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The Bartik instrument is named after Bartik (1991), and popularized in Blanchard and
Katz (1992).1 These papers define the instrument as the local employment growth rate
predicted by interacting local industry employment shares with national industry employ-
ment growth rates. The Bartik approach and its formally identical variants have since been
used across many fields in economics, including labor, public, development, macroeco-
nomics, international trade, and finance.

In our exposition, we focus on the canonical setting of estimating the labor supply elas-
ticity, but our results apply more broadly wherever Bartik-like instruments are used. For
simplicity, consider the cross-sectional structural equation linking wage growth to employ-
ment growth

yl = ρ + β0xl + εl ,

where yl is wage growth in location l between two time periods, xl is the employment
growth rate, ρ is a constant, and εl is a structural error term that is correlated with xl .
Our parameter of interest is β0, the inverse elasticity of labor supply. We use the Bartik
instrument to estimate β0.

The Bartik instrument combines two accounting identities. The first is that employment
growth is the inner product of industry shares and local industry growth rates:

xl = ∑
k

zlkglk,

where zlk is the share of location l’s employment in industry k, and glk is the growth rate of
industry k in location l. The second is that we can decompose the industry-growth rates as

glk = gk + g̃lk,

where gk is the industry growth rate and g̃lk is the idiosyncratic industry-location growth
rate. The Bartik instrument is the inner product of the industry-location shares and the
industry component of the growth rates; formally, Bl = ∑k zlkgk.

Because the Bartik instrument combines two accounting identities, it is always possible
to construct it. It is not plausible, however, that the Bartik instrument always provides a
valid identification strategy. In this paper, we open the black box of the Bartik instrument
by formalizing its structure and unpacking the variation that the instrument uses. Our

1The intellectual history of the Bartik instrument is complicated. The earliest use of a shift-share type de-
composition we have found is Perloff (1957, Table 6), which shows that industrial structure predicts the level of
income. Freeman (1980) is one of the earliest uses of a shift-share decomposition interpreted as an instrument:
it uses the change in industry composition (rather than differential growth rates of industries) as an instrument
for labor demand. What is distinctive about Bartik (1991) is that the book not only treats it as an instrument,
but also, in the appendix, explicitly discusses the logic in terms of the national component of the growth rates.
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goal is to enable researchers to use familiar tools to distinguish between situations where
the Bartik instrument would and would not be valid.

In this paper, we discuss the Bartik instruments’ identification as coming from the
shares. The basis of this view is a numerical equivalence result: we show that the two-
stage least squares (TSLS) estimator with the Bartik instrument (the Bartik estimator) is
numerically equivalent to a generalized method of moments (GMM) estimator with the
local industry shares as instruments and a weight matrix constructed from the national
growth rates. We interpret this result as saying that using the Bartik instrument is “equiva-
lent” to using local industry shares as instruments, and so the exogeneity condition should
be interpreted in terms of the shares. In contrast, Borusyak, Hull, and Jaravel (2018) em-
phasize that under some assumptions the consistency of the estimator can also come from
the shocks,2 and they also provide a motivating numerical equivalence result. How can re-
searchers tell which quasi-experimental design they are using? We argue that a researcher
is likely using research design based on the shares assumption if they (i) describe their
research design as reflecting differential exogenous exposure to common shocks, (ii) em-
phasize a two-industry example, and/or (iii) emphasize shocks to specific industries as
central to their research design.

Once we think about the shares as the instruments, the implied empirical strategy is
an exposure research design, where the industry shares measure the differential exogenous
exposure to the common shock. In settings where the researcher has a pre-period, this
empirical strategy is just difference-in-differences. Because the shares are typically equilib-
rium objects and likely co-determined with the level of the outcome of interest, it can be
hard to assume that the shares are uncorrelated with the levels of the outcome. But this
assumption is not necessary for the empirical strategy to be valid. Instead, the strategy
asks whether differential exposure to common shocks leads to differential changes in the
outcome. For example, in the canonical setting, the outcome is wage growth, in the China
shock setting the outcome is change in manufacturing employment, and in the immigrant
enclave setting it is changes in the residual log wage gap between immigrants and natives.
Hence, the empirical strategy can be valid even if the shares are correlated with the levels
of the outcomes.

How does one build the credibility of such an exposure design? The central identifica-
tion worry is that the industry shares predict outcomes through channels other than those
posited by the researcher. One way to assess this possibility is to look at correlates of the
shares. If these correlates suggest other channels through which the shares affect outcomes
in the relevant period, then we might be skeptical of the identifying assumption. Second,
in some settings there is a pre-period, as in a standard difference-in-differences design. In

2Adao, Kolesar, and Morales (2019) discuss inferential issues in this set-up.
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this case, we can test for parallel pre-trends. Given that the design exploits level differ-
ences in the shares, by exploring trends in changes we can assess the plausibility of the
assumption that the common shock caused the change in the changes, or whether there
were pre-existing differences in the changes.

There is a third way to explore the validity of the research design, based on the observa-
tion that the Bartik instrument is a particular way of combining many instruments. Under
the null of constant effects, a researcher can consider alternative estimators which combine
multiple instruments or run overidentification tests. One interpretation of the divergence
between estimators and the failure of overidentification tests is that the null of constant
effects is unreasonable, and to instead interpret these tests as pointing to the presence of
treatment effect heterogeneity, rather than failure of exogeneity. We follow Borusyak, Hull,
and Jaravel (2018) and Adao, Kolesar, and Morales (2019) and consider a restricted form of
linear heterogeneity where there are constant effects within each location. We highlight that
even if each instrument separately places convex weights on each location’s parameter, it is
possible that the Bartik estimator would not have a LATE-like interpretation as a weighted
average of treatment effects. To the extent that researchers wish to embrace a treatment ef-
fect heterogeneity interpretation of the Bartik instrument, they should be comfortable with
the patterns of underlying heterogeneity. We develop a visual diagnostic to aid researchers
in this task.

How does the Bartik instrument combine the exposure designs? We build on Rotem-
berg (1983) and decompose the Bartik estimator into a weighted sum of the just-identified
instrumental variable estimators that use each industry share (zlk) as a separate instrument.
The weights, which we refer to as Rotemberg weights, are simple to compute and sum to
1. They depend on the covariance between the kth instrument’s fitted value of the endoge-
nous variable and the endogenous variable itself. The weights are a scaled version of the
Andrews, Gentzkow, and Shapiro (2017) sensitivity-to-misspecification parameter, and tell
us how sensitive the overidentified estimate of β0 is to misspecification (i.e., endogeneity)
in any instrument. Heuristically, they also tell us which exposure design gets more weight
in the overall estimate, and thus which of these identifying assumptions is most worth
testing. If the high-weight designs—where it is concrete what comparisons the researcher
is doing—pass basic specification tests, then researchers should feel reassured about the
overall empirical strategy.

In many contexts where researchers use Bartik instruments, it is used in the reduced-
form, whereas in our analysis we discuss the instrumental variables setting. We note that
the insights of this paper still apply when Bartik is used in the reduced-form. Specifically,
the relevant moment condition (exclusion restriction) is still the same. Moreover, it is still
possible to compute the Rotemberg weights.
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We note two limitations to our analysis. First, we assume locations are independent
and so ignore the possibility of spatial spillovers or correlation.3 Second, we assume that
the data consist of a series of steady states.4

To summarize, we view our contribution as explaining identification in the context of
Bartik instruments in two ways. First, our GMM result shows that Bartik is numerically
equivalent to using industry shares as instruments. Hence, we argue that the typical iden-
tifying assumption is best interpreted in terms of industry shares, rather than growth rates.
Second, we build on Andrews, Gentzkow, and Shapiro (2017) to provide tools to measure
the “identifying variation,” and formalize how to use Rotemberg weights to highlight the
subset of instruments to which the estimated parameter is most sensitive to endogeneity.

Applications: We illustrate our results through three applications. In our first applica-
tion, we look at the canonical example of estimating the inverse elasticity of labor supply
in US Census data using decadal differences from 1980-2010 and instrumenting for labor
demand with the Bartik instrument. We first show that the national growth rates explain
less than one percent of the variance of the Rotemberg weights. Hence, the growth rates
are a poor guide to understanding what variation in the data is driving estimates. Second,
the weights are skewed, with over forty percent of the weight on the top five industries.
In the particular, the oil and gas extraction industry receives the largest weight. Hence, a
concrete example of the comparisons being made by the estimator is between changes in
employment growth and wage growth in places with more and less oil and gas extraction.
Third, industry shares, including oil and gas extraction, are correlated with many observ-
ables, including the immigrant share, which potentially predicts innovations in labor sup-
ply. Fourth, alternative estimators deliver substantively different point estimates and overi-
dentification tests reject the null of exogeneity. Fifth, consistent with the overidentification
tests rejecting, we find substantial visual dispersion in the estimates from each individ-
ual instrument. Moreover, some of outlying point estimates receive negative Rotemberg
weights, which suggests that—under the treatment effect heterogeneity interpretation—
some of the underlying effects receive negative weight so that there is unlikely to be a
LATE-like interpretation of the parameter estimate.

In our second application, we estimate the effect of Chinese imports on manufactur-
ing employment in the United States (using the China shock of Autor, Dorn, and Hanson
(2013)). We first show that the growth rates of imports from China to other high-income
countries explain about twenty percent of the variance in the Rotemberg weights. Hence,
the growth rates are a poor guide to what variation in the data is driving estimates. Sec-

3Monte, Redding, and Rossi-Hansberg (2018) document the presence and economic importance of spatial
spillovers through changes in commuting patterns in response to local labor demand shocks.

4See Jaeger, Ruist, and Stuhler (2019) for discussion of out-of-steady-state dynamics in the context of immi-
gration.
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ond, the two highest weight industries are electronic computers and games & toys. Hence,
a concrete example of the comparisons being made by the estimator is comparing outcomes
in locations with high and low shares of the electronic computers industry. Third, the in-
dustries that get the most weight tend have larger shares in more educated areas. Fourth,
we examine pre-trends among the industries with high Rotemberg weights and find that
the comparisons implied by the industries (i.e., places with more and less of the industry)
exhibit pre-trends, potentially explaining part of the large effects in the 2000s (when the
China shock was largest). Fifth, alternative estimators deliver substantively different point
estimates and overidentification tests reject the null of exogeneity. Sixth, the underlying
point estimates are visually less dispersed than in the canonical example, and the point es-
timates receiving negative weight are less varied, suggesting that overall negative weights
are less likely.

In our third application, we estimate the inverse elasticity of substitution between im-
migrants and natives in 2000 (following the empirical strategy of Card (2009)). Here, the
relevant shares are the share of migrants from an origin country that live in a particular
location in the base year, and the shocks are the immigrant inflows. First, we find that for
high school equivalent workers, the Rotemberg weights are almost completely explained
by the immigrant inflows. For the college equivalent workers, the explanatory power of
the inflows is higher than in our other two examples. Hence, the growth rates (the shocks)
are a good guide to the variation in the data that drives estimates. Second, for high school
equivalent workers, the share of Mexican immigrants in a city in 1980 gets almost half the
weight in the estimator, a possibility that Card (2009, pg. 9) acknowledges. Hence, for high
school equivalent workers, a concrete example of the comparison the estimator is making
is between places with more and fewer Mexican immigrants in 1980. For college equiva-
lent workers, the highest weight instrument is the Philippines, and so the comparison is
between places with higher and lower Philippines share. Third, among the covariates used
by Card (2009), we do not find any systematic patterns of correlations with the immigrant
shares. Fourth, unlike in our other examples, most overidentification tests fail to reject and
we do not find differences among estimators. Fifth, we find limited evidence of statistically
significant pre-trends for the high school equivalent workers. In contrast, we find statis-
tically significant pre-trends for the estimates involving the college equivalent workers,
consistent with the concerns emphasized by Jaeger, Ruist, and Stuhler (2019).

Besides these three examples, a much broader set of instruments is Bartik-like. We
define a Bartik-like instrument as one that uses the inner product structure of the endoge-
nous variable to construct an instrument. In Appendix A, we discuss two additional ex-
amples. First, researchers, such as Greenstone, Mas, and Nguyen (Forthcoming), interact
pre-existing bank lending shares with changes in bank lending volumes to instrument for
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credit supply. Second, Acemoglu and Linn (2004) interact age-group spending patterns
with demographic changes to instrument for market size.

Literature: A vast literature of papers uses Bartik-like instruments, and many of these
discuss the identifying assumptions in ways that are close to the benchmark results in this
paper. For example, Baum-Snow and Ferreira (2015, pg. 50) survey the literature and state
that the “validity [of the Bartik instrument]...relies on the assertion that neither industry
composition nor unobserved variables correlated with it directly predict the outcomes of
interest conditional on controls.” Similarly, Beaudry, Green, and Sand (2012) provide a
careful discussion of identifying assumptions in the context of an economic model. Given
the vast diversity of ways in which Bartik instruments are discussed and understood in the
literature, we can only claim novelty for the formalism along this dimension.

Beyond the vast literature of papers using Bartik-like instruments, this paper is also
related to a growing literature that comments on specific papers (or literatures) that use
Bartik-like instruments. This literature includes at least three papers: Christian and Barrett
(2017), which comments on Nunn and Qian (2014), Jaeger, Joyce, and Kaestner (Forthcom-
ing), which comments on Kearney and Levine (2015), and Jaeger, Ruist, and Stuhler (2019),
which comments on the use of the immigrant enclave instrument. Relative to this litera-
ture, our goal is to develop a formal econometric understanding of the Bartik instrument
and provide methods to increase transparency in its use.

1 Equivalence between Bartik IV and GMM with industry shares

We first show that the Bartik instrument is numerically equivalent to using industry shares
as instruments, which we use to argue that the identification condition is best interpreted
in terms of industry shares. We begin this section by setting up the most general case: panel
data with K industries, T time periods, and controls. Through a series of special cases, we
then build up to the main result. To focus on identification issues, we discuss infeasible Bar-
tik, where we assume that we know the common national component of industry growth
rates. Section 2 discusses consistency and identifying assumptions.

1.1 Full panel setup

We begin by setting up the general panel data case with K industries and T time periods.
This setup most closely matches that used in empirical work. It allows for the inclusion of
both location and time fixed effects as well as other controls.

We are interested in the following structural equation:

ylt = Dltρ + xltβ0 + εlt. (1.1)
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In the canonical setting, l indexes a location, t a time period, ylt is wage growth, Dlt is a
vector of Q controls which could include location and time fixed effects, xlt is employment
growth and εlt is a structural error term. The parameter of interest is β0. We assume that
the ordinary least squares (OLS) estimator for β0 is biased and we need an instrument to
estimate β0.

The Bartik instrument exploits the inner product structure of employment growth. Specif-
ically, employment growth is the inner product of industry shares and industry-location
growth rates

xlt = ZltGlt =
K

∑
k=1

zlktglkt,

where Zlt is a 1× K vector of industry-location-time period shares, and Glt is a K × 1 vec-
tor of industry-location-time period growth rates where the kth entry is glkt. We decom-
pose the industry-location-period growth rate into an industry-period and an idiosyncratic
industry-location-period component:

glkt = gkt + g̃lkt.

In some applications it is natural to use the sample mean (or a leave-one-out sample mean)
of glkt as an estimator for gkt, but none of our results are specific to this choice. We fix in-
dustry shares to an initial time period. We do this for two reasons: first, this choice follows
convention. Second, this choice makes the analogy to difference-in-differences clearer: by
fixing the shares to an initial time period prior to the shock, there is a single cross-sectional
exposure difference that the design is exploiting. Then the Bartik instrument is the inner
product of the initial industry-location shares and the industry-period growth rates:

Blt = Zl0Gt = ∑
k

zlk0gkt,

where Gt is a K× 1 vector of the industry growth rates in period t (the kth entry is gkt), and
Zl0 is the 1× K vector of industry shares in location l. Hence, we have a standard two-
stage least squares setup where the first-stage is a regression of employment growth on the
controls and the Bartik instrument:

xlt = Dltτ + Bltγ + ηlt,

and the structural equation is given by (1.1).
Let yl = (yl1, . . . , ylT), xl = (xl1, . . . , xlT), Zl = (Zl1, . . . , ZlT), Gl = (Gl1, . . . , GlT),
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Dl = (Dl1, . . . , DlT), and εl = (εl1, . . . , εlT). We assume that the data

{yl , Dl , Gl , Zl , Zl0}L
l=1

is drawn i.i.d. across l.5

We assume that Dlt is strictly exogenous, and focus on estimating β0 using residual
regression. Define YL = (y1, . . . , yL), XL = (x1, . . . , xL), DL = (D1, . . . , DL) and εL =

(ε1, . . . , εL). Let MD = IL − DL(D′LDL)
−1D′L denote the annhilator matrix for D, the L× Q

matrix of controls, where IL is the L × L identity matrix. We define X⊥L ≡ MDXL and
Y⊥L ≡ MDYL to be the residualized XL and YL such that MD(YL−XLβ0) = MD(DLρ+ εL) =

MDεL, since MDDL = 0. Finally, define ε⊥L ≡ MDεL.

1.2 Equivalence in three special cases

We build up to the general result that the Bartik instrument is numerically equivalent to
using industry shares as instruments for a particular weight matrix in GMM through three
special cases. Each of these special cases also illustrates a research design implicit in using
a Bartik instrument and suggests a specification test.

