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Casey B. Mulligan
University of Chicago
Department of Economics
1126 East 59th Street
Chicago, IL  60637
and NBER
c-mulligan@uchicago.edu



 1 

Econometrics has been profoundly affected by progress in information technology 

that has facilitated the collection and processing of vast amounts of data related to 

economic activity. Deducing theoretical conclusions remains critical in almost every field 

of the profession, but so far has received less assistance from technology.  There are 

automatic algebraic simplifiers, but simplicity is often in the eye of the beholder.  

Computers have already been used for generating numerical examples and Monte Carlo 

simulations, but approximation quality is a concern, and more thinking is always needed 

to appreciate the generality of the results from examples. The purpose of this paper is to 

show how approximation-free econometric reasoning is beginning to be automated, 

present the mathematical foundations of those procedures, and allow readers of this paper 

to access a user-friendly tool for automated reasoning. 

Deductive reasoning can be described as a process of quantifier elimination (QE), 

and has been described that way by mathematicians and logicians since the nineteenth 

century.
1
  Merely as a way of describing reasoning rather than an alternative engine for 

doing it, QE has historically been of little interest in economics, statistics, and related 

fields.  However, mathematics and computer science have more recently invented, 

improved and implemented algorithms for quantifier elimination and thereby methods for 

automated reasoning.  Section I therefore introduces, to an econometrics audience, 

quantified systems of polynomial equalities and inequalities, and their quantifier-free 

equivalents, as defined in real algebraic geometry.  Section II notes the parallels between 

QE, projection, and the satisfiability problem in computer science.  These parallels are 

helpful for discovering ways that QE can be used in econometric analysis. 

At first glance, automated QE methods appear too specialized for many 

econometrics problems, especially the nonparametric ones, because their polynomial 

structure can be subtle.  Here the notion of partially interpreted functions is especially 

helpful for discovering that structure and therefore making use of automated QE.  Section 

III introduces partially interpreted functions and uses them to apply QE to omitted 

variable bias, partial identification of the classical measurement error model, comparative 

statics in the nonparametric Roy model, and point identification in discrete choice 

models.  In other words, the polynomial framework is not nearly as restrictive as it first 

                                                
1
 DeMorgan (1862) is an early reference. 
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appears.  Results from mathematicians Tarski, Collins, and followers – shown in Section 

IV – speak to the feasibility of, and algorithms for, eliminating quantifiers from systems 

of polynomial equality, inequality, and not-equal relations (hereafter “polynomial 

inequalities”) and thereby for confirming, refuting, and developing many hypotheses in 

econometrics.  Section V points readers to existing software implementations of QE 

methods. 

This is the first paper to use automated QE or nonlinear software-verification 

methods to deduce conclusions for econometric models.
2
  To my knowledge, even the 

mathematics and computer science literatures have yet to treat integrals or vector dot 

products as partially interpreted functions for the purpose of applying QE or software-

verification methods; this treatment dramatically broadens the scope of applicable 

econometric models.  Mulligan (2016) treats utility and production functions as partially 

interpreted functions and uses QE algorithms to reach conclusions in economic theory.  

While noting that it can be useful to “decide whether or not a given semialgebraic set is 

contained in another one” (Kauers 2011, p. 2), those literatures give little specific 

attention to the assumption-hypothesis framework emphasized here.  That framework 

reveals how QE is a tool for, among other things, recovering missing assumptions or 

discovering True hypotheses.  Before Mulligan (2016), QE or related methods had been 

discussed, and once implemented computationally (Li and Wang 2014), in the economic 

theory literature discussed below, especially as relates to economies with utility functions 

that are polynomial in the commodities. 

                                                
2
 Software-verification tools have been used to check the software running auctions (Dennis, et al. 

2012) and financial algorithms (Passmore and Ignatovich 2017) and to confirm that auctions are 

strategy proof (Tadjouddine, Guerin and Vasconcelos 2009).  Auctions and social choice 

problems have also been studied with higher-order logic proof assistant software (Kerber, Lange 

and Rowat 2016), which falls outside the Tarski framework used in this paper and requires users 
to manually guide the proof environment and strategy. 
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I.  Sets and hypotheses represented with and without quantifiers 

I.A.  Semi-algebraic sets defined with quantifiers 
 

 The general framework has N <  real scalar variables x1, …, xN.  A quantified 

representation of a set, QR, is a “Tarski formula” in the N variables with NF of them 

quantified and the remaining 0  F < N free (unquantified): 

 

𝑄𝑅 = (𝑄1𝑥1)(𝑄2𝑥2) … (𝑄𝑁−𝐹𝑥𝑁−𝐹)𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) 

𝑄𝑖 ∈ {∀, ∃}  𝑖 = 1, … , (𝑁 − 𝐹) 
(1) 

 

where any “Tarski formula” T by itself is a quantifier-free Boolean combination, with the 

logical And () and Or () operators, of a finite number of polynomial (in x1, …, xN) 

inequalities.
3
  For brevity I also use the Negation (¬) operator, which merely refers to 

reversing an inequality (or changing = to ), and the Implies () operator, which is a 

shorthand for a Boolean combination of Or and Not.
4
  There are two possible quantifiers: 

existential “Exists” () and universal “ForAll” (). 

Of particular interest are universal and existential formulations that have the same 

quantifier on each of the NF variables.  In these cases, I show the quantifier only once 

and list the quantified variables in braces: 

 

(𝑄𝑥1)(𝑄𝑥2) … (𝑄𝑥𝑁−𝐹)𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) ≡ 𝑄{𝑥1, 𝑥2, … , 𝑥𝑁−𝐹}𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) (2) 

 

Hypotheses formulated with only one kind of quantifier, e.g., (2), have the same meaning 

regardless of the order of the quantifiers.  Moreover, every universal formulation can be 

expressed as an existential formulation, and vice versa:
5
 

 

¬∀{𝑥1, 𝑥2, … , 𝑥𝑁−𝐹}𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) = ∃{𝑥1, 𝑥2, … , 𝑥𝑁−𝐹}¬𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) (3) 

 

                                                
3
 C.W. Brown (2004, 2).  The set represented by a Tarski formula is known as semi-algebraic. 

4
 𝐴 ⇒ 𝐻 is equivalent to ¬𝐴 ∨ 𝐻. 

5
 (3) is known as “De Morgan’s law for quantifiers.” 
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If, for given values of the free variables, the Tarski formula is not True on all of ℝ𝑁−𝐹, 

then there exists at least one point in ℝ𝑁−𝐹 where the Tarski formula is False, and vice 

versa.  The order-invariance and quantifier-interchangeability properties of universal and 

existential formulations offer many opportunities for facilitating and verifying 

computation. 

 

I.B.  Quantifier elimination and deductive reasoning 
 

We are interested in a quantifier-free representation of the same set QR.  

Formally, 

 

𝑄𝑅 = 𝑃(𝑥𝑁−𝐹+1, … , 𝑥𝑁) (4) 

 

where P is another Tarski formula (distinct from the T appearing in QR), and therefore a 

quantifier-free Boolean combination of a finite number of polynomial inequalities.  Real 

quantifier elimination (QE) refers to an algorithmic method that derives P from QR.  The 

existence of such a P, and the existence of a single quantifier-elimination algorithm 

applicable to all quantified formulae, is guaranteed as a special case of Tarski’s famous 

proof.  QR is therefore a semi-algebraic set, too.
6
 

Because the quantified variables are absent from the result of QE, QE is 

sometimes called “eliminating a variable” (from a system of polynomial inequalities), 

especially when the quantifiers are existential.
7
  If there are no free variables (F = 0), QR 

is known as a “sentence” and P must be either 1 = 1 (True) or 1 = 0 (False). A decision 

method is a quantifier-elimination method for sentences: it decides whether a sentence is 

True or False. 

 Deductive reasoning in econometrics and other fields involves deciding whether a 

hypothesis H is implied by a set of assumptions A.  If H and A were each semi-algebraic 

sets, then we could decide two existential sentences: 

                                                
6
 Tarksi made the proof in 1930 (Caviness and Johnson 1998, p. 1), but the result was not 

published until Tarski (1951) 
7
 Another branch of elimination theory deals with equations only, where Grobner-basis methods 

are frequently used (Cox, Little and O'Shea 2007). 
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(i) Does there exist an example: a point 𝑣 ∈ ℝ𝑁 that is in both A and H? 

(ii) Does there exist a counterexample: a point 𝑣 ∈ ℝ𝑁 that is in both A and ¬𝐻?   

