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ABSTRACT

Can algorithms assist firms in their decisions on nominating corporate directors? We construct 
algorithms to make out-of-sample predictions of director performance. Tests of the quality of 
these predictions show that directors predicted to do poorly indeed do poorly compared to a 
realistic pool of candidates. Predictably poor performing directors are more likely to be male, 
have more past and current directorships, fewer qualifications, and larger networks than the 
directors the algorithm would recommend in their place. Machine learning holds promise for 
understanding the process by which governance structures are chosen, and has potential to help 
real-world firms improve their governance.
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1. Introduction 

A company’s board of directors is legally responsible for managing the company. In principle, the 

board of directors reports to the shareholders and represents their interests. In practice, however, there is 

much variation in director quality and the extent to which they serve shareholders’ interests.1  

Many of the concerns about boards come from the director selection process, which has been a source 

of debate since at least Berle and Means (1932).2 The selection process for selecting directors is one of the 

most important yet least studied questions in corporate governance. Despite the checks and balances built 

into a public corporation’s governance system, the CEO often controls the selection of new directors.3 In 

practice, appointed directors are almost always supporters of the CEO and his policies. Aside from 

occasional proxy contests, shareholders have virtually no control over the choice of the directors whose 

mandate is to represent their interests.  

Can machine learning algorithms help address this first order issue in corporate governance? We outline 

a potential way in which they can. We argue that algorithms can shed light on the decision-making process 

that governs the nomination of corporate directors. 

Key to our approach is the idea that the nomination of a corporate director can be thought of as a 

prediction problem (Kleinberg et al., 2015), in contrast to a parameter estimation problem, as the literature 

on boards has traditionally approached it. We consider a potential alternative approach to select directors: 

one that uses algorithms that rely on data on firms and on their current board members, as well as on 

potential directors and their attributes, to identify the quality of directors being considered for a given firm’s 

board. We take advantage of advances in machine learning that have revolutionized many fields and have 

                                                   
1 See Hermalin and Weisbach (2003), Adams, Hermalin and Weisbach (2010), and Adams (2017) for surveys. 
2 Berle and Means (1932) wrote: “Control will tend to be in the hands of those who select the proxy committee and 
by whom the election of directors for the ensuing period will be made. Since the proxy committee is appointed by the 
existing management, the latter can virtually dictate their own successors” (p. 87). Hermalin and Weisbach (1998) 
present a formal model of this process in which boards vary in their independence from the CEO in equilibrium. 
3 See Shivdasani and Yermack (1999) and Kramarz and Thesmar (2013) for anecdotal evidence suggesting that the 
CEO typically holds a veto power over the choice of directors. See also Cai, Nguyen, and Walkling (2017), who 
document that more complex firms and firms in more competitive environments are more likely to appoint directors 
who are connected to the CEO or the existing board.   
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led to innovations ranging from self-driving cars to facial recognition. In the social sciences, machine 

learning has great potential for prediction problems such as the one we consider here, the way in which one 

determines which potential director would be the best for a particular firm. While “traditional” econometrics 

is typically designed for estimating structural parameters and drawing causal inferences, machine learning 

is substantially better at making predictions, in part because it does not impose unnecessary structure on 

the data.4  

We construct a large database of publicly traded U.S. firms and independent directors appointed 

between 2000 and 2014. We build several machine learning algorithms designed to predict director 

performance using director, board and firm level data available to the nominating committee at the time of 

the nominating decision. We compare the algorithms’ selections of directors to the ones actually chosen by 

firms. The discrepancies between firms’ actual choices of directors and the choices based on the predictions 

from our algorithms allow us to characterize which individual features are overrated by decision makers. 

As such, the algorithm’s predictions can be leveraged as a diagnostic tool to shed light on the decision-

making process that governs the selection of corporate directors. 

A crucial element of any algorithm designed to select valuable independent directors is a process for 

assessing a director’s performance in a particular firm. The task of measuring the performance of an 

individual director is challenging since directors generally act collectively on the board and it is usually 

impossible for a researcher to ascertain the actions of any particular director. Nevertheless, as Hart and 

Zingales (2017) emphasize, directors’ fiduciary duty is to represent the interests of the firm’s shareholders. 

Their popularity among shareholders is thus a natural metric for evaluating them. For that reason, our main 

measure of director performance is based on levels of shareholder support in annual director re-elections.  

An important issue in interpreting the results is whether shareholder votes reflect directors’ quality in 

addition to their popularity with shareholders. While these notions are to some extent the same since a 

director’s duty is to serve the interests of shareholders, we recognize that investors often have limited 

                                                   
4 See Athey and Imbens (2017) and Mullainathan and Spiess (2017). 



3 
 

resources and sometimes vote based on simple, check-the-box criteria in routine director elections. To 

measure the extent to which the algorithm’s predictions using shareholder votes apply to other measures of 

director performance, we also consider the model’s ability to predict firm profitability and announcement 

returns of director appointments. We find that the algorithm’s predictions of shareholder votes to re-elect 

directors are also strongly related to firm profitability and to announcement returns of director 

appointments.  

We construct machine learning algorithms to predict the performance of any potential director at any 

particular company, taking into consideration who is currently sitting on the board. Using our sample of 

public firms, we train each algorithm (i.e. fit a model) on a “training” set (directors appointed between 2000 

and 2011), and then compare the predictions to the observed data out-of-sample using a “test” set (directors 

appointed between 2012 and 2014).   

We find that these algorithms make accurate out-of-sample predictions of the distribution of outcomes, 

whether predicting the level of shareholder support or the excess support relative to the slate. The directors 

the algorithms predicted would do poorly did much worse on average than the directors the algorithm 

predicted would do well. In comparison, the directors predicted to do poorly by an OLS model do not 

actually have worse performance out of sample than those the OLS model predicted would do well. 

Machine learning algorithms, by letting the data speak about the underlying relationships among all 

candidate predictors, end up fitting the data much better and consequently do better at predicting future 

outcomes out of sample. 

We only observe the votes (i.e. the label) for directors who were actually nominated to the board but 

do not observe them for potential candidates who were not nominated. This “selective labels” problem of 

having voting data at the company in question only for directors who were actually selected is a common 

issue in prediction problems (see Kleinberg et al. (2017)). In other words, we are only able to evaluate the 

algorithm’s predictive ability for nominated directors. However, if decision makers consider features that 

are not observable to our algorithm in their nominating decisions of directors, the distribution of outcomes 

in the set with observed labels (nominated directors) could differ from that in the set with missing labels 
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(not nominated directors), even if they share exactly the same observable characteristics. In other words, if 

boards are skilled at using unobservables in their nominating decisions, nominated directors could have 

higher expected performance than otherwise similar (based on observables) passed-over directors. 

Most prediction problems in the social sciences are subject to the issue of selective labels and reliance 

on unobservables, formalized in Kleinberg et al. (2017). These issues make the evaluation of the algorithms’ 

predictions challenging. We design the quasi-labels approach to overcome this challenge. Quasi-labels 

represent substitute labels for observations with unobserved outcomes. Importantly, in the procedure we 

design, quasi-labels do not need to be perfect substitutes to labels in order to meet their goal: to assess the 

algorithms’ predictions when labels are missing and the decision maker relies on unobservables. 

For each board appointment in our test set, we construct a realistic pool of potential candidates: directors 

who joined the board of a smaller neighboring company within a year. Presumably these potential 

candidates would have found the opportunity to be on the board of a larger nearby company attractive, since 

directorships at larger companies tend to be better paying and more prestigious than directorships at smaller 

companies. They also signaled that they were available and willing to travel to this specific location for 

board meetings. Although we do not observe the performance (i.e. the label) of those potential candidates 

(the selective labels problem), the design of our candidate pools allows us to observe what we refer to as 

their “quasi-label”: their performance on the board they effectively joined.  

We find that directors the algorithm predicted would perform poorly (well) indeed do perform poorly 

(well) when compared to potential available alternatives. Directors in the bottom decile of predicted 

performance rank at the 27th percentile in the distribution of quasi-labels. In contrast, those in the top decile 

rank at the 78th percentile. OLS models are unable to predict ex ante who will perform well compared to 

alternatives and who will not. 

 While machine learning models do not generate estimates of the underlying structural parameters of a 

model, we can use the algorithm’s predictions to understand the features that are overvalued and 

undervalued by firms in the director selection process. A striking result in this paper is that machine learning 

models consistently suggest directors who would have been likely both to accept the directorship and to 
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outperform the directors that are actually chosen by firms. Relative to algorithm-selected directors, 

management-selected directors who receive predictably low shareholder approval are more likely to be 

male, have larger networks, sit on more boards, and are more likely to have a finance background. These 

attributes characterize the stereotypical director in most large companies. A plausible interpretation of our 

results is that firms that nominate predictably unpopular directors tend to choose directors who are like 

existing directors, while the algorithm suggests that adding diversity would be a better idea. 

Machine learning tools have the potential to help answer many unanswered questions in the social 

sciences, both by academics wishing to understand the way the world actually works5, and by practitioners 

and policy makers wishing to make better real-world decisions. In terms of boards of directors, an 

algorithmic decision aid could allow firms to choose better among existing candidates, without stripping 

decision makers of their judgement. We emphasize strongly that algorithms complement rather than 

substitute human judgement. As such, we expect the economic value of board decisions to increase with 

the use of algorithmic decision aids (Autor, 2015 and Agrawal, Gans and Goldfarb, 2017). In addition, 

algorithmic decision aids could help firms identify alternative choices of potential directors, thereby 

opening up board seats to a broader set of candidates with more diverse backgrounds and experiences, who 

would have otherwise been overlooked.6 

 

2. Machine Learning Algorithms to Predict Director Performance  

We build algorithms designed to make an ex ante prediction of directors’ level of relative shareholder 

support, averaged over the first three years of their tenure. The algorithms use a set of observable director, 

board, and firm features that are available to the nominating committee at the time of the nominating 

decision. The algorithms are commonly used in the supervised machine learning literature: lasso, ridge, 

neural networks and gradient boosting trees. We train each of these algorithms, i.e. estimate model 

                                                   
5 Li et al. (2018) use machine learning (word embedding) to measure corporate culture. 
6 We thank Oren Etzioni, CEO of the Allen Institute for Artificial Intelligence, for originally pointing out this benefit 
of our approach to us. 
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parameters, on directors appointed between 2000 and 2011 and test them on directors appointed between 

2012 and 2014. Following the terminology in machine learning, we call the data from 2000-2011 the 

“training set” (in-sample data) and the data from 2012 to 2014 the “test set” (out-of-sample data).  

The algorithms combine candidate predictors in highly flexible and nonlinear ways to produce their 

best prediction of the specified outcome variable for new observations in the test set. There are a number 

of well-known machine learning algorithms that can be used for our prediction exercise. We use four of 

these algorithms to predict director performance, and give a brief summary of each in this section.   

2.1. Lasso and Ridge 

 OLS regressions tend to generate poor out-of-sample predictions as they are designed to minimize the 

in-sample residual sum of squares. This observation is known as the bias-variance tradeoff in the machine 

learning literature: if an algorithm fits in-sample data too well (low bias), it has high variance and thus does 

not perform as well on out-of-sample data. Lasso and ridge are both linear models that use a regularization 

term to achieve a balance between bias and variance. They do so by minimizing a loss function that includes 

in-sample fit and a penalty term that favors simple models, thereby reducing variance (see online appendix 

for more details). 

2.2. Gradient Boosting Trees 

Gradient Boosting Trees are similar to random forest algorithms. A random forest algorithm is an 

ensemble method that combines multiple decision trees. Intuitively, a single decision tree presents a flow 

chart where a data point can follow the flow starting from the root to a leaf node associated with its final 

prediction. The selection of attributes at each node in decision trees is inspired by information theory to 

maximize information gain. In the random forest algorithm, multiple trees are estimated by using a random 

subset of covariates in each tree. Among those, the covariate that provides the best binary split based on 

information gain is used to split the data into two partitions and functions as the root of the tree. The 

algorithm repeats this process until it reaches the bottom of the tree, where each “leaf” or terminal node is 

comprised of similar observations. Then, a new data point can start at the top of each tree and follow the 

splits at each node all the way to a leaf node. The prediction for this new data point is the average outcome 
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of observations in the leaf it ends up in. The random forest algorithm takes an average of the predictions 

from all the decision trees. 

