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I. Introduction 

Rapid advances in the field of artificial intelligence have profound implications for the 

economy as well as society at large.  These innovations have the potential to directly influence 

both the production and the characteristics of a wide range of products and services, with 

important implications for productivity, employment, and competition.  But, as important as 

these effects are likely to be, artificial intelligence also has the potential to change the innovation 

process itself, with consequences that may be equally profound, and which may, over time, come 

to dominate the direct effect. 

Consider the case of Atomwise, a startup firm which is developing novel technology for 

identifying potential drug candidates (and insecticides) by using neural networks to predict the 

bioactivity of candidate molecules.  The company reports that its deep convolutional neural 

networks “far surpass” the performance of conventional “docking” algorithms.  After appropriate 

training on vast quantities of data, the company’s AtomNet product is described as being able to 

“recognize” foundational building blocks of organic chemistry, and is capable of generating 

highly accurate predictions of the outcomes of real-world physical experiments (Wallach et al., 

2015).  Such breakthroughs hold out the prospect of substantial improvements in the productivity 

of early stage drug screening.  Of course, Atomwise’s technology (and that of other companies 

leveraging artificial intelligence to advance drug discovery or medical diagnosis) is still at an 

early stage:  though their initial results seem to be promising, no new drugs have actually come 

to market using these new approaches.  But whether or not Atomwise delivers fully on its 

promise, its technology is representative of the ongoing attempt to develop a new innovation 

“playbook”, one that leverages large datasets and learning algorithms to engage in precise 

prediction of biological phenomena in order to guide design effective interventions. Atomwise, 

for example, is now deploying this approach to the discovery and development of new pesticides 

and agents for controlling crop diseases.   

Atomwise’s example illustrates two of the ways in which advances in artificial intelligence 

have the potential to impact innovation.  First, though the origins of artificial intelligence are 

broadly in the field of computer science, and its early commercial applications have been in 

relatively narrow domains such as robotics, the learning algorithms that are now being developed 
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suggest that artificial intelligence may ultimately have applications across a very wide range.  

From the perspective of the economics of innovation (among others, Bresnahan and Trajtenberg 

(1995)), there is an important distinction between the problem of providing innovation incentives 

to develop technologies with a relatively narrow domain of application, such robots purpose-

built for narrow tasks, versus technologies with a wide—advocates might say almost limitless—

domain of application, as may be true of the advances in neural networks and machine learning 

often referred to as “deep learning.”  As such, a first question to be asked is the degree to which 

developments in artificial intelligence are not simply examples of new technologies, but rather 

may be the kinds of “general purpose technologies” (hereafter GPTs) that have historically been 

such influential drivers of long-term technological progress.  

Second, while some applications of artificial intelligence will surely constitute lower-cost or 

higher-quality inputs into many existing production processes (spurring concerns about the 

potential for large job displacements), others, such as deep learning, hold out the prospect of not 

only productivity gains across a wide variety of sectors but also changes in the very nature of the 

innovation process within those domains.  As articulated famously by Griliches (1957), by 

enabling innovation across many applications, the “invention of a method of invention” has the 

potential to have much larger economic impact than development of any single new product.  

Here we argue that recent advances in machine learning and neural networks, through their 

ability to improve both the performance of end use technologies and the nature of the innovation 

process, are likely to have a particularly large impact on innovation and growth.  Thus the 

incentives and obstacles that may shape the development and diffusion of these technologies are 

an important topic for economic research, and building an understanding of the conditions under 

which different potential innovators are able to gain access to these tools and to use them in a 

pro-competitive way is a central concern for policy. 

This essay begins to unpack the potential impact of advances in artificial intelligence on 

innovation, and to identify the role that policy and institutions might play in providing effective 

incentives for innovation, diffusion, and competition in this area.  We begin in Section II by 

highlighting the distinctive economics of research tools, of which deep learning applied to R&D 

problems is such an intriguing example.  We focus on the interplay between the degree of 

generality of application of a new research tool and the role of research tools not simply in 
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enhancing the efficiency of research activity but in creating a new “playbook” for innovation 

itself.  We then turn in Section III to briefly contrasting three key technological trajectories 

within AI—robotics, symbolic systems, and deep learning.  We propose that these often 

conflated fields will likely play very different roles in the future of innovation and technical 

change.  Work in symbolic systems appears to have stalled and is likely to have relatively little 

impact going forwards. And while developments in robotics have the potential to further displace 

human labor in the production of many goods and services, innovation in robotics technologies 

per se has relatively low potential to change the nature of innovation itself.  By contrast, deep 

learning seems to be an area of research that is highly general-purpose and that has the potential 

to change the innovation process itself.   

We explore whether this might indeed be the case through an examination of some 

quantitative empirical evidence on the evolution of different areas artificial intelligence in terms 

of scientific and technical outputs of AI researchers as measured (imperfectly) by the publication 

of papers and patents from 1990 through 2015.  In particular, we develop what we believe is the 

first systematic database that captures the corpus of scientific paper and patenting activity in 

artificial intelligence, broadly defined, and divides these outputs into those associated with 

robotics, symbolic systems, and deep learning.   Though preliminary in nature (and inherently 

imperfect given that key elements of research activity in artificial intelligence may not be 

observable using these traditional innovation metrics), we find striking evidence for a rapid and 

meaningful shift in the application orientation of learning-oriented publications, particularly after 

2009.  The timing of this shift is informative, since it accords with qualitative evidence about the 

surprisingly strong performance of so-called “deep learning” multi-layered neural networks in a 

range of tasks including computer vision and other prediction tasks.  Supplementary evidence 

(not reported here) based on the citation patterns to authors such as Geoffrey Hinton who are 

leading figures in deep learning suggests a striking acceleration of work in just the last few years 

that builds on a small number of algorithmic breakthroughs related to multi-layered neural 

networks.   

Though not a central aspect of the analysis for this paper, we further find that, whereas 

research on learning-oriented algorithms has had a slow and steady upward swing outside of the 
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United States, US researchers have had a less sustained commitment to learning-oriented 

research prior to 2009, and have been in a “catch up” mode ever since. 

Finally, we begin to explore some of the organizational, institutional and policy 

consequences of our analysis.  We see machine learning as the “invention of a method of 

invention” whose application depends, in each case, on having access not just to the underlying 

algorithms but also to large, granular datasets on physical and social behavior.  Developments in 

neural networks and machine learning thus raise the question of, even if the underlying scientific 

approaches (i.e., the basic multi-layered neural networks algorithms) are open, prospects for 

continued progress in this field—and commercial applications thereof—are likely to be 

significantly impacted by terms of access to complementary data.  Specifically, if there are 

increasing returns to scale or scope in data acquisition (there is more learning to be had from the 

“larger” dataset), it is possible that early or aggressive entrants into a particular application area 

may be able to create a substantial and long-lasting competitive advantage over potential rivals 

merely through the control over data rather than through formal intellectual property or demand-

side network effects.  Strong incentives to maintain data privately has the additional potential 

downside that data is not being shared across researchers, thus reducing the ability of all 

researchers to access an even larger set of data that would arise from public aggregation.  As the 

competitive advantage of incumbents is reinforced, the power of new entrants to drive 

technological change may be weakened.  Though this is an important possibility, it is also the 

case that, at least so far, there seems to be a significant amount of entry and experimentation 

across most key application sectors.   

