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The potential for continued economic growth comes from the vast search space that we 
can explore.  The curse of dimensionality is, for economic purposes, a remarkable 

blessing.  To appreciate the potential for discovery, one need only consider the 
possibility that an extremely small fraction of the large number of potential mixtures 

may be valuable.  (Paul Romer, 1993, pp. 68-69) 

 

Deep learning is making major advances in solving problems that have resisted the best 
attempts of the artificial intelligence community for years.  It has turned out to be very 

good at discovering intricate structure in high-dimensional data and is therefore 
applicable to many domains of science, business, and government.  (Yann LeCun, 

Yoshua Bengio, and Geoffrey Hinton, 2015, p. 436) 

 

1.  Introduction 

 

What are the prospects for technology-driven economic growth?  Technological 

optimists point to the ever-expanding possibilities for combining existing knowledge into 

new knowledge (Paul Romer, 1990, 1993; Martin Weitzman, 1998; Brian Arthur, 2009; 

Erik Brynjolfsson and Andrew McAfee, 2014).   The counter case put forward by 

technological pessimists is primarily empirical: Growth at the technological frontier has 

been slowing down rather than speeding up (Tyler Cowen, 2011; Robert Gordon, 2016).  

Gordon (2016, p. 575) highlights this slowdown for the US economy. Between 1920 and 

1970, total factor productivity grew at an annual average compound rate of 1.89 percent, 

falling to 0.57 percent between 1970 and 1994, then rebounding to 1.03 percent during 

the information technology boom between 1994 and 2004, before falling again to just 

0.40 percent between 2004 and 2014. Even the maintenance of this lowered growth rate 

has only been possible due to exponential growth in the number of research workers 

(Charles Jones, 1995). Nicholas Bloom, Charles Jones, John Van Reenen, and Michael 

Webb (2017) document that the total factor productivity in knowledge production itself 

has been falling both in the aggregate and in key specific knowledge domains such as 

transistors, healthcare, and agriculture.  

 

Economists have given a number of explanations for the disappointing growth 

performance.   Cowen (2011) and Gordon (2016) point to a “fishing out” or “low-hanging 

fruit” effect – good ideas are simply becoming harder to find.  Benjamin Jones (2009) 
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points to the headwind created by an increased “burden of knowledge.” As the 

technological frontier expands, it becomes harder for individual researchers to know 

enough to find the combinations of knowledge that produce useful new ideas.  This is 

reflected in PhDs being awarded at older ages and a rise in team size as ever-more 

specialized researchers must combine their knowledge to produce breakthroughs (Ajay 

Agrawal, Avi Goldfarb, and Florenta Teodoridis, 2016). Other evidence points to the 

physical, social, and institutional constraints that limit access to knowledge, including the 

need to be physically close to the sources of knowledge (Adam Jaffe, Manuel Trajtenberg, 

and Rebacca Henderson, 1993; Christian Catalini, 2017), the importance of social 

relationships in accessing knowledge (Joel Mokyr, 2002; Agrawal, Iain Cockburn, and 

John McHale, 2006; Agrawal, Devesh Kapur, and McHale,  2008), and the importance of 

institutions in facilitating – or limiting – access  to knowledge (Jeff Furman and Scott 

Stern, 2011).   

 

Despite the evidence of a growth slowdown, one reason to be hopeful about the 

future is the recent explosion in data availability under the rubric of “big data” and 

computer-based advances in capabilities to discover and process those data. We can view 

these technologies in part as “meta technologies” – technologies for the production of 

new knowledge.  If part of the challenge is dealing with the combinatorial explosion in 

the potential ways that existing knowledge can be combined as the knowledge base 

grows, then meta technologies such as deep learning hold out the potential to partially 

overcome the challenges of fishing out, the rising burden of knowledge, and the social and 

institutional constraints on knowledge access.   

 

Of course, meta technologies that aid in the discovery of new knowledge are 

nothing new.  Mokyr (2002; 2017) gives numerous examples of how scientific 

instruments such as microscopes and x-ray crystallography significantly aided the 

discovery process.  Nathan Rosenberg (1998) provides an account of how technology-

embodied chemical engineering altered the path of discovery in the petro-chemical 

industry.  Moreover, the use of artificial intelligence for discovery is itself not new and 

has underpinned fields such as cheminformatics, bioinformatics, and particle physics for 
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decades. However, recent breakthroughs in AI such as deep learning have given a new 

impetus to these fields.5 The convergence of GPU-accelerated computing power, 

exponential growth in data availability buttressed in part by open data sources, and the 

rapid advance in AI-based prediction technologies is leading to breakthroughs in solving 

many needle-in-a-haystack problems (Agrawal, Gans, and Goldfarb, 2018). If the curse of 

dimensionality is both the blessing and curse of discovery, advances in AI offer renewed 

hope of breaking the curse while helping to deliver on the blessing.   

 

Understanding how these technologies could affect future growth dynamics is 

likely to require an explicitly combinatorial framework. Weitzman’s (1998) pioneering 

development of a recombinant growth model has unfortunately not been well 

incorporated into the corpus of growth theory literature.  Our contribution in this paper 

is thus twofold.  First, we develop a relatively simple combinatorial-based knowledge 

production function that converges in the limit to the Romer/Jones function.  The model 

allows for the consideration of how existing knowledge is combined to produce new 

knowledge and also how researchers combine to form teams.   Second, while this function 

can be incorporated into existing growth models, the specific combinatorial foundations 

mean that the model provides insights into how new meta technologies such as artificial 

intelligence might matter for the path of future economic growth.  

 

The starting point for the model we develop is the Romer/Jones knowledge 

production function.  This function – a workhorse of modern growth theory – models the 

output of new ideas as a Cobb-Douglas function with the existing knowledge stock and 

labor resources devoted to knowledge production as inputs.  Implicit in the Romer/Jones 

formulation is that new knowledge production depends on access to the existing 

knowledge stock and the ability to combine distinct elements of that stock into valuable 

new ideas.  The promise of AI as a meta technology for new idea production is that it 

facilitates the search over complex knowledge spaces, allowing for both improved access 

to relevant knowledge and improved capacity to predict the value of new combinations.  

                                                           
5 See, for example, the recent survey of the use of deep learning in computational chemistry by 
Garrett Goh, Nathan Hodas, and Abhinav Vishnu (2017).   
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It may be especially valuable where the complexity of the underlying biological or 

physical systems has stymied technological advance, notwithstanding the apparent 

promise of new fields such as biotechnology or nanotechnology.  We thus develop an 

explicitly combinatorial-based knowledge production function.  Separate parameters 

control the ease of knowledge access, the ability to search the complex space of potential 

combinations and the ease of forming research teams to pool knowledge access.  An 

attractive feature of our proposed function is that the Romer/Jones function emerges as 

a limiting case.  By explicitly delineating the knowledge access, combinatorial and 

collaboration aspects of knowledge production, we hope that the model can help 

elucidate how AI could improve the chances of solving needle-in-a-haystack type 

challenges and thus influence the path of economic growth.   