Similar to the random forest algorithm, the gradient boosting trees algorithm is an ensemble method 

that combines multiple trees. The key difference lies in that the final prediction is a linear sum of all trees 

and the goal of each tree is to minimize the residual error of previous trees. The XGBoost algorithm provides 

an efficient implementation of this algorithm that is scalable in all scenarios (Chen and Guestrin, 2016). In 

the rest of the paper, we use XGBoost and gradient boosting trees interchangeably. 

2.3. Neural Networks 

A neural network is structured in layers of neurons connected by synapses. The first layer comprises 

the input neurons and the final layer represents the output. Layers of neurons between the first and final 

layers are hidden layers. The figure in the online appendix depicts the structure of a basic neural network 

with two hidden layers. Neurons xi are input neurons connected to the next layer of neurons by synapses 

which carry weights w1. Each synapse carries its own weight. An activation function (usually a sigmoid to 

allow for non-linear patterns) is embedded in each neuron in the hidden layers to evaluate its inputs. The 

set of weights carried by the synapses that reach a neuron are fed into its activation function, which will 

determine whether or not that neuron is activated. If activated, it triggers the next layer of neurons with the 

value it was assigned, with weight w2 (again with each synapse carrying its own weight). Similar to the 

neurons in the hidden layers, the output neuron judges its input via an activation function and decides from 

which neurons to accept the triggered values. The output is a weighted sum of the activated neurons in the 

last hidden layer. Training a network involves modifying the weights on the synapses to minimize a cost 

function (e.g. the sum of squared errors). 

 

3. Constructing a Sample on which Algorithms Can Select Directors 

3.1. Measuring Director Performance through Re-Election Results 

A challenging yet essential part of designing an algorithm to select directors is the way in which the 

algorithm measures director performance. We use the relative shareholder support that directors receive in 
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annual director re-elections as a market-based measure of individual directors’ performance.  Specifically, 

our main outcome variable is the average level of shareholder support over the first three years of director 

tenure, adjusted each year by the average support for the entire slate of directors up for re-election on that 

board that year.7 All our results are qualitatively unchanged if we task the algorithms with predicting the 

absolute level of shareholder support, i.e. if we do not subtract the average for the slate. 

The literature on director re-elections is large. See, for example, Boone, Field, and Karpoff (2007), 

Linck, Netter, and Yang (2008), Cai, Garner and Walkling (2009), Linck, Netter, and Yang (2009), Fischer 

et al. (2009), Coles, Daniel and Naveen (2014), Iliev, Lins, Miller, Roth (2015), Aggarwal, Dahiya and 

Prabhala (2017), Ertimur, Ferri and Oesch (2017), Cai, Nguyen and Walkling (2017), Fedaseyeu, Linck, 

and Wagner (2017), Fos, Li and Tsoutsoura (2017). 

One potential concern with using shareholder support as our measure of director performance is that in 

the vast majority of cases, directors receive overwhelming majority. Most studies report a mean shareholder 

support around 95%. Therefore, there is virtually no variation in the outcome of the re-elections. If the 

results reflect the market’s perception of a director’s quality, it must be that variation among winning votes 

contains meaningful differences in the market’s assessment. Consistent with this notion, Cai et al. (2009), 

Fischer et al. (2009), and Iliev et al. (2015) suggest that cross-sectional variation in shareholder support 

does in fact reflect market perceptions of director quality. These papers find that vote totals predict stock 

price reactions to subsequent turnover. In addition, vote totals are negatively related to CEO turnover, board 

turnover, management compensation levels, and the probabilities of removing poison pills and classified 

boards. Moreover, director re-elections appear to have real consequences, even if the elections are not 

contested and the nominated directors end up being re-elected. Fos et al. (2017) find that when directors 

are closer to getting re-elected, they are more likely to fire CEOs, presumably to persuade shareholders that 

they are being more diligent. Aggarwal et al. (2017) suggest that directors with low relative support are 

                                                   
7 The distribution of shareholder support does not change over the first few years of a director’s tenure. We obtain 
similar results using shareholder support at year one, year two or year three instead of using the average over the first 
three years. 
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more likely to leave the board, and if they stay, tend to move to less prominent positions. Ertimur et al. 

(2018) find that when votes are withheld from directors, boards explicitly attempt to address shareholders’ 

concerns. 

A second potential concern with using shareholder support as our measure of director performance is 

that votes could reflect arbitrary recommendations by proxy advisors such as ISS. Ertimur et al. (2018) 

report that since 2003 large institutional investors take an active role in developing the guidelines that are 

the basis of ISS recommendations, which, as such, reflect its clients’ aggregated preferences. This confirms 

findings in Aggarwal, Erel and Starks (2016) who show that institutional investors and proxy advisors pay 

attention to the changing opinions of their beneficiaries and shareholders. The recent literature shows 

however that institutional investors do not follow proxy advisors’ recommendations blindly. Aggarwal et 

al. (2016) find that shareholders are less likely to follow the recommendations of either management or 

proxy advisory firms as shareholders are forming their own views due to changes in public opinion. Iliev 

and Lowry (2014) show that institutional investors with larger size of ownership tend to vote more 

independently from ISS recommendations. Our results are unchanged when we repeat our tests by focusing 

on a subsample of firms with larger-than-median (26%) ownership by the top-5 institutional owners. In 

addition, using detailed voting data from 2003-2017, Heath et al. (2019) show that when ISS recommends 

voting against management, index (active) funds vote with management 54% (42%) of the time. This recent 

stream of the literature strongly suggests that shareholder votes are not simply the reflection of an arbitrary 

recommendation issued by proxy advisors. 

Overall, the literature finds that shareholder support does reflect perceptions of director quality, that 

directors care about these perceptions, and that they take actions to influence them. The question then is: 

are algorithms able to pick up variations in these perceptions of director quality despite the fact that most 

directors receive extremely high support? Put differently, the highly skewed distribution of our specified 

outcome variable may be viewed as an additional challenge for the algorithms. Are they still able to identify 

ex ante who will end up in the left tail?  

3.2.  Sample Selection 
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To evaluate the performance of an algorithm to select directors, we must gather a sample in which we 

can observe the attributes of firms and boards, and also for which we can measure the performance of 

directors. Because of these requirements, we focus on a sample of boards from large, publicly-traded, U.S. 

firms with an average market capitalization of $6.6 billion. We identify 41,015 new independent directors 

appointed to 4,887 unique corporate boards of these firms between 2000 and 2014 using BoardEx, which 

is our main data source for director and board-level characteristics.  

We obtain data on the level of shareholder support for individual directors from ISS Voting Analytics 

and focus on directors appointed during our sample period. To account for firm level effects, we use excess 

votes as our specified outcome variable in most of our reported results. To construct excess votes, we use 

the number of votes in favor over all votes cast (yes, no, withheld). We then subtract the average for the 

slate of directors up for re-election on that board and take the average of this variable over the first three 

years of tenure. Our sample contains the voting outcome, i.e. excess votes, for 24,054 new director 

appointments. All our results are similar when we use shareholder support and do not subtract the support 

for other directors on the slate. 

3.3.  Summary Statistics 

Table 1 presents summary statistics for average shareholder support (mean total votes) and for excess 

votes over the first three years of tenure. As previously documented in the literature on uncontested director 

elections, the overall level of shareholder support is typically very high. Given that the mean level of support 

is .95 and the median is .975 (with a standard deviation of .07), a voting outcome below 95% is a relatively 

poor outcome.  Consequently, a voting outcome below 95% likely reflects a perception of poor performance 

by the director. Starting in Column 4, we report shareholder support after subtracting the average support 

for the entire slate of directors in that year. Although shareholder support in uncontested elections is 

typically very high, shareholders do on occasion oppose newly nominated directors (see figure in online 

appendix).  
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TABLE 1: SHAREHOLDER SUPPORT SUMMARY STATISTICS 
 

This table presents summary statistics for total (columns labeled as mean/median total votes) and excess shareholder support over 
time. Shareholder support is defined as the fraction of votes in favor of a given director over all votes cast for the director’s 
reelection within three years of her tenure. To compute Excess Votes, we subtract the average of that variable for the slate of 
directors up for reelection that year on the focal board. Then we take the average of this relative vote measure over the first three 
years of the new director’s tenure. The data is from ISS Voting Analytics. 

 

Table 2 illustrates that the frequency of shareholder discontent varies by director and board 

characteristics. For example, the fraction “poor outcomes”, representing the bottom 10% of the sample in 

terms of excess votes, is 10.6% for male directors and 7.9% for female directors.8 Similarly, busy directors 

(serving on three or more boards) experience low shareholder support more frequently than non-busy 

directors. However, theory provides little guidance regarding the particular variables and functional forms 

of the relation between the various director, board and firm characteristics and the performance of directors. 

For example, we do not know whether we should expect female busy directors with a Ph.D. serving on the 

large board of a small firm in the pharmaceutical industry to receive higher or lower shareholder support 

on average than a male director who serves on a single small board of a large manufacturing corporation. 

The problem increases in complexity when many more covariates are likely to matter. For this reason, we 

rely on an estimation procedure that does not impose the specific form for the relationship between potential 

                                                   
8 A similar table can be constructed using total shareholder support and defining a poor outcome when shareholder 
support is below 80% for example. 

n mean
total votes

median
total votes

mean
excess votes

std
excess votes

25th ptcl
excess votes

median
excess votes

75th pctl
excess votes

2000 331 0.950 0.974 0.0008 0.0300 -0.0058 0.0004 0.0082
2001 772 0.944 0.970 -0.0001 0.0455 -0.0050 0.0017 0.0134
2002 1,057 0.946 0.970 0.0022 0.0387 -0.0038 0.0015 0.0115
2003 1,774 0.951 0.974 0.0064 0.0359 -0.0014 0.0028 0.0149
2004 2,019 0.953 0.977 0.0069 0.0442 -0.0008 0.0033 0.0153
2005 1,893 0.948 0.974 0.0049 0.0369 -0.0011 0.0033 0.0136
2006 1,789 0.941 0.969 0.0051 0.0412 -0.0016 0.0036 0.0153
2007 1,942 0.940 0.971 0.0045 0.0434 -0.0023 0.0026 0.0157
2008 1,691 0.944 0.973 0.0067 0.0431 -0.0032 0.0034 0.0180
2009 1,541 0.948 0.976 0.0072 0.0435 -0.0020 0.0045 0.0187
2010 1,842 0.948 0.977 0.0039 0.0431 -0.0044 0.0027 0.0152
2011 1,825 0.954 0.981 0.0038 0.0462 -0.0019 0.0035 0.0160
2012 1,862 0.952 0.981 0.0045 0.0422 -0.0007 0.0038 0.0162
2013 2,148 0.948 0.980 0.0027 0.0444 -0.0021 0.0032 0.0139
2014 1,568 0.959 0.985 0.0063 0.0408 -0.0004 0.0045 0.0149

24,054 0.9484 0.9755 0.0044 0.0413 -0.0024 0.0030 0.0147
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explanatory variables. Machine learning algorithms therefore provide a disciplined and rigorous approach 

to model selection (Athey, 2017). 

 

TABLE 2: AVERAGE FRACTION OF POOR OUTCOME 
 

This table presents the average fraction of “poor outcome” for various director-level and board-level characteristics. A director is 
considered to experience a poor outcome if her excess votes is < -2%. Poor outcomes represent 10% of the sample.  
 

4.  Evaluating Machine Learning Predictions of Director Performance 

4.1. Model Specification 

We develop machine learning algorithms that predict the performance of a potential director. We first 

“train” each algorithm on the 2000-2011 portion of our sample containing 18,476 new independent director 

appointments, of which 12,815 are unique directors, at 2,407 firms. Training involves having the algorithm 

determine which combinations of variables best predict future performance.9 We evaluate the models’ out-

of-sample predictions on the held out 2012-2014 portion of our sample containing 5,578 new director 

appointments, of which 4,019 are unique directors, at 569 firms. We compare those out-of-sample 

predictions to those from an OLS model. All comparisons are based on predictions for the 2012-2014 

subsample of director appointments, which does not overlap with the 2000-2011 subsample on which the 

algorithms are trained. 

