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ABSTRACT

The conventional method for developing health care plan payment systems uses existing data to 
study alternative algorithms with the purpose of creating incentives for an efficient and fair health 
care system. In this paper, we take a different approach and modify the input data rather than the 
algorithm, so that the data used for calibration reflect the desired levels of spending rather than 
the observed spending levels typically used for setting health plan payments. We refer to our 
proposed method as “intervening on the data.” We first present a general economic model that 
incorporates the previously overlooked two-way relationship between health plan payment and 
insurer actions. We then demonstrate our approach in two applications in Medicare: an 
inefficiency example focused on underprovision of care for individuals with chronic illnesses, 
and an unfairness example addressing health care disparities by geographic income levels. We 
empirically compare intervening on the data to two other methods commonly used to address 
inefficiencies and disparities: adding risk adjustor variables, and introducing constraints on the 
risk adjustment coefficients to redirect revenues. Adding risk adjustors, while the most common 
policy approach, is the least effective method in our applications. Intervening on the data and 
constrained regression are both effective. The “side effects” of these approaches, though 
generally positive, vary according to the empirical context. Intervening on the data is an easy-to-
use, intuitive approach for addressing economic efficiency and fairness misallocations in 
individual health insurance markets.
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1. Introduction 

 

Public and private regulators set prices in health care – to physicians, hospitals, health plans 

and other providers – with the purpose of improving economic efficiency of health care 

delivery.  To implement a payment system, the regulator selects a methodology to establish 

prices for each of the thousands of procedures physicians perform, the hundreds of disease 

groups treated by hospitals, or per capita prices paid to plans for the nearly innumerable 

combinations of enrollees’ health conditions.  In many health care settings, prices are set 

according to observed costs in the market. In the U.S. Medicare program, a hospital’s payment 

for a given inpatient admission is tied to the national average cost of admissions belonging to 

the same diagnosis-related group (DRG). In the Medicare Advantage program, the Affordable 

Care Act Marketplaces, most state Medicaid programs, and in Germany, the Netherlands, 

Switzerland, and other countries, a health plan’s payment for enrolling a given individual is tied 

to the average cost of individuals with similar demographics and histories of chronic conditions. 

This method for setting prices weakens incentives for inefficient “cream-skimming” behaviors 

by insurers (Geruso, Layton and Prinz 2016; Newhouse, et al. 2015). 

 

While acknowledging the benefits of setting prices in this way, this paper explores a previously 

overlooked deficiency: when the existing health care system is inefficient or unfair, setting 

payments based on observed costs may sustain those inefficiencies or inequities, which may be 

precisely the issues the payment system is meant to correct. Consider the following extreme 

example:  suppose under the current health plan payment system individuals with cancer are 

highly unprofitable due to low revenues relative to costs, and insurers rationally respond by 

limiting access to care for individuals with cancer to deter those individuals from enrolling in 

their plans. Further, assume insurers are so effective at rationing access that individuals with 

cancer obtain only very low levels of spending, for example, $1,000.  Now suppose a regulator 

seeks to address the problem of insurers inefficiently limiting access to care for individuals with 

cancer by “risk adjusting” payments to health plans, and they use a standard risk adjustment 
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system where plan payments are adjusted according to the observed $1,000 of spending for 

individuals with cancer. Such a payment system will not solve the problem the regulator sought 

to fix, because individuals with cancer will appear relatively inexpensive due to the insurers’ 

actions limiting their access to care. Thus, this conventional approach to payment will sustain 

rather than correct the insurers’ incentive to inefficiently limit access to care for this group. 

While this example is extreme, a weaker version of this feedback loop between inefficiencies 

embedded in the health care system and the incentives embedded in the payments is likely to 

play out in many more realistic settings.1  The general point is that if regulated prices are 

intended to move the health care system to be more efficient and fair, using existing 

(inefficient/unfair) patterns of care for purposes of payment calibration is unlikely to be the 

right approach. 

 

In this paper, we show that data modified to reflect the researcher’s or policymaker’s beliefs 

about efficient and fair levels of spending versus the observed spending levels can be used for 

calibrating health plan payments. We refer to this approach as “intervening on the data.” The 

intuition behind intervening on the data follows from conditions of market equilibrium:  set 

prices to buy the equilibrium you want, not the equilibrium you currently have.  After 

introducing background material in Section 2, we lay out the theoretical basis of our approach 

in Section 3.  The model in Section 3 characterizes the optimal input data (that which leads to 

the desired health care system outcomes) at an abstract level, and then translates the ideas for 

our empirical applications of health plan payment in Medicare.  In Section 4, we describe two 

examples of intervening on the data. The first focuses on underpayment for individuals with 

chronic illnesses, and the second addresses disparities in health care spending by zip code-level 

income.  We empirically compare intervening on the data to approaches based on modifying 

payment algorithms using existing data. This includes exploring the conventional approach of 

                                                 
1
 Algorithmic fairness with biased data is a growing area of study outside of health care. The theme of using a data- 

or algorithm-based intervention to break a feedback loop that reproduces or exacerbates biases in data runs 
through many, diverse applications. For example, Lum and Isaac (2016) discuss how using biased data in predictive 
policing algorithms can reproduce and amplify the biases in police data, and in some cases lead to a discriminatory 
feedback loop between policing practices and algorithm predictions. Hu and Chen (2017) show how a fairness 
constraint can be imposed on firms’ hiring practices to ensure both individual- and group-based fairness and 
address discrimination in the labor market.  
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adding or removing risk adjustor variables from the pricing algorithm.  In the chronic diseases 

example, we include additional risk adjustors for chronic illness groups, and in the disparities 

example we include a low-income neighborhood indicator.  We also leave the set of risk 

adjustors in place but introduce constraints on the OLS regression that target spending for 

groups of interest (van Kleef, et al. 2017). 

 

Both applications demonstrate that intervening on the data is a powerful approach for moving 

plan payments closer to the desired levels. In the chronic diseases application, intervening on 

the data is the most effective method for improving fit across all groups. Introducing 

constraints on the risk adjustment formula also performs well at the group-fit level, while 

adding risk adjustors to the OLS regression is the least effective approach.  The substantial 

improvements in group-level fit for both intervening on the data and constrained regression 

come at only a trivial decrease in statistical fit at the individual level (i.e., R2) compared to an 

unconstrained OLS regression. In the disparities application, adding a risk adjustor for 

neighborhood income is highly ineffective if the objective is to address health care spending 

disparities for that group.  Such an action aggravates the disparity by income group.  

Intervening on the data improves incentives to serve a group, but combining intervening on the 

data with adding a risk adjustor is even more effective at altering incentives because it 

combines the strengths of both approaches.  

 

2. Background 

  

Medicare Health Plan Payment and Risk Adjustment 

 

Medicare adjusts per person payments to health plans according to age, sex, Medicaid status, 

reason for Medicare eligibility, and diagnostic information.  The Medicare risk adjustment 

formula is calibrated on data from traditional fee-for-service Medicare but used to pay private 

Medicare Advantage plans (whose data are not used for calibration purposes).  Most efforts to 

improve risk adjustment have centered on adding and refining the risk adjustor variables that 
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indicate the presence of a diagnosis for a particular chronic disease (currently the Hierarchical 

Condition Categories, abbreviated HCCs), or on segmenting the population and estimating 

mutually exclusive subgroup formulas (e.g., separating community-dwelling and 

institutionalized beneficiaries). Medicare tracks regression fit at the individual level, updating 

the risk adjustment coefficients every few years by refitting the regression on more recent fee-

for-service data.  The most recently publicly evaluated Medicare risk adjustment formula is 

CMS-HCC Version 21; the subgroup formula for the largest group, aged beneficiaries, has an R2 

of 12.46%.2  

 

Despite a risk adjustment scheme refined over many years, some groups remain vulnerable to 

selection-related incentives.  For example, plans are underpaid for individuals with certain 

chronic conditions in that the revenue a plan receives for members of this group falls short of 

the expected costs.  Research on Medicare Advantage plans shows plans react to such 

“underpayments” by cutting back on services to unprofitable illness groups (Han and Lavetti 

2017). 

