
NBER WORKING PAPER SERIES

THE TECHNOLOGICAL ELEMENTS OF ARTIFICIAL INTELLIGENCE

Matt Taddy

Working Paper 24301
http://www.nber.org/papers/w24301

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2018

This paper was written while the author was employed by Microsoft corporation. The views
expressed herein are those of the author and do not necessarily reflect the views of the National
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2018 by Matt Taddy. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given
to the source.

The Technological Elements of Artificial Intelligence
Matt Taddy
NBER Working Paper No. 24301
February 2018
JEL No. C01,C1,O33

ABSTRACT

We have seen in the past decade a sharp increase in the extent that companies use data to
optimize their businesses. Variously called the `Big Data' or `Data Science' revolution, this has
been characterized by massive amounts of data, including unstructured and nontraditional data
like text and images, and the use of fast and flexible Machine Learning (ML) algorithms in
analysis. With recent improvements in Deep Neural Networks (DNNs) and related methods,
application of high-performance ML algorithms has become more automatic and robust to
different data scenarios. That has led to the rapid rise of an Artificial Intelligence (AI) that
works by combining many ML algorithms together – each targeting a straightforward prediction
task – to solve complex problems.

We will define a framework for thinking about the ingredients of this new ML-driven AI. Having
an understanding of the pieces that make up these systems and how they fit together is important
for those who will be building businesses around this technology. Those studying the economics
of AI can use these definitions to remove ambiguity from the conversation on AI's projected
productivity impacts and data requirements. Finally, this framework should help clarify the role
for AI in the practice of modern business analytics and economic measurement.

Matt Taddy
University of Chicago
Booth School of Business
5807 S. Woodlawn Ave.
Chicago, IL 60637
matt.taddy@chicagobooth.edu

The Technological Elements of Artificial Intelligence

Matt Taddy, Chicago Booth

1 Introduction
We have seen in the past decade a sharp increase in the extent that companies use data to opti-
mize their businesses. Variously called the ‘Big Data’ or ‘Data Science’ revolution, this has been
characterized by massive amounts of data, including unstructured and nontraditional data like text
and images, and the use of fast and flexible Machine Learning (ML) algorithms in analysis. With
recent improvements in Deep Neural Networks (DNNs) and related methods, application of high-
performance ML algorithms has become more automatic and robust to different data scenarios.
That has led to the rapid rise of an Artificial Intelligence (AI) that works by combining many ML
algorithms together – each targeting a straightforward prediction task – to solve complex problems.

In this chapter, we will define a framework for thinking about the ingredients of this new ML-
driven AI. Having an understanding of the pieces that make up these systems and how they fit
together is important for those who will be building businesses around this technology. Those
studying the economics of AI can use these definitions to remove ambiguity from the conversation
on AI’s projected productivity impacts and data requirements. Finally, this framework should help
clarify the role for AI in the practice of modern business analytics1 and economic measurement.

2 What is AI?
In Figure 1, we show a breakdown of AI into three major and essential pieces. A full end-to-end
AI solution – at Microsoft, we call this a System of Intelligence – is able to ingest human-level
knowledge (e.g., via machine reading and computer vision) and use this information to automate
and accelerate tasks that were previously only performed by humans. It is necessary here to have a
well-defined task structure to engineer against, and in a business setting this structure is provided
by business and economic domain expertise. You need a massive bank of data to get the system up
and running, and a strategy to continue generating data so that the system can respond and learn.
And finally, you need Machine Learning routines that can detect patterns in and make predictions
from the unstructured data. This section will work through each of these pillars, and in later
sections we dive in detail into Deep Learning models, their optimization, and data generation.

1This material has been adapted from a textbook in-preparation on Modern Business Analytics.

1

Figure 1: AI systems are self-training structures of ML predictors that automate and accelerate human tasks.

Notice that we are explicitly separating ML from AI here. This is important: these are different
but often confused technologies. ML can do fantastic things, but it is basically limited to predicting
a future that looks mostly like the past. These are tools for pattern recognition. In contrast, an AI
system is able to solve complex problems that have been previously reserved for humans. It does
this by breaking these problems into a bunch of simple prediction tasks, each of which can be
attacked by a ‘dumb’ ML algorithm. AI uses instances of Machine Learning as components of
the larger system. These ML instances need to be organized within a structure defined by domain
knowledge, and they need to be fed data that helps them complete their allotted prediction tasks.

This is not to down-weight the importance of ML in AI. In contrast to earlier attempts at AI,
the current instance of AI is ML-driven. ML algorithms are implanted in every aspect of AI, and
below we describe the evolution of Machine Learning towards status as a general purpose technol-
ogy. This evolution is the main driver behind the current rise of AI. However, ML algorithms are
building blocks of AI within a larger context.

To make these ideas concrete, consider an example AI system from the Microsoft-owned com-
pany Maluuba that was designed to play (and win!) the video game Ms Pac-Man on Atari.[42]
The system is illustrated in Figure 2. The player moves Ms Pac-Man on this game ‘board’, gain-
ing rewards for eating pellets while making sure to avoid getting eaten by one of the adversarial
‘ghosts’. The Maluuba researchers were able to build a system that learned how to master the
game, achieving the highest possible score and surpassing human performance.

A common misunderstanding of AI imagines that, in a system like Maluuba’s, the player of the
game is a Deep Neural Network. That is, the system works by swapping out the human joy-stick
operator for an artificial DNN ‘brain’. That’s not how it works. Instead of a single DNN that is tied
to the Ms Pac-Man avatar (which is how the human player experiences the game), the Maluuba
system is broken down into 163 component ML tasks. As illustrated on the right panel of Figure 2,
the engineers have assigned a distinct DNN routine to each cell of the board. In addition, they have
DNNs that track the game characters: the ghosts and, of course, Ms Pac-Man herself. The direction
that the AI system sends Ms Pac-Man at any point in the game is then chosen through consideration
of the advice from each of these ML components. Recommendations from the components that are
close to Ms Pac-Man’s current board position are weighted more strongly than those of currently
remote locations. Hence, you can think of the ML algorithm assigned to each square on the board
as having a simple task to solve: when Ms Pac-Man crosses over this location, which direction
should she go next?

Learning to play a video or board game is a standard way for AI firms to demonstrate their
current capabilities. The Google DeepMind system AlphaGo[36], which was constructed to play
the fantastically complex board-game ‘Go’, is the most prominent of such demonstrations. The
system was able to surpass human capability, beating the world champion, Lee Sedol, 4 matches

2

Figure 2: Screen-shots of the Maluuba system playing Ms Pac-Man. On the left, we see the game board,
containing a maze for Ms Pac-Man and the ghosts. On the right, the authors have assigned arrows showing
the current direction for Ms Pac-Man that is advised by different locations on the board, each corresponding
to a distinct Deep Neural Network. The full video is at https://youtu.be/zQyWMHFjewU.

to 1 at a live-broadcast event in Seoul, South Korea, in March 2016. Just as Maluuba’s system
broke Ms Pac-Man into a number of composite tasks, AlphaGo succeeded by breaking Go into
an even larger number of ML problems: ‘value networks’ that evaluate different board positions
and ‘policy networks’ that recommend moves. The key point here is that while the composite ML
tasks can be attacked with relatively generic DNNs, the full combined system is constructed in a
way that is highly specialized to the structure of the problem at hand.