                                                   
9 The algorithms rely on a regularizer that balances out in-sample fit and out-of-sample overfitting. 

Full sample yes no Difference
p-value

Director level

Male 0.102 0.106 0.079 0.000
Foreign 0.101 0.115 0.100 0.138
Qualifications > median 0.102 0.094 0.106 0.005
Network size > median 0.102 0.108 0.096 0.002
Generation BBB 0.101 0.093 0.118 0.000
Generation X 0.101 0.151 0.096 0.000
Busy director 0.102 0.145 0.090 0.000
Finance background 0.102 0.106 0.101 0.328

Board level

Fraction male > median 0.102 0.116 0.091 0.000
Board size > median 0.102 0.089 0.114 0.000
Nationality mix > median 0.102 0.108 0.100 0.064
Attrition rate > median 0.098 0.106 0.086 0.000
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4.2. Predictions of Director Performance 

Table 3 summarizes the ability of the machine learning models, once trained on the earlier portion of 

the sample, to predict director success in the later part.10  

 

 

 

 

 

 

TABLE 3: OLS VS. MACHINE LEARNING TO PREDICT DIRECTOR PERFORMANCE 
 

This table reports the average observed level of excess shareholder support over the first three years of a new director's tenure for 
directors who were ranked by their predicted level of shareholder support by an OLS model and several machine learning algorithms 
(XGBoost, Ridge, Lasso and Neural Network). Shareholder support is defined as the fraction of votes in favor of a given director 
over all votes cast for the director’s reelection within three years of her tenure. To compute Excess Votes, we subtract the average 
of that variable for the slate of directors up for reelection that year on the focal board. Then we take the average of this relative vote 
measure over the first three years of the new director’s tenure. 

 

A simple test of a model for predicting performance is whether actual performance is an increasing 

function of predicted performance. Table 3 indicates that average observed shareholder support almost 

monotonically increases across model predicted performance percentiles for each machine learning model. 

However, in contrast to the machine learning models, the average observed outcome of directors in the 

bottom of the predicted performance distribution using the OLS model (.028) is actually higher than that of 

directors in the top of the predicted performance distribution (.006). 

Among the machine learning algorithms, XGBoost performs best at predicting the subsequent success 

of directors using both excess votes and total votes as measures of director performance.11 Directors 

predicted to be in the bottom percentile as predicted by XGBoost have an average observed excess 

                                                   
10 See Online Appendix for the OLS model used in the reported results. Alternative models, for example without fixed 
effects and with different covariates, lead to the same conclusion in terms of OLS’s performance to predict director 
performance. 
11 XGBoost is an algorithm with a reputation for generating excellent predictions on a variety of problems, and was 
the most often used algorithm among the winning solutions in the 2015 machine learning Kaggle competition. 

Predicted 
Percentile of 
Excess Votes

OLS XGBoost Ridge Lasso
Neural

Network

1% 0.028 -0.031 -0.012 -0.024 -0.014

5% -0.018 -0.014 -0.013 -0.015 -0.010

10% 0.014 -0.008 0.000 -0.008 -0.001

90% 0.013 0.013 0.011 0.011 0.011

95% 0.007 0.012 0.014 0.013 0.016

100% 0.006 0.011 0.009 0.016 0.015

Average Observed Performance for Directors in a Given Percentile of 
Predicted Performance as Predicted by:

Directors 
predicted to 

perform 
poorly �

�
Directors 

predicted to 
perform well
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shareholder support of -3.1%, whereas the average observed excess support is 1.1% for directors in the top 

percentile of predicted performance. This pattern highlights the difference between the machine learning 

model and OLS in their ability to predict future performance. 

Figure 1 shows the average observed level of shareholder support for directors across the ten deciles of 

predicted performance for OLS and for the machine learning algorithms in the 2012-14 test period. The 

figure shows how the mean shareholder support for a director is an increasing function of the predicted one 

for all the machine learning algorithms, but not for the OLS model. The difference in the predictive ability 

of various models illustrates the difference between standard econometric approaches and machine 

learning. OLS fits the data well in sample but poorly out of sample. In contrast, machine learning algorithms 

are specifically designed to predict well out of sample. 

FIGURE 1: MEAN OBSERVED EXCESS VOTES VS. PREDICTED EXCESS VOTES 
 

This figure shows the average observed level of excess shareholder support for directors across the ten deciles of predicted 
performance for OLS and XGBoost in the 2012-14 test set. To compute excess votes, we first compute the fraction of votes in favor 
of a given director over all votes cast for the director. Next, we subtract the average of that variable for the slate of directors up for 
reelection that year on the focal board. Finally, we take the average of this relative vote measure over the first three years of the 
new director’s tenure. 

 

The fact that machine learning models perform substantially better than OLS at predicting director 

performance out of sample is consistent with the arguments of Athey and Imbens (2017) and Mullainathan 

and Spiess (2017), who emphasize that machine learning should be the preferred approach for prediction 

problems such as this one. One possible reason why the machine learning models do much better is because 

they let the data decide which transformations of which variables are relevant, while in OLS (or other 

standard econometric technique), the researcher must specify the structure of the equation before estimating 
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it. Machine learning, by letting the data speak about the underlying relationships among the variables, ends 

up fitting the data better and consequently does better at predicting outcomes out of sample. 

4.3. Excluding Poorly Performing Firms 

A possible concern with this analysis is that the relation between predicted performance and subsequent 

performance could occur only because of poorly performing firms. A poorly performing firm would likely 

be less attractive to a director, so it could be that only low ability directors are attracted to poorly performing 

firms, even if the firms are relatively large and otherwise prestigious. Because of their low ability, these 

directors would tend to do worse ex post. We repeat our analyses omitting firms that experience negative 

abnormal returns in the year prior to the nomination. We find similar results without poorly performing 

firms in the sample. For this reason, it does not appear that the relation between subsequent performance 

and predicted performance compared to alternative potential directors is driven by poorly performing firms 

with disgruntled shareholders. 

5. Designing the Quasi-Labels Procedure to Evaluate the Algorithm 

The results so far suggest that directors identified by our algorithm as likely to have low (high) future 

shareholder support, are in fact  on average more likely to have low (high) support in subsequent elections. 

Accurate out of sample predictions, however, are not sufficient to imply that algorithms could assist firms 

in their nominating decisions of corporate directors. Specifically, there are two important and related 

challenges in assessing whether the algorithmic predictions can actually lead to better outcomes. First, we 

can only observe how well our algorithm’s predictions do for directors who are actually appointed to that 

position (the selective labels problem). Second, when deciding on their choice of directors, decision makers 

presumably take factors into account that are not observable to the algorithm. Therefore, directors who were 

nominated, although they could share the same observable features as potential alternatives, could differ in 

terms of unobservables. In particular, they could have been chosen because they have a set of skills that are 

valuable to the firm, or because they have a personal relationship with the CEO or existing directors. A firm 

could also have decided not to nominate a candidate based on some characteristics unobservable to the 
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algorithm that would make this candidate a poor choice. We cannot observe these factors, yet they could 

lead to different average outcomes for nominated vs. not nominated, even if both are identical on the basis 

of observable characteristics. 

To formalize these concepts, we develop a framework in the spirit of Kleinberg et al. (2017) and present 

it in the online appendix. Our empirical strategy to address these concerns involves the design of a pool of 

realistic potential candidates for each vacant board position. Using this pool of potential candidates, we 

wish to evaluate the algorithm’s predictions of the performance of the directors who firms actually 

nominated. In cases where our algorithm predicted low performance for these directors, we are interested 

in whether there were plausible alternatives available, how they would have performed, and how the 

director who was nominated actually performed compared to those alternatives. 

Each new board appointment in the test set is associated with a candidate pool, comprised of directors 

who, within one year of the appointment, joined the board of a smaller neighboring firm.12 By revealed 

preference, we know that these directors were available to join a board at that time and were willing to 

travel to that specific location for board meetings. We restrict the pool of potential candidates to directors 

who joined a smaller neighboring firm since the prestige and remuneration of being a director tends to 

increase with company size (see Masulis and Mobbs, 2014). There are on average 147 candidates in a 

candidate pool. Our results are similar if we modify how we construct pools of candidates, for example by 

further restricting the set of candidates in candidate pools to directors who joined the board of a firm in the 

same industry.13 

To generate predictions for potential candidates at the focal firm, our algorithms use the board and firm 

characteristics as well as the committee assignments of the appointment at the focal firm with the individual 

potential candidate’s features. We do not observe the performance of these potential candidates (the essence 

of the selective labels problem). We do however observe what we refer to as their “quasi-label”, which is 

                                                   
12 A neighboring firm is defined as a firm whose headquarters is within 100 miles of the focal firm’s headquarters. 
The average distance with the focal board is 35 miles (median distance is 26 miles). 
13 There are on average 33 candidates in these more restrictive candidate pools. 
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an informative signal that serves as a substitute for a direct measure of performance. In our setting, a quasi-

label is the director’s performance on the board he or she actually joined. This measure represents an 

indication of how potential candidates would have performed on the focal board.  

We provide a schematic representation of the quasi-label procedure that we design in Figure 2. We first 

rank all nominated directors in our test set according to their performance as predicted by the algorithm. 

For all nominated directors in the bottom decile of predicted performance, we consider their associated 

candidate pool and rank candidates in this candidate pool according to their predicted performance on the 

focal board. We re-rank promising candidates according to their quasi-labels. The question we consider is: 

how does the observed performance of hired directors predicted to do poorly compare to the performance 

of available alternative candidates? 

 

 

 

 

 

FIGURE 2: ASSESSING THE ALGORITHM’S PREDICTIONS USING QUASI-LABELS 
 

This figure shows the procedure to evaluate our algorithmic predictions using quasi-labels. We rank all hired directors in our 
test set according to their predicted performance (!" #$%&'). The bottom decile represents directors who were predicted to receive 
low shareholder approval. For each of these hired directors, whom our algorithm predicted would be unpopular, we consider their 
associated candidate pool and rank candidates in this candidate pool according to their predicted performance on the focal board 
(!" )*+'$'*,&-). We retain the top decile of candidates, who are the most promising candidates based on our algorithms’ predictions. 
We then re-rank these promising candidates according to their quasi-labels ., i.e. their performance on the board they actually 
joined. The goal is then to compare the observed performance of the hired director on the focal board (/)	to the quasi-labels of 
promising candidates. 

 

If the observed performance of the nominated director ranks high in the distribution of quasi-labels, 

this would suggest that even though our algorithm predicted this particular director would do poorly, she 

ended up doing well relative to available alternatives. The focal board might have relied on unobservables 

in the nomination process, and the high rank in the distribution of quasi-labels would suggest that 

unobservables were used as signal. On the other hand, if the observed performance ranks low in the 

distribution of quasi-labels, then our algorithm would have identified ex ante that this director would 
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perform poorly, and relative to alternatives, she indeed did perform poorly. This pattern would suggest that 

any unobservables used in the nomination decision process was not a signal of performance, but was noise, 

bias, or related to agency problems. 

Table 4 presents the median rank in the distribution of quasi-labels for directors in the bottom and top 

deciles of predicted performance for several machine learning algorithms, as well as for an OLS model. For 

all machine learning models, nominated directors predicted to do well performed noticeably better than 

available alternative candidates, while nominated directors predicted to do poorly performed worse than 

available alternative candidates. XGBoost and lasso again appear to be the preferred algorithms. They can 

best discriminate ex ante the directors who will do well from those who will not. In the rest of the paper, 

we focus on results with XGBoost to simplify the discussion.14 The median director predicted by the 

XGBoost algorithm to be in the bottom decile of performance ranks at the 27th percentile in the distribution 

of quasi-labels. The median director predicted to be in the top decile ranks at the 78th percentile in the 

distribution of quasi-labels. In contrast, the predictions from the OLS model are uninformative about 

subsequent performance; directors rank around the 75th percentile in the distribution of quasi-labels, 

regardless of whether OLS predicted they would perform well or not.  

 

 TABLE 4: EVALUATING THE PREDICTIONS USING QUASI-LABELS 
 

This table reports how nominated directors rank in the distribution of quasi-labels of their candidate pool. For each nominated 
director in our test set, we construct a pool of potential candidates who could have been considered for the position. Those 
candidates are directors who accepted to serve on the board of a smaller nearby company within a year before or after the nominated 
director was appointed. The quasi-label for each of these candidates is how she performed on the competing board she chose to sit 
on. The first (second) row shows the median percentile of observed performance in the distribution of quasi-labels for directors the 
model predicted to be in the bottom (top) decile of predicted performance. Each column presents the results from a different model. 

 

                                                   
14 XGBoost is the algorithm that systematically performs very well on the various specified outcomes that we ask the 
algorithms to predict. All results are similar across models. 

