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1 Introduction

This paper studies the interactions between uncertainty shocks and financial frictions

both empirically and theoretically. Uncertainty shocks have been argued to play a significant

role in explaining the sharp drops in output during the recent financial and COVID-19 crises.

However, on the empirical front, identification of the causal effects of 2nd moment uncertainty

shocks is challenging because of correlated 1st moment effects during economic downturns.

Moreover, on the theoretical front, a significant challenge to a class of models on uncertainty

is the difficulty in generating large and persistent responses resembling the slow recovery after

the Great Recession. We show that adding financial frictions goes a long way in amplifying

the impact of uncertainty shocks, in particular producing a larger recession and a slower

recovery. Furthermore, adding financial frictions is also crucial in generating a propagation

of the detrimental effects of uncertainty from real-only variables onto financial outcomes.

We start off by examining the causal response to uncertainty of real and financial

outcomes of US publicly-listed firms, including tangible and intangible investment,

employment, sales, cash, and equity payouts. In particular, taking endogeneity concerns

seriously when estimating the effects of uncertainty,1 we propose a novel instrumentation

strategy for uncertainty that exploits differential industry-level exposure to exchange rate,

factor price, and policy uncertainty. The strategy permits controlling for, say, exposure to oil

prices suddenly crashing while separately identifying exogenous variation in firm volatility

from increases in exposure to oil price volatility. This key separation between first and

second moment effects is crucial given that when commodity prices see upward or downward

movements, uncertainty in commodity prices observe upward simultaneous shifts. Hence, our

strategy allows us to tease out second moment uncertainty effects while controlling explicitly

for correlated first moment effects.

1See, for example, Nieuwerburgh and Veldkamp (2006), Bachmann and Moscarini (2012), Pastor and
Veronesi (2012), Orlik and Veldkamp (2015), Berger, Dew-Becker, and Giglio (2016), and Falgelbaum,
Schaal, and Taschereau-Dumouchel (2016), for models and empirics on reverse causality with uncertainty
and growth.
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Our identification strategy works well in delivering strong first-stage F -statistics

and satisfying the exclusion restriction in Hansen-Sargan over-identification tests. The

instrumentation strategy suggests uncertainty causally reduces investment (in tangible and

intangible capital), hiring and sales growth, while also leading firms to more cautiously

manage their financial policies by increasing cash holdings and cutting debt and dividends.

Moreover, if endogeneity is left untreated our results indicate that the effects of uncertainty

can be largely underestimated by OLS regressions, by a factor of 1.7 to 2.4 depending on

model specification and controls. Importantly, classifying firms into broad groups of ex-

ante financially constrained and unconstrained firms, we find that investment of constrained

firms responds more intensively to uncertainty shocks than unconstrained firms. In the

aggregate, we find that the average impact of uncertainty shocks is increased up to three fold

during periods of increased financial frictions (e.g. 2008-09) compared to periods of normal

financial conditions. As firm-specific financial constraints bind and market-wide financial

conditions worsen (e.g., spikes in the Aaa-Baa corporate credit spread), the detrimental

effects of uncertainty are larger. This explains how in recessions - when financial conditions

typically deteriorate - uncertainty shocks can be so damaging for growth.

To understand the driving forces for the empirical findings we build a dynamic stochastic

general equilibrium (DSGE) model with heterogeneous firms and two key extensions. First,

real and financial frictions. On the real side investment incurs a fixed cost,2 and on the

financing side raising external funds involves costs3 so that firms have to manage liquidity

by saving in cash.4 Second, uncertainty and financing costs are both stochastic, with large

shocks. The model is solved and simulated. We show three key results.

First, an amplification effect. Adding financial frictions to the classical model of

2Models with a central role for adjustment costs include Bertola and Caballero (1990), Davis and
Haltiwanger (1992), Dixit and Pindyck (1994), Caballero, Engel, and Haltiwanger (1995), Abel and Eberly
(1996) and Cooper and Haltiwanger (2006).

3Models with costs of raising external finance include Hennessy and Whited (2007) and Bolton, Chen,
and Wang (2011).

4Models with firms holding cash include Froot, Scharfstein, and Stein (1993), Bolton, Chen, and Wang
(2013) and Eisfeldt and Muir (2016).
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stochastic-volatility shocks - as in Dixit and Pindyck (1994), Abel and Eberly (1996) or

Bloom (2009) - roughly doubles the negative impact of uncertainty shocks on investment.

In our simulation, an uncertainty shock with real and financial frictions leads to a peak

drop in output of 3.9%, but with only real frictions a drop of 1.8%. This happens despite

these financial frictions - which we estimate empirically - being small in magnitude. Hence,

modest financial adjustment costs generate large amplification effects. The intuition is

that introducing financial frictions prevents firms costlessly buffering uncertainty shocks

via financial channels.

Impact of uncertainty shocks on output in simulation

Drop in output

Real frictions −1.8%

Real+financial frictions −3.9%

Notes: Results from the average of 500 simulations of the calibrated model (see section 5.3).

Our second key result is a persistence effect. Adding financial frictions to the standard

investment-uncertainty models roughly doubles the duration of drops. In our model with

only real adjustment costs an uncertainty shock causes investment and output to drop for

1 period before recovering, while adding financial frictions leads to drops for more than 2

periods. The intuition is that after an uncertainty shock firms want to build up a cautionary

cash balance, limiting the cash they have available to finance an investment rebound.

Our third key result is a propagation effect. Financial frictions spread the impact of

uncertainty shocks onto financial variables, an important result that the classical model

with only real frictions fails to generate. In particular, we show that alongside the negative

impact of uncertainty shocks on investment, the model also predicts this shock will lead firms

to accumulate cash and reduce equity payouts, as higher uncertainty causes firms to take a

more cautious financial position. As Figure 1 shows this is consistent with macro-data. It

plots the quarterly VIX index - a common proxy for uncertainty - alongside aggregate real

and financial variables. The top two panels show that times of high uncertainty (VIX) are
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associated with periods of low investment and employment growth. The middle two panels

show that cash holding is positively associated with the VIX, while dividend payout and

equity repurchase are negatively related to the VIX. The bottom panel also considers debt

and shows that the total debt (the sum of the short-term and long-term debt) growth is

negatively related with the VIX.

The additional complexity required to model: (a) real and financial frictions, (b)

uncertainty and financial shocks, and c) general equilibrium with heterogeneous firms,

required us to make some simplifying assumptions. In particular, we ignore labor - including

labor and labor adjustment costs would likely increase the impact of uncertainty shocks,

since a drop in labor would lead to a larger drop in output in our model.

Related literature Our paper builds on three broad literatures. First, the uncertainty

literature studying the interaction of uncertainty and adjustment costs for investment and

employment.5 This emphasizes the “real option” effects of uncertainty, which describes how

firms act more cautiously on their real activities in the presence of uncertainty and real

adjustment costs. We contribute to this literature empirically by providing causal empirical

support to identify the impact of uncertainty on investment and employment by using a

novel instrumentation strategy of exposure to energy, currency, and policy uncertainty to

identify causal effects. We show how the effects of uncertainty can largely be underestimated

5Classic papers on uncertainty and growth include Romer (1990), Ramey and Ramey (1995), Leahy and
Whited (1996), Guiso and Parigi (1999), Bloom (2009), Bachmann and Bayer (2013), Fernandez-Villaverde
et al. (2011), and Fernandez-Villaverde et al. (2015). One more closely related paper that studies the causal
impact of uncertainty shocks using a related exposure approach is Stein and Stone (2013). Several other
papers also look at uncertainty shocks - for example, Bansal and Yaron (2004) and Segal, Shaliastovich, and
Yaron (2015) look at the aggregate consumption and financial implications of uncertainty, Eberly (1994)
examines household durable purchases, while more recently Alfaro and Park (2019) are the first to look at
the effects of employer-level uncertainty on employee spending and precautionary savings behavior, including
daily purchases of nondurable and durable goods and services. Ilut and Schneider (2014) model ambiguity
aversion as an alternative to stochastic volatility, and Basu and Bundick (2017) examine uncertainty shocks
in a sticky-price Keynesian model, and Berger, Dew-Becker, and Giglio (2016) study news vs uncertainty.
Gourio (2012) is also connected to this paper, in that disasters can be interpreted as periods of combined
uncertainty and financial shocks, and indeed can lead to uncertainty through belief updating (e.g. Orlik and
Veldkamp (2015)). Additionally, He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), and
Tella (2017) explore the relations between uncertainty and the aggregate outcomes through the financial
intermediary channel.
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if endogeneity is left untreated. We provide the literature with a set of instruments that can

be useful for a wide-range of models on the causal impact of uncertainty on firm behavior.

Second, the finance literature on firms’ financial management of liquidity. The notion

of liquidity management goes back at least to Keynes’ General Theory which argues that

precautionary cash saving and financing constraints are closely linked if financial markets are

imperfect.6 This literature highlights how firms will hoard cash in the presence of uncertainty

and financial adjustment costs - i.e., costs of issuing debt and/or equity. This is a “cash

options” equivalent to a “real options” effect (the idea that having cash in the firm preserves

the option to issue debt or equity in the future). We extend this literature by showing how

the combination of ”real options” and ”cash options” from real and financial adjustment

costs respectively combine together to amplify the impact of uncertainty shocks on firms

real (investment and hiring) and financial (cash and external financing) behavior.7

Finally, our paper is also closely related to the recent literature on financial frictions

and business cycles.8 We build on this literature to argue it is not a choice between

uncertainty shocks and financial shocks as to which drives recessions, but instead these

shocks amplify each other. So they should not be considered individually, rather jointly.

Related work that links uncertainty and financial frictions includes: Gilchrist, Sim, and

Zakrajsek (2014) who study the relationships between uncertainty, investment and credit

spreads, and show that financial frictions magnify the effects of uncertainty through changes

in credit spreads; Christiano, Motto, and Rostagno (2014) who imbed agency problems

6The recent development in the finance literature on liquidity managemnet and financial constraints
include the theoretical work by Riddick and Whited (2009), Bolton, Chen, and Wang (2011), Bolton, Wang,
and Yang (Forthcoming), etc., and the empirical work by Almeida, Campello, and Weisbach (2005), Bates,
Kahle, and Stulz (2009), etc.

7There is a large literature, for example, Gomes (2001), Rampini and Viswanathan (2013), etc., which
study the impact of various frictions on firms’ financing policies.

8For example, Alessandri and Mumtaz (2018) and Lhuissier and Tripier (2016) show in VAR estimates
a strong interaction effect of financial constraints on uncertainty. More generally, Gilchrist and Zakrajsek
(2012), Jermann and Quadrini (2012), show that financial frictions are important to explain the aggregate
fluctuations for the recent financial crisis. Caggiano, Castelnuovo, and Figueres (2017) show that uncertainty
shocks have a bigger impact during recessions. Giroud and Mueller (2017) show that establishments with
higher financial leverage cut employment more in response to negative local consumer demand shocks.
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associated with financial intermediation as in Bernanke, Gertler, and Gilchrist (1999) into

a monetary dynamic general equilibrium model finding volatility shocks are important in

driving the business cycle; Arellano, Bai, and Kehoe (2019) who build a DSGE model

with frictions in labor and financial markets showing that uncertainty shocks lead to higher

default risk and credit spreads, which cause firms to further cut employees; and Ottonello

and Winberry (2016) who investigate the relationship between financial frictions and firm

heterogeneity and the impact of monetary policy on firms’ investment. Although we share

with Gilchrist, Sim, and Zakrajsek (2014), Christiano, Motto, and Rostagno (2014) and

Arellano, Bai, and Kehoe (2019) the idea that financial frictions amplify the impact of

uncertainty shocks, our work differs in three important ways. First, we develop a micro data

identification strategy to estimate the causal impact of uncertainty and financial shocks on

firms. The set of variables examined in our paper that causally respond to uncertainty

shocks covers both real and financial variables. Addressing endogeneity is important

given potential bias and inconsistency in estimating the effects of uncertainty when using

metrics based on financial measures like stock-returns.9 Second, we use common proxies for

financial constraints proposed in the finance literature to provide empirical evidence for the

amplification prediction of the model, finding that ex-ante financially constrained firms cut

investment substantially more than unconstrained firms in response to uncertainty shocks.

Third, we include cash in our model, allowing firms an additional cash balance dimension to

respond to uncertainty. Modeling cash is important given that cash holdings have increased

in the US and Europe, with rising uncertainty one suggested reason.10

The rest of the paper is laid out as follows. Section 2 describes the instrumentation

strategy and data. Section 3 presents the empirical findings on the effects of uncertainty

shocks on both real and financial activity of firms. In section 4 we write down the model.

9The typical prior approach in this literature to instrumentation - for example Leahy and Whited (1996),
Bloom, Bond, and Reenen (2007) and Gilchrist, Sim, and Zakrajsek (2014) - is to use lagged values of
uncertainty as instruments in OLS regressions. We propose instruments that caputure exogenous variation
in uncertainty in a 2SLS framework.

10See, e.g., Pinkowitz, Stulz, and Williamson (2016) and Chen, Karabarbounis, and Neiman (2017).
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Section 5 presents the main quantitative results of the model. Section 6 concludes.

2 Data, instruments, and addressing endogeneity

This section discusses the instrumentation strategy, construction of instruments, and

data sources used in the empirical analysis.11

2.1 Data

Stock returns are from CRSP and annual accounting variables from Compustat. The

sample period is from January 1965 to December 2019 for OLS regressions and from

December 1993 to December 2019 for the main 2SLS sample that uses the instrumentation

strategy detailed below. Financial, utilities and public sector firms are excluded from the

main sample (i.e., SIC between 6000 and 6999, 4950 and 4999, and equal to or greater than

9000). Compustat variables are at the annual frequency. Our main firm-level empirical tests

regress changes in real and financial variables on 12-month lagged changes in uncertainty (i.e.,

lagged uncertainty shocks), where the lag is both to reduce concerns about contemporaneous

confounding endogeneity and because of natural time to build delays.12 Moreover, our main

tests include both firm and time (calendar year) fixed effects.

In measuring firm-level uncertainty we employ both realized annual volatility from CRSP

stock returns and option-implied volatility from OptionMetrics. Annual realized volatility is

the 12-month standard deviation of firms’ cum-dividend daily stock returns from CRSP, and

annualized by multiplying by
√
252 (a year typically spans 252 trading days).13 Annual

implied volatility is the 12-month average of firms’ daily option-implied volatility from

11Replication code and data for regressions available on https://nbloom.people.stanford.edu/research.
12We lag the firm uncertainty measure by one year to make sure the daily stock return data over the year

used to proxy uncertainty precedes the investment decision. If both were dated in the current year then
on average half of the stock-return data (the data from the second half of the year) would follow after half
of the investment data (the spending in the first half of the year), creating obvious yet unnecessary reverse
causality issues. Moreover, firms report updating their capital investment decisions bi-annually on average
Altig et al. (2021) and capital decisions often have long lags from decision to implementation, so that a one
year lag also appears economically appropriate.

13For accuracy in measuring volatility, we drop firm-year observations with less than 200 daily CRSP
returns (variable RET) in a given 12-month window. As is standard, sample uses securities appearing on
CRSP for firms listed in major US stock exchanges (EXCHCD codes 1,2, and 3 for NYSE, AMEX and the
Nasdaq Stock Market (SM)) and equity shares listed as ordinary common shares (SHRCD 10 or 11).
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OptionMetrics, where the daily observations are the simple average of forward 365-day-

horizon at-the-money (ATM) call and put options.14 Data from OptionMetrics is available

starting January 1996.

Changes in variables xt are measured in annual growth rates ∆xt =
xt−xt−1

1
2
(xt−1+xt)

, which for

positive values of xt and xt−1 yields growth rates bounded between -2 and 2 (i.e., ≤ |200%|).

The only exceptions are CRSP stock returns (measured as the compounded fiscal-year return

of daily stock returns RET from CRSP) and capital formation. For the latter, investment

rate at year t follows Belo, Lin, and Bazdresch (2014) and is defined as It
1
2
(Kt−1+Kt)

, where

Ii,t is the flow of capital expenditures (CAPX from Compustat) over the course of fiscal

year t and 1
2
(Kt−1 + Kt) is the average of current and lagged year net property plant and

equipment (PPENT ). For ease in notation below we refer to investment rate as I/Kt.

Details for variable construction, filters, and data sources are in the Online Appendix A. To

reduce influence of outliers investment rate is bounded [-0.5,0.5], while other variables are

winsorized at the 0.5 and 99.5 percentiles. Online Appendix section A.6 presents a battery of

robustness tests on data and variable construction choices (e.g., variable definitions, filters,

instrumental variables used, subsample analyses, winsorization, etc.,)

Table 1 reports summary statistics for the main sample of firm-year observations in 2SLS

regressions.15

2.2 Identification strategy

Our identification strategy exploits firms’ differential exposure to aggregate volatility

shocks in energy, currency, and policy to identify exogenous variation in firm-level volatility

that is orthogonal to the endogenous components driving firm-level volatility shocks. For

example, to identify exogenous variation using oil price movements, the idea is that some

firms are positively sensitive to oil price movements (e.g. mining and oil exploration firms),

14As with the construction of the aggregate VIX, using a 2-sided mix of call and put options is preferable
(e.g., unlike a call or a put it is not a 1-sided uncertainty measure, while it also reduces the influence of
smirks or other assymetries in implied volatiltiy). Moreover, the use of ATM options has the benefit of
having the highest Black-Scholes Vega (the sensitivity of options prices to implied volatility).

15Additional variables and summary statistics are presented in Appendix Table A.1.
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some are negatively sensitive (e.g. airlines and energy-intensive manufacturing firms), while

others are neutral (e.g. business service firms). As such, firms have a different directional

exposure to the first moment (oil price levels) – which in the example is positive, negative and

zero respectively – while at the same time non-directionally exposed to the second moment

(oil price uncertainty), which is positive, positive and zero respectively. Therefore, the

strategy permits controlling for oil price level exposure while separately identifying exogenous

variation in firm volatility from oil price uncertainty exposure. This key separation between

first and second moment effects is crucial given that when commodity prices see upward or

downward movements, uncertainty in commodity prices observe upward simultaneous shifts.

Our strategy allows us to tease out second moment uncertainty effects while controlling

explicitly for correlated first moment effects, e.g., control for economic downturns while

isolating effects of heightened uncertainty. We extend the oil example to 9 sources of

uncertainty - oil, 7 widely traded currencies, and policy - to generate 9 instruments to

identify exogenous variation in firm uncertainty shocks. In exchange rates, our setup allows

us to control for, say, effects associated with the US Dollar suddenly depreciating vis-a-vis

the Euro while identification comes from uncertainty suddenly increasing in the bilateral

exchange rate.16

Estimation of sensitivities The sensitivities to energy, currencies, and policy are

estimated at the industry level as the factor loadings of regressing firm daily stock returns

on the price growth of energy, 7 currencies, and changes in daily policy uncertainty. That

is, for firm i in industry j, sensitivityci = βc
j is estimated as follows

rrisk adj
i,t = αj +

∑
c

βc
j · rct + ϵi,t (1)

16Related to our approach, Baker, Bloom, and Davis (2016) and Gulen and Ion (2016) construct firm-level
uncertainty measures as the product of time-varying common uncertainty and firm-specific loadings. Our
strategy uses the resulting uncertainty measures as instruments instead of regressors to identify exogenous
variation in firm realized and forward-looking option-implied volatility shocks. Moreover, our identification
comes from several different sources of aggregate uncertainty in policy and energy and exchange rate markets.
We show that firms have highly significant differential exposure to those distinct sources of uncertainty, and
interact with financial frictions in driving financial and real firm activity.
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where rrisk adj
i,t is the daily risk-adjusted return on firm i, rct is the change in the price of

commodity c, and αj is industry j’s intercept. The sensitivities are estimated at the industry

level using daily returns of firms that share the same 2-digit Standard Industrial Classification

(SIC) code. Estimating the main coefficients of interest, βc
j, at the industry level (instead

of at the firm-level) reduces the role of idiosyncratic noise in firm-level returns, increasing

the precision of the estimates, and captures the idea that firms in the same industry have

systematically similar exposure to the aggregate variables. Moreover, we allow the industry-

level sensitivities to be time-varying by estimating them in 5-year rolling windows of daily

data, βc
j,τ where τ is the timing of the 5-year rolling window.

The risk-adjusted returns rrisk adj
i,t in (1) are the residuals from running firm-level time-

series regressions of daily CRSP stock returns on the classical Carhart (1997) four-factor asset

pricing model (details in Appendix section A.3). Adjusting firm-level returns for aggregate

risk addresses concerns over whether the sensitivities to energy, currencies, and policy are

capturing exposures to common risk factors, although in practice this makes almost no

difference.

The daily independent variables in (1) are the growth in crude-oil prices (which proxies

for energy shocks), growth in the exchange rates of 7 widely traded currencies defined as

“major” currencies by the Federal Board,17 and the growth in economic policy uncertainty

from Baker, Bloom, and Davis (2016).

Construction of instruments For the 9 aggregate price shocks (oil, 7 currencies,

and policy) we multiply the absolute value of the time-varying sensitivities | βc
j,τ | by shocks

to the realized volatilities of the aggregate variables ∆σc
t . This provides 9 instruments for

lagged firm-level uncertainty shocks, ∆σi,t−1, as follows:

zci,t−1 =| βc
j,τ | ·∆σc

t−1 (2)

17See http://www.federalreserve.gov/pubs/bulletin/2005/winter05_index.pdf . These include:
the Euro, Canadian Dollar, Japanese Yen, British Pound, Swiss Franc, Australian Dollar, and Swedish
Krona. Each of these trade widely in currency markets outside their respective home areas, and (along with
the U.S. dollar) are referred to by the Board staff as major currencies.