 

where I use v here and throughout the paper to denote a vector, as distinct from scalars 

that are denoted x1, x2, etc.  Four results are possible, as summarized in Table 1.  Should 

technology provide these two decisions automatically then the econometrician gains 

important information: either a confirmation or refutation of his theory, or the knowledge 

that his assumptions contradict.
8
 

 QE can do even more.  It can generate True hypotheses when the econometrician 

has not devised one on his own, by partitioning v into free and bound variables, f and b, 

respectively, and eliminating quantifiers from ∃𝑏[𝐴(𝑓, 𝑏)].  The result is a formula P(f) 

in the free variables that is a hypothesis deduced from A.
9
 

 QE is especially useful in the mixed case, where by definition the assumptions A 

are insufficient.  Here we can eliminate quantifiers from the set of counterexamples 

∃𝑏[𝐴(𝑓, 𝑏) ∧ ¬𝐻(𝑓, 𝑏)], which gives us a formula P(f) in the free variables.  Because 

P(f) must be True for all counterexamples, ¬𝑃(𝑓) must rule out all counterexamples.  In 

other words, conditional on the assumptions A, ¬𝑃(𝑓)  is sufficient to deduce the 

hypothesis: ∀{𝑏, 𝑓}[𝐴(𝑓, 𝑏) ∧ ¬𝑃(𝑓) ⇒ 𝐻(𝑓, 𝑏)] = 𝑇𝑟𝑢𝑒. 

Specific QE algorithms, discussed further below, have byproducts that further 

assist deductive reasoning.  As noted above, ¬∃𝑏[𝐴(𝑓, 𝑏) ∧ ¬𝐻(𝑓, 𝑏)] is conditionally 

sufficient for H, but not necessary.  A necessary and sufficient condition is 𝐴(𝑓, 𝑏) ∧

𝐻(𝑓, 𝑏), which can be informative if represented by a recursive, quantifier-free formula, 

which is exactly what is constructed by the Cylindrical Algebraic Decomposition (CAD) 

                                                
8
 Because of their relationship with proofs, deciding sentences (F = 0) is especially useful for 

automating reasoning.  This contrasts with previous discussions of quantifier elimination in 

economic theory, such as Brown and Matzkin (1996), Snyder (2000), Brown and Kubler (2008), 
Carvajal et al. (2014), and Chambers and Echenique (2016), whose purposes are to derive 

restrictions on free variables that they associate with “observables.”  Moreover, with an exception 

appearing in the appendix of Brown and Matzkin (1996), they do not intend to “carry out” the 

quantifier elimination but rather be assured that the result of doing so would be a non-empty 

semi-algebraic set in ℝ𝐹. 
9
 By construction, there can be no counterexample.  To see this, suppose otherwise: 

∃{𝑓, 𝑏}[𝐴(𝑓, 𝑏) ∧ ¬𝑃(𝑓)] = ∃𝑓{∃𝑏[𝐴(𝑓, 𝑏) ∧ ¬𝑃(𝑓)]}.  But if the intersection of those two sets 

is not empty, then neither set can be empty by itself: ∃𝑓{∃𝑏[𝐴(𝑓, 𝑏)] ∧ ∃𝑏[¬𝑃(𝑓)]} =
∃𝑓{[𝑃(𝑓)] ∧ [¬𝑃(𝑓)]}, which is impossible because P and ¬𝑃 cannot be True at the same time. 
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algorithm for QE.  Many algorithms for deciding existential sentences automatically 

provide examples for True sentences, which means that in Table 1’s mixed case we 

would have an “example” point 𝑣 ∈ ℝ𝑁 that is in 𝐴 ∧ 𝐻 and another “counterexample” 

point that is in 𝐴 ∧ ¬𝐻.
10

  All of these uses of QE  are illustrated below with specific 

examples from econometrics. 

These are some of the reasons why it can be of “enormous” practical value to 

“eliminate quantifiers” from a set’s definition: that is, to take a quantified definition of 

the form (1) and transform it into a quantifier-free one such as the Tarski formula P on 

the RHS of (4).
11

  Indeed, some artificial intelligence research equates quantifier 

elimination with the vernacular concept of “solving” a mathematics problem (Arai, et al. 

2014, p. 2). 

 

II.  QE, Projection, and Satisfiability: Illustrated with Jensen’s 

Inequality 
 

II.A. Set Projection as QE 
 

Removing existential quantifiers from the formula defining a set in ℝ𝑁  is the 

algebraic equivalent of projecting that set into the space of free variables.  If there are no 

free variables, then the decision or quantifier elimination is the algebraic equivalent of 

projecting the set onto the origin.  Specifically, an empty set has no projection on the 

origin (False) and a nonempty set has a projection on the origin (True). 

Consider the well-known result that the expectation of the square of a random 

variable with positive variance exceeds the squared expectation of that variable.  This toy 

example is unusual in exhibiting an obvious polynomial structure, but that serves the 

                                                
10

 Any QE algorithm is a useful tool for generating an example point from a semi-algebraic set.  

Existentially quantify N1 of the variables in the Tarski formula leaving free, say, x1, and then 
eliminate quantifiers.  The result is a formula in x1 alone.  Choose a real number for x1 that 

satisfies the formula and substitute that value into the original N-variable Tarski formula, making 

it an (N1)-variable Tarski formula.  Repeat the process for x2, etc., until real numbers are 

assigned to all N variables. 
11

 Caviness and Johnson (1998, p. 2). 
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purpose at the moment to further illustrate QE with free variables and relate it with 

projection.  In the two-state case, the result says: 

 

¬∃{𝑝, 𝑥1, 𝑥2} 

[0 < 𝑝 < 1 ∧ 𝑥1 ≠ 𝑥2] ∧ [(𝑝 𝑥1
2 + (1 − 𝑝)𝑥2

2) ≤ (𝑝 𝑥1 + (1 − 𝑝)𝑥2)2] 

= 𝑇𝑟𝑢𝑒 

(5) 

 

The assumption-hypothesis pair shown in (5) fits into the True entry of Table 1.  In 

general, a hypothesis can be deduced from a set of assumptions if and only if the set of 

counterexamples is empty.  That set is empty if and only if it has no projection on the 

origin. 

 In order to adapt this example to the mixed case in Table 1, let’s drop the 

assumption p < 1.  Now the Tarski formula for a counterexample is: 

 

[0 < 𝑝 ∧ 𝑥1 ≠ 𝑥2] ∧ [(𝑝 𝑥1
2 + (1 − 𝑝)𝑥2

2) ≤ (𝑝 𝑥1 + (1 − 𝑝)𝑥2)2] (6) 

 

which is True for some values of {p,x1,x2} but False for others.  The three-dimensional 

set of counterexamples described by (6) is shown in Figure 1.  We can use projection/QE 

to discover the missing assumption by eliminating existential quantifiers from (6), 

leaving p as a free variable: 

 

¬∃{𝑥1, 𝑥2}{[0 < 𝑝 ∧ 𝑥1 ≠ 𝑥2] ∧ [(𝑝 𝑥1
2 + (1 − 𝑝)𝑥2

2) ≤ (𝑝 𝑥1 + (1 − 𝑝)𝑥2)2]} 

= 𝑝 < 1 
(7) 

 

In geometric terms, the projection of the counterexamples set onto the p axis is p  1, 

which means that counterexamples are ruled out by ¬(𝑝 ≥ 1) = 𝑝 < 1.  In logical terms, 

the QE in (7) generates a new assumption p < 1 that, in combination with the previous 

ones, rules out all counterexamples, regardless of the values of x1 and x2. 
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II.B. Satisfiability as QE 
 

Deciding existential and universal sentences is an important special case of QE, 

and is closely related to the Boolean satisfiability problem in computer science, which is 

whether there are any values of the Boolean variables in a formula that make the entire 

formula True.  The inequality atoms of a Tarski formula are Boolean valued (an 

inequality is either satisfied or not), but with the added complexity that the Boolean 

values in different parts of the formula are related to the extent that the inequalities 

contain the same scalar variables.  This and related extensions to the satisfiability 

problem recently have been developed in the field of satisfiability modulo theories 

(SMT).  The specific theory of interest here is the theory of arithmetic (addition, 

subtraction, multiplication) on real numbers, known as “nonlinear real arithmetic” (NRA) 

in the SMT field (Jovanović and de Moura 2012). 

Automated SMT solvers with NRA capabilities are actively being developed (see 

www.SMT-LIB.org, and section V below) in the public domain and by major software 

companies, especially for the purpose of verifying complicated hardware and software 

systems.  System inputs from external sources are represented as scalar or Boolean 

variables and the Tarski formula describes a set of potential unintended results of (“bugs 

from”) the computation on those inputs.  The hardware or software developer uses the 

SMT solver to obtain a guarantee that those bugs cannot occur.  Because they are just 

deciding existential sentences of the type described in subsection I.B, SMT-NRA solvers 

can serve as engines for automated econometric reasoning at least to the extent that no 

free variables are needed.  In this way real algebraic geometry (projection) and computer 

science (SMT-NRA) are tackling essentially the same automated reasoning problem from 

different perspectives. 