OLS XGBoost Ridge Lasso Neural Network

Bottom decile of
predicted performance 77th 27th 37th 23rd 29th

Top decile of
predicted performance 75th 78th 82nd 79th 69th

Median percentile of observed performance in the distribution of quasi-labels (candidate pools)
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Table 4 includes results for the top and bottom deciles of predicted performance. However, our results 

are similar across all deciles of performance and when compared to all potential candidates (i.e. not 

conditioning on the most promising candidates). Figure 3 shows that the mean and median rank (percentile) 

in the distribution of quasi-labels almost monotonically increases across deciles of predicted performance. 

The observed performance of hired directors in the test set is compared to the performance of all potential 

candidates in their respective candidate pool. These results suggest that machine learning models can be 

helpful to predict whether an individual will be successful as a director in a particular firm.  

 

FIGURE 3: MEAN AND MEDIAN RANK IN QUASI-LABEL DISTRIBUTION ACROSS DECILES OF PREDICTED PERFORMANCE 
 

This figure shows the mean and median rank in the distribution of quasi-labels for directors in each of the ten deciles of XGBoost-
predicted performance (Excess votes). The observed performance of nominated directors in our test set is compared to the quasi-
labels of all potential candidates in their respective candidate pool. 

 

We emphasize that board-director matches are not exogenous, and are likely chosen with the intent of 

maximizing the “fit” between directors and firms. In addition, quasi-labels are not perfect substitutes for 

labels (the level of support a director would have gathered on the focal board). However, note that the 

empirical strategy only uses candidate pools and quasi-labels to evaluate the algorithm’s performance in 

the presence of selective labels.  

There potentially exist many settings in which quasi-labels may be used to assess the algorithms’ 

predictions if they represent a plausible substitute for missing labels. Under the assumption that the 

difference between the unobserved missing label and its quasi-label does not vary in a predictable way 
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across the distribution of the predicted outcomes, the quasi-label procedure potentially offers a useful 

approach in various contexts.15  

In our setting, the endogenous nature of the board-director match could lead to systematically inflated 

quasi-labels, i.e. by revealed preference, the performance of the available candidate would not be as high 

on the focal board.16 If quasi-labels are inflated due to the endogenous board-director match, then the 

difference between the quasi-label and the missing label is expected to be positive. However, we do not 

expect this difference to vary in any predictable way across deciles of predicted performance. A closer look 

at our quasi-label procedure results indicates that the rank in the distribution of quasi-labels increases almost 

monotonically across model prediction deciles (Figure 3). Therefore, whereas nominated directors 

predicted to do poorly rank low compared to alternative candidates, nominated directors predicted to do 

well rank high. The symmetry of this result suggests that our quasi-labels are not systematically inflated.  

Our results suggest that the algorithm is able to identify who will perform well and who will not.  

Algorithms have the potential to improve on real world boards’ nominating decisions by affecting the rank 

ordering of potential directors.   

6. Director Popularity or Performance? 

An important interpretational issue is understanding exactly what the algorithm is predicting.  The 

fiduciary responsibility of directors is to maximize shareholders’ welfare, so choosing directors who will 

receive the most subsequent votes would seem to be a natural approach. One concern, however, is that 

many institutional shareholders decide on their votes through recommendations of shareholder services 

companies such as ISS. ISS introduced guidelines in the latter part of our training period. For example, 

explicit guidelines to support proposals aimed at increasing female board representation were introduced in 

2010. However, our training sample covers data from 2000-2011. Less than 20% of appointments in our 

training set take place when ISS had those specific guidelines in place.  

                                                   
15 For instance, suppose a researcher wanted to evaluate algorithmic predictions of loan performance. Quasi-labels for 
denied loans may be the loan performance for the firm (or individual) offered a loan by a different institution. 
16 Note that this would assume that boards and directors are skilled at using unobservables to match. 
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Following Iliev and Lowry (2014) who argue that institutional investors with larger size of ownership 

vote independently from ISS recommendations, we repeat all our tests by focusing on a subsample of firms 

with larger-than-median (26%) ownership by the top-5 institutional owners. Our results (available upon 

request) remain very similar. 

Whereas the recent literature on routine director re-election does report that votes indeed capture the 

performance of directors, we test whether we find evidence for this in our data. Specifically, we compare 

the cumulative abnormal returns (CARs) around the announcement of director appointments in our test set 

for directors predicted to do well to those for directors predicted to do poorly.17  

 

TABLE 5: CUMULATIVE ABNORMAL RETURNS AROUND APPOINTMENT ANNOUNCEMENTS 
 

This table reports the mean and median cumulative abnormal returns for directors predicted to do poorly and for directors predicted 
to do well. Directors predicted to do poorly (well) are directors in decile 1 (decile 10) of predicted performance (excess votes) as 
predicted by the XGBoost algorithm. Results are shown for appointments in the test set only. The cumulative abnormal returns 
reported are computed using a (-1; +1) window. 

 

Table 5 reports the mean CARs using a (-1; +1) window around announcements. The same pattern 

emerges using longer windows as well. Using our XGBoost algorithm to predict excess votes, we find that 

the mean CAR for directors predicted to do poorly (decile 1) in our test set is -1.94% whereas it is +0.75% 

for directors predicted to do well (decile 10). The difference is statistically significant at the 1% level. 

Directors predicted to be unpopular also tend to be viewed by the market as worse directors. We also used 

the algorithm to predict announcement CARs using a smaller sample for which announcement dates are 

available, with similar results. 

Finally, we train an XGBoost algorithm to predict a measure of firm profitability, EBITDA/Total Assets, 

three years post appointment. We then sort directors in our test set into deciles based on predicted 

                                                   
17 We collect announcement dates from BoardEx, CapitalIQ and Lexis-Nexis. 
 

N Mean Median

Directors in Decile 1 of predicted performance
(excess votes)

292 -1.94% -0.64%

Directors in Decile 10 of predicted performance
(excess votes)

575 0.75% 0.34%

Difference in means (p-value) 0.0043
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profitability. We report the actual profitability as well as the shareholder support in the first two rows of 

Table 6.18  The model trained to predict profitability in the subsequent period indeed does predict future 

profitability well. The actual profits for the firms sorted into deciles based on expected profits increase 

monotonically, with average profits increasing with the model’s expectation of profitability. 

 

TABLE 6: COMPARING SHAREHOLDER SUPPORT MODELS WITH PROFITABILITY MODELS 
 

This table reports the actual performance for each decile of XGBoost-predicted performance. XGBoost is trained to predict 1) firm 
profitability three years after the director has been appointed (EBITDA/Total Assets) 2) total votes and 3) excess votes. The results 
are for our test set only (out-of-sample performance for directors appointed between 2012-2014). 
 

Firms that nominated directors in the bottom decile of predicted performance have an average 

profitability of -49.8% and in the top decile is 20.5%. What is perhaps more surprising is that even though 

the model is trained to predict profitability, it can also predict future shareholder support. Directors 

predicted to be in the bottom decile of profitability have shareholder support of 94% three years subsequent 

to the model’s training, and directors predicted to be in the top decile have shareholder support of 96%. The 

difference between the two is statistically significantly different from zero at the 1% level. The model 

trained on profitability also does reasonably well at predicting excess votes. The average excess votes 

is -.0004 for directors in the bottom decile of predicted profitability and it is .004 for those in the top decile 

(the p-value of the difference is 6.68%). 

These results suggest that the choice of training the algorithm on shareholder support in director 

elections is not crucial for the algorithm to be able to predict director quality. When the model is trained 

                                                   
18 The correlation of EBITDA/Total Assets with the shareholder support measure is 0.12 (p-value: 0.000). 

1 2 3 4 5 6 7 8 9 10
Decile 10 - 1

p-value

Average observed profitability -0.498 -0.064 -0.017 0.017 0.078 0.083 0.113 0.114 0.144 0.205 0.0000

Average observed shareholder support 0.942 0.946 0.956 0.937 0.957 0.961 0.953 0.954 0.960 0.961 0.0002

Average observed excess votes -0.0004 0.002 0.006 0.002 0.006 0.004 0.003 0.005 0.006 0.004 0.0668

Average observed profitability 0.006 -0.017 0.008 0.037 0.052 0.058 0.057 0.083 0.087 0.112 0.0000

Average observed excess votes -0.012 -0.002 0.005 0.005 0.009 0.009 0.012 0.012 0.013 0.011 0.0000

Average observed profitability -0.003 -0.032 -0.031 -0.018 0.024 0.029 0.058 0.075 0.086 0.100 0.0000

Average observed shareholder support 0.920 0.937 0.946 0.948 0.950 0.957 0.957 0.966 0.972 0.977 0.0000

Algorithm 
trained on 

excess votes

Algorithm 
trained on total 

votes

�
�

Algorithm 
trained on 

profitability�
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using profitability instead, the pattern of predictions is similar. The algorithm predicts future subsequent 

support. Since this support is based on the market’s perception of a director’s contribution to quality, the 

results are similar when the algorithm is trained on profitability directly. In addition, for the algorithm 

trained on shareholder support that we discussed above, we consider whether it can also predict future 

profitability in addition to future shareholder support. We break the sample into deciles based on the 

algorithm’s predictions of excess votes and total votes, and present average observed excess votes, total 

votes as well as the average profitability for each decile. We present these averages in the bottom four rows 

of Table 6.  

As discussed above, XGBoost is successful in predicting future shareholder support (i.e. total votes) 

and excess votes: average shareholder support in the lowest decile is 92% (-1.2% for excess votes), 

compared to 97.7% in the top decile (1.1% for excess votes). In addition, it also predicts future profitability. 

Firms that nominated directors in the bottom decile of predicted shareholder support have an average 

profitability of -0.3%, whereas firms that nominated directors in the top decile of predicted shareholder 

support have an average profitability of 10%. When XGBoost predicts excess votes, the average profitability 

of firms in the bottom decile is .6% and it is 11.2% for the top decile (Figure 4). This finding has two 

important and related implications: first, shareholder votes do appear to be closely related to firm 

performance, thereby supporting their use as a metric to evaluate director performance and second, 

nominating directors on the recommendation of an algorithm trained to predict shareholder votes would not 

come at the expense of poor firm performance.19  

                                                   
19 This result alleviates concerns related to the omitted payoff bias articulated in Kleinberg et al. (2017), which in our 
setting refers to the concern that the decision-maker could have alternative objectives other than satisfying 
shareholders when making the nominating decision. 
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FIGURE 4: OBSERVED PERFORMANCE (EXCESS VOTES AND PROFITABILITY) ACROSS DECILES OF PREDICTED 
PERFORMANCE 

 
This figure reports the actual mean Excess Votes (left y-axis) and mean firm profitability (right y-axis), with their respective 95% 
confidence interval, for each decile of XGBoost-predicted director performance (Excess Votes) for directors in the test set. 

 

7. Characteristics that Affect Director Performance 

The machine learning models appear to be able to predict which directors are likely to receive more 

shareholder support in subsequent elections and this support appears to be related to firm level performance. 

One of the differences with traditional econometric modeling is that the machine learning algorithms do 

not provide a formula that can be used to infer the influence of any particular independent variable on 

performance. To understand which characteristics affect director performance, we consider the predictions 

from the machine learning models and evaluate the extent to which director and firm characteristics are 

associated with high and low predicted performance. 

7.1. Univariate Comparisons 

Table 7 provides some guidance about which director features are valued by the algorithm in its assessment 

of directors. This table reports the averages of a number of characteristics of potential directors, boards, and 

firms that are associated with low and high expected future voting. In particular, it presents the means of 

these characteristics for the bottom and top deciles of predicted shareholder support predicted by the 
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XGBoost model. There are notable differences between directors in the top and bottom deciles. In particular, 

directors in the bottom decile are more likely to be male, sit on more current boards, have sat on more 

boards in the past, have received lower shareholder support in previous elections for other boards they sat 

on, and have a larger network. These differences suggest that male directors who are on a number of boards 

tend to be less desirable directors on average, either because they are too busy to do a good job or because 

they are less likely to monitor the CEO.20  

 Board-level variables that affect predicted excess votes likely reflect perceptions of the quality of 

governance in a particular firm. Note that the outcome variable presented is the Excess votes, which is 

adjusted for the average support for the slate, and therefore, some of the statistics are harder to interpret. 

For instance, the average tenure of incumbent board members is about three years for directors in the bottom 

decile of predicted performance, whereas it is about ten years for those in decile ten. This pattern occurs 

because a new director is more likely to receive more votes relative to other directors up for reelection if 

the incumbents have been on the board for a very long time, most likely because of a recent push for board 

refreshment.21 In unreported results where the top and bottom deciles refer to unadjusted (total) votes, we 

see that longer average director tenure, which is likely to reflect an entrenched board, is associated with 

lower predicted shareholder support.  

