
NBER WORKING PAPER SERIES

SHORT-RUN PAIN, LONG-RUN GAIN? RECESSIONS AND TECHNOLOGICAL 
TRANSFORMATION

Alexandr Kopytov
Nikolai Roussanov

Mathieu Taschereau-Dumouchel

Working Paper 24373
http://www.nber.org/papers/w24373

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2018

We thank Henry Siu (discussant), Sevin Yeltekin (editor), seminar participants at Columbia, 
Wharton, and conference participants at the Carnegie-Rochester-NYU Conference on Public 
Policy, for which this paper was prepared. The views expressed herein are those of the authors 
and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2018 by Alexandr Kopytov, Nikolai Roussanov, and Mathieu Taschereau-Dumouchel. All 
rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without 
explicit permission provided that full credit, including © notice, is given to the source.



Short-Run Pain, Long-Run Gain? Recessions and Technological Transformation
Alexandr Kopytov, Nikolai Roussanov, and Mathieu Taschereau-Dumouchel
NBER Working Paper No. 24373
March 2018
JEL No. E24,E25,E3

ABSTRACT

Recent empirical evidence suggests that job polarization associated with skill-biased 
technological change accelerated during the Great Recession. We use a standard neoclassical 
growth framework to analyze how business cycle fluctuations interact with the long-run transition 
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technological transition, but they also speed up adoption of the new technology. We document 
evidence for these mechanisms in the data. Our calibrated model is able to match both the long-
run downward trend in routine employment and the dramatic impact of the Great Recession. We 
also show that even in the absence of the Great Recession the routine employment share would 
have reached the observed level by the year 2012.
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1 Introduction

In recent decades, rapid advances in information technology, electronics and robotics have made

many jobs associated with relatively simple and repetitive tasks obsolete, as they can now be easily

performed by machines. While these routine jobs have been disappearing, employment in non-

routine cognitive occupations (e.g., programmers or financial analysts) and non-routine manual

jobs (mainly in low-skill services), has been increasing. Both of these types of occupations are

associated with tasks that have proved harder to automate, at least thus far.1

In a recent contribution, Jaimovich and Siu (2015) (JS hereafter) have shown that this job polar-

ization process accelerates during recessions. Over the last thirty years, employment in routine

occupations experienced significant drops during economic downturns and, unlike for other types

of jobs, these drops were not followed by recoveries once the recessions ended. Strikingly, 88% of

job losses in routine occupations since the mid-1980s happened during the three downturns that

occurred over this span of time. In contrast, non-routine jobs experienced only small declines

during these recessions, and rapidly recovered afterwards. Importantly, these patterns began dur-

ing the mid-1980s, when the pace of innovation in automation technologies accelerated (e.g., see

Eden and Gaggl, 2016). In prior decades, routine employment bounced back quickly as economy

recovered.

We build a quantitative model to better understand these patterns, and to evaluate their im-

portance for macroeconomic fluctuations and technology adoption. In the model, consumption

goods are produced using manual services and intermediates. Guided by the data, we assume that

the manual services employs low-skill workers to perform non-routine manual tasks. Production

of intermediates, in contrast, is more complex and requires a combination of non-routine cogni-

tive tasks, performed by high-skill workers, and routine tasks, performed by low-skill workers,

similarly to Autor and Dorn (2013). While only one technology is available to produce manual

services, firms can choose either an “old” or a “new” technology to produce intermediates. The

new technology is more skill-intensive than the old one, and it becomes better over time due to

continued improvements in information technologies and automation (Autor, Levy, and Murnane,

2003). As a result, firms progressively switch from the old to the new technology, and non-routine

cognitive employment goes up as a result. Moreover, since manual services and intermediates are

complements, non-routine manual employment also increases. The slow improvement in the pro-

1For more on job polarization see Acemoglu (1999), Autor, Levy, and Murnane (2003), Goos and Manning
(2007), Goos, Manning, and Salomons (2014) among others.
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ductivity of the new technology therefore generates patterns of job polarization similar to those

visible in the data.

Adopting the new technology is costly, both in terms of factors of production that must be used

to reorganize the firm, but also in terms of the profits that are lost during the reorganization. As

a result, firms in our model prefer to adopt the new technology during recessions, when factors

of production are cheap and the loss in foregone profits is minimized. Recessions are also periods

of skill acquisition by the workers. Since wages are depressed, low-skill workers take advantage of

the low opportunity costs to acquire the new skills which will be in high demand once the firms

begin using the new technology towards the end of the recession. Together, the adoption of new

technology by firms and the acquisition of skills by workers take resources away from production

during downturns and, as a result, amplify the effect of negative business cycle shocks. At the same

time, this short-run pain creates long-lasting value in the form of a better production technology

and a higher skill level.

The patterns of technology adoption and skill acquisition generated by the model have support

in the data. The evidence is particularly telling during the Great Recession. Indeed, while the

recession is accompanied by a decline in routine employment, post-secondary education enrollment

increases markedly over the same period. At the same time, while aggregate investment fell

massively, investment in new equipment and software technology was mostly unaffected or slowed

down only slightly. International shipment of industrial robots increased sharply as the recession

ended.

We calibrate the economy to match standard real business cycle moments and the overall increase

in the employment share of non-routine cognitive workers. Importantly, for a reasonable level

of complementarity between intermediates and manual services, the model is able to explain the

recent growth in the employment share of non-routine manual labor, as well as the decline in

routine manual jobs. We demonstrate that by feeding into our model a large negative TFP

shock that corresponds to the Great Recession in both its magnitude and its timing (relative to

the process of technological transition), we can largely account for the sharp drop in the share of

routine workers in the labor force that occurred between 2008 and 2010. We also show that even in

the counterfactual scenario in which the economy does not suffer the Great Recession the smooth

process of technological transition still delivers the employment share of routine manual workers

that is observed empirically in 2012. Thus, while the Great Recession may have accelerated the

process of job polarization, it does not seem to have contributed substantially to its long-term

trend.
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Literature Review

We model technological progress as involving a change in the production function, reminiscent of

the general purpose technology literature (e.g., Helpman, 1998). We also assume that the new

technology is relatively more high-skill-intensive, similar to Heckman, Lochner, and Taber (1998)

and Goldin and Katz (1998). Relatedly, Buera, Kaboski, and Rogerson (2015) also hypothesize

that the share of high-skill labor in production function has increased as a result of the recent

technological change. An alternative approach would be to use the notion of capital-skill comple-

mentarity, as proposed by Griliches (1969) and Krusell, Ohanian, Rios-Rull, and Violante (2000).

There, technological progress makes capital equipment more productive and cheaper, causing

increase in demand for the high skill.

In our model, technology adoption requires both time and resources. In this regard, it is sim-

ilar to Jovanovic and Macdonald (1994), Andolfatto and MacDonald (1998) and, especially, to

Greenwood and Yorukoglu (1997) who assume that high-skill labor is essential to adopt new

technologies.

In a “pit stop” model of technology adoption, which is reminiscent of the Schumpeterian view of

recessions, periods of depressed economic activity are used by firms to reorganize production or

invest in organizational capital (e.g., Hall, 1991 Cooper and Haltiwanger, 1993, Aghion and Saint-

Paul, 1998, and Caballero and Engel, 1999).2 Recently, these ideas have been brought to explain

anemic employment recoveries following the three latest recessions (van Rens, 2004, Koenders and

Rogerson, 2005, and Berger, 2012).