In Figure 1, the first listed pillar of AI is domain structure. This is the structure that allows
you to break a complex problem into composite tasks that can be solved with ML. The reason that
AI firms choose to work with games is that such structure is explicit: the rules of the game are
codified. This exposes the massive gap between playing games and a system that could replace
humans in a real-world business application. To deal with the real world, you need to have a
theory as to the rules of the relevant game. For example, if you want to build a system that can
communicate with customers you might proceed by mapping out customer desires and intents in
such a way that allows different dialog-generating ML routines for each. Or, for any AI system that
deals with marketing and prices in a retail environment, you need to be able to use the structure
of an economic demand system to forecast how changing the price on a single item (which might,
say, be the job of a single DNN) will affect optimal prices for other products and behavior of your
consumers (who might themselves be modeled with DNNs).

The success or failure of an AI system is defined in a specific context, and you need to use the
structure of that context to guide the architecture of your AI. This is a crucial point for businesses
hoping to leverage AI and economists looking to predict its impact. As we will detail below,
Machine Learning in its current form has become a general purpose technology.[6] These tools
are going to get cheaper and faster over time, due to innovations in the ML itself and above and
below in the AI technology stack (e.g., improved software connectors for business systems above,
and improved computing hardware like GPUs below). ML has the potential to become a cloud
computing commodity.2 In contrast, the domain knowledge necessary to combine ML components

2Amazon, Microsoft, and Google are all starting to offer basic ML capabilities like transcription and image clas-
sification as part of their cloud services. The prices for these services are low and mostly matched across providers.

3

into an end-to-end AI solution will not be commoditized. Those who have expertise that can break
complex human business problems into ML-solvable components will succeed in building the next
generation of business AI, that which can do more than just play games.

In many of these scenarios, Social Science will have a role to play. Science is about putting
structure and theory around phenomena that are observationally incredibly complex. Economics,
as the Social Science closest to business, will often be relied upon to provide the rules for business
AI. And since ML-driven AI relies upon measuring rewards and parameters inside its context,
econometrics will play a key role in bridging between the assumed system and the data signals
used for feedback and learning. The work will not translate directly. We need to build systems
that allow for a certain margin of error in the ML algorithms. Those economic theories that apply
for only a very narrow set of conditions – e.g., at a knife’s edge equilibrium – will be too unstable
for AI. This is why we mention relaxations and heuristics in Figure 1. There is an exciting future
here where economists can contribute to AI engineering, and both AI and Economics advance as
we learn what recipes do or do not work for Business AI.

Beyond ML and domain structure, the third pillar of AI in Figure 1 is data generation. I’m
using the term ‘generation’ here, instead of a more passive term like ‘collection’, to highlight that
AI systems require an active strategy to keep a steady stream of new and useful information flowing
into the composite learning algorithms. In most AI applications there will be two general classes
of data: fixed-size data assets that can be used to train the models for generic tasks, and data that
is actively generated by the system as it experiments and improves performance. For example,
in learning how to play Ms Pac-Man the models could be initialized on a bank of data recording
how humans have played the game. This is the fixed size data asset. Then this initialized system
starts to play the game of Ms Pac-Man. Recalling that the system is broken into a number of ML
components, as more games are played each component is able to experiment with possible moves
in different scenarios. Since all of this automated, the system can iterate through a massive number
of games and quickly accumulate a wealth of experience.

For business applications, we should not underestimate the advantage of having large data
assets to initialize AI systems. Unlike board or video games, real-world systems need to be able
to be able to interpret a variety of extremely subtle signals. For example, any system that interacts
with human dialog must be able to understand the general domain language before it can deal
with specific problems. For this reason, firms that have large banks of human interaction data
(e.g., social media or a search engine) have a large technological advantage in conversational AI
systems. However, this data just gets you started. The context-specific learning starts happening
when, after this ‘warm start’, the system begins interacting with real-world business events.

The general framework of ML algorithms actively choosing the data that they consume is re-
ferred to as Reinforcement Learning (RL).3 It is a hugely important aspect of ML-driven AI, and
we have a dedicated section on the topic below. In some narrow and highly-structured scenarios,
researchers have build ‘zero-shot’ learning systems where the AI is able to achieve high perfor-
mance after stating without any static training data. For example, in subsequent research, Google
DeepMind has developed the AlphaGoZero[37] system that uses zero-shot learning replicate their
earlier AlphaGo success. Noting that the RL is happening on the level of individual ML tasks, we
can update our description of AI as being composed of many RL-driven ML components.

3This is an old concept in statistics. In previous iterations, parts of reinforcement learning have been referred to
as the sequential design of experiments, active learning, and Bayesian optimization.

4

As a complement to the work on reinforcement learning, there is a lot of research activity
around AI systems that can simulate ‘data’ to appear as though it came from a real-world source.
This has the potential to accelerate system training, replicating the success that the field has had
with video and board games where experimentation is virtually costless (just play the game, no-
body loses money or gets hurt). Generative Adversarial Networks[10] (GANs) are schemes where
one DNN is simulating data and another is attempting to discern which data is real and which is
simulated. For example, in an image-tagging application one network will generate captions for
the image while the other network attempts to discern which captions are human vs machine gen-
erated. If this scheme works well enough, then you can build an image tagger while minimizing
the number of dumb captions you need to show humans while training.

And finally, AI is pushing into physical spaces. For example, the Amazon Go concept promises
a frictionless shopping-checkout experience where cameras and sensors determine what you’ve
taken from the shelves and charge you accordingly. These systems are as data intensive as any
other AI application, but they have the added need to translate information from a physical to a
digital space. They need to be able to recognize and track both objects and individuals. Current
implementations appear to rely on a combination of object-based data sources, via sensor and
device networks (i.e., the IoT or ‘Internet of Things’), and video data from surveillance cameras.
The sensor data has the advantage that it is well structured and tied to objects, but the video data
has the flexibility to look in places and at objects that you didn’t know to tag in advance. As
computer vision technology advances, and as the camera hardware adapts and decreases in cost,
we should see a shift in emphasis towards unstructured video data. We’ve seen similar patterns in
AI development, e.g., as use of raw conversation logs increases with improved machine reading
capability. This is the progress of ML-driven AI towards general purpose forms.

3 General Purpose Machine Learning
The piece of AI that gets the most publicity – so much so that it is often confused with all of AI
– is general purpose Machine Learning. Regardless of this slight overemphasis, it is clear that
the recent rise of Deep Neural Networks (DNNs; see the Deep Learning section below) is a main
driver behind growth in AI. These DNNs have the ability to learn patterns in speech, image, and
video data (as well as in more traditional structured data) faster, and more automatically, than ever
before. They provide new ML capabilities and have completely changed the work-flow of an ML
engineer. However, this technology should be understood as a rapid evolution of existing ML
capabilities rather than as a completely new object.