 

Our paper thus contributes to a recent but rapidly expanding literature on the 

effects of AI on economic growth. Much of the focus of this new literature is on how 

increased automation substitutes for labor in the production process.  Building on the 

pioneering work of Joseph Zeira (1998), Daron Acemoglu and Pascual Restrepo (2017) 

develop a model in which AI substitutes for workers in existing tasks but also creates new 

tasks for workers to do.  Philippe Aghion, Benjamin Jones, and Charles Jones (2018) show 

how automation can be consistent with relatively constant factor shares when the 

elasticity of substitution between goods is less than one. Central to their results is 

Baumol’s “cost disease,” which posits the ultimate constraint on growth to be from goods 

that are essential but hard to improve rather than goods whose production benefits from 

AI-driven technical change.  In a similar vein, William Nordhaus (2015) explores the 

conditions under which AI would lead to an “economic singularity” and examines the 

empirical evidence on the elasticity of substitution on both the demand and supply sides 

of the economy.   

 

Our focus is different from these papers in that instead of emphasising the 

potential substitution of machines for workers in existing tasks, we emphasise the 

importance of AI in overcoming a specific problem that impedes human researchers – 

finding useful combinations in complex discovery spaces.  Our paper is closest in spirit to 
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Iain Cockburn, Rebecca Henderson, and Scott Stern (2018), which examines the 

implications of AI – and deep learning in particular – as a general purpose technology 

(GPT) for invention. We provide a suggested formalization of this key idea.  Nielsen 

(2012) usefully illuminates the myriad ways in which “big data” and associated 

technologies are changing the mechanisms of discovery in science. Nielsen emphasizes 

the increasing importance of “collective intelligence” in formal and informal networked 

teams, the growth of “data-driven intelligence” that can solve problems that challenge 

human intelligence, and the importance of increased technology facilitating access to 

knowledge and data. We incorporate all of these elements into the model developed in 

this paper.   

 

The rest of the paper is organized as follows. In the next section, we outline some 

examples of how advances in artificial intelligence are changing both knowledge access 

and the ability to combine knowledge in high dimensional data across a number of 

domains. In Section 3, we develop an explicitly combinatorial-based knowledge 

production function and embed it in the growth model of Jones (1995), which itself is a 

modification of Romer (1990).  In Section 4, we extend the basic model to allow for 

knowledge production by teams. We discuss our results in Section 5 and conclude in 

Section 6 with some speculative thoughts on how an “economic singularity” might 

emerge.   

 

2.  How Artificial Intelligence is Impacting the Production of Knowledge: Some Motivating 

Examples 

 

Breakthroughs in AI are already impacting the productivity of scientific research 

and technology development.  It is useful to distinguish between such meta technologies 

that aid in the process of search (knowledge access) and discovery (combining existing 

knowledge to produce new knowledge).  For search, we are interested in AIs that solve 

problems that meet two conditions: 1) potential knowledge relevant to the process of 

discovery is subject to an explosion of data that an individual researcher or team of 

researchers finds increasingly difficult to stay abreast of (the “burden of knowledge”); 
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and 2) the AI predicts which pieces of knowledge will be most relevant to the researcher, 

typically through the input of search terms.  For discovery, we also identify two 

conditions: 1) potentially combinable knowledge for the production of new knowledge is 

subject to combinatorial explosion; and 2) the AI predicts which combinations of existing 

knowledge will yield valuable new knowledge across a large number of domains. We now 

consider some specific examples of how AI-based search and discovery technologies may 

change the innovation process.   

 

Search 

Metaα produces AI-based search technologies for identifying relevant scientific 

papers and tracking the evolution of scientific ideas. The company was acquired by the 

Chan-Zuckerberg Foundation, which intends to make it available free of charge to 

researchers. This AI-based search technology meets our two conditions for a meta 

technology for knowledge access: 1) the stock of scientific papers is subject to 

exponential growth at an estimated 8-9 percent per year (Lutz Bornmann and Rüdiger 

Mutz, 2015); and 2) the AI-based search technology helps scientists identify relevant 

papers, thereby reducing the “burden of knowledge” associated with the exponential 

growth of published output.  

 

BenchSci is an AI-based search technology for the more specific task of identifying 

effective compounds used in drug discovery (notably antibodies that act as reagents in 

scientific experiments). It again meets our two conditions: 1) reports on compound 

efficacy are scattered through millions of scientific papers with little standardisation in 

how these reports are provided; and 2) an AI extracts compound-efficacy information, 

allowing scientists to more effectively identify appropriate compounds to use in 

experiments. 

 

Discovery 

Atomwise is a deep learning-based AI for the discovery of drug molecules 

(compounds) that have the potential to yield safe and effective new drugs.  This AI meets 
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our two conditions for a meta technology for discovery: 1) the number of potential 

compounds is subject to combinatorial explosion; and 2) the AI predicts how basic 

chemical features combine into more intricate features to identify potential compounds 

for more detailed investigation. 

 

Deep Genomics is a deep learning-based AI that predicts what happens in a cell 

when DNA is altered by natural or therapeutic genetic variation.  It again meets our two 

conditions: 1) genotype-phenotype variations are subject to combinatorial explosion; 

and 2) the AI “bridges the genotype-phenotype divide” by predicting the results of 

complex biological processes that relate variations in the genotype to observable 

characteristics of an organism, thus helping to identify potentially valuable therapeutic 

interventions for further testing.   

 

3.  A Combinatorial-Based Knowledge Production Function 

 

Figure 1 provides an overview of our modelling approach and how it relates to the 

classic Romer/Jones knowledge production function. The solid lines capture the essential 

character of the Romer/Jones function. Researchers use existing knowledge – the 

standing-on-shoulders effect – to produce new knowledge. The new knowledge then 

becomes part of the knowledge base from which subsequent discoveries are made.  The 

dashed lines capture our approach. The existing knowledge base determines the 

potential new combinations that are possible, the majority of which are likely to have no 

value.  The discovery of valuable new knowledge is made by searching among the massive 

number of potential combinations.   This discovery process is aided by meta technologies 

such as deep learning that allow researchers to identify valuable combinations in spaces 

where existing knowledge interacts in often highly complex ways. As with the 

Romer/Jones function, the new knowledge adds to the knowledge base – and thus the 

potential combinations of that knowledge base – which subsequent researchers have to 

work with.  A feature of our new knowledge production function will be that the 

Romer/Jones function emerges as a limiting case both with and without team production 

of new knowledge. In this section, we first develop the new function without team 
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production of new knowledge; in the next section, we extend the function to allow for 

team production.  

 

The total stock of knowledge in the world is denoted as A, which we assume 

initially is measured discretely. An individual researcher has access to an amount of 

knowledge, 𝐴𝜙(also assumed to be an integer), so that the share of the stock of knowledge 

available to an individual researcher is 𝐴𝜙−1. 6  We assume that 0 < 𝜙 < 1.  This implies 

that the share of total knowledge accessible to an individual researcher is falling with the 

total stock of knowledge.  This is a manifestation in the model of the “burden of 

knowledge” effect identified by Jones (2009) – it becomes more difficult to access all the 

available knowledge as the total stock of knowledge grows.  The knowledge access 

parameter, 𝜙, is assumed to capture not only what a researcher knows at a point in time 

but also their ability to find existing knowledge should they require it.  The value of the 

parameter will thus be affected by the extent to which knowledge is available in codified 

form and can be found as needed by researchers.  The combination of digital repositories 

of knowledge and search technologies that can predict what knowledge will be most 

relevant to the researcher given the search terms they input – think of the ubiquitous 

Google as well as more specialized search technologies such Metaα and BenchSci – should 

increase the value of 𝜙. 

