθj ) and using that zθj = wθj in a market

allocation gives the result (21).

A.3 Planning Problem and Proofs of Propositions 1 to 3

The planning problem can be described as follows.

Definition 2. The planning problem is

maxLθuθ

subject to (i) the spatial mobility constraints

Lθju
θ ≤ Lθjaθj

(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

)
for all j;

Lθ
′
j u

θ′ ≤ Lθ
′
j a

θ
j

(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

)
for all j and θ′ 6= θ;

(ii) the tradable and non-tradable goods feasibility constraints∑
i

djiQji ≤ Yj
(
NY
j , I

Y
j

)
for all j, i;∑

θ

Lθjc
θ
j + IYj + IHj ≤ Q (Q1j , .., QJj) for all j;

∑
θ

Lθjh
θ
j ≤ Hj

(
NH
j , I

H
j

)
for all j;
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(iii) local and national labor-market clearing,

NY
j +NH

j = N
(
zθ1

(
L1
j , .., L

Θ
j

)
L1
j , .., z

Θ
j

(
L1
j , .., L

Θ
j

)
LΘ
j

)
for all j;∑

j

Lθj = Lθ for all θ; and

(iv) non-negativity constraints on consumption, trade flows, intermediate inputs, and labor.

Proposition 1. If a competitive equilibrium is efficient, then

Wj
dNj
dLθj

+
∑
θ′

xθ
′
j L

θ′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθj + Eθ if Lθj > 0, (A.11)

for all j and θ and some constants
{
Eθ
}

. If the planner’s problem is globally concave and (A.11) holds for some

specific
{
Eθ
}

, then the competitive equilibrium is efficient.

Proof. First we present the system of necessary first order conditions in the planner’s problem. Then we contrast

it with the market allocation. The Lagrangian of the planning problem is:

L = uθ −
∑
j

ωθjL
θ′
j

(
uθ − aθ

′
j

(
L1
j , .., L

Θ
j

)
U
(
cθ
′
j , h

θ′
j

))
−
∑
θ′ 6=θ

∑
j

ωθ
′
j L

θ′
j

(
uθ
′
− aθ

′
j

(
L1
j , .., L

Θ
j

)
U
(
cθ
′
j , h

θ′
j

))

−
∑
j

p∗j

(∑
i

djiQji − Yj
(
NY
j , I

Y
j

))

−
∑
j

P ∗j

(∑
θ

Lθjc
θ
j + IYj + IHj −Q (Q1j , .., QJj)

)
−
∑
j

R∗j

(∑
θ

Lθjh
θ
j −Hj

(
NH
j , I

H
j

))

−
∑
j

W ∗j

(
NY
j +NH

j −N
(
z1
j

(
L1
j , .., L

Θ
j

)
L1
j , .., z

Θ
j

(
L1
j , .., L

Θ
j

)
LΘ
j

))

−
∑
θ

Eθ
(∑

j

Lθj − Lθ
)

+ ... (A.12)

where we omit notation for the non-negativity constraints. The first-order conditions with respect to trade flows,

labor services and intermediate inputs are:

[Qji] P ∗i
∂Q (Q1i, .., QJi)

∂Qji
≤ p∗j τji, (A.13)[

NY
j , N

H
j

]
p∗j

∂Yj
∂NY

j

≤W ∗j ;R∗j
∂Hj
∂NH

j

≤W ∗j , (A.14)[
IYj , I

H
j

]
p∗j
∂Yj
∂IYj

≤ P ∗j ;R∗j
∂Hj
∂IHj

≤ P ∗j , (A.15)

each holding with equality in an interior solution. The first-order conditions with respect to individual consumption

of traded and non-traded goods can be written:

[
cθj

]
ωθj a

θ
j

∂U
(
cθj , h

θ
j

)
∂cθj

cθj = P ∗j c
θ
j

[
hθj

]
ωθj a

θ
j

∂U
(
cθj , h

θ
j

)
∂hθj

hθj = R∗jh
θ
j
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Adding up the last two expressions and using degree-1 homogeneity of U gives

ωθj a
θ
jU
(
cθj , h

θ
j

)
= xθ∗j , (A.16)

where

xθ∗j ≡ R∗jhθj + P ∗j c
θ
j . (A.17)

Therefore, we can write

[
cθj

]
cθj =

αC
(
cθj , h

θ
j

)
P ∗j

xθ∗j (A.18)

[
hθj

]
hθj =

1− αC
(
cθj , h

θ
j

)
R∗j

xθ∗j (A.19)

where αC (c, h) ≡ ∂U(c,h)
∂c

c
U(c,h)

is the elasticity of U with respect to c.

Using (A.17) and the slackness condition on the spatial mobility constraint, the first-order condition of the

planning problem with respect to Lθj is:

∑
θ′

ωθ
′
j L

θ′
j

∂aθ
′
j

(
L1
j , .., L

Θ
j

)
∂Lθj

U
(
cθ
′
j , h

θ′
j

)
+W ∗j

dNj
dLθj

≤ xθ∗j + Eθ, (A.20)

with equality if Lθj > 0. Further using (A.16), if Lθj > 0 then:

W ∗j
dNj
dLθj

+
∑
θ′

(
xθ∗j
)′
Lθ
′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθ∗j + Eθ. (A.21)

In locations with Lθj = 0 then cθj = hθj = xθ∗j = 0. Therefore, Lθj = 0 for all locations such that:

W ∗j
dNj
dLθj

+
∑
θ′ 6=θ

(
xθ∗j
)′
Lθ
′
j

aθ
′
j

∂aθ
′
j

∂Lθj
≤ Eθ. (A.22)

An optimal allocation is given by quantities
{
Qji, N

Y
j , N

H
j , I

Y
j , I

H
j , c

θ
j , h

θ
j , L

θ
j , u

θ
}

and multipliers
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j , ω

θ
j

}
such that the first-order conditions (A.13)-(A.21) and the constraints enumerated in (i) to (iii) in Definition 2 hold.

It is straightforward to show that (A.13) to (A.15), (A.18) and (A.19) coincide with the optimality conditions

of producers and consumers (i) and (ii) in the competitive equilibrium from Definition 1 given competitive prices

{Pj , pj , Rj ,Wj} equal to the multipliers
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
and decentralized expenditure xθj equal to xθ∗j . In addition,

the restrictions (i) to (iii) from definition 2 of the planning problem are the same as restriction (iii) from the competitive

equilibrium. Therefore, the system characterizing the competitive solution for
{
Qji, N

Y
j , N

H
j , I

Y
j , I

H
j , c

θ
j , h

θ
j , L

θ
j

}
given

the prices {Pj , pj , Rj ,Wj} and the expenditure xθj is the same as the system characterizing the planner allocation

for those same quantities given the multipliers
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
and xθ∗j . As a result, if the competitive allocation

is efficient, then xθj = xθ∗j where xθ∗j is given by (A.21). Conversely, if xθj = xθ∗j for xθ∗j defined in (A.11) given the

W θ that solves the planner’s problem, there is a solution for the competitive allocation such that {Pj , pj , Rj ,Wj} ={
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
. If the planning problem is concave then there is a unique solution to the system characterizing the

planner’s allocation, in which case {Pj , pj , Rj ,Wj} =
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
is the only competitive equilibrium.

Proposition 2. The optimal allocation can be implemented by the transfers

tθ∗j =
∑
θ′

(
γP,jθ,θ′w

θ′∗
j + γA,jθ,θ′x

θ′∗
j

) Lθ′∗j
Lθ∗j

−
(
bθΠ∗ + Eθ

)
, (A.23)

where the terms
(
xθ∗j , w

θ∗
j , L

θ∗
j ,Π

∗) are the outcomes at the efficient allocation, and
{
Eθ
}

are constants equal to the
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multipliers on the resource constraint of each type in the planner’s allocation.

Proof. Combining 23 and condition (22) we get:

wθj − xθj +
∑
∀θ′

(
γP,jθ,θ′w

θ′
j + γA,jθ,θ′x

θ′
j

) Lθ′j
Lθj

= Eθ. (A.24)

Combining this last expression with (19) gives the result.

Proposition 3. The planning problem is concave if ΓA > ΓP , ΓA ≥ 0 and γAθ,θ′ > 0 for θ 6= θ′. Under a single

worker type (Θ = 1), the planning problem is quasi-concave if 1 + γA >
(
1 + γP

) [
1−αC
1+D

+ αC
]
.