Machine Learning is the field that thinks about how to automatically build robust predictions
from complex data. It is closely related to modern Statistics, and indeed many of the best ideas
in ML have come from Statisticians (the lasso, trees, forests, etc). But whereas statisticians have
often focused model inference – on understanding the parameters of their models (e.g., testing on
individual coefficients in a regression) – the ML community has been more focused on the single
goal of maximizing predictive performance. The entire field of ML is calibrated against ‘out-
of-sample’ experiments that evaluate how well a model trained on one dataset will predict new
data. And while there is a recent push to build more transparency into Machine Learning, wise
ML practitioners will avoid assigning structural meaning to the parameters of their fitted models.
These models are black boxes whose purpose is to do a good job in predicting a future that follows

5

the same patterns as in past data.
Prediction is easier than model inference. This has allowed the ML community to quickly push

forward and work with larger and more complex data. It also facilitated a focus on automation:
developing algorithms that will work on a variety of different types of data with little or no tuning
required. We’ve seen an explosion of general purpose ML tools in the past decade – tools that can
be deployed on messy data and automatically tuned for optimal predictive performance.

The specific ML techniques used include high-dimensional `1 regularized regression (Lasso),
tree algorithms and ensembles of trees (e.g., Random Forests), and Neural Networks. These tech-
niques have found application in business problems, under such labels as ‘Data Mining’ and, more
recently, ‘Predictive Analytics’. Driven by the fact that many policy and business questions re-
quire more than just prediction, practitioners have added an emphasis on inference and incorpo-
rated ideas from Statistics. Their work, combined with the demands and abundance of Big Data,
coalesced together to form the loosely defined field of Data Science. More recently, as the field
matures and as people recognize that not everything can be explicitly A/B tested, Data Scientists
have discovered the importance of careful causal analysis. One of the most currently active areas
of Data Science is combining ML tools with the sort of counter-factual inference that econome-
tricians have long studied, hence now merging the ML and Statistics material with the work of
Economists. See, e.g., Athey and Imbens [3], Hartford et al. [13], and the survey in Athey [2].

The push of ML into the general area of Business Analytics has allowed companies to gain
insight from high dimensional and unstructured data. This is only possible because the ML tools
and recipes have become robust and usable enough that they can be deployed by non-experts in
Computer Science or Statistics. That is, they can be used by people with a variety of quantitative
backgrounds who have domain knowledge for their business use-case. Similarly, the tools can be
used by Economists and other Social Scientists to bring new data to bear on scientifically com-
pelling research questions. Again: the general usability of these tools has driven their adoption
across disciplines. They come packaged as quality software and include validation routines that
allow the user to observe how well their fitted models will perform in future prediction tasks.

The latest generation of ML algorithms, especially the Deep Learning technology that has
exploded since around 2012[23], has increased the level of automation in the process of fitting
and applying prediction models. This new class of ML is the general purpose ML (GPML) that
we reference in the rightmost pillar of Figure 1. The first component of GPML is Deep Neural
Networks: models made up of layers of nonlinear transformation node functions, where the output
of each layer becomes input to the next layer in the network. We will describe DNNs in more detail
in our Deep Learning section below, but for now it suffices to say that they make it faster and easier
than ever before to find patterns in unstructured data. They are also highly modular. You can take a
layer that is optimized for one type of data (e.g., images) and combine it with other layers for other
types of data (e.g., text). You can also use layers that have been pre-trained on one dataset (e.g.,
generic images) as components in a more specialized model (e.g., a specific recognition task).

Specialized DNN architectures are responsible for the key GPML capability of working on
human-level data: video, audio, and text. This is essential for AI because it allows these systems
to be installed on top of the same sources of knowledge that humans are able to digest. You don’t
need to create a new data-base system (or have an existing standard form) to feed the AI; rather,
the AI can live on top of the chaos of information generated through business functions. This
capability helps to illustrate why the new AI, based on GPML, is so much more promising than
previous attempts at AI. Classical AI relied on hand-specified logic rules to mimic how a rational

6

human might approach a given problem.[14] This approach is sometimes nostalgically referred
to as GOFAI, or ‘good old-fashioned AI’. The problem with GOFAI is obvious: solving human
problems with logic rules requires an impossibly complex cataloging of all possible scenarios and
actions. Even for systems able to learn from structured data, the need to have an explicit and
detailed data schema means that the system designer must to know in advance how to translate
complex human tasks into deterministic algorithms.

The new AI doesn’t have this limitation. For example, consider the problem of creating a virtual
agent that can answer customer questions (e.g., ‘why won’t my computer start?’). A GOFAI system
would be based on hand-coded dialog trees: if a user says X , answer Y , etc. To install the system,
you’d need to have human engineers understand and explicitly code for all of the main customer
issues. In contrast, the new ML-driven AI can simply ingest all of your existing customer-support
logs and learn to replicate how human agents have answered customer questions in the past. The
ML allows your system to infer support patterns from the human conversations. The installation
engineer just needs to start the DNN fitting routine.

This gets to the last bit of GPML that we highlight in Figure 1, the tools that facilitate model
fitting on massive datasets: Out-of-sample (OOS) validation for model tuning, Stochastic Gradient
Descent (SGD) for parameter optimization, and Graphical Processing Units (GPUs) and other
computer hardware for massively parallel optimization. Each of these pieces is essential for the
success of large-scale GPML. Although they are commonly associated with Deep Learning and
DNNs (especially SGD and GPUs), these tools have developed in the context of many different
ML algorithms. The rise of DNNs over alternative ML modeling schemes is partly due to the
fact that, through trial and error, ML researchers have discovered that Neural Network models are
especially well suited to engineering within the context of these available tools.[26]

OOS validation is a basic idea: you choose the best model specification by comparing pre-
dictions from models estimated on data that was not used during the model ‘training’ (fitting).
This can be formalized as a cross-validation routine: you split the data into K ‘folds’, and then K
times fit the model on all data but the Kth fold and evaluate its predictive performance (e.g., mean
squared error or misclassification rate) on the left-out fold. The model with optimal average OOS
performance (e.g., minimum error rate) is then deployed in practice.

ML’s wholesale adoption of OOS validation as the arbitrator of model quality has freed the ML
engineer from the need to theorize about model quality. Of course, this can create frustration and
delays when you have nothing other than ‘guess-and-test’ as a method for model selection. But,
increasingly, the requisite model search is not being executed by humans: it is done by additional
ML routines. This either happens explicitly, in AutoML[9] frameworks that use simple auxiliary
ML to predict OOS performance of the more complex target model, or implicitly by adding flex-
ibility to the target model (e.g., making the tuning parameters part of the optimization objective).
The fact that OOS validation provides a clear target to optimize against – a target which, unlike the
in-sample likelihood, does not incentive over-fit – facilitates automated model tuning. It removes
humans from the process of adapting models to specific datasets.

SGD optimization will be less familiar to most readers, but it is a crucial part of GPML. This
class of algorithms allows models to be fit to data that is only observed in small chunks: you can
train the model on a stream of data and avoid having to do batch computations on the entire dataset.
This lets you estimate complex models on massive datasets. For subtle reasons, the engineering
of SGD algorithms also tends to encourage robust and generalizable model fits (i.e., use of SGD
discourages over-fit). We cover these algorithms in detail in a dedicated section below.