 

 

http://www.smt-lib.org/
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III.  Using partially-interpreted functions to recognize instances of 

real quantifier elimination in econometrics 
 

We are also interested in the existence and properties of automated QE method(s), 

but first we consider some familiar hypotheses from econometrics.  At first glance many 

econometrics examples do not appear to fit into the framework (1), (4) because their 

polynomial structure is not obvious.  But the theoretical computer science notion of a 

partially interpreted function helps reveal that structure.  The integration operator (on 

integrable functions) is an important example for econometric analysis.  Another example 

is the vector dot product, which becomes a partially interpreted function when we add 

Gramian matrix restrictions to the assumption set.  See also Mulligan (2016), which 

shows how the utility and production functions used in economic theory are also usefully 

understood as partially interpreted functions. 

 

III.A.  An introduction to uninterpreted functions 
 

So far I have used integer indices to distinguish one scalar, say x1, from another 

such as x2.  Although the variables in a Tarski formula must be scalars, nothing requires 

that the indices be scalars.  The indices could be, say, names, or natural language words, 

or images.  Or the indices could be integrable functions, as in the Roy model below, or 

arbitrary-length vectors as in the sections that follow.  In other words, the variables in a 

Tarski formula can be points on any abstract mapping from objects (vectors, integrable 

functions, etc.) to the real line as long as the mapping is functionally consistent.
12

 

The notation x1, x2, etc., is also special in that the variables are distinguished with 

a single index.  The domain of the mapping could be multidimensional as with integrals 

and dot products that map pairs of indices (pairs of functions and pairs of vectors, 

respectively) to the real line.  The mapping is abstract in that it stays unevaluated as part 

of the analysis.  For this reason, such variables are sometimes called uninterpreted 

functions (Ackermann 1954, Bryant, German and Velev 1999). 

                                                
12

 E.g., xa is the same scalar as xb whenever a is the same as b. 
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Suppose that the integral ∫ sin 𝑥 ln 𝑥 𝑑𝑥
𝑏

𝑎
 appeared in our model.  The 

uninterpreted function approach is to leave this integral unevaluated, treating 

{sin 𝑥 , ln 𝑥 , 𝑎, 𝑏} as the “name” of the scalar variable that is the value of that integral and 

thereby distinguishing it from, say, ∫ cos 𝑥 ln 𝑥 𝑑𝑥
𝑏

𝑎
 and ∫ sin 𝑥 ln 𝑥 𝑑𝑥

𝑐

𝑎
.  If our reasoning 

requires some of the mathematical properties of sin and ln, then the partially interpreted 

function approach is to add restrictions on the functions, such as 

𝑏 ≥ 𝑎 ∧ ∫ sin 𝑥 ln 𝑥 𝑑𝑥
𝑏

𝑎
≤ (𝑏 − 𝑎) ln 𝑏  or ∫ sin 𝑥 ln 𝑥 𝑑𝑥

𝑐

𝑎
= ∫ sin 𝑥 ln 𝑥 𝑑𝑥

𝑏

𝑎
+

∫ sin 𝑥 ln 𝑥 𝑑𝑥
𝑐

𝑏
, to the list of assumptions (Kroening and Strichman 2008, p. 73).

13
 

 

III.B.  A comparative static in the nonparametric Roy model 
 

The nonparametric Roy model provides a practical introduction to uninterpreted 

and partially interpreted functions.  In that model, women are assumed to have (possibly 

correlated) skills h and r in market work and non-market activities, respectively. These 

skills have a population distribution modeled with the joint density function f(h,r), which 

is normalized to have unconditional means of zero. Women work if and only if their non-

market log wage r + μr is less than σh + μw, their market log wage.   > 0 is a constant 

introduced for the purposes of considering a comparative static with respect to “wage 

inequality.”  The model is “nonparametric” when no specific functional form is assumed 

for the probability density function. 

Applications of the Roy model to the female labor market are abundant in labor 

supply and econometrics, although often parametric in that f is restricted to be a bivariate 

normal density function as in the pioneering work of Gronau (1974), Heckman (1979), 

Heckman and Sedlacek (1985).
14

  Mulligan and Rubinstein (2008) also used the bivariate 

normal assumption to focus on comparative statics with respect to .  Because the 

bivariate normal density function is not a polynomial in h or r, it would seem that the Roy 

model is not amenable to QE methods.  But this overlooks the notion of partially 

                                                
13

 As might be deduced from the previous discussion of QE with free variables, QE can also be 

used to discover the necessary restrictions on an uninterpreted function. 
14

 See also Keane, Moffitt, and Runkle (1988) and Borjas (1994).  For some analysis of the 
nonparametric Roy model, see Heckman and Honore (1990) and Mourifie et al (2017). 
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interpreted functions, which essentially amounts to a clever choice of variables so that the 

assumption and hypothesis are understood as Boolean combinations of polynomial 

inequalities in those variables. 

To see this, let’s stay with the nonparametric version of the Roy model and look 

at the definitions of employment p and aggregate market skill S: 

 

𝑝(𝜎, 𝜇𝑤 − 𝜇𝑟) ≡ ∫ ∫ 𝑓(ℎ, 𝑟)𝑑𝑟
𝜎ℎ+𝜇𝑤−𝜇𝑟

−∞

𝑑ℎ
∞

−∞

 (8) 

 

𝑆(𝜎, 𝜇𝑤 − 𝜇𝑟) ≡ ∫ ∫ ℎ𝑓(ℎ, 𝑟)𝑑𝑟
𝜎ℎ+𝜇𝑤−𝜇𝑟

−∞

𝑑ℎ
∞

−∞

/𝑝(𝜎, 𝜇𝑤 − 𝜇𝑟) (9) 

 

 is said to change the “selection rule” if it affects S holding p constant by varying μr.
15

  

With some weak restrictions on the density function, QE confirms that the effect is 

strictly positive: 

 

𝐴 = {
𝑑𝑝(𝜎, 𝜇𝑤 − 𝜇𝑟)

𝑑𝑧
=

𝑑𝜇𝑤

𝑑𝑧
= 0 ∧

𝑑𝜎

𝑑𝑧
> 0 ∧ 

∫ ∫ 𝑓(ℎ, 𝑟)𝑑𝑟
𝜎ℎ+𝜇𝑤−𝜇𝑟

−∞

𝑑ℎ
∞

−∞

≥ 0 ∧ 

∫ 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ
∞

−∞

> 0 ∧ 

∫ ℎ2𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ
∞

−∞

∫ 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ
∞

−∞

> (
∫ ℎ𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ

∞

−∞

∫ 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ
∞

−∞

)

2

} 

(10) 

 

where any woman with 𝑟 = 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ is exactly on the margin between work and 

not work.  The first row of assumptions defines the experiment z that increases  and 

adjusts μr to keep employment constant.  The second row requires that employment be 

nonnegative, which reflects the fact that f is a probability density function.  The final two 

                                                
15

 It is straightforward to apply QE to questions about the shape of the control function – that is, 

how μr  affects S holding  constant.  See 
http://models.economicreasoning.com/SelectionRules.pdf . 

http://models.economicreasoning.com/SelectionRules.pdf
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rows assume that there are women on the margin and that they are not identical.  The 

hypothesis H is that 
𝑆(𝜎,𝜇𝑤−𝜇𝑟)

𝑑𝑧
> 0. 

 Using uninterpreted or partially interpreted functions, every atom of A and H 

above is a polynomial inequality in ℝ8 . Treating the total derivative operator as an 

uninterpreted function, evaluated at points {r,z}, {w,z}, and {,z}, gives us three 

variables.  Treating the single-integral operator as an uninterpreted function, evaluated at 

points {1, 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)}, {ℎ, 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)}, and {ℎ2, 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)}, 

gives us three more variables.
16

  The final two variables come from treating the double-

integral operator as an uninterpreted function evaluated at points {1,f(h,r)} and {h,f(h,r)}.  

These three functions become “partially interpreted” when we introduce algebraic 

assumptions about them, as in each atom of the assumptions A.  It is worth noting at this 

point that the restrictions that A puts on the probability density function f are satisfied by 

the Gaussian joint density function, so that any hypothesis deduced from A can also be 

deduced from the stronger assumption that f is Gaussian. 