Proof. We consider the following planning problem defined in section 2.4:

max uθ

s.t.: uθ
′

= uθ
′

for θ′ 6= θ

uθ
′
∈ U for all θ′

where θ is a given type, U is the set of attainable utility levels
{
uθ
}

and uθ
′

for θ′ 6= θ is an arbitrary attainable

utility level for group θ′. U is characterized by a set of feasibility constraints which are defined in the main text, and

which we come back to below. We show here that this problem, noted P, can be recast as a concave problem, under

the condition stated in proposition 2. Therefore, a local maximum of P is necessarily its unique global maximum.

The planning problem P can be recast as the following equivalent problem P ′, after simple algebraic manipulations:

max
{vθ,Uθj ,Cθj ,Hθj ,L̃θj ,Ñkj ,Ikj ,Qij ,Mj ,Sj}

vθ (A.25)

subject to the set of constraints C:

v
θ′ − F


Uθ
′
j

∏
θ′′ 6=θ′

(
L̃θ
′′
j

) γAθ′′,θ′
1+ΓP

(
L̃θ
′
j

) 1−γA
θ′,θ′

1+ΓP

 ≤ 0 for all j and θ′; (A.26)

U
θ
j − U

(
C
θ
j , H

θ
j

)
≤ 0 (A.27)

∑
i

djiQji −
(
b
N
Y

(
N
Y
j

)βY + b
I
Y

(
I
Y
j

)βY ) 1
βY ≤ 0 for all j, i; (A.28)

∑
θ

C
θ
j +

(
I
Y
j

)
+
(
I
H
j

)
−Q

(
Q1j , .., QJj

)
≤ 0 for all j; (A.29)

∑
θ

H
θ
j −

(
b
N
H

(
N
H
j

)βH + b
I
H

(
I
H
j

)βH) 1
βH ≤ 0 (A.30)

Mj −

∑
θ

Zθj ∏
θ′

(
L̃
θ′
j

) γP
θ′,θ

1+ΓP
(
L̃
θ
j

) 1
1+ΓP .


ρ

1
ρ

≤ 0 for all j; (A.31)

N
Y
j +N

H
j −Mj ≤ 0 (A.32)

∑
j

(
L̃
θ
j

) 1
1+ΓP − Lθ = 0 for all θ (A.33)

To reach these expressions, we have introduced the auxiliary variables Mj and Uθj and we have used the following

change of variables: vθ = F
(
uθ
)
, Hθ

j = Lθjh
θ
j , C

θ
j = Lθjc

θ
j , and L̃θj =

(
Lθj
)1+ΓP

for all j and θ, where the function

F(.) is defined by F(x) = −xb for b = 1+ΓP

ΓP−ΓA
. Problems P and P ′ are equivalent: any solution to P ′ is a solution

to P and vice-versa. We then consider the relaxed problem P ′′ that is identical to P ′ except that the last constraint
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of P ′ is relaxed into an inequality constraint:

Lθ −
∑
j

(
L̃θj

) 1
1+ΓP ≤ 0 for all θ. (A.34)

We now show that problem P ′′ has a concave objective and convex constraints under the assumptions of proposition

2. To that end, we show that under these assumptions, each constraint of P ′′ is convex.

Consider first the constraint (A.26), and examine specifically the expression:

fθj (Uθj ,
{
Lθ
}
,
{
Lθ
′}

) = Uθj
∏
θ′ 6=θ

(
L̃θ
′
j

) γA
θ′,θ

1+ΓP
(
L̃θj

)− 1−γAθ,θ
1+ΓP . (A.35)

This expression is a multivariate function of the form f(y, z) =
∏k
i=1 y

ai
i z
−b where ai > 0, b > 0 and

∑k
i=1 ai < b.

By proposition 11 of Khajavirad et al. (2014), such functions are G-concave, meaning that the function G(f(y, z)) is

concave in (y, z), for functions G(x) that are concave transforms of −x
1∑
ai−b . Assumptions made on parameter values

in Proposition 3 ensure that γAθ′,θ ≥ 0 for all θ′ 6= θ and 1 +
γA
θ′,θ

1+ΓP
<

1−γAθ,θ
1+ΓP

, which follows from ΓA > ΓP . Therefore,

by Proposition 11 of Khajavirad et al. (2014), the transformation Gθ(x) = −x(1+ΓP )/
(
ΓP−

(
σθ+

∑
θ′ γ

A
θ′,θ

))
ensures

that Gθ(f
θ
j (.)) is concave. Finally, given the definition of ΓA, F(.) is a concave transform of Gθ(.). Therefore, (A.26)

is convex for all θ′.

Second, functions of the form f(x1, ..., xn) =
[∑

aix
β
i

]ρ
are concave whenever β ∈ (0, 1) and ρβ ≤ 1. Therefore,

constraints (A.28), (A.30) and (A.34) are convex.

The constraint (A.27) is convex because U(.) is concave. The constraint (A.29) is convex because the aggregator

Q(.) is concave.

Next, consider the constraint (A.31). The second term is the negative of a composition of an increasing CES

function with exponent ρ ≤ 1, which is concave, and a series of functions of the form

f(x1, ..., xΘ) =
∏
θ′

(
xθ
′) γP

θ′,θ
1+ΓP

(
xθ
) 1

1+ΓP .

As concave transforms of a geometric mean, these functions are concave, whenever
1+
∑
θ′ γ

P
θ′,θ

1+ΓP
∈ (0, 1). This restriction

holds by definition of ΓP . We finally invoke that the vector composition of a concave function that is increasing in

all its elements with a concave function is concave. Therefore, constraint (A.31) is convex. Finally, constraint (A.32)

is linear hence convex.

It follows that the relaxed problem P ′′ is a maximization problem with concave objective and convex inequality

constraints. It admits at most one global maximum, and a vector satisfying its first order conditions is necessarily

the global maximum. If at this unique optimal point for P ′′ the relaxed constraint (A.34) binds, so that (A.33) holds,

we guarantee that the solution to P ′′ is also the unique global maximizer of P’ and the unique global maximizer of

the equivalent problem P.50

We now specialize to the case of a single type of workers (Θ = 1) where the decreasing returns to scale in the

production of housing help make the problem concave. The relaxed planner’s problem P ′′ can be further simplified

in this case to:

max
{vθ,Uθj ,Cθj ,Hθj ,L̃θj ,Ñkj ,Ikj ,Qij ,Mj ,Sj}

minj
(
Cθj

)αC (
H̃θ
j

) 1−αC
1+dH,j

(
L̃θj

)− 1−γAθ,θ
1+ΓP

subject to the constraints (A.28), (A.29), (A.31), (A.32) and (A.34), which are unchanged except that they now hold

for only one group. We have used the following change of variable H̃θ
j =

(
Hθ
j

)1+d′H,j . The modified constraint for

50We have not proven that (A.34) necessarily binds at the optimal solution for P ′′. Therefore, we verify that this
is indeed the case in the solution to P ′′ in the implementation.
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housing production is:

H̃θ
j −

(
bNH

(
ÑH
j

)βH (1+D)

+ bIH

(
ĨHj

)(1+D)βH
) 1
βH

1
1+D

≤ 0. (A.36)

The modified housing market constraint (A.36) is convex. The objective of the planner is quasi-concave as the

minimum of a ratio of a concave and a convex function, as long as (1− αC) 1
1+d′H,j

+ αC ≤
1−γAθ,θ
1+ΓP

in each city. The

constraints are convex. Therefore, the problem is a quasi-concave maximization problem as long as the parameter

restriction in (ii) holds.

A.4 Preference Draws within Types

The Lagrangian of planning problem in Section 3.5 is a special case of (A.12), except that now the spillover

function aθ
′
j

(
L1
j , .., L

Θ
j

)
is replaced by aθ

′
i

(
Lθi
)−σθ . Following the same steps as in the proof of Proposition 1, we find

that condition (22) is extended to

Wj
dNj
dLθj

+
∑
θ′

xθ
′
j L

θ′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθj (1 + σθ) + Eθ if Lθj > 0. (A.37)

Following the same steps as in the proof of Proposition 2, we find that (24) is extended to

tθj = γP,jθ,θ +
(
γA,jθ,θ − σθ

)
+
∑
θ′ 6=θ

(
γP,jθ,θ′w

θ′∗
j + γA,jθ,θ′x

θ′∗
j

) Lθ′∗j
Lθ∗j

−
(
bθΠ∗ + Eθ

)
. (A.38)

The general-equilibrium structure underlying propositions 3 and 4 under the assumptions of the quantitative model

can be expressed exactly as in the proof of Proposition 3 and as in the planning problem in relative changes from

Section A.7 below, the only modification being that the term γAθ,θ is replaced by γAθ,θ − σθ.