Two industries and one time period

With two industries whose shares sum to one within each location and one time period, the
Bartik instrument is identical to using one of the industry shares as an instrument. To see
this, expand the Bartik instrument:

Bl = zl1g1 + zl2g2,

where g1 and g2 are the industry components of growth. Since the shares sum to one, we
can write the second industry share in terms of the first, zl2 = 1 − zl1, and simplify the
Bartik instrument to depend only on the first industry share:

Bl = g2 + (g1 − g2)zl1.

Because the only term on the right hand side with a location subscript is the first industry
share, the cross-sectional variation in the instrument comes from the first industry share.

5This assumption allows for dependence within l: the data is not i.i.d within l.
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Substitute into the first-stage:

xl = γ0 + γBl + ηl = γ0 + γg2︸ ︷︷ ︸
constant

+ γ(g1 − g2)︸ ︷︷ ︸
coefficient

zl1 + ηl .

This equation shows that the difference between using the first industry share and Bartik
as the instrument is to rescale the first stage coefficients by the difference in the growth
rates between the two industries (1/(g1−g2)). But whether we use the Bartik instrument or
the first industry share as an instrument, the predicted employment growth (and hence
the estimate of the inverse elasticity of labor supply) would be the same. Hence, with two
industries, using the Bartik instrument in TSLS is numerically identical to using zl1 (or zl2)
as an instrument.

What is the research design inherent in this special case? Here, zl1 measures exposure
to the policy that affects industry 1, and g1 − g2 is the size of the policy. The outcome is
yl , which is the change in outcomes between two periods. Hence, in this special case the
empirical strategy asks about the effects of levels of zl1 on changes in yl . The identifica-
tion concern is whether zl1 is correlated with changes in the outcome, and not levels of the
outcome. As we discuss more below in Test 1 in Section 5, studying correlates of zl1 is
helpful in making clear the types of concerns one might have. Concretely, while zl1 might
be correlated with many variables that predict the level of the outcome, this correlation is
not necessarily a problem for the research design. Instead, the central question a researcher
should have in mind is whether these correlates predict changes in the outcome in the rel-
evant period.

Why would OLS be biased but Bartik be a valid instrument? The form of endogeneity
that Bartik can address is correlation between εl and the location-specific portions of the
growth rates: g̃l1 and g̃l2. For example, if there are amenity shocks in an area, then these
shocks show up as local industries growing faster than the national average. But these
amenity shocks also directly affect wage growth and so generate endogeneity.

Two industries and two time periods

In a panel with two time periods, if we interact the time-invariant industry shares with
time, then Bartik is equivalent to a special case of using industry shares as instruments. To
see this result, we again specialize to two industries, and define the Bartik instrument so
that it varies over time:

Blt = g1tzl10 + g2tzl20 = g2t + (g1t − g2t)zl10,
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where g1t and g2t are the industry-by-time growth rate for industry 1 and 2. Because we
fix the shares to an initial time-period, denoted by zlk0, the time variation in Blt comes from
the difference between g1t and g2t.

To see the relationship between the cross-sectional and panel estimating equations, we
restrict our panel setup to have the vector of controls consist solely of time fixed effects.
Then the first-stage is

xlt = τt + Bltγ + ηlt.

Now substitute in the Bartik instrument and rearrange the first stage:

xlt = (τt + g2tγ)︸ ︷︷ ︸
≡τ̃t

+zl10(g1t − g2t)γ + ηlt. (1.2)

This first-stage is more complicated than in the cross-sectional case because there is a time-
varying growth rate multiplying the time-invariant industry share.

To recover the equivalence between Bartik and using shares as instruments in the panel
setting, write g1t − g2t = 1(t = 1)(g11 − g21) + 1(t = 2)(g12 − g22), where 1(·) is the
indicator function. Then, rewrite the first stage as

xlt = (τt + g2tγ)︸ ︷︷ ︸
≡τ̃t

+zl101(t = 1)(g11 − g21)γ + zl101(t = 2)(g12 − g22)γ + ηlt. (1.3)

We can now see the equivalence between Bartik and using the shares as instruments.
Since we fix the industry shares in the inital time period, to create time variation in our
industry shares regression, consider the regression with initial industry shares interacted
with time fixed effects:

xlt = τ̃t + zl10 (g11 − g21)1(t = 1)γ︸ ︷︷ ︸
≡γ̃1

+zl10 (g12 − g22)1(t = 2)γ︸ ︷︷ ︸
≡γ̃2

+ηlt (Bartik)

xlt = τt + zl101(t = 1)γ̃1 + zl101(t = 2)γ̃2 + η̃lt. (Industry Shares)

In this case, the panel regression (with the industry share) gives us two parameters, γ̃1 and
γ̃2. When will they be identical to γ (the parameter from the Bartik equation)? If we restrict
γ̃1 = γ/(g11 − g21), and γ̃2 = γ/(g12 − g22), then both parameters will be proportional to
the underlying Bartik parameter, γ. If we view zl10 as the effect of exposure to a policy, then
each γ̃ captures the “unscaled” effect on xlt, while γ is rescaled by the size of the policy,
where the size of the policy is the difference in national industry growth rates, g1t − g2t.

What is the research design inherent in this special case? Viewing the growth rates as a
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measure of policy size and the industry shares as measures of exposure, emphasizes a use-
ful connection to difference-in-differences. In the equations above, a researcher is already
considering outcomes and regressors in changes, which allows for the possibility of level
differences across locations. By using initial industry shares as the right-hand side regres-
sor in the panel regression, the researcher is asking whether locations with high shares of
a particular industry experience differential changes in outcomes following shocks whose
effect depends on the size of that industry.

With the two time periods, we can consider period 1 to be a pre-period before a policy
takes effect. That is, g11 − g21 = 0. In this case, a researcher can test whether γ̃1 is zero
(a test of the parallel pre-trends assumption). Intuitively, a researcher is asking whether in
the pre-period, the level of zl1 predicts changes in the outcome. Failing to find a pre-trend
gives credence to a research design where the researcher assumes that zl1 is relevant for
predicting the change in period 2. We return to this point in Test 2 in Section 5.

K industries and one time period

Finally, we show that with K industries as instruments in a generalized method of moments
(GMM) estimator setup with a specific weight matrix, the Bartik estimator is identical to
using the set of industry shares as instruments.

To show this result, recall that G is the K × 1 vector of industry growth rates, Z is the
L× K matrix of industry shares, Y is the L× 1 vector of outcomes, X is the L× 1 vector of
endogenous variables, and B = ZG is the L× 1 vector of Bartik instruments. Let W be an
arbitrary K× K matrix.

We define the Bartik and the GMM estimator using industry shares as instruments:

β̂Bartik =
B′Y⊥

B′X⊥
; and β̂GMM =

X⊥′ZWZ′Y⊥

X⊥′ZWZ′X⊥
.

PROPOSITION 1.1. If W = GG′, then β̂GMM = β̂Bartik.

Proof. See Appendix B.

Proposition 1.1 says the Bartik instrument and industry shares as instruments are nu-
merically equivalent for a particular choice of weight matrix.

What is the research design inherent in this special case? Under the shares interpreta-
tion that we discuss further below, if there is a shock in a single period, then this research
design pools many different exposure designs. In Section 3, we show the way that Bartik
pools these designs. The tools for building the credibility of any given share are the same as
in the single instrument case. Moreover, the many instruments provide the researcher with
the opportunity to test whether the parameter estimates from all of these instruments are
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the same using overidentification tests. Alternatively, if these parameters are not similar,
the researcher might be interested in trying to characterize this heterogeneity. In Test 3 in
Section 5, we discuss overidentification tests. In Section 4, we discuss heterogeneity.

REMARK 1.1. When ∑K
k=1 zlk = 1, there are K− 1 instruments and not K instruments. In practice,

any of the K industries can be dropped by subtracting off that industry’s growth rate from the G
vector, and the Bartik instrument will maintain its numerical equivalence from Proposition 1.1. To
see the intuition behind this, suppose that ∑k zlk = 1∀l. Consider the first stage regression:

xl = γ0 + γ1Bl + ηl .

Now add and subtract γ1 ∑k zlkgj from the right hand side:

xl = γ0 + γ1 ∑
k

zlkgj︸ ︷︷ ︸
γ0+γ1gj

+γ1 ∑
k

zlk(gk − gj)︸ ︷︷ ︸
Bl−gj

+ηl . (1.4)

This expression generalizes our result from the two industry and one time period example. It says
that normalizing the growth rates by a constant gj changes the first-stage intercept and does not
affect the slope estimate. Hence, the first-stage prediction is unaffected.

1.3 Summary

With K industries and T time periods, the numerical equivalence involves creating K ×
T instruments (industry shares interacted with time periods). Then, an identical GMM
result holds as we proved in the cross-section with K industries. Extending the result is
notationally cumbersome so we leave the formal details to Appendix C. We now turn to
discussing how these finite sample results map into identification conditions.

2 Asymptotic consistency and identifying assumptions

We now consider consistency of the TSLS estimator that uses the Bartik instrument. In
the previous section, we established a finite sample equivalence result between the TSLS
estimator using the Bartik instrument, and the GMM estimator using industry shares as
instruments and a weight matrix defined by the industry growth rates. Here, we use this
equivalence to show that a sufficient condition for consistency is strict exogeneity of the
shares.

To fix ideas, consider the difference between the TSLS estimator and the parameter of
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interest:

β̂− β0 =
∑T

t=1 ∑K
k=1 gkt ∑L

l=1 zlk0ε⊥lt
∑T

t=1 ∑K
k=1 gkt ∑L

l=1 zlk0x⊥lt
. (2.1)

Broadly, conditions for the consistency of β̂ can be stated either in terms of the shares, the
zlk0, or the shocks, the gkt. In this paper, we consider a setting where we observe increasingly
larger samples of locations, but a fixed number of time periods and industries (fixed T and
K). As we show below, in this setting it is natural to state conditions for consistency in
terms of the shares.

A natural extension of this setup studied by Borusyak, Hull, and Jaravel (2018) consid-
ers a setting where we not only observe increasingly larger samples of locations, but also
of industries. They show that while a sufficient condition for consistency of β̂ is exogeneity
of the shares, it is not necessary. With many industries, it is possible to use the exogeneity
of the shocks, e.g. gkt, instead.

In this section, we first state the sufficient conditions in our setting, highlighting the
relevance and exogeneity assumptions. We then discuss when these exogenous shares as-
sumptions are reasonable, and how they contrast to the exogenous shocks assumptions.

2.1 Identifying assumptions

Two assumptions must hold for consistency. First, the denominator must converge to a
non-zero term. Intuitively, for this assumption to hold, there must be an industry and time
period when the industry share has predictive power for xlt, conditional on the controls,
and the growth rates gkt cannot weight the covariances in such a way that they exactly
cancel. This first condition holds under the following low-level assumption:

ASSUMPTION 1 (Relevance). For all k ∈ {1, . . . K} and s ∈ {1, . . . , T},

xlt = Dltτ + zlk01(t = s)Ck,s + ηlt,

where E[ηlt|zlk0, Dlt] = 0, Ck,s is finite for all k and s, and ∑s ∑k gksCks 6= 0.

The second necessary assumption for consistency is that the numerator must converge
to zero. This assumption is the exclusion restriction, and to hold generically, the industry
share must be uncorrelated with the structural error term, after controlling for Dlt, for indus-
tries that have non-zero growth rates. The following identifying assumption ensures that
the numerator converges to zero:

ASSUMPTION 2 (Strict Exogeneity). E[εltzlk0|Dlt] = 0 for all k where gk 6= 0.

This assumption is standard in empirical settings that use exposure designs. For example,

13



this assumption is made in difference-in-differences designs that use location fixed effects.6

It is now straightforward to show consistency.

PROPOSITION 2.1. Given Assumptions 1 and 2,

plim
L→∞

β̂− β0 = plim
L→∞

∑T
t=1 ∑K

k=1 gktL−1 ∑L
l=1 zlk0ε⊥lt

∑T
t=1 ∑K

k=1 gktL−1 ∑L
l=1 zlk0x⊥lt

= 0.

Proof. This is a standard GMM consistency result (e.g., (Wooldridge, 2002, Theorem 8.1)).

As a result, the Bartik TSLS IV estimator is consistent.
These results have two implications: first, under our sampling process, strict exogeneity

of the industry shares is necessary for the Bartik estimator to be generically consistent. This
assumption is standard in many difference-in-differences settings. Second, it highlights
that the Bartik estimator uses a particular weighting of these exogeneity conditions; other
weightings would imply other estimators.

2.2 When are these assumptions plausible?

The exogenous shares assumption discussed in the last section might seem implausible be-
cause shares are equilibrium objects likely co-determined with the level of the outcome of
interest. But this reasoning does not reflect the assumption that is typically being made.
Instead, the assumption is about exogeneity conditional on observables, which typically con-
trols for level differences either by focusing on changes (as in our baseline set-up where we
define ylt and xlt to be in changes), or else by operating in levels but including unit fixed
effects. Hence, in typical specifications, the assumption is that the shares are exogenous
to changes in the error term (i.e., changes in the outcome variable), rather than levels of the
outcome variable.

The plausibility of the substantive restrictions implied by this identifying assumption
might be more intuitive in a setting with two industries and a differential exposure de-
sign, which we discussed in Section 1. In this setting, the identifying assumption is that
the differential effect of higher exposure of one industry (compared to another) only af-
fects the change in the outcome (ylt) through the endogenous variable of interest, and not
through any potential confounding channel. This assumption is standard in difference-in-
differences. In the shares view, the identifying assumption underlying the Bartik setting is
simply this differential exposure design applied to each industry separately.

6Even if E[εlzlk0|Dlt] 6= 0, then the numerator can still converge to zero non-generically if the gkt are such
that these biases cancel out exactly. For fixed K and T, this case is unlikely to hold in practice. When K increases,
Borusyak, Hull, and Jaravel (2018) show that this can hold generically. We discuss this point below.
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This type of identification assumption is natural to make when the shares create differ-
ential exposure to a common economic or policy shock (or sets of shocks). In these cases,
the most natural description of the identification comes from highlighting a few key indus-
tries which best illustrate the exposure design. In Section 3, we show how to do this. While
natural to make, this type of assumption may not always be satisfied. For example, areas
with high vs. low exposure may have other features that predict change in the outcome
through channels other than the endogeneous variable, violating the exclusion restriction.

In cases when the assumption of exogenous shares is not plausible, consistency of the
estimator can instead come from many exogenous shocks. As proved in Borusyak, Hull,
and Jaravel (2018), exogenous independent shocks to many industries leads the Bartik es-
timator to be consistent, even when the shares are not exogenous. The core intuition to
this result can be seen in Equation 2.1. In cases when the shares are not exogenous, the
numerator does not converge to zero. As a result, the weighted sum of the industry shocks
and the shares are non-zero. With many exogenous and independent shocks, however,
Borusyak, Hull, and Jaravel (2018) show that the estimator is still consistent. The reason is
that the random shocks are uncorrelated with the bias from the shares (E[εltzlk0|Dlt]), and
the presence of many shocks causes this bias to average out to zero (see also Kolesar et al.
(2015)).

How can researchers tell which quasi-experimental design they are using? When a
researcher explains her research design (and hence, implicitly, her estimator) using a two-
industry example, she is emphasizing differential exogenous exposure, which underlies
a research design based on the shares assumption. The reason is that under the shocks
view the Bartik estimator is only consistent as the number of industries grows. Hence, the
logic of how consistency in this research design works is not captured by the two-industry
example. Similarly, if a researcher emphasizes the performance of a particular industry (or
a small handful of industries), then this reasoning also suggests that she is appealing to a
research design based on the shares. In contrast, when having a large number of industries
is central to how the researcher thinks about identification (and consistency), then it is likely
that she is building a research design based on the shocks assumption.

While a best case scenario for a researcher using a Bartik instrument is for both the
exogenous shares and shocks assumptions to hold, in practice, this coincidence seems un-
likely. Typically, a researcher will only have one identification strategy at their disposal.
We encourage researchers to pick one or the other, be clear about why, and then defend the
relevant assumptions in their setting.
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3 Opening the black box of the Bartik estimator

The previous sections showed that under standard panel asymptotics, the Bartik instru-
ment is equivalent to using industry shares as instruments. Thus, the Bartik estimator com-
bines many instruments using a specific weight matrix.

Empirical work using a single instrument is transparent because there is a small number
of covariances that enter the estimator. With many instruments, it is less intuitive how the
estimator combines the different instruments. This lack of intuition underlies much of the
empirical work using Bartik instruments, where it is hard to explain what variation in the
data drives estimates, and can often feel like a black box.

In this section, we show how to open the black box of the Bartik estimator. First, we
decompose the Bartik estimator into a weighted combination of just-identified estimates
based on each instrument. This decomposition increases the transparency of the estimator
because the weights highlight the industries whose variation in the data drives the overall
Bartik estimate. Building on Andrews, Gentzkow, and Shapiro (2017), we show that these
weights can be interpreted as sensitivity-to-misspecification elasticities. The Bartik estimate
is most sensitive to misspecification in high-weight instruments, and hence these are the
instruments that are most important for researchers to defend.

3.1 Decomposing the Bartik estimator

We first present a finite sample decomposition of the linear overidentified GMM estimator
due to Rotemberg (1983).7 For expositional simplicity, we use a single cross-section, though
it is straightforward to extend results to a panel with T time periods.