Firm level variables affecting voting tend to reflect the performance of the firm, with better performance 

leading to higher predicted shareholder support. While prior 12-month stock returns for the bottom 

predicted decile of shareholder support are not different from that for the top decile of predicted shareholder 

support, average ROE is significantly larger for the top decile. 

                                                   
20 Fich and Shivdasani (2006) present evidence suggesting that a director being overly busy can meaningfully affect 
their monitoring of management. 
21  See for example https://corpgov.law.harvard.edu/2016/07/29/refreshing-the-board/ 
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Bottom decile 
of predicted 
performance

Top decile of 
predicted 
performance

Difference
p-value

Director level

Age 56.3 57.0 0.083

Audit committee 0.236 0.818 0.000

Audit committee chair 0.039 0.077 0.001

Background academic 0.060 0.049 0.330

Background finance 0.190 0.122 0.000

Background lawyer 0.026 0.017 0.233

Background manager 0.335 0.318 0.471

Background marketing 0.084 0.026 0.000

Background military 0.010 0.006 0.405

Background politician 0.029 0.011 0.008

Background science 0.040 0.011 0.000

Background technology 0.021 0.007 0.021

Busy 0.520 0.120 0.000

Chairman 0.098 0.001 0.000

Compensation committee 0.624 0.059 0.000

Compensation committee chair 0.175 0.024 0.000

Foreign 0.156 0.088 0.005

Governance chair 0.045 0.011 0.000

Governance committee 0.168 0.122 0.008

International work experience 0.109 0.037 0.000

Male 0.897 0.746 0.000

Network size 1540 1327 0.000

Nomination chair 0.004 0.001 0.318

Nomination committee 0.023 0.011 0.057

Number of qualifications 2.208 2.282 0.180

Total current number of boards sitting on 2.848 1.545 0.000

Total number of listed boards sat on 5.814 2.289 0.000

Ivy league 0.217 0.109 0.000

MBA 0.466 0.410 0.064

Nb previous jobs same FF48 industry 0.105 0.037 0.000

Nb previous directorships same FF48 industry 0.342 0.037 0.000

Board level

Gender ratio 0.105 0.153 0.000

Nationality mix 0.128 0.084 0.000

Board attrition 0.102 0.054 0.000

Average tenure of incumbent directors 3.443 9.731 0.000

Average tot. nb of boards incumbent directors sit on 1.672 1.809 0.000

Board size 8.5 10.2 0.000

CEO SOX certified 0.539 0.995 0.000

Chairman is CEO 0.357 0.496 0.001

Chairman is CEO with tenure ≥ 5 0.600 0.983 0.000

Indep. directors compensation over CEO tot. compensation 0.912 1.172 0.280

Mean past voting shareholder support -0.012 0.011 0.000

Number of female directors 1.007 1.611 0.000

Incumbent directors with finance background 0.117 0.221 0.000

Busy incumbent directors 0.173 0.210 0.000

Average age of incumbent directors 57.5 63.0 0.000

Average network size of incumbent directors 1239 1347 0.007

Mean
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TABLE 7: TOP VS. BOTTOM DECILE OF PREDICTED PERFORMANCE 
 

This table reports the mean of firm and director level features for directors in the bottom decile of predicted excess votes and 
compares it to the mean for directors in the top decile of predicted excess votes. These results are for directors in our test set. 
Because we do not need the actual vote outcomes for this exercise but only the predictions, this test set covers appointments up to 
2016. The algorithm used to predict performance is XGBoost. 
 

7.2.  Multivariate Comparisons 

Because director and firm characteristics are not independent from one another, we estimate regressions 

of predicted performance. As independent variables, we include firm, board and director variables. The 

coefficients reflect the characteristics that XGBoost tends to associate with higher performance. We report 

estimates of these regressions in Table 8. The relatively low R2 of these regressions is not surprising and 

speaks to the importance of feature interactions and non-linearities that XGBoost relies on to generate its 

predictions of subsequent performance.  

Director variables related to predicted subsequent shareholder support are gender, a dummy variable 

that indicates whether the director is “busy” and the number of listed boards a director serves on. In 

particular, the algorithm suggests that male directors and directors who are on at least three boards (“busy” 

directors) tend to receive less support from shareholders, which we found was related to firm performance 

as well.  

Firm level

Dividend payer 0.298 0.630 0.000

Excess returns 12 months leading up to appointment 0.028 -0.018 0.126

Firm age 10 30 0.000

Hoberg-Phillips product market fluidity 7.446 6.237 0.000

Institutional ownership % 0.586 0.711 0.000

Largest 10 institutional shareholders % 0.367 0.421 0.000

Largest 5 institutional shareholders % 0.275 0.303 0.001

Largest institutional shareholder % 0.106 0.102 0.492

Leverage 0.266 0.191 0.000

Log (number of institutional blockholders) 1.010 1.250 0.000

Log (number of institutional owners) 4.971 5.279 0.000

Ownership by blockholders % 0.193 0.226 0.002

ROE -0.110 0.194 0.353

Stock returns prior 12 months 0.158 0.116 0.188

Total assets 17600 30435 0.087

Number of analysts 8.4 12.0 0.000

Short interest (%) 0.036 0.053 0.000

Peter & Taylor Total Q 4.291 0.990 0.000
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TABLE 8: THE DETERMINANTS OF PREDICTIONS: OLS REGRESSIONS 
 

This table reports the results from OLS regression models of the predicted excess votes in our test set on some firm level and 
director level features. Because we do not need the actual vote outcomes for this exercise but only the predictions, this test set 
covers appointments up to 2016. The algorithm used to generate the predictions is XGBoost. 

Dependent variable: predicted performance (1) (2) (3) (4)

Busy -0.006*** -0.005*** -0.005*** -0.005***
(-24.332) (-13.183) (-12.230) (-12.087)

Male -0.001*** -0.001 -0.001 -0.001*
(-4.623) (-1.398) (-1.603) (-1.688)

Age -0.000** -0.000** -0.000**
(-2.001) (-2.079) (-2.242)

MBA 0.000 0.000 0.000
(1.074) (1.108) (1.150)

Ivy league -0.001** -0.001* -0.001*
(-2.555) (-1.869) (-1.864)

Background lawyer -0.002 -0.001
(-1.521) (-1.394)

Background academic 0.000 0.000
(0.180) (0.134)

Background finance -0.001 -0.001
(-1.344) (-1.568)

Network size -0.000*** -0.000***
(-2.838) (-2.691)

Ln (Assets) 0.001*** 0.000 0.000 0.000
(9.054) (0.276) (0.016) (0.160)

ROA 0.001*** 0.000 0.000 0.000
(4.280) (0.024) (0.156) (0.124)

Board size -0.000*** -0.000** -0.000* -0.000*
(-3.303) (-2.027) (-1.751) (-1.843)

Average nb independent directors 0.009*** 0.006*** 0.006*** 0.005**
(20.814) (3.055) (2.906) (2.529)

Chairman duality 0.001*** 0.001*** 0.001***
(3.399) (3.481) (3.319)

Excess returns 12 months leading up to appointment 0.000 0.000 0.000
(1.049) (1.058) (1.156)

Number of female directors 0.000 0.000
(0.172) (0.554)

Average tenure of incumbent directors 0.000*** 0.000*** 0.000***
(6.441) (6.099) (4.907)

Log (number of institutional owners) 0.001** 0.001** 0.001*
(2.155) (2.431) (1.798)

Compensation committee chair -0.002*
(-1.803)

Audit committee chair 0.002**
(2.524)

Governance committee chair -0.002
(-1.457)

Nomination committee chair -0.002
(-0.599)

Firm Age 0.000***
(2.925)

Constant -0.002*** 0.003 0.003 0.005*
(-3.762) (1.053) (1.128) (1.867)

Observations 7,738 1,893 1,883 1,883
R-squared 0.153 0.131 0.136 0.146
t-statistics in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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This pattern could reflect the commonly stated concern of shareholders that directors are too often the 

same people, are on many boards but do not monitor to the extent that shareholders would like (see for 

example Biggs (1996)). Consistently, network size has a significantly negative coefficient as well. 

Board level variables that are significantly related to the predicted shareholder support are the size of 

the board, the average tenure of incumbent board members, and the average number of independent 

directors. These variables again are likely to reflect the independence of the board from management. Firm-

level variables that appear to be associated with subsequent performance are size (total assets), operating 

performance, and whether the firm pays dividends.  

7.3. Overvalued Director Characteristics  

Next, we use the algorithm’s predictions to learn more about the decision-making process that governs 

the nomination of corporate directors. The predictions can help us identify the individual director features 

that tend to be overvalued or undervalued by firms when they select new directors. To do so, we identify 

directors who were nominated but were of predictably low quality and we compare them to those directors 

the algorithm would have preferred for that specific board position. The patterns of discrepancies between 

these two groups recognize the types of directors that tend to be overvalued in the nomination process. In 

other words, the algorithm provides a diagnostic tool that can help evaluate the way in which directors are 

chosen. 

In Table 9, we report characteristics of directors who were nominated, but whom the algorithm 

predicted would do poorly and who indeed subsequently did poorly. Compared to promising candidates 

identified by the algorithm, predictably unpopular directors are on average more likely to be male, have 

fewer degrees post undergraduate, a larger professional network, more current and past directorships, and 

are more likely to have a background in finance.22 

 
 

                                                   
22 Predictions for candidates assume the same committee assignments as the nominated director. We find very similar 
results for all alternative specifications mentioned in previous sections. 
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TABLE 9: OVERVALUED DIRECTOR CHARACTERISTICS  
 

This table reports the mean of director features for directors in our test set (out of sample predictions) whom our XGBoost algorithm 
predicted would be in the bottom decile of performance and indeed ended up in the bottom decile of actual performance (i.e. 
predictably low quality directors) and compares it to the mean for potential candidates the board could have nominated instead, 
whom our XGBoost algorithm predicted would be in the top decile. 
 

These results highlight the features that are likely overrated by management when nominating directors. 

They are consistent with the view that directors tend to come from an “old boys club”, in which men who 

have sat on a lot of boards are chosen to be directors. The underlying reason for this pattern, however, is 

not clear. As suggested by the literature on boards going back to Smith (1776) and Berle and Means (1932), 

managers and existing directors could implicitly collude to nominate new directors unlikely to rock the boat 

and upset the rents managers and existing directors receive from their current positions. Alternatively, a 

long literature in psychology dating to Meehl (1954) and highlighted in Kahneman (2011) has found that 

even simple algorithms can outperform interviews by trained professionals at predicting subsequent 

performance in a number of contexts. It is possible that managers and boards could be attempting to find 

value-maximizing directors but because of behavioral biases, could underperform the algorithms we 

present. Understanding why firm-selected directors differ from algorithm-selected directors is likely to be 

an important topic of future research.  

Hired directors 
with predicted 
and observed 

low shareholder 
support

Promising 
candidates for 

this board 
position

Mean Mean
Difference
p-value

Male 0.984 0.835 0.000

Number of qualifications 2.1 2.4 0.000

Ivy League 0.29 0.26 0.523

MBA 0.57 0.38 0.000

Network size 1673 1428 0.000

Total number of listed boards sat on 6.4 2.3 0.000

Total number of unlisted boards sat on 11.0 2.7 0.000

Total current number of boards sitting on 3.1 1.5 0.000

Number previous jobs same industry 0.11 0.08 0.223

Number previous directorships same industry 0.26 0.07 0.000

Busy 0.64 0.10 0.000

Director age 54.1 54.6 0.353

Background academic 0.021 0.000 0.001

Background finance 0.094 0.046 0.002

International work experience 0.130 0.018 0.000
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8. Summary and Discussion 

We present a new approach based on algorithms to select the directors of publicly traded companies. 

In developing the machine learning algorithms, we contribute to our understanding of governance, 

specifically boards of directors, in at least four ways. First, we evaluate whether it is possible to construct 

an algorithm that can predict whether a particular individual will be successful as a director in a particular 

firm. Second, we compare alternative approaches to forecasting director performance; in particular, how 

traditional econometric approaches compare to newer machine learning techniques. Third, we provide 

evidence that director popularity is related to their expected value and that shareholder support is thus a 

meaningful proxy for their performance. Finally, we use the selections from the algorithms as benchmarks 

to understand the process through which directors are actually chosen and identify the types of individuals 

who are more likely to be chosen as directors counter to the interests of shareholders. 