A.5 Commuting

The Lagrangian of the planning problem described in the extension to spillovers across locations in Section 3.5 is

L = u−
∑
j

∑
i

ωji

(
u− L−σji L

σaj

(
LRj

)
Uji (cji, hji)

)

−
∑
j

p∗j

(∑
i

djiQji − Yj
(
NY
j , I

Y
j

))
−
∑
j

P ∗j

(∑
i

Ljicji + IYj + IHj −Q
(
Q1j , .., QJj

))

−
∑
j

W ∗j

(
NI
j +NH

j − zj
(
LWj

)
LWj

)
−
∑
j

R∗j

(∑
i

Ljihji −Hj
(
NH
j , I

H
j

))
− E

∑
j

∑
i

Lji − L

+ ... (A.39)

where LRj =
∑
i′ Lji′ , and LWi =

∑
j′ Lj′i are the residents and workers at j and i are, respectively. The planner

optimizes over the bilateral flows Lji from place of residence j to place of work i, the consumption of tradeables and

non-tradeables cji and hji of each of these commutersi, and the same remaining margins as in the benchmark model

(trade flows Qji and allocation of inputs into production of tradeables and non-tradeables). The first-order condition

with respect to Lji is:

[Lji] : −σωjiL−σ−1
ji aj

(
LRj

)
Uji (cji, hji)+

∑
i′
ωji′L

−σ
ji′ a

′
j

(
LRj

)
Uji′

(
cji′ , hji′

)
+W ∗i

(
z′i

(
LWi

)
LWi + zi

(
LWi

))
= P ∗j cji+R

∗
jhji+E

(A.40)

In addition, the first order conditions over cji and hji and homogeneity of degree 1 of Uji imply ωjiL
−σ−1
ji aj

(
LRj
)
Uji (cji, hji) =

x∗ji. Combining this expression with (A.40), using the definition of spillover elasticities γPi =
z′i(L

W
i )

zi(LWi )
LWi and
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γAj =
a′j(L

R
j )

aj(LRj )
LRj , and re-arranging we get:

x∗ji =
γAj

1 + σ

∑
i′

Lji′x
∗
ji′

LRj
+

1 + γPi
1 + σ

W ∗i zi
(
LWi

)
−

E

1 + σ
. (A.41)

To reach (35) we further use that the wage received by a commuter who works in i is w∗i = W ∗i zi
(
LWi

)
, and the

definition of expenditures x∗ji = w∗i + Π∗

L
+ t∗ji.

A.6 Spillovers Across Locations

The Lagrangian of the planning problem described in the extension to spillovers across locations in Section 3.5 is a

special case of (A.12), except that now the the supply of efficiency units in j is Nj ({Lj′}) = zj ({Lj′})Lj . Compared

to our derivation of Proposition 1, the only difference is the first-order condition with respect to employment. Now,

instead of (A.21) we reach:

∑
j′

W ∗j′
dNj′

dLj
+ x∗j

Lj
aj

∂aj
∂Lj

= x∗j + E. (A.42)

In addition, we now have:

Wj
dNj
dLj

=

wj′
Lj′
Lj
γP,j,j

′
if j′ 6= j,

wj
(
γP,j,j + 1

)
if j′ = j.

(A.43)

Combining the last two expressions with (19) gives (38).

A.7 Planning Problem in Relative Changes and Proof of Proposition 4

We show how to express the solution for the competitive allocation under an optimal new policy relative to an

initial equilibrium consistent with Definition 1, and then define the planning problem over the policy space.

Preliminaries We adopt the functional forms from Section 3.6. From the profit maximization problem of

producers and market clearing in the housing market we obtain the following sectoral labor demand conditions:

WiN
Y
i =

(
1− bIY,i

)
piYi, (A.44)

WiN
H
i =

1− bIH,i
1 + dH,i

(1− αC)Xi. (A.45)

These terms imply the non-traded labor share,
NHi
Ni

, as function of the share of gross expenditures over tradeable

income Xi
piYi

:

NH
i

Ni
=

1−bIH,i
1+dH,i

1−αC
1−bI

Y,i

(
Xi
piYi

)
1−bI

H
1+dH,i

1−αC
1−bI

Y,i

(
Xi
piYi

)
+ 1.

. (A.46)

Using (A.44) and (A.45) along with labor-market clearing (A.14), we can further express final consumption expendi-

tures over tradeable income as a function of the shares of wages in expenditures:

Xi
piYi

=
1− bIY,i

WiNi
Xi
−

1−bI
H,i

1+dH,i
(1− αC)

. (A.47)

We now re-formulate some of the equilibrium from Definition 1 conditions to include prices. Consider first the

market clearing condition (8). Multiplying both sides by the price of the traded bundle Pj , letting EYj ≡ PjQj be
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the gross expenditures in tradeable goods in j (used both as intermediate and for final consumption), and using

equilibrium in the housing market and the optimality condition for the choice of intermediate inputs in the traded

sector, we can re-write that condition as

EYj =

(
αC + (1− αC)

bIH,j
dH,j + 1

)
Xj + bIY (pjYj) , (A.48)

where Xj =
∑
θ′ L

θ′
j x

θ′
j are the aggregate expenditures of workers in region j. This condition says that aggregate

expenditures in traded goods results from the aggregation of expenditures by consumers and final producers. Second,

consider the market condition (7) for traded commodities. Multiplying both sides by the price of traded commodities

at j, pj , this condition is equivalent to ∑
i

sXji = 1, (A.49)

where sXji ≡
(

Ei
pjYj

)
sMji is region i’s share of j’s sales of tradeable goods (i.e., the export share of i in j) and

sMji ≡
pjiQji
Ei

is region j′s share of i’s purchases of tradeable goods (i.e., the import share of region j in i). Finally,

aggregating the budget constraints of individual consumers gives∑
j

sMji ≡ 1. (A.50)

Equilibrium in Relative Changes We now express the solution for the competitive allocation from Defi-

nition 1 under the new policy relative to an initial equilibrium. Consider a policy change that affects the equilibrium

expenditure distribution
{
xθi
}

. We now show that the outcomes in the new equilibrium relative to the initial equi-

librium are given by a set of changes in prices
{
P̂i, p̂i, R̂i

}
, wages

{
Ŵi

}
, employment by group

{
L̂θi

}
, supply of

efficiency units
{
N̂i
}

, production of tradeable goods
{
Ŷi
}

, and utility levels
{
ûθ
}

that satisfy a set of conditions

given the change in expenditure per capita by group and location
{
x̂θi

}
. The planner’s problem in relative changes

will then choose the optimal
{
x̂θi

}
.

From the previous expressions we obtain the following system in relative changes:

∑
j

sXij

(
p̂i

P̂j

)1−σ

ÊYj = p̂iŶi for all i, (A.51)

∑
j

sMji

(
p̂j

P̂i

)1−σ

= 1 for all i, (A.52)

(
1− NH

i

Ni

)
p̂iŶi +

NH
i

Ni
X̂i = ŴiN̂i for all i, (A.53)

Ŵi
1−bIY,i P̂i

bIY,i = p̂i for all i, (A.54)

where X̂j =
∑
θ s

X,θ
j x̂θj L̂

θ
j is the change in aggregate expenditures by region and sX,θj is group θ’s share in the

consumer expenditures in j in the initial equilibrium. Equations (A.51) and (A.52) follow from expressing (A.49) and

(A.50) in relative changes and using the CES functional form (40). In condition (A.51), using (A.48) implies that

the change in expenditures in tradeable commodities is:

ÊYj =
(

1− ˜bIY,j

)
X̂j + ˜bIY,j p̂j Ŷj . (A.55)

where

˜bIY,j ≡ b
I
Y
pjYj
EYj

=
bIY(

αC + (1− αC)
bI
H,j

dH,j+1

)
Xj
pjYj

+ bIY

(A.56)

Condition (A.53) follows from expressing labor-market clearing (10) in relative changes together with (A.44) and
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(A.45), where the non-traded labor share
NHi
Ni

is defined in (A.46). Condition (A.54) follows from optimization of

producers of tradeable commodities.

The system (A.51) to (A.54) defines a solution for
{
P̂j , p̂j , Ŷj , Ŵj

}
given the change in the number of efficiency

units N̂i and expenditures in each region X̂i, and independently from heterogeneity across groups or spillovers.