PROPOSITION 3.1. We can write:
β̂Bartik = ∑

k
α̂k β̂k,

where

β̂k = (Z′kX⊥)−1Z′kY⊥ and α̂k =
gkZ′kX⊥

∑k′ gk′Z′k′X
⊥ ,

so that ∑k α̂k = 1.

Proof. See Appendix B.

Proposition 3.1 has two implications. First, mirroring our results from Section 2, the
validity of each just-identified β̂k depends on the exogeneity of a given Zk. Second, for
some k, α̂k can be negative. Under the constant effects assumption we have maintained so

7Andrews (2019, Section 3.1) reports this decomposition for constant-effect linear instrumental variables.
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far, these negative weights do not pose a conceptual problem. In Section 4, we introduce a
restricted form of treatment effect heterogeneity and revisit the implications of the negative
Rotemberg weights.

In Appendix D, we discuss how to interpret the Rotemberg weights in terms of sensitivity-
to-misspecification following work by Conley, Hansen, and Rossi (2012) and Andrews,
Gentzkow, and Shapiro (2017). The basic intuition is that if any particular instrument is
misspecified, then αk tells us how much that misspecification translates into the overall
bias of the estimator. For example, if αk is small, then bias in the kth instrument does not
affect the overall bias in the estimator very much. We also show that this measure is differ-
ent than simply dropping instruments and seeing how estimates change, since dropping
an instrument combines sensitivity-to-misspecification (i.e., αk) as well as the relative mis-
specification of different instruments (i.e., how far β̂k diverges from β̂).

We recommend researchers report the instruments associated with the largest values
of αk for two reasons: First, reporting the instruments with the largest αk provides a more
concrete way to describe the empirical strategy. Second, to the extent that the researcher is
concerned about misspecification, these are the instruments that are most worth probing.

In our applications, we report the share of the variance in the Rotemberg weights that
can be explained by the gk. The primary reason is that the αk are non-linear functions of gk,
xl and zlk and so there is not a simple decomposition which shows why the αk end up with
the particular patterns that they do. The share of the variance of the αk that can be explained
by the gk quantifies the extent to which it is explained by gk. For similar reasons, we also
report the correlation between Var(zlk) (across l) and αk. A secondary reason to focus on
the gk is that there is a common intuition that the variation in the gk explains the “sources
of variation” in the empirical design. Given that the αk is a formal way of quantifying the
“sources of variation,” we find it helpful to contrast this intuition with our formal measure.

Similarly, we also relate to the Rotemberg weight to the first stage F-statistic. In Ap-
pendix E we show that the first-stage F-statistic on the kth instrument is related to Rotem-
berg weight by the following formula:

F̂k

F̂
= α̂2

k

(
V̂ar(B⊥)

gkV̂ar(Z⊥k )

)2 Σ̂ππ

Σ̂πkπk

, (3.1)

where Σ̂πkπk is the estimated sampling variance around the first-stage coefficient on the kth

instrument, Σ̂ππ is the estimated sampling variance around the first-stage coefficient on
the Bartik instrument, and F̂ is the first-stage F-statistic when using the Bartik instrument.
This equation helps explain when and how the Rotemberg weight differs from the (relative)
first-stage F-statistic. If the precision of the first stage coefficient (third term) is proportional
to the variance of the instrument (second term), then the product of the last two terms will
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be constant across instruments and hence the relative F-statistic will be proportional to the
Rotemberg weight. In contrast, when the estimation noise does not vary proportionally
with the variance of the instrument (perhaps because the instrument varies, but is not cor-
related with the endogenous variable), then the Rotemberg weight and relative F-statistic
will be less strongly related.

3.2 Normalization

When the industry shares sum to one within a location, the instruments are linearly depen-
dent and so we can write each instrument as a function of the remaining K− 1 instruments.
This fact has a couple implications. First, following Remark 1.1, we can drop any industry
through normalization by subtracting off gj from all the growth rates, and leave our point
estimates unchanged. Second, the fact that we can drop any one industry means that the
Rotemberg weights are not invariant to the choice of which industry to drop. To take an
extreme example, suppose industry j has the largest weight. Then, by dropping industry j
through normalization, a researcher could make industry j have a weight of zero, but the
Bartik estimate would remain the same.

To address this issue, in applications where the industry shares sum to one, we report
Rotemberg weights that come from demeaning the (unweighted) industry growth rates. In
Appendix F, we show that this normalization is the average of the K possible normaliza-
tions of dropping each of the industries.8

3.3 Aggregation

Below, we consider applications with panel data and multiple time periods. As a result,
the underlying instruments are industry shares interacted with time fixed effects. Rather
than reporting results at the level of k, t, we aggregate to the k level. The reason is that it is
typically easier to think about the variation coming from a cross-sectional difference, rather
than the variation coming from a cross-sectional difference in a particular time period. For-
mally, we define

αk ≡∑
t

αk,t,

and
βk ≡∑

t

αk,t

αk
βk,t,

8In cases when the shares sum to one, if a researcher suspects that one instrument is invalid, then simply
dropping that instrument does not fix the problem. Instead, the researcher would need to drop that instrument
and then renormalize the shares to sum to one.
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where the empirical estimator versions are defined analogously.9 Note that we could anal-
ogously aggregate to the time level and define αt ≡ ∑k αk,t and βt ≡ ∑k

αk,t
αt

βk,t.
To interpret such an aggregated α in terms of the underlying misspecification, suppose

that β̃kt = β̃k for all t. Then,

β̃ = ∑
k

αk ∑
t

αkt

αk
β̃kt = ∑

k
αk β̃k ∑

t

αkt

αk
= ∑

k
αk β̃k.

These equations say that the αk measures the sensitivity-to-misspecification where we as-
sume that the endogeneity associated with the kth industry is constant across time.

4 Heterogeneous effects

In previous sections, we showed that the Bartik estimator combines many instruments with
a specific weight matrix. A key assumption was that of constant effects. In many contexts,
a researcher might prefer to think that there are heterogeneous effects that vary across lo-
cations or time. For example, in the canonical labor supply elasticity application that we
discuss below, some locations might have more elastic labor supply than others.

In this section, we discuss a heterogeneous effects interpretation of the Bartik instru-
ment. Because the Bartik instrument combines multiple unordered instruments, it is diffi-
cult to allow unrestricted heterogeneity of the form discussed in Imbens and Angrist (1994)
and ensure interpretable estimates.10 Specifically, assuming monotonicity as in Imbens and
Angrist (1994) is not sufficient to ensure estimates reflect non-negative weights on the un-
derlying heterogeneity. For further lucid discussion of these issues, see Kirkeboen, Leuven,
and Mogstad (2016), among others. Instead, we impose a restricted form of linear hetero-
geneity and then state assumptions to ensure interpretable just-identified estimates. We
also emphasize that even if each just-identified IV estimate produces a convex combina-
tion of heterogeneous effects, the overall Bartik instrument can produce negative weights
if there are negative Rotemberg weights.

9A numerically identical way of arriving at β̂k is to use Blkt = zlk0gkt, the Bartik instrument built from just
the kth industry, as the instrument.

10To see why industry shares are unordered instruments, note that increasing the share of an industry can
increase the predicted growth rates in some locations and decrease it in others depending on which industry
share decreases to offset.
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4.1 Setup with restricted heterogeneity

We follow Borusyak, Hull, and Jaravel (2018) and expand our model to include location
specific coefficients.11 Formally, consider the structural model:

yl = Dlρ + xl βl + εl , (4.1)

where now βl replaces β0.12 For the purposes of the results below, we focus on discrete
saturated controls (i.e., dummies) for Dl in order to ignore differences in specification error
when residualizing. We also assume the following linear relationship between zlk and xl :

xl = Dlτ + zlkπlk + ulk, (4.2)

where πlk is the location-industry specific first-stage coefficient and ulk is the location-
industry specific error. We assume that βl is a random variable with well-defined moments.

Relative to Imbens and Angrist (1994), this setup is restricted because it assumes con-
stant linear effects within a location over the whole support of x⊥l . One substantive restric-
tion it imposes is that identically sized shocks have identical effects regardless of the level
of employment in the location.

We now impose assumptions which are sufficient to ensure that in this linear model the
weights on the βl are all weakly positive. In this sense, they are analogous to monotonicity
assumptions in non-parametric models:

ASSUMPTION 3. 1. For each k, πlk is (weakly) the same sign for all l.

2. E[zlkulkβl |Dl ] = 0.

We now state the result that the just-identified IV estimates represents a convex combina-
tion of the βl :

PROPOSITION 4.1. Suppose that equations (4.1) and (4.2) are true, and Assumption 3 holds, then
we can write:

plim
L→∞

β̂k = E[ωlkβl ] (4.3)

where ωlk =

(
zlk−E[zlk |Dl ]

)2

πlk/E


(

zlk−E(zlk |Dl)

)2

πlk

 ≥ 0 and E[ωlk] = 1.

Proof. See Appendix B.

11Adao, Kolesar, and Morales (2019) include location-industry coefficients. For simplicity, we maintain loca-
tion specific coefficients.

12We focus on a single time period, but these points generalize.

20



This result explains why in the presence of heterogeneity using different instruments
(i.e., zlk) would generate different point estimates (i.e., β̂k) even without misspecification.
Each instrument estimates a parameter that is a different weighted combination of location-
specific parameters. Because these parameters differ (i.e., there is heterogeneity), different
instruments generate different estimates.

4.2 The Bartik estimator with heterogeneity

In this heterogeneous effects interpretation of Bartik, we can combine the Rotemberg weights
and the ωlk to write the Bartik estimate in terms of the location-specific coefficients:

β̂Bartik = ∑
l

βl ∑
k

αkωlk + op(1). (4.4)

When ∑k αkωlk is non-negative for all l, the Bartik estimator thus reflects a convex combina-
tion of the βl . When are these weights non-negative? In the previous section, we discussed
assumptions such that the ωlk are non-negative. These assumptions, however, do not imply
that the αk are all positive. Thus, negative αk are possible, which raises the possibility (but
does not necessarily imply) non-convex weights on the βl , in which case the overall Bar-
tik estimate does not have a LATE-like interpretation as a weighted average of treatment
effects.

When are negative weights on the βl likely to arise? We note first that we cannot esti-
mate the ωlk and hence we cannot directly compute the weights on the βl . We can, however,
estimate the αk and the βk, and use information in these two estimates to gauge the possi-
bility of negative weights on the βl .

If the β̂k are all similar, then the negative weights on the k are unlikely to generate
negative weights on the βl . The reason is that the similarity of the βk suggests that the
ωlk are similar across k, so that each instrument is likely estimating a similar weighted
combination of effects. Hence, the negative αk are likely just subtracting off the same βl ,
with the overall weight on each βl remaining positive.

In contrast, if the βk are very different, then the ωlk are different across k and each instru-
ment is estimating a different weighted combination of effects. It is then more likely that
there are negative weights on the βl , as the negative αk place weight on βl that do not re-
ceive positive weight from other instruments. A way to assess the quantitative importance
of these negative weights is to split the instruments into those with positive and negative
αk and compare their weighted sums; i.e., to compare ∑k|αk>0 α̂k β̂k and ∑k|αk<0 α̂k β̂k. If the
weighted sum of the instruments with the negative αk is relatively large, then it is more
likely that there are negative weights on the βl that are important in the overall estimate.
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5 Testing the plausibility of the identifying assumptions

The identifying assumptions necessary for consistency are typically not directly testable.
However, it is possible to partially assess their plausibility. We focus on the assumptions
from Section 2; in the context of the canonical setting of estimating the inverse elasticity of
labor supply, the identifying assumption is that initial industry composition (Zl0) does not
predict innovations to labor supply (εlt).

5.1 Empirical Test 1: Correlates of industry composition

It is helpful to explore the relationship between industry composition and location charac-
teristics that may be correlated with innovations to supply shocks. This relationship pro-
vides an empirical description of the variation and the types of mechanisms that may be
problematic for the exclusion restriction. In particular, the key question researchers should
have in mind is whether the correlates of the levels of the shares predict changes in the out-
come. For the empirical strategy to be valid, it is fine if the level of the correlates are related
to the level of the outcome.

Since convention suggests fixing industry shares to an initial time period (Zl0), we rec-
ommend considering the correlation with initial period characteristics, as this reflects the
instruments’ cross-sectional variation. This exercise is instructive for two reasons. First, the
correlation in levels helps describe the cross-sectional variation the researcher is using, and
so makes the variation more concrete. Second, if Zl0 is correlated with factors that predict
changes (and not just levels), then this finding hints at omitted variables biasing estima-
tion. Naturally, it is always possible to control for observable confounders, but following
the logic of Altonji, Elder, and Taber (2005) and Oster (2019), movements in point estimates
when conditioning on observable confounders suggest the potential importance of unob-
served confounders. Looking at industries with the largest Rotemberg weights focuses
attention on the instruments where confounding variables are most problematic.

One set of controls worth considering is shares at coarser levels. Intuitively, if the in-
dustry shares are at the 4-digit level, then it might be that places with different 2-digit
compositions are on different trends (i.e., places with more and less manufacturing) and so
the shares would not look like valid instruments. The variation in composition within each
2-digit sector (i.e., types of manufacturing) might generate comparisons of places that look
more similar in trends.

5.2 Empirical Test 2: Pre-trends

In some applications, there is a policy change in period s0. As we discussed in Section
1.2, a researcher can use this sharp policy change to implement a difference-in-differences
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research design. The analogy to difference-in-differences is most straightforward when the
shares are fixed over time. In this case, the industry shares measure the exposure to the
policy change, while the national growth rates proxy for the size of the policy change.13

In these settings, it is natural to test for pre-trends. We recommend looking at pre-trends
in terms of the instruments with the largest Rotemberg weights, as well as looking at pre-
trends in terms of the overall Bartik instrument. We suspect that researchers will be more
comfortable with the plausibility of their empirical design if parallel pre-trends are satisfied
for the instruments to which their estimates are most sensitive to misspecification.

This test would typically use a measure of industry shares that is fixed in time, prior to
the policy change. Analogous to industry shares, it also makes sense to measure controls
in the same time period as the industry shares, and interact these time-invariant controls
with time fixed effects. The reason to fix controls is that using controls measured after the
policy change can biasing estimates by controlling for an intermediate outcome affected by
the policy change. For more details on pre-trends tests, see DiNardo and Lee (2011). We
additionally present examples below.

5.3 Empirical Test 3: Alternative estimators, overidentification tests, and pat-
terns of heterogeneity

So far, we have emphasized that the Bartik estimator combines many moment conditions
with a particular weight matrix. In this section, we discuss how researchers can use these
moment conditions. Broadly speaking, there are two directions that a researcher can go.
Under homogeneous effects, researchers can consider alternative estimators that combine
the moment conditions in potentially more efficient ways. Additionally, researchers can
use overidentification tests. If alternative estimators yield different estimates and overi-
dentification tests reject, then these findings point to misspecification. In contrast, under
heterogeneous effects, each instrument will converge to a different estimate (say, βk) as
discussed in Section 4. Under this assumption, it is important that the patterns of hetero-
geneity make sense, and we discuss some ways of assessing this.

Homogeneous effects: We begin in a world of homogeneous effects. Because the overi-
dentified TSLS estimator (i.e., the one using each industry share as a separate instrument)
is biased in finite samples, we encourage researchers to use three alternative estimators
which have better properties with many instruments: the Modified Bias-corrected TSLS
(MBTSLS) estimator from Anatolyev (2013) and Kolesar et al. (2015), the Limited Informa-
tion Maximum Likelihood (LIML) estimator, and the HFUL estimator from Hausman et al.
(2012). These estimators may not give the same estimates, as their underlying assumptions

13Some examples of this include Autor, Dorn, and Hanson (2013) and Lucca, Nadauld, and Chen (2019).
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are different.14 Comparing these estimates, along with the Bartik TSLS estimate, provides
a useful first pass diagnostic for misspecification concerns. If these estimators agree, then
researchers can be more confident in their identifying assumption. In our applications, we
follow Kolesar et al. (2015, pg. 481-2) and interpret differences between HFUL and LIML
on the one hand, and MBTSLS and overidentified TSLS on the other, as pointing in the
direction of potential misspecfication. The reason is that LIML and HFUL are maximum
likelihood estimators and so exploit cross-equation restrictions while both MBTSLS and
overidentified TSLS are two-step estimators and so do not exploit these cross-equation re-
strictions.

Overidentification tests provide more formal tests for misspecification. These estima-
tors permit test statistics under different assumptions. For the HFUL estimator, we suggest
the overidentification test from Chao et al. (2014), for LIML estimator, we use the Ander-
son, Rubin et al. (1950) chi-squared test and for overidentified TSLS we use the Sargan
(1958) chi-squared test. Again, these tests may not give the same results, as their underly-
ing assumptions are different.15 Conceptually, the overidentification test asks whether the
instruments are correlated with the error term beyond what would be expected by chance,
and relies on the validity of at least one of the instruments.

Heterogeneous effects: When overidentification tests reject, and when HFUL and LIML
differ from MBTSLS and Bartik TSLS, under homogeneous effects these findings point to
misspecification. An alternative interpretation of these results is that they point to hetero-
geneous effects of the form we outlined in Section 4. Under these assumptions, researchers
may wish to probe the patterns of heterogeneity and see if there is a reasonable interpreta-
tion.