 

Intervening on the Data as a Policy Tool  

 

The most significant example in the U.S. of intervening on the data for setting provider 

payment is the Resource-Based Relative Value Scale (RBRVS) used by Medicare since the early 

1990s to set physician procedure prices.  Prior to the RBRVS reform, a policy consensus held 

that the prices set for “Evaluation and Management” (E&M) procedures (i.e., routine office 

visits) were too low and prices for some interventions (i.e., many surgical procedures) were too 

high. These payment levels resulted in too little physician time spent with patients and too high 

a volume of some procedures – patterns in the existing data policymakers wanted to change 

(Newhouse 2002).  Rather than accepting these patterns, Medicare incorporated information 

about normative time and effort – what doctors should be doing – and raised the prices of E&M 

                                                 
2
 The Medicare risk adjustment model currently used in practice is CMS-HCC Version 22; it includes fewer HCCs 

than Version 21 and estimates a greater number of subgroup models. 
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procedures relative to surgery.  In short, the RBRVS fee schedule was designed not to simply 

reflect the time spent by physicians for various procedures, it was meant to affect the time 

spent.3  

 

We also see limited forms of intervening on the data in regulated health insurance markets in 

the Netherlands and the ACA Marketplaces.  The Dutch risk adjustment algorithm is estimated 

on data modified to incorporate benefit package changes over time (Layton, McGuire and van 

Kleef 2016).  In the ACA Marketplaces, the risk adjustment algorithm is estimated on a pooled 

sample of data not subject to the selection incentives in the Marketplaces, and modified by an 

anticipated annual growth rate.  The 2017 update of the formula additionally features separate 

specialty drug, traditional drug, and medical expenditure trends based on external actuary and 

industry reports. Similar to the Dutch approach, the goal of applying a trend modification to the 

data is to incorporate expected patterns of spending, not to alter those expected patterns 

(Centers for Medicare and Medicaid Services 2016). 

 

3.  Conceptual Framework 

 

Here, we develop a general model of plan actions in response to plan payment coupled with 

recognition that plan payments are endogenous to plan actions.  We explain our idea of 

intervening on the data, and then describe how it can be used for addressing spending 

allocation problems.  

 

A Model of Intervening on the Data 

 

Define the matrix 𝐗 = {𝑥𝑖𝑠}, where i indexes individuals in the health insurance market and s 

indexes the services provided by health plans.  A service could be a particular type of care for a 

particular condition or conditions, e.g., office-based care for depression.  An element of 𝐗 is 𝑥𝑖𝑠, 

                                                 
3
 This is an example of the well-accepted idea that, as Newhouse (2002) pointed out in the context of physician 

pricing, provider costs are endogenous to the payment method.   



 

 
6 

spending in dollars on service s for individual i.  Also define 𝐑 = {𝑟𝑖}, a vector of payments a 

health plan receives for enrolling each individual i.  𝐗 is the performance of the health care 

system and 𝐑 is the set of payments chosen by the regulator to influence the system. 

 

𝐗 and 𝐑 are related in two ways.  The vector of payments affects the health care system.  And 

data from the health care system are inputs into the algorithm that generates the payment 

vector.  We represent these two relations as:  

𝐗 = f(𝐑).                                                                   (1)                               

𝐑 = g(𝐗)                                                                   (2) 

 

The function f(∙) represents the working of the health care system in response to payment 

incentives.  Dependent on the payments set for each enrollee, plans set contracts with 

providers and engage in other actions, including selection, that lead to an allocation of spending 

on various services to each individual.  The function g(∙) is the algorithm specified by the 

regulator that takes as input the patterns of health care spending and determines a payment 

for each person.  The empirical methodology used by Medicare to assign risk scores to 

individuals based on age and indictors of service use is an example of a g(∙) function.4 

 

In the conventional approach to economic analysis of health plan payment, the payment vector 

𝐑 is treated as an exogenous policy choice, and the health care system is characterized by f(∙) 

only.  This may not, however, constitute a full equilibrium.  In general, the health care system 

that results from a given payment vector will not, given the payment algorithm g(∙), generate 

the original payment vector. We broaden the concept of equilibrium by recognizing the second 

relationship between the health care system and payments, represented in g(∙).  We say that 

with a fixed algorithm g(∙), relating data from the health care system to payment, the system is 

                                                 
4
 Relations (1) and (2) should be understood broadly and remain true even in a system like Medicare where the 

payment system calibration is based on data from fee-for-service Medicare. Medicare Advantage plan behavior in 
response to payment incentives affects how many and what type of beneficiaries remain in fee-for-service 
Medicare. The relations also remain in place even in the case in which the data used for calibration is entirely 
disconnected from system performance.  In that case, the g(X) function is a set of payments unaffected by X. 
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in full equilibrium when both conditions are satisfied.  We thus define a full equilibrium in the 

health care system (𝐗𝐞, 𝐑𝐞) as:5 

𝐗𝐞 = f(𝐑𝐞)                                                                       (3) 

𝐑𝐞 = g(𝐗𝐞)                                                                      (4) 

 

To motivate intervening on the data, we assume another allocation, 𝐗∗, is preferred to 𝐗𝐞.  We 

refer to 𝐗∗ as the “desired” allocation; 𝐗∗might be preferred to 𝐗𝐞 for reasons of efficiency or 

fairness.  

 

Conventional health policy analysis modifies the g(∙) function (for example, by adding variables 

to the risk adjustment regression).  With knowledge of the operation of the health care system 

(i.e., the f(∙) function), one could solve for the vector of per person payments that would lead to 

the desired allocation.6  Call this desired vector of payments 𝐑∗:  

𝐑∗ = f −1(𝐗∗)                                                                      (5) 

 

Equation (5) represents the strand of the health plan payment literature referred to as “optimal 

risk adjustment,” with f −1 as the optimal risk adjustment formula.7  Note that (5) is consistent 

with a full equilibrium, in the sense that the optimal risk adjustment formula, f −1, when applied 

to the optimal health care system, 𝐗∗, yields the optimal vector of per person payments 𝐑∗. 

  

In this work, we take a different approach and ask, what 𝐗 matrix, used in equation (2) with a 

fixed algorithm g(∙), would lead to the optimal set of per person payments, and thus to the 

efficient health care system.  Define 𝐗 to be this optimal data input matrix: 

                                                 
5
 In practice, data from a previous period are typically used to set payments in the current period.  If a system is in 

full equilibrium as we describe, such timing does not affect the equilibrium.  Out of equilibrium, a system 
characterized by (1) and (2) would need to take account of timing and any iterative process leading to equilibrium.   
6
 Throughout, we assume that solutions exist, correspond to positive values of all spending, and are unique and 

stable.  Our Medicare application only requires the assumptions to hold locally. 
7
 In Glazer and McGuire (2002), optimal coefficients are those that lead the plan, in profit maximization, to supply 

efficient health care.  In both of these instances, the coefficients are found by inverting the function describing 
system response to the price incentives.  Theoretical solutions to optimal risk adjustment are assumed to be 
applied to the optimal allocations and are not designed to move the system to optimal based upon some arbitrary 
inefficient/unfair initial allocation. 
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𝐗 = g−1(𝐑∗), or  

𝐗 = g−1(f −1(𝐗∗)) , or                                                           

𝐗 = h(𝐗∗)         (6) 

 

Equation (6) presents our main idea in abstract form.  By disconnecting the data used as input 

to the plan payment algorithm from the spending in the current system, i.e., by intervening on 

the data, we can induce an efficient health care system.  We recognize the h(∙) function is 

complex and we have little policy experience with its properties.  Nonetheless, we believe (6) 

represents a novel and useful observation.  Data used as input into payment system calibration, 

𝐗 in (6), can be chosen by policy.  And although the form of (6) is unknown, simple and intuitive 

modifications to the input data have foreseeable effects on incentives. The correct intervention 

on the data that provides insurers with the right set of incentives will at least move the health 

care system in the right direction.8 

 

A Medicare Application 

 

To address allocation problems in Medicare we operationalize (6) and illustrate intervening on 

the data. We specify the variables and some properties of how the health care system responds 

to price incentives (f(∙)), and how the data from the health care system is used to construct 

payments to health plans (g(∙)). In this section, we use the chronic diseases application to 

translate our model into practice.  A parallel method is used in our disparities application. 9 

 

 

                                                 
8
 There are direct parallels in our proposed approach of intervening on the data to the theory underlying structural 

causal modeling (Pearl 2009). Specifically, we could formulate the two relationships in (1) and (2) as nonparametric 
structural equation models with unknown functional forms f(∙) and g(∙), although an explicit representation of 
equilibrium does not always apply. We can intervene on the system we have defined to set random variables 
(here, payments) to specific values.  
9
 We focus on a subset of features of Medicare payment and Medicare Advantage plan spending allocations. Our 

examples are concerned only with medical spending predicted by the Medicare Advantage risk adjustment formula 
– primary Part A and B spending – not drug spending (which has its own plan payment system). The analyses we 
present focus on community-dwelling individuals, the largest set of Medicare beneficiaries. We ignore any joint 
cost issues introduced by the presence of other payers of health plan services.  
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The Inefficiency  

 

Based on previous research, we start with the premise that the Medicare payment system to 

health plans creates incentives to underspend on persons with some chronic illnesses.  As 

McGuire et al. (2014) show in another context and our data analysis confirms for Medicare, 

among the four chronic illness groups we study – cancer, diabetes, heart disease and mental 

illness – the incentives are strongest to underspend on mental health care.  We therefore 

intervene to address the incentives to underspend on persons with mental illness, and track the 

incentives for groups defined by the other chronic illnesses. 