Heterogeneous groups and spillovers enter through N̂i. To reach an explicitly expression for N̂i, we first note that the

labor demand expression in the market allocation (17) allows us to back out the efficiency of each group:

zθi =
wθi
Wi

(
Lθi
Ni

) 1
ρ

, (A.57)

Expressing the CES functional form for the aggregation of labor types in (43) in relative changes and using (A.57)

we obtain:

N̂i =

(∑
θ

sW,θi

(
ẑθi L̂

θ
i

)ρ) 1
ρ

, (A.58)

where

ẑθi =
∏
θ′

(
L̂θ
′
i

)γP
θ′,θ

(A.59)

and where sW,θj =
wθjL

θ
j∑

θ′ w
θ′
j L

θ′
j

is group θ share of wages in city j. Expression (A.58) relates the total change in

efficiency units in a location to the distribution of wage bills in the observed allocation, the changes in employment

by group, and the production function and spillover elasticity parameters.

The change in the number of workers
{
L̂θi

}
of each type in every location that is initially populated must also

be consistent with the spatial mobility constraint, (14),

ûθ = âθi
x̂θi

P̂i
αC
R̂i

1−αC
, (A.60)

where

âθi =
∏
θ′

(
L̂θ
′
i

)γA
θ′,θ

(A.61)

and where R̂i is the change in the price of non-traded goods in location i. This relative price can be expressed as

solely a function of the changes in the price of the own traded good, the price index of traded commodities, and the

aggregate expenditures in i:

R̂i =

p̂i 1−bIH,i
1−bI

Y,i P̂i
bIH,i−b

I
Y,i

1−bIH,i
1−bI

Y,i X̂i
dH,i


1

1+dH,i

. (A.62)

To obtain this expression, we first solved for the rental rate Ri from the equilibrium in the housing market, used the

zero-profit condition in the traded sector and expressed the resulting expression in relative changes.

Finally, the national labor market must clear for each labor type is∑
j

sL,θj L̂θj = 1 for all θ, (A.63)

where sL,θj =
Lθj∑
θ′ L

θ′
j

is group θ’s share of employment in city j.

In sum, the system of equilibrium equations can be broken into two distinct blocks. The system (A.51) to (A.54)

defines a solution for
{
P̂j , p̂j , Ŷj , Ŵj

}
given the change in the number of efficiency units N̂i and expenditures in

each region X̂i independently from heterogeneity across groups or spillovers. In turn, the system (A.58) to (A.63)

defines a solution for
{
N̂j , L̂

θ
j , ûθ

}
given

{
p̂i,P̂i,

{
x̂θi

}
, X̂i

}
. As a result, an equilibrium in changes given a change

in expenditure per capita
{
x̂θj

}
consists of

{
P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

such that equations (A.51) to (A.63) hold.

These equations conform a system of 5J + ΘJ + Θ equations in equal number of unknowns, where J is the number
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of locations and Θ is the number of types.

Planner’s Problem in Relative Changes In the implementation, we solve an optimization over
{
x̂θj

}
subject to

{
P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

consistent with (A.51) to (A.63) in order to maximize the utility of a given

group θ, ûθ, subject to a lower bound for the change in utility of the other groups (ûθ′ ≥ ûθ′ for θ′ 6= θ). This

problem (call it P ′′2 ) differs formally from the baseline problem in Definition 2 (call it P2) for two reasons. First, it

features prices, expenditures and incomes rather than being expressed in terms of quantities alone, as in conditions

(A.44) to (A.50). We denote by P ′2 an intermediary problem expressed in terms of income and expenditure rather

than quantities, but still in levels. Second, P ′′2 is expressed in changes relative to an initial equilibrium rather than in

levels. We show here that the two problems are nevertheless equivalent. Therefore, the problem that we implement

has a unique maximizer under the conditions of Proposition 2.

To see that the two problems have the same solutions, we first focus on the first order conditions of problem P2

and compare them to the problem in levels P ′2 expressed in income and expenditures terms rather than in quantities.

Conditions (A.13) and (A.15) define the Lagrange multipliers corresponding to good and factor prices for P2. They are

identical to the price index definition constraint of problem P ′2. Furthermore, manipulating these equations together

with the constraints expressed in quantities leads to the constraints expressed in terms of income and expenditure.

Therefore, a vector satisfies the first order conditions for P2 if and only if it satisfies the first order conditions for P2’.

Then, note that the problem in relative changes stated here is simply the problem P ′2 modified through the changes of

variable x→ xox̂ for all variables, where xo is a constant corresponding to the observed data and x̂ the optimization

variable in P ′2. The problem in relative changes considered here and the problem P ′2 , and in turn problem P2, have

therefore the same solutions, subject to the appropriate change of variables. In particular, a point that satisfies the

first order conditions under the conditions of Proposition 3 is the (unique) global maximizer for both problems.

Proof of Proposition 4 Proposition 4 follows from inspecting (A.51) to (A.63) under the planner’s problem

in relative changes defined above. Note that, given the elasticities
{
αC , ρ, b

I
Y,j , b

I
H,j , dH,j

}
, and as long as bIY > 0,

computing the change in tradeable expenditures requires information about gross expenditures over tradeable income,
Xj
pjYj

. This information is also needed to compute the non-traded labor share
NHi
Ni

in (A.53). However, as shown in

(A.46) and (A.47),
Xj
pjYj

can be constructed from the elasticities
{
αC , b

I
Y , b

I
H , dH,j

}
and the share of wages in gross

expenditures, WiNi
Xi

.
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A Equivalence with Monopolistic Competition

Consider the economic geography environment from Section 3.4. As a reminder, that environment starts from

the general model from Section 2 and imposes only one labor type, inelastic housing supply (Hj
(
NH
j , I

H
j

)
= Hj is a

constant), and only labor used in production of traded goods (Yj
(
NY
j , I

Y
j

)
= NY

j = Nj = zj (Lj)Lj). Now suppose

that, in addition, the production structure in the traded sector is the same as in Krugman (1980): in each location

j, Mj homogeneous plants produce differentiated varieties with constant elasticity of substitution κ across them, and

setting up a plant in location j requires Fj units of labor. The resulting environment corresponds to Redding (2016)

or Helpman (1998) in the absence of individual preference shocks (σ = 0).

We now show that the competitive allocation of such an extended model, as well as their normative implications,

are equivalent to the model with homogeneous products analyzed in Section 3.4 under an aggregate production

function equal to:

Ỹj (Lj) = Kj (zj (Lj)Lj)
κ
κ−1 , (A.1)

where Kj ≡ κ−1
κ

(κFj)
1

1−κ is a constant. Therefore, a monopolistic competition model with no productivity spillovers

is equivalent to a homogeneous-product model with perfect competition and spillover elasticity equal to γP = 1
κ−1

.

This property relates to the result, dating back to at least Abdel-Rahman and Fujita (1990) and also shown by

Allen and Arkolakis (2014), that CES product differentiation with monopolistic competition has the same aggregate

implications as a constant-elasticity aggregate production function with increasing returns. We demonstrate that the

equivalence extends to the welfare implications summarized in Proposition 1.

Environment We start by describing how the physical environment of this model differs from the environments

from Section 2. Now, the input to the aggregator Q ({Qji}) is Qji = M
κ
κ−1

j qji, where Mj is the number of plants

in j and qji is the quantity exported by each of these from j to i. The feasibility constraint for traded goods (7)

becomes zj (Lj)Lj = Mj

(∑
i τjiqji + Fj

)
to account for the use of labor in setting up plants. Combining these two

expressions, that constraint can be further expressed:

M
1

κ−1

j (zj (Lj)Lj − FjMj) =
∑
i

τjiQji. (A.2)

Competitive Equilibrium Now we describe how the market allocation differs from the baseline environments.

First, the producers’ profit maximization condition is now:

max
∑
i

(p̃ji − τjiWj) qji (A.3)

subject to qji = Qji
(

˜pji
pji

)−κ
, where pji = M

1
1−κ
j p̃ji is the price index corresponding to the exports from j to i and

p̃ji is the price at which each firm from j sells in i. The solution to this problem yields the standard constant markup

rule, p̃ji = τji
κ
κ−1

Wj . We have as before that the price in location i of the aggregate traded good from j, pji, can

be expressed according to the “mill pricing” rule as τjipj , where now the price index corresponding to the domestic

sales of traded goods in j is:

pj ≡M
1

1−κ
j

κ

κ− 1
Wj . (A.4)
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As a result, condition (18) still determines the flows in the competitive equilibrium. Combining these pricing rules

with (A.3), imposing zero profits and using (7) we obtain the number of producers in a competitive allocation:

Mj =
zj (Lj)Lj
κFj

. (A.5)

And further combining with (A.2), we can write

Ỹj (Lj) =
∑
j

τijQij (A.6)

for Ỹj given in (A.1).