 

Innovations occur as a result of combining existing knowledge to produce new 

knowledge.  Knowledge can be combined a ideas at a time, where a = 0, 1 . . . 𝐴𝜙 .   For a 

given individual researcher,  the total number of possible combinations of units of 

                                                           
6 Paul Romer emphasized the importance of distinguishing between ideas (a non-rival good) 
and human capital (a rival good).  “Ideas are . . . the critical input in the production of more 
valuable human and non-human capital.   But human capital is also the most important input in 
the production of new ideas. . . . Because human capital and ideas are so closely related as inputs 
and outputs, it is tempting to aggregate them into a single type of good. . . . It is important, 
nevertheless, to distinguish ideas and human capital because they have different fundamental 
attributes as economic goods, with different implications for economic theory” (Romer, 1993, p. 
71). In our model, 𝐴𝜙 is a measure of a researcher’s human capital.  Clearly, human capital 
depends on the existing technological and other knowledge and the researcher’s access to that 
knowledge.  In turn, the production of new knowledge depends on the researcher’s human 
capital.   
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existing knowledge (including singletons and the null set)7 given their knowledge access 

is: 

 

(1)      𝑍𝑖 = ∑ (𝐴𝜙

𝑎
)

𝐴𝜙

𝑎=0

= 2𝐴𝜙
. 

 

The total number of potential combinations, 𝑍𝑖 , grows exponentially with 𝐴𝜙.  Clearly, if 

A is itself growing exponentially, 𝑍𝑖  will be growing at a double exponential rate.  This is 

the source of combinatorial explosion in the model.  Since it is more convenient to work 

with continuously measured variables in the growth model, from this point on we treat A 

and 𝑍𝑖  as continuously measured variables.  However, the key assumption is that the 

number of potential combinations grow exponentially with knowledge access. 

 

The next step is to specify how potential combinations map to discoveries.  We 

assume that a large share of potential combinations do not produce useful new 

knowledge.   Moreover, of those combinations that are useful, many will have already 

been discovered and thus are already part of A.   This latter feature reflects the fishing-

out phenomenon.   The per period translation of potential combinations into valuable 

new knowledge is given by the (asymptotically) constant elasticity discovery function: 

 

(2)      𝐴̇𝑖 = 𝛽 (
𝑍𝑖

𝜃 − 1

𝜃
) = 𝛽 (

(2𝐴𝜙
)

𝜃

− 1

𝜃
)                         𝑓𝑜𝑟      0 < 𝜃 ≤ 1 

 

                                                           
7 Excluding the singletons and the null set, total number of potential combinations would be 

2𝐴𝜙
− 𝐴𝜙 − 1.  As singletons and the null set are not true “combinations,” we take equation (1) 

to be an approximation of the true number of potential combinations.  The relative significance 
of this approximation will decline as the knowledge base grows, and we ignore it in what 
follows.   
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                   = 𝛽 ln 𝑍𝑖 = 𝛽 ln (2𝐴𝜙
) = 𝛽 ln(2)𝐴𝜙                         𝑓𝑜𝑟       𝜃 = 0, 

 

where 𝛽 is a positively valued knowledge discovery parameter and use is made of 

L’Hôpital’s rule for the limiting case of 𝜃 = 0.8    

 

For θ  > 0, the elasticity of new discoveries with respect to the number of possible 

combinations, Zi, is: 

 

 

(3)        
𝜕𝐴̇

𝜕𝑍𝑖

𝑍𝑖

𝐴̇
=

𝛽𝑍𝑖
𝜃−1

𝛽 (
𝑍𝑖

𝜃 − 1
𝜃 )

= (
𝑍𝑖

𝜃

𝑍𝑖
𝜃 − 1

) 𝜃, 

 

which converges to 𝜃 as the number of potential combinations goes to infinity.  For 𝜃 =

0, the elasticity of new discoveries is: 

 

(4)        
𝜕𝐴̇

𝜕𝑍𝑖

𝑍𝑖

𝐴̇
=

𝛽

𝑍𝑖

𝑍𝑖

𝛽𝑙𝑛𝑍𝑖
=

1

𝑙𝑛𝑍𝑖
, 

 

which converges to zero as the number of potential combinations goes to infinity.   

 

A number of factors seem likely to affect the value of the fishing-out/complexity 

parameter, θ.  First are basic constraints relating to natural phenomena that limit what is 

                                                           
8 L’Hôpital’s rule is often useful where a limit of a quotient is indeterminate. The limit of the 
term in brackets on the right-hand-side of equation (2) as 𝜃 goes to zero is 0 divided by 0 and is 
thus indeterminate.  However, by L’Hôpital’s rule, the limit of this quotient is equal to the limit 
of the quotient produced by dividing the limit of the derivative of the numerator with respect to 
𝜃 by the limit of the derivative of the denominator with respect to 𝜃. This limit is equal to 
ln (2)𝐴𝜙. 
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physically possible in terms of combining existing knowledge to produce scientifically or 

technologically useful new knowledge.  Pessimistic views on the possibilities for future 

growth tend to emphasize such constraints.  Second is the ease of discovering new useful 

combinations that are physically possible. The potentially massive size and complexity of 

the space of potential combinations means that finding useful combinations can be a 

needle-in-the-haystack problem.  Optimistic views of the possibilities for future growth 

tend to emphasize how the combination of AI (embedded in algorithms such as those 

developed by Atomwise and DeepGenomics) and increases in computing power can aid 

prediction in the discovery process, especially where it is difficult to identify patterns of 

cause and effect in high dimensional data. Third, recognizing that future opportunities for 

discoveries are path dependent (see, for example, Weitzman, 1998), the value of θ  will 

depend on the actual path that is followed.  To the extent that AI can help identify 

productive paths, it will limit the chances of economies going down technological dead-

ends. 

 

There are 𝐿𝐴 researchers in the economy each working independently, where 𝐿𝐴 

is assumed to be measured continuously.  (In Section 4, we consider the case of team 

production in an extension of the model.)   We assume that some researchers will 

duplicate each other’s discoveries – the standing-on-toes effect.  To capture this effect, 

new discoveries are assumed to take place “as if” the actual number of researchers is 

equal to 𝐿𝐴
𝜆 , where 0 ≤ 𝜆 ≤ 1.   Thus the aggregate knowledge production function for 𝜃 >

0 is given: 

 

(5)       𝐴̇ = β𝐿𝐴
𝜆 (

(2𝐴𝜙
)

𝜃

− 1

𝜃
). 

 

At a point in time (with given values of A and 𝐿𝐴), how does an increase in 𝜃 affect 

the rate of discovery of new knowledge, 𝐴̇?  The partial derivative of 𝐴̇ with respect to 𝜃 

is: 



13 
 

 

(6)       
𝜕𝐴̇

𝜕𝜃
=

𝛽𝐿𝐴
𝜆 (𝜃 ln(2) 𝐴𝜙 − 1)2𝐴𝜙𝜃

𝜃2
+

𝛽𝐿𝐴
𝜆

𝜃2
.  

 

A sufficient condition for this partial derivative to be positive is that that term in square 

brackets is greater than zero, which requires:  

 

(7)      𝐴 > (
1

𝜃ln (2)
)

1
𝜙

. 