We model training in the spirit of real business cycle models augmented with human capital

accumulation as in Perli and Sakellaris (1998) and DeJong and Ingram (2001). As a result, in our

model investment in human capital also increases during recessions. Counter-cyclical investment

in education is a well-established fact in the empirical literature (see, among many others, Dellas

and Sakellaris, 2003, Charles, Hurst, and Notowidigdo, 2015, and Barr and Turner, 2015).

The remainder of the paper is organized as follows. Section 2 discusses recent empirical evidence

on the interaction between routine-biased technological change and recessions. Section 3 describes

the model. We calibrate the model in Section 4. Section 5 contains quantitative exercises. Section

6 concludes.

2Schumpeter (1934) considers recessions as “industrial mutation that incessantly revolutionizes the economic
structure from within, incessantly destroying the old one, incessantly creating a new one”. Caballero and Hammour
(1994) study how the process of creative destruction interacts with business cycles.
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2 Empirical evidence

In this section, we discuss empirical evidence about interaction between recent downturns and the

speed of job polarization. We then show that some forms of investment in skill-complementary

capital (e.g., software and information processing equipment), are only mildly pro-cyclical, in

contrast with very pro-cyclical investment in structures. We use this evidence to help motivate

our model, in which adoption of a new skill-intensive technology requires reorganization of the

firm that disrupts production and is therefore more attractive during periods of low opportunity

costs. At the same time, workers use recessions to invest in their human capital in order to satisfy

the increasing demand for skill, which results in accelerated job polarization.

A large empirical literature documents that job polarization, induced by routine-biased technolog-

ical change, was accelerated by recent recessions. Hershbein and Kahn (2016) show that demand

for high-skill workers rises in metropolitan statistical areas with lower employment growth. This

“upskilling” effect is long lasting and does not disappear even when then labor market recovers.

Moreover, firms that upskill more actively also invest more. Anghel, De la Rica, and Lacuesta

(2014) document that the Great Recession sped up job polarization in Spain. Zhang (2015) finds

that during crises firms intensive in routine labor reduce routine employment and invest more

in machines. Using a panel of Spanish manufacturing firms, Aguirregabiria and Alonso-Borrego

(2001) show that firms’ decisions to reorganize production is counter-cyclical and lead to a signif-

icant shift in occupation structure towards white-collar jobs.

Most relevant for our purpose, JS argue that the three recent recessions affected routine and

non-routine workers in a dramatically different way.3 They show that routine employment gen-

erally drops more during recessions than non-routine employment. In addition, the three recent

recessions are accompanied by no recovery in routine employment at all. Since the 1980s, per

capita routine employment has been falling, not only as a fraction of total employment, but also

in absolute terms. JS therefore refer to the mid 1980s as the start of the job polarization era.

The job polarization era is also marked by an overall drop in labor force participation and an

increase in post-secondary education enrollment. As shown in Figure 1, labor force participation

has been declining since the end of 1990s. Recessions appear to be important drivers of this decline.

3Using FRED data, JS define routine occupations as “sales and related occupations”, “office and administrative
support occupations”, “production occupations”, “transportation and material moving occupations”, “construc-
tion and extraction occupations”, and “installation, maintenance, and repair occupations”. Non-routine cognitive
occupations include “management, business, and financial operations occupations”, “professional and related oc-
cupations”. “Service occupations” are non-routine manual. We use their classification in our numerical analysis.
See their paper for more details about classification and robustness.
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In particular, labor force participation fell from 66% to 63% following the Great Recession. At

the same time, post-secondary education enrollment was almost flat from the mid 1970s up to

mid 1990s, but increased afterwards, with a pronounced spike around the Great Recession.4,5 In

our model, both the decreasing labor force participation and the increasing education enrollment

are driven by the adoption of the skill-intensive technology.

(a) Labor force participation rate (b) Post-secondary education enrollment ratio

Figure 1: Labor force participation rate (from FRED) and post-secondary education enrollment ratio. Post-
secondary education enrollment ratio is defined as total fall enrollment in degree-granting institutions (from Na-
tional Center for Education Statistics) over civilian noninstitutional population (from FRED).

Besides this differential impact on the different skill categories of labor, recessions also have di-

verging effects on different types of investment. For example, a pronounced persistent decline in

private investment that happened in the aftermath of the Great Recession is to a large extent

driven by an unprecedented drop in residential investment. In contrast, as shown in Figure 2,

investment in intellectual property, such as software and R&D, as well as industrial and infor-

mation processing equipment, tools that are used by skill-intensive firms, experienced a much

smaller drop and recovered rapidly (see also Brynjolfsson and McAfee). In Appendix A we also

show that world-wide shipments of industrial robots experienced a sharp increase immediately

after the Great Recession.

(a) Private nonresidential investment by type (b) Private equipment investment by type

Figure 2: Log real per capita private investment by type (from NIPA Tables). The series are normalized to 0 in
1985.

4Correlation between the labor force participation and the post-secondary enrollment ratio seems to change
sign around the start of the job polarization era. Between 1963 and 1984 the correlation is 0.84, while between
1985 and 2014 it is −0.63.

5It is worth noticing that enrolled in post-secondary institutions do not necessarily complete their education.
Thus, the dynamics of post-secondary enrollment and completion ratios might be different.
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3 Model

Time is discrete and goes on forever, t = {0, 1, . . . }. The economy is populated by a representative

household that consists of a unit measure of workers. A worker is either low-skill or high-skill, and

a low-skill worker can become high-skill through training. On the production side, a final good

is produced with two kinds of inputs. The first one is “manual services” which can be produced

using low-skill labor in non-routine manual tasks. The second input is “intermediates” which can

be produced by combining capital and the two types of labor.6

Intermediates can be produced using one of two different technologies: an old technology that

is low-skill intensive and a new technology that is high-skill intensive. All firms begin in period

t = 0 by using the old technology and, as the productivity of the new technology slowly improves,

progressively switch to it. Adopting the new technology requires capital and high-skill labor, and

the firm must stop production while the workplace is being reorganized. Below we describe the

agents in greater detail.

3.1 Representative household

The representative household values final consumption goods using a constant relative risk aver-

sion utility function with coefficient γ and discounts future utility at a rate b. The household

consists of a unit mass of atomistic workers, each endowed with one unit of labor. A fraction h

of them are high-skill and the remaining u = 1 − h are low-skill.7 Low-skill workers can either

work in production (up), in which case they earn a wage wu, or go to school as students (us) in

order to be trained and eventually become high-skill workers. While in training, low-skill workers

are out of the labor force. High-skill workers are always employed, either in production (hp) for

a wage wh, or in schools as teachers (hs). The household also owns the capital stock k and either

uses it to train workers (ks) or rents it out to firms for production (kp) at a rate r.

Each period, the abilities of a fraction δh of high-skill workers are rendered obsolete and they

6Our definition of two different inputs is similar to Autor and Dorn (2013). It distinguishes between two
broad types of tasks implemented by low-skill workers. Routine occupations required to produce intermediates are
relatively easy to automate or offshore (e.g., secretaries, paralegals, laborers). Non-routine manual occupations in
manual services, such as janitors or barbers, are not.

7Our definition of high skill is related to ability to implement non-routine cognitive tasks and not directly
to education level. Although the two are doubtlessly positively correlated, they are not the same (see JS for a
discussion). Nevertheless, as discussed in Section 4, we use post-secondary education data for our calibration
purposes.
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become low-skill. The dynamics of the mass of high-skill workers is

h′ = (1− δh)h+ φ(ks, hs, us), h
′ ∈ [0, 1], (1)

where φ(k, h, u) is the training technology. As in Perli and Sakellaris (1998), we assume that

φ(k, h, u) = skβs (µsh
ρs + (1− µs)uρs)

1−βs
ρs ,

where βs is the capital intensity of the training sector, µs is the high-skill intensity and ρs relates

to the elasticity of substitution between high-skill and low-skill workers (teachers and students).