11
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For the volatilities, σc
t−1, of oil and the 7 currencies we use the 252-day standard deviation

of daily returns on crude oil prices (West Texas Intermediate (WTI) oil price data from

Thomson Reuters Eikon) and 252-day standard deviation of daily changes in bilateral

exchange rates against the US Dollar (foreign currency units per 1USD data from the Federal

Reserve Board (FRB) and downloaded from CRSP). For economic policy uncertainty we

use the 252-day average of trading-day US economic policy uncertainty (EPU) from Baker,

Bloom, and Davis (2016).18

We refine the timing of the instruments in (2) such that the sensitivities are predetermined

in all key regression specifications (detailed below). Specifically, the sensitivities are lagged

by three years, βc
j,t−3, such that they pre-date both the outcome and control variables. The

timing avoids using data for the sensitivities that overlaps in time with information entering

the annual investment rate of firms I/Ki,t at time t and controls Xi,t−1 at time t− 1.

Hence, the final 9 uncertainty instruments for firm-level lagged uncertainty shocks,

∆σi,t−1, are z
c
i,t−1 =| βc

j,t−3 | ·∆σc
t−1. In words, this is the 3-year lagged cross-industry non-

directional exposure times the lagged change in volatility for oil prices, 7 leading currencies,

and policy uncertainty.19 We show in Appendix section A.6 that the results are robust to

doing a further refinement on the instruments where the exposures are adjusted for their

statistical significance, a step that helps address potential concerns of noisy estimates and

multicollinearity in (1).20

The baseline multivariate specifications include four important and extensive sets of

18Trading days for EPU are defined as calendar days in which FRB exchange rate daily data are available
from WRDS records. We use realized volatility of the instruments instead of implied volatility due to their
longer daily price sample that extends into the 1980s, whereas implied volatility data for some instruments
only start after year 2000. However, the Online Appendix presents robustness tests using implied volatilities
of the instruments instead of realized volatilities.

19For accuracy in matching the timing of firm accouting reports and volatility with the instruments, the
rolling window sensitivities and the aggregate volatility shocks entering the instruments are timed to exactly
match firm accounting report dates (i.e., year-month of datadate variable in Compustat). See section A.2 in
Appendix for details on timing and measurment.

20In particular, each sensitivity, βc
j , is adjusted by its statistical significance within each industry,

βc,weighted
j = ωc

j · βc
j . The sensitivity weight ωc

j =| tcj | /
c∑

| tck | is the ratio of the absolute value of
the t-statistic of each instrument’s sensitivity to the sum of all t-statistics in absolute value of instruments
within the industry, with insignificant sensitivities at the 10% set to zero.
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controls. First, controls for the first moment effects of each of the 9 instruments. These

are the annual exposure of firms to aggregate price movements (i.e., returns rather than

volatility) of each instrument. These are constructed as βc
j,t−3·rct−1, which are both directional

(βc
j,t−3 can be positive or negative) and use the aggregate first-moment rct−1 price returns

(rather than second moment movements ∆σc
t−1).

21 These aggregate first moment controls

help disentangle the second moment effects from correlated first moment effects. Second, we

control for firm-level measures of first moment effects, i.e., Tobin’s Qi,t−1 and the stock return

of the firm ri,t−1 (measured as firms’ 12-month compounded return from CRSP). These first

moment firm-level controls further help tease out second moment effects of shocks to firm

level volatility, ∆σi,t−1. Third, we include a set of standard financial controls following

Leary and Roberts (2014), which include Tangibilityi,t−1, Book Leveragei,t−1, Return on

Assetsi,t−1, and Firm Sizei,t−1. Fourth, to account for potential autocorrelation in the 8

outcome variables explored in the paper, we further include the 1-year lags for each outcome

variable, Investment Ratei,t−1, ∆Employmenti,t−1, ∆Intangible Investmenti,t−1, ∆COGSi,t−1,

∆Salesi,t−1, ∆Corporate Payouti,t−1, ∆Debti,t−1, and ∆Cash holdingsi,t−1. Therefore, in

addition to the full set of firm and time fixed effects, the baseline specification includes a

total of 23 controls Xi,t−1 (9 aggregate first-moment, 2 firm-level first-moment, 4 standard

controls in finance, and 8 controls for potential autocorrelation). As shown below, results

without controls are, in general, substantially stronger in magnitude and significance. In

all, the empirical identification strategy along with the large set of controls allow the next

section to examine the plausibly causal effects of uncertainty – as instrumented by 2SLS

firm-level uncertainty shocks ∆̂σi,t−1

2SLS
– on real and financial activity of firms.

21For oil and currencies, annual returns rct are the annual growth rates in the 252-day average of daily
oil spot prices and exchange rates. For economic policy uncertainty we measure rct as the growth from one
year to the next in the 4-quarter average of government expenditures as a share of GDP (see variable
A822RE1Q156NBEA from St. Louis Fed, shares of gross domestic product: government consumption
expenditures and gross investment). This share is counter cyclical and controls for 1st moment economic
effects (e.g., downturns when policy uncertainty is high).
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3 Empirical findings

We start by examining the plausibly causal effects of uncertainty shocks on firm-level

capital investment rates, followed by other real outcomes – intangible capital investment,

employment, cost of goods sold, and sales – and by financial variables – debt, payout, and

cash holdings.

3.1 Investment results

Table 2 examines the effect of uncertainty shocks on capital investment rates. Column

1 presents the univariate OLS regression results of investment rate on the realized annual

growth in stock return volatility. The specification includes firm and time fixed effects and

standard errors are clustered at the 2-digit SIC industry, the same level at which factor

exposures are estimated. The sample includes Compustat firms with CRSP data from 1965

to 2019. The point estimate in column 1 of -0.023 is highly significant (t-stat of 12.10), and

indicates that the annual investment of firms as a fraction of the capital stock declines by 2.3

percentage points following a doubling in firm-level volatility (equivalent to a 3.25 standard

deviation volatility shock). Relative to the unconditional mean annual investment rate of

22.9% (see descriptive statistics in Table 1), this is a decline of 10.04% per year. In standard

deviation units, firm investment drops by 0.29 standard deviations in response to a doubling

in firm volatility. Column 2 runs an analogue OLS regression but restricted to the 2SLS

sample that is used in the baseline instrumentation strategy used throughout the rest of

the paper, from 1993 to 2019. We see an almost identical point estimate (coefficient -0.024)

with similar significance in the 27 year span covered by the 2SLS sample. These results

indicate that uncertainty shocks correlate negatively with real firm investment decisions.

However, as explained in section A.5, inferences from OLS results are likely to suffer from

endogeneity bias. Therefore, columns 3 and 4 instrument firm realized volatility shocks

using the instrumentation strategy discussed in section 2.2, with sample years 1993 to 2019.

Column 3 is the 2SLS analogue of column 2 that includes the full set of 1st moment aggregate
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controls to identify and disentangle the 2nd moment uncertainty shock effects of interest.

Column 4 further adds the full set of firm-level controls discussed above. We find that

uncertainty shocks lead to significant drops (at the 1%) in firm-level investment rates that

are larger than that of OLS regressions, with a drop of 5.7 and 4.1 points in the rate of

investment in columns 3 and 4, respectively. As shown, if endogeneity is left untreated we

find that uncertainty effects can be largely underestimated in OLS regressions, by a factor

of 1.7 to 2.4 depending on model specification and controls included. Column 5 runs an

analogue to column 4 but instrumenting firm-level implied volatility shocks,22 with sample

period 1998 to 2019. We find similar yet larger negative effects of uncertainty when proxied

by forward-looking implied volatility shocks, indicating a drop of 5.8 points in investment

following a doubling in firm-level volatility.23

Importantly, the instrumentation strategy across all 2SLS specifications in Table 2 seems

to work well, as seen by the large first-stage F−tests with values ranging from 69.91 to

87.22, and a Hansen-Sargan over-identification J−test that does not reject the validity of

the instruments with p values ranging from 0.462 to 0.665. The full 2SLS first stage results

are discussed and presented in Appendix section A.4).

In summary, Table 2 provides causal support that increases in uncertainty lead to

reductions in capital investment rates of US publicly listed firms, which can be largely

underestimated if endogeneity is left untreated. In terms of magnitudes columns 4 and

5 imply that a two-standard deviation increase in realized and implied volatility shocks

reduces the rate of investment by 2.5 to 3.6 percentage points, respectively. These may be

modest compared to the unconditional mean of firm-level investment of 22.9% (see Table

1), but large in comparison to the 3.3 percentage point total drop in aggregate investment

22For presentational purposes and to ease comparison across realized and implied volatility effects, the
growth in implied volatility in column 5 is standardized to have the same standard deviation as growth in
realized volatility in column 4.

23The raw coefficient on the growth in implied volatility in column 5 (i.e., run on the raw sample of growth
in implied volatility that has not first being re-scaled to have the same standard deviation of growth in
realized volatility in column 4) is -0.093 with same significance at the 5% .
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during recessions.24 Although implied volatility has the nice feature of being forward-looking

in nature, our preferred specification is in column 4 with realized volatility due to the

substantially larger firm-year sample size (56,172 vs 26,977 observations in columns 4 and 5,

respectively).

3.2 Other real and financial outcomes

Table 3 examines the effects of uncertainty shocks on the growth of other real and financial

outcomes. Panel A examines the responses in the growth rates of intangible investment, R&D

+(0.3 · XSGA),25 Employment EMP , cost of goods sold COGS, sales SALE, corporate

payout measured as the sum in common and preferred dividends plus share repurchase

(DV C + DV P + PRSTKC), total firm debt measured as the sum of of short- and long-

term debt, DLC + DLTT , and corporate cash holdings measured as cash and short-term

investments, CHE.

Column 1 repeats the investment rate results from the preferred 2SLS specification

discussed above and presented in column 4 of Table 2. Using the same preferred 2SLS

specification, columns 2 through 5 present the responses of the other real variables while 6

to 8 the responses of the financial variables. All specifications include the full set of aggregate

and firm-level controls and firm and time fixed effects. The data requirements on non-missing

outcomes and controls guarantee that all columns in Table 3 have the same firm-year sample,

and thus the same 1st stage regression that shows a large 1st-stage F− statistic of 79.68.

As shown, the real activity of firms is causally negatively impacted by uncertainty

shocks, with intangibles, employment, COGS and sales all dropping. The drop in intangibles

(coefficient -0.052) implies that, on average, firms not only cut investment in physical assets

but also reduce their investment in intangible assets (e.g., R&D, intellectual property, brand

24The average total drop in NIPA gross private domestic investment/GDP ratios in all 11 recessions during
period 1947Q1-2019Q4, measured as the difference in the minimum ratio during NBER-defined recessions
and the maximum ratio in the four quarters prior to the onset of a recession.

25Measured following Peters and Taylor (2017) as R&D +(0.3 · XSGA), where R&D is research and
development in Compustat and 30% of XSGA –which is sales, general and administration expenses– is
intangible investment (see section A for details)
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equity, etc.,). Employment and firm output (as proxied by sales) are also negatively affected

by uncertainty.

As for financial variables, firms take more cautious financial decisions by cutting equity

payouts and debt while increasing cash holdings in response to uncertainty shocks. The latter

response is consistent with a precautionary savings channel, where firms build up cash that

they do not use the next period (e.g., hiring and investment in physical and/or intangibles is

not realized). Moreover, the payout results are consistent with firms building up additional

precautionary savings by cutting their outflows of cash spent on paying dividends and buying

back previously-issued equity stock, while the debt result indicates that firms borrow less as

part of this more cautious financial stance. The model in section 4 reconciles and provides

intuition into these dynamics in firm real and financial activity, and highlights that the

detrimental and causal effects of uncertainty extend beyond real outcomes and propagate

onto financial variables in the presence of financial frictions.

Panel B in Table 3 compares the magnitudes of the economic effects of uncertainty shocks

on all the different outcomes, showing sizeable magnitudes of responses, with for example a 2

standard deviation volatility shock leading to changes in real and financial activity typically

between 0.1 to 0.3 standard-deviations.

Overall, Table 3 provides support that uncertainty matters in a causal way for real

and financial activity of firms, and that the effects go beyond the response of physical

investment. We conduct numerous robustness checks to our instrumentation strategy and

variable construction, which are presented in section A.6 in the Online Appendix. The next

section builds on the casual and negative response to uncertainty of firm investment and

documents how the response is amplified by the presence of financial frictions.

3.3 Financing frictions and uncertainty shocks

We examine whether financial frictions amplify the negative real effects of uncertainty

shocks by running a series of interactions of uncertainty shocks with financial frictions.

We analyze the amplification effect in two dimensions - across time (periods of lower and
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higher aggregate financial frictions) and across firms (firms with lower and higher financial

constraints).

First, we ask whether there is evidence that the investment rate of firms responds more

intensively to uncertainty shocks during periods of heightened aggregate financial frictions.

As our primary measure of financial frictions we use Moody’s aggregate Baa-Aaa corporate

credit spread, which tends to increase when credit conditions worsen in the economy.

The aggregate spread is standardized over time to ease interpretation and comparison of

coefficients across regression specifications, see Appendix A for data details. We expect

that firms cut investment, I/Ki,t, after increased uncertainty shocks, ∆σi,t−1, and this cut

is amplified further during periods of high aggregate financial frictions, Fin Indext.

Table 4 presents the interaction results using our baseline 2SLS regression with full set

of controls, firm and time fixed effects. For comparison, column 1 repeats the non-interacted

baseline regression discussed above and presented in column 1 in Table 3. Column 2 presents

the interaction of firm uncertainty and aggregate financial frictions.26 The interaction reveals

firms significantly cut their investment rate in response to uncertainty shocks (coefficient

of −0.022), particularly during periods of high aggregate financial frictions (coefficient of

−0.023). These two coefficients imply that when the Moody’s credit spread increases by 1

standard deviation in years of high financial frictions, the rate of corporate investment drops

by −0.045 percentage points, which represents a doubling of impact compared to years of

normal aggregate financial frictions (i.e., a multiplier of −0.045/− 0.022 = 2.05).

Second, we investigate if the response to uncertainty shocks is amplified in the cross-

section for firms facing larger financial constraints. To test this we generate a measure of firm-

level financial constraints, Dfin.constrained
i,t−5 = {0, 1}, which is a dummy that takes the value

one for firms classified as ex-ante financially constrained using information in fiscal year t−5,

26The yearly Fin Indext is collinear with the year fixed effects, so neither included nor reported. The
specification has 2 endogenous terms a) volatility shock and b) its interaction with Fin Indext, which are
both instrumented with 2 analogue sets of instruments, a) the IVs and b) their interaction with Fin Indext.
Controls, including 1st moment, are similarly interacted.
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and zero otherwise. We use a lag of 5 years to capture ex-ante financial situations of firms

and address potential endogeneity concerns that might exist in contemporaneous measures

of financial constraints. This financial constraint measure DFin.Constrained
i,t−5 is the mode (e.g.,

consensus) of the three leading firm-level proxies for financial constraints: the S&P credit

ratings where a firm at year t is ex-ante constrained if it lacks a credit rating in year t−5,27 the

Whited and Wu (2006) index where constrained firms are those equal to or above the median

value, and the size and age measure of Hadlock and Pierce (2010) where constrained firms

are those equal to or above the median value.28 In column (3) we see that, indeed, financially

constrained show a significantly larger response to uncertainty (coefficient of −0.020), which

is about 60% higher than non-constrained firms, (−0.020− 0.034)/− 0.034 = 1.59.29

Next in column (4) we look at an even tougher test, which is whether uncertainty has

a more negative impact on investment during periods of greater financial frictions for more

financially constrained firms. This involves testing a triple interaction of uncertainty, ∆σi,t−1,

financial frictions, Fin Indext, and firm financial constraints, DFin.Constrained
i,t−5 (noting we also

include all lower-level pairwise interactions and the financial constraint indicator but only

report those coefficients involving uncertainty in the table for brevity).30 As shown, the

triple interaction is negative and significant (coefficient of −0.014), and implies an estimated

impact of uncertainty on constrained firms in years of high aggregate financial frictions of

27See, for example Duchin, Ozbas, and Sensoy (2010) and Panousi and Papanikolaou (2012) for credit
ratings and financial frictions. Ratings are from Compustat-Capital IQ rating data downloaded from
Wharton Research Data Services (WRDS), using variable SPLTICRM (S&P Domestic Long-Term Issuer
Credit Ratings).

28The use of cutoffs to classify firms into broad groups instead of using the continuous firm-level financial
constraint measures is also standard (e.g., Duchin, Ozbas, and Sensoy (2010) and Panousi and Papanikolaou
(2012)) because firm-level measures are imperfect proxies for financial constraints, yet they can largely
succeed at broadly capturing differences across constrained and unconstrained groups. We follow Duchin,
Ozbas, and Sensoy (2010) in using the median firm each year as cutoff to classify firms.

29The indicator DFin.Constrained
i,t−5 is included but not reported for brevity. Moreover, the 2 endogenous

terms involving firm volatility shocks are instrumented with 2 analogue sets of instruments, a) the IVs and
b) their interaction with the indicator DFin.Constrained

i,t−5 . Controls are similarly interacted.
30The specification includes 4 endogenous terms involving firm uncertainty shocks, which are instrumented

with 4 sets of IVs with similar functional forms, a) IVs, b) the IVs interacted with Fin Indext, c) IVs
interacted with firm indicator DFin.Constrained

i,t−5 , d) the IVs in a triple interaction. Indicator DFin.Constrained
i,t−5

and its interaction with Fin Indext are also included but not reported for brevity. The specification in
column 4 therefore fully nests the models in columns 3, 2, and 1.
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−0.054 (= −0.023−0.019+0.002−0.014), which is 2.35 times the baseline impact of −0.023.

This result highlights how financial frictions at the aggregate- and firm-level can substantially

amplify the detrimental impact of uncertainty shocks.

Figure 2 shows the average impact over time of uncertainty on firm investment implied

by the results in column 4 of Table 4. The figure uses the observed time variation in both

the Moody’s credit spread and the financial constraint classification of firms to generate the

marginal impact of uncertainty on investment (weighted by firm capital stock sizes). We

see that on average the mean impact of firm uncertainty on investment as a fraction of the

capital stock is around -1.5 percentage points. Strikingly, however, during the 2008-2009

crisis, because of both the worsening in the market-wide credit conditions and binding of the

firm-specific financial constraints, the mean impact of uncertainty is roughly tripled to -5.0.

Thus, in the aggregate during the financial crisis firms observed a tripling of the average

negative impact of uncertainty. This result highlights the importance of analyzing the joint

interacted effects of uncertainty and financial conditions rather than each component in

isolation or in competition with each other in driving economic activity.

One concern when testing the interacted effects is whether Moody’s credit spread is a

good measure of aggregate financial frictions, thus columns 5 and 6 present the amplification

effects on investment using other leading proxies for aggregate financial conditions. These

proxies are the US financial distress measure by Romer and Romer (2017) in column 5 – a

series that assesses “the health of the US financial system”– and the Chicago Fed Adjusted

National Financial Conditions Index (ANFCI) in 6 – a series that “has been historically

associated with tighter-than-average financial conditions” and is an index “that isolates a

component of financial conditions that is uncorrelated with economic conditions, the state

of the business cycle, and level of inflation”. As with the Moody’s spread the 2 series are

standardized to ease interpretation of coefficients and make the points estimates comparable

across columns. We find similar results using the alternative measures of aggregate financial

conditions. Importantly, the formal test on the triple interaction term is highly significant,
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and indicates that in years when aggregate financial and credit conditions worsen firms with

binding financial constraints drop their investment by 1.4 to 1.6 percentage points more than

otherwise similar albeit less constrained firms.

In all, columns 4,5,6 indicate that the causal effects of uncertainty on investment differs

between constrained and unconstrained firms particularly in years of heightened financial

frictions. Another way of confirming the idea that financial frictions amplify the negative

effects of uncertainty is by shifting the timing of the tightening of the aggregate credit

conditions. We do so in columns 7 and 8 by running a placebo, where instead of measuring

the Moody’s credit spread at year t we shift the Moody’s credit spread by t− 3 years. This

is a placebo falsification test for the role of heightened credit conditions amplifying the effect

of uncertainty. The idea is that if we shift the spike in the market-wide credit frictions of,

say, the 2008-2009 financial crisis to instead be measured in 2005-2006 placebo years, we

should not find any amplification effect on the role of uncertainty. Indeed, column 7 shows

that the negative effect of uncertainty on investment remains significant for years of average

credit frictions (coefficient −0.039 significant at the 1%) yet there is no amplification effect

coming from heightened placebo credit friction years (coefficient 0.008 insignificant), which

is in sharp contrast to the amplifications effects seen in column 2. In fact, the placebo results

in column 7 are very similar to those of the non-interacted results in column 1 where there

is no role for amplification effects from financial conditions. Similarly, column 8 presents the

placebo equivalent of column 4 and shows that the aggregate placebo financial variable does

not matter for investment (i.e., coefficients involving the placebo Fin Indext are zero). In

fact, the placebo results in column 8 are very similar to those in column 3 that have no role

for the aggregate credit conditions.

In summary, Table 4 and Figure 2 suggest that financial frictions amplify the negative

effects of uncertainty shocks on real investment activity of firms. The next section presents

the model that discusses the mechanism for the amplification effect for uncertainty, and as

discussed in section 3.2 does so using a rich framework that highlights the propagation of
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detrimental uncertainty effects onto other real and financial variables shown to also causally

respond to uncertainty shocks in Table 3.