 In summary, the wage-inequality comparative static of the nonparameteric Roy 

model is a QE problem in eight variables: 

{
𝑑𝜇𝑟

𝑑𝑧
,
𝑑𝜇𝑤

𝑑𝑧
,
𝑑𝜎

𝑑𝑧
, ∫ 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ

∞

−∞

, 

∫ ℎ𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ
∞

−∞

, ∫ ℎ2𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ)𝑑ℎ
∞

−∞

,  

∫ ∫ 𝑓(ℎ, 𝑟)𝑑𝑟
𝜎ℎ+𝜇𝑤−𝜇𝑟

−∞

𝑑ℎ
∞

−∞

, ∫ ∫ ℎ𝑓(ℎ, 𝑟)𝑑𝑟
𝜎ℎ+𝜇𝑤−𝜇𝑟

−∞

𝑑ℎ
∞

−∞

} 

(11) 

 

The result is confirmed by existentially quantifying each of these variables in the 

counterexample Tarski formula 𝐴 ∧ ¬𝐻 , with A and H defined as above, and then 

eliminating the eight quantifiers to find False: there is no way to assign eight real 

numbers to those eight scalar variables that would involve simultaneously satisfying the 

assumptions and contradicting the hypothesis.  The role of partially interpreted functions 

can be seen by comparing the assumptions A expressed in econometrically-natural 

                                                
16

 Recall that the domain of an uninterpreted function does not have to be real numbers.  It can be, 

for example, pairs of integrable functions of h such as h
2
 or 𝑓(ℎ, 𝜇𝑤 − 𝜇𝑟 + 𝜎ℎ). 
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notation as in (10) above with the same assumptions expressed in more generic notation 

as in (12) below: 

 

𝐴 = {𝑥2𝑥4 + 𝑥3𝑥5 − 𝑥1𝑥4 = 𝑥2 = 0 ∧ 𝑥3 > 0 ∧ 𝑥7 > 0 ∧ 𝑥4 > 0 ∧
𝑥6

𝑥4
> (

𝑥5

𝑥4
)

2

} (12) 

 

The hypothesis H, derived using the chain rule of calculus, is 𝑥1𝑥4𝑥8 + 𝑥2𝑥5𝑥7 +

𝑥3𝑥6𝑥7 > 𝑥1𝑥5𝑥7 + 𝑥2𝑥4𝑥8 + 𝑥3𝑥5𝑥8.  Section V below shows how software is already 

available to automatically recognize partially interpreted functions, make the translation 

from (10) to (12), and then eliminate the quantifiers. 

 

 

III.C.  Omitted variable bias in the linear regression model 
 

Take the linear regression model (13) with two regressors v1 and v2: 

 

𝑦 = 𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀 (13) 

 

where y, v1, v2, and  are each mean-zero vectors of the same length equal to the number 

of observations, which can be any integer greater than two.  I also assume that none of 

the vectors has any imaginary elements, which is the implicit assumption in essentially all 

regression analysis but below we see how it matters for QE. 

Here we use QE to check whether a zero correlation between v1 and  (𝑣1. 𝜀 = 0), 

and an imperfect correlation between the two regressors, guarantees that the OLS 

regression coefficient on v1, OLS1, is equal to 1.  The Tarski formula describing 

counterexamples is: 

 

𝑣1. 𝜀 = 0 ∧ (𝑣1. 𝑣1)(𝑣2. 𝑣2) − (𝑣1. 𝑣2)2 ≠ 0 ∧ 𝐺(𝑣1, 𝑣2, 𝜀) ∧ 

𝑣1. (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀)(𝑣2. 𝑣2) − (𝑣1. 𝑣2)𝑣2. (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀)

(𝑣1. 𝑣1)(𝑣2. 𝑣2) − (𝑣1. 𝑣2)2
≠ 𝛽1 

(14) 
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where the ratio term in the formula is OLS1 and G is a set of additional assumptions 

discussed below. 

Rather than assigning variable names to every element of all three vectors and 

then evaluating each of the vector dot products, I treat the dot product as a partially 

interpreted function.  So the counterexample decision problem is whether there exists six 

real numbers for {𝑣1. 𝑣1, 𝑣1. 𝑣2, 𝑣1. 𝜀, 𝑣2. 𝑣2, 𝑣2. 𝜀, 𝜀. 𝜀} that satisfy (14).
17

  However, given 

that all three vectors are real valued, some values for these dot products must be ruled 

out.  For example, 𝑣1. 𝑣1 cannot be negative.  More specifically, any four real-valued 

vectors must have a Gramian matrix that is symmetric and positive semi-definite, and 

with any symmetric positive semi-definite Gramian matrix four real-vectors can be found 

to assemble that Gramian matrix, as long as the length of the vectors is greater than two.  

Therefore G must be the conjunction of seven additional assumptions: that each of the 

three vectors has nonnegative magnitude, that none of the three pairwise correlations is 

outside the unit circle, and that the determinant of the Gramian matrix is nonnegative.
18

 

 Quantifying (14)’s six variables existentially and eliminating quantifiers yields 

True.  In words, it is possible to have real-valued data vectors with 𝑣1. 𝜀 = 0  and 

(𝑣1. 𝑣1)(𝑣2. 𝑣2) − (𝑣1. 𝑣2)2 ≠ 0 but nonetheless OLS1 differing from 1.  An additional 

assumption is needed for OLS1 to be unbiased, which QE can recover using much the 

same procedure that was used in section II.A.  Specifically, existential QE is performed 

on (14) with one free variable, and therefore results in a formula in the free variable.  

With six variables, there are six ways to do this.
19

  Two of the six results are redundant of 

the assumptions, which means that these two variables cannot be further restricted to rule 

out counterexamples.  But the other four are not redundant, so we can negate each one to 

get four conditions that, conditional on the assumptions shown on the top row of (14), are 

individually sufficient for OLS1 to be the same as 1: 

                                                
17

 1 and 2 are not variables because they drop out of (14) when the dot products are distributed 

across addition. 
18

 In generic scalar notation, the Tarski formula (14) is 𝑥3 = 0 ∧ 𝑥1𝑥4 ≠ 𝑥2
2 ∧ (𝑥1 ≥ 0 ∧ 𝑥4 ≥ 0 ∧

𝑥6 ≥ 0 ∧ 𝑥1𝑥4 ≥ 𝑥2
2 ∧ 𝑥1𝑥6 ≥ 𝑥3

2 ∧ 𝑥4𝑥6 ≥ 𝑥5
2 ∧ 2𝑥2𝑥3𝑥5 + 𝑥1𝑥4𝑥6 ≥ 𝑥3

2𝑥4 + 𝑥1𝑥5
2 + 𝑥2

2𝑥6) ∧
𝑥2𝑥5 ≠ 𝑥3𝑥4, where the terms in parenthesis are the Gramian matrix restrictions.  Gramian matrix 

restrictions are tedious to type from scratch, but software exists to automatically generate them 

from the other parts of the Tarski formula (Mulligan, Davenport and England 2018). 
19

 In other words, the nonempty set of counterexamples can be projected on to each of six 
different axes. 
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𝑣2. 𝜀 = 0 ∨ 𝑣1. 𝑣2 = 0 ∨ 𝑣2. 𝑣2 = 0 ∨ 𝜀. 𝜀 = 0 (15) 

 

Note that these results deduced for an econometric model hold for arbitrary-length 

vectors and therefore can describe either a “sample” or a “population,” as long as we are 

consistent.  In other words, the results above by themselves allow us to deduce sample 

conclusions from sample assumptions or population conclusions from population 

assumptions.  Deriving sample conclusions from population assumptions requires an 

additional statistical inference step, which is not the subject of these examples.
20

 

 

III.D.  Partial identification in the classical measurement error model 
 

Following Levi (1973), I now add measurement error to one of the two regressors: 

𝑣1 = 𝑣1 + 𝑢.
21

  The classical measurement error assumptions are (13): 

 

𝑣1. 𝑢 = 𝑣1. 𝜀 = 𝑢. 𝜀 = 𝑣2. 𝑢 = 𝑣2. 𝜀 = 0 ∧ 

𝛽1 ≠ 0 ∧
(𝑣1. 𝑣2)2

(𝑣1. 𝑣1)(𝑣2. 𝑣2)
< 1 

(16) 

 

where I have also added two assumptions to rule out the tedious and less interesting cases 

that have 1 = 0 or perfect collinearity between the v1 and v2.  QE can automatically 

discover the identified set for the slope parameter 1 corresponding to the variable v1 

whose values are measured with error.  Here it is helpful to define the forward- and 

reverse-regression coefficients:
22

 

 

𝑂𝐿𝑆1 = (17) 