We conclude that the competitive allocation can be represented as in the model without product differentiation

from Definition 1 under the restrictions from Section 3.4 and assuming the aggregate production function Ỹj (Lj).

I.e., it is given by quantities {cj , hj , Lj , Qij , Lj} and prices Pj , Rj , pj , such that: (i) consumers optimize (i.e., cj , hj

are a solution to (12) given expenditures xi); (ii) trade flows are given by (18); (iii) employment Lj is consistent with

the spatial mobility constraint (14); and (iv) all markets clear, i.e. (4), (6) and (A.6) hold.51

Planning Problem The planning problem from Definition (2) is now associated with the Lagrangian

L = u−
∑
j

ωj

(
u− aj (Lj)U (cj , hj)

(
Lj
L

)−σ)

−
∑
j

p∗j

(∑
i

djiQji −M
1

κ−1

j (zj (Lj)Lj − FjMj)

)

−
∑
j

P ∗j (Ljcj −Q (Q1j , .., QJj))−
∑
j

R∗j (Ljhj −Hj)−W

(∑
j

Lj − L

)
+ ... (A.7)

Relative to Definition 2, now the planner also chooses the number of firms Mj in each location and faces the constraint

(A.2) instead of (7). Entry is efficient since the first-order condition with respect to Mj implies (A.5). As a result,

the market clearing constraint in the second line of (A.7) can be replaced by (A.6). The resulting planning problem

is equivalent to Definition 2 applied to the economic geography model in Section 3.4 under the production function

Ỹj (Lj) in (A.1).

B Data Appendix

We detail the construction of the variables used to implement the counterfactuals. We rely on four primary

data sources: i) BEA regional economic accounts, CA4 Personal Income and Employment by Major Component

(https://www.bea.gov/regional/downloadzip.cfm); ii) estimates of disposable income by MSA from Dunbar (2009)

based on BEA regional economic accounts;52 iii) March CPS based on the IPUMS-CPS, ASEC 2007-2012 samples

and iv) IPUMS-ACS, 2007-2012 samples.

B.1 Appendix to Section 4.1 (Data)

MSA-Level Outcomes We first extract from Dunbar (2009) the following information: population, personal

income, and personal taxes paid by MSA, in 2007. To split personal income by source of income, we merge this data

with the BEA Regional Economic Accounts. We compute the share of personal income corresponding to each possible

51The definition of the competitive allocation can dispense with the wage Wj , which can be determined residually
from (A.4).

52https://www.bea.gov/papers/xls/dpi msa working paper 2001 2007 results.xls
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source: labor income, capital income, and transfers. Specifically, we measure labor income as BEA’s earning by place

of work ;53 capital income as the sum of proprietor’s income, and dividends, interests and rents; and transfers as

current transfer receipts.54 Combining these shares with the total personal income and taxes by MSA from Dunbar

(2009) provides us with a measure of labor income, capital income, transfers and taxes at the MSA level.

Break-Down By Skill Group We split these totals at the MSA level into two groups, high skill and low

skill. To that end, we use the ACS data, part of the Integrated Public Use Microdata Series (Flood et al., 2017), for

the years 2007-2012. The ACS reports, at the individual level: labor income, capital income, government transfers,

MSA of residence, and level of education. Consistent with Diamond (2016), we define as high skill those workers who

have completed 4 years of college or more; and as low skill those who have completed less than 4 years of college or

not gone to college. We aggregate individual level data from the ACS to the MSA-group level, to get an MSA-level

estimate of capital income, labor income and transfers by group, as well as the population of both groups.55 We

follow a similar procedure to compute taxes paid by group and city, using the taxes reported in the March CPS.56

As the MSA aggregates from individual-level data might be noisy, we use this information to construct the shares

of the MSA-level outcomes from the BEA corresponding to each group of workers. For each MSA i, we compute

sLi =
X̃Li

X̃Li +X̃Hi
where X̃θ

i denotes capital income, labor income, transfers, taxes or population in the census data

corresponding to group θ in city i. We use the share sLi , together with the MSA-level dataset for income described

above, to build our measure Xθ
i = Xis

θ
i of MSA-group level population, labor income, capital income, transfers, and

taxes. We also compute the corresponding per-capita measures for each MSA-group: xθi =
Xθi
Lθi

.

Controlling for Heterogeneity within Groups We purge the raw data described above from composi-

tional effects across MSAs. We use the ACS data to obtain the share of individuals with the following characteristics

for each MSA-skill group: age by bins: <20, 20-40, 40-60, >60; detailed level of educational attainment: less that 8th

grade, grade 9-12, some college (those are relevant for the low skill group) and bachelor, masters or professional degree

(for the high skill group); share black; share male; share unemployed; share out of the labor force; and share working

in manufacturing, services, or agriculture. We also use hours worked per capita as a control. We then proceed as

follows: denoting by xθi the per-capita measure in MSA i and group θ we constructed above, we run the following

MSA level regression, separately for each group θ:

xθi = xθ0 +
∑
j

βθjDEM
θ
ij + εθi , (A.8)

53The BEA’s earning by place of work is comprised of: wages and salaries, supplements to wages and salaries,
proprietor’s income, net of contributions for government social insurance, plus adjustment for residence.

54Current transfer receipts is defined as the sum of government social benefits and net current transfer receipts
from business (https://www.bea.gov/glossary/glossary p.htm).

55One may be worried that the ACS transfers measure suffer from under-reporting (Meyer et al., 2009). An
alternative way to compute transfers is to use an accounting approach. If one allocates social security (old age) to
65+ in proportion of labor earnings, Medicare in proportion of +65 individuals, and the remaining transfers (including
Medicaid, UI, VA) to low skill only, we obtain a measure of transfers per capita with a very high correlation (0.96)
with the one we use.

56Specifically, in the ACS, we aggregate the following categories to measure capital income: income from inter-
est, from dividends, from rents. We aggregate the following categories to measure labor income: wage and salary
income, non-farm business income, farm income, income from worker’s compensation, alimony and child support.
We aggregate the following categories to measure transfers: welfare income, social security income, income from SSI,
income from unemployment benefits, income from veteran’s, survivor’s, disability benefit, income from educational
assistance. We aggregate the following categories in the CPS to measure taxes paid: federal income tax liability, after
all credits, and state income tax liability, after all credits.
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where DEMθ
ij is the demographic variable j enumerated above in MSA i and group θ.We then adjust the observed

xθi from compositional differences across cities by expressing it as a deviation from the population mean:

x̃θi ≡ xθi −
∑
j

β̂θj

(
DEMθ

ij −DEMθ
j

)
(A.9)

where β̂θj is the estimate from (A.8) and DEMθ
j ≡ 1

I

∑
iDEM

θ
ij .

57 The corresponding MSA-level variable is x̃θiL
θ
i .

The resulting data is our MSA-group level dataset, where X stands for labor income, capital income, transfers and

taxes.

Expenditure per Capita We construct expenditure by group and by MSA, xθi in the model, as disposable

income by group. Disposable income is

xθi = wθi − τθi + ωθi + bθΠH . (A.10)

The variables
{
wθi , τ

θ
i , ω

θ
i

}
, respectively labor income per capita, tax paid per capita, and transfer received per capita,

are directly taken from the BEA/ACS dataset constructed above. We measure bθ as the average fraction of national

capital income owned by each type θ worker in BEA/ACS dataset. This step gives bSLS = 0.52 and bULU = 0.48.

Finally, we set a value for national profits and returns to land ΠH that is consistent with the general equilibrium

of the model. Using profit maximization and market clearing in the non-tradeable sector we obtain the following

expression for ΠH as function of calibrated elasticities and observable outcomes:

ΠH =
(1− αC)

∑
i

dH,i
dH,i+1

∑
θ L

θ
i

(
wθi − τθi + ωθi

)
1− (1− αC)

∑
i

dH,i
dH,i+1

∑
θ b
θLθi

. (A.11)

Using xθi we then construct Xi (aggregate expenditure by MSA) as Xi =
∑
Lθix

θ
i and sX,θj (share of expenditures by

type within MSA). Following these adjustments, we still must ensure that the sum of transfers paid by the government

equal the sum of taxes levied, as we have assumed in the model. To that end, we scale all transfers uniformly so that

they add up to the sum of taxes.58

Traded and Non-Traded Sectors We need data on the relative size of the non-traded sector in each city

to calibrate the labor shares by sector. The ACS data also reports the sector of activity of workers. We measure at

the MSA level the share of workers who work in the non traded sector by counting all workers in the following NAICS

sectors: retail, real estate, construction, education, health, entertainment, hotels and restaurants. This measure is

not group-specific. To remove unmodeled heterogeneity in this measure, we compute a series of MSA-level socio-

demographic characteristics, as above, and regress the share of workers in the non-traded sector on these demographic

characteristics. We compute, as above, the predicted share of workers in the non-traded sector in each city, assuming

that demographic characteristics of the city are at the nationwide mean.