4 Model

The model features a continuum of heterogeneous firms facing uncertainty shocks and real

adjustment costs as in Cooper and Haltiwanger (2006). Firms implement risk management

policies by saving in cash as in Froot, Scharfstein, and Stein (1993). We do not explicitly

model financial intermediation, instead we summarize the costs associated with external

financing with a simple functional form that captures the basic idea that there is a wedge

between internal and external funds so that external funds are more costly than internal

funds. Furthermore, financial adjustment costs vary over time and across firms. Firms choose

optimal levels of physical capital investment and cash holding each period to maximize the

market value of equity.

4.1 Technology

Firms use physical capital (kj,t) to produce a single final good (yj,t). The production

function is decreasing returns to scale given by

yj,t = Xtzj,tk
α
j,t, (3)

in which Xt and zj,t are aggregate and firm-specific productivities and α is a constant with

0 < α < 1.

Both aggregate and firm-specific productivities (in log terms) following an AR(1) process

log(Xt+1) = log(X̄)(1− ρX) + ρX log(Xt+1) + σX
t ε

X
t+1, (4)

log(zj,t+1) = ρz log(zj,t) + σz
j,tε

z
j,t+1, (5)

in which εXt+1 is an i.i.d. standard normal aggregate productivity shock and εzj,t+1 are

an i.i.d. standard normal shock (drawn independently across firms), X̄ is the long-run

average of aggregate productivity, ρX and ρz are autocorrelations of aggregate and firm-

specific productivities, and σX
t and σz

j,t are the macro and micro uncertainty (time-varying
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conditional volatilities) of the productivity processes.

We assume that the evolutions of macro and micro volatility σX
t and σz

j,t follow two-state

Markov processes, where the transition matrix for σX
t and σz

j,t are governed by

σX ∈
{
σX
L , σ

X
H

}
,where Pr

(
σX
t+1 = σX

l |σX
t = σX

k

)
= πσX

k,l (6)

σz
j,t ∈ {σz

L, σ
z
H} ,where Pr

(
σz
j,t+1 = σz

l |σz
j,t = σz

k

)
= πσz

k,l. (7)

Physical capital accumulation is given by

kj,t+1 = (1− δ)kj,t + ij,t, (8)

where δ is the depreciation rate for capital and ij,t is investment.

Nonconvex adjustment costs, denoted as gj,t, are given by:

gj,t = ckyj,t1{ij,t ̸=0}, (9)

where ck > 0 is constant. The capital adjustment costs include planning and installation

costs, learning to use the new equipment, or the fact that production is temporarily

interrupted. The nonconvex costs ckyj,t1{ij,t ̸=0} capture the costs of adjusting capital that

are independent of the size of the investment. They are scaled by firms’ output so that firms

do not outgrow adjustment costs in the model.

4.2 Cash holding

Firms save in cash (nj,t+1) which represents the liquid asset that firms hold. Cash

accumulation evolves according to the process

nj,t+1 = Rnnj,t + hj,t, (10)

where hj,t is the investment in cash and Rn > 0 is the return on holding cash. Following

Cooley and Quadrini (2001), we assume that return on cash is strictly less than the subjective

discount rate R = 1/β, i.e., Rn = κR with 0 < κ < 1, and cash can be freely adjusted.

We assume the aggregate net supply of the liquid asset excluding the firm’s demand is

an exogenous process as a function of the spot interest rate Rf,t. Specifically we assume the
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net supply of liquid asset NS
t+1 follows a constant elasticity of supply function,

NS
t+1 = ϑRf,t

ζ , (11)

where ζ determines the elasticity and ϑ > 0 is a constant.

4.3 External financing costs

The final part of the firm’s problem concerns the external financing costs. We do not

model financial intermediation costs endogenously associated with asymmetric information

or agency frictions. Instead we choose to summarize the costs of external financing in a

reduced form way as in Gomes (2001), Hennessy and Whited (2005) and Bolton, Chen, and

Wang (2011). Specifically, when the sum of investment in capital, investment adjustment

cost and investment in cash exceeds the output, firms can take external sources of funds as

a last resource. The financing costs include both direct costs (for example, flotation costs -

underwriting, legal and registration fees), and indirect (unobserved) costs due to asymmetric

information and managerial incentive problems, among others.31

Because external financing costs will be paid only if payouts are negative, we define the

firm’s payout before financing cost (ej,t) as output minus investment in capital and cash

accumulation, less investment adjustment costs

ej,t = yj,t − ij,t − hj,t − gj,t. (12)

Furthermore, external financing costs vary over time and across firms, consistent with Erel

et al. (2012) who show that firms’ access to external finance markets also changes with

macroeconomic conditions.32 The micro-foundations of time-varying financing conditions

include endogenous time-varying adverse selection problems in Eisfeldt (2004) and Kurlat

(2013) who show that uncertainty increases the adverse selection cost from external financing,

31These costs are estimated to be substantial. For example, Altinkilic and Hansen (2000) estimate the
underwriting fee ranging from 4.37% to 6.32% of the capital raised in their sample. In addition, a few
empirical papers also seek to establish the importance of the indirect costs of equity issuance. Asquith and
Mullins (1986) find that the announcement of equity offerings reduces stock prices on average by −3% and
this price reduction as a fraction of the new equity issue is on average −31%.

32Kahle and Stulz (2013) find that net equity issuance fell more substantially than debt issuance during
the recent financial crisis suggesting that shocks to the corporate credit supply may not be likely to be the
primary cause for the reduction in firms’ capital expenditures in 2007-2008.
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agency frictions varying over time as in Bernanke and Gertler (1989) and Carlstrom and

Fuerst (1997), and time-varying liquidity as in Pastor and Stambaugh (2003). Furthermore,

empirically, Choe, Masulis, and Nanda (1993) find that the adverse selection costs measured

as negative price reaction to seasoned equity offering announcement is higher in contractions

and lower in expansions, suggesting changes in information symmetries between firms and

investors are likely to vary over time.33

As such, we use ηt to capture the time-varying aggregate financing conditions that also

vary over time, which is assumed for simplicity to follow a two-point Markov chain

ηt ∈ {ηL, ηH} ,where Pr
(
ηt+1 = ηl|ηt = ηk

)
= πη

k,l. (13)

We do not explicitly model the sources of the external financing costs. Rather, we attempt to

capture the effect of the costs in a reduced-form fashion, assuming costs for raising external

finance when payouts are negative. Specifically, the external financing costs ψj,t are assumed

to be proportional to the proceeds raised:34

ψj,t = ηt |ej,t|1{ej,t<0}. (14)

Firms do not incur costs when paying dividends or repurchasing shares. So ηt captures the

marginal cost of external financing which affects both optimal investment and cash holding

policies, similar to Eisfeldt and Muir (2016) who model a time-varying financing condition

by an AR(1) process.

4.4 Firm’s problem

We denote the firm’s value function by v
(
kj,t, nj,t, zj,t, σ

z
j,t;Xt, σ

X
t , ηt, µt

)
. The state

variables are given by (1) a firm’s capital stock, kj,t, (2) a firm’s cash holding nj,t, (3)

the firm’s idiosyncratic productivity, zj,t, (4) the current value of micro uncertainty, σz
j,t, (5)

33In addition, Lee and Masulis (2009) show that seasoned equity issuance costs are higher for firms with
poor accounting information quality.

34We have also solved the model with fixed financing costs which does not depend on the external funds
raised. We use proportional financing costs because it is more likely to be the primary form of costs that
firms face when raising external funds. However, the amplification effect of financial frictions remains robust.
The intuition is that both fixed and proportional external financing costs enlarge the Ss band of investment
relative to the model with only fixed investment costs, thus amplifying the negative impact of uncertainty
shocks on investment.
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aggregate productivity, Xt, (6) the current value of macro uncertainty, σX
t , (7) the current

value of financing wedge, ηt, and, (8) the joint distribution of idiosyncratic productivity,

micro uncertainty and firm-level capital stocks and cash holding, µt, which is defined for the

space S=R+×R+× R+ × {0∪R+}

Firms solve the maximization problem by choosing capital investment and cash holding

optimally:

vj,t = max
ij,t,nj,t+1

[
ej,t − ψj,t + EtMt,t+1vj,t+1

]
, (15)

subject to firms’ capital accumulation equation (Eq. 8) and cash accumulation equation

(Eq. 10), where ej,t −ψj,t captures the net payout distributed to shareholders given a law of

motion for the joint distribution of idiosyncratic productivity, volatility, capital and cash

µt+1 = Γ
(
Xt, σ

X
t , ηt, µt

)
(16)

Mt+1 is the stochastic discount factor from the household problem in Section (4.5).

4.5 Households

There is a continuum of identical households of measure unity. Households choose

consumption and investment in firm shares to maximize the lifetime utility. Let ϕj,t denote

the shares households invest in firms. The household problem is given by

Ut = max
Ct,ϕj,t+1

{log(Ct) + βEtUt+1} (17)

The household budget constraint is

Ct +

∫
pj,tdϕj,t+1 =

∫
qj,tdµt, (18)

where qj,t is the the sum of dividends and the resale value of their investments and pj,t is the

price of the new shares that households buy.

Competitive equilibrium A competitive equilibrium is defined as a set of quantities

{Ct, kj,t+1, nj,t+1, ϕj,t+1}, pricing functions {Mt,t+1, qj,t, pj,t} and life utility and value

functions {Ut,vj,t} such that they solve the firms’ and households’ optimizations and the

market clearing conditions hold.
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• Goods market clears

Ct =

∫
(yj,t − ij,t − gj,t − ψj,t)dµt. (19)

• Equity market clears

µt+1 =

∫ ∫
ϕj,t+1Q (zj,t+1|zj,t)Q

(
σz
j,t+1|σz

j,t

)
dzj,tdσ

z
j,t. (20)

• Liquid asset market clears

NS
t+1 =

∫
nj,t+1dµt. (21)

5 Main results

This section presents the model solution and the main results.35 We first calibrate the

model parameters, then we simulate the model and study the quantitative implications of

the model for the relationship between uncertainty shocks, financial shocks, and firms’ real

activity and financial flows.

5.1 Calibration

Below we briefly discuss how we calibrate the parameters of the baseline model. Appendix

Section B.4 provides a detailed discussion of the calibration for some of the key parameters.

Household preferences and firm’s technology. The subjective discount factor β is set at

β = 0.988 quarterly, implying a subject net discount rate R − 1 = 5% annually. We set

the returns-to-scale parameter α at 0.7, close to the value estimated by Cooper and Ejarque

(2001) and Hennessy and Whited (2007). We set the capital depreciation rate δ at 0.05,

consistent with Caballero and Engel (1999). Return-on-cash saving Rn is assumed to be

less than the subjective discount rate due to the tax disadvantage of carrying cash for firms

or agency frictions associated with cash holding. Given that there is no readily available

estimates for Rn and the adjustment costs parameters ck ,ηL, and ηH , we set κ = 0.97 so

that Rn = 97%R, ck = 0.03, ηL = 0.03, and ηH = 0.06 to match the investment slope in the

35See https://people.stanford.edu/nbloom/ for the full Matlab code to replicate all results.
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multi-variate IV regression and the cash-to-revenue ratio in the data. The model implied

moments are −0.125 and 27%, respectively, close to the data counterparts at −0.09 and 0.29.

We also check robustness of these parameters in Section 5.3. For the real-only model, we set

ck = 0.2 so that the model implied investment slope is −0.119 close to the data moment.

Stochastic processes. We set the persistence of aggregate and firm-specific productivities

as ρX = 0.95 and ρZ = 0.95 following Khan and Thomas (2008). Following Bloom et al.

(2018), we set the baseline aggregate and firm-specific volatilities as σX
L = 0.0067 and

σZ
L = 0.051, respectively, the high uncertainty state σX

H = 1.6 ∗ σX
L and σZ

H = 4.1 ∗ σZ
L ,

and the transition probabilities of πσX

L,H = 0.026, πσZ

L,H = 0.026 and πσX

H,H = 0.943, and

πσZ

H,H = 0.943. Because there is no readily available estimate for the transition probabilities

of financial shock in the data, we set πη
L,H = 0.05 and πη

H,H = 0.50 so that the high financial

adjustment costs state is expected to happen every 20 quarters and the expected length of

the high financial costs state is 2 quarters.36

Net supply of liquid cash. For tractability, we assume ζ → ∞ such that the net supply

of cash is infinitely elastic. This assumption implies that the market for cash always clears

so that one does not need to solve the spot rate that equates the supply and the aggregate

demand for cash.37

5.2 Policy functions

To illustrate the intuition of the model mechanism we analyze the policy functions implied

by the model with real and financial adjustment costs. Figures 3A, 3B and 3C plot the

optimal investment policies associated with low and high financial adjustment costs states

(3A), low and high uncertainty states (3B), and low-low financial and uncertainty states and

high-high financial costs and uncertainty states.38 In all figures, we fix the aggregate and

idiosyncratic productivities, aggregate capital, and firm cash at their median grid points.

36We also solved a model with the transition matrix of financial shocks the same as the uncertainty shocks.
The quantitative result is similar to the baseline calibration as shown in Figure 5.

37Moreover, we do not need to include the aggregate cash as an aggregate state variable to approximate
the cross-sectional distribution when apply the Krusell-Smith method to solve the model.

38We set both macro and micro uncertainty to either low and high state together in this analysis.
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In Figure 3A, optimal investment displays the classic Ss band behavior. There is an

investing region when the firm size (capital) is small, an inaction region when the firm size is

in the intermediate range, and a disinvestment region when the firm is large. Furthermore,

the Ss band expands with higher financial adjustment due to the amplification to the real-

option effects inducing greater caution in firms investment behavior. However, optimal

investment in the baseline model displays a second flat region in the high financing cost

state, which arises when the firm is investing but only financed by internal funds. Turning

to Figure 3B we see that the Ss band associated with high uncertainty states (both macro

and micro uncertainty) is bigger than the low uncertainty state. Lastly in Figure 3C, we

see that the Ss band associated with high uncertainty states and high financing adjustment

cost is bigger than the low uncertainty and low financial adjustment cost states. Similar to

Figure 3A, optimal investment also displays a second flat region. This happens because firms

are facing binding financial constraints (Et = 0), and are not prepared to pay the financing

costs of raising external equity.

Overall, this shows two results. First, real and financial constraints interact to expand

the central region of inaction in Ss models. Second, uncertainty leads to a greater increase in

the width of the Ss bands with both real and financial adjustment costs because it increases

the value of real-options (the option to delay investing) and cash-options (the option to delay

raising finance). This is the mechanism driving the amplification of financial frictions to the

uncertainty shock. We now turn to the model mechanism in details.

5.3 Inspecting the mechanism

We inspect the model mechanism by investigating the impulse responses of the model

and the magnitude of the financial adjustment costs.

5.3.1 Impulse responses

We simulate the impulse responses of the baseline model and the model with real frictions

only. We run our model for 500 simulations each with 230 periods and then kick both macro

and micro uncertainties and/or financing costs up to its high level in period 201 and then let
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the model to continue to run as before. Hence, we are simulating the response to a one period

impulse and its gradual decay. Overall, we show that real frictions alone cannot generate a

persistent impact of uncertainty shocks, whereas combining real and financial frictions can

generate large drops in quantities and also persistent responses and slow recoveries.

Figure 4 plots the impulse responses of the real and financial variables of the benchmark

model to pure uncertainty shocks (both macro and micro uncertainties rise). Starting with

the classic “real adjustment cost” only model (black line, x symbols) we see a peak drop in

output of 1.8% and an overshoot above the trend. This is driven by drops and recoveries

in capital. Investment drops and recovers due to real-option effects leading firms to pause

investing, while depreciation continues to erode capital stocks. Consumption rises because

output falls less than investment (and adjustment costs). TFP falls and recovers due to the

increased misallocation of capital after uncertainty shocks - higher uncertainty leads to more

rapid reshuffling of productivity across firms, which with reduced investment leads to more

input misallocation. Firms pay out higher dividends when uncertainty rises because firms

do not invest and pay profits out to shareholders. It is worth noting that the real-only model

cannot generate persistent drop in output and investment. Real adjustment costs lead to

a sharp drop due to the Ss band expansion which freezes investment after the shock, but

with a rapid bounce-back as the Ss bands contract and firms realize pent-up demand for

investment, and a longer-run overshoot from the Oi-Hartman-Abel effect.39

Turning to the baseline model (red line, triangle symbols) with “real and financial

adjustment costs” we see a much larger peak drop in output of 3.9%, alongside larger drops

in investment. Hence, in line with the empirical results, we see that adding financial costs

to the classic model roughly doubles the impact of uncertainty shocks. Furthermore, the

interaction of financial costs with uncertainty generates a desire by the firms to increase cash

holdings when uncertainty is high, leading to more persistent drops in output and capital.

39The Oi-Hartman-Abel effects describes how output can expand with a mean-preserving increase in
cross-sectional variance of productivity. The reason is productive firms expand to exploit the shock and
unproductive firms contract to reduce the impact of the shock (see Bloom et al. (2018) for details).
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The duration of impact roughly triples compared to the baseline - output and investment

fall for 3 periods rather than 1, while output remains below steady state for 5 periods rather

than 2.

Robustness We consider changes in parameter values in the baseline model (details

in section B.5). These include i) a model with the transition matrix of financial shocks

the same as the uncertainty shocks, ii) a model without cash, iii) a model with constant

financial adjustment costs, iv) a model with nonconvex financial adjustment costs, v) model

with the financial adjustment costs as 90% of the baseline, vi) a model with the financial

adjustment costs as 110% of the baseline, vii) model with the real adjustment costs as 90%

of the baseline, and viii) a model with the real adjustment costs as 110% of the baseline.

These models implied impulse responses are plotted in Figure 5. The broad summary is that

while the quantitative results vary somewhat across different models, the qualitative results

are robust - uncertainty shocks lead to drops and rebounds in output, investment (alongside

rises in cash and drops in equity payouts), and adding in financial adjustment costs make

the impact larger and more persistent.

5.3.2 Magnitude of adjustment costs

Notably, despite the large amplification effect and the persistent responses generated by

adding financial frictions, the magnitude of financial costs is reasonably small. In particular,

in the baseline model the aggregate financial adjustment cost is only 3% of the aggregate

annual output. This implies that the strong amplification of financial frictions does not rely

on large total adjustment costs. The intuition is that introducing financial frictions prevents

firms costlessly buffering uncertainty shocks via financial channels.40

40Even small levels of financial frictions can have large impacts as Ss bands are extremely sensitive to
adjustment costs around zero. Dixit (1993) Dixit (1989) and Abel and Eberly (1996) all show that (in
continous time models) the derivative of distance between the Ss bands with respect to adjustment costs is
infinite around zero transactions costs.
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6 Conclusion

This paper studies the impact of uncertainty shocks on firms’ real and financial activity.

We first take endogeneity concerns in measuring the effects of uncertainty seriously by

employing a novel instrumentation strategy that exploits cross-sectional non-directional

exposures to different aggregate sources of uncertainty. Using 2SLS estimations we document

a large and causal effect of uncertainty shocks on both real and financial variables of firms.

Uncertainty shocks reduce firms’ investment (tangible and intangible), employment, sales and

cost of good sold, while increasing cash holdings and reducing debt and corporate dividend

payout.

Second, we document a larger negative impact of uncertainty on investment in years of

heightened financial frictions, particularly for financially constrained firms. In the aggregate,

we find that the average impact of uncertainty shocks is increased up to three fold during

periods of increased financial frictions (e.g. 2008-09) compared to periods of normal financial

conditions. As firm-specific financial constraints bind and market-wide financial conditions

worsen (e.g., spikes in the Aaa-Baa corporate credit spread), the detrimental effects of

uncertainty are larger. This explains how in recessions - when financial conditions typically

deteriorate - uncertainty shocks can be so damaging for growth.

We then build a DSGE model with heterogeneous firms which includes two key

components: first, real and financial frictions, and second, uncertainty and financial shocks.

This delivers three key insights. First, amplification - combining real and financial frictions

roughly doubles the impact of uncertainty shocks on output. Furthermore, combining an

uncertainty shock with a financial shock in this model increases the impact by about another

two thirds, since these shocks have an almost additive effect. Since uncertainty and financial

shocks are highly collinear (e.g. Stock and Watson 2012) this is important for modelling

their impacts. Second, persistence - adding financial frictions roughly extends by half the

duration of drops after an uncertainty shock. This is because financial frictions lead firms
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to become more financially conservative after an uncertainty shock, reducing investment

rates during the rebound. Finally, propagation - financial frictions spread the impact of

uncertainty shocks to financial outcomes as well as real outcomes. In this model uncertainty

shocks not only reduce investment and hiring, but also raise firms cash holding, while cutting

equity payouts. Collectively, these predictions of a large, persistent and widespread impact

of uncertainty shocks on real and financial variables matches the evidence from the recent

financial crisis.

Taken together we believe that rather than trying to evaluate whether uncertainty shocks

or financial constraints are responsible for the drop in investment, hiring, and output growth

during events like the 2008-2009 crisis, we should recognize and estimate their interactive

amplification effects.
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Table 1
Descriptive statistics

Mean St. Dev. N Obs.