 

II. The Economics of New Research Tools:  The Interplay between New Methods of 

Invention and the Generality of Innovation 

At least since Arrow (1962) and Nelson (1959), economists have appreciated the 

potential for significant underinvestment in research, particularly basic research or domains of 

invention with low appropriability for the inventor.  Considerable insight has been gained into 

the conditions under which the incentives for innovation may be more or less distorted, both in 

terms of their overall level and in terms of the direction of that research.  As we consider the 

potential impact of advances in AI on innovation, two ideas from this literature seem particularly 
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important—the potential for contracting problems associated with the development of a new 

broadly applicable research tool, and the potential for coordination problems arising from 

adoption and diffusion of a new “general purpose technology.”  In contrast to technological 

progress in relatively narrow domains, such as traditional automation and industrial robots, we 

argue that those areas of artificial intelligence evolving most rapidly—such as deep learning—

are likely to raise serious challenges in both dimensions.   

First, consider the challenge in providing appropriate innovation incentives when an 

innovation has potential to drive technological and organizational change across a wide number 

of distinct applications.  Such “general purpose technologies” (David, 1990; Bresnahan and 

Trajtenberg, 1995) often take the form of core inventions that have the potential to significantly 

enhance productivity or quality across a wide number of fields or sectors.  David’s (1990) 

foundational study of the electric motor showed that this invention brought about enormous 

technological and organizational change across sectors as diverse as manufacturing, agriculture, 

retail, and residential construction.  Such “GPTs” are usually understood to meet three criteria 

that distinguish them from other innovations: they have pervasive application across many 

sectors; they spawn further innovation in application sectors, and they themselves are rapidly 

improving.   

As emphasized by Bresnahan and Trajtenberg (1995), the presence of a general-purpose 

technology gives rise to both vertical and horizontal externalities in the innovation process that 

can lead not just to underinvestment but also to distortions in the direction of investment, 

depending on the degree to which private and social returns diverge across different application 

sectors.  Most notably, if there are “innovation complementarities” between the general purpose 

technology and each of the application sectors, lack of incentives in one sector can create an 

indirect externality that results in a system-wide reduction in innovative investment itself.  While 

the private incentives for innovative investment in each application sector depend on its the 

market structure and appropriability conditions, that sector’s innovation enhances innovation in 

the GPT itself, which then induces subsequent demand (and further innovation) in other 

downstream application sectors.  These gains can rarely be appropriated within the originating 

sector.  Lack of coordination between the GPT and application sectors, as well as across 

application sectors, is therefore likely to significantly reduce investment in innovation.  Despite 
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these challenges, a reinforcing cycle of innovation between the GPT and a myriad of application 

sectors can generate a more systemic economy-wide transformation as the rate of innovation 

increases across all sectors.  A rich empirical literature examining the productivity impacts of 

information technology point to the role of the microprocessor as a GPT as a way of 

understanding the impact of IT on the economy as a whole (among many others, Bresnahan and 

Greenstein (1995); Brynjolfsson and Hitt (1999); and Bresnahan, Brynjolfsson, and Hitt (2001)).  

Various aspects of artificial intelligence can certainly be understood as a GPT, and learning from 

examples such as the microprocessor are likely to be a useful foundation for thinking about both 

the magnitude of their impact on the economy, and associated policy challenges.   

A second conceptual framework for thinking about AI is the economics of research tools.  

Within the research sectors, some innovations open up new avenues of inquiry, or simply 

improve productivity “within the lab”.  Some of these advances appear to have great potential 

across a broad set of domains, beyond their initial application: as highlighted by Griliches (1957) 

in his classic studies of hybrid corn, some new research tools are inventions that do not just 

create or improve a specific product—instead they constitute a new way of creating new 

products, with much broader application.  In Griliches’ famous construction, the discovery of 

double-cross hybridization “was the invention of a method of inventing.”  (Hereinafter, “IMI”.)  

Rather than being a means of creating a single a new corn variety, hybrid corn represented a 

widely applicable method for breeding many different new varieties.  When applied to the 

challenge of creating new varieties optimized for many different localities (and even more 

broadly, to other crops) the invention of double-cross hybridization had a huge impact on 

agricultural productivity.   

One of the important insights to be gained from thinking about IMIs, therefore, is that the 

economic impact of some types of research tools is not limited to their ability to reduce the costs 

of specific innovation activities—perhaps even more consequentially they enable a new 

approach to innovation itself, by altering the “playbook” for innovation in the domains where the 

new tool is applied.  For example, prior to the systematic understanding of the power of “hybrid 

vigor,” a primary focus in agriculture had been improved techniques for self-fertilization (i.e., 

allowing for more and more specialized natural varietals over time).  Once the rules governing 

hybridization (i.e., heterosis) were systematized, and the performance advantages of hybrid vigor 
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demonstrated, the techniques and conceptual approach for agricultural innovation was shifted, 

ushering in a long period of systematic innovation using these new tools and knowledge.   

Advances in machine learning and neural networks appear to have great potential as a 

research tool in problems of classification and prediction.  These are both important limiting 

factors in a variety of research tasks, and, as exemplified by the Atomwise example, application 

of “learning” approaches to AI hold out the prospect of dramatically lower costs and improved 

performance in R&D projects where these are significant challenges.  But as with hybrid corn, 

AI based learning may be more usefully understood as an IMI than as a narrowly limited solution 

to a specific problem.  One the one hand, AI based learning may be able to substantially 

“automate discovery” across many domains where classification and prediction tasks play an 

important role.  On the other, they may also “expand the playbook” is the sense of opening up 

the set of problems that can be feasibly addressed, and radically altering  scientific and technical 

communities’ conceptual approaches and framing of problems.  The invention of optical lenses 

in the 17th century had important direct economic impact in applications such as spectacles.  But 

optical lenses in the form of microscopes and telescopes also had enormous and long-lasting 

indirect effects on the progress of science, technological change, growth, and welfare: by making 

very small or very distant objects visible for the first time, lenses opened up entirely new 

domains of inquiry and technological opportunity.  Leung et al. (2016), for example, evocatively 

characterize machine learning as an opportunity to “learn to read the genome” in ways that 

human cognition and perception cannot.   

Of course, many research tools are neither IMIs nor GPTs, and their primary impact is to 

reduce the cost or enhance the quality of an existing innovation process.  For example, in the 

pharmaceutical industry, new kinds of materials promise to enhance the efficiency of specific 

research processes.  Other research tools can indeed be thought of as IMIs but are nonetheless 

relatively limited in application.  For example, the development of genetically engineered 

research mice (such as the Oncomouse) is an IMI that has had a profound impact on the conduct 

and “playbook” of biomedical research, but has no obvious relevance to innovation in areas such 

as information technology, energy, or aerospace.  The challenge presented by advances in AI is 

that they appear to be research tools that not only have the potential to change the method of 

innovation itself but also have implications across an extraordinarily wide range of fields.  
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Historically technologies with these characteristics—think of digital computing—have had large 

and unanticipated impacts across the economy and society in general.  Mokyr (2002) points to 

the profound impact of IMIs that take the form not of tools per se, but innovations in the way 

research is organized and conducted, such as the invention of the university.  GPTs that are 

themselves IMIs (or vice versa) are particularly complex phenomena, whose dynamics are as yet 

poorly understood or characterized. 