 

The Plan Payment Algorithm: 𝐑 = g(𝐗)                                                                     

 

The function g(∙) is the algorithm that determines the per person payments paid to health plans 

for enrollment of beneficiaries with various indicators for health status (which come from the 

data). We implement a slightly modified version of Medicare’s current algorithm, described in 

detail in Section 4 and the Appendix.  

 

The Health Care System: 𝐗 = f(𝐑)                                                                     

 

The f(𝐑) function relates per person payments to the functioning of the health care system. 

This function encompasses not only plan spending and beneficiary enrollment, but also involves 

the relationships between providers, hospitals, insurers, and individual consumers.  Rather than 

making strong assumptions about the form of f(∙), we  make a weaker assumption about its 

local properties, the signs of the derivatives of f(∙). This assumption is sufficient to determine 

the sign of the local effect of a data intervention.  Specifically, we assume plans respond 

positively to incentives in the sense that if the payment for an individual is increased 

(decreased), the plan spends more (less) on that person.10  The assumption implies that in 

                                                 
10

 This assumption is based on the model of health plan choice and plan design presented in Frank, Glazer, and 
McGuire (2000). Geruso, Layton, and Prinz (2016), Carey (2017), Lavetti and Simon (Forthcoming), and Shepard 
(2016) present empirical evidence supporting this assumption. 
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response to an increase in the level of plan payment for a group of beneficiaries, plans will 

spend more on the services used by those beneficiaries in order to encourage more of that 

group to enroll.    

 

4. Data and Methods 

 

We study methods for reducing underpayment (which we assume induces underservice) for the 

targeted group in the chronic diseases application, and methods to reduce underservice for the 

targeted group in the disparities application.  In both the chronic diseases and disparities 

applications, we identify the target group using a classification system that is distinct from the 

CMS-HCC risk adjustment system. We track the impact of alternative methods on regression fit 

at the group and individual levels.  As a summary measure, we calculate group payment system 

fit (GPSF), which captures how well a given risk adjustment formula matches payments and 

costs at the group, rather than the individual, level (Layton, et al. 2017). 

 

Data and Baseline Risk Adjustment Formula 

 

In practice and in this paper, data from fee-for-service Medicare are used to estimate payment 

coefficients on the risk adjustment variables for setting capitation payments to Medicare 

Advantage plans.  We follow CMS and include only individuals with 12 months of continuous 

Parts A and B coverage in the base year (2010) and those with at least one month of coverage 

in the prediction year (2011).  We focus on beneficiaries who are entitled to Medicare on the 

basis of age, and exclude those with end-stage renal disease, and those residing in an 

institution. After applying these exclusion criteria, we draw a random sample of 1.5 million 

individuals in order to approximate CMS’s practice of using a random 5% sample of Medicare 

beneficiaries for risk adjustment estimation. Our sample is predominately white (85%) and 

urban-dwelling (76%) (Table 1).  Approximately two-thirds of our sample has at least one of 

four major chronic conditions: cancer, diabetes, heart disease, or mental illness. We combine 

the 20% random sample Medicare Beneficiary Summary File on enrollment with Part A, Part B, 
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home health, and durable medical equipment claims files for 2010 and 2011.  We map ICD-9 

diagnoses to 87 HCCs, combine age and sex into 24 age-sex cells, and create indicators for 

disabled enrollees and individuals enrolled in Medicaid.  Our outcome measure, health care 

spending in 2011, is total Medicare spending on inpatient, outpatient, durable medical 

equipment, and home health, weighted to reflect each individual’s eligible fraction of the 

prediction year. To predict spending we use a similar specification as the Version 21 CMS-HCC 

risk adjustment formula for the aged, community dwelling subgroup.  

 

We map ICD-9 diagnoses to Clinical Classification Software (CCS) groups and to Prescription 

Drug Hierarchical Condition Categories (RxHCCs) (AHRQ 2016; DHHS 2017). CCS groups are used 

to identify beneficiaries with a chronic condition because, unlike the HCCs included in the risk 

adjustment formula, all ICD-9 codes map to a condition group.11 RxHCCs are the categories used 

by the Medicare Part D risk adjustment formula, and capture a greater number of mental illness 

diagnoses than HCCs (Montz, et al. 2016). We use the RxHCCs to demonstrate the effect of 

inclusion of additional risk adjustor variables.   

 

Defining and Measuring Underpayment for a Group with a Chronic Illness 

 

In our first application we target the systematic underpayment of persons with a chronic illness. 

We divide our sample into seven mutually exclusive groups based on clinical diagnoses in CCS 

categories: 1) mental illness only, 2) mental illness and at least one other major chronic 

condition (diabetes, heart disease, or cancer), 3) diabetes only, 4) heart disease only, 5) cancer 

only, 6) multiple chronic conditions, not including mental illness, and 7) no chronic conditions.  

 

                                                 
11

 In our sample, the mental illness HCCs capture only 44% of individuals in the mental illness group defined by CCS 
groups. The difference in how CCS groups are defined versus how the HCC-based risk adjustors are defined 
accounts for why some groups are underpaid in the current risk adjustment scheme, despite having HCC indicators 
in the formula. 
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We define net compensation as the difference between average payments and average costs 

for a group.12  We assume an individual’s total Medicare spending is the cost the plan bears for 

that individual, and payments to a plan are the predicted values from the risk adjustment 

regression: 𝑟𝑖 = ∑ 𝛽̂𝑗𝑧𝑖,𝑗𝑖 , where 𝑟𝑖 is the payment for individual i, 𝛽̂𝑗 is the estimated coefficient 

for risk adjuster j, and 𝑧𝑖𝑗 is the value of the risk adjuster j for individual i. We then calculate 

group-level net compensation for the average plan based on the predicted values:  

Net compensation𝑔 = 𝑟𝑔 − 𝑐𝑔,   (7) 

 

where 𝑟𝑔 =  ∑𝑖∈𝑔𝑟𝑖 𝑛𝑔⁄  and 𝑐𝑔 =  ∑𝑖∈𝑔𝑌𝑖 𝑛𝑔⁄ . Negative values of net compensation indicate 

underpayment, where the group-level revenues (predicted spending) are systematically less 

than group-level costs (observed spending). Positive values indicate overpayment, where 

group-level revenues exceed group-level costs.13  

 

Defining and Measuring a Health Care Disparity 

 

Our second application addresses a disparity between groups defined by a sociodemographic 

variable.  We divide our sample into individuals residing in low-income zip codes (those with a 

median income in the lower 60% of our sample zip code median incomes) and high-income zip 

codes (upper 40%).14  We measure the disparity in health care between these two groups. 

Measuring and addressing disparities between groups does not require knowledge about the 

source(s) of the disparity – many factors contribute to disparities in care across neighborhood 

of residence.  Rather than seeking to directly address these underlying causes, we rely on the 

                                                 
12

 Papers and government evaluations of underpayment by group in the U.S. commonly measure underpayment in 
ratio form (predictive ratios) rather than by a difference (e.g., McGuire, et al. 2014; Pope, et al. 2011).  Here we 
work with the difference metric to keep net compensation on the dollar scale.  Our approach is more in line with 
the European literature, which uses the difference rather than the ratio (e.g., van Kleef, van Vliet and van de Ven 
2013). 
13

 Note that net compensation is defined in relation to observed spending rather than the desired, efficient level of 
spending. We return to the matter of using observed vs. efficient levels for payment system evaluation in the 
Discussion.  
14

 We examined disparities across zip code median income quintiles, and compared two different definitions for 
the reference group: the upper 60% and the upper 40%. We found the middle quintile aligned more closely with 
the bottom two quintiles, thus we defined the reference group (high-income) as the upper 40% and the group of 
interest (low-income) as the lower 60%.  
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responsiveness of the health care system to financial incentives to reduce disparities between 

low- and high-income neighborhoods: if health plans are paid more to enroll individuals in low-

income neighborhoods, then the plans will act to attract these individuals by providing them 

with more care. 