Dependent

Investment Ratei,t 0.229 0.142 56,172

∆Intangible Investmenti,t 0.057 0.233 56,172

∆Employmenti,t 0.024 0.222 56,172

∆Cost of Goods Soldi,t 0.057 0.277 56,172

∆Salesi,t 0.058 0.263 56,172

∆Payouti,t 0.054 0.947 56,172

∆Debti,t 0.035 0.688 56,172

∆Cash Holdingsi,t 0.045 0.686 56,172

Independent

∆Realized Volatilityi,t−1 -0.013 0.308 56,172

∆Implied Volatilityi,t−1 -0.020 0.308 26,977

Notes: Table reports summary statistics for the main sample of firm-year observations in 2SLS regressions
from 1993 to 2019. Investment rate at year t is defined as It

1
2 (Kt−1+Kt)

(i.e., capx/average of current and

lagged property plant & equipment from Compustat). Changes in variables, ∆x, are annual growth rates

defined as xt−xt−1
1
2 (xt+xt−1)

. Annual realized volatility is the 12-month standard deviation of firms’ cum-dividend

daily stock returns from CRSP, and annualized by multiplying by
√
252. Annual implied volatility is the

12-month average of firms’ daily option-implied volatility from OptionMetrics, where the daily observations
are the average of 365-day-horizon at-the-money call and put options. To ease comparison across realized
and implied volatility effects, the growth in option implied volatility, ∆Implied Volatilityi,t−1, is scaled
to have the same standard deviation as the growth in realized volatility, ∆Realized Volatilityi,t−1, in their
respective regression samples. Intangible investment follows Peters and Taylor (2017) and is defined as R&D
+(0.3·XSGA), where R&D is research and development (with missing values set to zero) and 30% of XSGA
which is sales, general and administration expenses is intangible investment. To avoid double counting of
intangible flows, R&D is first subtracted from XSGA to isolate the SG&A expenses that companies report.
Employment is EMP , cost of goods sold COGS, sales SALE, corporate payout is the sum of non-missing
values in common and preferred dividends + share repurchase, i.e., DV C + DV P + PRSTKC. Debt is
the sum of non-missing values in short term + long term debt, DLC + DLTT . Corporate cash holdings
is cash and short-term investments, CHE, from Compustat. Variables are winsorized at the 0.5 and 99.5
percentiles. St. Dev is standard deviation and N Obs. is number of observations. See sections 2 and Online
Appendix A for additional summary statistics and data details.
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Table 2
Firm Investment and uncertainty shocks

(1) (2) (3) (4) (5)

Investment ratei,t OLS OLS IV IV IV

Realized Realized Realized Realized Implied

∆Volatilityi,t−1 -0.023*** -0.024*** -0.057*** -0.041*** -0.058**

(0.002) (0.002) (0.014) (0.014) (0.022)

Firm-level controlsi,t−1 No No No Yes Yes

IVi,t−1 1st moment controls No No Yes Yes Yes

Firm, time FEs Yes Yes Yes Yes Yes

SE cluster industry Yes Yes Yes Yes Yes

Sample start year 1965 1993 1993 1993 1998

Sample end year 2019 2019 2019 2019 2019

Observations 95,394 56,172 56,172 56,172 26,977

1st stage F−test 87.22 79.68 69.91

p−val Sargan–Hansen J −test 0.462 0.665 0.572

Notes: Table reports OLS and 2SLS firm panel regressions of firms’ investment rate on 1-year lagged
changes in firm-level annual volatility and controls (either firm-, aggregate-level, or both). Investment rate
at year t is defined as It

1
2 (Kt−1+Kt)

(i.e., capx/average of current and lagged property plant & equipment from

Compustat). Sample period is indicated in rows, where the 2SLS sample from 1993 to 2019 is based on the
availability of data required to construct all 9 instrumental variables (IVs). Column (5) sample using option-
implied volatility is constrained by the availability of firm-level data from OptionMetrics. Endogeneity in
volatility is addressed by instrumenting with industry-level (2SIC) non-directional exposure to 9 aggregate
sources of uncertainty shocks. These include exposures to realized volatility shocks of energy and currencies
(as proxied by oil and 7 widely traded currencies) and economic policy uncertainty from Baker, Bloom, and
Davis (2016). Annual realized volatility is the 12-month standard deviation of firms’ cum-dividend daily

stock returns from CRSP, and annualized by multiplying by
√
252. Annual implied volatility is the 12-

month average of firms’ daily option-implied volatility from OptionMetrics, where the daily observations are
the average of 365-day-horizon at-the-money call and put options. To ease comparison across realized and
implied volatility effects, the growth in option implied volatility is scaled to have the same standard deviation
as the growth in realized volatility in their respective regression samples. Firm and calendar-year fixed effects
are included across all columns, with standard errors clustered at the 2-digit SIC industry (in parentheses).
To tease out the impact of 2nd-moment uncertainty shocks from 1st-moment aggregate shocks, controls
include the 2-digit SIC directional exposure to changes in the price of each of the 9 aggregate instruments
(i.e., 1st moment returns) labeled “IVi,t−1 1st moment”. 2SLS first-stage F−statistics are Kleibergen-Paap
(KP) that cluster standard errors at the industry-level (2SIC). Overidentification test for the validity of
instruments is the p−value for the Sargan-Hansen over-identification J−test. Full 2SLS first stage results
are discussed in Appendix section A.4. Firm-level controls include Stock Returni,t−1 (measured as firms’
12-month compounded return from CRSP), Tangibilityi,t−1, Book Leveragei,t−1, Tobin’s Qi,t−1, Return
on Assetsi,t−1, and Firm Sizei,t−1. Further, to account for potential autocorrelation in outcome variables,
controls include the 1-year lag in Investment Ratei,t−1, and lagged annual changes in ∆Employmenti,t−1,
∆Intangible Investmenti,t−1, ∆COGSi,t−1, ∆Salesi,t−1, ∆Corporate Payouti,t−1, ∆Debti,t−1, and ∆Cash
holdingsi,t−1. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and Online
Appendix A for information on variable construction and data details.
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Table 3
Real and Financial Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)
IV IV IV IV IV IV IV IV

A: Baseline regressions Investment Ratei,t ∆Intang Invi,t ∆Empi,t ∆COGSi,t ∆Salesi,t ∆Payouti,t ∆Debti,t ∆Cashi,t

∆Volatilityi,t−1 -0.041*** -0.052*** -0.032* -0.151*** -0.217** -0.423*** -0.137** 0.167**
(0.014) (0.016) (0.016) (0.019) (0.082) (0.085) (0.053) (0.067)

Firm-level controlsi,t−1 Yes Yes Yes Yes Yes Yes Yes Yes
IVi,t−1 1st moment controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm, time FEs Yes Yes Yes Yes Yes Yes Yes Yes
SE cluster industry Yes Yes Yes Yes Yes Yes Yes Yes

Observations 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172
1st stage F−test 79.68 79.68 79.68 79.68 79.68 79.68 79.68 79.68
p−val Sargan–Hansen J −test 0.665 0.469 0.538 0.097 0.279 0.891 0.073 0.161

B: Effect of a 2 st.dev volatility shock (of size 0.616)
Magnitude of effect -0.025 -0.032 -0.020 -0.093 -0.134 -0.261 -0.084 0.103
Response of outcome in st.dev units -0.178 -0.138 -0.089 -0.336 -0.509 -0.275 -0.123 0.150

Notes: Table reports 2SLS firm panel regression results for 8 different real and financial firm outcomes regressed on 1-year lagged changes in
annual firm-level realized volatility of daily CRSP returns and a full set of controls (both firm- and aggregate-level). 2SLS sample is 1993 to 2019
and based on the availability of data required to construct all 9 instrumental variables (IVs). Column (1) reports results for the baseline 2SLS
specification presented in column (4) of Table 2, where investment rate at year t is defined as It

1
2 (Kt−1+Kt)

(i.e., capx/average of current and lagged

property plant & equipment from Compustat). Columns (2) to (8) report results of annual growth rates in (2) intangible investment (which follows
Peters and Taylor (2017) and defined as R&D +(0.3 · XSGA), where R&D is research and development (with missing values set to zero) and
30% of XSGA sales, general and administration expense is intangible investment), employment EMP (3), cost of goods sold COGS (4), sales
SALE (5), corporate payout (6) (measured as common and preferred dividends + share repurchase, i.e., DV C +DV P + PRSTKC), total debt
(7) (short term + long term debt, DLC + DLTT ) and corporate cash holdings (8) (cash and short-term investments, CHE, from Compustat).

For any variable x, annual growth rates are defined as ∆xt = xt−xt−1
1
2 (xt+xt−1)

. To make the effects comparable across columns, Panel B reports the

response of outcomes in st.dev.units and in response to a 2 st.dev. volatility shock (refer to Table 1 for summary statistics). Endogeneity in
volatility is addressed by instrumenting with industry-level (2SIC) non-directional exposure to 9 aggregate sources of uncertainty shocks. These
include exposures to realized volatility shocks of energy and currencies (as proxied by oil and 7 widely traded currencies) and economic policy
uncertainty from Baker, Bloom, and Davis (2016). Annual realized volatility is the 12-month standard deviation of firms’ cum-dividend daily

stock returns from CRSP, and annualized by multiplying by
√
252. Firm and calendar-year fixed effects are included across all columns, with

SEs clustered at 2-digit SIC industry (in parentheses). To tease out the impact of 2nd-moment uncertainty shocks from 1st-moment aggregate
shocks, controls include 2-digit SIC directional exposure to changes in the price of each of the 9 aggregate instruments (i.e., 1st moment returns)
labeled “IVi,t−1 1st moment”. 2SLS first-stage F−statistics are Kleibergen-Paap (KP) that cluster SEs at 2SIC level. Over-identification test
is the p−value for the Sargan-Hansen J−test. Firm-level controls include Stock Returni,t−1 (measured as firms’ 12-month compounded return
from CRSP), Tangibilityi,t−1, Book Leveragei,t−1, Tobin’s Qi,t−1, Return on Assetsi,t−1, and Firm Sizei,t−1. Further, to account for potential
autocorrelation in outcome variables, controls include the 1-year lag in Investment Ratei,t−1, and lagged annual changes in ∆Employmenti,t−1,
∆Intangible Investmenti,t−1, ∆COGSi,t−1, ∆Salesi,t−1, ∆Corporate Payouti,t−1, ∆Debti,t−1, and ∆Cash holdingsi,t−1. Statistical significance:
*** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and Online Appendix A for information on variable construction and data details.
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Table 4
Effect of uncertainty shocks amplified by financial frictions

Investment ratei,t (1) (2) (3) (4) (5) (6) (7) (8)

Aggregate Financial Moody’s Moody’s Romer&Romer Chicago Fed Moody’s Placebo tests

Conditions Indext Cred Spread Cred Spread US Fin. Distress ANFCI Index Fin Index shifted t− 3

∆σi,t−1 -0.041*** -0.022** -0.034*** -0.023** -0.028** -0.027** -0.039*** -0.031***

(0.014) (0.010) (0.012) (0.010) (0.012) (0.012) (0.013) (0.011)

∆σi,t−1·Fin Indext -0.023** -0.019** -0.006 -0.008 0.008 0.006

(0.009) (0.008) (0.007) (0.007) (0.007) (0.005)

∆σi,t−1·DFin.Const
i,t−5 -0.020*** 0.002 -0.001 -0.004 -0.019***

(0.006) (0.009) (0.011) (0.010) (0.007)

∆σi,t−1·DFin.Const
i,t−5 ·Fin Indext -0.014*** -0.016** -0.014*** 0.004

(0.005) (0.006) (0.005) (0.006)

Observations 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172

1st stage F−test 79.68 27.25 58.30 39.45 44.25 36.71 35.88 36.74

p−val Sargan-H 0.665 0.531 0.723 0.509 0.547 0.665 0.932 0.844

Notes: Table reports 2SLS firm panel regression results of firm-level investment rate on 1-year lagged changes in firm-level realized volatility of
daily CRSP returns, ∆σi,t−1, and its interaction with different aggregate financial frictions indexes Fin Indext measured each calendar year t
that capture deterioration of market-wide financial conditions, and its interaction with a firm-level dummy, DFin.Constrained

i,t−5 , that takes value one
for firms classified as ex-ante financially constrained using information in year t − 5, zero otherwise. Financial frictions indexes, Fin Indext, are
proxied by the Moody’s aggregate corporate credit spread BAA-AAA in cols. (2,4,7,8), the U.S financial distress measure by Romer and Romer
(2017) in (5), and the Chicago Fed index for national financial conditions that is adjusted for 1st-moment economic effects (ANFCI) in (6). The
aggregate indexes are standardized in the time series to ease interpretation and comparison of coefficients across columns. The 2SLS sample period
is from 1993 to 2019 and based on the availability of data required to construct all 9 instrumental variables (IVs). All columns include a full set of
firm-level controls, aggregate 1st moment controls, firm and year fixed effects, and SEs clustered at industry 2SIC level – i.e., identical controls as
in the baseline specification (1) in Table 3. Column (1) repeats the non-interacted baseline results presented in column (1) of Table 3. Column (2)
interacts ∆σi,t−1 with Fin Indext proxied by Moody’s credit spread, the regression does not include Fin Indext as it is collinear with the year
fixed effects. Column (3) interacts ∆σi,t−1 with dummy DFin.Constrained

i,t−5 . Firms in year t are either ex-ante financially constrained (value 1) or

unconstrained (0) based on their constrained status in year t− 5. To classify firms we build a firm-level index DFin.Constrained
i,t−5 = {0, 1} that uses

the mode (e.g., consensus) of 3 leading firm-level proxies for financial constraints: DFin.Constrained
i,t−5 = mode(DS&P−credit−ratings

i,t−5 , DWhited−Wu
i,t−5 ,

DSize−Age
i,t−5 ). For S&P credit ratings (e.g., Duchin, Ozbas, and Sensoy (2010) and Panousi and Papanikolaou (2012)), a firm at year t is ex-ante

constrained if it lacks a credit rating in year t − 5, unconstrained otherwise. For indexes by Whited and Wu (2006) (WW) and Hadlock and
Pierce (2010) (SA), a firm in year t is ex-ante financially constrained if at year t − 5 its index is equal to or greater than the median constrained
firm that year, unconstrained otherwise. Cols. (4,5,6,8) run a triple interaction of ∆σi,t−1 with Fin Indext and DFin.Constrained

i,t−5 . In Columns

(2,4,5,6,7,8) Fin Indext is collinear with the time fixed effects, thus not included and not reported. To preserve space estimates on DFin.Constrained
i,t−5

and DFin.Constrained
i,t−5 · Fin Indext appearing in any of the cols. (3 to 8) are not presented in the Table but included in the regressions. Cols. (7,8)

perform placebo tests where Moody’s credit spread is shifted to year t− 3, such that the timing of true spikes in aggregate financial conditions is
misaligned and thus interactions with Fin Indext−3 are placebo. 2SLS first-stage F−statistics are Kleibergen-Paap (KP) that cluster SEs at 2SIC
level. Over-identification is the p−value for the Sargan-Hansen J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See
section 2 and Online Appendix A for information on variable construction and data details.
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Table 5
Predetermined parameter values under baseline calibration

Description Notation Value Justification

Technology

Subjective discount factor β 0.988 Long-run average of U.S. firm-level discount rate

Return on saving κ 0.97 97% of the subjective discount rate & cash/revenue ratio

Share on capital α 0.70 Cooper and Ejarque (2001) and Hennessy and Whited (2007)

Rate of depreciation for capital δ 0.05 Capital deprec. rate assumed 5% per qtr (Caballero and Engel (1999))

Fixed real adjustment cost ck 0.03 Investment slope in the multivariate IV regression & cash/revenue ratio

Uncertainty shock (2 state Markov)

Conditional macro volatility of productivity σX
L 0.0067 Baseline macro uncertainty (Bloom et al 2018)

Conditional macro volatility in high uncertainty state σH 0.0107 Macr uncertainty shocks 1.6*baseline uncertainty (Bloom et al 2018)

Transition probability low to high uncertainty πσX

L,H 2.60% Uncertainty shocks expected every 9.6 years (Bloom et al 2018)

Transition probability remaining in high uncertainty πσX

H,H 94.3% Quarterly probab. of remaining in high uncertainty (Bloom et al 2018)

Conditional micro volatility of productivity σz
L 0.051 Baseline micro uncertainty (Bloom et al 2018)

Conditional micro volatility in high uncertainty state σz
L 0.209 Micro uncertainty shocks 4.1*baseline uncertainty (Bloom et al 2018)

Transition probability low to high uncertainty πσz

L,H 2.60% Uncertainty shocks expected every 9.6 years (Bloom et al 2018)

Transition probability remaining in high uncertainty πσz

H,H 94.3% Quarterly probab. of remaining in high uncertainty (Bloom et al 2018)

Long-run average of aggregate productivity log(X̄) −1 Long-run average of aggregate capital

Stochastic financing cost (2 state Markov)

Low fixed financial adjustment cost ηL 0.03 Investment slope in the multivariate IV regression & cash/revenue ratio

High fixed financial adjustment cost ηH 0.06 Investment slope in the multivariate IV regression & cash/revenue ratio

Transition probability low to high financing cost state πη
L,H 5% High financial cost state expected every 5 years (Also tried πσX

L,H)

Transition prob. remaining in high financing cost state πη
H,H 50% Expected length of high financial cost state for 2 quarters (Also tried πσX

H,H)

Notes: This table presents the predetermined and the calibrated parameter values of the baseline model. Full details are in Appendix Section B.4.
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Figure 1: Uncertainty, real outcomes and financial flows

Notes: Investment rate is from investment and capital data from BEA
NIPS tables. Employment is seasonally adjusted total private
employment from BLS. Short-term debt, long-term debt, and cash are
from the NIPA Integrated Macroeconomic Accounts Table S.5.q
nonfinancial corporate business, deflated by the CPI (NIPA table
1.1.4). Cash is the time and savings deposits. Debt is the sum of
short-term debt, which includes open market paper and short-term
loans, and long-term debt which includes bonds and mortgages.
Aggregate real dividends is from Shiller's webpage
http://www.econ.yale.edu/~shiller/data.htm. Growth rates of variables
are moving averages with a window of 4 quarters ahead. VIX is the
implied volatility of S&P 500. Sample period is 1991Q1–2019Q4.
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Figure 2: Implied effect of uncertainty shocks on investment 
rates of US publicly listed firms

Notes: Plots the average investment rate of all sample Compustat firms (weighted by tangible fixed assets) using the results from Table 4 column (4) where the
response of firms to uncertainty depends on both the binding of firm financial constraints (as measured by an index based on the consensus between S&P credit
ratings, Size & Age, and Whited-Wu indexes) and the worsening of credit and financial conditions (Moody’s Aaa-Baa corporate credit spread). The response is more
negative in 2008 and 2009 as firm financial constraints bind and market-wide financial conditions worsen (Aaa-Baa spread). Annual sample period is 1993-2019.
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Figure 3: Investment policy functions

Notes: Figures 3A, 3B and 3C plot the
optimal investment policies associated with
low and high financial adjustment costs
states (3A), low and high uncertainty states
(3B), and low and high financial adjustment
costs and low and high uncertainty states of
the model with real adjustment costs and
financial adjustment costs. In all figures, we
fix the aggregate and idiosyncratic
productivities and cash at their median grid
points.

Figure 3B: Increasing UncertaintyFigure 3A: Increasing Financial Frictions

Figure 3C: Increasing Financial Frictions and Uncertainty
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Figure 4: The impact of a pure uncertainty shock

Notes: We plot the percentage deviations of the average output, investment, consumption, cash, dividend and aggregate
TFP from their values in quarter 0 of two model specifications: i) the model with real adjustment costs only (black x-mark),
and ii) the benchmark model with both real and financial adjustment costs (red triangle). All plots are based on 500
simulations of 200-quarter length. We impose an uncertainty shock in the quarter labelled 1, allowing normal evolution of the
economy afterwards.
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Figure 5: Robustness check of the impact of uncertainty shocks

Notes: We plot the percent deviations of average output from their values in quarter 0 of the benchmark model with both real and 
financial costs (Baseline, red-triangle), the model with the transition matrix of financial shocks the same as the uncertainty shocks 
(black-cross), the model without cash (green-circle), the model with constant financial costs (brown-plus), and the model with 
nonconvex financial adjustment costs (black-triangle), the model with the financial adjustment costs as 90% of the baseline (blue-
square), the model with the financial adjustment costs as 110% of the baseline (blue-rhombus), the model with the real adjustment 
costs as 90% of the baseline (magenta-triangle), and the model with the real adjustment costs as 110% of the baseline (purple-
triangle). All plots are based on the average of 500 simulations of 200-quarter length. We impose an uncertainty shock in the quarter 
labelled 0, allowing normal evolution of the economy afterwards. 
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Appendix For Online Publication

A Data Appendix
Data used in the empirical analysis is described in this section. Sources include

Compustat, CRSP, OptionMetrics, Thompson Reuters Eikon, St. Louis Fed, and Baker,
Bloom, and Davis (2016). Table A.1 reports summary statistics for the main sample of
firm-year observations in 2SLS regressions. Sample period for the 2SLS regressions begins
in 1993 and ends in 2019.41

A.1 Company financial reports and stock return volatility
We draw financial information for US publicly held companies from Compustat. OLS

sample is annual from January 1965 to December 2019 and from December 1993 to December
2019 for 2SLS. We use Compustat company data from balance sheet, income, and cash flow
statements. Financial, utilities and public sector firms are excluded from the main sample
(i.e., SIC between 6000 and 6999, 4950 and 4999, and equal to or greater than 9000).42 We
merge Compustat with CRSP using the CRSP/Compustat Merged (CCM) link table, and
ensure that mapped firms from Compustat GVKEY to CRSP permno identifiers produce a
standard 1-to-1 mapping with one firm (GVKEY) data point per calendar year. Our main
empirical tests involve changes in firm variables from one year to the next. To ensure that
these changes are indeed annual, we require a 12 month distance between fiscal-year end
dates of accounting reports.