We now outline a visual diagnostic to help researchers assess the pattern of heterogene-
ity. The fundamental feature of the data that illustrates the heterogeneity is to consider
the distribution of the just identified IV estimates (i.e., the β̂k). In order to visualize this
dispersion, we advocate a particular figure. Here we describe the figure and discuss our
reasoning, and below we present examples of it (see Figures 1, 3, and 6).16 Briefly, the x-

14The LIML estimator, as discussed in Hausman et al. (2012), is inconsistent under heteroskedasticity and
many instruments. The HFUL estimator is consistent under both heteroskedasticity and many instrument
asymptotics, while the literature on MBTSLS has not developed yet under heteroskedasticity. Inference under
clustering asymptotics has not, to our knowledge, been worked out for any of these estimators under many
instrument asymptotic settings.

15Specifically, the Anderson-Rubin and Sargan tests are only valid under homoskedasticity, which is likely
not satisfied in this setting. The HFUL overidentification test does require the assumption of homoskedasticity,
but is not solved for the general clustering setting. Code to implement the HFUL overid test is available on
request and is posted at https://github.com/paulgp/gpss_replication.

16Code to create this figure is included in the package that computes the Rotemberg weights and will be
posted on Github.
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axis is the first-stage F-statistic and the y-axis is the β̂k associated with each instrument. So
as to not visually overstate dispersion, the figure only includes instruments with reason-
able first-stage power (in our applications, we plot instruments with first-stage F-statistics
greater than 5). To show how the β̂k compare to the Bartik estimate, the figure include a
horizontal line that reflects the overall Bartik estimate. Because first-stage power does not
perfectly explain the Rotemberg weights, we weight the individual points of βk by the ab-
solute size of the αk from the Bartik Rotemberg weights. Finally, to illustrate the role of
negative Rotemberg weights, we shade the points differently depending on the sign of the
Rotemberg weights.

Researchers can use this figure to think about three questions. First, why do the overi-
dentification tests reject, and what industries drive the rejection? Intuitively, a researcher
might be less concerned by a rejection where the βk are less rather than more dispersed
around the Bartik estimate. Similarly, the figure helps isolate which industries are driving
the failure of overidentification tests. Researchers should feel comfortable with why the
comparisons implied by some instruments are outliers relative to the comparisons implied
by other instruments. Second, why does the Bartik estimate end up where it does relative
to the underlying βk? The relative Rotemberg weights help explain why the Bartik estimate
lies where it does relative to the underlying distribution. As we emphasized in Section 3,
a researcher should feel comfortable that the largest Rotemberg weight industries make
sense with the causal mechanism in the paper. Third, how plausible is it that there are neg-
ative weights on some βl? Visualizing the industries with the negative Rotemberg weights
helps to highlight which industries would potentially generate negative weights on βl , as
we discussed further in Section 4. Naturally, whether the patterns of heterogeneity make
sense will rely on application-specific knowledge, and so we view this figure as providing a
useful starting point for an application-specific investigation, rather than an ending point.

A comment on alternative approaches to overidentifying tests An alternative approach
to overidentification tests (e.g., by Beaudry, Green, and Sand (2012) and others) is to con-
struct multiple Bartik instruments using different vectors of national growth rates, and then
to test whether these different weighted combinations of instruments estimate the same pa-
rameter. Often, the correlation between the Bartik instruments constructed with different
growth rates is quite low. This fact is interpreted as reassuring because it suggests that
exploiting “different sources of variation” gives the same answer.

We recommend instead that researchers use the Rotemberg weights to quantify what
variation each Bartik instrument is using, and whether the two Bartik instruments use dif-
ferent sources of variation. Specifically, researchers can report the top-5 Rotemberg weights
across the two instruments and also their rank correlation. If these statistics are low, then
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the two Bartik instruments are likely using different sources of variation and the conclusion
discussed above is warranted.17

6 Empirical example I: Canonical Setting

We now present three empirical examples to make our theoretical ideas concrete, focusing
on our empirical tests from Section 5. Our first example is the canonical setting of estimat-
ing the inverse elasticity of labor supply. We begin by reporting the main estimates and
then report the industries with the highest Rotemberg weight. We then probe the plausibil-
ity of the identifying assumption for these instruments.

6.1 Dataset and specification

We use the 5% sample of IPUMS of U.S. Census Data (Ruggles et al. (2015)) for 1980, 1990
and 2000 and we pool the 2009-2011 ACSs for 2010. We look at continental US commuting
zones and 3-digit IND1990 industries.18 In the notation given above, our y variable is earn-
ings growth, and x is employment growth. We use people aged 18 and older who report
usually working at least 30 hours per week in the previous year. We fix industry shares at
the 1980 values, and then construct the Bartik instrument using 1980 to 1990, 1990 to 2000
and 2000 to 2010 leave-one-out growth rates. To construct the industry growth rates, we
weight by employment. We weight all regressions by 1980 population.

We use the leave-one-out means to construct the national growth rates to address the
finite sample bias that comes from using own-observation information. Specifically, using
own-observation information allows the first-stage to load on the idiosyncratic industry-
location component of the growth rate, g̃lk, which is endogeneous. This finite sample bias
is generic to overidentified instrumental variable estimators and is the motivation for jack-
knife instrument variable estimators (e.g. Angrist, Imbens, and Krueger (1999)). In practice,
because we have 722 locations, using leave-one-out to estimate the national growth rates
matters little in point estimates (compare rows 2 and 3 in Table 3).19

17To illustrate the theoretical distinction between looking at correlations between Bartik instruments and
comparing Rotemberg weights implied by the two instruments, in Appendix G we produce an example where
only one industry has identifying power, but the two instruments are uncorrelated and find the same β̂. While
this example might seem like a theoretical curiosity, in our empirical settings we typically find that a small
number of industries provide most of the identifying variation and the variation in the growth rates explains
little of the variation in the Rotemberg weights. Hence, there is typically scope for different national growth
rates that produce weakly correlated Bartik instruments to rely on the same “identifying variation” (that is,
have similar Rotemberg weights).

18There are 228 non-missing 3-digit IND1990 industries in 1980. There are 722 continental US commuting
zones.

19In Appendix H, we show that with a leave-one-out estimator of the gk component, the Rotemberg weights
do not sum to one. In our applications below, when we compute the Rotemberg weights we use simple aver-
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6.2 Form of endogeneity that the instrument addresses

OLS is biased but the Bartik instrument is valid when the idiosyncratic industry-location
components of growth are correlated with the error term. In this setting, an amenity shock
is an example because it would jointly draw people into a location (increasing employment
growth in each industry beyond the national average) and directly affect wage growth (i.e.,
it appears in the error term in the wage equation).

6.3 Rotemberg weights

We compute the Rotemberg weights of the Bartik estimator with controls, aggregated across
time periods. The distribution of sensitivity is skewed, so that a small number of instru-
ments have a large share of the weight. Table 1 shows that the top five instruments account
for over forty percent (0.593/1.375) of the positive weight in the estimator. These top five in-
struments are: oil and gas extraction, motor vehicles, other,20 guided missiles, and blast
furnaces.

These weights give a way of describing the research design that reflects the variation
in the data that the estimator is using, and hence makes concrete for the reader what types
of deviations from the identifying assumption are likely to be important. In this canon-
ical setting, one of the important comparisons is across places with greater and smaller
shares of oil and gas extraction. Hence, the estimate is very sensitive to deviations from the
identifying assumption related to geographic variation in employment share in oil and gas
extraction. Interestingly, a common short-hand to talk about Bartik is to discuss the fate of
the automobile industry (e.g. Bound and Holzer (2000, pg. 24)), and this analysis confirms
that the motor vehicle industry plays a large role in the Bartik instrument.

Finally, Panel B shows that the national growth rates are weakly correlated with the
sensitivity-to-misspecification elasticities. Hence, the growth rates provide a poor guide
to understanding what variation in the data drives estimates. In contrast, the elasticities
are quite related to the variation in the industry shares across locations (Var(zlk)). This
observation explains why the industries with high weight tend to be tradables: almost by
definition, tradables have industry shares that vary across locations, while non-tradables
do not.21

ages so that the weights sum to one.
20The “Other” industry is the “N/A” code in the IND1990 classification system. Our understanding is that

in 1980 the “Other” code includes full-time military personnel. Hence, in 1990 and 2000, we place full-time
military personnel in the “Other” category to compute growth rates.

21This logic is the basis of Jensen and Kletzer (2005)’s measure of the offshorability of services; as Jensen and
Kletzer (2005) recognize, there are other reasons for concentration besides tradability.
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6.4 Discussion of the identifying assumption in terms of the shares

As we discussed in Section 2, a heuristic for figuring out which identifying assumption
researchers have in mind is whether they mention particular industries. It is common in
the canonical setting to discuss particular industries (e.g., as mentioned above, Bound and
Holzer (2000, pg. 24) discuss the automobile industry). Hence, we think that in many
settings researchers have in mind this differential exposure design.

6.5 Testing the plausibility of the identifying assumption

Test 1: Correlates of 1980 industry shares Table 2 shows the relationship between 1980
characteristics of commuting zones and the share of the top 5 industries in Table 1, as well
the overall Bartik instrument using 1980 to 1990 growth rates. First, the R2 in these regres-
sions are quite high: for example, we can explain 46% of the variation in share of the “other”
industry via our covariates. Second, “other,” oil and gas extraction, blast furnaces, and the
overall Bartik instrument are statistically significantly correlated with the share of native-
born workers. The complement of the native-born share is the immigrant share. In the
immigrant enclave literature—and under the shares interpretation—the immigrant share
is used to predict inflows of immigrants, which are interpreted as labor supply shocks.
Hence, an industry share which is interpreted as predicting labor demand shocks is corre-
lated with something that also predicts labor supply shocks.

Test 2: Parallel pre-trends We note that in this setting there is no pre-period and so it is
not possible to test for parallel pre-trends without further assumptions.

Test 3: Alternative estimators and overidentification tests Rows 1, 2 and 3 of Table 3
report the OLS and IV estimates (row 2 leaves out the own-CZ growth rate to construct
the instrument, while row 3 uses all CZs to construct the growth rates), with and without
for the 1980 covariates as controls and makes two main points. First, the IV estimates are
bigger than the OLS estimates. Second, the Bartik results are sensitive to the inclusion of
controls, though these are not statistically distinguishable.

Rows 4-7 of Table 3 report alternative estimators as well as overidentification tests. We
focus on column (2), where we control for covariates. TSLS with the Bartik instrument and
LIML are quite similar. This finding is typically viewed as reassuring. In contrast, overi-
dentified TSLS and MBTSLS are similar, while HFUL is substantially larger. The different
point estimates suggest the presence of misspecification. In column (4), we see that the
overidentification tests reject the null that all instruments are exogenous, which also points
to misspecification.
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Visualizing the overidentification tests If one wishes to interpret the failure of the overi-
dentification tests as pointing to heterogeneity of the form outlined in Section 4 rather than
as evidence of misspecification, then Figure 1 shows some of the heterogeneity in treatment
effects underlying the overall Bartik estimate (Appendix Figure A1 shows the relationship
between the Rotemberg weights and the first-stage F-statistic). First, the figure shows that
among the “high-powered” (i.e., those with a first stage F-statistic above five) industries,
there is substantial dispersion around the Bartik β̂. Second, the largest weight industries
do tend to be closest to the overall Bartik β̂. Third, if a researcher wishes to adopt a hetero-
geneous effects interpretation of the rejection of the null in the overidentification tests, then
the patterns of heterogeneity suggest that there are likely to be negative weights on some
of the underlying location-specific coefficients. In particular, there is substantial dispersion
in the β̂k and some of the outlier β̂k have negative weights. Thus, the underlying location-
specific effects (the βl) that lead to a negative coefficient likely receive negative weights so
that the overall Bartik estimate does not reflect convex weights. To see this more generally,
the Panel E of Table 1 shows that the mean of the βk among the negative weight industries
is very different than the mean of the βk among the industries with positive weights.

7 Empirical example II: China shock

We estimate the effect of Chinese imports on manufacturing employment in the United
States using the China shock approach of Autor, Dorn, and Hanson (2013) (ADH).

7.1 Specification

It is helpful to write the main regression specification of ADH in our notation. The paper is
interested in a regression (where we omit covariates for simplicity, but include them in the
regressions):

ylt = β0 + βxlt + εlt, (7.1)

where ylt is the percentage point change in manufacturing employment rate, and xlt =

∑k zlktgUS
kt is import exposure, where zlkt is contemporaneous start-of-period industry-location

shares, and gUS
kt is a normalized measure of the growth of imports from China to the US in

industry k. The first stage is:

xlt = γ0 + γ1Blt + ηlt, (7.2)
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where Blt = ∑k zlkt−1ghigh-income
kt , the z are lagged, and ghigh-income

kt is a normalized measure
of the growth of imports from China to other high-income countries (mainly in Europe).

We focus on the TSLS estimate in column (6) of Table 3 of ADH, which reports that a
$1,000 increase in import exposure per worker led to a decline in manufacturing employ-
ment of 0.60 percentage points. Our replication also produces a coefficient of 0.60 (see Table
6, TSLS (Bartik) row, column (2)) .

7.2 Form of endogeneity that the instrument addresses

At a high-level, it is clear that manufacturing employment can decline for many reasons,
and the goal of ADH is to isolate the trade channel. Because the endogenous variable in the
OLS equation and the instrument both have the Bartik form, if they were constructed using
the same period to measure the shares, then in our setting there would be no way for OLS
to be biased and TSLS to fix the endogeneity problem (because the choice of growth rates
is not meaningful for identification in our setting).22 Thus, the form of endogeneity that
is addressed by the instrument stems from the timing of the measurement of the industry
shares.23 Here, the form of endogeneity is that employment responds in anticipation of
trade shocks.24

7.3 Rotemberg weights

As in the canonical setting, despite a very large number of instruments (397 industries) the
distribution of sensitivity is skewed so that a small number of instruments get a large share
of the weight. Table 4 shows that the top five instruments receive over half of the abso-
lute weight in the estimator (0.532/1.067). These instruments are electronic computers, games
and toys, household audio and video, telephone apparatus, and computer equipment. Ex-
cept for games and toys, these industries are different than the ones that ADH emphasize
when motivating the empirical strategy.25 In particular, rather than being low-skill techno-
logically stagnant industries where it is plausible that trade is the main shock hitting the

22In OLS, one can still compute Rotemberg weights. In the cross-section, αk =
gk Bl zlk

∑k′ g′k Bl zlk′
.

23In the Borusyak, Hull, and Jaravel (2018) setting, it is possible to motivate why the choice of growth rates
would fix an endogeneity concern, but it is harder to motivate why one would want to lag the industry shares.

24Autor, Dorn, and Hanson (2013, pg. 2129) write, “We use ten-year-lagged employment levels because,
to the degree that contemporaneous employment by region is affected by anticipated China trade, the use of
lagged employment to apportion predicted Chinese imports to regions will mitigate this simultaneity bias.”

25“The main source of variation in exposure is within-manufacturing specialization in industries subject to
different degrees of import competition...there is differentiation according to local labor market reliance on
labor-intensive industries...By 2007, China accounted for over 40 percent of US imports in four four-digit SIC
industries (luggage, rubber and plastic footwear, games & toys, and die-cut paperboard) and over 30 percent
in 28 other industries, including apparel, textiles, furniture, leather goods, electrical appliances, and jewelry”
(pg. 2123).
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industry, these are higher-skill technologically innovative industries where it is plausible
that changes in technology are the main shock hitting the industry.

Relative to the canonical setting, negative weights are less prominent and the varia-
tion in the national growth rates (or, imports from China to other high-income countries)
explains more of the variation in the sensitivity elasticities. Even so, and consistent with
the discussion in the previous paragraph that the growth rates provide an imperfect guide
to which industries drive estimates, the gk component explains less than twenty percent
(0.4302, see Table 4, Panel B) of the variance of the Rotemberg weights.

7.4 Discussion of the identifying assumption in terms of the shares

Why is it reasonable to interpret this paper as being about the shares? We note first that
the paper does not emphasize having a large number of independent shocks (which would
be necessary for the shocks interpretation to be plausible). Indeed, it is hard to conceive of
a model of an “optimizing China” that would generate random patterns of exports across
a wide swathe of the economy. (The random shocks assumption is more plausible in this
setting if researchers control for “higher-level” fixed effects and so exploit more idiosyn-
cratic variation. When Borusyak, Hull, and Jaravel (2018, Table 1, column 6) control for 2
digit industries, the estimates are one-sixth the size and no longer statistically significant.)
Second, the paper emphasizes particular industries and industries with particular charac-
teristics. That is, our reading of the logic of the paper is that it emphasizes that Chinese
exports were concentrated in low-skill, labor-intensive industries. This focus on particular
industries is not consistent with the consistency of the estimator coming from the shocks.

Is the identification assumption necessarily implausible when viewed in terms of shares?
We do not think so. Other papers in the trade literature leverage changes in trade policy
and study local labor market effects of these policy changes (e.g., Topalova (2010) and Ko-
vak (2013)). In these papers, the argument is not that the trade policy is literally random.
Instead, the argument is that the change in trade policy does not coincide with shocks to lo-
cations that were highly exposed to changes in trade policy. An example of this argument in
the case of ADH would be that technological changes (shifting the labor force towards au-
tomation) did not simultaneously occur to industries that were more exposed to the China
trade policy. The argument does not require that the shares predict nothing in levels, but
simply that the shares only predict changes through the causal channel emphasized by the
paper.