 

Disparity for a group is defined, following the Institute of Medicine’s Unequal Treatment Report 

(2002), as differences in health care not due to health status or preferences.  Because of the 

difficulties in measuring preferences, the literature on disparities compares care for groups 

after adjusting for health status only,15 and we do the same.  Specifically, we estimate a 

disparity in total health care spending between the group of interest and the reference group 

as the difference in estimated and observed price-adjusted spending, conditional on health 

status. We define disparity as: 

𝐷𝑔,ref =  
1

𝑛𝑔
∑ (𝑌𝑖,𝑔 − 𝑌̂𝑖,𝑔)𝑖∈𝑔 −

1

𝑛ref
∑ (𝑌𝑖,𝑟𝑒𝑓 − 𝑌̂𝑖,𝑟𝑒𝑓)𝑖∈ref ,   (8) 

 

where g is the group of interest, ref is the reference group, 𝑌𝑖,𝑔 is the observed spending for an 

individual in the group of interest, 𝑌𝑖,𝑟𝑒𝑓 is the observed spending for an individual in the 

reference group,  𝑌̂𝑖,𝑔 is predicted spending conditional on health status (as measured by CCS 

categories, age, and sex) for an individual in group g, and  𝑌̂𝑖,𝑟𝑒𝑓 is predicted spending 

conditional on health status for an individual in the reference group. We follow common 

practice in the disparities literature and also adjust for age and sex, because differences related 

to these demographic factors could stem from differences in prevalence of illness correlated 

with age and sex, and thus would not constitute a disparity. The first term in (8), for group g 

(low-income), is expected to be negative, with actual services received less than predicted 

based on health status. The second term is expected to be positive, measuring the excess of 

services received by the reference group in relation to their health status. When the difference 

between these two terms, the disparity, is negative, it measures the underservice of group g, 

conditional on health status, in relation to the reference group.  

                                                 
15

 For a review of methods for implementing the IOM definition of health care disparity, see Cook, McGuire, and 
Zaslavksy (2012). 
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The estimation of 𝐷𝑔,ref in equation (8) depends on accurate predicted values 𝑌𝑖̂, where 

“accuracy” can be defined with respect to an underlying squared error loss function.16 

Therefore, we employ ensemble statistical machine learning methods to obtain optimal 

predicted values in the calculation of the disparity. The Appendix contains additional details on 

implementation.  As far as we know, this is the first application of big-data methods to 

estimating health care disparities. 

 

Intervening on the Data 

 

Targeting Underpayment for a Group with a Chronic Illness 

 

In our demonstration, first intervene on the mental illness group, as identified by CCS category. 

Specifically, starting with the basic OLS specification, 𝑌𝑖 = ∑ 𝛽𝑗𝑧𝑖𝑗𝑖 , we increase the Y vector by 

10% for each individual in the targeted group.  The choice of 10% is arbitrary.  Notably, we only 

need to intervene on the data once in order to project the effect of changing the transfer by 

any amount because of the linear form of least-squares estimators.17  This linearity property 

does not, however, hold for the impact of data changes on a quadratic measure of fit.  

 

After intervening to transform the Y vector, we reestimate the regression, ensuring total 

payments remain constant by imposing a constraint on the coefficients:  

𝑌̅𝑁 = ∑ 𝛽𝑗𝑗 𝑧𝑗̅,𝑁,       (9) 

 

                                                 
16

 Other loss functions can be considered, including those for bounded continuous outcomes. 
17 Intervening on 𝑌𝑖  leads to a constant change in net compensation because revenues at the individual and group 
level are linear in Y: 

𝑟𝑔 =  𝑌̅̂𝑔 

𝑌̅̂𝑔 =  𝛽̂𝑍𝑔 

𝛽̂ = (𝑍′𝑍)−1𝑍′𝑌 
Intervening on the data changes Y, while (𝑍′𝑍)−1𝑍′ and 𝑐𝑔are constant. Thus, any Δ𝑌 leads to the same Δ𝛽, Δ𝑌̂, 

and, ultimately, change in net compensation.   
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where 𝑌̅𝑁 is the sample average of observed total Medicare spending and 𝑧𝑗̅,𝑁 are the sample 

means for the j risk adjustor indicator variables.  By constraining the coefficients to produce the 

observed sample mean spending, we guarantee that the total payments after the data 

intervention sum to total costs. Put differently, we implement the constraint (9) so that 

spending for individuals without a mental illness is reduced and counterbalances the increase 

for individuals with a mental illness.18 From the refitted regression we obtain a new set of 

predicted revenues for each individual in the sample.  

 

Using these new predicted spending values, we can then recalculate net compensation for each 

disease subgroup in the manner described above.  Net compensation reveals how a given group 

fares under a particular risk adjustment formula, but does not summarize overall group fit 

across the entire sample. We use group payment system fit (GPSF) (Layton, et al. 2017) to 

summarize the overall impact of each risk adjustment approach on net compensation:  

GPSF = 1 −
∑ 𝑠𝑔|𝑐𝑔−𝑟𝑔|𝑔

∑ 𝑠𝑔|𝑐𝑔−𝑐 ̅|𝑔
          (10) 

 

where 𝑟𝑔 comes from the estimated risk adjustment regression and 𝑐𝑔 is the observed, 

unmodified vector of spending; 𝑐̅ is the mean of the observed, unmodified vector of spending 

for the entire sample; and  𝑠𝑔 is the share of the sample in group g, with ∑ 𝑠𝑔 = 1𝑔 . GPSF is a 

measure of regression fit calculated at the group-level; we use a linear scale to maintain 

consistency with our net compensation measure.19  The denominator is the weighted sum of 

absolute differences between group-level costs and the overall sample average, and the 

numerator is the group-level sum of absolute residuals under a given payment system.  GPSF 

falls between 0 (the risk adjustment formula is equivalent to paying sample average costs) and 

1 (the risk adjustment formula perfectly matches payments and costs at the group level). We 

                                                 
18

 Another way to maintain the same aggregate budget would be to directly deduct the corresponding amount of 
spending from the complementary group.  Using a constraint, however, is our preferred approach.  First, using a 
constraint does not require calculating the addition to the target group before running the regression, allowing the 
analysis to proceed in one step rather than two.  And second, if the intervention on the data is complex – for 
example, if there are multiple targeted groups – our approach of intervening on the Y vector to enact the desired 
changes for the targeted groups and then imposing an overall constraint is simple and easily implemented. 
19

 GPSF on a linear scale is a group-level version of Cumming’s Prediction Measure (CPM) (van Veen, et al. 2015).  
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expect the denominator to be large relative to the numerator (and GPSF to be high) in cases 

where group-level costs vary widely from the average cost of the entire sample, and group-level 

payments are close to group-level costs. In our application, GPSF calculated using the baseline 

risk adjustment formula is the floor we seek to improve on with alternative risk adjustment 

approaches, and 1 is the ceiling. Comparing GPSF allows us to rank our risk adjustment 

approaches based on how well they address discrepancies in net compensation for all of the 

defined groups, not just the targeted group of interest.  Concerns about how other groups 

might be affected by intervening on the data or imposing linear constraints should guide the 

selection of the mutually exclusive groups for calculating GPSF.  

 

To compare fit at the individual level of the reestimated regression to the baseline OLS version, 

we calculate an R2 as follows: 

SSR =  ∑(𝑌𝑖,obs − 𝑌̂i,refit)
2
, 

SST =  ∑(Yi,obs − Y̅obs)
2
, 

R2 = 1 − SSR/SST,      (11) 

 

where 𝑌̂i,refit comes from the refit regression; 𝑌i,obs is the observed, unmodified vector of 

spending; and 𝑌̅obs is the mean of 𝑌𝑖,obs.
   

 

In addition to specifically targeting one chronic illness group, we perform another intervention, 

where we proportionally increase spending for a beneficiary with at least one of the chronic 

conditions.  Here the goal is to provide an additional example to demonstrate how intervening 

on the data based on a group categorization can affect subgroups within the broader 

classification.  We estimate the effect of an initial 5% increase, and show proportional increases 

in the range of 0-15% of spending. 