Changes in variables xt are measured in annual growth rates ∆xt =
xt−xt−1

1
2
(xt−1+xt)

, which for

positive values of xt and xt−1 yields growth rates bounded between -2 and 2 (i.e., ≤ |200%|).43
The only exceptions are CRSP stock returns (measured as the compounded fiscal-year return
of daily stock returns RET from CRSP) and capital formation. For the latter, investment
rate at year t follows Belo, Lin, and Bazdresch (2014) and defined as It

1
2
(Kt−1+Kt)

, where Ii,t

is the flow of capital expenditures (CAPX from Compustat) over the course of fiscal year t
and 1

2
(Kt−1+Kt) is the average of current and lagged year net property plant and equipment

(PPENT ). For ease in notation we refer to investment rate as I/Kt. To reduce influence
of outliers investment rate is bounded [-0.5,0.5], while other firm variables are winsorized
at the 0.5 and 99.5 percentiles. Section A.6 relaxes the winsorization on investment rate to
[-1,1], defines it in other ways, and presents many other robustness tests to data and variable
choices (e.g., expands main sample to include financials, utilities, government firms, presents
sub sample tests, etc.,)

41OLS and 2SLS regressions are run in STATA v.17 using the package IVREGHDFE, which in turn uses
the standard IVREG2 package with multi-way fixed effects.

42In general we do not use the current or “header” SIC code of a company (which is time invariant
and representative of the company’s industry only at moment of Compustat data download), but rather
classify companies each year based on their historical industry SICH codes (i.e., standard industrial
classification -historical, from Compustat), or when missing in a given year we replace it with the closest
backward-looking non-missing historical code. We backfill any remaining codes using the first non-missing
SICH code in the time-series. When none of the above are available we employ the firm’s current (header)
SIC code for all years.

43If both xt and xt−1 are zero we set the corresponding growth rate equal to zero (which avoids losing
information to undefined values and because in fact the growth rate is zero in this case).

I



In measuring firm-level uncertainty we employ both realized annual volatility from CRSP
stock returns and option-implied volatility from OptionMetrics. Annual realized volatility
is the 12-month standard deviation of firms’ cum-dividend daily stock returns from CRSP
(variable RET), and annualized by multiplying by

√
252 (a year typically spans 252 trading

days). For accuracy in measuring volatility, we drop firm-year observations with less than
200 daily CRSP returns in a given year. As is standard, sample uses securities appearing on
CRSP for firms listed in major US stock exchanges (EXCHCD codes 1,2, and 3 for NYSE,
AMEX and the Nasdaq Stock Market (SM)) and equity shares listed as ordinary common
shares (SHRCD 10 or 11).

Although our main measure of firm-level uncertainty is realized annual stock return
volatility,44 we further proxy for uncertainty by using OptionMetrics’ forward 365-day
implied volatility of a mix of at-the-money (ATM) forward call and put options. A mix
of ATM forward 365-day call and puts is preferable because: (I) a 2-sided mix of puts
and calls (as in the construction of the VIX) reduces any influences of smirks or other
asymmetries, and (II) ATM options have the nice feature of the Black-Scholes Vega (the
sensitivity of options prices to implied volatility) being the highest among other type of
options (e.g., out-of-the-money (OTM) and in-the-money (ITM)). Moreover, regarding the
data source OptionMetrics provides daily implied volatility from January 1996 onward for
securities with exchange-traded equity options. Each security has a corresponding series of
call and put options which differ in their expiration dates and strike prices. We use daily
data from OptionMetrics’ volatility surface which contain implied volatilities for a list of
standardized options for constant maturities and deltas. A standardized option is available
only if sufficient data exists of the underlying option price on that date to accurately compute
interpolated values, with interpolations done every day and do not include look-ahead bias
when computing the volatility surface. One advantage of using the volatility surface is that
it avoids making arbitrary decisions on which strike prices to include when computing an
implied call or put volatility of a given stock. Our empirical analyses uses call and put
options’ implied volatilities with a delta of | + / − 0.5| (i.e., ATM call and puts) and to
be consistent with the annual panel data using forward expiration of 365 days. Therefore,
our main measure of annual option-implied volatility is the 12-month average of firms’ daily
option-implied volatility from OptionMetrics, where the daily observations are the simple
average of 365-day-horizon ATM call and put options.

Other outcome variables annual changes in: intangible investment that follows Peters
and Taylor (2017) and is defined as R&D +(0.3 · XSGA), where R&D is research and
development from Compustat (with missing values set to zero) and 30% of XSGA – which
is sales, general and administration expenses– is intangible investment. To avoid double
counting of intangible flows, R&D is first subtracted from XSGA to isolate the SG&A
expenses that companies report. Employment is EMP , cost of goods sold COGS, sales
SALE, corporate payout is the sum of non-missing values in common and preferred dividends
+ share repurchase, i.e., DV C+DV P+PRSTKC. Debt is the sum of non-missing values in

44Due to the substantially larger firm-year sample size (56,172 vs 26,977 observations in columns 4 and
5, respectively, in Table 2). The larger sample is because implied volatility data from OptionMetrics is not
available for all listed firms (e.g., smaller listed firms may lack options) and because options data is only
available after 1996.
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short term + long term debt, DLC+DLTT . Corporate cash holdings is cash and short-term
investments, CHE, from Compustat.

Firm-level controls include the 1-year lags of all the following variables. Stock Returnt is
the 12-month compounded return from CRSP (including dividends and adjusted for delisting,
RET ), Tangibilityt = PPEGTt/ATt−1, where PPEGT is gross property, plant, and
equipment and AT is total assets from Compustat. Book leveraget = Debtt/(Debtt+CEQt)
, where CEQ is common book equity. Tobin’s Q follows Duchin, Ozbas, and Sensoy (2010),
Qt = (market value of assetst) /(0.9 · book assetst + 0.1 ·market value of assetst), where
book assets= AT , market value of assets is (AT +ME − CEQ − TXDB ), ME is CRSP
market value of equity (i.e. stock price times shares outstanding), TXDB is deferred taxes
from Compustat with missing values set to zero. Outliers in Tobin’s Q are bounded above at
value 10. Return on assets, ROAt = EBITt/ATt−1 , where EBIT is earnings before interest
and tax. Firm size is log SALEt.

To examine firms with economically-sensible accounting reports and operating activity
(e.g., firms with non-zero operations), we apply some standard filters to the Compustat-
CRSP merged sample. We drop firm-year observations having non-positive total assets,
employment, and sales, and require non-negative values for cost-of-goods sold, payout, debt,
cash, and intangible investment. These firm-year observations are likely associated with
firms with zero operations and/or mistakes in accounting reports. Firms are required to
have non-missing SIC codes (as defined above). These basic filters must be satisfied by
firms every year up to a lag of 5 years so that firms have proper data when classifying firms
into ex-ante financially constrained and unconstrained groups using year t− 5 information.
Moreover, the sample requires that firms have a full set of non-missing outcomes at year t
(see Table 3), non-missing current and lagged shocks to firm-level realized volatilities, and
non-missing values for any of the firm-level controls (current and lagged) discussed in the
instrumentation strategy section 2.2. Instruments and their 1st-moment controls are also
required. Collectively, these non-missing data requirements guarantee that the sample used
across all outcome variables in Table 3 is the same, and thus the same 1st stage regression
(i.e., same large F−statistic 79.68) across specifications.

The firm-level index DFin.Constrained
i,t−5 = {0, 1} that uses the consensus (i.e., mode)

between 3 different firm-level proxies for financial constraints: DFin.Constrained
i,t−5 =

mode(DS&P−credit−ratings
i,t−5 , DWhited−Wu

i,t−5 , DSize−Age
i,t−5 ) uses year t− 5 information for any of the

3 indexes. To avoid losing observations for the very few cases where the lag 5 Whited-Wu
index is missing, the consensus index takes value 1 if either of the S&P or the Size & Age
indexes are equal to 1, zero otherwise. The Whited-Wu index is -0.091*(OIBDPt)/ATt−1 -
0.062*payout dummy+ 0.021*(DLTT/ATt−1) - 0.044*log(ATt−1) + 0.102*∆(Ind SALEt) -
0.035*∆(SALEt), where OIBDP is operating income before depreciation, payout dummy
takes value 1 if firm pays dividends (common and/or preferred DV C + DV P > 0), zero
otherwise, and ∆(Ind SALE) is the within-industry 3SIC average of sales growth. The
Size & Age index is -0.737*SA sizet + 0.043*SA size2t - 0.040*SA aget, where SA size =
log(AT ) with AT assets capped at 4.5 US$Billion, and SA age is the firm age in years
counted from the first non-missing market value from CRSP, with SA age bounded above
at 37 years.

Moody’s Baa-Aaa corporate credit spread is from St. Louis Fed. We download the
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monthly time-series to construct annual calendar-year credit spreads using the simple 12-
month average of monthly values from January to December. This series from 1993 to
2019 is standardized (i.e., rescaled to have a mean of zero and a standard deviation of
one) prior to merging with the firm-year sample used in the regressions presented in Table
4. This is done to ease interpretation of coefficients in the interaction regressions and ease
comparison across columns. The Romer-Romer U.S financial distress measure is from Romer
and Romer (2017). The biannual series is extended in the latter years through 2019 with
zero distress values. The annual calendar-year series is the simple average of the biannual
data points. The Chicago Fed Adjusted National Financial Conditions (ANFCI) Index
is from the Chicago Fed. We download weekly data and construct the annual series as
the median of all weekly observations within each calendar year. As with the Moody’s
index, the Romer-Romer and the ANFCI series are standardized in the 1993 to 2019 period.
When interacting the aggregate series with firm uncertainty shocks and the ex-ante financial
constraints indicator in Table 4, all endogenous uncertainty terms of interest are estimated
in 2SLS while other regressors are partialled out. By the Frisch-Waugh-Lovell theorem (e.g.,
ivreg2 documentation), in 2SLS, two-step GMM, and LIML estimation of coefficients not
partialled out are the same as those obtained without partialling out any of the variables.

A.2 Timing alignment of firm-level volatility and instruments
The main empirical analysis examines the effect of changes in annual firm-level

uncertainty ∆σi,t−1 on the 1-year ahead changes in both real and financial outcomes ∆yi,t.
In defining the change in any variable xt, growth is ∆xt = (xt − xt−1)/(

1
2
xt +

1
2
xt−1) . This

applies to the outcomes ∆yi,t, lagged instruments for energy prices, exchange rates, and
policy uncertainty,| βc

j,t−3 | ·∆σc
t−1, lagged price returns in the 1st moment controls of each

instrument, βc
j,t−3 · rct−1, and the main uncertainty measure which is the the lagged growth

in firm i′s realized annual stock return volatility, ∆σi,t−1. Given that the regressions are
predictive from year t − 1 to year t, the first-stage 2SLS regressions implicitly involve a
regression of firms’ lagged uncertainty shock ∆σi,t−1 = (σi,t−1 − σi,t−2)/(

1
2
σi,t−1 +

1
2
σi,t−2) on

the 9 lagged composite exposures to aggregate uncertainty shocks zct−1 = | βc
j,t−3 | ·∆σc

t−1

where for instrument c the growth in the 1-year lagged uncertainty is ∆σc
t−1 = (σc

t−1 −
σc
t−2)/(

1
2
σc
t−1 +

1
2
σc
t−2) and measured in a monthly manner using information from month

t-24 to month t-12, and | βc
j,t−3 | is the cross-industry exposure estimated every month and

timed exactly 36 months prior to the firm’s fiscal-year end-month dependent variable, ∆yi,t.
It is important to highlight that the key date variable over which all variables are timed

(e.g., rolling window sensitivities, 12-month compounded stock returns, outcome variables,
controls, etc.,) for each firm is the year-month of variable datadate in Compustat. We use
each firms’ annual year-month to increase accuracy in matching firm accounting reports
and volatility with the instruments. Therefore, by taking into account that firms may have
different fiscal-year end dates within a calendar year, we allow firms that share the same
2SIC industry codes but have different fiscal-year end dates (e.g., firm A with fiscal-year
end in October and B in December of year t) to use their exact timing when measuring
the variables entering the instruments (e.g., the 36 month lag in βc

j,t−3 for firm A is with
respect to October in year t while βc

j,t−3 for firm B is with respect to December of that
year). Therefore, firms within the same 2SIC industry for any given calendar year may
have different values for instruments and 1st moment controls depending on their fiscal-year
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endings.
Lastly, our daily data for the estimation of the sensitivities entering the regression (1)

starts in January 1986. Given that the rolling windows use a 5-year window, the first set of
sensitivities, βc

j,τ , start in December 1990, βc
j,1990. We estimate the exposures every month in

rolling windows of 5 years and merge with firm annual reports in Compustat using each firms’
industry-by-year-month information (where the relevant date variable is ‘datadate’ from
Compustat). With the first set of sensitivities, βc

j,1990, we construct the first set of instruments
appearing in the regression sample (from 1993 to 2019) as zci,1992 =| βc

j,1990 | ·∆σc
1992, which

are used to instrument for firm uncertainty shocks measured in 1992, ∆σi,1992, to forecast
the 1-year ahead investment in 1993, I/Ki,1993. Note that in running the rolling windows in
(1) on CRSP daily return data we restrict the daily sample to CRSP stocks (permno) that
are mapped by year to Compustat firms (GVKEY), using (for consistency) Compustat SIC
classification codes, require firms to have a minimum of 120 daily return observations (i.e.,
roughly 6 months of data) in the 5-year windows, and apply the standard filters that securities
are listed in major US stock exchanges (EXCHCD codes 1,2, and 3 for NYSE, AMEX and
the Nasdaq Stock Market (SM)) and with equity shares listed as ordinary common shares
(SHRCD 10 or 11).

A.3 Risk adjusted returns
Using the same 5-year rolling window used in (1) we define firm daily risk-adjusted returns

as the residuals of regressing firms’ excess return on the daily Carhart factors:

rexcessi,t = αi+βi,mkt ·MKTt+βi,HML ·HMLt+βi,SMB ·SMBt+βi,UMD ·UMDt+ εi,t (22)

where rexcessi,t is firm i’s daily CRSP stock return (including dividends and adjusted for
delisting) in excess of the t-bill rate from CRSP, MKT is the CRSP value-weighted index in
excess of the risk free rate, HML is the book-to-market factor, SMB is the size factor, UMD
is the momentum factor. These daily factor data are obtained from CRSP and proxy for the
price of systematic risk to which firms load differentially to compensate for the risk-reward
tradeoff in stock returns.45

Thus, by running (22) before the estimation of the sensitivities in (1) we effectively
adjust firm-level returns for aggregate risk, which in turn addresses concerns over whether
the sensitivities to energy, currencies, and policy - βc

j in equation (1)- are capturing exposures
to common risk factors in stock returns rather than exposures to those 9 factors of interest
for the instrumentation strategy.

A.4 2SLS first stage results
The 2SLS first stage results for investment are shown in Table A.2. Columns 1,2, and 3

report the first stages for the IV columns 3,4, and 5 in Table 2. The F -statistics indicate
a well identified first stage relevance condition, with 3SIC-clustered Kleibergen-Paap (KP)
F values ranging from 69.91 to 87.22. Untabulated F values for the less strict Cragg-
Donald (CD) (robust standard errors) are substantially larger and ranging from 119.7 to
299.6. Most instruments are individually positively correlated with firm uncertainty shocks
and mostly significant at the 1% (offering incremental non-redundant relevance even when

45To reduce role of outliers and increase precision of industry sensitivity estimates we require firms to have
a minimum of 120 daily CRSP returns in the rolling windows (i.e., about 6 months of trading return data
in US public markets).
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controlling for each other). The high significance of the individual instruments implies that
identification comes from not one but from the collective set of exposures to different sources
of aggregate uncertainty shocks. Using the motivation of our instruments presented in section
2.2, exogenous variation in uncertainty shocks for firms in, say, the manufacturing sector
seems to stem not only from their exposure to oil uncertainty but also from exposure to
bilateral exchange rate uncertainty affecting input and output prices for imports and exports
with major countries/regions such as the Euro Area, and simultaneously also from exposure
to policy uncertainty.

Moreover, we also find the Hansen-Sargen over-identification test does not reject the
validity of the instruments, as shown by the p-values of the J statistic ranging from 0.462 to
0.665. Thus, we fail to reject the null that our instruments are exogenous. Altogether, even
in the presence of an extensive set of controls (including 1st moment aggregate controls for
each of the instruments), Table A.2 shows well satisfied relevance and exclusion restrictions
for the set of 9 instruments for uncertainty.

A.5 Addressing endogeneity
How do our instruments help us address endogeneity concerns in estimating the effects

of firm-level uncertainty shocks? To fix ideas we think of two broad reasons for endogeneity
concerns, omitted variable bias and simultaneity bias (see Jeffrey M Wooldridge (2015)).

For illustration in the case of omitted variable bias, consider the problem of some
unobserved variable in the equation of investment rate of firms. Let’s say this is an
unobserved agency friction that affects investment and is correlated with uncertainty shocks
at the firm-level (e.g., internal agency frictions between the board and the CEO of the
firm lead to under-investment, while also raising uncertainty of the firm). A simple model
is I/Ki,t+1 = γ0 + γ1∆σi,t + γ2frictioni,t + ϵi,t+1 . If a suitable proxy for frictioni,t were
available there is no omitted variable concern in estimating γ1, by simply running investment
rate on ∆σi,t and the proxy, which delivers a consistent estimator of γ1. However, assuming
the proxy is not available, then frictioni,t is put into the error term, and we are left with
the simple regression model I/Ki,t+1 = γ0 + γ1∆σi,t + µi,t+1, where µ contains friction and
∆σi,t is therefore endogenous. Of course, an OLS regression gives a biased and inconsistent
estimator of γ1. Therefore, the need for an instrument zi,t for ∆σi,t.

The concern with simultaneity bias is that, for example, firms cut investment upon higher
uncertainty (↑ ∆σi,t ⇒↓ I/Ki,t+1), but stock return volatility might also have risen because
the market saw earlier persistent cuts in investment for the same firm (↓ I/Ki,t−1 ⇒↑ ∆σi,t ),
thus begging the question of whether it is uncertainty that affects investment or the opposite,
or both. Therefore, a classic endogeneity problem in running the one-way OLS regression,
and again the need for an instrument zi,t for ∆σi,t.

46

A valid instrumental variable for ∆σi,t requires Cov(zi,t, µi,t+1) = 0 and Cov(zi,t,∆σi,t) ̸=
0, i.e., instrument exogeneity and relevance, respectively. The 1st stage F -tests of excluded
instruments shown in Table A.2 indicate that the relevance condition is well satisfied jointly
by the instruments zi,t =| βc

j,t−2 | ·∆σc
t , with most being highly positively correlated with

46One can certainly include lagged investment rates as controls in the OLS regression of investment rate
on lagged uncertainty shocks, and indeed our results are robust to this, but given the codetermination of the
variables it does not suffice. The estimator for uncertainty shock effects remains biased and inconsistent.
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firm uncertainty shocks at the 1% even in the presence of each other (i.e., incremental non-
redundant relevance).

The exclusion restriction in the omitted variable example requires that our candidate
instruments are not correlated with the unobserved friction and have no direct effect on
investment. In our setting, it’s hard to see why firm-specific agency frictions, frictioni,t,
or more broadly firm-specific unobservables that influence idiosyncratic investment rates,
would be correlated with the composite terms that capture the non-directional industry-level
exposures to aggregate sources of uncertainty, zi,t =| βc

j,t−2 | ·∆σc
t . For instance, for the above

scenario to happen the idiosyncratic agency frictions at time t would have to be 1) correlated
with the aggregate shocks to the realized volatility of WTI crude oil spot price contracts,
∆σoil

t , and 2) cross-sectionally correlated with the non-directional industry-level exposures
to oil, | βoil

j,t−2 |. For the latter it is hard to see why the time t level of idiosyncratic frictions
would systematically line-up nicely in the cross-section with the industry-wide exposures
measured in absolute terms, i.e., | βoil

j,t−2 |. In addition, the timing setup of the rolling
windows guarantees that the 5 year information used in estimating the exposures βc

j,t−2

does not overlap with any of the dependent or independent variables at time t + 1 and t
in the investment regression. Lastly, to the extent that we have more instruments than
the endogenous firm uncertainty variable, we can test for instrument exogeneity using the
Hansen-Sargan over-identification J− test, which as reported in Table 2 strongly fails to
reject the validity of the instruments.

A.6 Robustness tests: instrumentation strategy, functional form,
credit supply, data and variable choices, implied volatility,
single index of currencies

This section presents robustness checks to 1) the instrumentation strategy, 2) uncertainty
functional form, 3) leverage-adjusted volatility and additional controls for credit supply and
financial constraints, 4) data and variable choices for 4.i) the investment results presented
in Table 2 and 4.ii) the amplification results presented in Table 4, 5) robustness to different
definitions when measuring firm-level implied volatility from OptionMetrics, 6) robustness
to using an index of currencies as instrument with currencies weighted by US Fed trade
weights.