 

We assume this condition holds.  Figure 2 shows an example of how 𝐴̇ (and also the 

percentage growth of A given that A is assumed to be equal to 100) varies with 𝜃 for 

different assumed values of 𝜙.   Higher values of 𝜃 are associated with a faster growth 

rate.  The figure also shows how 𝜃 and 𝜙 interact positively: Greater knowledge access 

(as reflected in a higher value of 𝜙) increases the gain associated with a given increase in 

the value of 𝜃.    

 

We assume, however, that 𝜃 itself evolves with A.   A larger A means a bigger and 

more complex discovery search space.   We further assume that this complexity will 

eventually overwhelm any discovery technology given the power of the combinatorial 

explosion as A grows. This is captured by assuming that 𝜃 is a declining function of A; that 

is, 𝜃 = 𝜃(𝐴), where 𝜃′(𝐴) < 0.  In the limit as A goes to infinity, we assume that 𝜃(𝐴) goes 

to zero, or: 

 

(8)      lim
𝐴→∞

𝜃(𝐴) = 0. 

 

This means that the discovery function converges asymptotically (given sustained 

growth in A) to:  
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(9)       𝐴̇ = βln (2)𝐿𝐴
𝜆 𝐴𝜙.  

 

This mirrors the functional form of the Romer/Jones function and allows for decreasing 

returns to scale in the number of researchers, depending on the size of 𝜆.   While the form 

of the function is familiar by design, its combinatorial-based foundations have the 

advantage of providing richer motivations for the key parameters in the knowledge 

discovery function.  

 

We use the fact that the functional form of equation (9) is the same as that used in 

Jones (1995) to solve for the steady state of the model. More precisely, given that the 

limiting behaviour of our knowledge production function mirrors the function used by 

Jones and all other aspects of the economy are assumed to be identical, the steady-state 

along a balanced growth path with constant exponential growth will be the same as in 

that model.   

 

As we have nothing to add to the other elements of the model, we here simply 

sketch the growth model developed by Jones (1995), referring the reader to the original 

for details. The economy is composed of a final goods sector and a research sector. The 

final goods sector uses labor, 𝐿𝑌, and intermediate inputs to produce its output.  Each new 

idea (or “blueprint”) supports the design of an intermediate input, with each input being 

supplied by a profit-maximizing monopolist. Given the blueprint, capital, K, is 

transformed unit for unit in producing the input.  The total labor force, L, is fully allocated 

between the final goods and research sectors, so that 𝐿𝑌 + 𝐿𝐴 = 𝐿. We assume the labor 

force to be equal to the population and growing at rate 𝑛(> 0).  

 

Building on Romer (1990), Jones (1995) shows that the production function for 

final goods can be written as: 

 



15 
 

(10)        𝑌 = (𝐴𝐿𝑌)𝛼𝐾1−𝛼 , 

 

where Y is final goods output.  The intertemporal utility function of a representative 

consumer in the economy is given by:  

 

(11)       𝑈 = ∫ 𝑢(𝑐)𝑒−𝜌𝑡𝑑𝑡
∞

0

, 

 

where c is per capita consumption and 𝜌 is the consumer’s discount rate.  The 

instantaneous utility function is assumed to exhibit constant relative risk aversion, with 

a coefficient of risk aversion equal to 𝜎 and a (constant) intertemporal elasticity of 

substitution equal to 1 𝜎⁄ .    

 

Jones (1995) shows that the steady-state growth rate of this economy along a 

balanced growth path with constant exponential growth is given by: 

 

(12)       𝑔𝐴 = 𝑔𝑦 = 𝑔𝑐 = 𝑔𝑘 =
𝜆𝑛

1 − 𝜙
, 

 

where 𝑔𝐴 = 𝐴̇ 𝐴⁄  is the growth rate of the knowledge stock, 𝑔𝑦 is the growth rate of per 

capita output 𝑦 (𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑌 𝐿⁄ ), 𝑔𝑐 is the growth rate of per capita output 𝑐 

(𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝐶 𝐿⁄ ), and 𝑔𝑘 is the growth rate of the capital labor ratio (𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝐾 𝐿⁄ ). 

 

Finally, the steady-state share of labor allocated to the research sector is given by:  

 

(13)        𝑠 =
1

1 +
1

𝜆 [
𝜌(1 − 𝜙)

𝜆𝑛
+

1
𝜎 − 𝜙]

. 
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We can now consider how changes in the parameters of knowledge production 

given by equation (5) will affect the dynamics of growth in the economy.  We start with 

improvement in the availability of AI-based search technologies that improve a 

researcher’s access to knowledge.  In the context of the model, the availability of AI-based 

search technologies – e.g., Google, Metaα, BenchSci, etc. – should increase the value of 𝜙 

and reduce the “burden of knowledge” effect.  From equation (12), an increase in this 

parameter will increase the steady steady-state growth rate and also the growth rate and 

the level of per capital output along the transition path to the steady state.   

 

We next consider AI-based technologies that increase the value of the discovery 

parameter, 𝛽.   As 𝛽 does not appear in the steady state in equation (12), the steady-state 

growth rate is unaffected. However, such an increase will raise the growth rate (and 

level) along the path to that steady state.   

 

The most interesting potential changes to the possibilities for growth come about 

if we allow a change to the fishing-out/complexity parameter, 𝜃.  We assume that the 

economy is initially in a steady state and then experiences an increase in 𝜃 as the result 

of the discovery of a new AI technology. Recall that we assume that 𝜃 will eventually 

converge back to zero as the complexity that comes with combinatorial explosion 

eventually overwhelms the new AI.  Thus, the steady state of the economy is unaffected. 

However, the transition dynamics are again quite different, with larger increases in 

knowledge for an given starting of the knowledge stock along the path back to the steady 

state.    

 

Using Jones (1995) as the limiting case of the model is appealing because we avoid 

unbounded increases in the growth rate, which would lead to the breakdown of any 

reasonable growth model and indeed a breakdown in the normal operations of any actual 

economy. It is interesting to note, however, what happens to growth in the economy if 

instead of assuming that 𝜃 converges asymptotically to zero, it stays at some positive 
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value (even if very small). Dividing both sides of equation (5) by A gives an expression 

for the growth rate of the stock of knowledge:  

 

(14)       
𝐴̇

𝐴
=

β ln(2) 𝐿𝐴
𝜆

𝐴
(

(2𝐴𝜙
)

𝜃

− 1

𝜃
). 

 

The partial derivative of this growth rate with respect to A is: 

 

(15)        
𝜕 (

𝐴̇
𝐴)

𝜕𝐴
=

𝐿𝐴
𝜆 𝛽

𝜃𝐴2
[1 + (2𝐴𝜙

)
𝜃

(𝜙𝜃ln (2)𝐴𝜙 − 1)]. 

 

The key to the sign of this derivative is the sign of the term inside the last round brackets.  

This term will be positive for a large enough A.   As A is growing over time (for any positive 

number of researchers and existing knowledge stock), the growth rate must eventually 

begin to rise once A exceeds some threshold value.  Thus, with a fixed positive value of 𝜃 

(or with 𝜃 converging asymptotically to a positive value), the growth rate will eventually 

begin to grow without bound.   