7

Finally, the GPUs: specialized computer processors have made massive-scale ML a reality and
continued hardware innovation will help push AI to new domains. Deep Neural Network training
with Stochastic Gradient Descent involves massively parallel computations: many basic opera-
tions executed simultaneously across parameters of the network. Graphical Processing Units were
devised for calculations of this type, in the context of video and computer graphics display where
all pixels of an image need to be rendered simultaneously, in parallel. Although DNN training was
originally a side use-case for GPUs (i.e., as an aside from their main computer graphics mandate),
AI applications are now of primary importance for GPU manufacturers. Nvidia, for example, is a
GPU company whose rise in market value has been driven by the rise of AI.

The technology here is not standing still. GPUs are getting faster and cheaper every day. We
are also seeing the deployment of new chips that have been designed from scratch for ML opti-
mization. For example, Field-Programmable Gate Arrays (FPGAs) are being used by Microsoft
and Amazon in their data centers. These chips allow precision requirements to be set dynamically,
thus efficiently allocating resources to high-precision operations and saving compute effort where
you only need a few decimal points (e.g., in early optimization updates to the DNN parameters). As
another example, Google’s Tensor Processing Units (TPUs) are specifically designed for algebra
with ‘tensors’, a mathematical object that occurs commonly in ML.4

One of the hallmarks of a general purpose technology is that it leads to broad industrial changes,
both above and below where that technology lives in the supply chain. This is what we are ob-
serving with the new general purpose ML. Below, we see that chip makers are changing the type
of hardware they create to suit these DNN-based AI systems. Above, GPML has led to a new
class of ML-driven AI products. As we seek more real-world AI capabilities – self-driving cars,
conversational business agents, intelligent economic marketplaces – domain experts in these areas
will need to find ways to resolve their complex questions into structures of ML tasks. This is a role
that economists and business professionals should embrace, where the increasingly user-friendly
GPML routines become basic tools of their trade.

4 Deep Learning
We’ve stated that Deep Neural Networks are a key tool in GPML, but what exactly are they? And
what makes them deep? In this section we will give a high level overview of these models. This is
not a user guide. For that, we recommend the excellent recent textbook[11] by Goodfellow, Bengio,
and Courville. This is a rapidly evolving area of research, and new types of Neural Network models
and estimation algorithms are being developed at a steady clip. The excitement in this area, and
considerable media and business hype, makes it difficult to keep track. Moreover, the tendency of
ML companies and academics to proclaim every incremental change as ‘completely brand new’
has led to a messy literature that is tough for newcomers to navigate. But there is a general structure
to Deep Learning, and a hype-free understanding of this structure should give you insight into the
reasons for its success.

Neural Networks are simple models. Indeed, their simplicity is a strength: basic patterns
facilitate fast training and computation. The model has linear combinations of inputs that are
passed through non-linear activation functions called nodes (or, in reference to the human brain,

4A tensor is a multi-dimensional extension of a matrix – that is, a matrix is another name for a two-dimensional
tensor.

8

Figure 3: A five layer network, adapted from Nielsen [31].

−10 −5 0 5 10

0
2

4
6

8
10

x

R
eL

U
(x

)

Figure 4: The ReLU function.

neurons). A set of nodes taking different weighted sums of the same inputs is called a ‘layer’,
and the output of one layer’s nodes becomes input to the next layer. This structure is illustrated
in Figure 3. Each circle here is a node. Those in the input (furthest left) layer typically have a
special structure; they are either raw data or data that has been processed through an additional set
of layers (e.g., convolutions as we’ll describe below). The output layer gives your predictions. In a
simple regression setting, this output could just be ŷ, the predicted value for some random variable
y, but DNNs can be used to predict all sorts of high-dimensional objects. As it is for nodes in input
layers, output nodes also tend to take application-specific forms.

Nodes in the interior of the network have a ‘classical’ Neural Network structure. Say that
ηhk(·) is the kth node in interior layer h. This node takes as input a weighted combination of
the output of the nodes in the previous layer of the network, layer h− 1, and applies a nonlinear
transformation to yield the output. For example, the ReLU (for ‘rectified linear unit’) node is by
far the most common functional form used today; it simply outputs the maximum of it’s input and
zero, as shown in Figure 4.5 Say zh−1

i j is output of node j in layer h−1 for observation i. Then the
corresponding output for the kth node in the hth layer can be written

zh
ik = ηhk(ωωω

′
hzzzh−1

i) = max

(
0, ∑

j
ωh jzh−1

i j

)
(1)

where ωh j are the network weights. For a given network architecture – the structure of nodes and
layers – these weights are the parameters that are updated during network training.

Neural Networks have a long history. Work on these types of models dates back to the mid 20th
century, e.g., including Rosenblatt’s Perceptron.[33] This early work was focused on networks as
models that could mimic the actual structure of the human brain. In the late 1980s, advances
in algorithms for training Neural Networks[34] opened the potential for these models to act as
general pattern recognition tools rather than as a toy model of the brain. This led to a boom in
Neural Network research, and methods developed during the 1990s are at the foundation of much
of Deep Learning today.[18, 26] However, this boom ended in bust. Due to the gap between
promised and realized results (and enduring difficulties in training networks on massive datasets)

5 In the 1990s, people spent much effort choosing amongst different node transformation functions. More recently,
the consensus is that you can just use a simple and computationally convenient transformation (like ReLU). If you have
enough nodes and layers the specific transformation doesn’t really matter, so long as it is non-linear.

9

from the late 1990s Neural Networks became just one ML method among many. In applications
they were supplanted by more robust tools such as Random Forests, high-dimensional regularized
regression, and a variety of Bayesian stochastic process models.

In the 1990s, one tended to add network complexity by adding width. A couple of layers (e.g., a
single hidden layer was common) with a large number of nodes in each layer were used to approxi-
mate complex functions. Researchers had established that such ‘wide’ learning could approximate
arbitrary functions[19] if you were able to train on enough data. The problem, however, was that
this turns out to be an inefficient way to learn from data. The wide networks are very flexible,
but they need a ton of data to tame this flexibility. In this way, the wide nets resemble traditional
nonparametric statistical models like series and kernel estimators. Indeed, near the end of the
1990s, Radford Neal showed that certain Neural Networks converge towards Gaussian Processes,
a classical statistical regression model, as the number of nodes in a single layer grows towards
infinity.[30] It seemed reasonable to conclude that Neural Networks were just clunky versions of
more transparent statistical models.

What changed? A bunch of things. Two non-methodological events are of primary importance:
we got much more data (Big Data) and computing hardware became much more efficient (GPUs).
But there was also a crucial methodological development: networks went deep. This breakthrough
is often credited to 2006 work by Geoff Hinton and coauthors[17] on a network architecture that
stacked many pre-trained layers together for a handwriting recognition task. In this pre-training,
interior layers of the network are fit using an unsupervised learning task (i.e., dimension reduction
of the inputs) before being used as part of the supervised learning machinery. The idea is analogous
to that of Principal Components Regression: you first fit a low dimensional representation of xxx, then
use that low-D representation to predict some associated y. Hinton’s scheme allowed researchers
to train deeper networks than was previously possible.