A.6.1 Instrumentation strategy
The instrumentation strategy relies on identifying cross-sectional exogenous variation

in firm volatility shocks, ∆σi,t−1, from non-directional exposure to 9 different aggregate
volatility shocks, zi,t−1 =| βc

j,t−3 | ·∆σc
t−1. Even though our 1st stage results show strong

relevance F -tests and high significance of most of the individual instruments in accounting
for non-redundant exogenous variation, a first concern is whether the uncertainty effects
examined in the baseline regressions go away once we drop any particular instrument or a
combination of instruments from the instrumentation strategy. E.g, do the highly significant
effects on investment and cash no longer exist once we exclude Euro-USD exchange rate
volatility shocks? We address this concern in Table A.3. Column 1 presents the baseline
realized 2SLS results (with full set of controls) presented in Table 3. Columns 2 to 10
present the results that drop each instrument one-by-one, starting with the implied volatility
of the Canadian Dollar-USD exchange rate in column 2 and ending with the oil volatility
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in column 10. Results are largely robust and with similar points estimates. Therefore the
instrumentation strategy does not depend on any single instrument. Columns 11 and 12 drop
a combination of instruments, with oil and policy (i.e., non-currency) instruments dropped
in column 11, while column 12 drops all 7 currency instruments and keeps only oil and
policy. Results are largely robust, and in the case of dropping all 7 currencies at the same
time the F -test is the lowest across all columns in the Table. The latter indicates that the
collective set of instruments helps increase the relevance condition in identification and is
preferable to using a substantially reduced set of IVs. Moreover, the over-identification J
tests are very similar to the baseline and strongly fail to reject the validity of the instruments
used across columns. Taken together, the results across all columns in Appendix Table A.3
indicate that our identification of exogenous variation in firm volatility shocks is not driven by
the identification extracted from one particular instrument, but instead from the combined
identification arising from energy, exchange rate, and policy uncertainty. Moreover, given
the robustness of the tests the results suggest that our identification strategy will likely be
useful for a wide-range of models of the causal impact of uncertainty on firm behavior.

A second questions is whether potential multicollinearity and noise in the estimation
of sensitivities in regression (1) play a role in our results. As discussed in the paper we
address this by adjusting the raw sensitivities for statistical significance. In particular, each
sensitivity, βc

j, is adjusted by its statistical significance within each industry, βc,weighted
j =

ωc
j · βc

j. The sensitivity weight ωc
j =| tcj | /

c∑
| tck | is the ratio of the absolute value

of the t-statistic of each instrument’s sensitivity to the sum of all t-statistics in absolute
value of instruments within the industry, with insignificant sensitivities at the 10% set to
zero. Therefore, the adjusted instruments are zi,t−1 =| βc,weighted

j,t−3 | ·∆σc
t−1 for which we also

adjust the 1st-moment controls βc,weighted
j,t−3 · rct−1. Results that use the significance-adjusted

instruments and 1st moment controls are presented for the key investment regressions in
columns 2 of Tables A.6 and A.7. Results are largely similar and robust to using the weighting
scheme.

A.6.2 Uncertainty functional form
Another concern is whether the instrumented real and financial results depend on the

precise functional form used in measuring the endogenous RHS variable for uncertainty. In
Appendix Table A.4 we relax the assumption on using annual changes in firm volatility,
∆σi,t−1, and explore different reasonable transformations of this variable. In particular,
Column 1 presents the baseline 2SLS multivariate coefficients shown in Table 3, in which the
instrumented volatility variable is the lagged-by-1-year annual growth in realized stock return
volatility from CRSP, ∆σi,t−1. Column 2 instruments the lagged annual growth in the square
of realized return volatility, ∆(σ2

i,t−1), column 3 the level of volatility, σi,t−1, column 4 the

square in the level of volatility, σ2
i,t−1, and column 5 the natural log of volatility, log(σi,t−1).

Regardless of how uncertainty is measured, results are largely robust across all outcome
variables. Columns 1A to 5A are similar to columns 1 to 5, but use idiosyncratic stock return
volatility to proxy for uncertainty. While columns 1 to 5 measure annual volatility as the
12-month standard deviation of daily firm returns and annualized by multiplying by

√
252,

columns 1A to 5A measure firm volatility as firms’ idiosyncratic volatility with respect to a
Carhart 4 factor model. In particular, firm annual idiosyncratic volatility is the annualized

VIII



standard deviation of the 12-month residuals (i.e., σ(εi,t) ·
√
252) from the following firm-by-

firm regression of daily firm returns in excess of the risk-free rate on the 4 Carhart factors from
CRSP: rexcessi,t = αi+βi,mkt ·MKTt+βi,HML ·HMLt+βi,SMB ·SMBt+βi,UMD ·UMDt+εi,t.
Columns 1A to 5A isolate the idiosyncratic component in firm stock returns that is not
systematic and explained by the 4 aggregate factors. 2SLS sample across all columns in the
Table are identical to the baseline specification in column 1 and from 1993 to 2019. Results
using idiosyncratic volatility are largely robust for all outcome variables and not affected by
the different permutations done on how firm volatility is defined. 1st-stage F tests and the
over-identification J test also indicate a well performing instrumentation strategy.

A.6.3 Leverage-adjusted volatility and additional controls for credit supply and
financial constraints

Appendix Table A.5 presents additional robustness checks for credit supply shocks,
financial constraints, and 1st moment controls. First, we ask whether our results are robust
to adjusting volatility shocks for financial leverage. For comparison, column 1 presents the
baseline 2SLS multivariate coefficients shown in Table 3. Columns 2 and 3 check whether the
effects are robust to adjusting firm volatility for firm market- and book-leverage, respectively.
In particular, when constructing the volatility shock annual volatility is first adjusted by
σi,t · Ei,t

Ei,t+Di,t
where E is market equity in column 2 and book equity in column 3, and D is

total debt. As shown, the results for the different outcome variables are largely robust to
adjusting volatility for leverage. Moreover, one concern could be that uncertainty reduces
financial supply - for example, banks are unwilling to lend in periods of high uncertainty and
aggregate market risk - which then affects investment and other results we observe. Columns
4 to 7 run the baseline specification in column 1 but adding additional controls that include:
the covariance of firm returns with the market in column 4 –where covariance is the firm
lagged CAPM beta that controls for firm loadings on the market price of risk (e.g., control
for 1st moment effects)–, controls for firm-level financial constraint indexes in column 5 –
which include the lagged Whited-Wu and Size and Age indexes–, and controlling for the S&P
credit ratings of firms in column 6 – which adds a full set of dummies based on every possible
credit rating category given by S&P on long-term debt, where the omitted dummy is for no
credit ratings–. Lastly, column 7 includes all the previous controls in columns 4,5, and 6
together. 2SLS sample across all columns is from 1993 to 2019. As shown, the results for
the different outcome variables are largely robust to the addition of controls for covariance
with the market and credit and financial frictions.

A.6.4 Robustness to data and variable choices
We perform a battery of robustness checks for the data and variable choices used in the

key investment results documented in the paper, where we change one data or variable choice
at a time and compare that to the baseline specification. We perform a total of 13 checks
for both i) the baseline investment specification presented in column 4 in Table 2 and ii) the
baseline triple-interaction specification that documents an amplification effect from financial
frictions as presented in column 4 of Table 4. The 13 checks are presented in Tables A.6 and
A.7.

Column 1 presents the baseline specifications, while columns 2 to 14 perform various
robustness checks that change one specific criteria at a time regarding data and/or variable
construction. Col. 2 adjusts the set of baseline instruments for the statistical significance of
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each exposure within the industry, where betas are weighted by their statistical significance
within the industry with weight zero for insignificant exposures at the 10%. Col. 3 uses 10-
year rolling windows in the IVs instead of 5yrs. Col. 4 uses implied volatilities to construct
the IVs instead of the baseline realized volatilities. To increase the range of the sample as
far as possible, the set of implied IVs include only that of the 7 major currencies, sample
is 2000 to 2019. Col. 5 adjusts the baseline measure of investment ratei,t = It

1
2
(Kt−1+Kt)

(capx/average of current and lagged property plant & equipment from Compustat) to be
net of sale of property plant & equipment, i.e., It−SPPEt

1
2
(Kt−1+Kt)

(where SPPE is sale of property

plant & equipment). Col. 6 defines investment rate as It
Kt−1

(capx/lagged property plant &

equipment). Col. 7 relaxes the baseline winsorization of outliers in investment rate from
[-0.5,+0.5] to [-1,+1]. Column 8 drops penny stocks with share price below $USD 1 from the
sample of firms. These penny stock firms are generally tiny firms whose trading in the stock
market and price volatility are likely influenced by other issues such as stock illiquidity. Col.
9 clusters the standard errors at the industry-by-year level instead of at the 2-digit industry
level only. Col. 10 runs on the subsample of firm years from 2002 to 2019, hence drops
the Dot-Com bubble of year 2000 and the 9/11 event in 2001. Although these events came
with significant movements in volatility, financial conditions remained relatively stable those
years. Col. 11 drops year 2008 which largely represents the peak of the financial crisis and is
the only year of the crisis in which all quarters in the year are defined as recession quarters
by NBER recession indicators. Cols. 12 to 14 add additional sectors excluded from the
baseline sample, expanding to government firms in (12) (i.e., SIC codes >=9000), utilities
in (13) (i.e., SIC 4950-4999), and financial firms in (14).(i.e., SIC 6000-6999).

As shown in Tables A.6 and A.7, the key baseline effects of uncertainty on investment
are largely robust to various transformations done on data and variable choices.

A.6.5 Different definitions when measuring firm-level implied volatility from
OptionMetrics

Table A.8.presents robustness to various definitions of firm-level option-implied
volatilities. As show, the key investment regression results presented in column 5 of Table 2
that use a 2-sided mix of at-the-money (ATM) put and call options are robust to different
permutations of option data from OptionMetrics. For comparison, column 1 presents the
baseline results in column 5 of Table 2. This specification uses an ATM option-implied
volatility measure that is constructed as the simple average between a firm’s 365-day call
and put options. As stressed, a mix of ATM forward 365-day call and puts is preferable
because: (I) a 2-sided mix of puts and calls (as in the construction of the VIX) reduces any
influences of smirks or other asymmetries, and (II) ATM options have the nice feature of the
Black-Scholes Vega (the sensitivity of options prices to implied volatility) being the highest
among other type of options (e.g., out-of-the-money (OTM) and in-the-money (ITM))

Columns 2 and 3 in Table A.8 each use only ATM call and ATM put options, respectively.
We see that regardless of which one-sided measure is used (e.g., a bullish expectation with the
call versus a bearish put) the effect of uncertainty is negative. Moreover, the call generates a
slightly larger drop in investment (6 percentage point drop in column 2) than the put (5.7 pp
in col. 3), while the baseline measure that uses the average in column 1 shows a coefficient
that falls in between the 2 prior effects (drop of 5.8 pp in column 1 ). In addition to choosing
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between calls and puts, there is another degree of freedom in using ATM, OTM, ITM, or all
the above. We explore these choices in columns 4 to 12, where columns 4 to 6 are similar to
1 to 3 but use only OTM options in measuring implied volatility, while columns 7 to 9 use
only ITM options, and 10 to 12 make use of all the above call and put options in column 10,
only calls in 11, and only puts in 12.

As shown, regardless of the combination between puts, calls, ATM, OTM, or ITM options,
we see robust negative effects of option-implied uncertainty on firm investment – in some
cases even larger than the preferred specification in column 1. Lastly, in all columns the 1st
stage relevance F -test and over-identification tests indicate a well-performing IV strategy.

A.6.6 Using an index of currencies as instrument, with currencies weighted by
US Fed trade weights

The 7 major currencies used as instrumental variables (IVs) may include large and
common movements in bilateral exchange rates that might affect the precision of the
industry-level exposures that are key in the IV strategy. We explore the results to using
an index of currencies as IV instead of the 7 individual currency IVs. Individual currencies
entering the index are weighted by US Fed trade-weights. The results are presented in
Table A.9. Panel A presents the results for key outcomes presented in Table 3 but using
only 3 IVs: oil, policy, and the currency index constructed from a weighted average of the
7 major currencies weighted by FED US trade-weights. Panel B does a similar exercise,
but further includes the Mexican MXN Peso and the Chinese CNY Yuan in the weighted
index. Although these are historically non-major currencies as defined by the US Fed, their
economies have become more important over time. The data availability of these 2 additional
currencies only starts in 1994, thus their weights in the index are zero before that year. 2SLS
sample across columns is identical to the baseline specification in Table 3 and from 1993 to
2019.

Compared to the baseline 1st -stage F -tests in Table 3 that use the full set of IVs,
the F -tests in both Panels A and B are weaker and down from 79.68 to 30.92 and 42.03,
respectively. Therefore, the relevance condition suggests its preferable to use the individual
IVs for identification of exogenous variation in firm volatility shocks. Despite the lower
1st-stage F -tests all coefficient signs remain unchanged and with comparable magnitudes
relative to the baseline specifications.

Moreover, although using a single currency IV with trade weights reduces the complexity
and data requirement for the IV strategy, it comes with an important economic caveat.
Using the currency index forces first to have the same exposures to currency volatility of
different regions, say, Europe’s Euro and Mexico’s Peso. In practice, it is more plausible
that firms differ in their exposure to those regions depending on their production-channels,
supply chains, demand, etc., For example, a firm importing raw materials from Mexico and
selling in the US may be highly exposed to the Mexican Peso but not much to European
exchange rates. The much larger 1st-stage F -test in our baseline instrumentation strategy
suggests this might be true because it reveals that firms do have different exposures to
bilateral currencies.
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B Appendix Numerical algorithm
This appendix describes the solution algorithm for the model, which follows the

generalized Krusell and Smith (1998) approach as implemented in Khan and Thomas (2008)
and Bloom, Floetotto, Jaimovich, Saporta and Terry (2018). The full program, which runs
on Matlab 64-bit, is at http://www.stanford.edu/˜nbloom/.

B.1 Solution algorithm
We transform the Bellman equation for the firm problem so that the problem has a

constant discount rate with the period dividends transformed by a marginal utility price p :

Ṽ
(
k, n, z, σz;X, σX , η, µ

)
= max

{i,h}

{
p
(
X, σX , η, µ

)
(y − i− h− g − ψ)

+βE
[
Ṽ
(
k′, n′, z′, σz′ ;X ′, σX′

, η′, µ′)]
}
.

The aggregate state of the economy is
(
X, σX , η, µ

)
and the marginal utility price implied

from the household optimization problem is given by

p
(
X, σX , η, µ

)
=

1

C (X, σX , η, µ)
.

Then the evolution of the aggregate economy can be characterized by the mappings below:

p = Γp

(
X, σX , η, µ

)
µ′ = Γµ

(
X, σX , η, µ

)
.

Note that the cross-sectional distribution µ is generally intractable as a state variable,
so we approximate the cross-sectional distribution µ in the aggregate state space by the
aggregate capital K =

∫
k (k, n, z, σz) dµ, which implies that the approximate aggregate

state vector is given by
(
X, σX , η,K

)
. We then define the approximation to the equilibrium

mapping Γp and Γµ using the log-linear rules as below:

Γ̂p : log(p̂) = αp

(
X, σX , η

)
+ βp

(
X, σX , η

)
log(K)

Γ̂K : log(K̂
′

) = αK

(
X, σX , η

)
+ βK

(
X, σX , η

)
log(K).

We test the internal accuracy of the approximation using statistics commonly used in
the literature on heterogeneous agents models with aggregate uncertainty. Now the
approximated Bellman equation is given by

Ṽ
(
k, n, z, σz;X, σX , η,K

)
= max

{i,h}

{
p
(
X, σX , η,K

)
(y − i− h− g − ψ)

+βE
[
Ṽ
(
k′, n′, z′, σz′ ;X ′, σX′

, η′, K ′)]
}
.

Now we describe our solution algorithm details, which closely follow Bloom, Floetotto,
Jaimovich, Saporta and Terry (2018). We first initialize the forecast rules Γ̂

(1)
p and Γ̂

(1)
K

with guessed initial coefficients α
(1)
p

(
X, σX , η

)
and β(1)

p

(
X, σX , η

)
, and α

(1)
K

(
X, σX , η

)
and

β
(1)
K

(
X, σX , η

)
. Then the follow steps are performed with iteration q = 1, 2, ...to implement

the algorithm:
Step 1: Solve the firm problem as in the Bellman equation for Ṽ given the forecast

rules Γ̂
(q)
p and Γ̂

(q)
K . This gives approximated firm value function Ṽ (q) and policy functions(

ı̂(q), ĥ(q)
)
.

Step 2: Simulate the economy for T periods unconditionally. During this simulation, we
do not impose adherence of the assumed equilibrium pricing mapping Γ̂p.

XII



Step 3: Update the forecast rules of Γ̂
(q)
p and Γ̂

(q)
K to get Γ̂

(q+1)
p and Γ̂

(q+1)
K using the

simulated data from step 2.
Step 4: Check the convergence. Keep doing the iteration until the difference between

(Γ̂
(q)
p , Γ̂

(q)
K ) and (Γ̂

(q+1)
p , Γ̂

(q+1)
K ) is smaller than a predeterrmined criterion ϵΓ, then stop and

exit the algorithm.
In the following, we discuss how we implement each step in detail numerically.
Firm Problem We use the value function iteration procedure to solve the firm’s

maximization problem numerically. We specify the grids of 200 points for capital and 6
points for cash, respectively, with upper bounds k̄ and n̄ that are large enough to be non-
binding. The grid for capital is constructed recursively given the pre-specified lower and
upper bounds k

¯
and k̄, following ki = ki−1/(1 − δ), where i = 1,...,s is the index of grids

points. The grid for cash is constructed log-linearly allowing for zero cash. We discretize the
aggregate and firm-specific productivities with two-state Markov processes of time-varying
conditional volatility into a 5 (productivity level) by 2 grid, respectively. In all cases, the
results are robust to finer grids for the level of productivity process as well. Once the discrete
state space is available, the conditional expectation can be carried out simply as a matrix
multiplication. Finally, we use a simple discrete global search routine in maximizing the
firm’s problem.

Unconditional Simulation and Market Clearing We simulate the model for
T = 5000 periods of aggregate productivity, uncertainty and financial cost realizations(
Xt, σ

X
t , ηt

)
, t = 1, .., T following the exogenous processes which remain the same

for steps 1-4. To compute the aggregate variables, we follow the histogram-based
approach by Young (2010), which avoids the Monte Carlo sampling error in the
simulation of individual firms. Specifically, we compute the distribution (histogram)
on the firm-specific state points (k, n, z, σz) in each period, i.e., µt+1

(
(k′, n′, z′, σz′)j

)
=∑

µt ((k, n, z, σ
z)i)

∏
(zi, z

′
j;σ

z
i )
∏
(σz

i , σ
z′
j )1

(
k′j = k′t ((k, n, z, σ

z)i) , n
′
j = n′

t ((k, n, z, σ
z)i)

)
where (k, n, z, σz)i are discretized individual states for i=1,...,nknnnznσz and

∏
(zi, z

′
j;σ

z
i ) and∏

(σz
i , σ

z′
j ) are transition matrix for firm-specific productivity and firm-specific uncertainty.

In each simulation period t, we make the individual firm policy functions to be consistent
with market clearing and the firm optimization, that is the simulated consumption Ct and
the market clearing marginal utility price p = 1/C are consistent with the approximate
cross-sectional distribution and the firm individual policy rules. To do this, we must find
the market clearing price p using the continuation value V̂ (q). For a given p̃, we re-optimize
the Bellman equation to compute the firm policy functions using V̂(q) in the right side of
Bellman equation (we do not solve for a new value function), i.e.,

max
{i,h}

{
p̃
(
X, σX , η, µ

)
(y − i− h− g − ψ) + βE

[
V̂ q

(
k′, n′, z′, σz′ ;X ′, σX′

, η′, K(q)′
)]}

.

Market clears when the consumption C(p̃) = 1/p̃ for the price p̃. However due to
discontinuities associated firm distribution shifting with small price shift, the excess demand
function e(p̃) does not always clear to zero. Therefore we follow Bloom, Floetotto, Jaimovich,
Saporta and Terry (2018) to convexify the firm policies and the excess demand function,
which allows us to clear the market at a high precision.

1. Specifically, we first set up a grid for the marginal utility price {p̃i} of size Np. Then
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we recompute the firm policies for each price p̃i as described in the above, and compute
the values of consumption and aggregate capital C (p̃i) and K

′ (p̃i) , where

C (p̃i) =
∑

(k,n,z,σz)i

µt ((k, n, z, σ
z)i) [y − (k′ − (1− δk)− (n′ − (1 + rn)n)− g − ψ]

K ′ (p̃i) =
∑

(k,n,z,σz)i

µt ((k, n, z, σ
z)i) k

′.

2. Then for {p̃i, C (p̃i)}, we linearly interpolate the consumption function C̃ (p̃i) for the
candidate price p̃ outside the grid for the price. Then we define the convexified excess
demand function as

e(p̃) = 1/p̃− C̃ (p̃)

which is continuous in p̃ because the functions of 1/p̃ and C̃ (p̃) are continuous.

3. Next we clear the market in each period using a hybrid bisection/inverse quadratic
interpolation algorithm solve for p∗ such that the excess demand function e(p̃) = 0 at
arbitrary precision.

4. Given the market clear price p∗, we update the firm distribution and aggregate
quantities consistent with the construction of the excess demand function by linearly
interpolating at p̃∗. Specifically, for the nearest interval [pi∗−1, pi∗ ] where p∗ is on

the grid, we compute the weight w (p∗) =
p∗−pi∗−1

pi∗−pi∗−1
, and this also implies that

C̃(p∗) = (1− w (p∗)) C̃(pi∗−1) + w (p∗) C̃(pi∗). Similarly, we update the cross-sectional
distribution µt+1 and aggregate capital Kt+1 for the next period as µt+1(p

∗) =
(1− w (p∗))µ′(pi∗−1) + w (p∗)µ′(pi∗) and Kt+1(p

∗) = (1− w (p∗))K ′(pi∗−1) +
w (p∗)K ′(pi∗).