                                                
20

 See also Franklin Fisher (1966, p. 5) on the distinction between statistical inference and the 
logical analysis of an econometric model. 
21

 See Klepper and Leamer (1984) for analysis of the case where both regressors are measured 

with error.  See Frisch (1934), Friedman (1957), and Tamer (2010) for the single-regressor case. 
22

 The reverse-regression coefficient is the inverse of the coefficient on y in the regression of 
measured v1 on y and v2. 
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(𝑣1 + 𝑢). (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀)(𝑣2. 𝑣2) − ((𝑣1 + 𝑢). 𝑣2)𝑣2. (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀)

((𝑣1 + 𝑢). (𝑣1 + 𝑢))(𝑣2. 𝑣2) − ((𝑣1 + 𝑢). 𝑣2)2
 

 

𝑅𝐸𝑉1 = 

(𝑣1 + 𝑢). (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀)(𝑣2. 𝑣2) − ((𝑣1 + 𝑢). 𝑣2)𝑣2. (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀)

((𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀). (𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀))(𝑣2. 𝑣2) − ((𝑣1𝛽1 + 𝑣2𝛽2 + 𝜀). 𝑣2)2
 

(18) 

 

The Tarski formula representing the model assumptions – (16), (17), (18) and the 15 

restrictions 𝐺(𝑣1, 𝑣2, 𝜀, 𝑢)  on the Gramian matrix – is a conjunction of polynomial 

inequalities in 14 scalar variables, which are 1, 2, OLS1, REV1, and the ten dot products.  

Existentially quantifying the dot products and 2, QE results in a formula in the three free 

variables:
23

 

 

0 < 𝑂𝐿𝑆1 ≤ 𝛽1 ≤ 𝑅𝐸𝑉1 ∨ 

𝑅𝐸𝑉1 ≤ 𝛽1 ≤ 𝑂𝐿𝑆1 < 0 
(19) 

 

By construction, (i) the formula (19) must be satisfied in order for the assumptions to be 

satisfied and (ii) whenever (19) is satisfied there is a way to set the other 11 variables in 

order to satisfy the assumptions.  The first part of the formula (19) is therefore the 

identified set for 1 when 1 > 0 and the second part corresponds to 1 < 0.  In words, the 

identified set is bounded by the forward and reverse regression coefficients.
24

  The 

identified set is found by projecting the 14-dimensional assumption set into the 3-

dimensional space {OLS1, REV1,1}.  That projection is shown in Figure 2. 

 

 

                                                
23

 In generic scalar notation, but for brevity excluding the Gramian matrix restrictions, 

the Tarski formula representing the assumptions is 𝑥6 = 𝑥7 = 𝑥9 = 𝑥10 = 𝑥12 = 0 ∧ 𝛽 ≠
0 ∧ 𝑥4𝑥8 ≠ 𝑥5

2 ∧ (𝑥5 + 𝑥9)(𝑥10 +  𝑥5𝛽) =  𝑓𝑜𝑟 (𝑥5
2 − 𝑥11𝑥8 − 𝑥4𝑥8 − 2 𝑥6𝑥8 +

2 𝑥5𝑥9 + 𝑥9
2) + [𝑥12 + 𝑥7 + (𝑥4 + 𝑥6)𝛽]𝑥8 ∧ 𝑟𝑒𝑣 𝑥10(𝑥5 + 𝑥9) + [𝑥13 + 𝛽 (2 𝑥7 +

𝑥4𝛽)]𝑥8 = 𝑥10
2 + 2 𝑥10𝑥5𝛽 + 𝑥5

2𝛽2 + 𝑟𝑒𝑣{𝑥12𝑥8 + 𝑥7𝑥8 + [(𝑥4 + 𝑥6)𝑥8 − 𝑥5𝑥9 −
𝑥5

2]𝛽}. 
24

 Below I use a specific QE method to show that the same set (19) is the identified set for some 
interesting non-classical measurement error models. 
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III.E.  Point identification in discrete choice models 
 

QE can also be used to study uniqueness or to count numbers of instances.  Point 

identification is a uniqueness question, which for illustration I consider here for the 

prototypical discrete choice model.  The choice is assumed to depend on observed factors 

v and y as well as unobserved factors summarized by , were  is normalized to have 

unit variance and distribution function F.  The discrete choice di is made in situation i if 

and only if 𝜎 𝜀𝑖 < 𝛽𝑣𝑖 + 𝛾𝑦𝑖.  The log likelihood function for observing v, y, d is:  

 

𝐿 ({
𝛽

𝜎
,
𝛾

𝜎
}) = ∑ {(1 − 𝑑𝑖) ln [1 − 𝐹 (

𝛽

𝜎
𝑣𝑖 +

𝛾

𝜎
𝑦𝑖)] + 𝑑𝑖 ln 𝐹 (

𝛽

𝜎
𝑣𝑖 +

𝛾

𝜎
𝑦𝑖)}

𝑖
 (20) 

 

By definition, the parameter vector   {,,} is point identified if two distinct values 

for that vector cannot simultaneously attain the maximum likelihood.  Conversely, the 

parameter vector {,,} is point identified if knowing that 1 and 2 both attain the 

maximum likelihood implies that 1 = 2. 

 The definition of a strictly concave function L is: 

 

[𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 ({
𝛽1

𝜎1
,
𝛾1

𝜎1

} , {
𝛽2

𝜎2
,
𝛾2

𝜎2

}) ∧ 0 < 𝜆 < 1]

⇒ [(1 − 𝜆)𝐿 ({
𝛽1

𝜎1
,
𝛾1

𝜎1

}) + 𝜆𝐿 ({
𝛽2

𝜎2
,
𝛾2

𝜎2

})

< 𝐿 ((1 − 𝜆) {
𝛽1

𝜎1
,
𝛾1

𝜎1

} + 𝜆 {
𝛽2

𝜎2
,
𝛾2

𝜎2

})] 

(21) 

 

where Distinct is an uninterpreted Boolean-valued function introduced to compactly 

represent whether its two arguments are distinct.  It can be partially interpreted by 

providing an algebraic definition of distinct: 

 

𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 ({
𝛽1

𝜎1
,
𝛾1

𝜎1

} , {
𝛽2

𝜎2
,
𝛾2

𝜎2

}) ⇒ [
𝛽1

𝜎1
≠

𝛽2

𝜎2
∨

𝛾1

𝜎1
≠

𝛾2

𝜎2
] (22) 

 

If 1 and 2 are both attaining the maximum likelihood, then we have: 
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𝐿 ({
𝛽1

𝜎1
,
𝛾1

𝜎1

}) ≥ 𝐿 ((1 − 𝜆) {
𝛽1

𝜎1
,
𝛾1

𝜎1

} + 𝜆 {
𝛽2

𝜎2
,
𝛾2

𝜎2

}) ∧ 

𝐿 ({
𝛽2

𝜎2
,
𝛾2

𝜎2

}) ≥ 𝐿 ((1 − 𝜆) {
𝛽1

𝜎1
,
𝛾1

𝜎1

} + 𝜆 {
𝛽2

𝜎2
,
𝛾2

𝜎2

}) 

(23) 

 

Treating the likelihood function L as another partially interpreted function, the 11 scalar 

and Boolean variables in this model are:
25

 

 

{𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 ({
𝛽1

𝜎1
,
𝛾1

𝜎1

} , {
𝛽2

𝜎2
,
𝛾2

𝜎2

}) , 𝜆, 𝛽1, 𝛽2, 𝛾1, 𝛾2 , 𝜎1, 𝜎2, 

𝐿 ({
𝛽1

𝜎1
,
𝛾1

𝜎1

}) , 𝐿 ({
𝛽2

𝜎2
,
𝛾2

𝜎2

}) , 𝐿 ((1 − 𝜆) {
𝛽1

𝜎1
,
𝛾1

𝜎1

} + 𝜆 {
𝛽2

𝜎2
,
𝛾2

𝜎2

})} 

(24) 

 

The point-identification question is whether there are values to assign these 11 variables 

that would simultaneously satisfy (21), (22), (23), 0 < 𝜆 < 1 , 1 > 0, 2 > 0, and 

𝛽1 ≠ 𝛽2 ∨ 𝛾1 ≠ 𝛾2 ∨ 𝜎1 ≠ 𝜎2.  There are such values, which means that the parameter 

vector is not point identified.  Moreover, QE software typically can provide an example 

of such values.  One example is {False, ½, 0, 0, 2, 1, 1, ½, 0, 0, 0}, respectively. 