From a policy perspective, a further important feature of research tools is that it may be 

particularly difficult to appropriate their benefits. As emphasized by Scotchmer (1990), 

providing appropriate incentives for an upstream innovator that develops only the first “stage” of 

an innovation (such as a research tool) can be particularly problematic when contracting is 

imperfect and the ultimate application of the new products whose development is enabled by the 

upstream innovation is uncertain.  Scotchmer and her co-authors emphasized a key point about a 

multi-stage research process:  when the ultimate innovation that creates value requires multiple 

steps, providing appropriate innovation incentives are not only a question of whether and how to 

provide property rights in general, but also of how best to distribute property rights and 

incentives across the multiple stages of the innovation process.  Lack of incentives for early-

stage innovation can therefore mean that the tools required for subsequent innovation do not 

even get invented; strong early-stage property rights without adequate contracting opportunities 

may result in “hold-up” for later-stage innovators and so reduce the ultimate impact of the tool in 

terms of commercial application. 

The vertical research spillovers created by new research tools (or IMIs) are not just a 

challenge for designing appropriate intellectual property policy.1  They are also exemplars of the 

core innovation externality highlighted by endogenous growth theory (Romer, 1990; Aghion and 

Howitt, 1992); a central source of underinvestment in innovation is the fact that the intertemporal 

spillovers from innovators today to innovators tomorrow cannot be easily captured.  While 

tomorrow’s innovators benefit from “standing on the shoulders of giants,” their gains are not 

easily shared with their predecessors.  This is not simply a theoretical idea: an increasing body of 

evidence suggests that research tools and the institutions that support their development and 

                                                           
1 Challenges presented by AI-enabled invention for legal doctrine and the patent process are beyond the scope of 
this essay.   
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diffusion play an important role in generating intertemporal spillovers (among others, Furman 

and Stern, 2011; Williams, 2014).  A central insight of this work is that control—both in the 

form of physical exclusivity as well as in the form of formal intellectual property rights—over 

tools and data can shape both the level and direction of innovative activity, and that rules and 

institutions governing control over these areas has a powerful influence on the realized amount 

and nature of innovation. 

Of course, these frameworks cover only a subset of the key informational and 

competitive distortions that might arise when considering whether and how to provide optimal 

incentives for the type of technological change represented by some areas of AI.  But these two 

areas in particular seem likely to be important for understanding the implications of the current 

dramatic advances in AI supported learning. We therefore turn in the next section to a brief 

outline of the ways in which AI is changing, with an eye towards bringing the framework here to 

bear on how we might outline a research agenda exploring the innovation policy challenges that 

they create. 

 

III. The Evolution of Artificial Intelligence:  Robotics, Symbolic Systems, and Neural 

Networks 

In his omnibus historical account of AI research, Nilsson (2010) defines AI as “that 

activity devoted to making machines intelligent, and intelligence is that quality that enables an 

entity to function appropriately and with foresight in its environment.” His account details the 

contributions of multiple fields to achievements in AI, including but not limited to biology, 

linguistics, psychology and cognitive sciences, neuroscience, mathematics, philosophy and logic, 

engineering and computer science.  And, of course, regardless of their particular approach, 

artificial intelligence research has been united by from the beginning by its engagement with 

Turing (1950), and his discussion of the possibility of mechanizing intelligence.  

Though often grouped together, the intellectual history of AI as a scientific and technical 

field is usefully informed by distinguishing between three interrelated but separate areas:  

robotics, neural networks, and symbolic systems.  Perhaps the most successful line of research in 

the early years of AI—dating back to the 1960s—falls under the broad heading of symbolic 
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systems.  Although early pioneers such as Turing had emphasized the importance of teaching a 

machine as one might a child (i.e., emphasizing AI as a learning process), the “symbol 

processing hypothesis” (Newell, Shaw, and Simon, 1958; Newell and Simon, 1976) was 

premised on the attempt to replicate the logical flow of human decision making through 

processing symbols.  Early attempts to instantiate this approach yielded striking success in 

demonstration projects, such as the ability of a computer to navigate elements of a chess game 

(or other board games) or engage in relatively simple conversations with humans by following 

specific heuristics and rules embedded into a program.  However, while research based on the 

concept of a “general problem solver” has continued to be an area of significant academic 

interest, and there have been periodic explosions of interest in the use of such approaches to 

assist human decision-making (e.g., in the context of early-stage expert systems to guide medical 

diagnosis), the symbolic systems approach has been heavily criticized for its inability to 

meaningfully impact real-world processes in a scalable way.  It is of course possible that this 

field will see breakthroughs in the future, but it is fair to say that, while symbolic systems 

continues to be an area of academic research, it has not been central to the commercial 

application of AI.  Nor is it at the heart of the recent reported advances in AI that are associated 

with the area of machine learning and prediction. 

A second influential trajectory in AI has been broadly in the area of robotics.  While the 

concepts of “robots” as machines that can perform human tasks dates back at least to the 1940s, 

the field of robotics began to meaningfully flourish from the 1980s onwards through a 

combination of the advances in numerically controlled machine tools and the development of 

more adaptive but still rules-based robotics that rely on the active sensing of a known 

environment.  Perhaps the most economically consequential application of AI to date has been in 

this area, with large scale deployment of “industrial robots” in manufacturing applications.  

These machines are precisely programmed to undertake a given task in a highly controlled 

environment.  Often located in “cages” within highly specialized industrial processes (most 

notably automobile manufacturing), these purpose-built tools are perhaps more aptly described 

as highly sophisticated numerically controlled machines rather than as robots with significant AI 

content.  Over the past twenty years, innovation in robotics has had an important impact on 

manufacturing and automation, most notably through the introduction of more responsive robots 

that rely on programmed response algorithms that can respond to a variety of stimuli.  This 
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approach, famously pioneered by Rod Brooks (1990), focused the commercial and innovation 

orientation of AI away from the modeling of human-like intelligence towards providing feedback 

mechanisms that would allow for practical and effective robotics for specified applications.  This 

insight led, among other applications, to the Roomba and to other adaptable industrial robots that 

could interact with humans such as Rethink Robotics’ Baxter).  Continued innovation in robotics 

technologies (particularly in the ability of robotic devices to sense and interact with their 

environment) may lead to wider application and adoption outside industrial automation. 

These advances are important, and the most advanced robots continue to capture public 

imagination when the term AI is invoked.  But innovations in robotics are not, generally 

speaking, IMIs.  The increasing automation of laboratory equipment certainly improves research 

productivity, but advances in robotics are not (yet) centrally connected to the underlying ways in 

which researchers themselves might develop approaches to undertake innovation itself across 

multiple domains.  There are of course counterexamples to this proposition:  robotic space 

probes have been a very important research tool in planetary science, and the ability of 

automated remote sensing devices to collect data at very large scale or in challenging 

environments may transform some fields of research.  But robots continue to be used principally 

in specialized end-use “production” applications. 