In practice, we set Np = 20 and the market clearing error tolerance at 0.00001, and we
find the result are robust to larger grid for p.

Equilibrium Mapping Update To update the equilibrium mappings Γ̂
(q)
p and Γ̂

(q)
K , we

first discard the 500 initial periods in simulation, then we run the following regressions on
the simulated data to Γ̂

(q)
p and Γ̂

(q)
K ,

log(pt) = αp

((
X, σX , η

)
i

)
+ βp

((
X, σX , η

)
i

)
log(Kt)

log(Kt+1) = αK

((
X, σX , η

)
i

)
+ βK

((
X, σX , η

)
i

)
log(Kt).

After collecting the estimated coefficients, we get updated forecasted rules Γ̂
(q+1)
p and

Γ̂
(q+1)
K .
Test for Convergence To determine convergence, one can check if the maximum

absolute difference between two forecasting rules is smaller than a predetermined tolerance.
Following we use a commonly accepted practice to check the internal accuracy of a forecast
mapping based on the maximum Den Haan (2010) statistics. Let DHmax

k and DHmax
p denote

the Den Haan statistics for aggregate capital K and price p, respectively, which are maximum
absolute log difference between actual simulated (Kt, pt) and the forecasted (Kt, pt) using
the equilibrium mappings Γ̂p and Γ̂K .The forecast mapping converge when

max{|DHmax,q+1
k −DHmax,1

k |, |DHmax,q+1
p −DHmax,1

p |} < ϵ,
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where ϵ = 1%.

B.2 Internal accuracy of the approximation
This section reports the basic accuracy statistics to evaluate the accuracy of

heterogeneous agents models with aggregate uncertainty used in the literature.
We show that the R2 implied by the following forecasting regressions for price p̂t and

aggregate capital K̂t+1 are close to 1.

log(p̂t) = αp

(
X, σX , η

)
+ βp

(
X, σX , η

)
log(Kt)

log(K̂t+1) = αK

(
X, σX , η

)
+ βK

(
X, σX , η

)
log(Kt).

B.3 Impulse response simulation
This section describes the calculations of the impulse responses of the economy to

uncertainty shocks. After solving the model using the algorithm, we compute the conditional
response of the economy to uncertainty shocks (aggregate and firm-specific uncertainty
shocks combined) by simulating 500 economies of length 230 periods, where the shocks
occur at period 200 with market clearing within each period. After the shocks, each economy
evolves normally, so effectively we simulate shocks and their gradual decay. Impulse responses
are computed as the average aggregate series of interest scaled by the average level of the
variable in the pre-shock period.

B.4 Calibration details
We discuss the calibration of some of the key baseline model parameters in detail here.

• Subjective discount factor β: We follow King and Rebelo (1999) and use the long-run
average of the real stock market returns as the firm’s discount rate. According to
Jeremy J. Siegel (1998), the average real stock market returns is 7% in the long sample
of 1802 to 1997; it is 6.6% from 1871-1925, and is 7.2% from 1926 to 1997. In the post
War period, it is 6% from 1966 to 1997. However, since there is no aggregate risk in
the model, subjective discount factor β also directly maps to the risk-free rate, which
we use estimates of interest rates of treasury securities. The average real long-term
government bond rate is 3.5% from 1802 to 1997 and is 2.8% from 1871 to 1997; while
the average real T-bill rate is 2.9% from 1802 to 1997 and is 1.7% from 1871 to 1997.
Given the range of estimates of the long-run average returns of stock market and the
treasury securities, we choose an intermediate value of these estimates for the discount
rate and set it to 5% per annum, which implies β = 0.988 per quarter.

• Return on saving Rn: Return on saving is assumed to be less than the risk-free rate
because of the wedge between the two, which can be due to the tax disadvantage of
carrying cash for firms or agency frictions. Unfortunately, there is no readily available
value for return on cash saving. In the model it determines firms’ choice on cash saving,
so we set Rn = 97%R to match the cash-to-revenue ratio of 0.29 in Compustat firms.
We also tried no cash model as a robustness check.

• Returns-to-scale α. Since our model is a single capital model, we follow the estimated
value by Cooper and Ejarque (2001) and Hennessy and Whited (2007), in both the
production-function is decreasing returns to scale with capital as the only input and
set α = 0.7.
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• Depreciation rate δ . We set the capital depreciation rate δ at 0.05, consistent with
Caballero and Engel (1999).

• Real adjustment cost ck. We calibrate the real adjustment cost parameter in the real-
only model to match the implied coefficient in the regression where firmlevel investment

rate
ij,t
kj,t

is regressed on firm-specific uncertainty shocks
σZ
j,t−σZ

j,t−1

σZ
j,t+σZ

j,t−1
. The data moment

to match is from the multivariate IV regression. The calibration leads to ck = 0.20.

• Real and financial adjustment cost {ck, ηL, ηH} .In the baseline model with both real
and financial adjustment costs, we calibrate the real adjustment costs, the low and
high financing costs to match the investment slope in the multi-variate IV regression
in the data and the cash-to-sales ratio. This implies that ck = 0.03, ηL = 0.03, and
ηH = 0.06.

• Stochastic processes. We set the persistence of aggregate and firm-specific
productivities as ρX = 0.95 and ρZ = 0.95 following Khan and Thomas (2008).
Following Bloom et al. (2018), we set the baseline aggregate and firm-specific volatilities
as σX

L = 0.0067 and σZ
L = 0.051, respectively, the high uncertainty state σX

H =
1.6 ∗ σX

L and σZ
H = 4.1 ∗ σZ

L , and the transition probabilities of πσX

L,H = 0.026,

πσZ

L,H = 0.026 and πσX

H,H = 0.943, and πσZ

H,H = 0.943. Because there is no readily
available estimate for the transition probabilities of financial shock in the data, we
set πη

L,H = 0.05 and πη
H,H = 0.50 so that the high financial costs state is expected to

happen every 20 quarters and the expected length of the high financial costs state is 2
quarters.

B.5 Model robustness
In this section we consider changes in parameter values in the general equilibrium model.
Changes in parameter values We start by re-solving the model by changing a

series of the parameter values listed in Table 5. The broad summary is that while the
quantitative results vary somewhat across different models, the qualitative results are robust
- uncertainty shocks lead to drops and rebounds in output, capital and labor (alongside rises
in cash and drops in equity payouts), and adding in financial adjustment costs make the
impact larger and more persistent. We report the output response of these models in Figure
5.

1. Different transition matrix for financial shocks. We set the transition probabilities of
the financial shock to be the same as the uncertainty shock. As we see (black line
with crosses) this leads to a slightly smaller drop and similarly slow recovery from the
uncertainty-finance shock because the finance shocks is still persistent.

2. Zero cash model. Next, we remove the cash saving choice from the model. We see a
similar drop in output of around 4.0% (3.9% in the baseline) and a slower recovery
after the uncertainty-finance shock (green line with cirlcles).
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3. Constant financing cost. In addition, rather than assuming stochastic financing
costs, we set financing costs constant (equal to the unconditional expected stochastic
financing costs in the baseline model). This also leads to a slightly smaller drop in
output but similar persistent response afterwards (brown line with pluses).

4. Nonconvex financial adjustment costs model . We also solved a model with nonconvex
financial adjustment cost model with ψj,t = ϕ (ηt) yj,t1{ej,t<0}. We calibrate the
financial adjustment costs so that they are comparable to the baseline model with
linear financial adjustment costs. We see that the peak drop in output is slightly
larger than the baseline model (black line with triangles).

5. Smaller and bigger financial adjustment costs. We also tried financial adjustment costs
as 90% and 110% of the baseline calibration. We see these two model calibrations (blue
line with squares for 90% of the baseline and blue line with rhombuses for 110% of
the baseline) produce similar drops and almost identical recovery of output to the
baseline calibration from the uncertainty-finance shocks because financial constraints
are not significantly loosened or tightened with a smaller changes, which also show the
robustness of the finance-uncertainty multiplier effect.

6. Smaller and bigger real adjustment costs. We also tried real adjustment costs as 90%
and 110% of the baseline calibration. We see these two model calibrations (mageta
line with triangles for 90% of the baseline and purple line with triangles for 110% of
the baseline) produce similar drops and recovery to the baseline calibration.
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Table A.1
Descriptive statistics

N Obs. Mean S. Dev Min P1 P25 P50 P75 P99 Max

Dependent

Investment Ratei,t 56,172 0.229 0.142 -0.238 0.013 0.117 0.195 0.321 0.500 0.500

∆Intangible Investi,t 56,172 0.057 0.233 -1.282 -0.663 -0.018 0.046 0.138 0.785 1.677

∆Employmenti,t 56,172 0.024 0.222 -1.145 -0.756 -0.048 0.019 0.100 0.738 1.214

∆Cost of Goods Soldi,t 56,172 0.057 0.277 -1.490 -0.950 -0.031 0.060 0.158 0.898 1.571

∆Salesi,t 56,172 0.058 0.263 -1.326 -0.845 -0.028 0.060 0.155 0.854 1.528

∆Payouti,t 56,172 0.054 0.947 -2.000 -2.000 -0.133 0.000 0.327 2.000 2.000

∆Debti,t 56,172 0.035 0.688 -2.000 -2.000 -0.134 0.000 0.173 2.000 2.000

∆Cash Holdingsi,t 56,172 0.045 0.686 -1.937 -1.782 -0.318 0.044 0.397 1.837 1.941

Independent

∆Realized Volatilityi,t−1 56,172 -0.013 0.308 -0.877 -0.722 -0.215 -0.022 0.174 0.824 1.072

∆Implied Volatilityi,t−1 26,977 -0.020 0.308 -0.857 -0.693 -0.221 -0.037 0.151 0.844 1.038

Tobin’s Qi,t−1 56,172 1.612 0.855 0.133 0.608 1.054 1.352 1.887 4.824 9.003

Book Leveragei,t−1 56,172 0.326 0.323 -0.050 0.000 0.047 0.284 0.495 1.562 2.205

Stock Returni,t−1 56,172 0.168 0.629 -0.893 -0.786 -0.185 0.073 0.355 2.976 3.909

Log Salesi,t−1 56,172 5.971 2.188 -2.254 0.573 4.484 6.053 7.491 10.843 11.018

Return on Assetsi,t−1 56,172 0.059 0.180 -1.177 -0.701 0.023 0.080 0.138 0.422 0.580

Tangibilityi,t−1 56,172 0.611 0.448 0.000 0.033 0.265 0.503 0.869 2.114 2.563

Instruments

Cad IV ∆Voli,t−1 56,172 0.001 0.019 -0.070 -0.054 -0.006 0.000 0.007 0.071 0.085

Euro IV ∆Voli,t−1 56,172 -0.003 0.030 -0.105 -0.084 -0.012 -0.002 0.004 0.129 0.173

Jpy IV ∆Voli,t−1 56,172 -0.001 0.014 -0.071 -0.050 -0.005 -0.001 0.004 0.048 0.067

Aud IV ∆Voli,t−1 56,172 -0.001 0.020 -0.071 -0.066 -0.008 0.000 0.006 0.068 0.073

Sek IV ∆Voli,t−1 56,172 -0.001 0.021 -0.073 -0.060 -0.008 0.000 0.004 0.094 0.099

Chf IV ∆Voli,t−1 56,172 -0.001 0.031 -0.105 -0.088 -0.011 -0.001 0.004 0.149 0.174

Gbp IV ∆Voli,t−1 56,172 -0.001 0.016 -0.060 -0.050 -0.006 -0.001 0.004 0.056 0.081

Oil IV ∆Voli,t−1 56,172 0.000 0.011 -0.086 -0.044 -0.002 0.000 0.001 0.035 0.073

Policy IV ∆Voli,t−1 ‡ 56,172 -0.001 0.009 -0.046 -0.032 -0.003 -0.001 0.002 0.030 0.042

Notes: Table reports summary statistics for the main sample of firm-year observations in 2SLS regressions
from 1993 to 2019. Investment rate at year t is defined as It

1
2 (Kt−1+Kt)

(i.e., capx/average of current and

lagged property plant & equipment from Compustat). Changes in variables, ∆x, are annual growth rates

defined as xt−xt−1
1
2 (xt+xt−1)

. Annual realized volatility is the 12-month standard deviation of firms’ cum-dividend

daily stock returns from CRSP, and annualized by multiplying by
√
252. Annual implied volatility is the

12-month average of firms’ daily option-implied volatility from OptionMetrics, where the daily observations
are the average of 365-day-horizon at-the-money call and put options. To ease comparison across realized and
implied volatility effects, the growth in option implied volatility is scaled to have the same standard deviation
as the growth in realized volatility in their respective regression samples. Definition of other variables in
the Table, including uncertainty instruments for currencies, oil, and policy are described in detail in Section
2 and Online Appendix A. Variables are winsorized at the 0.5 and 99.5 percentiles. Standard deviation is
S. Dev and P1, P25, P50, P75, P99 stand for the 1, 25, 50, 75, and 99 percentiles, respectively. ‡ : For
presentational purposes moments for policy IV are multiplied by 100.
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Table A.2
Investment rate - 2SLS 1st stage results

(1) (2) (3)

Set-up: ∆Volatilityi,t−1 Realized Implied

Cad IV ∆Voli,t−1 -0.101 -0.060 -0.485*

(0.203) (0.196) (0.287)

Euro IV ∆Voli,t−1 0.578*** 0.572*** 0.799***

(0.205) (0.208) (0.162)

Jpy IV ∆Voli,t−1 0.377* 0.385* 0.676***

(0.226) (0.219) (0.196)

Aud IV ∆Voli,t−1 1.874*** 1.861*** 0.670***

(0.233) (0.230) (0.208)

Sek IV ∆Voli,t−1 1.126*** 1.127*** 0.326

(0.282) (0.277) (0.254)

Chf IV ∆Voli,t−1 0.457*** 0.413*** 0.297*

(0.155) (0.160) (0.157)

Gbp IV ∆Voli,t−1 0.057 0.026 0.716***

(0.236) (0.226) (0.237)

Oil IV ∆Voli,t−1 1.646*** 1.588*** 1.251***

(0.469) (0.457) (0.407)

Policy IV ∆Voli,t−1‡ 1.225*** 1.164*** 0.043

(0.390) (0.377) (0.324)

Firm-level controlsi,t−1 No Yes Yes

IVi,t−1 1st moment controls Yes Yes Yes

Firm, time FEs Yes Yes Yes

SE cluster industry Yes Yes Yes

Sample years 1993-2019 1993-2019 1998-2019

Observations 56,172 56,172 26,977

1st stage F−test 87.22 79.68 69.91

p−val Sargan–Hansen J −test 0.462 0.665 0.572

Notes: Table reports the first stage regression results of the excluded instruments used in the 2SLS firm-level
investment rate regressions presented in Table 2. Therefore, columns (1) and (2) are the first stage results for
columns (3) and (4) in Table 2, respectively, that instrument the shocks to realized stock return volatility of
firms. In contrast, column (3) is the first stage of column (5) in Table 2 that instruments the option-implied
volatility shocks of firms. See notes in Table 2 for additional details on the specifications ran in each column.
We normalize implied volatility growth to have the same standard deviation as realized volatility growth to
ease comparison of coefficients across columns. Sample period is reported in row “Sample years”. All columns
include firm and calendar-year fixed effects, and controls for 1st moment effects of each of the 9 aggregate
instruments (i.e., 1st moment returns) labeled “IVi,t−1 1st moment”, with SEs clustered at industry 2SIC
level. 2SLS first-stage F−statistics are Kleibergen-Paap (KP) that cluster standard errors at the industry-
level (2SIC). Overidentification test for the validity of instruments is the p−value for the Sargan-Hansen
overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section
2 and Online Appendix A for information on variable construction and data details. ‡ : For presentational
purposes coefficients and standard errors for policy IV are divided by 100.
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Table A.3
2SLS sensitivity to dropping instruments from the full set of IVs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

IV Dropped None Cad Euro Jpy Aud Sek Chf Gbp Policy Oil Policy+Oil All 7 currs

Real Variables

Investment ratei,t -0.041*** -0.041*** -0.042*** -0.042*** -0.046*** -0.042*** -0.039*** -0.041*** -0.039*** -0.032*** -0.030*** -0.085***

∆Intang.i,t -0.052*** -0.054*** -0.055*** -0.055*** -0.059*** -0.044** -0.055*** -0.052*** -0.051*** -0.044** -0.042** -0.086***

∆Empi,t -0.032* -0.033** -0.037** -0.034* -0.035* -0.029† -0.034** -0.033* -0.030* -0.012 -0.009 -0.128**

∆COGSi,t -0.151*** -0.153*** -0.141*** -0.148*** -0.184*** -0.154*** -0.149*** -0.151*** -0.149*** -0.129*** -0.127*** -0.186†
∆Salesi,t -0.217** -0.220** -0.218** -0.221** -0.243** -0.224** -0.218** -0.218** -0.214** -0.148*** -0.142*** -0.580***

Financial Variables

∆Payouti,t -0.423*** -0.419*** -0.423*** -0.422*** -0.445*** -0.438*** -0.412*** -0.423*** -0.409*** -0.382*** -0.368*** -0.561***

∆Debti,t -0.137** -0.134** -0.131*** -0.146*** -0.198*** -0.114** -0.132** -0.137** -0.121** -0.117** -0.099* -0.284***

∆Cash i,t 0.167** 0.167** 0.170** 0.172** 0.177** 0.169** 0.161** 0.166** 0.160** 0.187*** 0.183*** 0.026

Firm-level controlsi,t−1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

IVi,t−1 1st moment Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Firm, time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

SE cluster industry Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Investment Rate Regression

Observations 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172

1st stage F−test 79.68 74.22 70.99 67.62 46.09 45.34 87.50 73.54 87.26 80.73 87.18 43.93

p−val Sargan–H test 0.665 0.571 0.668 0.586 0.557 0.580 0.613 0.578 0.924 0.649 0.888 0.938

Notes: Table reports 2SLS robustness tests to the instrumentation strategy used in all real and financial outcome results (with full set of controls)
presented in Table 3. Column (1) presents the baseline 2SLS multivariate coefficients shown in Table 3 that use the full set of 9 instrumental
variables (IVs) to instrument firm-level realized volatility shocks. Columns (2 to 10) examine the robustness of the results when dropping individual
instruments one at a time from the full set of 9 instruments (as indicated by row ”IV Dropped”). Column (11) drops both the Policy and Oil IVs
while keeping only currency IVs. Column (12) drops all 7 major currencies and keeps only Policy and Oil IVs. 2SLS sample across columns is
identical to the baseline specification in column (1) and from 1993 to 2019. The statistics under “Investment Rate Stats” correspond to the 1st stage
results and overidentification test of the 2SLS investment rate regressions. See notes in Table 3 for additional details on the specifications ran for
each outcome variable. All columns include firm and calendar-year fixed effects, and controls for 1st moment effects of each of the instruments used
in the regression (i.e., 1st moment returns) labeled “IVi,t−1 1st moment”, with SEs clustered at industry 2SIC level. 2SLS first-stage F−statistics
are Kleibergen-Paap (KP) that cluster standard errors at the industry-level (2SIC). Overidentification test for the validity of instruments is the
p−value for the Sargan-Hansen overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and
Online Appendix A for information on variable construction and data details.
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Table A.4
2SLS robustness to changing functional form when measuring uncertainty

(1) (2) (3) (4) (5) (1A) (2A) (3A) (4A) (5A)

Firm-level Volatility ∆σi,t−1 ∆(σ
2
i,t−1) σi,t−1 σ2

i,t−1 log(σi,t−1) ∆σi,t−1 ∆(σ
2
i,t−1) σi,t−1 σ2

i,t−1 log(σi,t−1)

Volatility source Realized total stock return volatility (1-5) Realized idiosyncratic stock return volatility (1A-5A)

Real Variables

Investment ratei,t -0.041*** -0.022*** -0.116*** -0.075*** -0.073*** -0.063*** -0.034*** -0.178*** -0.118*** -0.101***
∆Intang.i,t -0.052*** -0.029*** -0.125** -0.083** -0.079** -0.079*** -0.044*** -0.194*** -0.142*** -0.101**
∆Empi,t -0.032* -0.018** -0.086* -0.053* -0.056* -0.052** -0.030** -0.135* -0.087* -0.081*
∆COGSi,t -0.151*** -0.081*** -0.483*** -0.315*** -0.308*** -0.234*** -0.125*** -0.728*** -0.488*** -0.409***
∆Salesi,t -0.217** -0.118** -0.637*** -0.402*** -0.412*** -0.344*** -0.188*** -0.976*** -0.624*** -0.579***

Financial Variables

∆Payouti,t -0.423*** -0.229*** -1.173*** -0.758*** -0.752*** -0.633*** -0.344*** -1.762*** -1.190*** -0.980***
∆Debti,t -0.137** -0.073** -0.513*** -0.334*** -0.321*** -0.221*** -0.118*** -0.828*** -0.554*** -0.467***
∆Cash i,t 0.167** 0.090** 0.454** 0.300** 0.287** 0.233** 0.125** 0.673* 0.488** 0.343*

Firm-level controlsi,t−1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
IVi,t−1 1st moment Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm, time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SE cluster industry Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Investment Rate Stats

Observations 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172
1st stage F−test 79.68 80.66 55.67 43.97 37.93 74.76 73.86 47.93 30.52 33.59
p−val Sargan–H test 0.665 0.662 0.759 0.776 0.732 0.646 0.656 0.759 0.799 0.699