 QE can also confirm that the parameter ratio / is point identified.  Specifically, 

QE confirms that there are no values to assign the 11 variables that would simultaneously 

satisfy (21), (22), (23), 0 < 𝜆 < 1, 1 > 0, 2 > 0, and 𝛽1/𝛾1 ≠ 𝛽2/𝛾2.
26

 

 The model (21), (22), and (23) is quite simple because concavity of the likelihood 

function is assumed directly, rather than derived as a result based on other assumptions.  

But the example’s purpose is just to illustrate that uniqueness questions, and therefore 

point-identification questions, fit in the Tarski framework merely by querying whether 

                                                
25

 The QE framework is for scalar variables but note that a Boolean variable can be trivially 

converted in to a scalar variable by creating a new scalar variable z and replacing all instances of 

the Boolean variable with z > 0. 
26

 In generic scalar notation, the Tarski formula for the assumptions is 𝑥2 ≥ 𝑥3 ∧ 𝑥4 ≥ 𝑥3 ∧ 0 <
𝑥1 < 1 ∧ 𝑥10 > 0 ∧ 𝑥11 > 0 ∧ [𝑥1𝑥2 + 𝑥3 > 𝑥1𝑥4 + 𝑥2 ∨ (𝑥7𝑥10 = 𝑥6𝑥11 ∧ 𝑥8𝑥11 = 𝑥9𝑥10)]. 
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two potentially distinct points satisfying the model assumptions must coincide with each 

other. 

 

III.F.  A Library of Economics Examples 
 

 Since 2016 I have been using automated QE on a daily basis to process problems 

encountered in teaching, research, and writing a graduate-level textbook.  The more 

interesting or well known of these problems have been assembled together with 

background explanations at http://examples.economicreasoning.com.  Mulligan et al 

(2018a) provide the computer science community with forty-five of these assumption-

hypothesis pairs (for a total of 135 existential sentences), in four different computer 

algebra formats, together with analysis of their algebraic structure and explanation of the 

range of economics problems that fit in the QE framework. 

 The examples shown in this paper, chosen to illustrate QE concepts, are more 

stylized than in the library of 45.  Even excluding the two-state example (5) - (7), this 

paper’s examples have an average of only 9.25 variables as compared to 17.2 in the 

library.
27

  This suggests that significantly more involved econometrics models could still 

be decided in seconds, as the library examples are (see also Table 2). 

IV.  Relevant Theorems from Real Algebraic Geometry 

IV.A.  Tarski: Real quantifier elimination is always possible 
 Mathematician and logician Alfred Tarski proved that there exists a universal 

algorithm (that is, one not requiring problem-specific guidance) for quantifier elimination 

from systems of polynomial inequalities on real closed fields by providing such an 

algorithm.
28

  Because the real numbers are an example of a real closed field, the Tarski 

result guarantees that there exists a quantifier-free formula P satisfying (1) and (4) and 

                                                
27

 The library has a greater incidence of polynomials containing a cubic in a single variable, 

although the classical measurement error model’s hypothesis does have a single variable raised to 

the fourth power. 
28

 Tarksi made the proof in 1930 (Caviness and Johnson 1998, p. 1), but the result was not 
published until Tarski (1951). 

http://examples.economicreasoning.com/
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gives an algorithm for finding P.  If QR is a sentence, then the QE algorithm is a 

“decision method”: a procedure for determining whether QR is True or False.
29

 

 

IV.B.  Collins: A more efficient algorithm for real QE that defines sets 
recursively 
 

 Although Tarski’s method is enough to prove that quantifiers can be eliminated, it 

is not used in practice due to its “extreme” inefficiency.
30

  A major step forward came 

with the Cylindrical Algebraic Decomposition (CAD) method introduced by 

mathematician George E. Collins in 1973.
31

 

 

IV.B.1.  Properties of CAD 
In our setting (1) and (4), the CAD method decomposes ℝ𝑁 into finitely many 

connected regions, known as “cells,” with three properties: 

(i) each cell of the CAD is a semi-algebraic set (i.e., it is defined by a finite 

number of quantifier-free polynomial inequalities). 

(ii) The CAD result is cylindrical because the projections of any two of the 

cells into ℝ𝑘 , 1  k  N, are either identical or disjoint. 

(iii) Each cell is adapted to the Tarski formula from which it was derived, 

which means that none of the polynomials in the Tarski formula T has 

more than one sign {-1,0,1} in any one of the cells. 

Every Tarski formula has such a CAD (Basu, Pollack and Roy (2011, Theorem 5.6)). 

The T-adapted (i.e., uniform sign) property of the cells, and the fact that the cells 

are finite in number, means that any quantified formula can be confirmed in a finite 

number of steps.
32

  The cylindrical property (in economics we would call it “recursive”) 

of the decomposition means that the cells have a natural ordering and many times can be 

processed more than one at a time. 

                                                
29

 Renegar (1998, p. 221). 
30

 Arai, et al. (2014).  See also Davenport, Siret and Tournier (1988, p. 119), who describe 

Tarski’s method as “completely impractical.” 
31

 Collins (1973) and Collins (1975). 
32

 By construction, the Tarski formula is True at any one point in a cell if and only if it is True 
everywhere in that cell. 
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The phrase CAD has a number of related but distinct uses in mathematics and 

computer science.  Narrowly speaking, CAD refers to a method, or sometimes an 

expanded set of polynomials (including, among others, those in the original Tarski 

formula) obtained by the method, or the full collection of cells obtained by the method.  

Another result of the CAD method is its cells, described by Cylindrical Algebraic 

Formulas (CAFs), which may also be referenced as CAD.
 33

  CAD sometimes also refers 

to a decomposition of part of ℝ𝑁 with the properties (i)-(iii).  CAD can also refer to a full 

decomposition of ℝ𝑁 with the properties (i)-(iii), but with “adapted” defined with respect 

to the truth value of the entire formula rather than the sign of each of its polynomials 

(Bradford, et al. 2016).  For clarity, I refer to the full collection of cells together with one 

sample point each as “the full CAD.” 

Although building the CAD begins with a Tarski formula, only the polynomials 

of that formula and the order of quantification is used in the calculations (recall (iii)); the 

inequalities and Boolean operations are ignored.  A single full CAD therefore solves a 

large number of QE problems: any QE problem whose Tarski formula has the same 

polynomials and the same quantification order (but not necessarily the same quantifiers) 

has the same full CAD.  Naturally, the simultaneous solution of many QE problems 

requires more computational resources than solving one QE problem, which is the 

motivation for other QE algorithms. 

Kauers (2011) and Mulligan (2016) include explanations, intended for non-

experts, of the methods used to construct a full CAD.  Given that the full CAD would 

rarely be the best QE method for econometrics problems and that it is already 

implemented in various software packages, the details of its construction is beyond the 

scope of this paper. 

 

IV.B.2.  Using CAFs in Econometrics: Necessary and Sufficient Conditions in the 
Measurement Error Model 

 

Recall the measurement error model whose assumptions – (16), (17), (18) and the 

15 restrictions 𝐺(𝑣1, 𝑣2, 𝜀, 𝑢) – guarantee that the regression parameter 1 is in the set 

                                                
33

 See Strzebonski (2010) and Chen and Maza (2015) for more on the distinction between CAD 
and CAF. 
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(19) bounded by the forward and reverse regression coefficients.  Here I consider an 

interesting case of non-classical measurement error by weakening the first restriction to 

𝑣1. 𝑢 ≥ 0.  In words, the error in measuring v1 can be positively correlated with v1.  Now 

the set of counterexamples (cases with 1 outside of the set (19)) would not be empty, 

and we could project that set onto each of the 14 axes to find sufficient conditions for the 

set (19) to continue to be the identified set.  Two are found: 

 

𝑣1. 𝑢 = 0 ∨ 𝑢. 𝑢 = 0 (25) 

 

Each of (25) is a sufficient condition because it was obtained with projection onto an 

axis, which shows values of that variable that are inconsistent with counterexamples but 

maybe not required for an example.  In other words, examples are described by the set A 

 H, and sufficient conditions are potentially inconsistent with parts of this set. 

Admittedly (25) is not an interesting addition to the classical measurement error 

model, but it is too soon to conclude that the classical model is the only interesting case 

having (19) as its identified set.  Perhaps there are interesting examples in A  H that are 

ruled out by the sufficient conditions (25).  The answer is found by looking at the weaker 

necessary and sufficient conditions.  CAD is helpful here because it can provide a 

relatively simple, but not tautological, formula for A  H.  The CAD depends on 

quantification order, of which there are 14! possibilities in this example.  Some of these 

are simpler than others.  Others just show the hypothesis formula.  But some of them may 

be useful (and software is available to help find the useful one).   