There are a number of methodological issues we must address before we can design such an algorithm. 

We must be able to measure the performance of a director to predict which potential directors will be of 

highest quality. Our approach is based on levels of shareholder support. We ensure the validity of our 

specified outcome variable in several ways. Measurement of directors’ performance is complicated by the 

fact that most directors’ actions occur in the privacy of the boardroom where they are not observable to an 

outside observer. In addition, most of what directors do occurs within the structure of the board, so we 

cannot isolate their individual contributions. Our vote-based performance measure is an individual measure 

which reflects the support the director personally has from the shareholders she represents and which should 

incorporate all publicly available information about her performance. We show that the vote-based 

performance measure is informative about directors’ quality as it is related to firm profitability and firm 

value. Importantly, selecting directors based upon predictions of how popular they will be with shareholders 

does not come at the expense of other dimensions management likely cares about.  

Using publicly available data on firm, board, and director characteristics, our algorithm can predict the 

success of directors. In comparison to the machine learning models, standard econometric models fit the 

data poorly out of sample. Specifically, the observed performance of individual directors is not related to 
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the predictions of performance of an OLS model. The fact that the machine learning models dramatically 

outperform econometric approaches is consistent with the arguments of Athey and Imbens (2017) and 

Mullainathan and Spiess (2017): machine learning is a valuable approach for prediction problems in the 

social sciences.  

There is an additional methodological issue we need to address before we can conclude that algorithms 

can help us understand the director nomination process. We observe the predictive accuracy of our 

algorithm only for directors who were nominated. We design a quasi-labels procedure which exploits the 

fraction of votes plausible candidates received at the company whose board they joined as an indication of 

their performance. We find that directors the algorithm predicted would do poorly (well) indeed do poorly 

(well) when compared to realistic alternatives. 

The differences between the directors suggested by the algorithm and those actually selected by firms 

allow us to assess the features that are overrated in the director nomination process. Comparing predictably 

poor performing directors to promising candidates suggested by the algorithm, it appears that firms choose 

directors who are more likely to be male, have a large network, have many past and current directorships, 

and have a finance background. In a sense, the algorithm is saying exactly what institutional shareholders 

have been saying for a long time: that directors who are not old friends of management and come from 

different backgrounds are more likely to monitor management. In addition, less connected directors 

potentially provide different and potentially more useful opinions about policy. For example, TIAA-CREF 

(now TIAA) has had a corporate governance policy aimed in large part at diversifying boards of directors 

since the 1990s for this reason (see Biggs (1996) and Carleton et al. (1998)).23   

Our finding on the predictability of which directors will or will not be popular with shareholders has 

important implications for corporate governance. Observers since Smith (1776) and Berle and Means 

                                                   
23 Similarly, Glenn Kelman, the CEO of RedFin, recently wrote: “Redfin has recently completed a search for new 
board directors, […] and we had to change our process, soliciting many different sources for candidates rather than 
relying exclusively on board members’ connections. If you don’t pay attention to diversity, you’ll end up hiring people 
who are nearest at hand, who have had similar jobs for decades before. This is how society replicates itself from 
generation to generation, in a process that seems completely innocuous to those who aren’t the ones shut out.” 
https://www.redfin.com/blog/2016/11/how-to-triple-the-number-of-women-appointed-to-boards-in-three-years.html 
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(1932) have been concerned about whether managers intentionally select boards that maximize their own 

interests rather than those of the shareholders. The psychology literature started by Meehl (1954) has found 

that due to behavioral biases, even simple algorithms can outperform humans in deciding on personnel 

decisions. We believe that machine learning algorithms, with their powerful predictive ability, present an 

opportunity for firms to improve their selection process.   

A natural question concerns the applicability of algorithms such as the ones we developed in practice. 

We view our work as a “first pass” approach, aimed at bringing the predictive power of machine learning 

tools to the issue of director selection. More sophisticated models with richer data would undoubtedly 

predict individual director performance better than the models presented here. If algorithms such as these 

are used in practice in the future as we suspect they will be, practitioners will undoubtedly have access to 

much better data than we have and should be able to predict director performance more accurately than we 

do in this paper. An important benefit of algorithms is that they are not prone to the agency conflicts that 

occur when boards and CEOs together select new directors.  

Algorithmic bias and algorithmic fairness represent concerns of growing importance. Our data, as is 

almost always the case in the social sciences, was generated by human decisions. As a result, machine 

learning algorithms can generate bias amplification (Zhao et al., 2017). While our choice of specified 

outcome helps mitigate the concern of “historical bias” (the decision maker and the evaluator are separate 

entities), special attention should be paid to various properties of any dataset prior to the implementation of 

an algorithmic decision aid. As Miller (2018) argues however, the perils of human bias are arguably worse 

than the perils of algorithmic bias. The benchmark against which algorithms should be evaluated should 

not necessarily be zero bias, but rather prevailing biases given that humans make decisions. 

Institutional investors are likely to find the algorithm’s independence from agency conflicts particularly 

appealing and are likely to use their influence to encourage boards to rely on an algorithmic decision aid 

such as the one presented here for director selections in the future. An important advantage of an algorithm 

over the way in which directors have been chosen historically is that “algorithms can overcome the harmful 

effects of cognitive biases” (Sunstein, 2018). Rivera (2012) studies the hiring practices of top investment 
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banks, consulting and law firms and concludes that recruiters overvalue personal fit which is not necessarily 

a function of expected performance.  In the context of lower skill workers, Hoffman et al. (2017) find that 

managers who hire against test recommendations end up with worse average hires. Cowgill (2018) shows 

that the job-screening algorithm at a software company prefers “nontraditional” candidates. Our results 

suggest that the same idea applies to the nominating of corporate directors. Including algorithmic input to 

limit (but not strip) discretion and reliance on soft information in these decisions could help minimize 

agency problems, and thus lead to a modified rank ordering of candidates that could in turn lead to better 

directors than the current process. 

On the other hand, if the algorithm omits attributes of potential directors that are valuable to 

management, such as specialized knowledge of an industry or government connections, then it potentially 

could lead to suboptimal solutions. This is why we advocate for tools built on algorithms as decision aids, 

not substitutes for human judgement. Humans and machines both have limits and make different kinds of 

mistakes, i.e. they tend to have uncorrelated errors. Achieving the right balance in the division of labor 

between humans and machines to take advantage of their relative strengths is key.24 

In this paper, we use 21st century technology to confirm an observation that dates back over two hundred 

years: the board selection process leads to directors who often those nearest at hand and are not necessarily 

the best choices to serve shareholders’ interests. This technology can, however, in addition to confirming 

this observation, provide us with the tools to change it. By providing a prediction of performance for any 

potential candidate, a machine learning algorithm could expand the set of potential directors and identify 

individuals with the skills necessary to become successful directors, who would have otherwise been 

overlooked. We expect that in the not too distant future, algorithms will fundamentally change the way 

corporate governance structures are chosen, and that shareholders will be the beneficiaries.  

  

                                                   
24 The issues around the consequences of AI-based decisions are exposed in grounded discussions in Agrawal, Gans 
and Goldfarb (2018) 
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VOTES DISTRIBUTION 

 Shareholder Support: Fraction of Votes “For” 

This figure shows the distribution of average shareholder support, defined as the fraction of votes in favor 
of a given director over all votes cast for the director’s reelection within three years of her tenure. The data 
is from ISS Voting Analytics. 
 

Distribution of Poor Outcomes: Fraction of Votes “For” Below 95% 

 
This figure shows the distribution of average shareholder support for values under its mean value of 95%. 
Shareholder support is defined as the fraction of votes in favor of a given director over all votes cast for the 
director’s reelection within three years of her tenure. The data is from ISS Voting Analytics. 
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Excess Votes: Fraction of Votes “For” Minus the Slate’s Average 

This figure shows the distribution of excess votes for our sample. To compute Excess votes, we compute 
the fraction of votes in favor of a given director over all votes cast for the director. Next, we subtract the 
average of that variable for the slate of directors up for reelection that year on the focal board. Finally, we 
take the average of this relative vote measure over the first three years of the new director’s tenure. The 
data is from ISS Voting Analytics. 
 

 

Distribution of Poor Outcomes: Excess Votes below -5% 

This figure shows the distribution of Excess votes below -5%. 
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OLS MODEL  

 
This table reports coefficients from an OLS regression of excess votes on various director, firm, and board 
characteristics. Excess vote is defined as the average observed level of shareholder support over the first 
three years of a new director's tenure, minus the average vote for all directors in the same slate. The 
regression sample contains director appointments between 2000-2011. 

 

Dependent Variables: Excess Votes
Compensation committee chair -0.003

(-1.281)
Audit committee chair 0.006***

(2.975)
Governance committee chair 0.003

(1.338)
Nomination committee chair 0.002

(0.399)
Nb previous jobs same FF48 industry -0.002

(-1.117)
Background finance 0.002

(1.341)
Background law -0.006**

(-2.320)
MBA 0.001

(1.229)
Ivy league -0.001

(-0.615)
Male 0.001

(0.609)
Age (director) 0.000

(-0.068)
Number of qualifications 0.000

(0.133)
Ln (Assets) 0.003**

(2.323)
Leverage -0.007

(-1.285)
M/B 0.000

(0.185)
Largest 5 institutional shareholders % 0.012

(1.553)
ROA 0.000

(0.078)
Product market fluidity 0.000

(-0.486)
12-month return 0.000

(-0.452)
Dividend payer 0.003

(1.147)
Board size 0.000

(0.375)
Number of female directors 0.000

(0.371)
Average nb independent directors -0.009

(-1.232)
Average age 0.000

(0.774)
Constant -0.026*

(-1.650)

Observations 10,601
Number of firms 2,820
R-squared 0.005

t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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ALGORITHMS USED TO PREDICT PERFORMANCE: SOME DETAILS 

 

A.2.1. Less is More: The Case for Lasso and Ridge 

  Lasso and ridge are both linear models that use a regularization term to achieve a balance between 

bias and variance. They do so by minimizing a loss function that includes in-sample fit and a penalty term 

that favors simple models, thereby reducing variance. Prediction accuracy is thus improved by setting some 

coefficients to zero and shrinking others. To achieve this goal, lasso and ridge combine the minimization 

of the sum of the squared errors with the norm of parameters. The lasso estimator solves the problem: 

min
4
5(!$ − 8$9):
;

<=>

	+ 	@	 ∙ 	‖9‖> 

where ‖9‖> is the ℓ>-norm (least absolute deviation). The penalty weight (@) on the sum of the absolute 

values of coefficients is set using the default parameter in scikit-learn25. 

Ridge is similar to lasso except that the bound on the parameter estimates is the ℓ:-norm (least 

squares), therefore shrinking estimates smoothly towards zero, as opposed to setting some estimates to zero 

as Lasso does.26   

A.2.2. Gradient Boosting Trees  

Gradient Boosting Trees are related to random forests. A decision tree is the basic building block 

of random forests. A decision tree defines a tree-shape flow graph to support decisions. An instance is 

classified by starting from the root of the tree, testing the feature specified by the node, moving down the 

branch corresponding to the feature value in the given instance.  

A key difference between decision tree learning and Ridge and Lasso regression lies in the fact that 

there is no explicit objective function that a decision tree optimizes. Instead, the learning process is a greedy 

recursive algorithm that finds the best feature to split the current data based on a criterion. In our paper, we 

                                                   
25 http://scikit-learn.org/stable/ 
26 For a detailed discussion of sparse estimators, we refer interested readers to Hastie, Tibshirani and Wainwright 
(2015). 
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use a decision tree regressor where the criterion aims to minimize the mean squared error in each branch. 

Refer to Mitchell (1997) for more details on decision tree learning. 

Random forest is an ensemble method based on decision trees. The main intuition is that a single 

decision tree can be noisy but is able to function as a weak learner. An ensemble of weak learners makes a 

strong learner. To train a random forest regressor, a number of decision tree regressors are fitted by 

randomly sampling data from the training instances with replacement and also randomly sampling a subset 

of features. The average values of all decision tree regressors is used to predict the value of an instance. 

Gradient boosting tree is another ensemble method based on decision trees. It differs from random 

forests in two aspects: 

1. Boosting. To predict the value of an instance, gradient boosting trees uses D additive functions instead 

of computing the average: 

!EF = 5H;(8$)
I

;=>

, 

where H; is a decision tree regressor. In other words, in boosting, each additional decision tree attempts 

to fit the residual error, whereas each decision tree in random forest attempts to fit the target value ! 

directly. 