 

A possible deeper foundation for our combinatorial-based knowledge production 

function is provided by the work on “rugged landscapes” (Stuart Kauffman, 1993).  

Kauffman’s NK model has been fruitfully applied to questions of organizational design 

(Daniel Levinthal, 1997), strategy (Jan Rivkin, 2000) and science-driven technological 

search (Lee Fleming and Olav Sorenson, 2004).  In our setting, each potential 

combination of existing ideas accessible to a researcher is a point in the landscape 

represented by a binary string indicating whether each idea in the set of accessible 

knowledge is in the combination (a 1 in the string) or not (a 0 in the string).  The 

complexity – or “ruggedness” – of the landscape depends on the total number of ideas 

that can be combined and also on the way that the elements of the binary string interact.  
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For any given element, its impact on the value of the combination will depend on the value 

of X other elements.9  The larger the value of X the more interrelated are the various 

elements of the string, creating a more rugged knowledge landscape and thus a harder 

the search problem for the innovator.   

 

We can think of would-be innovators as starting from some already known 

valuable combination and searching for other valuable combinations in the vicinity of 

that combination (see, e.g., Nelson and Winter, 1982).  Purely local search can be thought 

of as varying one component of the binary string at a time for some given fraction of the 

total elements of the string.  This implies that the total number of combinations that can 

be searched is a linear function of the innovator’s knowledge.  This is consistent with the 

Romer/Jones knowledge production function where the discovery of new knowledge is 

a linear function of knowledge access, 𝐴𝜙.  Positive values of 𝜃 are then associated with 

the capacity to search a larger fraction of the space of possible combinations, which in 

turn increases the probability of discovering a valuable combination.  Meta technologies 

such as deep learning can be thought of as expanding the capacity to search a given space 

of potential combinations – i.e. as increasing the value of 𝜃 – thereby increasing the 

chance of new discoveries.  Given its ability to deal with complex non-linear spaces, deep 

learning may be especially valuable for search over highly rugged landscapes.   

 

4.  A Combinatorial-Based Knowledge Production Function with Team Production: An 

Extended Model 

 

Our basic model assumes that researchers working alone combine the knowledge 

to which they have access, 𝐴𝜙, to discover new knowledge. In reality, new discoveries are 

increasingly being made by research teams (Benjamin Jones, 2009; Nielsen, 2012; 

Agrawal, Avi Goldfarb, Florenta Teodoridis, 2016).  Assuming initially no redundancy in 

the knowledge that individual members bring to the team – i.e., collective team 

knowledge is the sum of the knowledge of the individual team members – combining 

                                                           
9 K elements in Kauffman’s original notation.   
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individual researchers into teams can greatly expand the knowledge base from which 

new combinations of existing knowledge can be made.  This also opens up the possibility 

of a positive interaction between factors that facilitate the operation of larger teams and 

factors that raise the size of the fishing out/complexity parameter, 𝜃.   New meta 

technologies such as deep learning can be more effective in a world where they are 

operating on a larger knowledge base due to the ability of researchers to more effectively 

pool their knowledge by forming larger teams.   

 

We thus extend in this section the basic model to allow for new knowledge to be 

discovered by research teams. For a team with m members and no overlap in the 

knowledge of its members, the total knowledge access for the team is simply 𝑚𝐴𝜙 .   (We 

later relax the assumption of no knowledge overlap within a team.) Innovations occur as 

a result of the team combining existing knowledge to produce new knowledge.  

Knowledge  can be combined by the team a ideas at a time, where a = 0, 1 . . . 𝑚𝐴𝜙.   For 

a given team j  with m members, the total number of possible combinations of units of 

existing knowledge (including singletons and the null set) given their combined 

knowledge access is:  

 

(16)      𝑍𝑗 = ∑ (𝑚𝐴𝜙

𝑎
)

𝑚𝐴𝜙

𝑎=0

= 2𝑚𝐴𝜙
. 

 

Assuming again for convenience that 𝐴𝜙 and Z can be treated as continuous, the 

per period translation of potential combinations into valuable new knowledge by a team 

is again given by the (asymptotic) constant elasticity discovery function: 

 

(17)      𝐴̇𝑗 = 𝛽 (
𝑍𝑗

𝜃 − 1

𝜃
) = 𝛽 (

(2𝑚𝐴𝜙
)

𝜃

− 1

𝜃
)                       𝑓𝑜𝑟      0 < 𝜃 ≤ 1 
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                    = 𝛽 ln 𝑍𝑗 = 𝛽 ln (2𝑚𝐴𝜙
) = 𝛽 ln(2)𝑚𝐴𝜙                    𝑓𝑜𝑟       𝜃 = 0, 

 

where use is again made of L’Hôpital’s rule for the limiting case of 𝜃 = 0.   

 

The number of researchers in the economy at a point in time is again 𝐿𝐴 (which 

we now assume is measured discretely). Research teams can potentially be formed from 

any possible combination of the 𝐿𝐴 researchers.  For each of these potential teams, a 

entrepreneur can coordinate the team.  However, for a potential team with m members 

to form, the entrepreneur must have relationships with all m members. The need for a 

relationship thus places a constraint on feasible teams. The probability of a relationship 

existing between the entrepreneur and any given researcher is 𝜂, and thus the probability 

of relationships existing between all members of a team of size m is 𝜂𝑚.   Using the 

formula for a binomial expansion, the expected total number of feasible teams is:  

 

(18)    𝑆 =  ∑ (
𝐿𝐴

𝑚
) 𝜂𝑚 = (1 + 𝜂)𝐿𝐴

𝐿𝐴

𝑚=0

. 

 

The average feasible team size is then given by:  

 

(19)     𝑚̅ =
∑ (

𝐿𝐴

𝑚
) 𝜂𝑚𝑚

𝐿𝐴
𝑚=0

∑ (
𝐿𝐴

𝑚
) 𝜂𝑚𝐿𝐴

𝑚=0

. 

 

Factorizing the numerator and substituting in the denominator using equation (18), we 

obtain a simple expression for the average feasible team size:  
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(20)    𝑚̅ =  
∑ (

𝐿𝐴

𝑚
) 𝜂𝑚𝑚

𝐿𝐴
𝑚=0

∑ (
𝐿𝐴

𝑚
) 𝜂𝑚𝐿𝐴

𝑚=0

=
(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴

(1 + 𝜂)𝐿𝐴
= (

𝜂

1 + 𝜂
) 𝐿𝐴. 

 

Figure 3 shows an example of the full distribution of teams sizes (with 𝐿𝐴 = 50) for two 

different values of 𝜂.  An increase in 𝜂 (i.e. an improvement in the capability to form 

teams) will push the distribution to the right and increase the average team size.   

 

We can now write down the form that the knowledge production function would 

take if all possible research teams could form (ignoring for the moment any stepping-on-

toes effects): 

 

(21)      𝐴̇ = ( ∑ (
𝐿𝐴

𝑚
) 𝜂𝑚𝛽

𝐿𝐴

𝑚=0

(2𝑚𝐴𝜙
)

𝜃

− 1

𝜃
)                      𝑓𝑜𝑟      0 < 𝜃 ≤ 1. 

 

We next allow for the fact that only a fraction of the feasible teams will actually form.   