One CAF expression for the necessary and sufficient conditions for the weakened 

measurement error problem is (26): 

 

𝛽1 ≠ 0 ∧ 𝑣1. 𝑢 ≥ 0 ∧ 𝜀. 𝜀 ≥ 𝛽1
2𝑣1. 𝑢 (26) 
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Both (25) and (26) rule out all counterexamples, but the latter is the weaker condition 

because it does not rule out any cases satisfying 𝐴 ∧ 𝐻.
34

  Notice the CAF’s recursive 

structure: it first restricts 1 relative to real numbers only, then restricts the second 

variable 𝑣1. 𝑢 based on the first (trivially in this case), and then restricts the third variable 

𝜀. 𝜀 based on the first two.  In terms of the econometric substance, (26) shows that (19) is 

still the identified set even when the measurement error is positively correlated with the 

true value, as long as that correlation is not too positive. 

 

IV.C.  Other QE methods 
 

 Basu, Pollack and Roy (2011) have a unique approach to QE problems, although 

not yet implemented as software.  Less ambitious and computationally less costly (than 

full CAD) algorithms are available for special cases of the QE problem.  Virtual Term 

Substitution (VTS) is designed for QE on polynomials with low own degree: that is, the 

total degree may be large because several variables may multiply each other, but it is rare 

for a single variable to be raised to a power of more than two or three.
35

  The 

performance of VTS has an additional advantage in large but sparse systems where most 

variables are absent from most of the polynomials in the Tarski formula.  VTS is 

therefore well-suited for problems in econometrics and elsewhere in economics. 

                                                
34

 An example that satisfies A and (26) without satisfying (25): 𝛽1 = 𝑣1. 𝑣1 = 𝑣1. 𝑢 = 𝑣2. 𝑣2 =
𝑢. 𝑢 = 𝜀. 𝜀 = 1 ∧ 𝑣1. 𝑣2 = 𝑣1. 𝜀 = 𝑣2. 𝑢 = 𝑣2. 𝜀 = 𝑢. 𝜀 = 0. 
35

 VTS was invented by Volker Weispfenning (1988, 1997).  Improvements to the method are 
ongoing, as with C.W. Brown (2005). 
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Regardless of degree, decision problems are a special case of QE for which 

algorithms can be tailored.  The decision of existential sentences has received much 

attention in computer science, and specialized methods have been implemented by a 

number of automated SMT solvers with NRA capabilities.
36

  The aforementioned library 

of economic decision problems are special not only in degree, but also that the process of 

repeated quantifier elimination involves just a few frequently repeated single-variable 

quantifier elimination problems.  Mulligan et al (2018b) show how pattern recognition 

can quickly reach decisions in these cases without relying on any other QE method, even 

while the same satisfiability problems are not decided with current SMT-NRA solvers. 

 

 

IV.D.  The Computational Complexity of QE 
  

The worst-case complexity of (that is, the computational resources theoretically 

needed for) QE with a single type of quantifier is asymptotically exponential in the 

number of variables (Grigor'ev 1988, Basu, Pollack and Roy 2011).  However, single-

exponential QE methods have not yet been implemented as software (Davenport and 

England 2015, Sturm 2017).  The construction of a full CAD has worst-case complexity 

that is asymptotically double-exponential in the number of variables, with the base of 

those exponents proportional to the product of the number of polynomials and their 

average degree, even if the formula contains only linear polynomials (Brown and 

Davenport 2007, England and Davenport 2016). 

QE algorithms have rarely been discussed in economics, but in these few cases 

appear notorious for the full CAD’s theoretical asymptotic properties. In his lectures to 

Yale economics professors, mathematician Charles Steinhorn (2008, p. 177) conjectured 

that “… quantifier elimination is something that is do-able in principle, but not by any 

computer that you and I are ever likely to see.”
37

  In their discussion of automating high-

school level mathematics, Arai, et al. (2014p. 7) warned that “… the calculation time 

                                                
36

 See Jovanović and de Moura (2012) for an exposition of SMT-NRA methods. 
37

 Although Steinhorn added “Well, I’ll retract that last statement because it’s probably false.”  

See also Carvajal, et al. (2014, p. 260) who wrote in Economic Theory that the CAD algorithm to 
“implement this elimination of quantified variables … [is] known to be doubly exponential.” 
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required for CAD is doubly exponential in the number of variables n in the proposition 

supplied.  The practical limit to obtain a solution would be at most five variables.”   

The dismissal of QE algorithms in economics has been based on theoretical 

asymptotic complexity results rather than experience with actual software applied to 

actual economic reasoning.  If we expect that an algebraic deduction problem could be 

solved manually in reasonable time, why wouldn’t a machine be able to solve it in 

seconds?  In practice, seconds is all that it takes for QE software to solve many 

meaningful problems in econometrics, and in economics generally. 

The discrepancy between reputation and practice comes from a combination of: 

(i) the approximation error in asymptotic complexity theory, 

(ii) the algebraic structure of the applied problems, and 

(iii) the distinction between a full CAD and alternative QE methods that use 

the Boolean and relational structures of each problem. 

The potential complexity of the full CAD, which ignores everything about the Tarski 

formula except for the M polynomials it contains (after factoring), comes from the 

Binomial2(M) number of ways that M polynomials can intersect pairwise because each 

intersection is at the border of polynomial sign changes.  Eliminating a single variable 

from a formula with M polynomials therefore results in up to Binomial2(M) polynomials 

to be examined in the next stage.
38

  After eliminating a second variable, there will be up 

to Binomial2(Binomial2(M)) polynomials.  Eliminating N variables this way nests the 

Binomial2 function N times. 

The leading term in the N-times-nested Binomial2 function is 2(𝑀/2)2𝑁
, which is 

doubly exponential and can grow quite rapidly with N. But note that the leading term can 

be a poor approximation of the nested binomial, especially when M < 4, in that it 

exaggerates the magnitude of the growth rate of the number of polynomials and for M  3 

                                                
38

 This discussion ignores the polynomials that must also be introduced to track singularities, but 

these do not grow (with successive variable eliminations) at the rate that intersections can.  See 

C.W. Brown (2001) for further discussion.  Moreover, in practice, the polynomials representing 

singularities, such as variable sign conditions, are often already part of the original Tarski 
formula. 



 26 

even gets the sign wrong.
 39

  A significant number of economic examples have its average 

variable appearing in no more than three polynomials and therefore full CADs can be 

constructed without difficulty even while each example has ten or more variables. 

At the same time, a number of examples in econometrics and elsewhere in 

economics are too algebraically complicated for full CAD construction to be practical.  

Nevertheless QE is practical, and often achieved in mere milliseconds, with QE methods 

that are tailored to the Boolean and algebraic structure of the problem.
40

  Table 2 shows 

the decision times for the four examples in this paper (excluding the two-state model), as 

well as a summary of the decision times for the library of 45 examples from economic 

theory.  The three software implementations used, as well as others, are discussed next. 

 

V. QE Software 
 

There are modern software implementations of QE in Mathematica (Strzebonski 

2010, 2016), REDLOG (Dolzmann and Sturm 1997), Maple (Anai and Yanami 2003, 

Chen and Maza 2016) and QEPCAD-B (C. W. Brown 2003).  In principle, these tools 

can solve any QE problem in finite time, given enough computing resources.  However, 

some user input, such as the order for eliminating variables, is recommended so that the 

QE algorithm runs efficiently on the problem at hand.  REDLOG and QEPCAD-B are 

free software. 

QE for existential sentences is also soluble using the technology of Satisfiability 

Modulo Theory (SMT) Solvers; at least those that support the QF_NRA logic such as 

SMT-RAT (Corzilius, et al. 2012), veriT (Fontaine, et al. 2017), Yices2 (Jovanović and 

Dutertre 2017), and Z3 (Jovanović and de Moura 2012).  These do not guarantee a 

decision: the software authors note that it is possible that the software returns “unknown” 

or enters an infinite loop.  These SMT solvers are free. 

                                                
39

 For M = 3, the leading term is 83 billion times larger for the elimination of the sixth quantifier 
than it is for eliminating the first, whereas Binomial2(M) nested six times is no different from 

Binomial2(3) itself. 
40

 See also Shankar (2002, p. 13), who explains that “[m]any decision procedures are of 

exponential, super-exponential, or non-elementary complexity. However, this complexity often 
does not manifest itself on practical examples.” 
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I created a Mathematica package, intended to sharply lower the cost to economists 

of using the QE tools in Mathematica, REDLOG, and SMT-NRA solvers.  The user 

inputs only assumptions and hypothesis, in a natural format much like shown in (10).  