In the trade policy example, there is some institutional reason to expect that there is a
shock in particular industries that only operated through trade policy (because trade policy
changed in these industries). By analogy, in the context of ADH this logic would suggest
using institutional knowledge to pick industries where there was a large increase in exports
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from China because of Chinese comparative advantage (rather than technological change
in the industry). Seen in this light, one motivation for ADH to look at imports to other
high-income countries might be to isolate the industries where there is strong reason to
think that China experienced rapid productivity gains. As we have emphasized, however,
the weights that the Bartik estimator places on the just-identified IV estimates are not solely
a function of the growth rates. Indeed, in this example, the growth rates explain less than
twenty percent of the variation in the Rotemberg weights. As a result, weighting the shares
by growth rates is an imperfect way of isolating the variation that the researcher intends.
If there was further pruning of the industries, then a research design based on the shares
would likely accord more closely with the goals of researchers.

7.5 Testing the plausibility of the identifying assumption

Test 1: Correlates of 1980 industry shares Table 5 shows the relationship between the
covariates used in ADH and the top industries reported in Table 4. First, relative to the
canonical setting, the controls explain less of the variation in shares (lower R2 in the regres-
sions). Second, electronic computers, computer equipment manufacturing as well as the
overall measure are concentrated in more college educated areas; in contrast, games and
toys is concentrated in places with fewer college educated workers. This pattern empha-
sizes that researchers should be concerned about other trends potentially affecting manu-
facturing employment in more educated areas. Interestingly, the identifying assumption
related to the computer industry is precisely one that ADH worry about and provide sen-
sitivity analyses related to this industry.26

Test 2: Parallel pre-trends We construct our pre-trend figures as follows. We use fixed
1980 shares as our main variable, and plot the reduced form effect of each industry on
manufacturing employment.27 For our controls, we fix the controls in the same time period,
and interact with time fixed effects. As in the main specification, we also control for region
and time fixed effects as well. We then convert the growth rates to levels and we index
the levels in 1970 to 100. Standard errors are constructed using the delta method. For the
aggregate Bartik, we use the industry shares fixed in 1980, and combine them using growth
rates from 1990 to 2000.

Figure 2 shows the plots and displays several interesting patterns. First, games and toys
(Panel B), household audio and video (Panel C) and telephone apparatus (Panel D) diverge
from classic pre-trends figures, which would show no trends in the pre-periods and then

26ADH (pg. 2138): “Computers are another sector in which demand shocks may be correlated [across coun-
tries], owing to common innovations in the use of information technology.”

27We use the reduced-form effect because the endogenous variable is not available in the earlier periods. See
Appendix Figure A4 for the analogous figures using fixed 1990 shares.
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a sharp change at the date of the treatment. Second, the patterns in electronic computers
(Panel A) and computer equipment (Panel E) are more promising in that there is a sharp
drop in 2007 and no effect in 1990 and 2000; less promising, however, is that there are
statistically significant effects in 1980. Note that these panels show comparisons of places
with more and less of these particular industries in 1980, while the outcome is employment
for all manufacturing industries.

Test 3: Alternative estimators and overidentification tests Rows 1 and 2 of Table 6 re-
port the OLS and IV estimates using Bartik, with and without for the 1980 covariates as
controls, though these are not statistically distinguishable for the IV estimates. Rows 3-6 of
Table 6 shows alternative estimators as well as overidentification tests. We focus on column
(2), where we control for covariates. The estimates range from half the size of the baseline
Bartik TSLS estimate (MBTSLS), to several times the size (LIML). The divergence between
the two-step estimators (TSLS with Bartik, overidentified TSLS and MBTSLS) and the max-
imum likelihood estimators (LIML and HFUL) is evidence of misspecification. Similarly,
the overidentification tests reject. Combined, the movement in the estimates across esti-
mators is not reassuring,28 and the failure of the overidentification tests points to potential
misspecification.

Visualizing the overidentification tests If one wishes to interpret the failure of the overi-
dentification tests as pointing to heterogeneity of the form outlined in Section 4 rather than
as evidence of misspecification, then Figure 3 shows some of the heterogeneity in treat-
ment effects underlying the overall estimate (Appendix Figure A2 shows the relationship
between the Rotemberg weights and the first-stage F-statistic). Relative to the canonical
case, the patterns of heterogeneity are less concerning. In particular, visually there is less
dispersion in the point estimates among the high-powered industries and the high-weight
industries are clustered more closely to the overall point estimate. Finally, while there
are negative Rotemberg weights, these industries are a small share of the overall weight,
suggesting that there are unlikely to be negative weights on particular location-specific pa-
rameters (i.e., βl ; see also Panel E in Table 4).

8 Empirical example III: Immigrant enclave

We estimate the (negative) inverse elasticity of substitution between immigrants and na-
tives following Card (2009). In particular, we focus on the results in Table 6 of that paper

28Angrist and Pischke (2008, pg. 213) write: “Check overidentified 2SLS estimates with LIML. LIML is less
precise than 2SLS but also less biased. If the results come out similar, be happy. If not, worry...”
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(in particular columns (3) and (7)), which provides two sets of results: one for high-school
equivalent workers, and one for college-equivalent workers.

8.1 Specification

It is helpful to convert Card (2009)’s specification into our notation. The paper is interested
in a regression:

yl j = β0 + β ln xl j + β2Xl + εl j, (8.1)

where l is a location (a city) and j is a skill group (either high school- or college-equivalent).
Here, yl j is the residual log wage gap between immigrant and native men in skill group j, xl j

is the ratio of immigrant to native hours in skill group j (of both men and women), and Xl

is a vector of city-level controls. Hence, β is the (negative) inverse elasticity of substitution
between immigrants and natives in the relevant skill group. Unlike other examples, the
controls do not include place and time fixed effects because the paper considers a single
cross-section of outcomes in 2000 in 124 cities. The paper does, however, explore robustness
to including the lagged dependent variable.

The first stage is:

ln xl j = γ0 + γ1Bl j + γ2Xl + ηl (8.2)

where Bl j = ∑k zlk,1980gkj. Here, zlk,1980 =
Nlk,1980
Nk,1980

× 1
Pl,2000

, where Nk,1980 is the number of
immigrants from one of 38 country (groups) k in the U.S. in 1980, Nlk,1980 is the number
of immigrants from country (group) k in location l in 1980, and Pl,2000 is the population of
location l in 2000. Here, gkj is the number of people arriving in the US from 1990 to 2000
from country (group) k and skill group j. Notice that the shares, the immigrant enclave, are
not skill-specific, while the shocks, the immigrant inflows, are skill-specific. Relative to our
other examples, the shares do not sum to one within a location.

8.2 Form of endogeneity that the instrument addresses

A form of endogeneity that the instrument addresses is a positive labor demand shock that
draws immigrants into a location disproportionately relative to natives: a positive labor
demand shock to immigrants will increase εl j (relative earnings) as well as xlk (relative
supply).
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8.3 Rotemberg weights

In this setting, there are 38 country groups. For high school-equivalent workers, Panel A
of Table 7 shows that the top country is Mexico, which by itself receives almost half the
weight, and the the top five countries (in order: Mexico, El Salvador, Philippines, China,
and country group of West Europe, Israel, Cyprus, Australia and New Zealand) get almost
two-thirds of the overall weight. The large weight on Mexico is perhaps unsurprising.
Indeed, Card (2009, pg. 9) emphasizes that one might be concerned that for high-school
equivalent workers the instrument is largely just initial Mexican immigrant shares. Unlike
in the other examples, all the weights are positive. One reason the weights accord so closely
with intuition is that for this instrument the weights are almost perfectly explained by the
shocks—the immigrant inflows. Panel II shows that the correlation between the weights
and the gk is 0.991, which is dramatically higher than in the other examples.

For college-equivalent workers, Panel B of Table 7 shows that the top five sending coun-
tries receive almost half (45%) of the weight and all the weights are positive. The top five
countries are similar to the high-school equivalent workers, with El Salvador replaced by
Cuba. The top country is the Philippines, with fifteen percent of the weight. Relative to our
other examples, the shocks have much more explanatory power for the weights (the shocks
explain about 60% (= 0.7662) of the weights), though this explanatory power is lower than
for the high-school equivalent workers.

8.4 Discussion of the identifying assumption in terms of the shares

We think that it is typically reasonable to interpret the immigrant enclave setting as hav-
ing an identifying assumption in terms of the shares. The Card (2009) setting considers
a single cross-section but emphasizes the analogy to difference-in-differences by showing
robustness to controlling for the lagged dependent variable so that the effect of the instru-
ment is similar to changes. More broadly, a natural way to think of the immigrant enclave
instrument is that in any period there are immigrants arriving from different countries
and this then naturally affects places differently. For example, even though in Card (1990)
the boatlift was not caused by trends in Miami, the shock only hits Miami because of the
strong “pull” factor of the immigrant enclave and the discussion of identification is thus
about whether Miami would counterfactually have evolved similarly to places without an
existing stock of Cuban immigrants. We view it is as reasonable to interpret the immigrant
enclave instrument—especially when applied to a particular time period—as pooling this
logic. Hence, a researcher should explain and defend why places with different initial
stocks of immigrants would have counterfactually evolved in a similar way.

If a researcher does not feel comfortable embracing the shares view, then it is important
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to understand what the shocks view means in this setting. To embrace the shocks view
of identification in the immigrant enclave setting requires not only that there are random
“push” factors, but also that there are enough independent push factors that the endo-
geneity of the shares averages out. Making this case typically requires a large number of
independent “push” factors.

8.5 Testing the plausibility of the identifying assumption

Test 1: Correlates of 1980 origin country shares Table 8 shows the relationship between
the 1980 covariates used in Card (2009) and the top origin countries reported in Table 7.
First, similar to the canonical setting, the characteristics explain a fair amount of the cross-
sectional variation in the shares—especially for the overall instrument. Second, and related
to the canonical setting, we tend not to find a significant relationship between manufactur-
ing share and any of the individual country shares or the aggregate instruments (the only
exception is West Europe and others).

Test 2: Parallel pre-trends We construct our pre-trend figures using the reduced form
regression of equations (8.1) and (8.2) with their 1980, 1990 and 2000 values (that is, we in-
clude all the controls in Card (2009) in Table 6, columns (3) and (7) and re-estimate year-by-
year)29. Hence, the 2000 coefficient corresponds to the reduced form coefficient estimated
in Table 9.

Figure 4 shows that for the high school equivalent native-immigrant wage gap, the
variation in 1980 shares of Mexican immigrants did not predict statistically or economically
larger wage gaps in 1980 or 1990. That is, conditional on controls, the figures suggest that
there was a shock in the 1990s that led to a widening gap in 2000. Given the large weight
on Mexico, it is not surprising that the aggregate instrument looks like Mexico. Perhaps
more suprisingly, all the other countries look similar to Mexico.

Figure 5 shows less reassuring patterns for the college equivalent regressions. To take
the Philippines (the highest weight instrument) as an example, the 1980 variation in the
share of people from the Philippines implies as large an effect of the native-immigrant
ratio on the native-immigrant wage gap in 1980 and 1990 as in 2000. That is, there is no
evidence of change in 2000. Similarly, for other countries there are statistically significant
pre-trends. This evidence is consistent with the argument in Jaeger, Ruist, and Stuhler
(2019) that the immigrant inflows are typically serially correlated and so the immigrant
enclave instrument does not generate a well-defined shock to the supply of immigrants.

29Because of the structure of the data and the specification in Card (2009), it is not feasible to fix controls in
each time period as we discuss in Section 5.2.
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Test 3: Alternative estimators and overidentification tests Panel A of Table 9 shows the
results of alternative estimators and some overidentification tests for high school equiva-
lent workers. Unlike in our other examples, the results are quite stable across estimators,
with Bartik, overidentified TSLS, LIML, and MBTSLS all giving the same point estimate
(HFUL, in contrast, is quite different). Similarly, the overidentification tests on the overi-
dentified TSLS estimator fail to reject (though on LIML it does). This result can be ap-
proximately anticipated from Table 7 where the βk on each individual instrument are quite
similar.

Panel B of Table 9 shows that the results are broadly similar for college equivalent work-
ers. Namely, the results are quite stable across estimators and the overidentification test
fails to reject for both TSLS and LIML. Again, this result can be approximately anticipated
from Table 7.

Visualizing the overidentification tests Given that for several of the estimators the overi-
dentification tests fail to reject, it is not surprising that visually there is not a great deal of
dispersion in the point estimates across instruments. Figure 6 shows the heterogeneity in
the β̂k and the relationship to the first stage f-statistic. To compare to our other examples,
note that the y-axis is dramatically compressed. Moreover, the high-weight industries are
all very close to the overall estimate.

9 Summary

The central contribution of this paper revolves around understanding identification and
the Bartik instrument. Our first set of formal results relate to identification in the sense typ-
ically used by econometricians. We show that Bartik is numerically equivalent to a GMM
estimator with the industry shares as instruments. We use this equivalence to argue that in
many settings the way to interpret the research design implicit in a Bartik instrument is a
pooled exposure design. The shares measure the differential exposure to common shocks
(the national growth rates), and so the relevant identification assumption—familiar from
difference-in-differences—is that there are no other shocks correlated with this differential
exposure.

Our second set of formal results relate to identification in the sense often used by prac-
titioners: we show how to compute which of the many instruments “drive” the estimates.
Building on Andrews, Gentzkow, and Shapiro (2017) we show that these weights can be
interpreted as sensitivity-to-misspecification elasticities and so highlight which identifying
assumptions are most worth discussing and probing.

We then elaborated on a number of specification tests that researchers can carry out, and
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illustrated these tests through a number of applications. Our results clarify the set of rea-
sonable concerns a consumer of the Bartik literature should have. We hope that researchers
will use the results and tools in this paper to be clearer about how identification works in
their papers: both in the econometric sense of stating the identifying assumption and in the
practical sense of showing what variation drives estimates.
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Table 1: Summary of Rotemberg weights: canonical setting

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.368 -0.004 0.212
Positive 1.368 0.010 0.788
Panel B: Correlations

α̂k gk β̂k F̂k Var(zk)

α̂k 1
gk -0.015 1
β̂k 0.017 -0.495 1
F̂k 0.476 -0.032 0.016 1
Var(zk) 0.549 -0.036 -0.003 0.316 1
Panel C: Variation across years in α̂k

Sum Mean

1980 0.458 0.002
1990 0.182 0.001
2000 0.360 0.002
Panel D: Top 5 Rotemberg weight industries

α̂k gk β̂k 95 % CI Ind Share

Oil+Gas Extraction 0.229 0.034 1.170 (0.80,1.90) 0.568
Motor Vehicles 0.140 -0.017 1.525 (1.30,1.90) 1.404
Other 0.091 -0.062 0.759 (0.10,1.70) 1.697
Guided Missiles 0.069 0.047 0.115 (-2.20,0.70) 0.236
Blast furnaces 0.058 -0.078 1.084 (0.60,5.10) 0.800
Panel E: Estimates of βk for positive and negative weights

α-weighted Share of Mean
Sum overall β

Negative -0.074 -0.061 1.622
Positive 1.290 1.061 -0.584

Notes: This table reports statistics about the Rotemberg weights. In all cases, we report
statistics about the aggregated weights with normalized growth rates, where we aggregate
a given industry across years as discussed in Section 3.3 and normalize growth rates to
the per-period average as discussed in Section 3.2. Panel A reports the share and sum
of negative weights. Panel B reports correlations between the weights (α̂k), the national
component of growth (gk), the just-identified coefficient estimates (β̂k), the first-stage F-
statistic of the industry share (F̂k), and the variation in the industry shares across locations
(Var(zk)). Panel C reports variation in the weights across years. Panel D reports the top five
industries according to the Rotemberg weights. The gk is the national industry growth rate,
β̂k is the coefficient from the just-identified regression, the 95% confidence interval is the
weak instrument robust confidence interval using the method from Chernozhukhov and
Hansen (2008) over a range from -10 to 10, and Ind Share is the industry share (multiplied
by 100 for legibility). Panel E reports statistics about how the values of β̂k vary with the
positive and negative Rotemberg weights. The “Other” industry is the “N/A" code in the
IND1990 classification system and includes full-time military personnel.