Trade Shares We need data on trade shares between MSAs, sMij and sXij (import and export shares). These

flows are observed in the CFS data, but not at the finer geographic level that we consider here (MSA). Therefore,

we adapt the procedure in Allen and Arkolakis (2014), whereby the import shares from the CFS data are used to

parametrize the elasticity of trade with respect to distance. In particular, the model implies the following expression

57I.e., we define x̂θi ≡ x̂θ0 +
∑
j β̂

θ
jDEM

θ
j + ε̂θi , where ε̂θi is the estimated residual from (A.8).

58This step implies that transfers are uniformly scaled down by 35%. The fact that total taxes and transfers do
not match in our dataset comes in part from having removed heterogeneity that is not place-specific from the data,
and in part from our treatment of capital to be consistent with the model-based sources of capital income, which
only include profits from housing rents.
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for share of location i’s imports originating from j:

sMji =

dji
Pi

W
1−bIY
j P

bIY
j

zj

1−σ

≡
(
djiδ

D
j δ

O
i

)1−σ
, (A.12)

where δOi and δDj are origin and destination fixed effects. We assume that trade costs have the form ln dji =

ψ ln distji + eji, where distji is the great circle distance between MSAs j and i. We the use Allen and Arkolakis

(2014) estimate for ψ and set trade costs to dji = distψji. We then construct the smoothed import shares sMji between

MSAs using (A.12). To that end we must obtain the values of {δDj , δOi }, which are uniquely pinned down, up to a

normalization, by considering the identity that sales equals income,

pjYj =
∑
i

sMjiEi, (A.13)

together with equation (A.12) and the definition of the price index, leading to:(
δOi

)σ−1

=
∑
j

(
djiδ

D
j

)1−σ
. (A.14)

Plugging (A.12) and (A.14) in (A.13), we get a system N equations in N unknowns, which we solve to recover

{δDj , δOi } and in turn sMji . The export shares are then constructed using sXji ≡
(

Ei
pjYj

)
sMji , where spending Ei and

traded income pjYj .

B.2 Appendix to Section 4.2 (Calibration)

Intermediate Input Shares We provide details about the calibration of the intermediate input share in

non-traded goods. We use the following equilibrium relationship from the market clearing condition in the non

traded sector in city j:

1− bIH,j =
WjN

H
j

(1− αC)Xj
(1 + dH,j) . (A.15)

We compute this expression using the observed wage bill of workers in non-traded sectors WjN
H
j and total expenditure

Xj described in the previous subsection, and our calibrated values for αC and dH,j described in Section 4.2.

Efficiency Spillover Elasticities The standard estimate of city-level spillovers reviewed by Combes and

Gobillon (2015) are obtained from a regression of average city wages wj on city population Lj . In log-changes, such

an equation would take the form: ŵj = γP L̂j +ψj , where ψj is a city effect and γP is the city-level spillover elasticity.

In our environment, city-level wages are wjLj = NjWj . Under the assumptions of the quantitative model, applying

(A.58), an exogenous shift in the total population of city j keeping its composition across groups constant would then

imply:

ŵj =
[
sW,Sj

(
γPS,S + γPU,S

)
+
(

1− sW,Sj

)(
γPS,U + γPU,U

)]
L̂j + Ŵj , (A.16)

where sW,Sj is the share of skilled workers in wages in city j. Hence, through the lens of our model, the coefficient γP es-

timated at the city level in the empirical literature would correspond to sW,S
(
γPS,S + γPU,S

)
+
(

1− sW,S
) (
γPS,U + γPU,U

)
,

where sW,S is the average skilled worker share across cities. Therefore, we uniformly normalize the distribution of the

γPθ,θ′ coefficients such that, under their scaled values, sW,S
(
γPS,S + γPU,S

)
+
(

1− sW,S
) (
γPS,U + γPU,U

)
= γP . We set

γP = 0.06, which is consistent with the standard estimate for the U.S. from Ciccone and Hall (1996), and sW,S = 0.49

as observed in our data.

Having chosen the level of the γPθ,θ′ coefficients, we must still choose their distribution. Under the assumptions

of the quantitative model, the labor demand condition (17) gives the following expression for the log wage of type-θ

worker:

lnwθj =
[
ρ
(

1 + γPθ,θ

)
− 1
]

ln
(
Lθj

)
+ ργPθ′,θ ln

(
Lθ
′
j

)
+ lnWj − (ρ− 1) lnNj + ln εθj , (A.17)
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where ln εθj = ρ lnZθj captures productivity shocks at the worker-city level. In data generated by this model and

expressed in differences over time, we would have

∆ lnwθj =
[
ρ
(

1 + γPθ,θ

)
− 1
]

∆ ln
(
Lθj

)
+ ργPθ′,θ∆ ln

(
Lθ
′
j

)
+ ∆κj + ∆ ln εθj , (A.18)

where ∆κj = ∆ lnWj − (ρ− 1) ∆ lnNj is a city effect. We can use (A.18) to map estimates from Diamond (2016).

Specifically, she estimates equations (27) and (28) in her paper using Bartik shocks as instruments. The only difference

between these equations in her paper and (A.18) is the fixed effect ∆κj here. Assuming that the inclusion of the fixed

effect ∆κj would not alter Diamond (2016) estimates, we can directly map her estimates from Column 3 of Table 5,

i.e. ρ
(
1 + γPS,S

)
− 1 = 0.229, ργPU,S = 0.312, ρ

(
1 + γPU,U

)
− 1 = −0.552, ργPS,U = 0.697.

The elasticities resulting from this procedure are reported in the first row of Table A.1. The second row reports

the coefficients from an alternative parametrization used in the quantitative section where we target γP = 0.12

instead of γP = 0.06.

Parametrization γPUU γPSU γPUS γPSS

Benchmark 0.003 0.044 0.020 0.053

High Efficiency Spillover 0.007 0.087 0.039 0.106

Table A.1: Alternative Parametrizations of Efficiency Spillovers

Amenity Spillover Elasticities Diamond (2016) reports estimates for equation (31) in her paper, which

(using our notation for the variables in common with her analysis) has the form:

∆ lnLθj = aθ0∆ ln

(
wθj
Pj

)
+ aθ1∆ ln

(
Rj
Pj

)
+ aθ2∆ ln

(
aDj

)
+ ∆ξθj , (A.19)

where aDj ≡
(
LSj /L

U
j

)γa
is the endogenous component of amenities in her analysis59 and (a0, a1, a2) are estimated

coefficients. Column (3) of Table 5 of Diamond (2016) reports the following estimates:
(
aU0 , a

S
0 , a

U
2 , a

S
2 , γ

a
)

=

(4.026, 2.116, 0.274, 1.012, 2.6). We generate equation (A.19) in our setup and match the coefficients from our model

to these estimates. For generality, we do so allowing for idiosyncratic preference draws within each type as in Section

3.5 (i.e., assuming σθ > 0). The labor-supply equation implied by (34) is

σθ lnLθj = ln

(
xθj
Pj

)
− (1− αC) ln

(
Rj
Pj

)
+ ln

(
aθj

)
+
(
σθ lnLθ − lnuθ

)
. (A.20)

Let ζA,S = γa and ζA,U = −γa, and then redefine our amenity index aθj for θ = U, S in (45) as a function of

the amenity index aDj from Diamond (2016) as follows: aθj = Aθj
(
Lθj
)γAθ,θ−βa,θζA,θ aDj , where βa,θ ≡

γA
θ′,θ
ζA,θ

′ is by

construction constant over θ′. Using this equivalence in (A.20), re-arranging and expressing that equation in changes

we obtain

∆ lnLθj =
1(

σθ − γAθ,θ
)

+ βa,θζA,θ
∆ ln

(
xθj
Pj

)
− 1− αC(

σθ − γAθ,θ
)

+ βa,θζA,θ
∆ ln

(
Rj
Pj

)

+
βa,θ(

σθ − γAθ,θ
)

+ βa,θζA,θ
∆ ln

(
aDj

)
+ ∆ξθj , (A.21)

59This index captures congestion in transport, crime, environmental indicators, supply per capita of different
public services, and variety of retail stores. See Table 4 of Diamond (2016).
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where ∆ξθj ≡ 1(
σθ−γAθ,θ

)
+βa,θζA,θ

(
lnAθj + σθ lnLθ − lnuθ

)
. Comparing (A.19) with (A.21) readily allows us to map

Diamond (2016) estimates to our parameters as follows:

γAθ,θ − σθ =
aθ2
aθ0
ζA,θ − 1

aθ0
, (A.22)

γAθ′,θ =
aθ2
aθ0
ζA,θ

′
(A.23)

for θ = U, S. Conditional the estimates of
(
aU0 , a

S
0 , a

U
2 , a

S
2 , γ

a
)
, we back out the value of γAθ,θ − σθ but are unable to

distinguish γAθ,θ from −σθ. Our benchmark model is presented assuming σθ = 0. However, as discussed in Section

3.5, γAθ,θ − σθ is the relevant combination of parameters to characterize optimal allocations and policies under the

definition of the planner problem with idiosyncratic preference draws defined in that section.