Recognising obvious time constraints on the ability of a given researcher to be part of 

multiple research teams, we impose the constraint that each researcher can only be part 

of one team. However, we assume the size of any team that successfully forms is drawn 

from the same distribution over sizes as the potential teams. Therefore, the expected 

average team size is also given by equation (18).  With this restriction, we can solve for 

the total number of teams, N, from the equation 𝐿𝐴 = 𝑁 (
𝜂

1+𝜂
) 𝐿𝐴, which implies 𝑁 =

1+𝜂

𝜂
. 

Given the assumption that the distribution of actual team sizes is drawn from the same 

distribution as the feasible team sizes, the aggregate knowledge production function 

(assuming 𝜃 > 0) is then given by: 
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(22)      𝐴̇ =

1 + 𝜂
𝜂

(1 + 𝜂)𝐿𝐴
( ∑ (

𝐿𝐴

𝑚
) 𝜂𝑚𝛽

(2𝑚𝐴𝜙
)

𝜃

− 1

𝜃

𝐿𝐴

𝑚=0

) 

                   =
1

(1 + 𝜂)𝐿𝐴−1𝜂
( ∑ (

𝐿𝐴

𝑚
) 𝜂𝑚𝛽

(2𝑚𝐴𝜙
)

𝜃

− 1

𝜃

𝐿𝐴

𝑚=0

),                    

 

where the first term is the actual number of teams as a fraction of the potentially feasible 

number of teams.   For 𝜃 = 0, the aggregate knowledge production function takes the 

form: 

 

(23)      𝐴̇ =
1

(1 + 𝜂)𝐿𝐴−1𝜂
( ∑ (

𝐿𝐴

𝑚
) 𝜂𝑚𝑚𝛽ln (2)𝐴𝜙

𝐿𝐴

𝑚=0

) 

                   =
1

(1 + 𝜂)𝐿𝐴−1𝜂
((1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴𝛽ln (2)𝐴𝜙),                    

                   = 𝛽𝐿𝐴ln (2)𝐴𝜙.                    

 

To see intuitively how an increase in 𝜂 could affect aggregate knowledge discovery 

when 𝜃 > 0, note that from equation (20) an increase in 𝜂 will increase the average team 

size of the teams that form. From equation (16), we see that for a given knowledge access 

by an individual researcher, the number of potential combinations increases 

exponentially with the size of the team, m (see Figure 4).   This implies that combining 

two teams of size m’ to create a team of size 2m’ will more than double the new knowledge 

output of the team. Hence, there is a positive interaction between 𝜃 and 𝜂.  On the other 

hand, when 𝜃 = 0, combining the two teams will exactly double the new knowledge 

output given the linearity of the relationship between team size and knowledge output.  

In this case, the aggregate knowledge is invariant to the distribution of team sizes.   
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To see this formally, note that from equation (23) we know that when 𝜃 = 0, the 

partial derivative of 𝐴̇ with respect to 𝜂 must be zero since 𝜂 does not appear in the final 

form of the  knowledge production function.  This results from the balancing of two effects 

as 𝜂 increases.  The first (negative) effect is that the number of teams as a share of the 

potentially possible teams falls.  The second (positive) effect is that the amount of new 

knowledge production if all possible teams do form rises.  We can now ask what happens 

if we raise 𝜃 to a strictly positive value.  The first of these effects is unchanged.  But that 

second effect will be stronger provided that the knowledge production of a team for any 

given team size rises with 𝜃.  A sufficient condition for this to be true is that:  

 

(24)      𝐴 > (
1

𝜃ln (2)𝑚
)

1
𝜙

         for all 𝑚 > 0. 

 

We assume that the starting size of the knowledge stock is large enough so that this 

condition holds.  Moreover, the partial derivative of 𝐴̇ with respect to 𝜂 will be larger the 

larger is the value of 𝜃.  We show these effects for a particular example in Figure 5.   

 

The possibilities of knowledge overlap at the level of the team and duplication of 

knowledge outputs between teams creates additional complications.  To allow for 

stepping-on-toes effects, it is useful to first rewrite equation (20) as:  

 

(25)       𝐴̇ = (
1 + 𝜂

𝜂
) (

𝜂

1 + 𝜂
) 𝐿𝐴  

1

(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴
( ∑ (

𝐿𝐴

𝑚
) 𝜂𝑚𝛽

𝐿𝐴

𝑚=0

(2𝑚𝐴𝜙
)

𝜃

− 1

𝜃
).    

 

We introduce two stepping-on-toes effects.  First, we allow for knowledge overlap within 

teams to introduce the potential for redundancy of knowledge. A convenient way to 

introduce this effect is to assume that the overlap reduces the effective average team size 
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in the economy from the viewpoint of generating new knowledge.   More specifically, we 

assume the effective team size is given by: 

 

(26)      𝑚̅𝑒 = 𝑚̅𝛾 = ((
𝜂

1 + 𝜂
) 𝐿𝐴)

𝛾

, 

 

where 0 ≤ 𝛾 ≤ 1.  The extreme case of 𝛾 = 0 (full overlap) has each team acting as if it 

had effectively a single member; the opposite extreme of 𝛾 = 1 (no overlap) has no 

knowledge redundancy at the level of the team.  Second, we allow for the possibility that 

new ideas are duplicated across teams. The effective number of non-idea-duplicating 

teams is given by: 

 

(27)       𝑁𝑒 = 𝑁1−𝜓 = (
1 + 𝜂

𝜂
)

1−𝜓

, 

 

where  0 ≤ 𝜓 ≤ 1.   The extreme case of 𝜓 = 0 (no duplication) implies that the effective 

number of teams is equal to the actual number of teams; the extreme case of 𝜓 = 1 (full 

duplication) implies that a single team produces the same number of new ideas as the full 

set of teams.    

 

We can now add the stepping-on-toes effects – knowledge redundancy within teams and 

discovery duplication between teams – to yield the general form of the knowledge 

production function for 𝜃 > 0: 

 

(28)      𝐴̇ = (
1 + 𝜂

𝜂
)

1−𝜓

((
𝜂

1 + 𝜂
) 𝐿𝐴)

𝛾

 
1

(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴
( ∑ (

𝐿𝐴

𝑚
) 𝜂𝑚

𝐿𝐴

𝑚=0

𝛽
(2𝑚𝐴𝜙

)
𝜃

− 1

𝜃
).    
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If we take the limit of equation (24) as 𝜃 goes to zero, we reproduce the limiting case of 

the knowledge production function. Ignoring integer constraints on 𝐿𝐴, this knowledge 

production function again has the form of the Romer/Jones function: 

 

(29)        𝐴̇ = (
1 + 𝜂

𝜂
)

1−𝜓

((
𝜂

1 + 𝜂
) 𝐿𝐴)

𝛾
1

(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴
( ∑ (

𝐿𝐴

𝑚
) 𝜂𝑚

𝐿𝐴

𝑚=0

𝛽 ln(2) 𝑚𝐴𝜙)

= (
1 + 𝜂

𝜂
)

1−𝜓

((
𝜂

1 + 𝜂
) 𝐿𝐴)

𝛾
(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴

(1 + 𝜂)𝐿𝐴−1𝜂𝐿𝐴
𝛽 ln(2) 𝐴𝜙 

                            = (
1 + 𝜂

𝜂
)

1−𝜓

((
𝜂

1 + 𝜂
))

𝛾

𝛽 ln(2) 𝐿𝐴
𝛾𝐴𝜙. 