Finally, a third stream of research that has been a central element of AI since its founding 

can be broadly characterized as a “learning” approach.  Rather than being focused on symbolic 

logic, or precise sense-and-react systems, the learning approach attempts to create reliable and 

accurate methods for the prediction of particular events (either physical or logical) in the 

presence of particular inputs.   The concept of a neural network has been particularly important 

in this area.   A neural network is a program that uses a combination of weights and thresholds to 

translate a set of inputs into a set of outputs, measures the “closeness” of these outputs to reality, 

and then adjusts the weights it uses to narrow the distance between outputs and reality. In this 

way, neural networks can learn as they are fed more inputs (Rosenblatt, 1958; 1963).  Over the 

course of the 1980s, Hinton and his co-authors further advanced the conceptual framework on 

which neural networks are based through the development of “back-propagating multi-layer” 

techniques that further enhance their potential for supervised learning.    
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After being initially heralded as having significant promise, the field of neural networks 

has come in and out of fashion, particularly within the United States.  From the 1980s through 

the mid-2000s, their challenge seemed to be that there were significant limitations to the 

technology that could not be easily fixed by using larger training datasets or through the 

introduction of additional layers of “neurons.” However, in the mid-2000s, a small number of 

new algorithmic approaches demonstrated the potential to enhance prediction through back 

propagation through multiple layers.  These neural networks increased their predictive power as 

they were applied to larger and larger datasets, and were able to scale to an arbitrary level 

(among others, a key reference here is Hinton and Salakhutdinov (2006)).  These advances 

exhibited a “surprising” level of performance improvement, notably in the context of the 

ImageNet visual recognition project competition pioneered by Fei-Fei Li at Stanford 

(Krizhevsky, Sutskever and Hinton, 2012).   

 

IV. How Might Different Fields within Artificial Intelligence Impact Innovation? 

Distinguishing between these three streams of AI is a critical first step towards 

developing a better understanding of how AI is likely to influence the innovation process going 

forward, since the three differ significantly in their potential to be either GPTs or IMIs—or both.   

First, though a significant amount of public discussion of AI focuses on the potential for 

AI to achieve super-human performance over a wide range of human cognitive capabilities, it is 

important to note that, at least so far, the significant advances in AI have not been in the form of 

the “general problem solver” approaches that were at the core of early work in symbolic systems 

(and that were the motivation for considerations of human reasoning such as the Turing test).  

Instead, recent advances in both robotics and in deep learning are by and large innovations that 

require a significant level of human planning and that apply to a relatively narrow domain of 

problem-solving (e.g., face recognition, playing Go, picking up a particular object, etc.)  While it 

is of course possible that further breakthroughs will lead to a technology that can meaningfully 

mimic the nature of human subjective intelligence and emotion, the recent advances that have 

attracted scientific and commercial attention are well removed from these domains. 
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Second, though most economic and policy analysis of AI draws out consequences from 

the last two decades of automation to consider the future economic impact of AI (e.g., in job 

displacement for an ever-increasing number of tasks), it is important to emphasize that there is a 

sharp difference between the advances in robotics that were a primary focus of applications of AI 

research during the 2000s and the potential applications of deep learning which have come to the 

fore over the last few years. 

As we suggested above, current advances in robotics are by and large associated with 

applications that are highly specialized and that are focused on end-user applications rather than 

on the innovation process itself and these advances do not seem as of yet to have translated to a 

more generally applicable IMI.  Robotics is therefore an area where we might focus on the 

impact of innovation (improved performance) and diffusion (more widespread application) in 

terms of job displacement versus job enhancement.  We see limited evidence as yet of 

widespread applications of robotics outside industrial automation, or of the scale of 

improvements in the ability to sense, react to, and manipulate the physically environment that the 

use of robotics outside manufacturing probably requires.  But there are exceptions: developments 

in the capabilities of “pick and place” robots and rapid progress in autonomous vehicles point to 

the possibility for robotics to escape manufacturing and become much more broadly used.  

Advances in robotics may well reveal this area of AI be a GPT, as defined by the classic criteria.   

Some research tools/IMIs based on algorithms have transformed the nature of research in 

some fields, but have lacked generality.  These types of algorithmic research tools, based on a 

static set of program instructions, are a valuable IMI, but do not appear to have wide 

applicability outside a specific domain and do not qualify as GPTs.  For example, while far from 

perfect, powerful algorithms to scan brain images (so-called functional MRI imaging) have 

transformed our understanding of the human brain, not only through the knowledge they have 

generated but also by establishing an entirely new paradigm and protocol for brain research.  

However, despite its role as a powerful IMI, fMRI lacks the type of general-purpose applicability 

that has been associated with the most important GPTs.  In contrast, the latest advances in deep 

learning have the potential to be both a general-purpose IMI and a classic GPT.  

The following table summarizes these ideas:  
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  General-Purpose Technology 

  NO YES 

Invention of a 

Method of Invention 

NO 
Industrial Robots 

(e.g. Fanuc R2000) 

‘Sense & React” Robots 

(e.g. Autonomous vehicles) 

YES 

Statically-coded 

Algorithmic Tools 

(e.g. fMRI) 

Deep Learning 

 

How might the promise of deep learning as a general-purpose IMI be realized?  Deep 

learning promises to be an enormously powerful new tool that allows for the unstructured 

“prediction” of physical or logical events in contexts where algorithms based on a static set of 

program instructions (such as classic statistical methods) perform poorly.  The development of 

this new approach to prediction enables a new approach to undertaking scientific and technical 

research.  Rather than focusing on small well-characterized datasets or testing settings, it is now 

possible to proceed by identifying large pools of unstructured data which can be used to 

dynamically develop highly accurate predictions of technical and behavioral phenomena.  In 

pioneering an unstructured approach to predictive drug candidate selection that brings together a 

vast array of previously disparate clinical and biophysical data, for example, Atomwise may 

fundamentally reshape the “ideas production function” in drug discovery.   

If advances in deep learning do represent the arrival of a general-purpose IMI, it is clear 

that there are likely to be very significant long-run economic, social, and technological 

consequence.  First, as this new IMI diffuses across many application sectors, the resulting 

explosion in technological opportunities and increased productivity of R&D seem likely to 

generate economic growth that can eclipse any near-term impact of AI on jobs, organizations, 

and productivity.  A more subtle implication of this point is that “past is not prologue”:  even if 

automation over the recent past has resulted in job displacement (e.g., Acemoglu and Restrepo, 

2017a), AI is likely to have at least as important an impact through its ability to enhance the 

potential for “new tasks” (as in Acemoglu and Restrepo, 2017b).   

Second, the arrival of a general-purpose IMI is a sufficiently uncommon occurrence that 

its impact could be profound for economic growth and its broader impact on society.  There have 
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been only a handful of previous general-purpose IMIs and each of these has had an enormous 

impact not primarily through their direct effects (e.g., spectacles, in the case of the invention of 

optical lenses) but through their ability to reshape the ideas production function itself (e.g. 

telescopes and microscopes).  It would therefore be helpful to understand the extent to which 

deep learning is, or will, causing researchers to significantly shift or reorient their approach in 

order to enhance research productivity (in the spirit of Jones (2009)).   