This specific type of unsupervised pre-training is no longer viewed as central to deep learning.
However, Hinton’s paper opened many people’s eyes to the potential for Deep Neural Networks:
models with many layers, each of which may have different structure and play a very different
role in the overall machinery. That is, a demonstration that one could train deep networks soon
turned into a realization that one should add depth to models. In the following years, research
groups began to show empirically and theoretically that depth was important for learning efficiently
from data.[4] The modularity of a deep network is key: each layer of functional structure plays a
specific role, and you can swap out layers like Lego blocks when moving across data applications.
This allows for fast application-specific model development, and also for transfer learning across
models: an internal layer from a network that has been trained for one type of image recognition
problem can be used to hot-start a new network for a different computer vision task.

Deep Learning came into the ML mainstream with a 2012 paper by Krizhevsky, Sutskever,
and Hinton[23] that showed their DNN was able to smash current performance benchmarks in the
well-known ImageNet computer vision contest. Since then, the race has been on. For example,
image classification performance has surpassed human abilities[15] and DNNs are now able to
both recognize images and generate appropriate captions.[20]

The models behind these computer vision advances all make use of a specific type of convolu-
tion transformation. The raw image data (pixels) goes through multiple convolution layers before
the output of those convolutions is fed into the more classical Neural Network architecture of (1)
and Figure 3. A basic image convolution operation is shown in Figure 5: you use a kernel of
weights to combine image pixels in a local area into a single output pixel in a (usually) lower-

10

Figure 5: A basic convolution operation. The pixels A, B, etc, are multiplied and summed across kernel
weights ωk. The kernel here is applied to every 2×2 sub-matrix of our ‘image’.

Figure 6: The network architecture used in Hartford et al. [13]. Variables xxx,zzz contain structured business
information (e.g., product IDs and prices) that is mixed with images of handwritten digits in our network.

dimensional output image. So-called Convolutional Neural Networks[25] (CNNs) illustrate the
strategy that makes Deep Learning so successful: it is convenient to stack layers of different spe-
cializations, such that image-specific functions (convolutions) can feed into layers that are good at
representing generic functional forms. In a contemporary CNN, typically you will have multiple
layers of convolutions feeding into ReLU activations and, eventually, into a max pooling layer con-
structed of nodes that output the maximum of each input matrix.6 For example, Figure 6 shows the
very simple architecture that we used in Hartford et al. [13] for a task that mixed digit recognition
with (simulated) business data.

This is a theme of Deep Learning: the models use early-layer transformations that are specific
to the input data format. For images, you use CNNs. For text data, you need to embed words
into a vector space. This can happen through a simple word2vec transformation[28] (a linear
decomposition on the matrix of co-occurrence counts for words, e.g., within three words of each
other) or through a LSTM (Long-Short Term Memory) architecture[18] – models for sequences of
words or letters that essentially mix a Hidden Markov Model (long) with an autoregressive process
(short). And there are many other variants, with new architectures being developed every day.7

One thing should be clear: there is a lot of structure in DNNs. These models are not similar to
the sorts of nonparametric regression models used by statisticians, econometricians, and in earlier
ML. They are semi-parametric. Consider the cartoon DNN in Figure 7. The early stages in the
network provide dramatic, and often linear, dimension reduction. These early stages are highly
parametric: it makes no sense to take a convolution model for image data and apply it to, say,
consumer transaction data. The output of these early layers is then processed through a series of
classical Neural Network nodes, as in (1). These later network layers work like a traditional non-
parametric regression: they expand the output of early layers to approximate arbitrary functional

6CNNs are a huge and very interesting area. The textbook by Goodfellow et al. [11] is a good place to start if you
want to learn more.

7For example, the new Capsule networks of Sabour et al. [35] replace the max-pooling of CNNs with more
structured summarization functions.

11

Figure 7: A cartoon of a DNN, taking as input images, structured data x1 . . .xbig, and raw document text.

forms in the response of interest. Thus, the DNNs combine restrictive dimension reduction with
flexible function approximation. The key is that both components are learned jointly.

As warned at the outset, we’ve covered only a tiny part of the area of Deep Learning. There is
a ton of exciting new material coming out of both industry and academia. For a glimpse of what
is happening in the field, browse the latest proceedings of NIPS (Neural Information Processing
Systems, the premier ML conference) at https://papers.nips.cc/. You’ll see quickly the
massive breadth of current research. One currently hot topic is on uncertainty quantification for
Deep Neural Networks, another is on understanding how imbalance in training data leads poten-
tially biased predictions. Topics of this type are gaining prominence as DNNs are moving away
from academic competitions and into real-world applications. As the field grows, and DNN model
construction moves from a scientific to an engineering discipline, we’ll see more need for this type
of research that tells us when and how much we can trust the DNNs.

5 Stochastic Gradient Descent
To give a complete view of Deep Learning we need to describe the one algorithm that is relied
upon for training all of the models: Stochastic Gradient Descent. SGD optimization is a twist on
Gradient Descent (GD), the previously dominant method for minimizing any function that you can
differentiate. Given a minimization objective L(Ω), where Ω is the full set of model parameters,
each iteration of a gradient descent routine updates from current parameters Ωt as

Ωt+1 = Ωt−Ct∇L
∣∣
Ωt

(2)

12

where ∇L
∣∣
Ωt

is the gradient of L evaluated at the current parameters and Ct is a projection matrix
that determines the size of the steps taken in the direction implied by ∇L.8 We have the subscript
t on Ct because this projection can be allowed to update during the optimization. For example,
Newton’s algorithm uses Ct equal to the matrix of objective second derivatives, ∇2L

∣∣
Ωt

.
It is often stated that Neural Networks are trained through ‘back-propagation’, which is not

quite correct. Rather, they are trained through variants of Gradient Descent. Back-propagation[34],
or back-prop for short, is a method for calculating gradients on the parameters of a network. In
particular, back-prop is just an algorithmic implementation of your chain rule from calculus. In the
context of our simple neuron from (1), the gradient calculation for a single weight ωh j is

∂L

∂ωh j
=

n

∑
i=1

∂L

∂ zh
i j

∂ zh
i j

∂ωh j
=

n

∑
i=1

∂L

∂ zh
i j

zh−1
i j 1[0<∑ j ωh jz

h−1
i j]. (3)

Another application of the chain rule can be used to expand ∂L/∂ zh
i j as ∂L/∂ zh+1

i j ∗ ∂ zh+1
i j /∂ zh

i j,
and so on until you have written the full gradient as a product of layer-specific operations. The
directed structure of the network lets you efficiently calculate all of the gradients by working
backwards layer by layer, from the response down to the inputs. This recursive application of the
chain rule, and the associated computation recipes, make up the general back-prop algorithm.