  

We note finally the presence of the relationship parameter 𝜂 in the knowledge 

production equation. This can be taken to reflect in part the importance of (social) 

relationships in the forming of research teams. Advances in computer-based technologies 

such as email and file sharing (as well as policies and institutions) could also affect this 

parameter (see, for example, Agrawal and Goldfarb (2008) on the effects of the 

introduction of precursors to today’s internet on collaboration between researchers). 

Although not the main focus of this paper, being able to incorporate the effects of changes 

in collaboration technologies increases the richness of the framework for considering the 

determinants of the efficiency of knowledge production.   

 

5.  Discussion 

 

5.1 Something new under the sun?  Deep learning as a new tool for discovery 

 

Two key observations motivate the model developed above. First, using the 

analogy of finding a needle in a haystack, significant obstacles to discovery in numerous 

domains of science and technology result from highly non-linear relationships of causes 
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and effect in high dimensional data.  Second, advances in algorithms such as deep learning 

(combined with increased availability of data and computing power) offer the potential 

to find relevant knowledge and predict combinations that will yield valuable new 

discoveries.  

 

Even a cursory review of the scientific and engineering literatures indicates that 

needle-in-the-haystack problems are pervasive in many frontier fields of innovation, 

especially in areas where matter is manipulated at the molecular or sub-molecular level.  

In the field of genomics, for example, complex genotype-phenotype interactions make it 

difficult to identify therapies that yield valuable improvements in human health or 

agricultural productivity. In the field of drug discovery, complex interactions between 

drug compounds and biological systems present an obstacle to identifying promising new 

drug therapies.  And in the field of material sciences, including nanotechnology, complex 

interactions between the underlying physical and chemical mechanisms increases the 

challenge of predicting the performance of potential new materials with potential 

applications ranging from new materials to prevent traumatic brain injury to lightweight 

materials for use in transportation to reduce dependence on carbon-based fuels 

(National Science and Technology Council, 2011).  

 

The apparent speed with which deep learning is being applied in these and other 

fields suggests it represents a breakthrough general purpose meta technology for 

predicting valuable new combinations in highly complex spaces.  Although an in-depth 

discussion of the technical advances underlying deep learning is beyond the scope of this 

paper, two aspects are worth highlighting. First, previous generations of machine 

learning were constrained by the need to extract features (or explanatory variables) by 

hand before statistical analysis. A major advance in machine learning involves the use of 

“representation learning” to automatically extract the relevant features.10 Second, the 

                                                           
10 As described by LeCun, Bengio, and Hinton (2015, p. 436), “[c]onventional machine-learning 
techniques were limited in their ability to process natural data in their raw form.  For decades, 
constructing a pattern-recognition or machine-learning system required careful engineering 
and considerable domain expertise to design a feature extractor that transformed the raw data 
(such as the pixel values of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or classify patterns in the 
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development and optimization of multilayer neural networks allows for substantial 

improvement in the ability to predict outcomes in high-dimensional spaces with complex 

non-linear interactions (LeCun, Bengio, and Hinton, 2015). A recent review of the use of 

deep learning in computational biology, for instance, notes that the “rapid increase in 

biological data dimensions and acquisition rates is challenging conventional analysis 

strategies,” and that “[m]odern machine learning methods, such as deep learning, 

promise to leverage very large data sets for finding hidden structure within them, and for 

making accurate predictions” (Christof Angermueller, Tanel Pärnamaa, Leopold Parts, 

and Oliver Stegle, 2016, p.1).  Another review of the use of deep learning in computational 

chemistry highlights how deep learning has a “ubiquity and broad applicability to a wide 

range of challenges in the field, including quantitative activity relationship, virtual 

screening, protein structure prediction, quantum chemistry, materials design and 

property prediction” (Goh, Hoda, and Vishu, 2017).    

 

Although the most publicized successes of deep learning have been in areas such 

as image recognition, voice recognition, and natural language processing, parallels to the 

way in which the new methods work on unstructured data are increasingly being 

identified in many fields with similar data challenges to produce research 

breakthroughs.11 While these new general purpose research tools will not displace 

traditional mathematical models of cause and effect and careful experimental design, 

machine learning methods such as deep learning offer a promising new tool for discovery 

– including hypothesis generation – where the complexity of the underlying phenomena 

present obstacles to more traditional methods.12 

                                                           
input. . . . Representation learning is a set of methods that allows a machine to be fed with raw 
data and to automatically discover the representations needed for detection or classification.” 
11 A recent review of deep learning applications in biomedicine usefully draws out these 
parallels: “With some imagination, parallels can be drawn between biological data and the types 
of data deep learning has shown the most success with – namely image and voice data.  A gene 
expression profile, for instance, is essentially a ‘snapshot,’ or image, of what is going on in a 
given cell or tissue in the same way that patterns of pixilation are representative of the objects 
in a picture” (Polina Mamoshina, Armando Vieira, Evgeny Putin, and Alex Zhavoronkov, 2016, p. 
1445).   
12 A recent survey of the emerging use of machine learning in economics (including policy 
design) provides a pithy characterization of the power of the new methods:  “The appeal of 
machine learning is that it manages to uncover generalizable patterns. In fact, the success of 
machine learning at intelligence tasks is largely due to its ability to discover complex structure 
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5.2 Meta ideas, meta technologies, and general purpose technologies 

 

We conceptualize AIs as general purpose meta technologies – that is, general 

purpose technologies (GPTs) for the discovery of new knowledge.  Figure 6 summarises 

the relationship between Paul Romer’s broader idea of meta ideas, meta technologies, 

and GPTs. Romer defines a meta idea as an idea that supports the production and 

transmission of other ideas (see, for example, Romer, 2008). He points to such ideas as 

the patent, the agricultural extension station, and the peer-review system for research 

grants as examples of meta ideas.  We think of meta technologies as a subset of Romer’s 

meta ideas (the area enclosed by the dashed lines in Figure 6), where the idea for how to 

discover new ideas is embedded in a technological form such as an algorithm or 

measurement instrument.   

 

Elhanan Helpman (1998, p. 3) argues that a “drastic innovation qualifies as a GPT 

if it has the potential for pervasive use in a wide range of sectors in ways that drastically 

change their mode of operation.”  He further notes two important features necessary to 

qualify as a GPT: “generality of purpose and innovational complementarities” (see also 

Bresnahan and Trajtenberg, 1995).  Not all meta technologies are general purpose in this 

sense.   The set of general purpose meta technologies is given by the intersection of the 

two circles in Figure 6.  Cockburn, Henderson, and Stern (2018) give the example of 

functional MRI as an example of a discovery tool that lacks the generality of purpose 

required for a GPT.  In contrast, the range of application of deep learning as a discovery 

tool would appear to qualify it as a GPT.  It is worth noting that some authors discuss 

GPTs as technologies that more closely align with our idea of a meta technology. 

Rosenberg (1998), for example, provides a fascinating examination of chemical 

engineering as an example of GPT.  Writing of this branch of engineering, he argues that 

a “discipline that provides the concepts and methodologies to generate new or improved 

                                                           
that was not specified in advance.  It manages to fit complex and very flexible functional forms 
to the data without simply overfitting; it finds functions that work well out of sample” (Sendhil 
Mullainathan and Jann Spiess, 2017, p. 88).   
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technologies over a wide range of downstream economic activity may be thought of as an 

even purer, or higher order, GPT” (Rosenberg, 1998, p. 170).   