Finally, if deep learning does indeed prove to be a general-purpose IMI, it will be 

important to develop institutions and a policy environment that is conductive to enhancing 

innovation through this approach, and to do so in a way that promotes competition and social 

welfare.  A central concern here may be the interplay between a key input required for deep 

learning—large unstructured databases that provide information about physical or logical 

events—and the nature of competition.  While the underlying algorithms for deep learning are in 

the public domain (and can and are being improved on rapidly), the data pools that are essential 

to generate predictions may be public or private, and access to them will depend on 

organizational boundaries, policy and institutions.  Because the performance of deep learning 

algorithms depends critically on the training data that they are created from, it may be possible, 

in a particular application area, for a specific company (either an incumbent or start-up) gain a 

significant, persistent innovation advantage through their control over data that is independent of 

traditional economies of scale or demand-side network effects.  This “competition for the 

market” is likely to have several consequences.  First, it creates incentives for duplicative racing 

to establish a data advantage in particular application sectors (say, search, autonomous driving, 

or cytology) followed by the establishment of durable barriers to entry that may be of significant 

concern for competition policy.  Perhaps even more importantly, this kind of behavior could 

result in a balkanization of data within each sector, not only reducing innovative productivity 

within the sector, but also reducing spillovers back to the deep learning GPT sector, and to other 

application sectors.  This suggests that the proactive development of institutions and policies that 

encourage competition, data sharing, and openness is likely to be an important determinant of 

economic gains from the development and application of deep learning.  

Our discussion so far has been largely speculative, and it would be useful to know 

whether our claim that deep learning may be both a general-purpose IMI and a GPT, while 
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symbolic logic and robotics are probably not, have any empirical basis.  We turn in the next 

section to a preliminary examination of the evolution of AI as revealed by bibliometric data, with 

an eye towards answering this question.  

 

V. Data 

This analysis draws upon two distinct datasets, one that captures a set of AI publications 

from Thompson Reuters Web of Science, and another that identifies a set of AI patents issued by 

the U.S. Patent and Trademark Office. In this section, we provide detail on the assembly of these 

datasets and summary statistics for variables in the sample.  

. As previously discussed, peer-reviewed and public-domain literature on AI points to the 

existence of three distinct fields within AI: robotics, learning systems and symbol systems, each 

comprised of numerous subfields.  To track development of each of these using this data, we 

began by identifying the publications and patents falling into each of these three fields based on 

keywords.  Appendix 1 lists the terms we used to define each field and identify the papers and 

patents belonging to it. .2  In short, the robotics field includes approaches in which a system 

engages with and responds to environmental conditions; the symbolic systems field attempts to 

represent complex concepts through logical manipulation of symbolic representations, and the 

learning systems field processes data through analytical programs modeled on neurologic 

systems.  

Publication Sample and Summary Statistics 

Our analysis focuses on journal articles and book publications through the Web of 

Science from 1955 to 2015.  We conducted a keyword search utilizing the keywords described in 

Appendix A (we tried several variants of these keywords and alternative algorithmic approaches 

but this did not result in a meaningful difference in the publication set).   We are able to gather 

detailed information about each publication, including publication year, journal information, 

topical information, as well as author and institutional affiliations.   

                                                           
2 Ironically enough, we relied upon human intelligence rather than machine learning to develop this classification 
system and apply it to this data set. 
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This search yields 98,124 publications.  We then code each publication into one of the 

three main fields of AI, as described above.  Overall, relative to an initial dataset of 98,124, we 

are able to uniquely classify 95,840 publications as symbolic systems, learning systems, robotics, 

or “general” AI (we drop papers that involve combinations of these three fields).  Table 1A 

reports the summary statistics for this sample. 

Of the 95,840 publication in the sample, 11,938 (12.5 percent) are classified as symbolic 

systems, 58,853 (61.4 percent) as learning and 20,655 (21.6 percent) as robotics, with the 

remainder being in the general field of “artificial intelligence.”  To derive a better understanding 

of the factors that have shaped the evolution of AI, we create indicators for variables of interest 

including organization type (private versus academic), location type (US domestic versus 

International), and application type (computer science versus other application area, in addition 

to individual subject spaces, e.g. biology, materials science, medicine, physics, economics, etc.).  

We identify organization type as academic if the organization of one of the authors on the 

publication is an academic institution. 81,998 publications (85.5 percent) and 13,842 (14.4 

percent) are produced by academic and private sector authors, respectively. We identify 

publication location as US domestic if one of the authors on the publication lists the United 

States as his or her primary location. 22,436 publications (25 percent of the sample) are produced 

domestically.  

We also differentiate between subject matter. 44 percent of the publications are classified 

as Computer Science, with 56 percent classified as other applications. Summary statistics on the 

other applications are provided in Table 2A. The other subjects with the largest number of 

publications in the sample include Telecommunications (5.5 percent), Mathematics (4.2), 

Neurology (3.8), Chemistry (3.7), Physics (3.4), Biology (3.4), and Medicine (3.1).  

 Finally, we create indicator variables to document publication quality, including journal 

quality (top 10, top 25 and top 50 journals by impact factor3) and a count variable for cumulative 

citation counts. Less than one percent of publications are in a top 10 journal with two percent and 

10 percent in top 25 and top 50 journals. The average citation count for a publication in the 

sample is 4.9.  

                                                           
3 The rankings are collected from Guide2Research, found here: http://www.guide2research.com/journals/  
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Patent Sample and Summary Statistics 

We undertake a similar approach for gathering a dataset of AI patents.  We start with the 

public-use file of USPTO patents (Marco, Carley et al., 2015; Marco et al., 2015,), and filter the 

data in two ways. First, we assemble a subset of data by filtering the USPTO Historical 

Masterfile on the U.S. Patent Classification System (USPC) number. 4  Specifically, USPC 

numbers 706 and 901 represent “Artificial Intelligence” and “Robots,” respectively. Within 

USPC 706, there are numerous subclasses including “fuzzy logic hardware,” “plural processing 

systems,” “machine learning,” and “knowledge processing systems,” to name a few. We then use 

the USPC subclass to identify patents in AI fields of symbolic systems, learning systems and 

robotics. We drop patents prior to 1990, providing a sample of 7,347 patents through 2014.  

Second, we assemble another subset of AI patents by conducting a title search on patents, 

with the search terms being the same keywords used to identify academic publications in AI.5 

This provides an additional 8,640 AI patents. We then allocate each patent into an AI field by 

associating the relevant search term with one of the overarching fields. For example, a patent that 

is found through the search term “neural network,” is then classified as a “learning” patent.  

Some patents found through this search method will be duplicative of those identified by USPC 

search, i.e. the USPC class will be 706 or 901. We drop those duplicates. Together these two 

subsets create a sample of 13,615 unique AI patents. Summary statistics are provided in Table 

1B.  

In contrast to the distribution of learning systems, symbolic systems and robotics in the 

publication data, the three fields are more evenly distributed in the patent data: 3,832 (28 

percent) learning system patents, 3,930 (29 percent) symbolic system patents, and 5,524 (40 

percent) robotics patents. The remaining patents are broadly classified only as AI.  