The resulting numbers are reported in the first row of Table A.2. The second row reports the coefficients from

an alternative parametrization used in the quantitative section where we scale all amenity spillovers down by 50%

relative to the benchmark. The third and fourth rows report parametrizations that, instead the coefficient γa = 2.6

reported in Column (3) of Table 5 of Diamond (2016), use that point estimate plus or minus the standard deviation

reported in that table, respectively.

γAUU γASU γAUS γASS

Benchmark -0.43 0.18 -1.24 0.77

Low amenity spillover -0.21 0.09 -0.62 0.38

High cross-amenity spillover -0.46 0.22 -1.51 1.04

Low cross-amenity spillover -0.39 0.14 -0.97 0.50

Table A.2: Alternative Parametrizations of Amenity Spillovers
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C Additional Figures and Table to Section 5.1

x

Figure A.1: Optimal Transfers as a Function of Labor Income.

Note: each point in the figure corresponds to an MSA-skill group pair. The black line is a non-linear polynomial fit
of the net transfer relative to the wage as a function of the average wage.

Figure A.2: Optimal Growth in Skill Share versus Initial Skill Share
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Note: each point in the figure corresponds to an MSA. The figure shows unweighted and initial population-weighted
non-parametric curves. The 10 largest cities in the initial allocation are shown as red squares.

D Alternative Model Specifications

For each alternative specification we first discuss how the system (A.51) to (A.63) in Appendix Section A.7 used

to solve for the optimal allocation is modified. In each case, we only refer to the equations that are modified compared

to the baseline. We then describe for each case the details of the calibration.
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D.1 Homogeneous Workers

Model The system (A.51) to (A.63) remains the same but is applied for the case of only one skill type.

Calibration We use the same aggregate MSA-level variables constructed for the case with heterogeneous workers.

To determine the spillover elasticities, we set one-group elasticities
(
γA, γP

)
to the value that would be estimated

through the lens of the labor supply and demand equations of the single-group model, if one were to use an MSA-level

dataset generated by the model with heterogeneous groups and elasticities
{
γPθ′,θ

}
and

{
γPθ′,θ

}
calibrated above. This

procedure by construction delivers γP = 0.06, equal to the value drawn from Ciccone and Hall (1996). To set γA we

note that under a single worker type, the labor-supply equation implied by (14) expressed in time differences becomes

∆ lnLj = − 1

γA

(
∆ ln

(
xj
Pj

)
− (1− αC) ∆ ln

(
Rj
Pj

))
+ ∆ξj (A.24)

where ∆ξj includes changes in aggregate labor supply and exogenous components of amenities, Aj . In turn, under

multiple worker types, the labor supply equation at the city level results from aggregating the supply of multiple

workers:

∆ lnLθj = −
∑
θ

sL,θj
γAθ,θ

(
∆ ln

(
xθj
Pj

)
− (1− αC) ∆ ln

(
Rj
Pj

))
−
∑
θ

sL,θj
∑
θ′ 6=θ

γAθ′,θ
γAθ,θ

∆ lnLθ
′
j + ∆ξθj (A.25)

where ∆ξθj includes changes in the labor supply of type-θ workers and in the exogenous component of amenities,

Aθj . We can draw an equivalence between the aggregate elasticity that would be estimated assuming homogeneous

workers (i.e., using (A.24)) when the true model includes heterogeneous workers, so that the data is generated by

(A.25). In the latter, assuming a shock that exogenously changes population and expenditure per capita in the same

proportion for every worker, aggregating the labor supplies by skill we obtain:

L̂j =

−
∑
θ

s
L,θ
j

γA
θ,θ

1 +
∑
θ

∑
θ′ 6=θ

s
L,θ
j γA

θ′,θ
γA
θ,θ

(x̂j − P̂j − (1− αC)
(
R̂j − P̂j

))
+ ∆ξj , (A.26)

where sL,θj is the share of type θ workers in j and ∆ξj ≡
∑
θ s

L,θ
j ∆ξθj . Comparing (A.24) with (A.26), we obtain that,

at the average share of type-θ workers in the economy sL,θ = 1
J

∑
j s
L,θ
j , the coefficient that would be recovered is:

γA =
1 +

∑
θ

∑
θ′ 6=θ

s
L,θ
j γA

θ′,θ
γA
θ,θ∑

θ

s
L,θ
j

γA
θ,θ

. (A.27)

When implementing the model with a single worker type we use this expression to determine γA. This procedure

delivers an aggregate amenity elasticity of γA = −0.19.
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Figure A.3: Optimal Transfers and Reallocation under Homogeneous Workers

Note: This figure shows the transfer per worker relative to the wage in the optimal allocation and in the data. As

implied by Section 3.3, the optimal net transfer relative to the wage takes the form
tj
wj

= s+ T
wj

for s = γP+γA

1−γA . The

solid lines shows the relationship
tj
wj

= a+ b 1
wj

under parameters a and b that correspond to the best fit in an OLS

regression.

Figure A.4: Gains from Optimal Policies given Different Initial Equilibria under Homogeneous
Workers

Note: We simulate laissez-faire equilibria with no government transfers under different fundamentals such that the
joint distribution of wages and city sizes differs from the data in terms of the variance of the wage distribution across
MSAs and the correlation between wages and city sizes across MSAs. In all the equilibria the distribution of city
sizes has the same variance as in the data. Correlation and variances are reported in relative terms compared to
the data. For each variance-correlation combination we draw 400 random distributions of wages and city sizes, and
report the mean welfare gains from implementing optimal policies across these simulations.

D.2 Land Regulations

Model The system changes as a function of the distortion in the initial equilibrium,τHj and its change in a

counterfactual ˆτHj . Equation A.53 becomes

NH
j

Nj

(
X̂j
)1−τHj

ˆτHj

((1− αC)Xj)
τHj

(
ˆτHj −1

) +

(
1−

NH
j

Nj

)
ŴjN̂Y

j = ŴjN̂j for all i.
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Equations (A.55) and (A.56) become

ÊYj =

αC +
bIH,j

1+dH,j
(1− αC)

(
(1− αC)XjX̂j

)−τHj ˆτHj

αC +
bI
H,j

1+dH,j
(1− αC) ((1− αC)Xj)

−τHj

(1− b̃IY
)
X̂j + b̃IY

(
p̂j Ŷj

)
(A.28)

and

˜bIY,j =
bIY(

αC +
bI
H,j

1+dH,j
(1− αC) ((1− αC)Xj)

−τHj

)
Xj
pjYj

+ bIY

. (A.29)

Finally, (A.62) becomes:

R̂i =

p̂i 1−bIH,i
1−bI

Y,i P̂i
bIH,i−b

I
Y,i

1−bIH,i
1−bI

Y,i X̂i
dH,i


1

1+dH,i

. (A.30)

Calibration Diamond (2016) decomposes the housing supply elasticity between a part driven by geography γgeoj

and a part driven by regulation γregj for each city j. The mapping to our model is: γgeoj + γregj =
dH,j+τ

H
j

1−τHj
, so that

we set:

τHj =
γregj

1 + γregj

,

dH,j = γgeoj

(
1− τHj

)
.