Table 2: Relationship between industry shares and characteristics: canonical setting

Oil and Gas Extraction Motor Vehicles Other Guided Missiles Blast furnaces Bartik (1980 shares)

Male 1.319 -0.501 4.076 0.126 0.344 -0.178
(0.242) (0.160) (0.600) (0.063) (0.159) (0.035)

White 0.043 -0.714 -1.310 0.057 -0.681 -0.088
(0.102) (0.653) (0.281) (0.043) (0.256) (0.029)

Native Born 0.364 -0.129 0.824 -0.157 -0.312 -0.172
(0.092) (0.110) (0.281) (0.133) (0.129) (0.019)

12th Grade Only -1.096 1.283 1.040 -0.193 0.202 0.036
(0.218) (0.392) (0.356) (0.091) (0.150) (0.030)

Some College -0.311 0.687 1.060 0.033 -0.808 0.376
(0.143) (0.520) (0.288) (0.072) (0.254) (0.042)

Veteran -0.295 0.895 -5.793 0.202 2.526 0.000
(0.227) (0.917) (0.879) (0.126) (0.714) (0.072)

# of Children -0.043 0.954 -2.409 -0.006 0.003 -0.070
(0.142) (0.538) (0.558) (0.047) (0.223) (0.034)

R2 0.24 0.08 0.46 0.27 0.23 0.77
N 722 722 722 722 722 722

Notes: Each column reports results of a single regression of a 1980 industry share on 1980 characteristics. The final column is
the Bartik instrument constructed using the growth rates from 1980 to 1990. Results are weighted by 1980 population. Standard
errors in parentheses. The “Other” industry is the “N/A" code in the IND1990 classification system and includes full-time
military personnel.
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Table 3: OLS and IV estimates: canonical setting

∆ Emp Coefficient Equal Over ID test
(1) (2) (3) (4)

OLS 0.71 0.63 [0.04]
(0.06) (0.07)

TSLS (Leave-Out Bartik) 1.76 1.28 [0.23]
(0.33) (0.42)

TSLS (Bartik) 1.65 1.22 [0.19]
(0.34) (0.15)

TSLS 0.74 0.67 [0.10] 1014.05
(0.05) (0.07) [0.00]

MBTSLS 0.76 0.69 [0.13]
(0.06) (0.07)

LIML 1.60 1.42 [0.76] 2820.96
(0.00) (0.57) [0.00]

HFUL 2.85 2.69 [0.00] 804.19
(0.14) (0.13) [0.00]

Year and CZone FE Yes Yes
Controls No Yes
Observations 2,166 2,166

Notes: This table reports a variety of estimates of the inverse elasticity of labor supply. The
regressions are at the commuting zone level and the instruments are 3-digit industry-time
periods (1980-1990, 1990-2000, and 2000-2010). Column (1) does not contain controls, while
column (2) does. The TSLS (Bartik) row uses the Bartik instrument. The TSLS row uses
each industry share (times time period) separately as instruments. The MBTSLS row uses
the estimator of Anatolyev (2013) and Kolesar et al. (2015) with the same set of instruments.
The LIML row shows estimates using the limited information maximum likelihood estima-
tor with the same set of instruments. Finally, the HFUL row uses the HFUL estimator of
Hausman et al. (2012) with the same set of instruments. The J-statistic for HFUL comes
from Chao et al. (2014). The p-value for the equality of coefficients compares the adjacent
columns with and without controls. The controls are the 1980 characteristics (interacted
with time) displayed in Table 2. Results are weighted by 1980 population. Standard errors
are in parentheses and are constructed by bootstrap over commuting zones. p-values are
in brackets.
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Table 4: Summary of Rotemberg weights: China shock

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.067 -0.000 0.059
Positive 1.067 0.004 0.941
Panel B: Correlations

α̂k gk β̂k F̂k Var(zk)

α̂k 1
gk 0.430 1
β̂k 0.003 -0.320 1
F̂k 0.192 0.027 0.017 1
Var(zk) 0.102 -0.141 0.157 0.229 1
Panel C: Variation across years in α̂k

Sum Mean

1990 0.017 0.000
2000 0.983 0.002
Panel D: Top 5 Rotemberg weight industries

α̂k gk β̂k 95 % CI Ind Share

Electronic Computers 0.183 186.231 -0.619 (-1.50,-0.20) 0.137
Games, Toys, and Children’s Vehicles 0.138 243.794 -0.126 (-0.60,0.30) 0.044
Household Audio and Video Equipment 0.085 187.718 0.174 (-0.20,1.80) 0.046
Telephone and Telegraph Apparatus 0.066 92.922 -0.315 (-∞, ∞) 0.100
Computer Peripheral Equipment, NEC 0.060 34.982 -0.303 (-1.20,-0.20) 0.100
Panel E: Estimates of βk for positive and negative weights

α-weighted Share of Mean
Sum overall β

Negative -0.014 0.024 -0.036
Positive -0.582 0.976 -1.170

Notes: This table reports statistics about the Rotemberg weights. In all cases, we report
statistics about the aggregated weights, where we aggregate a given industry across years
as discussed in Section 3.3. Panel A reports the share and sum of negative Rotemberg
weights. Panel B reports correlations between the weights (α̂k), the national component
of growth (gk), the just-identified coefficient estimates (β̂k), the first-stage F-statistic of the
industry share (F̂k), and the variation in the industry shares across locations (Var(zk)). Panel
C reports variation in the weights across years. Panel D reports the top five industries
according to the Rotemberg weights. The gk is the national industry growth rate, β̂k is
the coefficient from the just-identified regression, the 95% confidence interval is the weak
instrument robust confidence interval using the method from Chernozhukhov and Hansen
(2008) over a range from -10 to 10 ((−∞,∞) indicates that it was not possible to successfully
define the confidence interval), and Ind Share is the industry share (multiplied by 100 for
legibility). Panel E reports statistics about how the values of β̂k vary with the positive and
negative Rotemberg weights.
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Table 5: Relationship between industry shares and characteristics: China shock

Electronic Games, Toys, Household Audio Telephone Computer Peripheral China
Computers and Children’s and Video and Telegraph Equipment, NEC to other

Vehicles Equipment Apparatus

Share Empl in Manufacturing 0.016 0.002 0.006 0.002 0.009 0.099
(0.008) (0.001) (0.003) (0.003) (0.004) (0.011)

Share College Educated 0.016 -0.001 0.002 0.001 0.012 0.068
(0.006) (0.001) (0.002) (0.003) (0.003) (0.014)

Share Foreign Born 0.004 0.001 -0.001 -0.005 0.002 0.052
(0.003) (0.001) (0.001) (0.003) (0.002) (0.009)

Share Empl of Women -0.002 0.003 -0.006 -0.003 0.000 0.031
(0.006) (0.002) (0.003) (0.006) (0.004) (0.017)

Share Empl in Routine -0.083 0.006 0.010 -0.010 -0.046 -0.051
(0.041) (0.003) (0.007) (0.015) (0.018) (0.084)

Avg Offshorability 0.410 -0.027 -0.022 0.248 0.182 -1.173
(0.214) (0.022) (0.039) (0.076) (0.091) (0.460)

R2 0.18 0.02 0.01 0.04 0.12 0.22
N 1444 1444 1444 1444 1444 1444

Notes: Each column reports a separate regression. The regressions are two pooled cross-sections, where one cross section is
1980 shares on 1990 characteristics, and one is 1990 shares on 2000 characteristics. The final column is constructed using 1990
to 2000 growth rates. Results are weighted by the population in the period the characteristics are measured. Standard errors in
parentheses.
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Table 6: OLS and IV estimates: China shock

∆ Emp Coefficients Equal Over ID Test
(1) (2) (3) (4)

OLS -0.38 -0.17 [0.00]
(0.07) (0.04)

TSLS (Bartik) -0.73 -0.60 [0.05]
(0.06) (0.09)

TSLS -0.45 -0.21 [0.00] 917.36
(0.06) (0.04) [0.00]

MBTSLS -0.56 -0.29 [0.00]
(0.06) (0.04)

LIML -1.47 -1.94 [0.83] 1868.95
(0.71) (3.33) [0.00]

HFUL -1.15 -1.13 [0.47] 968.37
(0.05) (0.04) [0.00]

Year and Census Division FE Yes Yes
Controls No Yes
Observations 1,444 1,444

Notes: This table reports a variety of estimates of the effect of rising imports from China on
US manufacturing employment. The regressions are at the CZ level and include two time
periods (1990 to 2000, and 2000 to 2007). The TSLS row is our replication of Column (1)
and Column (6) of Table 3 in ADH. Column (1) does not contain controls, while column (2)
does. The TSLS (Bartik) row uses the Bartik instrument. The TSLS row uses each industry
share (times time period) separately as instruments. The MBTSLS row uses the estimator
of Anatolyev (2013) and Kolesar et al. (2015) with the same set of instruments. The LIML
row shows estimates using the limited information maximum likelihood estimator with the
same set of instruments. Finally, the HFUL row uses the HFUL estimator of Hausman et al.
(2012) with the same set of instruments. The J-statistic for HFUL comes from Chao et al.
(2014). The p-value for the equality of coefficients compares the adjacent columns with and
without controls. The controls are the contemporaneous characteristics displayed in Table
5. Results are weighted by start of period population. Standard errors are in parentheses
and are constructed by bootstrap over commuting zones. p-values are in brackets.
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Table 7: Summary of Rotemberg weights: immigrant enclave

Panel A: High school equivalent
Panel I: Correlations

α̂k gk β̂k F̂k Var(zk)

α̂k 1
gk 0.991 1
β̂k 0.169 0.164 1
F̂k 0.203 0.173 0.181 1
Var(zk) 0.043 -0.032 -0.106 -0.260 1
Panel II: Top 5 Rotemberg weight origin countries

α̂k gk β̂k 95 % CI

Mexico 0.482 4.95e+06 -0.026 (-0.040,0.000)
El Salvador 0.054 4.65e+05 -0.046 (-0.070,-0.030)
Phillipines 0.050 5.31e+05 -0.023 (-0.040,0.130)
China 0.038 4.28e+05 -0.041 (-0.070,-0.010)
West Europe and Others 0.031 6.41e+05 -0.067 (-0.110,-0.050)

Panel B: College equivalent
Panel I: Correlations

α̂k gk β̂k F̂k Var(zk)

α̂k 1
gk 0.766 1
β̂k 0.293 0.255 1
F̂k -0.028 -0.055 0.230 1
Var(zk) 0.033 -0.381 -0.075 -0.225 1
Panel II: Top 5 Rotemberg weight origin countries

α̂k gk β̂k 95 % CI

Phillipines 0.151 6.32e+05 -0.065 (-0.125,-0.040)
Mexico 0.102 5.44e+05 -0.062 (-0.095,0.000)
China 0.082 3.74e+05 -0.084 (-0.125,-0.060)
West Europe and Others 0.066 5.31e+05 -0.090 (-0.145,-0.065)
Cuba 0.049 1.86e+05 -0.008 (-0.045,0.500)

Notes: This table reports statistics about the Rotemberg weights, which are all positive in
this application. Panels A.I and B.I reports correlations between the weights (α̂k), the na-
tional component of growth (gk), the just-identified coefficient estimates (β̂k), the first-stage
F-statistics (F̂k), and the variation in the origin country shares across locations (Var(zk)).
Panels A.II and B.II report the top five origin countries according to the Rotemberg weights.
The “Others” are Australia, Cyprus, Israel, and New Zealand. The gk is the number of im-
migrants from 1990 to 2000, β̂k is the coefficient from the just-identified regression, the 95%
confidence interval is the weak instrument robust confidence interval using the method
from Chernozhukhov and Hansen (2008) over a range from -10 to 10.



Table 8: Relationship between origin country shares and characteristics: immigrant enclave

Mexico Philippines El Salvador China Cuba West Europe Bartik Bartik
& Others High School College

City size 0.054 0.026 0.106 0.057 0.049 0.039 0.059 0.023
(0.018) (0.021) (0.027) (0.019) (0.060) (0.009) (0.009) (0.004)

College share -0.545 0.559 0.692 1.318 -0.828 0.530 -0.021 0.157
(0.370) (0.416) (0.554) (0.389) (1.206) (0.175) (0.189) (0.072)

Mean wage residuals 0.601 -0.428 0.595 -0.212 -0.199 0.052 0.267 0.041
for all natives (0.388) (0.437) (0.582) (0.408) (1.266) (0.184) (0.199) (0.076)

Mean wage residuals -0.652 0.596 -0.856 0.152 -0.079 -0.209 -0.385 -0.061
for all immigrants (0.361) (0.406) (0.540) (0.379) (1.175) (0.170) (0.185) (0.070)

Mfg share 0.059 -0.379 0.268 -0.192 -0.653 0.230 -0.006 -0.010
(0.202) (0.228) (0.303) (0.213) (0.660) (0.096) (0.104) (0.039)

N 124 124 124 124 124 124 124 124
R2 0.150 0.095 0.216 0.246 0.020 0.294 0.371 0.430

Notes: Each column reports results of a single regression of a 1980 origin country share on 1980 characteristics. Results are
weighted by 1990 population. Standard errors in parentheses. For legibility, coefficients and standard errors of the first six
columns are multiplied by 10,000,000. Coefficients and standard errors of the last two columns are not scaled. The “Others” are
Australia, Cyprus, Israel, and New Zealand.
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Table 9: OLS and IV estimates: immigrant enclave

Panel A. High school equivalent
∆ Emp Coefficients Equal Over ID Test

(1) (2) (3) (4)

OLS -0.02 -0.03 [0.00]
(0.01) (0.01)

TSLS (Bartik) -0.02 -0.04 [0.07]
(0.01) (0.01)

TSLS -0.02 -0.04 [0.02] 43.30
(0.01) (0.01) [0.22]

MBTSLS -0.03 -0.04 [0.08]
(0.01) (0.01)

LIML -0.03 -0.04 [0.06] 73.16
(0.01) (0.01) [0.00]

HFUL 0.03 0.02 [0.26] 82.45
(0.01) (0.00) [0.00]

Panel B. College equivalent
OLS -0.06 -0.06 [0.65]

(0.01) (0.01)
TSLS (Bartik) -0.08 -0.08 [0.93]

(0.01) (0.01)
TSLS -0.06 -0.06 [0.71] 35.54

(0.01) (0.01) [0.54]
MBTSLS -0.06 -0.07 [0.71]

(0.01) (0.01)
LIML -0.06 -0.06 [0.72] 33.67

(0.01) (0.01) [0.63]
HFUL 0.04 0.04 [0.23] 67.95

(0.01) (0.00) [0.00]

Controls No Yes
Observations 124 124

Notes: This table reports a variety of estimates of the negative of the inverse elasticity of
substitution between immigrants and natives. The regressions are at the city level and
include a single time period (2000). The TSLS row is our replication of Column (3) and
Column (7) of Table 6 in Card (2009). Column (1) does not contain controls, while column
(2) does. The TSLS (Bartik) row uses the Bartik instrument. The TSLS row uses each origin
country share separately as instruments. The MBTSLS row uses the estimator of Anatolyev
(2013) and Kolesar et al. (2015) with the same set of instruments. The LIML row shows
estimates using the limited information maximum likelihood estimator with the same set of
instruments. Finally, the HFUL row uses the HFUL estimator of Hausman et al. (2012) with
the same set of instruments. The J-statistic for HFUL comes from Chao et al. (2014). The
p-value for the equality of coefficients compares the adjacent columns with and without
controls. The controls are the contemporaneous characteristics displayed in Table 8. Results
are weighted by 1990 population. Standard errors are in parentheses and are constructed
by bootstrap over commuting zones. p-values are in brackets.



Figure 1: Heterogeneity of βk: canonical setting
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Notes: This figure plots the relationship between each instruments’ β̂k, first stage F-statistics
and the Rotemberg weights. Each point is a separate instrument’s estimates (industry
share). The figure plots the estimated β̂k for each instrument on the y-axis and the esti-
mated first-stage F-statistic on the x-axis. The size of the points are scaled by the magnitude
of the Rotemberg weights, with the circles denoting positive Rotemberg weights and the
diamonds denoting negative weights. The horizontal dashed line is plotted at the value of
the overall β̂ reported in the second column in the TSLS (Bartik) row in Table 3. The figure
excludes instruments with first-stage F-statistics below 5.



Figure 2: Pre-trends for high Rotemberg weight industries: China shock

Panel A: Electronic Computers Panel B: Games and Toys
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Panel E: Computer Equipment Panel F: Aggregate
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table 4. The figures fix industry shares at the 1980 val-
ues and report the effect of these industry shares on manufacturing employment. For our
controls, we fix the controls in the same time period, and interact with time fixed effects.
As in the main specification, we also control for region and time fixed effects as well. We
run regressions in growth rates and then convert to levels. We normalize 1970 to 100, and
compute the standard errors using the delta method. For the aggregate panel, we use the
Bartik estimate for 1980.



Figure 3: Heterogeneity of βk: China shock
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Notes: This figure plots the relationship between each instruments’ β̂k, first stage F-statistics
and the Rotemberg weights. Each point is a separate instrument’s estimates (industry
share). The figure plots the estimated β̂k for each instrument on the y-axis and the esti-
mated first-stage F-statistic on the x-axis. The size of the points are scaled by the magnitude
of the Rotemberg weights, with the circles denoting positive Rotemberg weights and the
diamonds denoting negative weights. The horizontal dashed line is plotted at the value of
the overall β̂ reported in the second column in the TSLS (Bartik) row in Table 6. The figure
excludes instruments with first-stage F-statistics below 5.



Figure 4: Pre-trends for high Rotemberg weight origin countries: immigrant enclave, high
school equivalent
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight origin countries as reported in Panel B of Table 7. The coefficients are estimated
using the reduced form regression of equations (8.1) and (8.2) with their 1980, 1990 and
2000 values (that is, we include all the controls in Card (2009) in Table 6, columns (3) and
(7), and re-estimate year-by-year). Hence, the 2000 coefficient corresponds to the reduced
form coefficient estimated in Table 9. The “Others” are Cyprus, New Zealand, Israel and
Australia.