Using ancillary datasets to the USPTO Historical Masterfile, we are able to integrate 

variables of interest related to organization type, location, and application space. For example, 

                                                           
4 We utilized data from the Historical Patent Data Files. The complete (un-filtered) data sets from which we derived 
our data set are available here: https://www.uspto.gov/learning-and-resources/electronic-data-products/historical-
patent-data-files 
5 We utilized data from the Document ID Dataset that is complementary to Patent Assignment Data available on the 
USPTO website. The complete (un-filtered) data sets from which we derived our data set are available here: 
https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-assignment-dataset 
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Patent Assignment Data tracks ownership of patents across time. Our interest in this analysis 

relates to upstream innovative work, and for this reason, we capture the initial patent assignee by 

organization for each patent in our sample. This data enables the creation of indicator variables 

for organization type and location. We create an indicator for academic organization type by 

searching the name of the assignee for words relating to academic institutions, e.g. “University”, 

“College” or “Institution.” We do the same for private sector organizations, searching for “corp”, 

“business”, “inc”, or “co”, to name a few. We also search for the same words or abbreviations 

utilized in other languages, e.g. “S.p.A.” Only seven percent of the sample is awarded to 

academic organizations, while 91 percent is awarded to private entities. The remaining patents 

are assigned to government entities, e.g. U.S. Department of Defense.  

Similarly, we create indicator variables for patents assigned to U.S. firms and 

international firms, based on the country of the assignee. The international firm data can also be 

more narrowly identified by specific country (e.g. Canada) or region (e.g. European Union). 59 

percent of our patent sample is assigned to U.S. domestic firms, while 41 percent is assigned to 

international firms. Next to the United States, firms from non-Chinese, Asian nations account for 

28 percent of patents in the sample. Firms from Canada are assigned 1.2 percent of the patents, 

and firms from China, 0.4 percent.  

Additionally, the USPTO data includes NBER classification and sub-classification for 

each patent (Hall, Jaffe and Trajtenberg (2001); Marco, Carley, et al., (2015)). These sub-

classifications provide some granular detail about the application sector for which the patent is 

intended.  We create indicator variables for NBER sub-classifications related to chemicals 

(NBER sub-class 11, 12, 13, 14, 15, 19), communications (21), computer hardware and software 

(22), computer science peripherals (23), data and storage (24), business software (25), medical 

fields (31, 32, 33, and 39), electronics fields (41, 42, 43, 44, 45, 46, and 49), automotive fields 

(53, 54, 55), mechanical fields (51, 52, 59), and other fields (remaining). The vast majority of 

these patents (71 percent) are in NBER subclass 22, Computer Hardware and Software. 

Summary Statistics of the distribution of patents across application sectors are provided in Table 

2B.  
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VI. Deep Learning as a GPT:  An Exploratory Empirical Analysis  

These data allow us to begin examining the claim that the technologies of deep learning 

may be the nucleus of a general-purpose invention for the method of invention.   

We begin in Figures 1A and 1B with a simple description of the evolution over time of 

the three main fields identified in the corpus of patents and papers.  The first insight is that the 

overall field of AI has experienced sharp growth since 1990.  While there are only a small 

handful of papers (less than a hundred per year) at the beginning of the period, each of the three 

fields now generates more than a thousand papers per year.  At the same time, there is a striking 

divergence in activity across fields:  each start from a similar base, but there is a steady increase 

in the deep learning publications relative to robotics and symbolic systems, particularly after 

2009.   Interestingly, at least through the end of 2014, there is more similarity in the patterns for 

all three fields in terms of patenting, with robotics patenting continuing to hold a lead over 

learning and symbolic systems.  However, there does seem to be an acceleration of learning-

oriented patents in the last few years of the sample, and so there may be a relative shift towards 

learning over the last few years which will manifest itself over time as publication and 

examination lags work their way through.   

Within the publication data, there are striking variations across geographies. Figure 2A 

shows the overall growth in learning publications for the US versus rest-of-world, and Figure 2B 

maps the fraction of publications within each geography that are learning related.  In the US on 

learning is far more variable. Prior to 2000 the US has a roughly equivalent share of learning 

related publications, but the US then falls significantly behind, only catching up again around 

2013.  This is consistent with the suggestion in qualitative histories of AI that that learning 

research has had a “faddish” quality in the US, with the additional insight that the rest of the 

world (notably Canada) seems to have taken advantage of this inconsistent focus in the United 

States to develop capabilities and comparative advantage in this field. 

With these broad patterns in mind, we turn to our key empirical exercise:  whether in the 

late 2000s deep learning shifted more towards “application-oriented” research than either 

robotics or symbolic systems. We begin in Figure 3 with a simple graph that examines the 

number of publications over time (across all three fields) in computer science journals versus 

application-oriented outlets.  While there has actually been a stagnation (even a small decline) in 



21 
 

the overall number of AI publications in computer science journals, there has been a dramatic 

increase in the number of AI-related publications in application-oriented outlets.  By the end of 

2015, we estimate that nearly 2/3 of all publications in AI were in fields beyond computer 

science.   

In Figure 4 we then look at this division by field.  Several patterns are worthy of note.  

First, as earlier, we can see the relative growth through 2009 of publications in learning versus 

the two other fields. Also, consistent with more qualitative accounts of the fields, we see the 

relative stagnation of symbolic systems research relative to robotics and learning.  But, after 

2009, there is a significant increase in application publications in both robotics and learning, but 

that the learning boost is both steeper and more long-lived.  Over the course of just seven years, 

learning-oriented application publications more than double in number, and now represent just 

under 50% of all AI publications.6 

These patterns are if anything even more striking if one disaggregates them by the 

geographic origin of the publication.  In Figure 5, we at rates of publication in computer science 

versus applications for the US versus rest-of-world.  The striking upward swing in AI application 

papers that begins in 2009 turns out to be overwhelmingly driven by publications ex US, though 

US researchers begin a period of catch-up at an accelerating pace towards the final few years of 

the sample. 

Finally, we look at how publications have varied across application sectors over time.  In 

Table 3, we examine the number of publications by application field in each of the three areas of 

AI across two three-year cohorts (2004-2006 and 2013-2015).  There are a number of patterns of 

interest.  First, and most importantly, in a range of application fields including medicine, 

radiology and economics, there is a large relative increase in learning-oriented publications 

relative to robotics and symbolic systems.  A number of other sectors, including neuroscience 

and biology, realize a large increase in both learning-oriented research as well as other AI fields.  

There are also some more basic fields such as mathematics that have experienced a relative 

decline in publications (indeed, learning-oriented publications in mathematics experienced a 

                                                           
6 The precise number of publications for 2015 are estimated from the experience of the first nine months (the Web 
of Science data run through September 30, 2015).   We apply a linear multiplier for the remaining three months (i.e., 
estimating each category by 4/3). 
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small absolute decline, a striking different relative to most other fields in the sample).  Overall, 

though it would be useful to identify more precisely the type of research that is being conducted 

and what is happening at the level of particular subfields, these results are consistent with our 

broader hypothesis that, alongside the overall growth of AI, learning-oriented research may 

represent a general-purpose technology that is now beginning to be exploited far more 

systematically across a wide range of application sectors.   

Together, these preliminary findings provide some direct empirical evidence for at least 

one of our hypotheses: learning-oriented AI seems to have some of the signature hallmarks of a 

general-purpose technology.  Bibliometric indicators of innovation show that it is rapidly 

developing, and is being applied in many sectors—and these application sectors themselves 

include some of the most technologically dynamic parts of the economy.  This preliminary 

analysis does not trace out the important knowledge spillovers between innovation in the GPT 

and innovation and application sectors, but it is probably far too early to look for evidence of 

this. 