The household owns the firms and receives their profits Π every period. It also invests in new

capital subject to quadratic adjustment costs ϕ(i, k) = χ
2

(
i
k
− δk

)2
k. Capital depreciates at a

rate δk, so that its law of motion is

k′ = (1− δk)k + i. (2)

Denoting by Ω the aggregate state of the economy (which will be fully described later), the

dynamic problem of the household is

W (h, k,Ω) = max
h′,k′,hs,hp,
us,up,ks,kp

c1−γ

1− γ
+ bE [W (h′, k′,Ω′) |Ω] (3)

subject to the budget constraint

c+ i+ ϕ(i, k) = wh(Ω) · hp + wu(Ω) · up + r(Ω) · kp + Π(Ω),

and the laws of motion (1) for high-skill workers and (2) for capital and to an aggregate law of

motion Ω′ = G(Ω) for Ω.

3.2 Firms and technologies

3.2.1 Final goods producer

There is a competitive industry that produces the final consumption good by combining interme-

diates (from both old and new firms) with manual services. We normalize the price of the final
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good to 1. The static problem of a firm in this industry is

max
yi,n;yi,o;yms

ez
[(
yθi,n + yθi,o

) ε
θ + yεms

] 1
ε − Po(Ω)yi,o − Pn(Ω)yi,n − Ps(Ω)yms, (4)

where yi,n is the amount of intermediates produced with the new technology, yi,o is the amount of

intermediates produced with the old technology and yms is the input flow from manual services.8

In the spirit of the endogenous growth models a-la Romer (1990) and Grossman and Helpman

(1991), we assume that the new technology allows intermediate firms to produce a potentially

different variety of goods, implying imperfect substitutability between the two (θ < 1). This

assumption captures the fact that new labor-saving technologies often do not fully replace the

products of old technologies. While digital sound has become much more wide-spread than its

analog counterpart, demand for LPs is still nontrivial, as some music connoisseurs prefer the latter.

Locally-grown organic foods are not fully substituted away by genetically modified products.

Importantly, however, we show in Appendix B that our results generally extend to the case of

perfect substitutability, θ = 1.

Aggregate total factor productivity z follows an AR(1) process such that

z′ = ρz + σzε
′
z, where εz ∼ iid N (0, 1).

3.2.2 Intermediates producers

There is a unit mass of atomistic intermediates producers. These firms can operate using either

the old or the new technology (and therefore are referred to as old and new firms), which we index

by j = {o, n}. They combine capital k, high-skill labor h and low-skill labor u using the following

production function

Fj(Aj, h, u, k) = Aj
[
kβ(hµju1−µj)1−β

]α
, j = {o, n}

where β is capital intensity, Aj is total factor productivity, µj captures the skill intensity of the

production function, and α < 1 is the decreasing returns to scale parameter. We use πj to denote

8We implicitly assume that the share parameters in the CES aggregators in (4) are equal to 1. This is without
loss of generality given our calibration of the relative productivities of the three technologies.
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the profits of a firm operating technology j so that

πj(Ω) = max
h,u,k

Pj(Ω)Fj(Aj, h, u, k)− wh(Ω) · h− wu(Ω) · u− r(Ω) · k,

where Pj(Ω) is price of intermediates of type j.

The old and the new technology differ in two ways. First, the new technology is relatively

more high-skill-intensive than the old one (µn > µo). Second, their productivities are different

(An 6= Ao). At t = 0 the new technology is not available (An = 0) and all agents consider its

arrival as a zero probability event. All firms are using the old technology. Over time, technological

progress favors the new technology such that An grows faster than Ao. This induces firms to

switch from the old to the new technology. Since the new technology is more high-skill intensive,

technological adoption increases the demand for high-skill workers, which puts upward pressure

on their wages. As a result, more low-skill workers enter the training process and the overall skill

level in the economy increases. Without loss of generality, in what follows we assume that Ao = 1.

Switching from the old to new technology is costly and risky. A firm that attempts to switch

does not produce during the current period and successfully acquires the new technology with

probability ξ(h, k), ξ ∈ [0, 1), ξhh, ξkk < 0 < ξh, ξk.
9 A firm can increase its odds of successful

adoption by hiring more high-skill workers h or by renting more capital k.10 Following Andolfatto

and MacDonald (1998), we assume that

ξ(k, h) = 1− exp(−ηkβah1−βa).

Since a new firm never switches back to the old technology, its value is simply

Vn(Ω) = πn(Ω) + E [M(Ω,Ω′)Vn(Ω′)|Ω] , (5)

where M(Ω,Ω′) is the stochastic discount factor of the representative household.

In contrast, an old firm must decide each period whether to attempt a technology switch or to

9We assume that the technology adoption has a probabilistic nature to capture, in a tractable way, that the
adoption process might be longer than one period of the model, which is taken to be one year. Brynjolfsson,
Malone, Gurbaxani, and Kambil (1994) and Brynjolfsson and Hitt (2003) find that it takes several years for a firm
to fully adopt computer technology.

10The importance of high-skill labor (e.g., management and IT consultants) for technology adoption is empha-
sized by Nelson and Phelps (1966) and Greenwood and Yorukoglu (1997).

9



produce with its current technology. As a result, its value is

Vo(Ω) = max

{
V p
o (Ω);V a

o (Ω)

}
, (6)

where the value of production is

V p
o (Ω) = πo(Ω) + E [M(Ω,Ω′)Vo(Ω

′)|Ω] ,

and the value of attempting to adopt the new technology is

V a
o (Ω) = max

h,k

{
− wh(Ω)h− r(Ω)k + ξ(h, k)E [M(Ω,Ω′)Vn(Ω′)|Ω]

+ (1− ξ(h, k))E [M(Ω,Ω′)Vo(Ω
′)|Ω]

}
.

In what follows, we denote the masses of producing new and old firms by mn and mo, respectively.

The remaining fraction, 1−mn−mo, are in the adoption process and are therefore not producing.

3.2.3 Manual services producer

There is a competitive representative firm producing manual services using low-skill workers. As

in Autor and Dorn (2013), its production function is Fms(u) = Amsu such that it maximizes

max
u

Pms(Ω)Fms(u)− wu(Ω)u, (7)

where Pms(Ω) is the price of services.

3.3 Competitive equilibrium

The set of aggregate state variables Ω contains the aggregate capital stock K, the mass of high-

skill workers H, the mass of firms producing intermediates which operate the new technology mn,

the productivity of the new technology An and the productivity of the final goods producer z.

We are ready to define a competitive equilibrium in this economy.

Definition 1 A recursive competitive equilibrium is a collection of value functions for the firms

Vo, V
p
o ,V s

o ,Vn and for the household W , and their associated optimal decisions; a collection of

10



prices wh, wu, r, Po, Pn, Pms and aggregate laws of motion G, such that

1. the value functions and the optimal decisions solve problems 3, 4, 5, 6 and 7;

2. the markets for high-skill and low-skill labor and the market for capital clear:

Hp = mnhn +moho + (1−mn −mo)ha,

Up = mnun +mouo + Ums,

Kp = mnkn +moko + (1−mn −mo)ka,

H = Hp +Hs,

U = Up + Us,

1 = H + U,

K = Kp +Ks,

where hj, uj, kj, j ∈ {o, n} denote the demand for high-skill labor, low-skill labor and capital,

respectively, of old and new firms; ha, ka denote the demand for high-skill labor and capital

of firms adopting the new technology; Ums is the demand for low-skill labor of the manual

services representative producer; Hs, Us, Ks denote respectively the amounts of high-skill

labor, low-skill labor and capital used in the training process;

3. the law of motion G is consistent with individual decisions.