Figure 5: Pre-trends for high Rotemberg weight origin countries: immigrant enclave, col-
lege equivalent

Panel A: Philippines Panel B: Mexico
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight origin countries as reported in Panel B of Table 7. The coefficients are estimated
using the reduced form regression of equations (8.1) and (8.2) with their 1980, 1990 and
2000 values (that is, we include all the controls in Card (2009) in Table 6, columns (3) and
(7), and re-estimate year-by-year). Hence, the 2000 coefficient corresponds to the reduced
form coefficient estimated in Table 9. The “Others” are Cyprus, New Zealand, Israel and
Australia.



Figure 6: Heterogeneity of βk: immigrant enclave

Panel A: High school equivalent
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Notes: This figure plots the relationship between each instruments’ β̂k, first stage F-statistics
and the Rotemberg weights. Each point is a separate instrument’s (country of origin) es-
timates. The figure plots the estimated β̂k for each instrument on the y-axis and the esti-
mated first-stage F-statistic on the x-axis. The size of the points are scaled by the magnitude
of the Rotemberg weights, with the circles denoting positive Rotemberg weights and the
diamonds denoting negative weights. The horizontal dashed line is plotted at the value of
the overall β̂ reported in the second column in the TSLS (Bartik) row in Table 9. The figure
excludes instruments with first-stage F-statistics below 5.



A Instruments encompassed by our structure

We now discuss two other instruments that our encompassed by our framework. This list
cannot be exhaustive, but illustrates the widespread applicability of our results.

A.1 Bank lending relationships

Greenstone, Mas, and Nguyen (Forthcoming) are interested in the effects of changes in
bank lending on economic activity during the Great Recession. They observe county-level
outcomes and loan origination by bank to each county. In our notation, let xl be credit
growth in a county, let zlk be the share of loan origination in county l from bank k in some
initial period, and let glk be the growth in loan origination in county l by bank k over some
period. Then xl = ∑k zlkglk.

The most straightforward Bartik estimator would compute ĝ−l,k =
1

L−1 ∑l′ 6=l gl′k. How-
ever, Greenstone, Mas, and Nguyen (Forthcoming) are concerned that there is spatial cor-
relation in the economic shocks and so leave-one-out is not enough to remove mechanical
correlations. One approach would be to instead leave out regions. Instead, they pursue a
generalization of this approach and regress:

glk = gl + gk + εlk, (A1)

where the gl and gk are indicator variables for location and bank. Then the ĝl captures the
change in bank lending that is common to a county, while ĝk captures the change in bank
lending that is common to a bank. To construct their instrument, they use B̂l = ∑k zlk ĝk,
where the ĝk comes from equation (A1).

A.2 Market size and demography

Acemoglu and Linn (2004) are interested in the effects of market size on innovation. Natu-
rally, the concern is that the size of the market reflects both supply and demand factors: a
good drug will increase consumption of that drug. To construct an instrument, their basic
observation is that there is an age structure to demand for different types of pharmaceuti-
cals and there are large shifts in the age structure in the U.S. in any sample. They use this
observation to construct an instrument for the change in market size.

In our notation, zlk is the share of spending on drug category l that comes from age
group k. Hence, ∑k zlk = 1. Then glk is the growth in spending of age group k on drug
category l. Hence, xl = ∑k zlkglk. To construct an instrument, they use the fact that there
are large shifts in the age distribution. Hence, they estimate ĝk as the increase in the number
of people in age group k, and sometimes as the total income (people times incomes) in age
group k. This instrument is similar to the “China shock” setting where for both conceptual
and data limitation issues glk is fundamentally unobserved and so the researcher constructs
ĝk using other information.
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B Omitted proofs

Proposition 1.1

Proof.

β̂GMM =
X⊥

′
ZGG′Z′Y⊥

X⊥′ZGG′Z′X⊥

=
X⊥

′
BB′Y⊥

X⊥′BB′X⊥

= β̂Bartik,

where X⊥
′
B is a scalar and so cancels.

Proposition 3.1

We use slightly more general notation than in the body of the paper. Let Ŵ be an arbitrary
weight matrix and let

Ĉ(Ŵ) = ŴZ′X⊥ and ĉk(Ŵ) = ŴkZ′X⊥,

where Ŵk is the kth row of Ŵ. We index a solution for β̂ by Ŵ: β̂(Ŵ). The more general
version of the proposition stated in the text is:

PROPOSITION B.1. Let

β̂(Ŵ) =
Ĉ(Ŵ)′Z′Y⊥

Ĉ(Ŵ)′Z′X⊥
, α̂k(Ŵ) =

ĉk(Ŵ)Z′kX⊥

∑k′ ĉk′(Ŵ)Z′kX⊥
, and β̂k = (Z′kX⊥)−1Z′kY⊥.

Then:

β̂(Ŵ) =
K

∑
k=1

α̂k(Ŵ)β̂k,

where ∑K
k=1 α̂k(Ŵ) = 1.

Proof. The proof is just algebra:

α̂k(Ŵ)β̂k =
ĉk(Ŵ)Z′kX⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(Z′kX⊥)−1Z′kY⊥ =
ĉk(Ŵ)Z′kY⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(A1)

K

∑
k=1

α̂k(Ŵ)β̂k =
∑K

k=1 ĉk(Ŵ)Z′kY⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(A2)

=
Ĉ(Ŵ)′Z′Y⊥

Ĉ(Ŵ)′Z′X⊥
. (A3)
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The proposition stated in the text comes from substituting in for the Bartik definition of
Ŵ.

Proposition 4.1

Proof. For a given k,

β̂k =
∑l zlkx⊥l βl

∑l zlkx⊥l
+

∑l zlkε⊥l
∑l zlkx⊥l

(A4)

=
∑l zlkx⊥l βl

∑l zlkx⊥l
+ op(1) (A5)

=
∑l z⊥,2

lk πlkβl + zlku⊥lk
∑l z⊥,2

lk πlk + zlku⊥lk
+ op(1). (A6)

Thus,

plim
L→∞

β̂k = E[ωlkβl ], (A7)

where ωlk = z⊥,2
lk πlk

/
E[z⊥,2

lk πlk]. Since πlk ≥ 0 by assumption, ωlk is non-negative for all l.
Additionally, E[ωlk] = 1.

C Equivalence with K industries, L locations, and controls

The two stage least squares system of equations is:

ylt = Dltρ + xltβ + εlt (A1)
xlt = Dltτ + Bltγ + ηlt, (A2)

where Dlt is a 1× S vector of controls. Typically in a panel context, Dlt will include location
and year fixed effects, while in the cross-sectional regression, this will simply include a
constant. It may also include a variety of other variables. Let n = L × T, the number of
location-years. For simplicity, let Y denote the n × 1 stacked vector of ylt, D denote the
n× L stacked vector of Dlt controls, X denote the n× 1 stacked vector of xlt, G the stacked
K × T vector of the gkt, and B denote the stacked vector of Blt. Denote PD = D(D′D)−1D′

as the n × n projection matrix of D, and MD = In − PD as the annhilator matrix. Then,
because this is an exactly identified instrumental variable our estimator is

β̂Bartik =
B′MDY
B′MDX

. (A3)

We now consider the alternative approach of using industry shares as instruments. The
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two-equation system is:

ylt = Dltρ + xltβ + εlt (A4)
xit = Dltτ + Zltγt + ηlt, (A5)

where Zlt is a 1× K row vector of industry shares, and γt is a K × 1 vector, and, reflecting
the lessons of Section 1.2, the t subscript allows the effect of a given industry share to be
time-varying. In matrix notation, we write

Y = Dρ + Xβ + ε (A6)
X = Dτ + Z̃Γ + η, (A7)

where Γ is a stacked 1× (T × K) row vector such that

Γ = [γ1 · · · γT] , (A8)

and Z̃ is a stacked n× (T × K) matrix such that

Z̃ =
[

Z� 1t=1 · · · Z� 1t=T
]

, (A9)

where 1t=t′ is an n× K indicator matrix equal to one if the nth observation is in period t′,
and zero otherwise. � indicates the Hadamard product, or pointwise product of the two
matrices. Then, using the Z̃ as instruments, the GMM estimator is:

β̂GMM =
X′MDZ̃ΩZ̃′MDY
X′MDZ̃ΩZ̃′MDX

, (A10)

where Ω is a KT × KT weight matrix.

PROPOSITION C.1. If Ω = GG′, then β̂GMM = β̂Bartik.

Proof. Start with the Bartik estimator,

β̂Bartik =
B′MDY
B′MDX

(A11)

=
G′Z̃′MDY
G′Z̃′MDX

(A12)

=
X′MDZ̃GG′Z̃′MDY
X′MDZ̃GG′Z̃′MDX

, (A13)

where the second equality follows from the definition of B, and the third equality follows
because X′MDZ̃G is a scalar. By inspection, if Ω = GG′, then β̂GMM = β̂Bartik.

D Interpreting the Rotemberg weights

To interpret the Rotemberg weights, we move from finite samples to population limits. We
first state the standard assumptions such that GMM estimators are consistent for all se-
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quences of Ŵ matrices. We then consider local-to-zero asymptotics (e.g., Conley, Hansen,
and Rossi (2012)) to interpret the Rotemberg weights in terms of sensitivity-to-misspecification
as discussed in Andrews, Gentzkow, and Shapiro (2017) (AGS). As such, the results in this
section are largely special cases of AGS.

The Rotemberg weights depend on the choice of weight matrix, Ŵ. Given standard as-
sumptions, the choice of weight matrix does not affect consistency or bias of the estimates,
and only affects the asymptotic variance of the estimator (there is a rich literature studying
how to optimize this choice).

When some of the instruments are not exogenous, however, the population version of
the Rotemberg weights measures how much the overidentified estimate of β0 is affected by
this misspecification. To allow for this interpretation, we modify our estimating equation:

ylt = Dltρ + xltβ0 + Vltκ + εlt,

where we assume that for some k, E[ZlktVlt|Dlt] 6= 0. We follow Conley, Hansen, and Rossi
(2012, Section III.C) and AGS (pg. 1569) and allow κ to be proportional to L−1/2 such that
we have local misspecification. We make the following standard regularity assumptions:

ASSUMPTION 4 (Identification and Regularity). (i) the data {{xlt, Zlt, Dlt, Vlt, εlt}T
t=1}L

l=1
are independent and identically distributed with K and T fixed, and L going to infinity;

(ii) E[εlt] = 0, E[Vlt] = 0 and Var(ε̃) < ∞;

(iii) E[zlktεlt|Dlt] = 0 for all values of k; E[zltVlt] = ΣZV , where ΣZV is a 1× K covariance
vector with at least one non-zero entry; and E[Zltx⊥lt ] = ΣZX⊥ is a 1× K covariance vector
with all non-zero entries (xlt is a scalar), and ΣZX⊥,k is the kth entry; and

(iv) Var(zlktεlt) < ∞, Var(zlktVlt) < ∞ and Var(zlktx⊥lt ) < ∞ for all values of k.
We first establish the population version of α̂k(Ŵ):

LEMMA D.1. If Assumption 4 holds and plimL→∞ ŴL = W where W is a positive semi-definite
matrix, then

plim
L→∞

α̂k(Ŵ) = αk(W) =
ΣZX⊥WkΣZX⊥,k

ΣZX⊥WΣ′ZX⊥
.

Proof. Note that

α̂k(Ŵ) =
X⊥′ZŴkZ′kX⊥

X⊥′ZŴZ′X⊥
(A1)

=

(
∑l,t x⊥lt Zlt

)
Ŵk
(
∑l,t zlktx⊥lt

)(
∑l,t x⊥lt Zlt

)
Ŵ
(
∑l,t Zltx⊥lt

) . (A2)

Since our data is i.i.d. and the variance of x⊥lt Zlt is bounded, the law of large numbers holds
as L→ ∞.

We now present results about the asymptotic behavior of our estimators with misspec-
ification.
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PROPOSITION D.1. We assume that Assumption 4 holds and plimL→∞ ŴL = W where W is a
positive semi-definite matrix.

If κ = L−1/2, then

(a)
√

L(β̂k − β0) converges in distribution to a random variable β̃k, with E[β̃k] =
ΣZV,k

ΣZX⊥ ,k
and

(b)
√

L(β̂− β0) converges in distribution to a random variable β̃, with E[β̃] = ∑K
k=1 αk(W)E[β̃k] =

∑K
k=1 αk(W)

ΣZV,k
ΣZX⊥ ,k

.

Proof. First, note that

β̂k =
∑l,t zlkty⊥lt
∑l,t zlktx⊥lt

= β0 +
∑l,t zlkt(L−1/2Vlt + εlt)

∑l,t zlktxlt

β̂k − β0 = L−1/2 ∑l,t zlktVlt

∑l,t zlktxlt
+

∑l,t zlktεlt

∑l,t zlktxlt
.

The second term goes to zero because E[zlktεlt] = 0. The first term goes to zero as L → ∞.
Finally, since our summand terms have bounded variance, the law of large numbers holds.
A similar argument holds for the broader summand.

The asymptotic bias of β̃k follows from Proposition 3 of AGS. A sketch of the proof for
this case follows:

√
L(β̂k − β0) =

∑l,t zlktVlt

∑l,t zlktxlt
+
√

L
∑l,t zlktεlt

∑l,t zlktxlt
√

L(β̂k − β0)−
∑l,t zlktVlt

∑l,t zlktxlt
=
√

L
∑l,t zlktεlt

∑l,t zlktxlt
.

Since ∑l,t zlktVlt
∑l,t zlktxlt

converges to ΣZV,k
ΣZX⊥ ,k

, this implies that
√

L(β̂k − β0) converges in distribu-

tion to a normally distributed random variable β̃k with E[β̃k] =
ΣZV,k

ΣZX⊥ ,k
. Finally, since

α̂k(Ŵ) converges in probability to αk(W), by a similar argument this implies that
√

L(β̂−
β0) converges in distribution to a normally distributed random variable β̃ with E[β̃] =

∑k αk(W)
ΣZV,k

ΣZX⊥ ,k
= ∑k αk(W)E[β̃k].

This proposition shows that in the presence of misspecification, the estimator is asymp-
totically biased. Two useful corollaries follow:

COROLLARY D.1. Suppose that β0 6= 0. Then the percentage bias can be written in terms of the
Rotemberg weights:

E[β̃]

β0
= ∑

k
αk(W)

E[β̃k]

β0
. (A3)

COROLLARY D.2. Under the Bartik weight matrix (W = GG′),

E[β̃]

β0
= ∑

k

gkΣZX⊥,k

G′Σ′ZX⊥

E[β̃k]

β0
. (A4)

62



The first corollary interprets the αk(W) as a sensitivity-to-misspecification elasticity. Be-
cause of the linear nature of the estimator, it rescales the AGS sensitivity parameter to be
unit-invariant, and hence is comparable across instruments.30 Specifically, αk(W) is the
percentage point shift in the bias of the over-identified estimator given a percentage point
change in the bias from a single industry. The second corollary gives the population version
of Bartik’s Rotemberg weights.

An alternative approach to measuring sensitivity is to drop an instrument and then re-
estimate the model. Let β̂(Ŵ−k) be the same estimator as β̂(Ŵ), except excluding the kth

instrument and define the bias term for β̂(Ŵ−k) as β̃(Ŵ−k) = β̂(Ŵ−k)− β.

PROPOSITION D.2. The difference in the bias from the full estimator and the estimator that leaves
out the kth industry is:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
β

= αk(W)
E[β̃k]

β
− αk(W)

1− αk(W) ∑
k′ 6=k

αk′(W)
E[β̃k′ ]

β
.

If E[β̃k′ ] = 0 for k′ 6= k, then we get a simpler expression:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
β

= αk(W)
E[β̃k]

β
.

Proof. Consider the difference in the bias for the two estimators:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
= ∑

k′
αk′(W)E[β̃k′ ]− ∑

k′ 6=k
αk′(W−k)E[β̃k′ ] (A5)

= αk(W)E[β̃k] + ∑
k′ 6=k

(αk′(W)− αk′(W−k))E[β̃k′ ]. (A6)

Now, consider αk′(W) − αk′(W−k). If W = GG′, then C(W) = GB′X⊥ and αk′(W) =
gk′Zk′X

⊥

∑k′ gk′Zk′X⊥
. If W−k = G−kG′−k, then αk′(W−k) =

gk′Zk′X
⊥

∑k′ 6=k gk′Zk′X⊥
, or αk′(W−k) = αk′(W)/(1−

αk(W)).31 This gives:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
= αk(W)E[β̃k] + ∑

k′ 6=k

(
αk′(W)− αk′(W)

1− αk(W)

)
E[β̃k′ ] (A7)

= αk(W)E[β̃k]−
αk(W)

1− αk(W) ∑
k′ 6=k

(αk′(W))E[β̃k′ ]. (A8)

30AGS (pg. 1558) write: “The second limitation is that the units of [our sensitivity vector] are contingent
on the units of [the moment condition]. Changing the measurement of an element [j of the moment condi-
tion] from, say, dollars to euros, changes the corresponding elements of [the sensitivity vector]. This does not
affect the bias a reader would estimate for specific alternative assumptions, but it does matter for qualitative
conclusions about the relative importance of different moments.”