 

VII. Deep Learning as a General-Purpose Invention in the Method of Invention:  

Considerations for Organizations, Institutions and Policy 

With these results in mind, we now consider the potential implications for innovation and 

innovation policy if deep learning is indeed a general-purpose technology (GPT) and/or a 

general-purpose invention in the method of invention (IMI). If deep learning is merely a GPT, it 

is likely to generate innovation across a range of applications (with potential for spillovers both 

back to the learning GPT and also to other application sectors) but will not itself change the 

nature of the innovation production function.  If it is also a general purpose IMI, we would 

expect it to have an even larger impact on economy-wide innovation, growth, and productivity as 

dynamics play out—and to trigger even more severe short run disruptions of labor markets and 

the internal structure of organizations.   

Widespread use of deep learning as a research tool implies a shift towards investigative 

approaches that use large datasets to generate predictions for physical and logical events that 

have previously resisted systematic empirical scrutiny.  These data are likely to have three 
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sources: prior knowledge (as in the case of “learning” of prior literatures by IBM’s Watson), 

online transactions (e.g., search or online purchasing behavior) and physical events (e.g., the 

output from various types of sensors or geolocation data) What would this imply for the 

appropriate organization of innovation, the institutions we have for training and conducting 

research over time, and for policy, particularly as we think about private incentives to maintain 

proprietary datasets and application-specific algorithms? 

The Management and Organization of Innovation  

Perhaps most immediately, the rise of general-purpose predictive analytics using large 

datasets seems likely to result in a substitution towards capital and away from labor in the 

research production process.  Many types of R&D and innovation more generally are effectively 

problems of labor-intensive search with high marginal cost per search (Evenson and Kislev, 

1975, among others).  The development of deep learning holds out the promise of sharply 

reduced marginal search costs, inducing R&D organizations to substitute away from highly-

skilled labor towards fixed cost investments in AI. These investments are likely to improve 

performance in existing “search intensive” research projects, as well as to open up new 

opportunities to investigate social and physical phenomena that have previously been considered 

intractable or even as beyond the domain of systematic scientific and empirical research.  

It is possible that the ability to substitute away from specialized labor and towards capital 

(that in principle could be rented or shared) may lower the “barriers to entry” in certain scientific 

or research fields—particularly those in which the necessary data and algorithms are freely 

available—while erecting new barriers to entry in other areas (e.g. by restricting access to data 

and algorithms).  As of yet, there are few if any organized markets for “trained” research tools or 

services based on deep learning, and few standards to evaluate alternatives.  Our analysis 

suggests that the development of markets for shared AI services and the widespread availability 

of relevant data may be a necessary precursor to the broad adoption and dissemination of deep 

learning.  

At the same time, the arrival of this new research paradigm is likely to require a 

significant shift in the management of innovation itself.  For example, it is possible that the 

democratization of innovation will also be accompanied by a lack of investment by individual 

researchers in specialized research skills and specialized expertise in any given area, reducing the 
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level of theoretical or technical depth in the work force.  This shift away from career-oriented 

research trajectories towards the ability to derive new findings based on deep learning may 

undermine long-term incentives for breakthrough research that can only be conducted by people 

who are at the research frontier.  There is also the possibility that the large scale replacement of 

skilled technical labor in the research sector by AI will “break science” in some fields by 

disrupting the career ladders and labor markets that support the relatively long periods of training 

and education required in many scientific and technical occupations.  

Finally, it is possible that deep learning will change the nature of scientific and technical 

advance itself.  Many fields of science and engineering are driven by a mode of inquiry that 

focuses on identifying a relatively small number of causal drivers of underlying phenomena built 

upon an underlying theory (the parsimony principle as restated by Einstein states that theory 

should be “as simple as possible but no simpler.”)   However, deep learning offers an alternative 

paradigm based on the ability to predict complex multi-causal phenomena using a “black box” 

approach that abstracts away from underlying causes but that does allow for a singular prediction 

index that can yield sharp insight.  De-emphasizing the understanding of causal mechanisms and 

abstract relationships may come at a cost: many major steps forward in science involve the 

ability to leverage an understanding of “big picture” theoretical structure to make sense of, of 

recognize the implications of, smaller discoveries.  For example, it is easy to imagine a deep 

learning system trained on a large amount of x-ray diffraction data quickly “discovering” the 

double helix structure of DNA at very low marginal cost, but it would likely require human 

judgment and insight about a much broader biological context to notice that the proposed 

structure suggests a direct mechanism for heredity. 

Innovation and Competition Policy and Institutions 

A second area of impact, beyond the organization of individual research projects or the 

nature of what counts as “science” in a particular field, will be on the appropriate design and 

governance of institutions governing the innovation process.  Three implications stand out.   

First, as discussed above, research over the past two decades has emphasized the 

important role played by institutions that encourage cumulative knowledge production through 

low-cost independent access to research tools, materials and data (Furman and Stern, 2012; 

Murray, et al, 2015). However to date there has only been a modest level of attention to the 
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questions of transparency and replicability within the deep learning community.  Grassroots 

initiatives to encourage openness organized through online hubs and communities are to be 

welcomed.  But it is useful to emphasize that there is likely to be a significant gap between the 

private and social incentives to share and aggregate data—even among academic researchers or 

private sector research communities.  One implication of this divergence may be that to the 

degree any single research result depends on the aggregation of data from many sources, it will 

be important to develop rules of credit and attribution, as well as to develop mechanisms to 

replicate the results.  

This implies that it will be particularly important to pay attention to the design and 

enforcement of formal intellectual property rights.  On the one hand it will be important to think 

carefully about the laws that currently surround the ownership of data. Should the data about e.g. 

my shopping and travel behavior belong to me or to the search engine or ride sharing company 

that I use? Might consumers have a strong collective interest in ensuring that these data (suitably 

blinded, of course) are in the public domain, so that many companies can use them in the pursuit 

of innovation? 

On the other, the advent of deep learning has significant implications for the patent 

system.  Though there has so far been relatively little patenting of deep learning innovations, 

historical episodes such as the discovery and attempted wholesale patenting of express sequence 

tags and other kinds of genetic data suggests that breakthroughs in research tools—often 

combined with a lack of capacity at patent offices and conflicting court decisions—can result in 

long periods of uncertainty that has hampered the issuing of new patents, and this in turn has led 

to lower research productivity and less competition.  Deep learning also presents difficult 

questions of legal doctrine for patent systems that have been built around the idea of creative 

authors and inventors.  For example, “inventorship” has a specific meaning in patent law, with 

very important implications for ownership and control of the claimed invention.  Can an AI 

system be an inventor in the sense envisaged by the drafters of the US Constitution?  Similarly, 

standards for determining the size of the inventive step required to obtain a patent are driven by a 

determination of whether the claimed invention would or would not be obvious to a “person 

having ordinary skill in the art.”  Who this “person” might be, and what constitutes “ordinary 
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skill” in an age of deep learning systems trained on proprietary data, are questions well beyond 

the scope of this essay. 