In statistical estimation and ML model-training, L typically involves a loss function that sums
across data observations. For example, assuming an `2 (ridge) regularization penalty on the pa-
rameters, the minimization objective corresponding to regularized likelihood maximization over n
independent observations di (e.g., di = [xxxi,yi] for regression) can be written as

L(Ω)≡ L(Ω;{di}n
i=1) =

n

∑
i=1

[
− logp(zi|Ω)+λ‖Ω‖2

2
]

(4)

where ‖Ω‖2
2 is the sum of all squared parameters in Ω. More generally, L

(
Ω;{di}n

i=1
)

can con-
sist of any loss function that involves summation over observations. For example, to model pre-
dictive uncertainty we often work with quantile loss. Define τq(xxx;Ω) as the quantile function,
parametrized by Ω, that maps from covariates xxx to the qth quantile of the response y,

P(y < τq(xxx;Ω) | xxx) = q. (5)

We fit τq to minimize the regularized quantile loss function (again assuming a ridge penalty),

L(Ω;{di}n
i=1) =

n

∑
i=1

[(
yi− τq(xxxi;Ω)

)(
q−1[yi<τq(xxxi;Ω)]

)
+λ‖Ω‖2

2

]
. (6)

The very common ‘sum of squared errors’ criterion, possibly regularized, is another loss function
that fits this pattern of summation over observations.

In all of these cases, the gradient calculations required for the updates in (2) involve sums over
all n observations. That is, each calculation of ∇L requires an order of n calculations. For example,

8If Ω = [ω1 · · ·ωp], then ∇L(Ω) =

[
∂L

∂ω1
· · · ∂L

∂ωp

]
. The Hessian matrix, ∇2L, has elements [∇2L] jk =

∂L2

∂ω j∂ωk
.

13

in a ridge penalized linear regression where Ω = βββ , the vector of regression coefficients, the jth

gradient component is,
∂L

∂β j
=

n

∑
i=1

[
(yi− xxx′iβββ)x j +λβ j

]
. (7)

The problem for massive datasets is that when n is really big these calculations become pro-
hibitively expense. The issue is aggravated when, as it is for DNNs, Ω is high dimensional and
there are complex calculations required in each gradient summand. GD is the best optimization
tool that we’ve got, but it becomes computationally infeasible for massive datasets.

The solution is to replace the actual gradients in (2) with estimates of those gradients based
upon a subset of the data. This is the SGD algorithm. It has a long history, dating back to the
Robbins-Munro[32] algorithm proposed by a couple of statisticians in 1951. In the most com-
mon versions of SGD, the full-sample gradient is simply replaced by the gradient on a smaller
sub-sample. Instead of calculating gradients on the full-sample loss, L(Ω;{di}n

i=1), we descend
according to sub-sample calculations:

Ωt+1 = Ωt−Ct∇L
(
Ω;{dib}

B
b=1
)∣∣

Ωt
(8)

where {dib}B
b=1 is a mini-batch of observations with B� n. The key mathematical result behind

SGD is that, so long as the sequence of Ct matrices satisfy some basic requirements, the SGD
algorithm will converge to a local optimum whenever ∇L

(
Ω;{dib}B

b=1
)

is an unbiased estimate of
the full sample gradient.9 That is, SGD convergence relies upon

E

[
1
B

∇L
(
Ω;{dib}

B
b=1
)]

= E

[
1
n

∇L(Ω;{di}n
i=1)

]
= E∇L(Ω;d) (9)

where the last term here refers to the population expected gradient – that is, the average gradient
for observation d drawn from the true Data Generating Process.

To understand why SGD is so preferable to GD for Machine Learning, it helps to discuss how
Computer Scientists think about the constraints on estimation. Statisticians and Economists tend
to view sample size (i.e., lack of data) as the binding constraint on their estimators. In contrast,
in many ML applications the data is practically unlimited and continues to grow during system
deployment. Despite this abundance, there is a fixed computational budget (or the need to update
in near-real-time for streaming data), such that we can only execute a limited number of operations
when crunching through the data. Thus, in ML, the binding constraint is the amount of computation
rather than the amount of data.

SGD trades faster updates for a slower per-update convergence rate. As nicely explained in a
2008 paper by Bousquet and Boutteau[5], this trade is worthwhile when the faster updates allow
you to expose your model to more data than would otherwise be possible. To see this, note that
the mini-batch gradient B−1∇L

(
Ω;{dib}B

b=1
)

has a much higher variance than the full-sample
gradient, n−1∇L

(
Ω;{di}n

i=1
)
. This variance introduces noise into the optimization updates. As a

result, for a fixed data sample n, the GD algorithm will tend to take far fewer iterations than SGD
to get to a minimum of the in-sample loss, L

(
Ω;{di}n

i=1
)
. However, in DNN training we don’t

really care about the in-sample loss. We really want to minimize future prediction loss – that is,

9You can actually get away with biased gradients. In Hartford et al. [13] we find that trading bias for variance can
actually improve performance. But this is tricky business and in any case the bias must be kept very small.

14

we want to minimize the population loss function EL(Ω;d). And the best way to understand the
population loss is to see as much data as possible. Thus if the variance of the SGD updates is not
too large, it is more valuable to spend computational effort streaming through more data than to
spend it on minimizing the variance of each individual optimization update.

This is related to an important high-level point about SGD: the nature of the algorithm is such
that engineering steps taken to improve optimization performance will tend to also improve estima-
tion performance. The same tweaks and tricks that lower the variance of each SGD update will lead
to fitted models that generalize better when predicting new unseen data. The ‘train faster, general-
ize better’ paper by Hardt, Recht, and Singer[12] explains this phenomenon within the framework
of algorithm stability. For SGD to converge in fewer iterations means that the gradients on new
observations (new mini-batches) are approaching zero more quickly. That is, faster SGD conver-
gence means by definition that your model fits are generalizing better to unseen data. Contrast this
with full-sample GD, e.g., for likelihood maximization: faster convergence implies only quicker
fitting on your current sample, potentially over-fitting for future data. A reliance on SGD has made
it relatively easy for Deep Learning to progress from a Scientific to Engineering discipline. Faster
is better, so the engineers tuning SGD algorithms for DNNs can just focus on convergence speed.

On the topic of tuning SGD: real-world performance is very sensitive to the choice of Ct , the
projection matrix in (8). For computational reasons, this matrix is usually diagonal (i.e., it has zeros
off of the diagonal) such that entries of Ct dictate your step-size in the direction of each parameter
gradient. SGD algorithms have often been studied theoretically under a single step-size, such that
Ct = γtI where γt is a scalar and I is the identity matrix. Unfortunately, this simple specification will
under-perform and even fail to converge if γt is not going towards zero at a precise rate.[41] Instead,
practitioners make use of algorithms where Ct = [γ1t · · ·γpt]I, with p the dimension of Ω, and
each γ jt is chosen to approximate ∂ 2L/∂ω2

j , the corresponding diagonal element of the Hessian
matrix of loss-function second derivatives (i.e., what would be used in a Newton’s algorithm). The
ADAGRAD paper[8] provides a theoretical foundation for this approach and suggests an algorithm
for specifying γ jt . Most Deep Learning systems make use of ADAGRAD-inspired algorithms,
such as ADAM[22], that combine the original algorithm with heuristics that have been shown
empirically to improve performance.