The software then automatically: checks for errors; parses and standardizes input; 

assembles the Tarski formula using partially interpreted functions as needed; adds 

Gramian-matrix assumptions as needed; makes algorithm choices and passes the QE 

problem to a QE engine; interprets the QE results according to Table 1; and suggests 

what the user can do next.  The QE engine is primarily Mathematica’s RESOLVE 

function, but the package is also capable of writing code for REDLOG and SMT-NRA 

(especially, Z3).  Figure 3 is a Mathematica screen shot showing the processing of the 

comparative static for the nonparametric Roy model; the technical details of QE are 

invisible to the user. 

The free package is available by evaluating Get["http://economicreasoning.com"] 

at a Mathematica prompt.  Further information about Economicreasoning use and 

technical background are available from http://help.economicreasoning.com and 

Mulligan, Davenport, and England (2018). 

With these software resources available, automated QE is easy to perform: about 

as easy as running a regression with a modern statistics package.  When called by the 

Economicreasoning package in deduction problems encountered in my economics 

teaching, research, and writing a graduate-level textbook, Mathematica’s algorithm 

always performs the QE in seconds.
41

  At least one of the problems automatically solved 

in seconds is familiar from macro and public economics yet experts in the field have been 

known to get it wrong when they attempt it manually.
42

  REDLOG can do most of the 

same QE problems even faster, although Mathematica (and Z3) more often accelerates 

computation by (appropriately) discarding irrelevant parts of a formula.  Z3 tends to be 

even faster than REDLOG with the QE problems it can solve, which is a large majority 

of the ones that I have tried, but also fails to solve a few percent of the problems.  Like 

other SMT solvers, Z3 cannot perform QE with free variables. 

                                                
41

 This is not to say that Mathematica’s QE is without limits, just that my practical and frequent 

usage has not yet tested those limits. 
42

 See the Laffer curve problem in Mulligan (2016).  Economicreasoning has also been used to 
generate novel and substantive conclusions about the economy (Mulligan and Tsui 2016). 

http://help.economicreasoning.com/
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VI. Conclusions 
 

 If-then statements about statistics, econometric models, etc., dating back to the 

early pioneers of formal statistical reasoning, are implicit eliminations of “for all” 

quantifiers from a True sentence.  This paper makes the quantifier elimination (QE) 

explicit and thereby brings to bear applicable and relatively new tools from real algebraic 

geometry and computer science. 

QE algorithms automatically decide the truth of hypotheses in finite time, without 

approximation or functional-form assumptions.  The algorithms can thereby also help 

formulate and understand hypotheses by detecting inconsistent assumptions, calculating 

sufficient conditions, calculating necessary and sufficient conditions, and generating 

examples.  These results are not merely hopeful conjectures for the practice of 

econometrics.  Software is already available for automatically eliminating quantifiers, 

which I have incorporated into an economist-friendly interface running in Mathematica. 

All of the hypotheses in this paper were refuted or verified merely by entering them as 

assumptions and potential implications, as shown in Figure 3.   

The QE framework requires statements that are, interpreted in the right space, 

quantified (“for all”) Tarski formulas, each of which is a quantifier-free Boolean 

combination of polynomial inequalities.  In order for an econometric hypothesis to fit in 

this framework, its elements need not be polynomial functions: the hypothesis just has to 

be stated in terms of properties of the model that are expressed as a finite number of 

polynomial relationships among real numbers.   

A wide range of econometric models can be processed in this way, although more 

work is needed to expand the range, and better understand the practical limits, of 

hypotheses and proofs that can be automated with quantifier elimination.  QE methods 

cannot be applied until the polynomial structure of the problem is discovered.  Existing 

software is often capable of automatically discovering that structure, but in other cases 

the software user needs to assist in the discovery by consciously using partially 

interpreted functions rather than specific functional forms.  Presumably partially 

interpreted functions are more natural to econometricians working with nonparametric 

models than those more familiar with parametric approaches. 
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Because QE is automatically done by software, the details of implementation are 

of limited interest to users.  However, a few implementation concepts are helpful.  The 

Cylindrical Algebraic Decomposition (CAD) approach defines sets with recursive 

formulas, which can clearly delineate cases of interest to the user and sometimes provide 

a practical roadmap for step-by-step proofs (Mulligan 2016).  The CAD also neatly 

illustrates how “ForAll” statements about ℝ𝑁 can be rigorously confirmed by considering 

just a finite number of examples.  But full CAD construction, which receives relatively 

more attention in the theoretical asymptotic complexity literature, is usually doing far 

more than is necessary to perform QE on a particular problem.
43

  Most software 

implementations are therefore not constructing a full CAD. 

Two quite distinct types of methods are used in modern QE software.  One type 

refines CAD to take advantage of the special algebraic structure of a problem, which is to 

be expected for problems that people might solve “manually.”  The second type consists 

of nonlinear arithmetic extensions to algorithms for solving the satisfiability in computer 

science, some of which are used commercially for certifying the performance of 

computer hardware and software.  The first type can, with enough computation resources, 

solve any QE problem.  The second type is limited to deciding existential sentences, 

which can be a workhorse for deduction in econometric theory.  Both types of methods 

continue to be advanced and adapted to practical problems, now with the advantage of 

substantively interesting examples from economics and statistics (Mulligan, Bradford, et 

al. 2018a). 

The QE methods in this paper deliver certified conclusions, but a conclusion is 

not the same as a concise proof.  The internal software steps of QE are themselves a 

proof, and some of the QE software is capable of displaying or summarizing them, but 

usually the software steps are too lengthy and tedious for a human reader to appreciate or 

practically verify.  But even in those cases QE could be of tremendous assistance to 

someone attempting to construct a concise proof by: confirming that a hypothesis is 

provable, investigating the equivalence of one hypothesis with another, incrementally 

eliminating or modifying assumptions to see which of them are binding, verifying any 

                                                
43

 Moreover, for many practical problems, the asymptotic approximations said to describe full 
CAD construction not only produce the wrong orders of magnitude, but also the wrong sign. 
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number of intermediate results that may serve as one of the steps in the proof, and 

automatically generating examples. 

Human error can result in logically or mathematically erroneous conclusions, 

whether those conclusions were generated with a machine or with pencil and paper.  In 

the latter approach, a diligent reader, editor, or referee, also operating with pencil and 

paper, has been required to detect and correct publication errors.  Human errors could in 

principle be embedded in QE software (Davenport & England, 2015), although QE 

methods can decide any universal sentence with two different methods (i.e., the left- and 

right-hand sides of (3) potentially involve different software steps) and each of those 

decisions can be processed in N! different sequences (N is the number of quantified 

variables).  Moreover, multiple software packages are available to perform the same 

calculation (this paper uses Mathematica, REDLOG, and Z3), not to mention the fact that 

the owners of commercial software packages have both the opportunity and incentive to 

find and correct software errors.
44

 Also note that empirical economics publications 

already include dozens, if not hundreds, of matrix inversions that are never verified with 

pencil and paper or even with an alternative software package.  Perhaps econometric 

theory will follow a similar path.  

 

 

  

                                                
44

 If the machine-generated conclusion is that either an example or counter example exists, then 
this can readily be verified with pencil and paper because the software provides the example. 
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Av and Hv are each a Tarski formula in the variables v. 
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Table 1.  Possible Outcomes from a Potential Theorem 

∀𝒗 𝑨𝒗 ⇒ 𝑯𝒗  



Table 2.  Decision times for the econometrics examples

Times for deciding universal sentences, in milliseconds

Model Mathematica REDLOG Z3

The Identified Set in the Classical

Measurement Error Model 12 2,010 70 20

Nonparametric Roy Model 8 773 < 50 < 15

Omitted Variable Bias 6 62 < 50 < 15

Parameter Identification in

Discrete-choice Models 11 85 < 50 < 15

Addendum: 

Medians from 45-example library 14 825 50 < 15 0.01

Dimensions 

represented

Decision time (milliseconds)

Note : Universal sentences state a hypotheses to be True for all N -dimensional real numbers, where 

N  is the number of dimensions needed to represent the model.  Computer time was calculated with 

Mathematica 11.2, the PSL version of REDLOG (revision 4330), and version 4.5.0 of Z3 on a 

Macbook Pro Mid 2014 2.8GHz Interl i7.  REDLOG (Z3) failed to decide one (two) from the 45-

example library, respectively.



Figure 1.  The Set of Counterexamples 

The Two-State Model 



Figure 2.  The Identified Set 

in the Classical Measurement Error Model 
14-dimensional assumptions projected down to three 



Figure 3.  Mathematica screen shot 

The Nonparametric Roy Model 
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