31Note that with TSLS, these results would not hold, as the estimates for the first stage parameters after
dropping an industry would be different.
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As emphasized by AGS (Appendix A.1), dropping an instrument and seeing how es-
timates change does not directly measure sensitivity. Instead, this measure combines two
forces: the sensitivity of the instrument to misspecification, and how misspecificed the in-
strument is relative to the remaining instruments.

E Rotemberg weights and first-stage F-statistics

In this appendix, we derive the relationship between the Rotemberg weight on the kth in-
strument, and the relative first stage F-statistic.

Let π̂k ≡
Z⊥,′

k X⊥

Z⊥,′
k Z⊥k

and π̂ ≡ B⊥,′X⊥
B⊥,′B⊥ be the first stage coefficients for the kth industry and the

Bartik instrument. The first stage F-statistic on the kth instrument can be written32

Fk =
π̂k

2

Σ̂πkπk

(A1)

=

(
Z′kX⊥

Z⊥′k Z⊥k

)2
1

Σ̂πkπk

(A2)

=
1
g2

k

 gkZ′kX⊥

∑k′ gk′Zk′X⊥︸ ︷︷ ︸
α̂k


2(

(∑k′ gk′Zk′X⊥)
Z⊥′k Z⊥k

)2
1

Σ̂πkπk

(A3)

=
1
g2

k
α̂2

k

(
(B⊥,′X⊥

Z⊥′k Z⊥k

)2
1

Σ̂πkπk

(A4)

=
1
g2

k

(B⊥,′B⊥)2

(Z⊥,′
k Z⊥k )

2

(B⊥,′X⊥)2

(B⊥,′B⊥)2︸ ︷︷ ︸
π̂2

α̂2
k

1
Σ̂πkπk

(A5)

=
1
g2

k

(B⊥,′B⊥)2

(Z⊥,′
k Z⊥k )

2
Fα̂2

k
Σ̂ππ

Σ̂πkπk

. (A6)

From the first to the second line we substitute in the definition of π̂2
k , from the second to

the third line we multiply by g2
k

g2
k

and
(

∑k′ gk′Zk′X
⊥

∑k′ gk′Zk′X⊥

)2
, from the third to the fourth line we use

the definition of α̂k and the fact that ∑k′ gk′Zk′X⊥ = B⊥,′, from to the fourth to the fifth line

we multiply by
(

B⊥,′

B⊥,′

)2
, and from the fifth to the sixth line we multiply by ˆΣππ

ˆΣππ
and use the

definition of F.
32See, e.g., https://www.nber.org/econometrics_minicourse_2018/2018si_methods.pdf at

slide 21.
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Hence, we have:

Fk

F
=

(B⊥,′B⊥)2

(Z⊥,′
k Z⊥k )

2

Σ̂ππ

Σ̂πkπk

1
g2

k
α̂2

k (A7)

= α̂2
k

(
V̂ar(B⊥)

gkV̂ar(Z⊥k )

)2 Σ̂ππ

Σ̂πkπk

. (A8)

F Normalization of the Rotemberg weights

This appendix presents results to understand the role of normalizations. Following Remark
1.1 we always “drop” industry k by subtracting off gk from all the growth rates. Proposition
F.1 shows that the bias coming each instrument can be written as a weighted average of the
bias coming from the remaining K− 1 instruments. Corollary F.1 shows how the Rotemberg
weight gets shifted across instruments depending on which instrument is dropped. Finally,
corollary F.2 shows that the average of the K normalizations is to set the unweighted mean
of the growth rates to zero.

PROPOSITION F.1. If the ∑K
k=1 zlk = 1∀l, then we can write

E[β̃k] = ∑
j 6=k

ωj,kE[β̃ j]

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

and E[β̃ j] =
ΣZVj

ΣZX⊥j
.

Proof. Recall from Proposition D.1 that

E[β̃k] =
ΣZVk

ΣZX⊥k
.

When ∑K
k=1 zlk = 1, then ∑K

k=1 ΣZX⊥k
= 0 and ∑K

k=1 ΣZVk = 0. Then we can write

ΣZVk = −∑
j 6=k

ΣZVj

and
ΣZX⊥k

= −∑
j 6=k

ΣZX⊥j
.
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Then:

E[β̃k] =
ΣZVk

ΣZX⊥k

(A1)

= ∑
j 6=k

ΣZVj

∑j′ 6=k ΣZX⊥j′

(A2)

= ∑
j 6=k

ΣZX⊥j

∑j′ 6=k ΣZX⊥j′

ΣZVj

ΣZX⊥j

(A3)

= ∑
j 6=k

ωj,kE[β̃ j], (A4)

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

and E[β̃ j] =
ΣZVj

ΣZX⊥j
.

COROLLARY F.1. Let ∑K
k=1 zlk = 1∀l. Let {αk(GG′)}K

k=1 be the set of sensitivity-to-misspecification
elasticities given a weight matrix formed by a set of growth rates G. Now renormalize the growth
rates by subtracting off gk. Define αj,k(GG′) = αj((G− gk)(G− gk)

′) to be the resulting sensitivity-
to-misspecification elasticities (which imply that we have “zeroed out” the kth instrument). Then:

αj,k(GG′) = αj(GG′) + ωj,kαk(GG′),

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

.

Proof. Write:

αj,k(GG′) =
(gj − gk)ΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

(A5)

=
gjΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

−
gkΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

(A6)

=
gjΣZX⊥j

∑j′ gj′ΣZX⊥j′

−
gkΣZX⊥j

∑j′ gj′ΣZX⊥j′

, (A7)

because gk ∑j′ ΣZX⊥j′
= 0. Then:

αj,k(GG′) = αj(GG′)−
gkΣZX⊥j

∑j′ gj′ΣZX⊥j′

ΣZX⊥k
ΣZX⊥k

(A8)

= αj(GG′)− αk(GG′)
ΣZX⊥j

ΣZX⊥k

. (A9)
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Recall that ΣZX⊥k
= −∑j 6=k ΣZX⊥j

. So that: −
ΣZX⊥j
ΣZX⊥k

=
ΣZX⊥j

∑j 6=k ΣZX⊥j
= ωj,k. Hence:

αj,k(GG′) = αj(GG′) + ωj,kαk(GG′).

COROLLARY F.2. The average of the K normalizations is:

αj(GG′)avg = αj(GG′)−
ΣZX⊥j

K

[
∑K

k=1 gk

∑K
k=1 gkΣZX⊥k

]
.

If ∑K
k=1 gk = 0, then αj(GG′)avg = αj(GG′).

Proof. Note that we have two expressions for ωj,k = −
ΣZX⊥j
ΣZX⊥k

=
ΣZX⊥j

∑j 6=k ΣZX⊥j

αj(GG′)avg =
1
K

K

∑
k=1

αj,k(GG′) (A10)

=
1
K

K

∑
k=1

[
αj(GG′) + ωj,kαk(G′G)

]
(A11)

=
1
K

K

∑
k=1

[
αj(GG′)−

ΣZX⊥j

ΣZX⊥k

αk(G′G)

]
(A12)

= αj(GG′)− 1
K

K

∑
k=1

ΣZX⊥j

ΣZX⊥k

gkΣZX⊥k

∑K
j′=1 gj′ΣZX⊥j′

 (A13)

= αj(GG′)−
ΣZX⊥j

K

[
∑K

k=1 gk

∑K
k=1 gkΣZX⊥k

]
. (A14)

F.1 Empirical robustness

In the canonical Bartik setting (the only one of our three examples where the shares sum to
one), we consider the impact of three ways of normalizing the growth rates on the 10 largest
Rotemberg weights. Panel A of Appendix Table A1 repeats the results from Table 1 where
we subtract off the simple mean of growth rates in each time period. Panel B shows what
happens if we do not demean. Finally, in Panel C we demean using the mean of growth
rates averaged across three time periods.

The Table shows that in this setting the Rotemberg weights are not sensitive to rea-
sonable perturbations on the normalization. In all three cases, the industries with eight
largest Rotemberg weights are the same, and in almost identical order. Though the sizes
are slightly different, these differences are quite small.
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Table A1: Robustness of Rotemberg weights: canonical setting

Panel A: Top 10 Rotemberg weight industries (baseline)
α̂k Ind Share

Oil+Gas Extraction 0.229 0.568
Motor Vehicles 0.140 1.404
Other 0.091 1.697
Guided Missiles 0.069 0.236
Blast furnaces 0.058 0.800
Construction and material handling machines 0.055 0.444
Landscaping 0.039 0.213
Electrical machinery, equipment, and supplies, n.s. 0.035 0.182
Coal mining 0.033 0.317
Petroleum refining 0.032 0.211
Panel B: Top 10 Rotemberg weight industries (no demeaning)

α̂k Ind Share

Oil+Gas Extraction 0.204 0.568
Motor Vehicles 0.167 1.404
Other 0.125 1.697
Guided Missiles 0.075 0.236
Construction and material handling machines 0.046 0.444
Blast furnaces 0.046 0.800
Landscaping 0.041 0.213
Electrical machinery, equipment, and supplies, n.s. 0.038 0.182
Computers and related equipment 0.036 0.498
National security and international affairs 0.033 0.736
Panel C: Top 10 Rotemberg weight industries (simple demeaning)

α̂k Ind Share

Oil+Gas Extraction 0.204 0.568
Motor Vehicles 0.167 1.404
Other 0.125 1.697
Guided Missiles 0.075 0.236
Construction and material handling machines 0.046 0.444
Blast furnaces 0.046 0.800
Landscaping 0.041 0.213
Electrical machinery, equipment, and supplies, n.s. 0.038 0.182
Computers and related equipment 0.036 0.498
National security and international affairs 0.033 0.736

Notes: This table reports statistics about the Rotemberg weights across alternative growth rate demeaning examples.
Panel A reports the top ten industries according to the Rotemberg weights, replicating the demeaning from the main text.
Panel B reports the top ten industries according to the Rotemberg weights, without demeaning. Panel C reports the top ten
industries according to the Rotemberg weights, demeaning using the simple mean. The “Other” industry is the “N/A" code
in the IND1990 classification system and includes full-time military personnel.
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G Using growth rates to test overidentification restrictions

We consider a setting where only one instrument has first stage power. We consider a
researcher choosing two sets of weights. We show that given one set of weights, denoted
by G1, and all but one entry in a second vector G2, it is possible to generate two instruments
that have a covariance of 0 and lead to identical parameter estimates. In this case, however,
both Bartik instruments use the same identifying variation and so finding that they are
uncorrelated does not imply that they leverage different sources of variation.

PROPOSITION G.1. Suppose that Z′Z is full rank. Suppose that only the first entry in Z′X (a
K × 1 vector) is non-zero. Since we assume that the Z constitute a valid instrument, then only
the first entry in Z′Y is non-zero. Suppose that we are given two sets of weights, G1 and G2, with
G1,1 6= 0 and G2,1 6= 0. Suppose we leave the last entry of the second vector unknown (G2,K). Use
these two sets of weights to construct two Bartik instruments: B1 = ZG1 and B2 = ZG2. Assume
further that all the entries in G′1Var(Z) are non-zero. Then it is always possible to find G2,K such
that:

1. The two Bartik instruments lead to identical parameter estimates.

2. The two Bartik instruments are uncorrelated.

The proof shows that the first constraint is always satisfied, and derives an expression
for the second constraint.

Proof. The first constraint is that:

β̂1 = β̂2 (A1)

where for j ∈ {1, 2} β̂ j = G′jZ
′Y(G′jZ

′X)−1. Since only the first entries in Z′X and Z′Y are
nonzero, we have:

G′jZ
′Y(G′jZ

′X)−1 =
∑k Gj,kZ′kY
∑k Gj,kZ′kX

(A2)

=
Gj,1Z′1Y + ∑K

k=2 Gj,kZ′kY

Gj,1Z′1X + ∑K
k=2 Gj,kZ′kX

(A3)

=
Gj,1Z′1Y + ∑K

k=2 Gj,k0

Gj,1Z′1X + ∑K
k=2 Gj,k0

(A4)

=
Z′1Y
Z′1X

, (A5)

where this derivation uses the fact that only the first entry in Z′X (and Z′Y) is nonzero.
Hence, if G1,1 6= 0 and G2,1 6= 0, β̂1 = β̂2, which is true by assumption. Hence, the first
constraint always holds.

69



The second constraint is that the covariance between the two Bartik instruments is zero:

Cov(B1, B2) = E[B1B2]−E[B1]E[B2] (A6)
= E[(ZG1)(ZG2)]−E[ZG1]E[ZG2] (A7)
= E[(ZG1)

′(ZG2)]−E[ZG1]E[ZG2] (A8)
= G′1E[Z′Z]G2 − G′1E[Z′]E[Z]G2 (A9)
= G′1[E[Z′Z]−E[Z′]E[Z]]G2 (A10)
= G′1Var(Z)G2, (A11)

where this exploits the fact that B1,l is a scalar so we can take the transpose, and G1 and G2
are non-stochastic so that we can pull them out of the expectation. Let T = G′1ΣZ, where
ΣZ = Var(Z). So we can write this first constraint as:

TG2 = 0. (A12)

Note that T is 1× K. By assumption, the last entry in T are nonzero. We now construct an

expression for this entry. To make TG2 = 0, we need ∑K
k=1 TkG2,k = 0⇒ G2,K = −∑K−1

k=1 TkG2,k
TK

.

H The Rotemberg weights with leave-one-out

The formulas we present in Section 3 apply to the case where the weights are common to
all locations (i.e., we compute the national industry growth rates using a weighted average
that included all locations). Here we present the formulas for the αk that obtain when we
use leave-one-out growth rates to construct the Bartik estimator. We note a few things. First,
the numerical equivalence between GMM and Bartik obtains in the limit as the number of
locations goes to infinity when we use a leave-one-out estimator. Second, when we use a
leave-one-out estimator, the weights sum to one in the limit as the number of locations goes
to infinity. (For notational simplicity we suppress notation that residualizes for controls.)

First, we derive how the leave-location-l-out estimator of G, which we denote by G−l ,
relates to the overall average, G and the location-specific Gl (L is the number of locations):

G =
L− 1

L
G−l +

1
L

Gl ⇒ G−l =
L

L− 1
G− 1

L− 1
Gl .

Second, we derive a version of Proposition 3.1 with the leave-one-out estimator of G.
Note that the instrument constructed using leave-l-out growth rates in location l is: Bl,−l =
Zl
( L

L−1 G− 1
L−1 Gl

)
where G and Gl are K × 1 vectors and Zl is a 1× K vector (and Z will
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be the L× K stacked matrix). Then:

Bl,−l = Zl

(
L

L− 1
GL −

1
L− 1

Gl

)
(A1)

Bl,−l =
L

L− 1
ZlG−

1
L− 1

ZlGl (A2)

Bl,−l =
L

L− 1
Bl −

1
L− 1

Xl , (A3)

where the observation is that ZlGl = Xl . Then the stacked version is:

B−l =
L

L− 1
B− 1

L− 1
X,

where B is the vector of Bl and B−l is the vector of Bl,−l .
Then:

β̂ =
B′−lY
B′−lX

(A4)

=

( L
L−1 B− 1

L−1 X
)′ Y( L

L−1 B− 1
L−1 X

)′ X (A5)

=

( L
L−1 (ZG)− 1

L−1 X
)′ Y( L

L−1 (ZG)− 1
L−1 X

)′ X . (A6)

As before:

βk =
Z′kY
Z′kX

. (A7)

Then one can show:

αk =
L

L−1 gkZ′kX− 1
L−1 X′Yβ−1

k

∑k
L

L−1 gkZ′kX− 1
L−1 X′X

. (A8)

By inspection, ∑k αk 6= 1. However, as L → ∞ the sum converges to 1 as the leave-one-out
terms drop out.
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Figure A1: First stage versus Rotemberg weights: canonical setting
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Notes: This figure plots each instrument’s Rotemberg weight against the first stage F-
statistic. Each point represents the estimates for an instrument, where instruments are
aggregated across time periods following Section 3.3. The labelled industries correspond
to the five highest Rotemberg weight industries from Table 1. The dashed horizontal line is
equal to 10.



Figure A2: First stage versus Rotemberg weights: China shock
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Notes: This figure plots each instrument’s Rotemberg weight against the first stage F-
statistic. Each point represents the estimates for an instrument, where instruments are
aggregated across time periods following Section 3.3. The labelled industries correspond
to the five highest Rotemberg weight industries from Table 4. The dashed horizontal line is
equal to 10.



Figure A3: First stage versus Rotemberg weights: immigrant enclave
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Panel B: College equivalent
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Notes: This figure plots each instrument’s Rotemberg weight against the first stage F-
statistic. Each point represents the estimates for an instrument, where instruments are
aggregated across time periods following Section 3.3. The labelled industries correspond
to the five highest Rotemberg weight industries from Table 7. The dashed horizontal line is
equal to 10.



Figure A4: Pre-trends for high Rotemberg weight industries (1990 shares): China shock
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Panel C: Household Audio and Video Panel D: Telephone Apparatus
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Panel E: Computer Equipment Panel F: Aggregate
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table 4. The figures fix industry shares at the 1990 val-
ues and report the effect of these industry shares on manufacturing employment. For our
controls, we fix the controls in the same time period, and interact with time fixed effects.
As in the main specification, we also control for region and time fixed effects as well. We
run regressions in growth rates and then convert to levels. We normalize 1970 to 100, and
compute the standard errors using the delta method. For the aggregate panel, we use the
Bartik estimate for 1990.
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