4 Parametrization

We parametrize the model to match features of the United States economy since the middle of

the 1980s, the beginning of the job polarization era. One period is one year. Below, we explain

how the parameters are picked and Table 1 summarizes their values.

Business cycle shocks

The persistence and the standard deviation of the business cycle shocks, ρz and σz, are set to

match the first order autocorrelation and the volatility of HP-filtered real GDP per capita.11 We

find ρz = 0.85 and σz = 0.025. The persistence value is close to what is normally used in the

11We match the moments of the initial steady state of the economy with their data counterparts between 1947
and 1985. Recall that the job polarization era, associated in our model with the arrival of the new technology,
started around the mid 1980s, as argued by JS.
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RBC literature (Cooley and Prescott, 1995). The standard deviation σz is somewhat larger than

usual values. Since, in the model, there is no labor-leisure choice, larger fluctuations in exogenous

productivity are necessary to match aggregate output volatility.12

Parameter Value Source/Target

Business cycle shock
Aggregate shock persistence ρz = 0.85 Autocorrelation of output
Volatility of aggregate shock σz = 0.025 Volatility of output

Preferences
Risk aversion γ = 1.0 Log utility
Time discounting b = 0.96 4% annual interest rate

Production sector
DRS parameter α = 0.9 Basu and Fernald (1997)
Share of capital β = 0.3 Average labor share
Share of H in old technology µo = 0.45 Routine employment in 1985
Share of H in new technology µn = 0.83 C-S dispersion in routine wage share
EoS between new and old goods 1

1−θ = 4 Bernard, Eaton, Jensen, and Kortum (2003)

EoS between goods and services 1
1−ε = 0.167 Buera, Kaboski, and Rogerson (2015)

Productivity of manual services Ams = 5.91 Non-routine manual employment in 1985
Physical capital depreciation δk = 0.1 10% annually
Adjustment cost parameter χ = 0.25 Investment volatility

Schooling/training
Share of capital βs = 0.1 Perli and Sakellaris (1998)
EoS between H and U 1

1−ρs = 0.5 Perli and Sakellaris (1998)

Share of H in education µs = 0.0076 Student-teacher ratio
Constant s = 0.248 Post-secondary enrollment in 1985
High skill depreciation δh = 0.05 Heckman (1976)

Technology adoption
Capital share βa = 0.3 Same as in production sector
Ease of adoption η = 1.5 Expected adoption lag is 3 years

Technological progress
Initial impact A0

n = 0.1
Trends in non-routine cognitive, non-routine
manual and routine employment shares

Final value Ān = 1.5
Length Tfinish − Tstart = 75

Table 1: Parametrization.

Preferences

The time discount rate b is set to 0.96, which implies a 4% annual interest rate. We set the risk

aversion γ to 1.

Production sector

The returns to scale parameter for firms producing intermediates is set to α = 0.9, consistent with

12As discussed in Footnote 18, we solve the model assuming perfect foresight. All shocks are therefore completely
unanticipated and the value of σz does not affect the impulse response functions directly. The value of σz does
however matter for the calibration of other parameters of the model.
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the estimates of Basu and Fernald (1997). The capital share parameter is β = 0.3, consistent with

aggregate data. The share of high-skill labor in the old production technology is set to µo = 0.45

to match the fraction of routine employment in total employment at the beginning of the job

polarization era. For the new technology, we set µn = 0.83 in order to match the cross-sectional

dispersion in routine wage share in the total wage bill across intermediates producing firms to the

value found by Zhang (2015).13 The elasticity of substitution between the new and old goods in

the production of consumption goods is 4, so that θ = 0.75, close to the estimates of Hsieh and

Klenow (2014) and Bernard, Eaton, Jensen, and Kortum (2003). The elasticity of substitution

between intermediates and manual services is 0.167, which implies ε = −5, in line with estimates

of Buera and Kaboski (2009) and Herrendorf, Rogerson, and Valentinyi (2013). Productivity of

manual services is set to Ams = 5.91 in order to match the employment share of non-routine

manual labor in 1985. Physical capital depreciates at the rate of δk = 0.1. The adjustment cost

parameter is set to χ = 0.25 to match the volatility of private investment.

Training

The calibration of the training technology is not straightforward. To the best of our knowledge,

there is no empirical estimates of an aggregate training function that combines low and high-skill

labor together with physical capital. Closest to our paper in this regard, Perli and Sakellaris

(1998) consider an RBC economy with a human capital sector. Their human capital production

technology is similar to ours and we therefore set the capital share to βs = 0.1 and the elasticity

of substitution between high and low-skill labor to 1
1−ρs = 0.5. The latter value implies that high

and low-skill labor are strong complements in the training sector. We set the relative weight of

high-skill labor µs = 0.0076 in order to roughly match the teacher-student ratio in post-secondary

education.14 The productivity s = 0.248 is set to match the number of low-skill agents in the

training process Us in the initial steady state to the fraction of the civilian noninstitutional

population in post-secondary education in 1985. Finally, the skill depreciation rate is set to

δh = 0.05.15

13Zhang (2015) sorts firms based on this characteristic and finds that the spread between the highest and the
lowest quantiles is 0.37. In our model, there exists a trivial cross-section of firms among intermediates producers,
with old firms having a higher routine wage share. µn = 0.83 implies that the difference in the routine wage share
between new and old firms is close to 0.37. This value stays almost constant along the transition path.

14According to the National Center for Education Statistics, this ratio was slightly below 6% in the 1980s and
has increased up to 7.6% by the 2010s. We set µr so that in the initial steady state Hs

Us
= 0.07. Due to absence

of reliable data, we ignore other forms of training besides higher education. However, as argued by Perli and
Sakellaris (1998), higher education is responsible for up to 90% of total investment in human capital.

15In the model δh can be interpreted as the retiring rate, which is currently around 3% in the USA. One can
assume that every period a fraction δh of the total labor force L̄ retires and is immediately replaced by low-skill
workers. At the same time, δh should include the rate of skill obsolescence. A literature estimates the depreciation
rate of human capital. Despite a large variation, δh = 0.05 is close to what is normally found (Heckman, 1976 and

13

https://nces.ed.gov/programs/digest/d15/tables/dt15_105.40.asp?current=yes


Technology adoption

An old firm attempting to adopt the new technology is successful with probability ξ(k, h) =

1 − exp(−ηkβah1−βa). As for the earlier production technology, we set the capital intensity to

βa = 0.3. The parameter η > 0 governs the importance of capital and high-skill labor for the

technology adoption. If η is large, then only a few workers and small amounts of capital are

required to get the transition probability close to its maximum level of 1. On the contrary, a

small value of η implies a large demand for high-skill labor and capital among adopting firms.