2. Regularized objectives. The split in a decision tree regressor of gradient boosting trees optimizes a 

regularized global objective that balances the predictive performance and the complexity of decision 

tree regressors. The loss function is formulated as: 

K = 	5L(!"$, !$) +5Ω(H;)
;$

, 

where L refers to a differentiable loss function that measures the difference between the predicted value 

and the target value (in our case, it is simply squared loss), Ω(H;) = NO + >
:
@P|R|P: and measures the 

complexity of a tree, O refers to the number of leaves in the tree and R refers to the score at a leave. A 

simple tree has a small number of leaves and each leave has a small score. N and @ are parameters to 

control how these two complexity measures are weighted in the final objective function. The name 
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gradient boosting trees arise from the fact that a gradient will be computed in the algorithm to optimize 

the above objective function. Please refer to Chen et al, 2016 for a detailed discussion. 

A.2.3. Neural Networks 

The figure above depicts the structure of a basic neural network with two hidden layers. Neurons xi are 

input neurons connected to the next layer of neurons by synapses which carry weights w1. Each synapse 

carries its own weight. An activation function (usually a sigmoid to allow for non-linear patterns) is 

embedded in each neuron in the hidden layers to evaluate its inputs. The set of weights carried by the 

synapses that reach a neuron are fed into its activation function, which will determine whether that neuron 

is activated. If activated, it then triggers the next layer of neurons with the value it was assigned, with weight 

w2 (again with each synapse carrying its own weight). 
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A FRAMEWORK TO ASSESS ALGORITHMS’ PREDICTIONS 

 

We develop a framework in the spirit of Kleinberg et al. (2017) to understand the issues faced when 

assessing the prediction accuracy of our algorithms. Suppose that the true data generating process is given 

by S = 	ℱ(U,V), where U	and	S are operationalized by W, our vector of inputs and Y, our outcome 

variable (i.e., director performance). V represents a set of features that affect director performance and that 

are observable by the decision maker (board/CEO) but not by the algorithm. An example of such a feature 

would be idiosyncratic knowledge of the firm or its industry that would make a potential director more 

valuable. 

In addition, there are features ℬ that do not affect director performance and are unobservable to the 

algorithm, but could nonetheless affect boards’ nominating decisions. Examples of such features could be 

a candidate’s political views, or the neighborhood where she grew up. The board’s preferences for certain 

features in ℬ could be conscious or could represent an implicit bias of which they are unaware of. The key 

point is that these attributes can influence boards’ decisions even though they are not correlated with 

performance.  

 ℱ is operationalized by a functional form Z. For the purpose of predictive modeling, we are 

interested in finding a function that closely matches the function Z in out-of-sample data. Compared to 

classic causal hypothesis testing, we do not make strong assumptions about the structure of ℱ and thus do 

not focus on examining the estimated parameters and claim that these parameters match Z. In other words, 

our supervised machine learning algorithm seeks to learn a functional form that maps features W into 

predictions Z[(\) that generalize well on out-of-sample data (Shmueli, 2010). 

A director is characterized by 8⃗, composed of three vectors of features as well as of outcome y:  

8⃗ = 	 ^
\
Z
B
a 
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Note that 8 may include not only director characteristics but also firm and board level characteristics so 

that both the board and the algorithm try to assess a director’s future performance for a specific board 

position. 

For the purpose of the model and similar to Kleinberg et al. (2017), we shrink the dimension of 8⃗ 

to a vector with three unidimensional characteristics w, z and b. In addition, we assume that the sum of w 

and z is distributed between 0 and 1 and that their sum equals y on average: 

b[d = !|\ = R, e = f] = 	b[!|R, f] = R + f 

Each board j has a payoff function h<  that is a function of the director’s performance as well as of 

the director’s characteristics as defined by 8⃗. 

For each director (8, !) in the candidate pool j of size k, the board’s payoff is characterized as: 

h<(8, !) = k<!l
m&+&n$,-	n%op	

'$%&),o%q-	r&%no%p*+)&

+ 	 s<t<(8)uvwvx
m&+&n$,-	n%op	#$%$+y

'$%&),o%	z$,#	)#*%*),&%$-,$)-	{

 

t<(8) is a board specific function that maps directors’ characteristics into a score. We can think of t<(8) 

as a measure of the utility the board derives from nominating a director with specific characteristics; for 

example, they could derive private benefits from nominating someone from their own network. The 

variables k<  and s< represent weights that board j puts on director performance and on the benefits it derives 

from nominating a director with certain features, respectively. 

We assume that board j chooses a nominating rule ℎ< such that it maximizes its expected payoff.  

ℎ< 	∈ 	 {0,1};	ÇÉÑ	Öℎ<ÖÜ = 1 

�<áℎ<à = 	5ℎ<,$bâh<(8$, !$)ä
$∈j

 

The nominating rule ℎ< depends on ã<(8), the board’s assessment of future performance for a 

director with characteristics	8. For a given t<(8), the board chooses the director with the highest ã<(8). We 

do not observe boards’ relative weights on director performance, k< , and their own preferences for directors 
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with particular characteristics, s<. In a world of perfect corporate governance, boards are only concerned 

with their mandate (i.e. representing shareholders’ interests) and s< = 0. 

We set s< = 0 not because we believe in a world of perfect governance but because our question 

is: can an algorithm identify a director 8′′ with better performance than director 8′ nominated by board j, 

whom the board will like at least equally well? In other words, conditional on t<(8çç) ≥ t<(8′), can an 

algorithm recommend a nominating rule è that produces a higher payoff than the baseline: the outcome of 

board j’s actual nominating decision? 

The difference in the expected payoffs between the two nominating rules è< and ℎ< is: 

�<áè<	à −�<áℎ<à = 		∑ è<,$bâh<(8$, !$)ä$∈j  - ∑ ℎ<,$bâh<(8$, !$)ä$∈j  

= b[!|	è]uvwvx
p$--$+y	ë*m&ë

−	 b[!|	ℎ]uvwvx
om-&%í&'	ë*m&ë

  

 We do not observe the performance of directors who would be nominated under the alternative 

nominating rule produced by the algorithm. As discussed in Kleinberg et al. (2017), missing labels are often 

dealt with in the machine learning literature by various imputation procedures. However, this approach 

would assume that if a director shares the same set of observable feature values, w, as the nominated 

director, their performance would be identical. This is the equivalent of assuming that unobservables, z, 

play no role in nominating decisions. For a given w, the imputation error would therefore be: 

b[!|è, R] − 	b[!|ℎ, R] = 	b[R + f|è,R] − 	b[R + f|ℎ, R]	

 = 	b[R|è,R] − 	b[R|ℎ, R] + 	b[f|è, R] − 	b[f|ℎ, R] 

= 	b[f|è, R] − 	b[f|ℎ, R]	 

 This imputation error points up the selective labels problem. In our setting, it refers to the possibility 

that directors who were nominated, although they might share the same exact observable features as other 

directors not nominated, might differ in terms of unobservables. These unobservables could lead to different 

average outcomes for nominated vs. not nominated, even if both are identical on the basis of observable 

characteristics. 
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 We exploit the design of our pool of candidate directors for each board seat in order to compare the 

performance of our algorithm to board decisions. Although we do not have labels for nominees generated 

by the algorithm’s nominating rule, b[!|è], we observe their quasi-label: their performance on the smaller 

neighboring board they joined around the same time. 

We are interested in evaluating the quality of boards’ nominating decisions. Our approach is to 

contrast those decisions to an alternative nominating rule that our algorithm would have chosen. For 

example, using the notation introduced in this section, if the algorithm predicted a director with 

characteristics 8�would perform very poorly and there were fifty other candidates the algorithm predicted 

would do better, there are effectively fifty alternative nominating rules α that would yield a higher payoff 

in terms of benefits derived from director performance. To allow boards to use unobservables to make their 

nominating decisions, we add the assumption that among those fifty alternative nominees, there exists at 

least one director with characteristics 8′′ such that t<(8çç) ≥ t<(8′). When we analyze the quasi-labels of 

those potential candidates, we explore whether they indeed do better on average than director 8′ when 8′ 

was predicted to do poorly, and worse when 8′ was predicted to do well. 
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DATA DEFINITIONS 
 

A.4.1. Individual Director Features                                  
Source: BoardEx except if stated otherwise                                  
(as of when the director joins the board)                                  
Variable Definition                               

Age Director age                               
Audit chair Equals one if director is chair of the audit committee                               
Audit member Equals one if director is a member of the audit committee                               
Avgtimeothco The average time that a director sits on the board of quoted companies                               

Bkgd academic Equals one if job history includes in title one of the following:  
"professor" "academic" "lecturer" "teacher" "instructor" "faculty" "fellow" "dean" "teaching"                       

Bkgd finance 
Equals one if job history includes in title one of the following: "underwriter" "investment" "broker" "banker" "banking" "economist" 
"finance" "treasure" "audit" "cfo" "financial" "controller" "accounting" "accountant" "actuary" "floor trader" "equity" "general partner" 
"market maker" "hedge fund" 

Bkgd hr Equals one if job history includes in title one of the following: "hr " "recruitment" "human resource"                               
Bkgd law Equals one if job history includes in title one of the following: "lawyer" "legal" "attorney" "judge" "judicial"                               

Bkgd manager 
Equals one if job history includes in title one of the following: 
"manager" "vp" "president" "director" "administrator" "administrative" "executive" "coo" "chief operating" "operation" "secretary" 
"founder" "clerk" "division md" "employee" "associate" "head of division" 

    

Bkgd marketing 
Equals one if job history includes in title one of the following: 
"marketing" "publisher" "mktg" "sales" "brand manager" "regional manager" "communication" "merchandising" "comms" 
"distribution" "media" 

              

Bkgd military 
Equals one if job history includes in title one of the following: 
"captain" "soldier" "lieutenant" "admiral" "military" "commanding" "commander" "commandant" "infantry" "veteran" 
"sergeant" "army" 

                

Bkgd politician Equals one if job history includes in title one of the following: 
"politician" "senator" "political" "deputy" "governor"                               

Bkgd science 
Equals one if job history includes in title one of the following: 
"researcher" "medical" "doctor" "scientist" "physician" "engineer" "biologist" "geologist" "physicist" "metallurgist" "science" 
"scientific" "pharmacist" 

            

Bkgd technology Equals one if job history includes in title one of the following: 
"technology" "software" "programmer" " it " "chief information officer" "database" "system administrator" "developer"                   