Finally, there is another key trick to DNN training: Dropout. This procedure, proposed by
researchers[38] in Hinton’s lab at the University of Toronto, involves introduction of random noise
into each gradient calculation. For example, ‘Bernoulli dropout’ replaces current estimates ωt j
with wt j = ωt j ∗ ξt j where ξt j is a Bernoulli random variable with p(ξt j = 1) = c. Each SGD
update from (8) then uses these parameter values when evaluating the gradient, such that

Ωt+1 = Ωt−Ct∇ f
(
Ω;{dib}

B
b=1
)∣∣

Wt
, (10)

where Wt is the noised-up version of Ωt , with elements wt j.
Dropout is used because it has been observed to yield model fits that have lower out-of-sample

error rates (so long as you tune c appropriately). Why does this happen? Informally, Dropout
acts as a type of implicit regularization. An example of explicit regularization is parameter penal-
ization: to avoid over-fit, the minimization objective for DNNs almost always has a λ‖Ω‖2

2 ridge
penalty term added to the data-likelihood loss function. Dropout plays a similar role. By forcing
SGD updates to ignore a random sample of the parameters, it prevents over-fit on any individual

15

parameter.10 More rigorously, it has recently been established by a number of authors[21] that
SGD with dropout corresponds to a type of ‘variational Bayesian Inference’. That means that
dropout SGD is solving to find the posterior distribution over Ω rather than a point estimate.11 As
interest grows around uncertainty quantification for DNNs, this interpretation of Dropout is one
option for bringing Bayesian inference into Deep Learning.

6 Reinforcement Learning
As our final section on the elements of Deep Learning, we will consider how these AI systems gen-
erate their own training data through a mix of experimentation and optimization. Reinforcement
Learning (RL) is the common term for this aspect of AI. RL is sometimes used to denote specific
algorithms, but we are using it to refer to the full area of active data collection.

The general problem can be formulated as an reward maximization task. You have some policy
or ‘action’ function, d(xt ;Ω), that dictates how the system responds to ‘event’ t with characteristics
xt . The event could be a customer arriving on your website at a specific time, or a scenario in
a video game, etc. After the event, you observe ‘response’ yt and the reward is calculated as
r(d(xt , ;Ω),yt). During this process you are accumulating data and learning the parameters Ω, so
we can write Ωt as the parameters used at event t. The goal is that this learning converges to some
optimal reward-maximizing parametrization, say Ω?, and that this happens after some T events
where T is not too big – i.e., so that you minimize regret,

T

∑
t=1

[
r (d(xt ;Ω

?),yt)− r (d(xt ;Ωt),yt)

]
. (11)

This is a very general formulation. We can map it to some familiar scenarios. For example,
suppose that the event t is a user landing on your website. You would like to show a banner
advertisement on the landing page, and you want to show the ad that has the highest probability of
getting clicked by the user. Suppose that there are J different possible ads you can show, such that
your action dt = d(xt ;Ωt) ∈ {1, . . . ,J} is the one chosen for display. The final reward is yt = 1 if
the user clicks the ad and yt = 0 otherwise.12

This specific scenario is a Multi-Armed Bandit (MAB) set-up, so-named by analogy to a casino
with many slot machines of different payout probabilities (the casino is the bandit). In the classic
MAB (or simply ‘bandit’) problem, there are no covariates associated with each ad and each user,
such that you are attempting to optimize towards a single ad that has highest click probability across
all users. That is, ω j is p(yt = 1 | dt = j), the generic click probability for ad j, and you want to set
dt to the ad with highest ω j. There are many different algorithms for bandit optimization. They use
different heuristics to balance exploitation with exploration. A fully exploitive algorithm is greedy:
it always takes the currently estimated best option without any consideration of uncertainty. In our

10This seems to contradict our earlier discussion about minimizing the variance of gradient estimates. The distinc-
tion is that we want to minimize variance due to noise in the data, but here we are introducing noise in the parameters
independent of the data.

11It is a strange variational distribution, but basically the posterior distribution over Ω becomes that implied by W ,
with elements ω j multiplied by random Bernoulli noise.

12This application, on the news website MSN.com with headlines rather than ads, motivates much of the RL work
in Agarwal et al. [1].

16

simple advertising example, this implies always converging to the first ad that ever gets clicked
on. A fully exploratory algorithm always randomizes the ads and it will never converge to a single
optimum. The trick to bandit learning is finding a way to balance between these two extremes.

A classic bandit algorithm, and one which gives solid intuition into RL in general, is Thompson
Sampling.[40] Like many tools in RL, Thompson Sampling uses Bayesian inference to model the
accumulation of knowledge over time. The basic idea is simple: at any point in the optimization
process you have a probability distribution over the vector of click rates, ωωω = [ω1 . . .ωJ], and you
want to show each ad j in proportion to the probability that ω j is the largest click rate. That is,
with yt = {ys}ts=1 denoting observed responses at time t, you want to have

p(dt+1 = j) ∝ p
(
ω j = max{ωk}J

k=1 | y
t) , (12)

such that an ad’s selection probability is equal to the posterior probability that it is the best choice.
Since the probability in (12) is tough to calculate in practice (the probability of a maximum is not
an easy object to analyze), Thompson Sampling uses Monte Carlo estimation. In particular, you
draw a sample of ad-click probabilities from the posterior distribution at time t,

ωωω t+1 ∼ p(ωωω | yt), (13)

and set dt+1 = argmax j ωt+1 j. For example, suppose that you have a Beta(1,1) prior on each ad’s
click rate (i.e., a uniform distribution between zero and one). At time t, the posterior distribution
for the jth ad’s click rate is

P(ω j|dt ,yt) = Beta

(
1+

t

∑
s=1
1[ds= j]ys, 1+

t

∑
s=1
1[ds= j](1− ys)

)
. (14)

A Thompson sampling algorithm draws ωt+1 j from (14) for each j and then shows the ad with
highest sampled click rate.

Why does this work? Think about scenarios where an ad j would be shown at time t – i.e., when
the sampled ωt j is largest. This can occur if there is a lot of uncertainty about ω j, in which case
high probabilities have non-trivial posterior weight, or if the expected value of ω j is high. Thus
Thompson Sampling will naturally balance between exploration and exploitation. There are many
other algorithms for obtaining this balance. For example, Agarwal et al. [1] survey methods that
work well in the contextual bandit setting where you have covariates attached to events (such that
action-payoff probabilities are event-specific). The options considered include ε-greedy search,
which finds a predicted optimal choice and explores within a neighborhood of that optimum, and
a Bootstrap based algorithm that is effectively a nonparametric version of Thompson Sampling.

Another large literature looks at so-called Bayesian Optimization.[39] In these algorithms, you
have an unknown function r(x) that you’d like to maximize. This function is modeled using some
type of flexible Bayesian regression model, e.g., a Gaussian Process. As you accumulate data,
you have a posterior over the ‘response surface’ r at all potential input locations. Suppose that,
after t function realizations, you have observed a maximal value rmax. This is your current best
option, but you want to continue exploring to see if you can find a higher maximum. The Bayesian
Optimization update is based on the Expected Improvement statistic,

E[max(0,r(x)− rmax)], (15)

17

the posterior expectation of improvement at new location x, thresholded below at zero. The al-
gorithm evaluates (15) over a grid of potential x locations, and you choose to evaluate r(xt+1)
at the location xt+1 with highest Expected Improvement. Again, this balances exploitation with
exploration: the statistic in (15) can be high if r(x) has high variance or a high mean (or both).