Thus, smaller η’s are associated with larger adoption costs. We set η = 1.5. Along the transition

path, the resulting probability of successful technology adoption is around 0.33.16

Technological progress

The decision of the firms whether to adopt the new technology or not depends on the gap between

Ao and An. We therefore normalize Ao = 1 and focus on the evolution of An(t) which we

parametrize as follows

An(t) =



0, t < Tstart,

A0
n + (Ān − A0

n)
1− exp

(
Tstart−t

Tfinish−Tstart

)
1− exp(−1)

, t ∈ [Tstart, Tfinish],

Ān, t > Tfinish,

where Tstart denotes the arrival of the new technology (the mid 1980s in our case, corresponding

to the start of the job polarization era in JS). Upon arrival, its productivity is A0
n and it increases

over time until it reaches Ān > A0
n by at t = Tfinish.

The shape of the An(t) process is inspired by the general purposes technology (GPT) literature

(e.g., Bresnahan and Trajtenberg, 1995). The initial impact of the new technology A0
n can be

modest. Later on, a sequence of smaller innovations enhance the productivity of the new technol-

ogy. As a result, the technology reaches its peak Ān after a (potentially long) lag Tfinish − Tstart.

This is typical of GPTs (Helpman, 1998), including the ICT (Jovanovic and Rousseau, 2005).

In our baseline analysis, we set A0
n = 0.1, Ān = 1.5, Tfinish − Tstart = 75.17 These parameters are

Mincer and Ofek, 1982).
16Consistent with this number, Brynjolfsson, Malone, Gurbaxani, and Kambil (1994) and Brynjolfsson and Hitt

(2003) find that it normally takes several years for a firm to fully adopt computer technology.
17GPTs are known to become fully productive only after a significant lag. For example, David (1990) argues

that electricity delivered a major economic boost only in the 1920s, 40 years after the first generating station came
into being. Crafts (2004) finds a lag of almost 100 years for the steam related technologies. Using asset prices,
Ward (2015) predicts that it will take around 50 years for the IT to be fully absorbed by the economy.
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chosen to match the trend in the non-routine cognitive employment share reasonably well. Our

choice of Ān and Tfinish − Tstart is not unique to achieve this. A longer/shorter progress with

a higher/lower terminal value can match the same series. Since the goal of the paper is not to

predict when the growth of An(t) will stop, we do not take a strong stand on precise values of

Ān and Tfinish − Tstart. Importantly, our results on interactions of routine-biased technological

change with business cycles are unchanged if we simultaneously vary Tfinish − Tstart and Ān to

match the observed non-routine cognitive employment share.

5 Numerical results

This section presents our main numerical results.18 Section 5.1 explains the economic forces at

work. In Section 5.1.1, we discuss the transition from the old steady state to the new one created

by the arrival of the new technology. Section 5.1.2 describes the differential impacts of business

cycles on the economy in the pre- and during transition periods. Finally, Section 5.2 investigates

how recessions interact with the adoption of the new technology.

5.1 Economic forces at work

5.1.1 Transition paths

We begin by investigating how the arrival of the new technology affects the economy without

business cycle shocks. The path for the exogenous process An is shown in Figure 3. The initial

shock is small, representing the idea that a new fundamental technology is hardly productive right

after its arrival. As the new technology gradually becomes better, An increases and reaches its

steady-state level after 75 years.

Figure 4 shows how the introduction of the new technology affects the technology acquisition

decision of the firms and the occupational choices decision of the workers. We see that, over

time, firms adopt the new technology as its productivity increases (left panel).19 Since the new

18Since the competitive economy is efficient, we solve the problem of a social planner that maximizes the welfare
of the representative household. Given the complexity of the economy, we solve the model using a perfect foresight
approach. In particular, we assume that all business cycle shocks are completely unexpected. To verify the validity
of this approach, we have also solved a simpler version of the fully stochastic model globally. The perfect foresight
approach does not matter much for the predictions of the model but significantly decreases the complexity of the
computations. We further address impacts of recession anticipation in Appendix C.

19In principle, the mass of old firms is never zero in the terminal steady state due to imperfect substitutability
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Figure 3: The productivity An(t) of the new technology.

technology is relatively more skill-intensive, low-skill workers respond accordingly and start to

train to acquire new skill (right panel). As a result, routine manual employment (low-skill workers

employed in the intermediates production) declines.

Since the two inputs in the final consumption bundle are complementary, when productivity of

intermediates go up, it is optimal also to increase output manual services. Consequently, low-skill

employment in manual services increases gradually (the yellow dot-dashed curve in the right-hand

panel of Figure 4). As we can see, the model is able to generate job polarization and, as we discuss

in more details in Section 5.2, it does a fairly good job in explaining these patterns quantitatively.

(a) Firms (b) Workers

Figure 4: Transition upon arrival of the new technology.

Figure 5 illustrates other aspects of the technology adoption process. The top-left panel shows

how the production of consumption goods Yf evolves over time. Despite the positive technological

surprise at t = 0, Yf does not respond immediately. For roughly 15 years Yf is almost unchanged

and starts to grow only afterwards. This is due to the GPT nature of the new technology. The

adoption of such a technology requires significant investment in reorganization of the workplace

and in the accumulation of the required production factors.20 This is illustrated by the top-right

between the new and old technologies. It however becomes very close to zero if Ān � Ao. For our choice of
parameter, the mass of old firms in the final steady state is 0.34. The transition is largely finished in 100 periods
after the arrival of the new technology.

20This is reminiscent of the infamous Solow productivity paradox. Due to large reorganization costs, the new
technology starts to produce a sizable impact on the economy after a long lag. These reorganization costs are
likely to be mismeasured in the GDP calculations to a large extent. See also Brynjolfsson (1993).
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and bottom panels of Figure 5. The top-right panel shows the ratio of total adoption costs Ya

to final output Yf . We use two measures of Ya. The first measure, Ya,1, includes capital and

high-skill labor rents in the training and adoption technologies. The second measure, Ya,2, also

takes into account forgone profits due to firms being in the restructuring stage.

Ya,1 = wh(Ha +Hs) + r(Ka +Ks),

Ya,2 = Ya,1 +
∂Yf
∂mo

(m̄−mn −mo).

The calibration implies that Ya,1 becomes as high as 2.70% of Yf around year 30. Around the

same time, unmeasured reorganization investment, captured in our model by foregone output due

to old firms going through the adoption process, account for about 0.28% of Yf . Notice that in

the new steady state adoption costs are higher than in the initial steady state (1.43% vs 0.98%).

In the new steady state, the number of high-skill workers is higher and more training is therefore

required.

The bottom panel of Figure 5 further illustrates that the period after the arrival of the technology

is marked by a diversion of resources away from the production of final good. The total mass of

active firms and the overall number of workers in the production sector are shrinking for around

30 years (the yellow dot-dashed and red dashed lines, respectively). High-skill labor is required

for the firms’ reorganization and training of low-skill workers. At the same time, low-skill workers

start to train in larger numbers, which contributes to a drop in the labor force participation (the

blue solid line) and to an increase in school enrollment.21 These two phenomena have been visible

in the U.S. data for the last two decades.

In particular, the model predicts that the labor force participation drops by around 4 p.p. between

1985 and 2017, which is comparable to the number observed in the data (Figure 1, left panel).

The model predicts a steady decline in the labor force participation, while in the data it was

growing until the late 1990s and plummeted afterwards. Since the paper abstracts from several

important aspects (e.g., labor force participation among women, which was increasing until the

late 1990s), it cannot match the whole dynamics of the series.