Bonus Annual bonus payments (in thousands)                               
Busy Equals one if directors sits on three or more boards                               
CEO Equals one if director is the company's CEO                               
Chairman Equals one if director is chairman of the board                               
Compensation chair Equals one if director is chair of the compensation committee                               
Compensation committee Equals one if director is a member of the compensation committee                               
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Experience CEO Equals one if director has experience as CEO of a publicly traded company                               
Experience CFO Equals one if director has experience as CFO of a publicly traded company                               
Experience Chairman Equals one if director has experience as Chairman of a publicly traded company                               
Experience exec VP Equals one if director has experience as executive VP of a publicly traded company                               
Experience President Equals one if director has experience as President of a publicly traded company                               
Foreign Equals one if director's nationality is not American                               
GenBBB Equals one if director was born between 1946 and 1964                               
GenDepBB Equals one if director was born in or before 1926                               
Gender Equals one if director is male                               
GenMature Equals one if director was born between 1927 and 1945                               
GenX Equals one if director was born between 1965 and 1980                               
GenY Equals one if director was born in 1981 or after                               
Governance chair Equals one if director is chair of the governance committee                               
Governance member Equals one if director is a member of the governance committee                               
HistInternational Equals one if job history includes a position outside the United States                               
Ivy league Equals one if director went to an Ivy League college                               
Lead_independent Equals one if director is lead independent director                               
MBA Equals one if director holds an MBA degree                               
Mean past voting outcome Average shareholder support during the first three years of tenure for previous board positions (starting in 2002 Source: ISS Voting Analytics)                         
Mean_support_3yrs Average shareholder support over the first three years of tenure. Source: ISS Voting Analytics                               
Network size Network size of director (number of overlaps through employment, other activities, and education)                               
Nomination chair Equals one if director is chair of the nomination committee                               
Nomination member Equals one if director is a member of the nomination committee                               
Number connections Number of established connections to incumbent board members prior to joining the board                               
Number qualifications Number of qualifications at undergraduate level and above                               
Nb prev jobs industry Number of previous jobs in same FF48 industry                               
Time prev jobs industry Time spent on jobs in same FF48 industry                               
Nb prev jobs different industry Number of previous jobs in different FF48 industry                               
Time prev jobs different industry Time spent on jobs in different FF48 industry                               
Other chair Equals one if director is chair of a committee other than compensation, audit, governance or nomination                               
Other member Equals one if director is a member of a committee other than compensation, audit, governance or nomination                               
Other compensation Value of annual ad hoc cash payments such as relocation or fringe benefits awarded during last reporting period (in thousands)                             
Perf to total compensation Performance to total - Ratio of Value of LTIPs Held to Total Compensation                               
Salary Base annual pay in cash (in thousands)                               
Timeretirement Time to retirement (assumed to be 70 years old)                               
Tot Current Nb Listed Boards sitting on The number of Boards of publicly listed companies that an individual serves on                               
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Tot Current Nb Other Boards sitting on The number of Boards for organizations other than publicly listed or private companies that an individual serves on                               
Tot Current Nb Unlisted Boards sitting on The number of Boards of private companies that an individual serves on                               
Tot Nb Listed Boards sat on The number of Boards of publicly listed companies that an individual has served on                               
Tot Nb Other Boards sat on The number of Boards for organizations other than publicly listed or private companies that an individual has served on                             
Tot Nb unlisted Boards sat on The number of Boards of private companies that an individual has served on                               
Total Compensation Salary + Bonus                               
Total director compensation Salary plus Bonus plus Other Compensation plus Employers Defined Retirement/Pension Contribution                               
Total equity linked wealth A valuation of total wealth at the end of the period for the individual based on the closing stock price of the last annual report                             
Value of shares held Value of shares held at the end of the reporting period for the individual based on the closing stock price of the annual report                             

 

A.4.2. Board-level features                
      

Source: BoardEx except if stated otherwise               
      

(as of when the director joins the board) 
               

      

Variable Definition                     

Attrition rate Number of Directors that have left a role as a Fraction of average number of Directors for the preceding reporting period 
Average age Average age of directors on the board 
Average busy Fraction of directors currently sitting on three or more boards 
Average foreign Fraction of directors with nationality other than American 
Average independent Fraction of non-executive directors on the board 
Average Ivy League Fraction of directors who went to an Ivy League college 
Average MBA Fraction of directors holding an MBA 
Average nb qualifications Average number of qualifications at undergraduate level and above of directors on the board 
Average network size Average network size of directors on the board (number of overlaps through employment, other activities, and education) 
Average tenure Average board tenure of directors on the board 
Average time in company Average time in company for executive and non-executive directors on the board 
Avg tot current nb listed boards The average number of boards of publicly listed companies directors currently serve on 
Avg tot nb listed boards sat on The average number of boards of publicly listed companies directors have served on 
Avg Bkgd academic Fraction of directors with an academic background (job history) 
Avg Bkgd CEO Fraction of directors with a CEO background (job history) 
Avg Bkgd finance Fraction of directors with a finance background (job history) 
Avg Bkgd hr Fraction of directors with a human resources background (job history) 
Avg Bkgd law Fraction of directors with a law background (job history) 
Avg Bkgd manager Fraction of directors with a manager background (job history) 
Avg Bkgd marketing Fraction of directors with a marketing background (job history) 
Avg Bkgd military Fraction of directors with a military background (job history) 
Avg Bkgd politician Fraction of directors with a political background (job history) 
Avg Bkgd science Fraction of directors with a scientific background (job history) 
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Avg Bkgd technology Fraction of directors with a technology background (job history) 
Avg Experience CEO Fraction of directors with experience as CEO of a publicly traded company 
Avg Experience CFO Fraction of directors with experience as CFO of a publicly traded company 
Avg Experience Chairman Fraction of directors with experience as Chairman of a publicly traded company 
Avg Experience exec VP Fraction of directors with experience as executive VP of a publicly traded company 
Avg Experience President Fraction of directors with experience as President of a publicly traded company 
Board Pay Slice - salary Tot indep comp/ CEO salary 
Board Pay Slice - total Tot indep comp/ CEO total compensation 
Board size Number of directors on the board 
BOSS Equals one if the CEO is also the chairman of the board and the President 
CEO bonus CEO's bonus 
CEO salary CEO's salary 
CEO total compensation CEO total compensation (salary plus bonus) 
Chairman duality Equals one if the CEO is chairman of the board 
Classified Equals one if board is classified 
Count Female Number of women on the board 
Fracdirafter Coopted Directors as Fraction of Total Board (Data from Lalitha Naveen's website) 
Fracdirafterindep Coopted Independent Directors as Fraction of Total Board (Data from Lalitha Naveen's website) 
Twfracdirafter Tenure Weighted Coopted Directors as Fraction of Total Board (Data from Lalitha Naveen's website) 
Twfracdirafterindep Tenure-Weighted  Coopted Independent Directors as Fraction (Data from Lalitha Naveen's website) 
Gender ratio The Fraction of male directors 
Nationality Mix Fraction of Directors from different countries 
Nb independent Number of independent directors 
Nb international experience Number of directors with international experience 
Stdev age Standard deviation of directors' age 
Stdev current listed board Standard deviation of the number of listed boards each director currently serves on 
Stdev listed board sat on Standard deviation of the number of quoted boards sat on for all directors on the board 
Stdev number qualifications Standard deviation of the number of qualifications at undergraduate level and above for all directors on the board 
Stdev Time in Company Standard deviation of time in the company for all directors on the board 
Stdev Time on Board Standard deviation of time on board for all directors on the board 
Succession Factor Measurement of the Clustering of Directors around retirement age 
Tot indep comp Sum of all independent directors' total compensation 
Tot indep comp scaled Sum of all independent directors' total compensation divided by the number of independent directors 
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A.4.3 Firm level features                         

Source: Compustat /CRSP except if stated otherwise                      
(as of when the director joins the board)                       
Variable Definition                       

Current assets Current assets - Total                      
Acquisitions Acquisitions                      
Auditor Dichotomous variable for each auditing firm                 
BCW Equals one if firm was on the Fortune-Best Company to work for list within 10 years preceding the nomination (from Alex Edmans' website)         
Blank check Equals one if firm has a blank check provision (from ISS RiskMetrics)             
CAPX Capital expenditures  
CEOSO1 Equals to one if the CEO is exempt from filing Certification Documents as required under section 302 of the Sarbanes-Oxley Act of 2002                     
CFOSO1 Equals to one if the CFO is exempt from filing Certification Documents as required under section 302 of the Sarbanes-Oxley Act of 2002 
CEOSO2 Equals to one if the CEO has not filed Certification Documents as required under section 302 of the Sarbanes-Oxley Act of 2002 
CFOSO2 Equals to one if the CFO has not filed Certification Documents as required under section 302 of the Sarbanes-Oxley Act of 2002   
CEOSO3 Equals to one if the CEO has filed Certification Documents as required under section 302 of the Sarbanes-Oxley Act of 2002   
CFOSO3 Equals to one if the CFO has filed Certification Documents as required under section 302 of the Sarbanes-Oxley Act of 2002   
Equity (ordinary) Ordinary equity - Total    
Cash Cash                      
Cash and ST investments cash and short term investments -                        
COGS Cost of good sold -                    
Shares outstanding Common shares outstanding -  

 
                  

Dividend payer Dichotomous variable equal to 1 if the total amount of dividends to ordinary equity > 0 
 

                
LT debt Long term debt - Total - Source : Compustat 

 
          

Depreciation Depreciation and amortization -  
 

              
Dividends Total amount of dividends to ordinary equity 

 
                

EBIT Earnings Before Interest and Taxes 
 

              
EBITDA Earnings Before Interest 

 
                

Finterms_negative Loughran-McDonald Negative word proportion (from Wrds SEC Analytics Suite)                   
Finterms_positive Loughran-McDonald Positive word proportion (from Wrds SEC Analytics Suite)           
Finterms_litigious Loughran-McDonald litigious word proportion (from Wrds SEC Analytics Suite)           
Finterms_uncertainty Loughran-McDonald uncertainty word proportion (from Wrds SEC Analytics Suite)           
Firm age Time since IPO or first occurrence on CRSP          
Fsize Size of annual report file (from Wrds SEC Analytics Suite)                 
Golden parachute Equals one if firm has a golden parachute provision (from ISS RiskMetrics)               
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Gunnin_fox_index Gunning Fog Readability Index (from Wrds SEC Analytics Suite)           
Harvardiv_negative Harvard General Inquirer negative word count (from Wrds SEC Analytics Suite)             
Incorp Dichotomous variable for state of incorporation           
Inventories Inventories - Total               
Q_int Peter & Taylor Total Q-Firm’s intangible capital estimated replacement cost (from Wrds)                     
Q_int_know Peter & Taylor Total Q-Firm’s knowledge capital replacement cost (from Wrds)         
Q_int_offbs Peter & Taylor Total Q-Portion of K_int that doesn't appear on firm’s balance sheet (from Wrds)           
Q_int_org Peter & Taylor Total Q-Firm’s intangible capital estimated replacement cost (from Wrds)       
Current liabilities Current liabilities - Total         
Leverage Total long term debt / total assets                   
Ln(nb insti blocks) Logarithm of one plus the number of institutional blockholders.                    
Ln(nb insti owners) Logarithm of one plus the number of institutional investors.              
Majority vote standard Equals one if requires a director to receive support from a majority of the shares cast to be elected. (from ISS RiskMetrics)             
MB (common shares outstanding * stock price)/ ordinary equity   
Minority interest Minority interest             
Mkt value Market value                     
Net income Net income                     
NumestYr Average Annual Number of Analysts (From EPS estimates from IBES)                     
Plurality vote  Equals one if a director need only receive one vote to be elected. (from ISS RiskMetrics)             
Price (calendar) Price Close - Annual - Calendar         
Price (fiscal) Price Close - Annual - Fiscal                   
Product Mkt fluidity Product market fluidity.  Hoberg and Phillips                   
Profitability ebitda/total assets                 
Q_tot Peter & Taylor Total Q-Total q (from Wrds)                     
Block ownership % Fraction owned by blockholders.                  
Institutional ownership % Fraction owned by institutional investors.                    
Largest inst. shr. % Fraction owned by largest institutional investor.                  
Largest 10 inst. shr. % Fraction owned by top ten institutional investors.                 
Largest 5 shr. % Fraction owned by top five institutional investors.                 
Retained earnings Retained earnings               
Retained earn. (restated) Retained earnings restatements                     
12-month return Cumulative stock return in the twelve months leading up to the appointment.                    
3-month return Cumulative stock return in the three months leading up to the appointment.            
6-month return Cumulative stock return in the six months leading up to the appointment.            
Revenue Revenue - Total           
RIX RIX Readability index (from Wrds SEC Analytics Suite)                     
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ROA Net income / total assets                
ROE Net income / ordinary equity                   
Sales Net sales - Total                   
Equity (total) Stockholders' equity - Total                     
Settlements Settlement (Litigation/Insurance) After-tax                   
slpctyr Average Annual Short Interest as a % of Shares Outstanding                 
Total assets total assets -              
Working Capital  Working capital                     
Extraordinary items extraordinary items                     
R&D R&D expenses                     
            

 
 

A.4.4. Industry and market level features                             
Source: Compustat /CRSP except if stated otherwise                            
(as of when the director joins the board) 
                              
Variable Definition                             

Industry ROA Return on assets of firms with same 3-digit SIC code                   
  

Market3 Cumulative returns on the S&P500 in the three months leading up to the appointment             
  

Market6 Cumulative returns on the S&P500 in the six months leading up to the appointment               
  

Market12 Cumulative returns on the S&P500 in the twelve months leading up to the appointment             
  

ExcessReturns3 Cumulative stock return in the three months leading up to the appointment minus cumulative returns on the S&P500 in the three months leading 
up to the appointment 

  

ExcessReturns6 Cumulative stock return in the six months leading up to the appointment minus cumulative returns on the S&P500 in the six months leading up to 
the appointment 

  

ExcessReturns12 Cumulative stock return in the twelve months leading up to the appointment minus cumulative returns on the S&P500 in the twelve months leading 
up to the appointment 

Tnic3* 3-digit, text-based industry classifications from Hoberg and Phillips (2010, 2016) 
 