Notes: Table reports 2SLS robustness tests that change the functional form when measuring firm-level uncertainty and its effect on all real and
financial outcomes (with full set of controls) presented in Table 3. Column (1) presents the baseline 2SLS multivariate coefficients shown in Table 3,
in which the instrumented volatility variable is the lagged-by-1-year annual growth in realized stock return volatility from CRSP, ∆σi,t−1. Column

(2) instruments the lagged annual growth in the square of realized return volatility, ∆(σ
2
i,t−1), column (3) the level of volatility, σi,t−1, column (4)

the square in the level of volatility, σ2
i,t−1, and column (5) the natural log of volatility, log(σi,t−1). Columns (1A) to (5A) are similar to columns (1)

to (5), but use idiosyncratic stock return volatility to proxy for uncertainty. While columns (1) to (5) measure annual volatility as the 12-month
standard deviation of daily firm returns and annualized by multiplying by

√
252, columns (1A) to (5A) measure firm volatility as firms’ idiosyncratic

volatility with respect to a Carhart 4 factor model. In particular, firm annual idiosyncratic volatility is the annualized standard deviation of the
12-month residuals (i.e., σ(εi,t) ·

√
252) from the following firm-by-firm regression of daily firm returns in excess of the risk-free rate on the 4 Carhart

factors from CRSP: rexcessi,t = αi + βi,mkt · MKTt + βi,HML · HMLt + βi,SMB · SMBt + βi,UMD · UMDt + εi,t. Columns (1A) to (5A) isolate
the idiosyncratic component in firm stock returns that is not systematic and explained by the 4 aggregate factors. 2SLS sample across columns is
identical to the baseline specification in column (1) and from 1993 to 2019. The statistics under “Investment Rate Stats” correspond to the 1st
stage results and overidentification test of the 2SLS investment rate regressions. See notes in Table 3 for additional details on the specifications ran
for each outcome variable. All columns include firm and calendar-year fixed effects, and controls for 1st moment effects of each of the 9 aggregate
instruments (i.e., 1st moment returns) labeled “IVi,t−1 1st moment”, with SEs clustered at industry 2SIC level. 2SLS first-stage F−statistics are
Kleibergen-Paap (KP) that cluster standard errors at the industry-level (2SIC). Overidentification test for the validity of instruments is the p−value
for the Sargan-Hansen overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and Online
Appendix A for information on variable construction and data details.
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Table A.5
2SLS Robustness tests: leverage-adjusted volatility and additional controls

(1) (2) (3) (4) (5) (6) (7)

Real Variables

Investment ratei,t -0.041*** -0.045*** -0.044*** -0.040*** -0.040*** -0.041*** -0.039***

∆Intangible Cap. Invest.i,t -0.052*** -0.065*** -0.062*** -0.052*** -0.050*** -0.053*** -0.050***

∆Employmenti,t -0.032* -0.041** -0.042** -0.032** -0.031* -0.032* -0.030*

∆COGSi,t -0.151*** -0.163*** -0.160*** -0.150*** -0.148*** -0.151*** -0.146***

∆Salesi,t -0.217** -0.241** -0.246** -0.214** -0.213** -0.216** -0.209**

Financial Variables

∆Payouti,t -0.423*** -0.484*** -0.459*** -0.408*** -0.418*** -0.422*** -0.403***

∆Debti,t -0.137** -0.132** -0.131** -0.137** -0.131** -0.138** -0.132**

∆Cash Holdingsi,t 0.167** 0.184** 0.178** 0.166** 0.163** 0.170** 0.166**

Firm-level controlsi,t−1 Yes Yes Yes Yes Yes Yes Yes

IVi,t−1 1st moment controls Yes Yes Yes Yes Yes Yes Yes

Firm, time FE Yes Yes Yes Yes Yes Yes Yes

SE cluster industry Yes Yes Yes Yes Yes Yes Yes

Market-leverage adjusted ∆Volatilityi,t−1 Yes

Book-leverage adjusted ∆Volatilityi,t−1 Yes

Covariance w/ marketi,t−1 Yes Yes

Financial constraint indexesi,t−1 Yes Yes

S&P credit ratingsi,t−1 Yes Yes

Investment Rate Stats

Observations 56,172 56,172 56,172 56,172 55,933 56,172 55,933

1st stage F−test 79.68 52.52 40.84 83.11 81.69 79.64 85.52

p−val Sargan–Hansen J −test 0.665 0.580 0.656 0.677 0.593 0.669 0.604

Notes: Table reports 2SLS robustness checks for the effects of firm uncertainty shocks on all real and financial outcomes (with full set of controls)
presented in Table 3. Column (1) presents the baseline 2SLS multivariate coefficients shown in Table 3, in which the instrumented volatility variable
is the lagged-by-1-year annual growth in realized stock return volatility from CRSP, ∆σi,t−1. Columns (2) and (3) check whether the effects are
robust to adjusting firm volatility for firm market- and book-leverage, respectively. In particular, when constructing the volatility shock annual
volatility is first adjusted by σi,t · Ei,t

Ei,t+Di,t
where E is market equity in column (2) and book equity in column (3), and D is total debt. Columns

(4) to (7) run the baseline specification in column (1) but adding additional controls that include: the covariance of firm returns with the market in
column (4) –where covariance is the firm lagged CAPM beta that controls for firm loadings on the market price of risk (e.g., control for 1st moment
effects)–, controls for firm-level financial constraint indexes in column (5) – which include the lagged Whited-Wu and Size and Age indexes–, and
controlling for the S&P credit ratings of firms in column (6) – which adds a full set of dummies based on every possible credit rating category given
by S&P on long-term debt, where the omitted dummy is for no credit ratings–. Lastly, column (7) includes all the previous controls in columns
(4,5,6) together. 2SLS sample across columns is from 1993 to 2019. The statistics under “Investment Rate Stats” correspond to the 1st stage
results and overidentification test of the 2SLS investment rate regressions. See notes in Table 3 for additional details on the specifications ran for
each outcome variable. All columns include firm and calendar-year fixed effects, and controls for 1st moment effects of each of the 9 aggregate
instruments (i.e., 1st moment returns) labeled “IVi,t−1 1st moment”, with SEs clustered at industry 2SIC level. 2SLS first-stage F−statistics are
Kleibergen-Paap (KP) that cluster standard errors at the industry-level (2SIC). Overidentification test for the validity of instruments is the p−value
for the Sargan-Hansen overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and Online
Appendix A for information on variable construction and data details.
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Table A.6
Robustness Investment Rate results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Investment Baseline IVs 10% 10yr roll IVs It−SPPEt
1
2
(Kt−1+Kt)

It
Kt−1

Winsr Invt Drop 2SIC-year Post Drop peak Add Add Add

ratei,t signf. windows Implied rate [-1,+1] penny cluster 2001 fin.crisis govrmt utilities financial

∆Voli,t−1 -0.041***-0.040***-0.035***-0.033*** -0.041*** -0.045*** -0.033** -0.039*** -0.041*** -0.044*** -0.043*** -0.040***-0.041***-0.041***

(0.014) (0.014) (0.013) (0.009) (0.014) (0.016) (0.015) (0.012) (0.010) (0.013) (0.014) (0.014) (0.014) (0.014)

Obs. 56,172 56,172 44,707 41,016 56,172 56,172 56,172 52,389 56,172 36,932 53,996 56,287 56,632 60,321

Start year 1993 1993 1998 2000 1993 1993 1993 1993 1993 2002 1993 1993 1993 1993

End year 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019

1st stage F 79.68 33.22 38.27 52.14 79.68 79.63 79.73 78.53 35.91 85.15 72.98 80.78 78.93 73.97

p−val Sargan 0.665 0.623 0.266 0.736 0.665 0.630 0.790 0.600 0.164 0.340 0.652 0.659 0.676 0.758

Notes: Table reports 2SLS robustness checks to the baseline investment rate results (with full set of controls) presented in column (1) of Table 3.
For comparison across columns, col. (1) repeats the baseline 2SLS multivariate results in col. (1) of Table 3. This baseline instruments firm-level
realized volatility shocks using all 9 instrumental variables (IVs) as estimated at the 2-digit SIC industry-levels and described in section 2. Sample
start and end years are specified in bottom rows and from 1993 to 2019 for the baseline col. (1). From cols. (2) to (14) we perform various
robustness checks that change one specific criteria at a time regarding data and/or variable construction. Col. (2) adjusts the set of baseline
instruments for the statistical significance of each exposure within the industry, where betas are weighted by their statistical significance within
the industry with weight zero for insignificant exposures at the 10%. Col. (3) uses 10-year rolling windows in the IVs instead of 5yrs. Col. (4)
uses implied volatilities to construct the IVs instead of the baseline realized volatilities. To increase the range of the sample as far as possible, the
set of implied IVs include only that of the 7 major currencies, sample is 2000 to 2019. Col. (5) adjusts the baseline measure of investment ratei,t
= It

1
2 (Kt−1+Kt)

(capx/average of current and lagged property plant & equipment from Compustat) to be net of sale of property plant & equipment,

i.e., It−SPPEt
1
2 (Kt−1+Kt)

(where SPPE is sale of property plant & equipment). Col. (6) defines investment rate as It
Kt−1

(capx/lagged property plant &

equipment). Col. (7) relaxes the baseline winsorization [-0.5,+0.5] of investment rate to [-1,+1]. Column (8) drops penny stocks with share price
below $USD 1 from the sample of firms. These penny stock firms are generally tiny firms whose trading in the stock market and price volatility are
likely influenced by other issues such as stock illiquidity. Col. (9) clusters the standard errors at the industry-by-year level instead of at the 2-digit
industry level only. Col. (10) runs on the subsample of firm years from 2002 to 2019, hence drops the Dot-Com bubble of year 2000 and the 9/11
event in 2001. Although these events came with significant movements in volatility, financial conditions remained relatively stable those years. Col.
(11) drops year 2008 which largely represents the peak of the financial crisis and is the only year of the crisis in which all quarters in the year are
defined as recession quarters by NBER recession indicators. Cols. (12) to (14) add additional sectors excluded from the baseline sample, expanding
to government firms in (12) (i.e., SIC codes >=9000), utilities in (13) (i.e., SIC 4950-4999), and financial firms in (14).(i.e., SIC 6000-6999) See
notes in Table 2 for additional details on the baseline investment regression. All columns include firm and calendar-year fixed effects, and controls
for 1st moment effects of each of the 9 aggregate instruments (i.e., 1st moment returns), with SEs clustered at industry 2SIC level. 2SLS first-stage
F−statistics are Kleibergen-Paap (KP) that cluster SEs at the industry-level (2SIC). Overidentification test is the p−value for the Sargan-Hansen
overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and Online Appendix A for information
on variable construction and data details.
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Table A.7
Robustness amplification effect results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Investment Baseline IVs 10% 10yr roll IVs It−SPPEt
1
2 (Kt−1+Kt)

It
Kt−1

Winsr Invt Drop 2SIC-year Post Drop peak Add Add Add

ratei,t signf. windws Implied rate [-1,+1] penny cluster 2001 fin.crisis govrmt utilities financial

∆σi,t−1 -0.023** -0.036***-0.018**-0.022** -0.023** -0.023* -0.022* -0.021** -0.023** -0.024*** -0.022** -0.021* -0.024** -0.018*
(0.010) (0.012) (0.008) (0.009) (0.010) (0.012) (0.013) (0.010) (0.009) (0.008) (0.011) (0.011) (0.010) (0.010)

∆σi,t−1·CSt -0.019** -0.012 -0.019** -0.007 -0.019** -0.020** -0.022** -0.022*** -0.019** -0.016* -0.022** -0.020** -0.018** -0.022**
(0.008) (0.009) (0.007) (0.011) (0.008) (0.009) (0.011) (0.008) (0.009) (0.008) (0.010) (0.009) (0.008) (0.009)

∆σi,t−1·DFC
i,t−5 0.002 0.016† -0.002 -0.003 0.002 0.004 0.012 0.004 0.002 -0.002 -0.002 0.001 0.003 -0.002

(0.009) (0.011) (0.011) (0.014) (0.009) (0.010) (0.014) (0.009) (0.012) (0.011) (0.009) (0.009) (0.009) (0.010)

∆σi,t−1·DFC
i,t−5·CSt -0.014***-0.018*** -0.010* -0.010† -0.014*** -0.019*** -0.020** -0.015*** -0.014** -0.011** -0.010* -0.014**-0.014***-0.011**

(0.005) (0.007) (0.005) (0.006) (0.005) (0.006) (0.008) (0.005) (0.006) (0.005) (0.006) (0.005) (0.005) (0.006)

Obs. 56,172 56,172 44,707 41,016 56,172 56,172 56,172 52,389 56,172 36,932 53,996 56,287 56,632 60,321
Start year 1993 1993 1998 2000 1993 1993 1993 1993 1993 2002 1993 1993 1993 1993
End year 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
1st stage F 39.45 11.06 35.23 21.41 39.45 39.45 39.58 38.60 12.53 41.45 42.10 40.31 36.88 33.71
p−val Sargan 0.509 0.292 0.550 0.889 0.509 0.436 0.555 0.266 0.561 0.612 0.357 0.436 0.510 0.462

Notes: Table reports 2SLS robustness checks to the baseline triple interaction regression (with full set of controls) presented in column (4) of Table
4. For comparison across columns, col. (1) repeats the baseline 2SLS results in col. (4) of Table 4. This baseline instruments firm-level realized
volatility shocks (and its interactions) using all 9 instrumental variables (IVs) as estimated at the 2-digit SIC industry and described in section
2. Sample start and end years are in bottom rows, and 1993-2019 for the baseline col. (1). From cols. (2) to (14) we perform robustness checks
that change one specific criteria at a time regarding data and/or variable construction. Col. (2) adjusts the set of baseline IVs for the statistical
significance of each exposure within the industry, where betas are weighted by their statistical significance within the industry with weight zero for
insignificant exposures at the 10%. Col. (3) uses 10-year rolling windows in the IVs instead of 5yrs. Col. (4) uses implied volatilities to construct
the IVs instead of the baseline realized volatilities. To increase the range of the sample as far as possible, the set of implied IVs include only that of
the 7 major currencies, sample is 2000 to 2019. Col. (5) adjusts the baseline measure of investment ratei,t =

It
1
2 (Kt−1+Kt)

(capx/average of current

and lagged property plant & equipment from Compustat) to be net of sale of property plant & equipment, i.e., It−SPPEt
1
2 (Kt−1+Kt)

(where SPPE is sale

of property plant & equipment). Col. (6) defines investment rate as It
Kt−1

(capx/lagged property plant & equipment). Col. (7) relaxes the baseline

winsorization [-0.5,+0.5] of investment rate to [-1,+1]. Column (8) drops penny stocks with share price below $USD 1 from the sample of firms.
These penny stock firms are generally tiny firms whose trading in the stock market and price volatility are likely influenced by other issues such
as stock illiquidity. Col. (9) clusters the standard errors at the industry-by-year level instead of at the 2-digit industry level only. Col. (10) runs
on the subsample of firm years from 2002 to 2019, hence drops the Dot-Com bubble of year 2000 and the 9/11 event in 2001. Although these
events came with significant movements in volatility, financial conditions remained relatively stable those years. Col. (11) drops year 2008 which
largely represents the peak of the financial crisis and is the only year of the crisis in which all quarters in the year are defined as recession quarters
by NBER recession indicators. Cols. (12) to (14) add additional sectors excluded from the baseline sample, government firms in (12) (i.e., SIC
codes >=9000), utilities in (13) (i.e., SIC 4950-4999), and financial firms in (14).(i.e., SIC 6000-6999) See notes in Table 2 for additional details on
the baseline investment regression. All columns include firm and calendar-year fixed effects, and controls for 1st moment effects of each of the 9
aggregate instruments (i.e., 1st moment returns), with SEs clustered at 2SIC level. 2SLS first-stage F−statistics are Kleibergen-Paap (KP), with
2SIC clustering of SEs. Overidentification test is the p−value for the Sargan-Hansen J−test. Statistical significance: *** p<0.01, ** p<0.05, *
p<0.1, † p<0.15. See section 2 and Online Appendix A for information on variable construction and data details.
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Table A.8
Implied volatility robustness, calls & puts

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Implied ATM ATM ATM OTM OTM OTM ITM ITM ITM All All All

Volatility Call & Put Call Put Calls & Puts Calls Puts Calls & Puts Calls Puts Calls & Puts Calls Puts

Investment ratei,t

∆Voli,t−1 -0.058** -0.060** -0.057** -0.062** -0.064** -0.061*** -0.058** -0.061** -0.058** -0.059** -0.061** -0.058**

(0.022) (0.024) (0.022) (0.024) (0.025) (0.023) (0.023) (0.025) (0.022) (0.023) (0.024) (0.022)

Obs. 26,977 26,977 26,977 26,977 26,977 26,977 26,977 26,977 26,977 26,977 26,977 26,977

Start year 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998

End year 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019

1st stage F−test 69.91 68.35 62.38 66.28 61.91 66.35 65.68 70.60 48.68 68.95 69.02 60.44

p−val Sargan–H 0.572 0.577 0.567 0.563 0.552 0.571 0.574 0.571 0.576 0.571 0.567 0.571

Notes: Table reports 2SLS robustness checks to the measurement of option-implied volatility shocks and their effect on firm investment rates.
For comparison across robustness checks, column (1) repeats the implied specification presented in column (5) of Table 2. This specification uses
an average of both put and call at-the-money (ATM) options to measure firm implied volatility. In particular, annual implied volatility is the
12-month average of firms’ daily option-implied volatility from OptionMetrics, where the daily observations are the simple average of 365-day-
horizon at-the-money call and put options. Columns (2) and (3) use only and separately ATM call and ATM put options, respectively. Columns
(4) to (6) are similar to (1) to (3) but use only out-of-the-money (OTM) options in measuring implied volatility, while columns (7) to (9) use only
in-the-money (ITM) options. Lastly, columns (10) to (12) make use of all the above call and put options (10), only calls (11), and only puts (12).
See notes in Table 2 for additional details on the specification of firm investment. All columns include firm and calendar-year fixed effects, and
controls for 1st moment effects of each of the 9 aggregate instruments (i.e., 1st moment returns), with SEs clustered at industry 2SIC level. 2SLS
first-stage F−statistics are Kleibergen-Paap (KP) that cluster standard errors at the industry-level (2SIC). Overidentification test for the validity
of instruments is the p−value for the Sargan-Hansen overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15.
See section 2 and Online Appendix A for information on variable construction and data details.
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Table A.9
Robustness weighted average of currencies, using FED bilateral trade weights

(1) (2) (3) (4) (5) (6) (7) (8)

Investment ratei,t ∆Intang.i,t ∆Empi,t ∆COGSi,t ∆Salesi,t ∆Payouti,t ∆Debti,t ∆Cash i,t

Panel A: IVs oil, policy, and a weighted average of the 7 US FED major curencies

∆Voli,t−1 -0.052** -0.051* -0.059† -0.159*** -0.330** -0.319*** -0.182** 0.085

(0.026) (0.026) (0.038) (0.059) (0.130) (0.090) (0.073) (0.126)

Obs. 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172

1st stage F−test 30.92 30.92 30.92 30.92 30.92 30.92 30.92 30.92

p−val Sargan–H 0.051 0.411 0.301 0.363 0.105 0.080 0.215 0.447

Panel B: Add Mexican MXN Peso and Chinese CNY Yuan

∆Voli,t−1 -0.044* -0.037† -0.032 -0.143*** -0.264** -0.283*** -0.135** 0.128

(0.024) (0.025) (0.033) (0.044) (0.111) (0.081) (0.065) (0.110)

Obs. 56,172 56,172 56,172 56,172 56,172 56,172 56,172 56,172

1st stage F−test 42.03 42.03 42.03 42.03 42.03 42.03 42.03 42.03

p−val Sargan–H 0.065 0.385 0.237 0.264 0.083 0.076 0.077 0.428

Notes: Table reports 2SLS robustness tests to the instrumentation strategy used in all real and financial outcome results (with full set of controls)
presented in Table 3. The motivation is that the 7 major currencies used as instrumental variables (IVs) may include large and common movements
in bilateral exchange rates that might affect the precision of the industry-level exposures that are key in the IV strategy. Thus, the Table replaces
all 7 currency instruments with a single US FED trade-weighted currency index. Panel A presents the results for all baseline outcomes presented in
Table 3 but using only 3 IVs: Oil, Policy, and the currency index constructed from a weighted average of the 7 major currencies weighted by FED
US trade-weights. Panel B does a similar exercise, but further includes the Mexican MXN Peso and the Chinese CNY Yuan in the weighted index.
Although these are historically non-major currencies as defined by the US Fed their economies have become more important over time. The data
availability of these 2 additional currencies only starts in 1994, thus their weights in the index are zero before that year. 2SLS sample across columns
is identical to the baseline specification in Table 3 and from 1993 to 2019. See notes in Table 3 for additional details on the specifications ran for
each outcome variable. All columns include firm and calendar-year fixed effects, and controls for 1st moment effects of each of the instruments used
in the regression (i.e., 1st moment returns), with SEs clustered at industry 2SIC level. 2SLS first-stage F−statistics are Kleibergen-Paap (KP) that
cluster standard errors at the industry-level (2SIC). Overidentification test for the validity of instruments is the p−value for the Sargan-Hansen
overidentification J−test. Statistical significance: *** p<0.01, ** p<0.05, * p<0.1, † p<0.15. See section 2 and Online Appendix A for information
on variable construction and data details.
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