Over the same period, the model-implied school enrollment ratio increased from 6.9% in 1985 up

to 10.2% in 2014. This is larger than in the data, where the ratio increased from 6.9% up to 8.2%

(Figure 1, right panel). There are two reasons why the model-implied increase is higher. First, in

the model, schooling represents all types of training, including on-the-job training and various job

21Recall that in the model the only labor force non-participants are low-skill workers in schools Us.
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(a) Output, Yf (b) Adoption cost to output, Ya
Yf

(c) Resource allocation

Figure 5: Top-left panel shows output of the final good sector Yf . Top-right panel shows two measures of adoption
costs Ya (see text) as a fraction of the final good sector production Yf . The bottom panel illustrates how the
allocation of resources vary over time.

training programs, while the data counterpart takes into account only formal higher education.

Second, in the model all workers are either employed or in schools, and a decrease in the number

of employed low-skill workers necessarily leads to an increase in the number of employed high-skill

workers (with a time lag). This approach misses a recent increase in non-employment among low-

skill workers (Cortes, Jaimovich, Nekarda, and Siu, 2014 and Cortes, Jaimovich, and Siu, 2016)

that is unrelated to education.22 Demographic changes, such as population aging, might also play

a role (Autor and Dorn, 2009).

In the model, job polarization is driven by two main forces. First, the number of low-skill workers

goes down along the transition path. As a result, the supply of routine workers diminishes.

Second, at each point in time, the propensity of a low-skill worker to take a routine job (i.e., a

job in an old or a new intermediates producing firm) goes down. On the one hand, she is more

likely to attend school. Conditional on not attending school, on the other hand, she is more likely

to do a manual services job. Formally, the routine employment R can be written as

R = U(1− psc − pnrm),

where U is the total supply of low-skill workers in the economy, psc and pnrm are the probabilities

that a low-skill worker is in the training process or employed in manual services. Change in

22Aguiar, Bils, Charles, and Hurst (2017) emphasize the importance of video games and other recreational
computer activities in reducing the labor supply of young males.
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routine employment ∆R therefore can be decomposed into a composition and a propensity effect,

∆R = ∆U(1− psc − pnrm)︸ ︷︷ ︸
Composition

−U∆(psc + pnrm)︸ ︷︷ ︸
Propensity

−∆U∆(psc + pnrm)︸ ︷︷ ︸
Interaction

.

Table 2 presents the decomposition of the overall decline in R between changes in U , psc and pnrm.

R1989 R2014 ∆R Composition Propensity Interaction

Schooling NRM

R 50.47% 38.61% −11.86% −5.18% −3.96% −3.49% 0.76%

Table 2: Model-implied change in routine employment R between 1989 and 2014. The years are chosen as in
Cortes, Jaimovich, and Siu (2016).

The model implies that both the composition and the propensity effects are important for job

polarization, with the latter force being more significant. This is consistent with the micro evidence

provided by Cortes, Jaimovich, Nekarda, and Siu (2014) and Cortes, Jaimovich, and Siu (2016).

5.1.2 Business cycles

We now compare the responses of the economy to business cycle shocks before and after the

introduction of the new technology. We investigate this question by first shocking the economy

with an adverse z shock along the transition path. We consider a large 2.5 standard deviation z

shock happening 23 years after the new technology arrival. Assuming that the technology arrived

around 1985, the timing and the magnitude of the recession in the model corresponds to the Great

Recession in the data. We then compare the outcome of this first experiment with the response

of the economy to the same shock before the new technology was available.23

The results are shown in Figure 6. We see that before, the arrival of the new technology, the

training of workers is counter-cyclical (the red dashed curves in panels (f)-(h)), as is typical of

RBC models with human capital (e.g., Perli and Sakellaris, 1998). The intuition is straightforward.

During recessions, workers are relatively inefficient in production and the economy therefore uses

these periods to accumulate human capital.

23The arrival of the new technology changes the structure of the production technology. In general, this can
affect the economy’s response to business cycle shocks by itself. We verify that our results are driven by the
interaction between the adoption decisions and the business cycle rather than by a different production technology.
In Appendix D we consider the impulse response functions to the same z shock in the new steady state when the
economy as fully transitioned. We find that the responses are much closer to their pre-transition counterparts than
to the ones observed along the transition path.
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This process is however amplified along the transition path for two reasons. In addition to the

mechanism highlighted above, the household understands that, since firms also use the recession

to adopt the new technology, the future demand for high-skill workers will increase. Economic

downturns are therefore a perfect period to train the workforce for this increased demand. The

second reason is that training and adoption are intensive in different factors, namely low and

high-skill labor, which complement each other in the intermediates production. When firms

start to adopt the new technology in recessions, they demand high-skill labor. This decreases the

marginal productivity of low-skill workers who are in production and some of them therefore move

into training. It turns out that the training-adoption complementarity is the main driver behind

the additional investment in human capital that we observe during the recession. As discussed

in Appendix E, when η is high and adoption does not require much resources, counter-cyclical

reallocation of low-skill labor towards training is much closer to the pre-transition case.

In sum, an adverse productivity shock to the final good sector leads to a more active reallocation

of factors during the technological transition than before the arrival of the new technology. In

particular, panels (g) and (h) show that training is now absorbing more resources. Reallocation

towards adopting firms (panel (i)), which is completely absent in the initial steady state, is

responsible for roughly half of the additional drop in the total production employment (panel

(f)).

Panels (j)-(l) of Figure 6 illustrate the production and adoption decisions of the firms. Since the

technology change requires a temporary halt in production, it is more attractive during economic

downturns when profits are lower. Panel (k) shows that the mass of old firms drops by 3.5 p.p.

as a result of the negative z shock. This drop leads to a lagged increase in the mass of firms

operating the new technology, as shown in panel (j).

The counter-cyclical adoption and training incentives are mitigated by the consumption smoothing

motives of the representative household. However, this effect turns out to be relatively small for

conventional values of the intertemporal elasticity of substitution.

As a result of the increased technological adoption and additional workers training triggered by the

recession, the drops in output, consumption and investment are all significantly more pronounced

during the technological transition than before the arrival of the technology (panels (b)-(d) in

Figure 6).24

24In Appendix F we verify that recessions during technological transitions are still deeper, even after adjusting
the output measure for training and adoption costs.
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(a) Productivity, z (b) Output, Yf (c) Consumption, C

(d) Investment, I (e) Capital, K (f) Production empl, Hp + Up

(g) L-S in training, Us (h) H-S in training, Hs (i) H-S in adoption, Ha

(j) New firms, mn (k) Old firms, mo (l) Active firms, mn +mo

Figure 6: IRFs to a negative z shock. Graphs are plotted relative to no z-shock scenario.

5.2 Routine-biased technological change and the Great Recession

We now investigate whether the model can rationalize both the long-run trend in the employment

shares induced by routine-biased technological change and the importance of recessions in generat-

ing job polarization. We use the same definitions and data sources as JS. Particularly, non-routine

cognitive/non-routine manual/routine jobs in their definition correspond to high-skill/low-skill

manual services/low-skill intermediates jobs in the model. Figure 7 shows the results.

We consider the impact of a negative 2.5 standard deviation z shock 23 years after the technology

arrival for the model-implied employment shares. Again, given our timing, this shock corresponds
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(a) Non-routine cognitive employment share

(b) Non-routine manual employment share

(c) Routine employment share

Figure 7: Employment shares by type of jobs. Definitions are from JS. Smooth blue lines show the series adjusted
for seasonality with a 13-term Henderson filter (Henderson, 1916).

to the Great Recession in the data.25 The top panel of the figure shows the employment share of

high-skill (model) versus non-routine cognitive (data) workers. Since the technological progress fa-

vors the high-skill-intensive technology, the corresponding employment share is gradually growing.