The tax rate on sales RjHh paid by non tradable producers is 1 − 1
1−τH,j

(RjHj)
−τH,j . To calibrate scale of the

tax, we normalize the scale of RjHh so that the tax share of housing expenditures equals 10%. We have checked

that results are fairly insensitive to the specific value of this re-scaling. We assume revenues from the tax on housing

are rebated to firms. This assumption implies that the tax rate only distorts housing supply without distorting any

additional margin. The rest of the model is calibrated following the same steps as in the benchmark except for a few

steps. Specifically, we must recompute the total profits made by firms ΠH :

ΠH =
∑
j

(1− αC)Xj

[
1− 1(

dHj + 1
)

((1− αC)Xj)
τHj

]
,

where

Xj =
∑

wθjL
θ
j + ΠH +

∑(
τθj − T θj

)
Lθj .

The values of Xj and ΠH are calibrated so that these equations hold. In addition, the calibration of the non traded

shares is amended to:

1− ηiH,I =
1 + dH,j
1− αC

(
WjN

NT
j

Xj

)
((1− αC)Xj)

τHj .

The rest of the calibration is unaffected.

D.3 Production with 3 Skill Groups

Model We continue to assume the same structure for the spillovers as in our benchmark case, on the basis of

U = {L,M} and S = {H} types, so that (44) and (45) now become:

zθj = Zθj

(
LUj + LMj

)γPU,θ (
LHj

)γPS,θ
, (A.31)

aθj ≡ Aθj
(
LUj + LMj

)γAU,θ (
LHj

)γAS,θ
, (A.32)
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where we have noted, for j = P,A, γjU,θ = γjU,U and γjS,θ = γjS,U for θ = {L,M}, γjU,θ = γjU,S and γjS,θ = γjS,S for

θ = {H}. Following similar steps as in the benchmark model, the total number of efficiency units (A.58) becomes

N̂i =

∑
θ∈{U,H}

(
wθiL

θ
i

)
/δ∑

θ∈{U,H}
(
wθiL

θ
i

)
/δ + wMi L

M
i

(
ˆNUH
i

)δ
+

wMi L
M
i∑

θ∈{U,H}
(
wθiL

θ
i

)
/δ + wMi L

M
i

ˆzMi L̂
M
i , (A.33)

where ˆNUH
i is the change in the efficiency units supplied by low and high skill workers:

ˆNUH
i =

[
wUi L

U
i∑

θ′∈{U,H} w
θ′
i L

θ′
i

(
ˆzUi L
U
i

)ρ
+

wMi L
M
i∑

θ′∈{U,H} w
θ′
i L

θ′
i

(
ˆzMi L
M
i

)ρ] 1
ρ

. (A.34)

In turn, the spillover functions (A.59) and (A.61) become:

ẑθi =
(
L̂Uj

)γPU,θ (LMj
LSj

L̂Mj +
LHj
LSj

L̂Mj

)γPS,θ
, (A.35)

âθi =
(
L̂Uj

)γAU,θ (LMj
LSj

L̂Mj +
LHj
LSj

L̂Mj

)γAS,θ
. (A.36)

Figure A.5: Change in Population by Skill Group (3 skills)

Calibration To calibrate this version of the model, we extend our dataset to 3 skill groups. Using the same

procedure as described in the main text, we build a Census/BEA dataset for three skill group. We define L as low-skill

workers, with no college education; M as medium-skill workers, with some college education; and H and high-skill

workers, with 4 years of college or more. To calibrate the production function parameter, we follow Eeckhout et al.

(2014). We use the same value of ρ as in our benchmark calibration (ρ = 0.392) and back out δ using the same

formula as in Eeckhout et al. (2014), which gives λ = 1.124.60 The rest of the calibration is unchanged.

60See Eeckhout et al. (2014), section VIII. Quantifying the Production Technology. Given a value for ρ (denoted
γ in Eeckhout et al. (2014)), equation (A27) of their Appendix A gives the expression for λ, as a function of ρand of
summary statistics from the data on wages and population by skill group.
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D.4 Imperfect Mobility

Model In this case, the type θ = (s, o) indexes both skill and origin. City amenity and productivity are now not

only skill- but also origin-specific:

zs,oj = Zs,oj
∏

s′∈{U,S}

(∑
o∈O

Ls,oj

)γP
s′,s

(A.37)

as,oj = As,oj
∏

s′∈{U,S}

(∑
o∈O

Ls,oj

)γA
s′,s

(A.38)

In production, we further assume that workers from the same origin are perfect substitutes in production. Specifically,

rather than (43) we now impose

Nj =

 ∑
s∈{U,S}

(∑
o∈O

zs,oj Ls,oj

)ρ 1
ρ

.

Following similar steps as in the benchmark model, the total number of efficiency units (A.58) becomes

N̂i =

 ∑
s∈{U,S}

(∑
o∈O w

s,o
i Ls,oi

WiNi

)(
N̂s
i

)ρ 1
ρ

(A.39)

where the change in the efficiency units supplied by workers with skill s is

N̂s
i = ẑsi

∑
o∈O

(
ws,oi Ls,oi∑
o′ w

s,o′
i Ls,o

′
i

)
ˆLs,oi . (A.40)

The spillover functions (A.59) and (A.61) take the same form as before, where now the change in the number of

workers in skill group s is:

L̂sj =
∑
o∈O

(
Ls,oj
Lsj

)
ˆLs,oj . (A.41)

Finally, (A.60) becomes:

ˆus,o =
(

ˆLs,oj

)−σs
âsj

ˆxs,oj

P̂j
αC
R̂j

1−αC
. (A.42)

Calibration The ACS reports the state of birth. To limit computational burden, we use as origin the region of

birth corresponding to one of five Census regions (NW,SW,NE,SE and foreign-born). For each MSA, we compute the

share of workers born in each of these 5 regions, and the corresponding share of total wages. We then split the total

population and wage bill for each skill group and MSA (as calibrated in the benchmark) into these 5 regions of origins

using these shares. We assume that total disposable income for each skill and MSA, as calibrated in the benchmark

exercise, is split into recipients from these 5 regions according to their share of the wage bill. To calibrate the Frechet

parameter that governs idiosyncratic preferences for location we use a value of σ = 1/3, which corresponds to a

median value across existing estimates reported in Fajgelbaum et al. (2018). The rest of the calibration is unchanged.

D.5 Other specifications

Expenditure vs wage The calibration that ignores the transfers in the data and sets worker expenditures

equal to income simply sets xθj = wθj and tθj = 0.
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Local ownership of fixed factors Under the assumption that land ownership is local, we construct expen-

diture by group and by MSA, xθi in the model, similarly to Equation A.10, except that now profits are city-specific:

xθi = wθi − τθi + T θi + bθΠH
i . (A.43)

The local returns to land ΠH
i that are consistent with the general equilibrium of the model are:

ΠH
j =

(
γHi

γHi + 1

)
(1− αC)Xi,

whereXi =
∑
θ x

θ
i is total final expenditure in the city. We combine these expressions, to calibrateXi =

∑
θ(w

θ
i−τ

θ
i +Tθi )Lθi

1−
(

γH
i

γH
i

+1

)
(1−αC)

,

where
{
wθi , τ

θ
i , T

θ
i , L

θ
i

}
are taken from the data. The rest of the procedure is unchanged.

Assuming away trade costs Absent trade costs, the price of tradables is the same in all cities. All desti-

nation cities buy the same share of output coming from various origin cities. In particular, the share of location i’s

imports originating from j is proportional to total output of j Yj , so that:

sMji =
Yj∑
k Yk

, (A.44)

The export shares are then constructed using sXji ≡
(

Ei
pjYj

)
sMji , where spending Ei and traded income pjYj .

Complementarity vs spillovers In the baseline calibration, we also explore results for alternative values

for the complementarity between H and L, captured by the elasticity of substitution parameter ρ. The weaker the

complementarity parameter, the stronger the calibrated values of the cross-productivity spillovers. Table A.3 shows

the welfare gains corresponding to different values of ρ, recalibrating the productivity spillovers each time. The first

row is the baseline. The second row takes a complementarity parameter twice as small as in the baseline. The third

row takes an elasticity of substitution twice as small as in the baseline. The last row take a very low value for the

complementarity parameter, proxying for the limit case ρ = −∞. The stronger the productivity spillovers, the less

congestion there is to correct for in the economy. As a result, welfare gains decrease when productivity spillovers get

stronger.

Table A.3: Gains for Different Substitution Elasticities

Specification Elasticity of substitution Welfare Gain (%)

ρ = 0.392 1.65 4.0

ρ = 0.392/2 1.25 3.9

ρ = −0.216 1.65/2 3.7

ρ = −10 0.09 2.4
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