 

Our concentration on general purpose meta technologies (GPMTs) parallels 

Cockburn, Henderson, and Stern’s (2018) idea of a general purpose invention of a method 

of invention.  This idea combines the idea of a GPT with Zvi Griliches’ (1957) idea of the 

“invention of a method of invention,” or IMI. Such an invention has the “potential for a 

more influential impact than a single invention, but is also likely to be associated with a 

wide variation in the ability to adapt the new tool to particular settings, resulting in a 

more heterogeneous pattern of diffusion over time” (Cockburn, Henderson, and Stern, 

2018, p. 4).  They see some emerging AIs such as deep learning as candidates for such 

general purpose IMIs and contrast these with AIs underpinning robotics that, while being 

GPTs, do not have the characteristic features of an IMI.  

 

5.3 Beyond AI: potential uses of the new knowledge production function 

 

Although the primary motivation for this paper is to explore how breakthroughs 

in AI could affect the path of economic growth, the knowledge production function we 

develop is potentially of broader applicability. By deriving the Romer/Jones knowledge 

production function as the limiting case of a more general function, our analysis may also 

contribute to providing candidate micro-foundations for that function.13 The key 

                                                           
13 In developing and applying the Romer/Jones knowledge production function, growth 
theorists have understood its potential combinatorial underpinnings and the limits of the Cobb-
Douglas form.  Charles Jones (2005) observes in his review chapter on “Growth and Ideas” for 
the Handbook of Economic Growth: “While we have made much progress in understanding 
economic growth in a world where ideas are important, there remain many open, interesting 
research questions. The first is ‘What is the shape of the idea production function?’  How do 
ideas get produced? The combinatorial calculations of Romer (1993) and Weitzman (1998) are 
fascinating and suggestive. The current research practice of modelling the idea production 
function as a stable Cobb-Douglas combination of research and the existing stock of ideas is 
elegant, but at this point we have little reason to believe it is correct.  One insight that illustrates 
the incompleteness of our knowledge is that there is no reason why research productivity 
should be a smooth monotonic function of the stock of ideas.  One can easily imagine that some 
ideas lead to domino-like unravelling of phenomena that were previously mysterious . . . Indeed, 
perhaps decoding of the human genome or the continued boom in information technology will 
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conceptual change is to model discovery as operating on the space of potential 

combinations (rather than directly on the knowledge base itself). As in Weitzman (1998), 

our production function focuses attention explicitly on how new knowledge is discovered 

by combining existing knowledge, which is left implicit in the Romer/Jones formulation. 

While this shift in emphasis is motivated by the particular way in which deep learning 

can aid discovery – allowing researchers to uncover otherwise hard-to-find valuable 

combinations in highly complex spaces – the view of discovery as the innovative 

combination of what is already known has broader applicability. The more general 

function also has the advantage of providing a richer parameter space for mapping how 

meta technologies or policies could affect knowledge discovery. The 𝜙 parameter 

captures how access to knowledge at the individual researcher level determines the 

potential for new combinations to be made given the inherited knowledge base. The 𝜃 

parameter captures how the available potential combinations (given the access to 

knowledge) map to new discoveries.  Finally, the 𝜂 parameter captures the ease of 

forming research teams and ultimately the average team size. To the extent that the 

capacity to bring the knowledge of individual researchers together through research 

teams directly affects the possible combinations, the ease of team formation can have an 

important effect on how the existing knowledge base is utilized for new knowledge 

discovery.   

 

We hope this more general function will be of use in other contexts. In a recent 

commentary celebrating the 25th anniversary of the publication of Romer (1990), Joshua 

Gans (2015) observes that the Romer growth model has not been as influential on the 

design of growth policy as might have been expected despite its enormous influence on 

the subsequent growth theory literature. The reason he identifies is that it abstracts away 

“some of the richness of the microeconomy that give rise to new ideas and also their 

dissemination” (Gans, 2015).  By expanding the parameter space, our function allows for 

the inclusion of more of this richness, including the role that meta technologies such as 

deep learning can play in knowledge access and knowledge discovery but potentially 

                                                           
lead to a large upward shift in the production function for ideas.  On the other hand, one can 
equally imagine situations where research productivity unexpectedly stagnates, if not forever 
then at least for a long time” (Jones, 2005, p. 1107). 
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other policy and institutional factors that affect knowledge access, discovery rates, and 

team formation as well.    

               

6.  Concluding Thoughts: A Coming Singularity? 

 

We developed this paper upon a number of prior ideas. First, the production of 

new knowledge is central to sustaining economic growth (Romer, 1990, 1993).   Second, 

the production of new ideas is fundamentally a combinatorial process (Weitzman, 1998).  

Third, given this combinatorial process, technologies that predict what combinations of 

existing knowledge will yield useful new knowledge hold out the promise of improving 

growth prospects.  Fourth, breakthroughs in AI represent a potential step change in the 

ability of algorithms to predict what knowledge is potentially useful to researchers and 

also to predict what combinations of existing knowledge will yield useful new discoveries 

(LeCun, Benigo, and Hinton, 2015).   

 

In a provocative recent paper, William Nordhaus (2015) explored the possibilities 

for a coming “economic singularity,” which he defines as “[t]he idea . . . that rapid growth 

in computation and artificial intelligence will cross some boundary or singularity after 

which economic growth will accelerate sharply as an ever-accelerating pace of 

improvements cascade through the economy.” Central to Nordhaus’ analysis is that rapid 

technological advance is occurring in a relatively small part of the economy (see also 

Aghion, Jones, and Jones, 2018).   To generate more broadly based rapid growth, the 

products of the new economy need to substitute for products on either the demand- or 

supply-side of the economy. His review of the evidence – including, critically, the relevant 

elasticities of substitution – leads him to conclude that a singularity through this route is 

highly unlikely.   

 

However, our paper’s analysis suggests an alternative route to an economic 

singularity – a broad-based alteration in the economy’s knowledge production function.  

Given the centrality of new knowledge to sustained growth at the technological frontier, 
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it seems likely that if an economic singularity were to arise, it would be because of some 

significant change to the knowledge production function affecting a number of domains 

outside of information technology itself. In a world where new knowledge is the result of 

combining existing knowledge, AI technologies that help ease needle-in-the-haystack 

discovery challenges could affect growth prospects, at least along the transition path to 

the steady state. It doesn’t take an impossible leap of imagination to see how new meta 

technologies such as AI could alter – perhaps modestly, perhaps dramatically – the 

knowledge production function in a way that changes the prospects for economic growth.   
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Figure 1.  Romer/Jones and Combinatorial-Based Knowledge Production Functions 
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Figure 2.  Relationships Between New Knowledge Production, 𝜽, and 𝝓 
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Figure 3.  Example of How the Distribution of Team Size Varies with 𝜼 
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Figure 4.  Team Knowledge Production and Team Size 
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Figure 5.  Relationships Between New Knowledge Production, 𝜼, and 𝜽. 
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Figure 6.  Relationships between Meta Ideas, Meta Technologies, and General Purpose 

Technologies 
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