The recession induces more active training, resulting in an upward shift of the curve. Similarly,

the employment share of low-skill workers in intermediates producing firms (bottom panel) is

declining and discontinuously jumps down during the downturn. Finally, low-skill services em-

ployment share (middle panel) stays almost constant for the first 15 years. Since intermediates

25The size of the shock is picked in order to match an almost 10% drop in output during the Great Recession
(Fajgelbaum, Schaal, and Taschereau-Dumouchel, 2017).
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and manual services are strong complements, during the initial transition stage, when the inter-

mediates output is barely changed, it is optimal not to increase the manual services output as

well. Later on, low-skill employment starts to grow.26

Recent empirical evidence (e.g., JS and Hershbein and Kahn, 2016) emphasizes the acceleration

of the routine employment loss during the Great Recession. Figure 8 takes a closer look at this

phenomenon. In the data, the routine employment share dropped by 1.90 p.p. between 2007Q4

and 2008Q4.27 Thus, 15% of the overall drop observed between January of 1985 and April of 2017

happened during only 1 year, or 3% of the total time span. In the model, a 2.5 standard deviation

negative z shock implies a drop of 1.43 p.p., or nearly 75% of what is observed in the data. In the

absence of the z shock, the model-implied routine employment share would have declined by only

0.61 p.p. because of the gradual transition between the steady states. The model is therefore able

to replicate a substantial fraction of the routine employment loss during the Great Recession.

Routine employment share: Impact of the Great Recession

Figure 8: Routine employment share (defined as in JS) around the Great Recession. Red dashed line shows
the model-implied path holding z at the steady state level. The smooth blue line shows the series adjusted for
seasonality with a 13-term Henderson filter (Henderson, 1916).

Overall, Figures 7 and 8 show that the model can match several important aspects of the job

polarization phenomenon. First, the model is able to replicate the steady decline, since at least

the start of the job polarization era, of the fraction of routine workers while, at the same time,

replicating the increase in both non-routine cognitive and manual jobs. To do so, the model relies

only on changes in the An process and on the complementarity between intermediates and manual

services. Second, the model is also able to generate the acceleration of the job polarization process

26The model does not match the increase of the non-routine manual employment share during the Great Re-
cession. A negative TFP surprise induces reallocation of high-skill workers towards adoption and teaching. As a
result, the intermediates production drops. Due to complementarity between intermediates and manual services,
the marginal productivity of low-skill manual service workers declines as well and the planner therefore moves
them to training.

27We consider 1 year after the start of the Great Recession, since in our model we approximate the Great
Recession by 1 large negative z shock.
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during recessions and, specifically, during the Great Recession. The counter-cyclical restructuring

incentives are responsible for these rapid movements during economic downturns.

6 Concluding remarks

In this paper, we analyze the interaction between routine-biased technological change and business

cycles. Since economic downturns are periods of low opportunity costs, they are used by firms

to optimize their production technology and by workers to adjust their skill set to a changing

economic environment. Restructuring incentives are enhanced during technological transitions,

associated with higher than usual demand for new skills. As a result, recessions during transitions

are marked by a sizable scarcity of factors in the final good production. At the same time, routine-

biased technological change is accelerated, consistent with the recent empirical evidence.

The paper provides a theoretical rationale for two major features of job polarization. First, the

fraction of routine workers has been declining since at least the mid 1980s, while both non-routine

cognitive and non-routine manual employment shares have been growing. Second, job polarization

is concentrated in recessions. In our model, a gradual technology adoption generates the trend,

while large downturns speed up the transition due to counter-cyclical restructuring incentives.

The model can be extended along several important directions. First, we assume that low-

skill workers can switch between routine and non-routine manual jobs without any frictions.

Although costs of training for a manual services job are presumably much smaller than for a

non-routine cognitive one, they are not zero. A more detailed modelling of occupation choice

might help to explain an increase in the non-routine manual employment share during the Great

Recession. Particularly, time to train for a manual services job is likely to make this process

counter-cyclical. A model implied non-routine manual employment share should exhibit an uptick

during downturns.

Furthermore, as discussed in Section 5.1.1, one could allow workers to permanently stay out

of labor force, for example, by introducing a home production sector. It would be interesting

to investigate, both theoretically and empirically, how routine-biased technological change and

recessions along the transition path affect labor adjustments along this margin. Another potential

direction would be to enrich the model with a labor-leisure choice. If the value of leisure is affected

by new technologies, as suggested by Aguiar, Bils, Charles, and Hurst (2017), then the model

could rationalize declining labor force participation, as well as job polarization.
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Appendix

A Industrial robots

Figure A1 shows the worldwide shipment of industrial robots. After a temporary drop in 2009, the

series recovered quickly and has been growing at a faster rate afterwards. The model interprets

this data as an increase in technology adoption in the aftermath of the recession.

Worldwide shipment of industrial robots

Figure A1: Data source: International Federation of Robotics.

B Substitutability between new and old technologies

In the main text, we assume that the new and old technologies produce imperfectly substitutable

varieties, with elasticity of substitution of 1
1−θ = 4. In this Appendix, we consider the case of

perfect substitutability between the varieties so that θ = 1. If we kept all other parameters besides

θ at the same values, the transition between the technologies would be much more concentrated

in time. When new and old intermediates are perfect substitutes, it is optimal for firms to adopt

the new technology only when its productivity An becomes very close to Ao. On the other hand,

when An grows slightly above Ao, old firms massively adopt the new technology. In order to

generate gradual transition paths, we have to either significantly increase the adoption costs or

to reparametrize the An(t) process. Since the model already features a nontrivial adoption lag of

several years, we take the second approach.

We set A0
n = 1.0015 and Ān = 1.0184 and keep Tfinish − Tstart = 75 years. The left column of

Figure A2 depicts the employment shares under this parametrization. The model can still match

the non-routine cognitive and routine employment shares, it now fails to deliver a pronounced
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Only An growing

(a1) Non-routine cognitive employment share

An and Ao growing

(a2) Non-routine cognitive employment share

(b1) Non-routine manual employment share (b2) Non-routine manual employment share

(c1) Routine employment share (c2) Routine employment share

Figure A2: Employment shares by type of jobs: θ = 1. The left column shows the series when only An grows. The
right column shows the series when both An and Ao grow, with the former one at a faster pace.

increase in the non-routine manual employment share however. In the main text, employment

in manual services grows since a change in An leads to a significant boost in the production of

intermediates. Since the two inputs are strong complements in the final consumption bundle,

low-skill labor optimally flows to manual services. When θ = 1, only a small increment in An is

required to initiate the transition. Intermediates output barely changes. As a result, employment

in manual services goes up only marginally.

In order to generate an increase in the non-routine manual employment share, the model can be

extended by assuming that the productivity of the old technology also grows, although at a slower

pace then the productivity of the new technology. To do so we assume that there is a common

term Ai(t) to both processes so that the productivity of the old and new technology are Ai(t) and

Ai(t)An(t). We keep the An(t) process the same as before and parametrize the Ai(t) process in
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the same spirit,

Ai(t) =



1, t < Tstart,

1 + (Āi − 1)
1− exp

(
Tstart−t

Tfinish−Tstart

)
1− exp(−1)

, t ∈ [Tstart, Tfinish],

Āi, t > Tfinish.

We set Āi = 1.23.