 

Targeting a Disparity 
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In the disparities application, we use the plan payment system to reduce incentives for the 

targeted underservice.  Recall that the method is agnostic as to the cause of the disparity in the 

first place, but makes the simple assumption, discussed above, that increasing the profitability 

of the group suffering a disparity will encourage plans to provide that group with more services. 

Because we do not modify costs, tracking changes in group-level payments is sufficient to 

capture how well intervening on the data addresses disparities. We calculate group-level 

payments, 𝑟𝑔 =  ∑𝑖∈𝑔𝑟𝑖 𝑛𝑔⁄ , by estimating the same CMS-HCC risk adjustment formula 

described above to obtain individual level payments (𝑟𝑖). Groups that are underserved, like 

those living in low-income areas, will likely already have payments exceed costs, i.e., be 

profitable. Despite this, the disparity indicates that the incentives conveyed by the payment 

system are not strong enough to encourage health plans to compete for these individuals by 

providing them with more services, and thus eliminate disparities.  

 

To intervene on the data, we choose to increase spending by 10% for all individuals in the low-

income zip code group, and again reduce spending for the complementary group by imposing 

an overall budget constraint. We reestimate the risk adjustment regression with the modified Y 

vector and recalculate group-level payments. It is then possible to characterize the tradeoffs 

between reducing incentives for disparities and traditional measures of statistical fit for the risk 

adjustment system, such as R2, described above in (11). We include an extension of this 

example in the Appendix: in an even more targeted intervention, we transfer 10% to the low-

income group, but take funds only from the upper half of the high-income group (the fifth 

quintile).  

 

Comparison to Alternative Methods:  Adding Risk Adjustor Variables and Constrained 

Regression 

 

We compare intervening on the data with two changes to the risk algorithm used to define 

payments based on the existing data.  First, in the mental illness application, we add RxHCCs 

from the Medicare Part D risk adjustment formula related to mental illness and not already 
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included in the Medicare Advantage risk adjustment formula.20 In the disparities application, 

we add a low-income neighborhood indicator to the formula.  While this latter change is a poor 

choice because it reinforces incentives to underserve, we do so to illustrate that adding 

indicators related to socioeconomic status can often be counterproductive and to allow us to 

set up a combination approach.  

 

Second, we impose linear constraints on the estimated coefficients from the risk adjustment 

regression to ensure group-level payments by chronic illness group hit targeted levels.  Thus, to 

completely eliminate underpayment for the targeted chronic illness group we set 𝑌̅𝑔 =

 ∑ 𝛽𝑗  𝑧𝑔̅,𝑗𝑗 .  To compare constrained regression to intervening on the data, we also apply a 

constraint with the same reduction of underpayment as achieved by intervening on the data. 

Again, we maintain aggregate spending levels by imposing a second constraint on spending for 

the entire sample: 𝑌̅𝑁 =  ∑ 𝛽𝑗 𝑧𝑁̅,𝑗𝑗 . We do not implement a constrained regression comparator 

for the disparities application because it is not possible to directly constrain the target 

(disparities) without making strong assumptions regarding how the health care system reacts to 

changes in payments.  

 

5. Results 

 

Increasing Net Compensation for Beneficiaries with a Chronic Illness 

 

Prior to intervening on the data, we assess net compensation by chronic illness. In aggregate, 

net compensation for individuals with a mental illness is -$652 per person; separating this 

group into those with mental illness only and those with mental illness and another chronic 

condition shows the latter and larger group is subject to the greatest underpayment (Table 2). 

Individuals with heart disease only are the most accurately compensated of the chronic illness 

groups we examine, followed closely by the multiple chronic conditions with no mental illness 

                                                 
20

 Detail on the selection of the additional risk adjustors can be found in the Appendix. 
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group. Those with diabetes only, cancer only, and no chronic conditions are overpaid at $768, 

$247, and $294 per person.   

 

After intervening on the data by increasing spending by 10% for all individuals with a mental 

illness and refitting the risk adjustment regression, net compensation for individuals with 

multiple chronic conditions and mental illness falls from -$1,502 to -$291 per person (Table 3, 

Columns (1) and (2)).  Net compensation for individuals with only a mental illness increases 

from $315 to $644 per person. Notably, compensation for individuals with multiple chronic 

conditions but no mental illness, cancer only, and no chronic conditions becomes much more 

accurate. Net compensation for the diabetes only group is reduced, and underpayment is 

aggravated slightly for the heart disease only group. 

 
Comparison with Alternative Methods Increasing Net Compensation for Beneficiaries with a 

Chronic Illness 

 

After adding three RxHCC risk adjustors to the baseline regression, average per person net 

compensation for the multiple chronic conditions with a mental illness group is reduced to         

-$825.  In the mental illness only group, net compensation is increased to $518 per person 

(Table 3, Column (4)).  

 

Setting the constrained regression target to be equal to the average spending for the mental 

illness group achieved by intervening on the data (so that the two methods are directly 

comparable) does more than intervening on the data to increase net compensation for the 

mental illness only group ($644 vs. $988; Table 3, Columns (2) and (5)) and less to decrease net 

compensation for the multiple chronic conditions with a mental illness group (-$291 vs. -$433). 

The constrained regression targeting zero net compensation for all individuals with a mental 

illness extends these trends, yielding net compensation of $1,006 per person in the mental 

illness only group, and -$416 per person in the multiple chronic condition with a mental illness 

group (Table 3, Column (6)). 
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To calculate GPSF we combine the “mental illness only” and “multiple chronic conditions with a 

mental illness” group into a single category, which reflects the group targeted by the 

intervention. At baseline GPSF is 92.032, leaving a gap of 7.968 between the baseline and 

maximum GPSF.  Intervening on the data with a 10% spending transfer yields the largest 

improvement over the baseline (by 6 percentage points) with a GPSF of 98.009.   The 

constrained regression approach leads to a 5 percentage point improvement over baseline, 

while adding in the risk adjustors generates only a 1 percentage point improvement. In 

contrast, adding the risk adjustors has the best individual fit, with an R2 of 11.170%, compared 

to 11.105% for intervening on the data and 11.158% for the base risk adjustment formula.21 

 

Overall, in this application, intervening on the data is the most effective method for addressing 

underpayment for individuals with a mental illness within a balanced budget. Adding in risk 

adjustors is the least effective method.  By design, intervening on the data and constrained 

regression are comparable in their results for the aggregate mental illness group, but 

intervening on the data moves closer to eliminating under and overpayment in all of the non-

mental illness subgroups.  Improvements in fit at the group level essentially come at no 

expense of fit at the individual level as measured by R2. 

 

These approaches to addressing underpayment also have differential impacts on subgroups 

within the mental illness group. Figure 1 compares changes in net compensation by method, 

across mental illness subgroups occurring in at least 10% of individuals with a mental illness. 

Intervening on the data substantially increases net compensation for the screening history of 

mental health and substance use disorders, anxiety disorders, and mood disorders groups. The 

dementia/delirium and alcohol/substance disorder groups have the highest average spending 

($21,876/person and $19,766/person) – thus receiving the largest transfers – and become 

overpaid after we intervene on the data. The constrained regression performs similarly to 

intervening on the data in terms of the impact on mental illness subgroups. The regression that 

                                                 
21

 The baseline regression R
2
 is slightly lower than that reported for the CMS-HCC Version 21 regression (12.46%). 

However, the correlation between predicted values from our regression and those using the CMS-HCC coefficients 
is 98%, indicating our empirical formula is a good representation of the one used by CMS for plan payment. 
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includes the RxHCCs for bipolar, depression, and major depression performs similarly to the 

baseline regression, although compared to constrained regression and intervening on the data 

it generates the largest increase in net compensation for individuals without a mental illness 

HCC. The formula with the added RxHCCs also substantially increases net compensation for the 

mood disorders subgroup, which includes depression and bipolar ICD-9 codes.  

 
Figures 2 and 3 provide a side-by-side comparison of intervening on the data to specifically 

target individuals with mental illness (Figure 2) versus all individuals with at least one chronic 

condition (Figure 3). Figure 2 shows how increasing spending for individuals with a mental 

health illness and decreasing it for all others affects predicted spending – and thus net 

compensation – at the group level. Increasing spending by slightly less than 15% would 

eliminate underpayment for individuals with multiple chronic conditions and a mental illness, 

while the transfer increases the overpayment for the mental illness only group. Figure 3 shows 

intervening on the data to increase spending for individuals with multiple chronic conditions 

has a similar effect on the multiple chronic conditions groups with and without mental illness. 