These RL algorithms are all described in the language of optimization, but it is possible to
map many learning tasks to optimization problems. For example, the term Active Learning is
usually used to refer to algorithms that choose data to minimize some estimation variance (e.g.,
the average prediction error for a regression function over a fixed input distribution). Say f (x;Ω)
is your regression function, attempting to predict response y. Then your action function is simply
prediction, d(x;Ω) = f (x;Ω), and your optimization goal could be to minimize the squared error –
i.e., to maximize r(d(x;Ω),y) =−(y− f (x;Ω))2. In this way, active learning problems are special
cases of the RL framework.

From a business and economic perspective, RL is interesting (beyond its obvious usefulness)
for assigning a value to new data points. In many settings the rewards can be mapped to actual
monetary value: e.g., in our advertising example where the website receives revenue-per-click. RL
algorithms assign a dollar value to data observations. There is a growing literature on markets for
data, e.g., including the ‘data-is-labor’ proposal in Lanier [24]. It seems useful for future study in
this area to take account of how currently deployed AI systems assign relative data value. As a
high-level point, the valuation of data in RL depends upon the action options and potential rewards
associated with these actions. The value of data is only defined in a specific context.

The bandit algorithms described above are vastly simplified in comparison to the type of RL
that is deployed as part of a Deep Learning system. In practice, when using RL with complex
flexible functions like DNNs you need to be very careful to avoid over exploitation and early
convergence.[29] It is also impossible to do a comprehensive search through the super high-
dimensional space of optional values for the Ω that parametrizes a DNN. However, approaches
such as that in van Seijen et al. [42] and Silver et al. [37] show that if you impose structure on the
full learning problem then it can be broken into a number of simple composite tasks, each of which
is solvable with RL. As we discussed earlier, there is an undeniable advantage to having large fixed
data assets that you can use to hot-start your AI (e.g., data from a search engine or social media
platform). But the exploration and active data collection of RL is essential when tuning an AI sys-
tem to be successful in specific contexts. These systems are taking actions and setting policy in an
uncertain and dynamic world. As statisticians, scientists and economists are well aware, without
constant experimentation it is not possible to learn and improve.

7 AI in context
This chapter has provided a primer on the key ingredients of AI. We have also been pushing some
general points. First, the current wave of ML-driven AI should be viewed as a new class of prod-
ucts growing up around a new general purpose technology: large-scale, fast, and robust Machine
Learning. AI is not Machine Learning, but general purpose ML, specifically Deep Learning, is
the electric motor of AI. These ML tools are going to continue to get better, faster, and cheaper.
Hardware and Big Data resources are adapting to the demands of DNNs, and self-service ML so-
lutions are available on all of the major Cloud Computing platforms. Trained DNNs might become
a commodity in the near term future, and the market for Deep Learning could get wrapped up in

18

the larger battle over market share in Cloud Computing services.
Second, we are still waiting for true end-to-end Business AI solutions that drive a real increase

in productivity. AI’s current ‘wins’ are mostly limited to settings with high amounts of explicit
structure, like board and video games.13 This is changing, as companies like Microsoft and Ama-
zon produce semi-autonomous systems that can engage with real business problems. But there is
still much work to be done, and the advances will be made by those who can impose structure
on these complex business problems. That is, for business AI to succeed we need to combine the
GPML and Big Data with people who know the rules of the ‘game’ in their business domain.

Finally, all of this will have significant implications for the role of economics in industry. In
many cases, the economists are those who can provide structure and rules around messy business
scenarios. For example, a good structural Econometrician[27, 16, 7] uses economic theory to break
a substantiative question into a set of measurable (i.e., identified) equations with parameters that
can be estimated from data. In many settings, this is exactly the type of work-flow required for AI.
The difference is that, instead of being limited to basic linear regression, these measurable pieces
of the system will DNNs that can actively experiment and generate their own training data. The
next generation of economists needs to be comfortable in knowing how to apply economic theory
to obtain such structure, and how to translate this structure into recipes that can be automated
with ML and RL. Just as Big Data led to Data Science, a new discipline combining Statistics
and Computer Science, AI will require interdisciplinary pioneers who can combine Economics,
Statistics, and Machine Learning.

References
[1] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.

Taming the monster: A fast and simple algorithm for contextual bandits. In International
Conference on Machine Learning, pages 1638–1646, 2014.

[2] Susan Athey. Beyond prediction: Using big data for policy problems. Science, 355:483–485,
2017.

[3] Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences, 113:7353–7360, 2016.

[4] Yoshua Bengio, Yann LeCun, et al. Scaling learning algorithms towards AI. Large-scale
kernel machines, 34(5):1–41, 2007.

[5] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in
neural information processing systems, pages 161–168, 2008.

[6] Timothy Bresnahan. General purpose technologies. Handbook of the Economics of Innova-
tion, 2:761–791, 2010.

[7] Angus Deaton and John Muellbauer. An almost ideal demand system. The American Eco-
nomic Review, 70:312–326, 1980.

13The exception to this is web search, which has been effectively solved through AI.

19

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159,
2011.

[9] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural
Information Processing Systems, pages 2962–2970, 2015.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[12] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning, pages 1225–
1234, 2016.

[13] Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: A flexible
approach for counterfactual prediction. In International Conference on Machine Learning,
pages 1414–1423, 2017.

[14] John Haugeland. Artificial Intelligence: The Very Idea. MIT Press, 1985.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[16] James J Heckman. Sample selection bias as a specification error (with an application to the
estimation of labor supply functions), 1977.

[17] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2:359–366, 1989.

[20] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image de-
scriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3128–3137, 2015.

[21] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? arXiv preprint arXiv:1703.04977, 2017.

[22] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations (ICLR), 2015.

20

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[24] Jaron Lanier. Who Owns the Future. Simon & Schuster, 2014.

[25] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361:1995, 1995.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86:2278–2324, 1998.

[27] Daniel McFadden. Econometric models for probabilistic choice among products. Journal of
Business, pages S13–S29, 1980.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[30] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[31] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[32] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[33] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65:386, 1958.

[34] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[35] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, pages 3857–3867, 2017.

[36] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529:
484–489, 2016.

[37] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. Nature, 550:354–359, 2017.

21

[38] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of machine
learning research, 15(1):1929–1958, 2014.

[39] Matt Taddy, Herbert KH Lee, Genetha A Gray, and Joshua D Griffin. Bayesian guided pattern
search for robust local optimization. Technometrics, 51(4):389–401, 2009.

[40] William R Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25:285–294, 1933.

[41] Panagiotis Toulis, Edoardo Airoldi, and Jason Rennie. Statistical analysis of stochastic gra-
dient methods for generalized linear models. In International Conference on Machine Learn-
ing, pages 667–675, 2014.

[42] Harm van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jef-
frey Tsang. Hybrid reward architecture for reinforcement learning. arXiv:1706.04208, 2017.

22

	Introduction
	What is AI?
	General Purpose Machine Learning
	Deep Learning
	Stochastic Gradient Descent
	Reinforcement Learning
	AI in context