The employment shares are depicted in the right column of Figure A2. Not surprisingly, now the

model can generate an increase in the non-routine manual employment share. The dynamics of

the non-routine cognitive and routine employment shares move downwards slightly. When overall

productivity of intermediates Ai goes up, low-skill labor is reallocated towards manual services.

Fewer low-skill workers are employed in intermediates, which pushes down the routine employment

share. Since low and high-skill labor are complements in the intermediates production, it is

optimal to decrease the number of high-skill workers as well. As a result, the non-routine cognitive

employment share moves downwards.

(a) Productivity, z (b) Output, Yf (c) Production empl, Hp + Up

(d) L-S in training, Us (e) H-S in adoption, Ha (f) New firms, mn

Figure A3: IRFs to a negative z shock. Graphs are plotted relative to no z shock scenarios.

The interaction of the technological transition with recessions does not change qualitatively when

θ = 1. Figure A3 shows the impulse response functions to the same z shock for θ = 0.75 (bench-

mark) and θ = 1. With perfect substitutability, downturns induce more technology adoption.

When θ = 1, new and old firms produce the same good and profits of old firms does not depend

much on the mass of producing old firms mo. In case of imperfect substitutability, old firms

produce their own variety. When some of them halt their production and try to adopt the new
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technology, profits of the remaining old firms increase substantially. Accelerated adoption for

θ = 1 requires additional high-skill workers and capital. Since high and low-skill labor are com-

plements in the production process, more low-skill workers choose to train. As a result, output

drops by 12% on impact (with θ = 0.75 the drop is about 10% for the same shock).

C Expectations and business cycles

In the main text, we analyze the impact of unanticipated z shocks on the economy. Since reor-

ganization is counter-cyclical in our model, the anticipation of recessions can affect the agents’

behavior in an important way. Being aware of a possible downturn in the future, old firms are

likely to postpone technology adoption and low-skill workers to defer training until bad times.

In order to investigate the importance of this anticipation channel, we do the following exercise.

Assume that in 2003, 5 years before the Great Recession, all agents in the economy learn that a

regular recession will happen in 2008. Particularly, z is going to drop by 0.55 standard deviations

with certainty, which will lead to a 2% drop in output, an average GDP decline for postwar US

recessions. In 2008, recession indeed happens; however, it is much worse than expected (z drops

by 2.5 standard deviations instead).

(a) Productivity, z (b) Output, Yf (c) Production empl, Hp + Up

(d) L-S in training, Us (e) H-S in adoption, Ha (f) New firms, mn

Figure A4: IRFs to a negative z shock. Graphs are plotted relative to no z shock scenarios. In case of expected
shocks, in period -5 the agents learn that at period 0 a regular recession is going to happen

Figure A4 compares the results of this exercise with the benchmark case when shocks are com-

pletely unanticipated. In response to a negative news shock, the economy experiences a mild
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boom.1 A future recession incentivizes old firms to postpone technology adoption until then.

Consistently, low-skill workers decrease school attainment. Reorganization needs are therefore

elevated by the time of a negative z surprise. When a worse than expected recession happens,

training and adoption go up to a larger extent than in the benchmark case. Output declines more.

Anticipation of recessions amplifies counter-criticality of training and technology adoption. How-

ever, the results of our exercise suggest that this channel plays a secondary role. Moreover, we

make an extreme assumption that all agents in the economy know about a future negative z shock

with certainty. The exercise is therefore likely to provide an upper bound on the strength of the

anticipation effect.

D Business cycles in the new steady state

(a) Productivity, z (b) Output, Yf (c) Production empl, Hp + Up

(d) L-S in training, Us (e) H-S in adoption, Ha (f) New firms, mn

Figure A5: IRFs to a negative z shock. Graphs are plotted relative to no z shock scenarios.

In the model, the arrival of the new technology is associated with a change in the production

function. This can affect the economy’s responses to business cycle shocks by itself. In this

Appendix, we compare the impulse responses to the same 2.5 standard deviation negative z shock

in three scenarios. In the first case, the economy is the initial steady state; in the second case,

the economy is in transition; in the third case, the economy is in the new steady state.2 The

results are given in Figure A5. When the economy is in a steady state (either new or old), the

1As in Jaimovich and Rebelo (2009), investment adjustment costs might overturn this result and generate a
recession in response to a negative news shock.

2For the latter case, we assume that the technology is fully absorbed, so the masses of new and old firms are
constant.
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only amplification mechanism is the reallocation of labor from production to training. It turns

out that this channel is weaker in the new steady state than in the old one. The economy in

transition is marked by an other reallocation dimension (towards the adoption process), which

generates a substantial additional drop in the final good production.

E Training-adoption complementarity

In the model, the training of the workers and the adoption of the new technology tend to happen

simultaneously. Besides both being attractive in periods of low opportunity costs, and hence

counter-cyclical, these activities might comove for two additional reasons. First, technology adop-

tion leads to elevated demand for high skill since the new technology is skill-intensive, while

training increases the supply of high-skill workers. Second, the adoption process is intensive

in high-skill labor, while training mainly requires students, i.e. low-skill workers. Since the two

types of labor are complements in the intermediates production, it is optimal to reallocate low-skill

workers to training and high-skill workers to adoption synchronously.

(a) Productivity, z (b) Output, Yf (c) Production empl, Hp + Up

(d) L-S in training, Us (e) H-S in adoption, Ha (f) New firms, mn

Figure A6: IRFs to a negative z shock. Graphs are plotted relative to no z shock scenarios.

In order to investigate the quantitative importance of these two mechanisms, we vary the ease

of adoption of the technology (parameter η).3 The results, shown in Figure A6, suggest that the

second channel plays a dominant role. For a small η = 0.1, technological change requires a lot

of resources. In recessions, many high-skill workers are needed to satisfy the elevated demand

by adopting firms. For such a low η, the mass of new firms responds only slightly to the shock.

3For all three values of η we reparametrize the An(t) process to match the dynamics of the employment shares.
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Nevertheless, the reallocation of low-skill labor towards training is substantial. On the contrary,

when η = 10, adoption requires only a few high-skill workers. As a result, the mass of new firms

increases substantially in this case. However, investment in training is smaller than for η = 1.5

and η = 10.

We conclude that two main forces contribute to the additional amplification of negative z shocks

during the technological transition. Being counter-cyclical, adoption induces reallocation of high-

skill labor. This further depresses the marginal productivity of low-skill workers in production,

given that the two types of labor complement each other there. Low-skill labor therefore transi-

tions into training.

F Different output measures

(a) Yf (b) Yadj,1 (c) Yadj,2

Figure A7: Impact of a negative z shock on output, measured in three different ways.

Our main measure of output is the the total production of the final good product Yf . In this

Appendix, we adjust this measure by taking into account the elevated reorganization and training

costs due to the reallocation of high-skill labor and capital towards training and adoption,

Yadj,1 = Yf + whHs + rKs,

Yadj,2 = Yf + wh(Ha +Hs) + r(Ka +Ks),

and repeat the same exercise as in Section 5.1.2.4 The results are given in Figure A7.

The same z shock always leads to a larger drop in aggregate output for the economy in transition,

even if the output measure is adjusted for adoption and training. The remaining difference is due

to two channels. First, adoption requires not only high-skill labor and capital but also the mass of

4It is not clear whether output adjusted in this way makes the model closer to reality. In the data investment
in human and organizational capital might be largely mismeasured, as pointed out by, for example, Brynjolfsson
and McAfee (2014).
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firms itself as a production factor, so ideally output measures should be adjusted for that as well.

Second, training adjustment do not account for elevated opportunity costs of low-skill students.
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