Given the differing levels of initial net compensation, the multiple chronic conditions with 

mental illness group requires a spending transfer of approximately 12% while the multiple 

chronic conditions with no mental illness group requires only about a 2% increase to eliminate 

underpayment.   

 
Reducing Disparities for Individuals in Low-Income Neighborhoods  
 
 
The low-income group faces a disparity of $191 compared to the high-income (reference) group 

(Table 4). Examined by subgroups (zip code income quintiles), we see the disparity primarily 

occurs in the second and third income quintiles, and largely in relation to use in the fifth income 

quintile. The goal is to increase the average payment for the low-income group in order to 

decrease the disparity. Intervening on the data with a 10% spending transfer to the low-income 

group increases payments by approximately $25 per person (Table 5). The overall fit of the 

regression is minimally reduced from 11.158% by a 10% transfer: the refitted regression yields 

an R2 of 11.114%. By contrast, adding in a risk adjustor for the low-income group has a large 
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effect and makes average payments equal to average costs, as expected. The combination of 

adding a risk adjustor and transferring 10% leads to the most dramatic change in payments. The 

addition of the low-income group indicator means there is a risk adjustor in the formula that is 

perfectly imbalanced between the group of interest and the reference group. This risk adjustor 

provides a clear channel for intervening on the data to work through without greatly disturbing 

other coefficients in the risk adjustment formula.  

 

6. Discussion 

 
This paper contributes to the literature on health plan payment on both theoretical and 

practical levels.  Our central theoretical insight is that there is a two-way relationship between 

the data describing the performance of the health care system and the level of payments that 

emerge from a risk adjustment methodology.  Payments determine behavior, and behavior 

generates the data that feeds into payment algorithms.  Our paper calls attention to the second 

link, and introduces a new mechanism for affecting payment and, thus, health system 

performance.  The researcher/regulator need not accept the behavior from the flawed health 

care system as the input data for use in calibrating payment, and in general, they should not.  

The mechanism of intervening on the data is easy to implement in practice, and intuitive, and 

therefore may have readier practical application.  Health care systems are complex and suffer 

from allocation problems related to efficiency and fairness.  We show how intervening on the 

data is a simple and transparent way to address both types of problems.         

 
We present two empirical applications, which assume the current health care system 

underspends on individuals with chronic illnesses and underprovides services for individuals 

living in low-income zip codes. In the context of net compensation by disease group, 

intervening on the data and constrained regression both outperform the approach of including 

additional risk adjustors. Both intervening on the data and constrained regression are effective 

methods, have little effect on R2, and improve group fit.  Adding in a risk adjustor for low-

income groups exacerbates the health care disparity between low-income and high-income 
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neighborhoods. Combining intervening on the data with adding a risk adjustor is more effective 

at altering incentives than intervening on the data in isolation.  

  

Our goal in this paper is to introduce a new idea for improving the performance of health plan 

payment methods. While the empirical applications show how our model might be 

implemented, this method requires further practical development in terms of how it would be 

implemented with an existing health plan payment system. For example, policy objectives, 

groups to be targeted, and outcome measures would all need to be specified in each year of 

implementation. We use the Medicare program as the setting for our empirical demonstration, 

but in practice it may be more straightforward to implement intervening on the data in a health 

plan payment system where the data used for risk adjustment calibration is the same as the 

spending data in the current system the regulator seeks to affect.  Both the Netherlands and 

Germany, for example, have such systems, and would be appropriate settings for further 

empirical work or policy applications.  

 

Regulators may choose from a variety of policy alternatives to achieve an efficiency or fairness 

goal via the risk adjustment system. Expanding the formula with additional risk adjustors is, as 

discussed earlier in this paper, a common approach. However, it not only is harmful in the case 

of the disparities example, but it also has potential costs in an efficiency setting, such as 

upcoding or other types of gaming, which are avoided by intervening on the data. There is a 

very large set of ad hoc, post-estimation adjustments regulators can implement – i.e., 

increasing the prices paid for certain groups after estimating the risk adjustment formula – but 

these modifications do not attempt to preserve OLS fit properties and do not take into account 

other subgroups, whose coefficients/payments remain untouched. Our approach of intervening 

on the data is expands the regulator’s toolkit in order to facilitate achieving objectives that may 

be more costly or difficult when implementing other approaches like ad hoc adjustments or 

including more risk adjustors.  
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While the main objective of this paper has been to provide a new approach to payment system 

design, there is another important implication of the basic conceptual issue we explore here. It 

is not only problematic to use observed data to design payment systems, it is also problematic 

to use observed data to evaluate payment systems. R2, predictive ratios, and 

under/overpayment measures of payment system performance evaluate how well plan 

revenues match observed costs. However, more appropriate measures of payment system 

performance would evaluate how well plan revenues match efficient levels of spending. 

Estimation and evaluation methods are clearly linked, and if a different estimation approach is 

warranted, different measures of performance are also likely needed. 

 

A strand of the European literature on risk adjustment proposes to address this problem of 

using observed costs to evaluate risk adjustment by instead using “acceptable costs” or 

“normative expenditures” for payment algorithm evaluation (Stam, van Vliet and van de Ven 

2010; van de Ven and Ellis 2000). Acceptable costs are those which capture medically necessary 

care delivered in a cost-effective manner. Our approach is conceptually similar – to set targets 

for acceptable levels of spending levels that reflect a social policy choice. We also explore a 

different implementation approach: rather than modifying the coefficients assigned to risk 

adjustment variables, we modify spending based on our beliefs about what acceptable costs 

should be for the groups we are concerned about. 

 

“Getting the prices right” will be a central problem of health plan payment in health insurance 

markets around the world for years to come. There are many improvements that can be made 

to current methods. Our main argument here is that altering the data itself should be part of 

any policymaker’s toolkit. 
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Tables and Figures 
 

Table 1: Sample Characteristics in 2010 (N=1.5 million)  

Variable Mean (%) 

Sex  
  Female 55 
Age  
  <65 17 
  65-69 21 
  70-74 17 
  75-79 16 
  80+ 25 
Race  
  White 85 
  Black 9 
  Hispanic 6 
Urban/Rural  
  Rural 24 
Region  
  Northeast 18 
  Midwest 24 
  South 40 
  West 17 
Chronic Conditions  
  Mental illness 22 
  Cancer 23 
  Heart disease 41 
  Diabetes 27 
  At least one chronic condition 68 
Insurance  
  Medicaid 18 
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Table 2: Net Compensation and Average Spending (in U.S. Dollars, 2011) by Mutually Exclusive 
Chronic Condition Groups as Defined by CCS Categories 

Group Net Compensation SE 
Mean 

Spending 
SE N 

Mental illness -652 66 15,671 70 335,592 
      
    Mental illness only 315 64 7,580 66 98,130 
      
    Multiple chronic conditions, mental illness -1,052 89 19,014 94 237,462 
      
Multiple chronic conditions, no mental illness -92 72 14,623 75 266,565 
      
Diabetes only 768 55 6,687 56 117,257 
      
Heart disease only -66 64 10,018 66 197,373 
      
Cancer only 247 62 7,740 64 106,672 
      
No chronic condition 294 24 4,416 24 476,541 

 

Table 3: Comparison of Methods Targeting Mental Illness Group – Net Compensation by Mutually 
Exclusive Groups (in U.S. Dollars, 2011)  

Group 
Baseline 

OLS 
Intervening on the 

Data 

Adding 
Risk 

Adjustors 

Constrained 
Regression N 

(1) (2) (3) (4) (5) (6) 

GPSF 92.032 98.009 95.259 93.262 96.650 96.777 1,500,000 
R2 11.158 11.105 11.127 11.170 11.127 11.125 1,500,000 

Mental illness only 315 644 480 518 988 1,006 98,130 
Multiple chronic conditions, 

mental illness 
-1052 -291 -672 -825 -433 -416 237,462 

Multiple chronic conditions,  
no mental illness 

-92 -31 -62 -171 -214 -218 266,565 

Diabetes only 768 519 643 702 563 557 117,257 
Heart disease only -66 -176 -121 -133 -227 -232 197,373 
Cancer only 247 31 139 195 33 27 106,672 
No chronic conditions 294 -32 131 239 80 75 476,451 