In addition to these traditional innovation policy questions, the prospect for deep learning 

raises a wide variety of other issues, including issues relating to privacy, the potential for bias 

(deep learning has been found to reinforce stereotypes already present in society), and consumer 

protection (related to areas such as search, advertising, and consumer targeting and monitoring).  

The key is that, to the extent that deep learning is general-purpose, the issues that arise across 

each of these domains (and more) will play out across a wide variety of sectors and contexts and 

at a global rather than local level.  Little analysis has been conducted that can help design 

institutions that will be responsive at the level of application sectors that also internalize the 

potential issues that may arise with the fact that deep learning is likely to be a GPT. 

Finally, the broad applicability of deep learning (and possibly robotics) across many 

sectors is likely to engender a race within each sector to establish a proprietary advantage that 

leverages these new approaches.  As such, the arrival of deep learning raises issues for 

competition policy.  In each application sector, there is the possibility that firms that are able to 

establish an advantage at an early stage, and in doing so position themselves to be able to 

generate more data (about their technology, about customer behavior, about their organizational 

processes) will be able to erect a deep-learning-driven barrier to entry that will ensure market 

dominance over at least the medium term.  This suggests that rules ensuring data accessibility are 

not only a matter of research productivity or aggregation, but also speak to the potential to guard 

against lock-in and anticompetitive conduct.  At the present moment there seem to be a large 

number of individual companies attempting to take advantage of AI across a wide variety of 

domains (e.g., there are probably more than 20 firms engaging in significant levels of research in 

autonomous vehicles, and no firm has yet to show a decisive advantage), but this high level of 

activity likely reflects an expectation for the prospects for significant market power in the future.  

Ensuring that deep learning does not enhance monopolization and increase barriers to entry 

across a range of sectors will be a key topic going forward. 
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VIII. Concluding Thoughts 

The purpose of this exploratory essay has not been to provide a systematic account or 

prediction of the likely impact of AI on innovation, nor clear guidance for policy or the 

management of innovation.  Instead, our goal has been to raise a specific possibility—that deep 

learning represents a new general-purpose invention of a method of invention—and to draw out 

some preliminary implications of that hypothesis for management, institutions, and policy.   

Our preliminary analysis highlights a few key ideas that have not been central to the 

economics and policy discussion so far.  First, at least from the perspective of innovation, it is 

useful to distinguish between the significant and important advances in fields such as robotics 

from the potential of a general-purpose method of invention based on application of multi-

layered neural networks to large amounts of digital data to be an “invention in the method of 

invention”.  Both the existing qualitative evidence and our preliminary empirical analysis 

documents a striking shift since 2009 towards deep learning based application-oriented research 

that is consistent with this possibility. Second, and relatedly, the prospect of a change in the 

innovation process raises key issues for a range of policy and management areas, ranging from 

how to evaluate this new type of science to the potential for prediction methods to induce new 

barriers to entry across a wide range of industries.  Proactive analysis of the appropriate private 

and public policy responses towards these breakthroughs seems like an extremely promising area 

for future research. 
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Table 1A:  Publication Data Summary Statistics 

     
 Mean Std. Dev. Min Max 
Publication Year 2007 6.15 1990 2015 
Symbolic Systems .12 .33 0 1 
Learning Systems .61 .48 0 1 
Robotics .21 .41 0 1 
Artificial Intelligence .06 .23 0 1 
Computer Science .44 .50 0 1 
Other Applications .56 .50 0 1 
US Domestic .25 .43 0 1 
International .75 .43 0 1 
Observations 95840    
     

 

Table 1B: Patent Data Summary Statistics 

     
 Mean Std. Dev. Min Max 
Application Year 2003 6.68 1982 2014 
Patent Year 2007 6.98 1990 2014 
Symbolic Systems .29 .45 0 1 
Learning Systems .28 .45 0 1 
Robotics .41 .49 0 1 
Artificial Intelligence .04 .19 0 1 
Computer Science .77 .42 0 1 
Other Applications .23 .42 0 1 
US Domestic Firms .59 .49 0 1 
International Firms .41 .49 0 1 
Org Type Academic .07 .26 0 1 
Org Type Private .91 .29 0 1 
Observations 13615    
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Table 2A: Distribution of Publications across Subjects 

   
 Mean Std. Dev. 
Biology .034 .18 
Economics .028 .16 
Physics .034 .18 
Medicine .032 .18 
Chemistry .038 .19 
Mathematics .042 .20 
Materials Science .029 .17 
Neurology .038 .19 
Energy .015 .12 
Radiology .015 .12 
Telecommunications .055 .23 
Computer Science .44 .50 
Observations 95840  
   

 

Table 2B: Distribution of Patents across Application Sectors 

   
 Mean Std. Dev. 
   
Chemicals .007 .08 
Communications .044 .20 
Computer Hardware and 
Software 

.710 .45 

Computer Peripherals .004 .06 
Data and Storage .008 .09 
Business software .007 .09 
All Computer Science .773 .42 
Medical .020 .14 
Electronics .073 .26 
Automotive .023 .15 
Mechanical .075 .26 
Other .029 .16 
Observations 13615  
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Table 3: Publications Across Sectors, by AI Field, 2004-2006 versus 2013-2015 

 
Biology Economics Physics Medicine Chemistry Math Materials Neuro. Energy Radiology Telecom. CompSci

2004-2006 258 292 343 231 325 417 209 271 172 94 291 3889

2013-2015 600 423 388 516 490 414 429 970 272 186 404 4582

% growth 133% 45% 13% 123% 51% -1% 105% 258% 58% 98% 39% 18%

2004-2006 33 10 52 69 24 45 36 31 6 47 653 1431

2013-2015 65 12 122 83 92 80 225 139 18 25 401 1322

% growth 97% 20% 135% 20% 283% 78% 525% 348% 200% -47% -39% -8%

2004-2006 93 8 68 96 139 54 32 35 15 82 51 827

2013-2015 105 10 125 84 149 60 101 73 22 56 88 1125

% growth 13% 25% 84% -13% 7% 11% 216% 109% 47% -32% 73% 36%

Learning Systems

Robotics

Symbol Systems
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Table 4: Herfindahl-Hirschman Index for Application Sectors 

 

Application Н= ∑𝑷𝒂𝒕𝑺𝒉𝒂𝒓𝒆
𝟐 

Chemical Applications 153.09 

Communications 140.87 

Hardware and Software 86.99 

Computer Science Peripherals 296 

Data and Storage 366.71 

Computer Science Business Models 222 

Medical Applications 290.51 

Electronic Applications 114.64 

Automotive Applications 197.03 

Mechanical Applications 77.51 

Other 129.20 
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Figure 1A: Publications by AI field over Time 

 

Figure 1B: Patents by AI field over Time 
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Figure 2A: Academic Institution Publication Fraction by AI Field 

 

Figure 2B: Fraction of Learning Publications by US versus World 
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Figure 3: Publications in Computer Science versus Application Journals 

 

Figure 4: Publications in Computer Science versus Application Journals, by AI Field 
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Figure 5: Learning Publications in Computer Science versus Applications, By US versus ROW 
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Appendix A 
Appendix Table 1: Artificial Intelligence Keyword Allocation 

 

 
 

 