Notes: Column (1) contains the simplified CMS-HCC Version 21 risk adjustment model. (2) contains intervening on the 
data where we increase spending by 10% for all persons with a mental illness. (3) contains intervening on the data where 
we increase spending by 5% for all persons with a chronic condition. (4) is the baseline OLS model with three additional 
RxHCC risk adjustor indicators. (5) is a constrained regression with a constraint of 𝑌̅𝑀𝐻 − 17.41 = ∑ 𝛽𝑗𝑗 𝑧𝑀̅𝐻,𝑗 (targeting 

the average spending for the mental illness group achieved by the intervening on the data implementation in (2). (6) is a 
constrained regression with a constraint of 𝑌̅𝑀𝐻 = ∑ 𝛽𝑗𝑗 𝑧𝑀̅𝐻,𝑗to achieve zero net compensation for the mental illness 

group.  
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Table 4: Disparity, Initial Mean Payments, and Mean Spending by Neighborhood Income Groups 
(in U.S. Dollars, 2011) 

Group Disparity Mean Payments Mean Spending N 

Zip Code Income    1,500,000 
Binary     
  Low -191 10,050 9,911 900,000 
  High 0 9,673 9,880 600,000 
Quintiles     
  1st  -58 10,227 10,160 300,000 
  2nd  -251 10,051 9,852 300,000 
  3rd  -265 9,872 9,723 300,000 
  4th  0 9,786 9,760 300,000 
  5th  0 9,559 10,001 300,000 

 

Table 5: Comparison for Reducing Disparities by Neighborhood Income – Group Payments and 
Spending (in U.S. Dollars, 2011)  

Group 
Base OLS 

Intervening on 
the Data 

Adding a Risk 
Adjustor 

Combination 
Mean 

Spending 

(1) (2) (3) (4) (5) 

R2 11.158 11.114 11.161 11.094  
Zip Code Income      
Binary      
  Low 

10,050  
10, 

074 
9,911 10,308 

9,911 

  High 9,673 9,636 9,880 9,286 9,880 
Quintiles      
  1st  10,227 10,284 10,095 10,506 10,160 
  2nd  10,051 10,071 9,911 10,307 9,852 
  3rd  9,872 9,868 9,728 10,110 9,723 
  4th  9,786 9,765 9,996 9,410 9,760 
  5th  9,559 9,508 9,765 9,161 10,001 
Notes: Column (1) contains the simplified CMS-HCC v21 risk adjustment regression. (2) contains intervening on the 
data where we increase spending by 10% for individuals in the low-income group. (3) is the baseline OLS regression 
with an indicator the low-income group. (4) contains the baseline OLS regression with an indicator for the low-
income group, combined with intervening on the data where we increase spending by 10% for the low-income 
group. (5) shows mean group-level spending.  
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Figure 1: Comparing Changes to Net Compensation for Mental Illness Subgroups by 
Methodological Approach

 
 
 
Figure 2: Relationship between Intervening on the         Figure 3: Relationship between Intervening 
Data Spending Transfer for Mental Illness Group             on the Data Spending Transfer for Chronic 
and Net Compensation by Chronic Condition                    Condition Group and Net Compensation 
                   by Chronic Condition 

 

 

  



 

 
32 

Appendix 
 
Baseline Risk Adjustment Formula 
 

As described in the main text, the baseline risk adjustment regression we implement is a similar 

specification to the Version 21 CMS-HCC formula for the aged, community dwelling subgroup. 

We simplify our formula and do not include interaction terms between diseases, which are 

sparsely populated, and we also do not modify coefficients post-estimation as CMS does (Pope, 

et al. 2011). To calculate risk scores, CMS converts the dollar risk adjustment coefficients into 

relative risk factors by dividing by the average per person predicted spending for a designated 

year.  In our analyses we use the coefficients as dollar weights.  With an analysis for one year, 

these methods are equivalent.   

 
 
Super Learner 
 
Machine learning is well-suited to estimating disparities because our definition is formulated as 

a prediction exercise and the functional form of any differences is not known in advance. We 

therefore adjust for health status in a general and flexible way, using ensemble machine 

learning methods. We use the super learner framework, which combines many algorithms into 

a weighted average prediction function (van der Laan, Polley and Hubbard 2007, van der Laan 

and Rose 2011). While it has not, to our knowledge, been used in disparities work, it has been 

deployed for prediction or classification in other applications, such as health outcomes (e.g., 

Petersen, et al. 2015 and Pirracchio, et al. 2015) and health spending (e.g., Rose 2016 and Rose, 

Bergquist and Layton 2017).  

 

The super learner takes as input: (1) the data and (2) a collection of algorithms. The first step 

involves performing V-fold cross-validation for each algorithm in the collection. An optimal 

weight vector is then constructed by regressing the outcome 𝑌𝑖 on the cross-validated 

predicted spending values generated for each algorithm. The estimated coefficient for each 

column in the matrix of cross-validated predicted spending values is the weight for the 

algorithm that produced those values.  One can show that this regression selects the optimal 
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weight vector, and that by restricting the family of possible weighted combinations to convex 

combinations (i.e., nonnegative weights that sum to one) performance can be improved (van 

der Laan, Polley, and Hubbard 2007). The collection of algorithms the super learner ensembles 

can include not only different classes of algorithms (e.g., decision trees and penalized 

regressions), but also multiple similar algorithms with alternative tuning parameters (e.g., 

random forests with 250 observations in terminal nodes vs. 500 observations in terminal 

nodes). Algorithms, such as penalized regressions, that may select tuning parameters (e.g., λ), 

via cross-validation will still do so within the super learner procedure, leading to nested layers 

of cross-validation. The final super learner algorithm fits each algorithm on the full data and 

combines those functions with the estimated optimal weights to produce a final predicted 

value. Our super learner considered six algorithms: a main terms logistic regression, three 

penalized regressions, and a random forest with 500 trees and a minimum node size of 250 

observations. We implement our analyses using the SuperLearner package in R, which calls the 

randomForest and glmnet packages (Liaw and Wiener 2002; Friedman, Hastie and Tibshirani 

2010). 

 

Additional risk adjustors 

 

We add three risk adjustors from the Medicare Part D risk adjustment formula (CMS-RxHCC), 

which has been shown to recognize a greater number of individuals with mental health 

conditions in the ACA Marketplace setting (Montz, et al. 2016). The goal is to choose additional 

risk adjustors to capture individuals in the mental illness group (as defined by CCS groups) not 

already well represented by the included HCCs. Appendix Table 1 shows the overlap in 

underlying ICD-9 codes for each mental illness CCS group and the corresponding HCCs and 

RxHCCs. We select indicators for bipolar disorders, major depression, and depression to include 

in our regression. To pick these three risk adjustors, we first examined RxHCCs with the fewest 

ICD-9 codes in common with the mental illness HCCs, and then we chose the RxHCCs that 

covered the largest number of individuals in the CCS mental illness group.  
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Appendix Table 1: CCS ICD9 Codes cross walk with HCCs and RxHCCs   

ICD9 Codes CCS Group HCC RxHCC 
3090 3091 30922 30923 
30924 30928 30929 3093 
3094 30982 30983 30989 
3099 
 

Adjustment 
disorders (650) 

N/A Depression (62) 

29384 30000 30001 30002 
30009 30010 30020 30021 
30022 30023 30029 3003 
3005 30089 3009 3080 
3081 3082 3083 3084      
3089 30981 3130 3131 
31321 31322 3133 31382 
31383    

Anxiety Disorders 
(651) 

N/A Anxiety 
Disorders (63) 
Specified 
Anxiety, 
Personality, and 
Behavior 
Disorders (61) 

31200 31201 31202 31203 
31210 31211 31212 31213 
31220 31221 31222 31223 
3124 3128 31281 31282 
31289 3129 31381 31400      
31401 3141 3142 3148 
3149   
 

ADHD, conduct, 
and disruptive 
behavior 
disorders (652) 

N/A Specified 
Anxiety, 
Personality, and 
Behavior 
Disorders (61) 
 

2900 29010 29011 29012 
29013 29020 29021 2903 
29040 29041 29042 29043 
2908 2909 2930 2931 2940 
2941 29410 29411      
29420 29421 2948 2949 
3100 3102 3108 31081 
31089 3109 3310 3311 
33111 33119 3312 33182 
797        
 
 

Delirium, 
dementia, and 
amnestic and 
other cognitive 
disorders (653) 

Dementia without 
Complication (52) 
Dementia with 
Complications (51) 

Dementia, 
Except 
Alzheimer’s 
Disease (55) 
Alzheimer’s 
Disease (54) 

3070 3079 31500 31501 
31502 31509 3151 3152 
31531 31532 31534 31535 
31539 3154 3155 3158 
3159 317 3180 3181      
3182 319 V400 V401  
 

Developmental 
disorders (654) 

N/A Mild or 
Unspecified 
Mental 
Retardation/ 
Developmental 
Disability (68) 
Profound or 
Severe Mental 
Retardation/ 
Developmental 
Disability (66) 
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Moderate 
Mental 
Retardation/ 
Developmental 
Disability (67) 
 

     29900 29901 29910 
29911 29980 29981 29990 
29991 30720 30721 30722 
30723 3073 3076 3077 
30921 31323 31389 3139    

Disorders usually 
diagnosed in 
infancy, 
childhood, or 
adolescence 
(655) 

N/A Specified 
Anxiety, 
Personality, and 
Behavior 
Disorders (61) 
Autism (65) 

     31230 31231 31232 
31233 31234 31235 31239                            

Impulse control 
disorders, NEC 
(656) 

N/A Specified 
Anxiety, 
Personality, and 
Behavior 
Disorders (61) 

29383 29600 29601 29602 
29603 29604 29605 29606 
29610 29611 29612 29613 
29614 29615 29616 29620 
29621 29622 29623 29624      
29625 29626 29630 29631 
29632 29633 29634 29635 
29636 29640 29641 29642 
29643 29644 29645 29646 
29650 29651 29652 29653      
29654 29655 29656 29660 
29661 29662 29663 29664 
29665 29666 2967 29680 
29681 29682 29689 29690 
29699 3004 311    

Mood disorders 
(657) 

Major Depressive, 
Bipolar, and Paranoid 
Disorders (58) 

Bipolar 
Disorders (59) 
Major 
Depression (60) 
Depression (62) 

3010 30110 30111 30112 
30113 30120 30121 30122 
3013 3014 30150 30151 
30159 3016 3017 30181 
30182 30183 30184 30189      
3019  

Personality 
disorders (658) 

N/A Depression (62) 
Specified 
Anxiety, 
Personality, and 
Behavior 
Disorders (61) 

29381 29382 29500 29501 
29502 29503 29504 29505 
29510 29511 29512 29513 
29514 29515 29520 29521 
29522 29523 29524 29525      
29530 29531 29532 29533 
29534 29535 29540 29541 

Schizophrenia 
and other 
psychotic 
disorders (659) 

Schizophrenia (57) 
Major Depressive, 
Bipolar, and Paranoid 
Disorders (58) 

Schizophrenia 
(58) 
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29542 29543 29544 29545 
29550 29551 29552 29553 
29554 29555 29560 29561      
29562 29563 29564 29565 
29570 29571 29572 29573 
29574 29575 29580 29581 
29582 29583 29584 29585 
29590 29591 29592 29593      
29594 29595 2970 2971 
2972 2973 2978 2979 2980 
2981 2982 2983 2984 2988 
2989            

2910 2911 2912 2913 2914 
2915 2918 29181 29182 
29189 2919 30300 30301 
30302 30303 30390 30391 
30392 30393 30500      
30501 30502 30503 3575 
4255 5353 53530 53531 
5710 5711 5712 5713 
76071 9800              

Alcohol-related 
disorders (660) 

Drug/Alcohol 
Psychosis (54) 
Drug/Alcohol 
Dependence (55) 
Polyneuropathy (75) 
Congestive Heart 
Failure (85) 
Cirrhosis of Liver (28) 

Polyneuropathy 
(74) 
Congestive 
Heart Failure 
(87) 

2920 29211 29212 2922 
29281 29282 29283 29284 
29285 29289 2929 30400 
30401 30402 30403 30410 
30411 30412 30413 30420      
30421 30422 30423 30430 
30431 30432 30433 30440 
30441 30442 30443 30450 
30451 30452 30453 30460 
30461 30462 30463 30470      
30471 30472 30473 30480 
30481 30482 30483 30490 
30491 30492 30493 30520 
30521 30522 30523 30530 
30531 30532 30533 30540      
30541 30542 30543 30550 
30551 30552 30553 30560 
30561 30562 30563 30570 
30571 30572 30573 30580 
30581 30582 30583 30590      
30591 30592 30593 64830 
64831 64832 64833 64834 
65550 65551 65553 76072 
76073 76075 7795 96500 
96501 96502 96509 V6542  

Substance-
related disorders 
(661) 

Drug/Alcohol 
Psychosis (54) 
Drug/Alcohol 
Dependence (55) 

N/A 

E9500 E9501 E9502 E9503 
E9504 E9505 E9506 E9507 

Suicide and N/A N/A 
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E9508 E9509 E9510 E9511 
E9518 E9520 E9521 E9528 
E9529 E9530 E9531 E9538      
E9539 E954 E9550 E9551 
E9552 E9553 E9554 E9555 
E9556 E9557 E9559 E956 
E9570 E9571 E9572 E9579 
E9580 E9581 E9582 E9583      
E9584 E9585 E9586 E9587 
E9588 E9589 E959 V6284   

intentional self-
inflicted injury 
(662) 

3051 30510 30511 30512 
30513 33392 7903 V110 
V111 V112 V113 V114 V118 
V119 V154 V1541 V1542 
V1549 V1582 V6285      
V663 V701 V702 V7101 
V7102 V7109 V790 V791 
V792 V793 V798 V799   

Screening and 
history of mental 
health and 
substance abuse 
codes (663) 

N/A N/A 

29389 2939 30011 30012 
30013 30014 30015 30016 
30019 3006 3007 30081 
30082 3021 3022 3023 
3024 30250 30251 30252      
30253 3026 30270 30271 
30272 30273 30274 30275 
30276 30279 30281 30282 
30283 30284 30285 30289 
3029 3060 3061 3062      
3063 3064 30650 30651 
30652 30653 30659 3066 
3067 3068 3069 3071 
30740 30741 30742 30743 
30744 30745 30746 30747      
30748 30749 30750 30751 
30752 30753 30754 30759 
30780 30781 30789 3101 
316 64840 64841 64842 
64843 64844 V402 V403      
V4031 V4039 V409 V673  

Miscellaneous 
mental health 
disorders (670) 

N/A Specified 
Anxiety, 
Personality, and 
Behavior 
Disorders (61) 
Anxiety 
Disorders (63) 

 
Disparities Application Extension  

 

We expand on the primary disparities example by demonstrating an even more targeted 

intervention: once again 10% is transferred to the low-income group, but funds are taken from 

only the upper half of the high-income group (the fifth quintile), leaving individuals in the 
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fourth income quintile unaffected. To accomplish this we modify the Y vector as before for the 

low-income group, imposing an overall budget constraint, and imposing a second constraint 

that maintains the spending levels of the fourth quintile, so that only individuals in the fifth 

quintile are used to counterbalance the spending for the low-income group. 

 

Appendix Table 2 shows transferring 10% of spending to the low-income group but reducing 

spending for only the fifth income quintile generates minimal change in payments for the low-

income group. Adding a risk adjustor for the low-income group does not allow us to specify 

what happens within the high-income group, and we see the fourth income quintile receives 

substantially higher payments. Combining adding a risk adjustor with intervening on the data is 

once again the most powerful approach, although the overall changes are much more modest 

(from $10,050 to $10,058 for the low-income group) than when we allowed spending for the 

entire high-income group to be reduced.  

 

Appendix Table 2: Comparison for Reducing Disparities by Targeting Neighborhood Income 
Subgroup – Group Payments and Spending (in U.S. Dollars, 2011) 

Group 
Base OLS 

Intervening on 
the Data 

Adding a Risk 
Adjustor 

Combination 
Mean 

Spending 

(1) (2) (3) (4) (5) 

R2 11.158 11.117 11.161 11.116  
Zip Code Income      
Binary      
  Low 10,050  10,053 9,911 10,058 9,911 
  High 9,673 9,668 9,880 9,660 9,880 
Quintiles      
  1st  10,227 10,230 10,095 10,261 10,160 
  2nd  10,051 10,057 9,911 10,057 9,852 
  3rd  9,872 9,873 9,728 9,858 9,723 
  4th  9,786 9,786 9,996 9,786 9,760 
  5th  9,559 9,550 9,765 9,534 10,001 
Notes: Column (1) contains the simplified CMS-HCC v21 risk adjustment regression. (2) contains intervening on the 
data where we increase spending by 10% for individuals in the low-income group and reduce spending for the 5

th
 

quintile. (3) is the baseline OLS regression with an indicator the low-income group. (4) contains the baseline OLS 
regression with an indicator for the low-income group, combined with intervening on the data where we increase 
spending by 10% for the low-income group and reduce spending for the 5

th
 quintile. (5) shows mean group-level 

spending. 

 




