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ABSTRACT

Recent artificial intelligence advances can be seen as improvements in prediction. We examine 
how such predictions should be priced. We model two inputs into decisions: a prediction of the 
state and the payoff or utility from different actions in that state. The payoff is unknown, and can 
only be learned through experiencing a state. It is possible to learn that there is a dominant action 
across all states, in which case the prediction has little value. Therefore, if predictions cannot be 
credibly contracted upfront, the seller cannot extract the full value, and instead charges the same 
price to all buyers.
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I. Introduction 

Artificial intelligence (AI) is undergoing a renaissance. Thanks to developments in machine 

learning – particularly, deep learning and reinforcement learning – there has been an explosion in 

the applications of AI in many settings. In actuality, however, far from providing new forms of 

machine intelligence in a general fashion, what AI has been able to do has been to reduce the cost 

of higher quality predictions in a drastic way (Agrawal et.al., 2018). As deep learning pioneer 

Geoffrey Hinton put it, “Take any old problem where you have to predict something and you have 

a lot of data, and deep learning is probably going to make it work better than the existing 

techniques.” (Hinton 2016) Thus, when they are able to utilize AI, decision-makers know more 

about their environment including about future states of the world. 

These developments have brought about discussion as to the role of humans in that decision-

making process. The view we take here (see also Agrawal et.al., 2017) is that humans still play a 

critical role in determining the reward functions in decisions. That is, if the decision can be 

formulated as a problem of choosing an action (x), in the face of uncertainty about the state of the 

world (q) with probability distribution function F(q), in an ideal setting, an AI can transform that 

problem from 𝑚𝑎𝑥$ ∫ 𝑢(𝑥, 𝜃)𝑑𝐹(𝜃) into 𝑚𝑎𝑥$𝑢(𝑥, 𝜃) with actions being made in a state-

contingent manner. However, this transformation relies on someone knowing the utility function, 

𝑢(𝑥, 𝜃). We claim that, at present, only a human can develop this knowledge.1 

That said, the value to understanding the utility function in all of its nuance is enhanced when 

the decision-maker knows that they will have accurate predictions of the state of the world. This 

is especially true when it comes to states that are unlikely to arise or as applied to decision-making 

in complex environments.  

Here we develop a model of utility function discovery in the presence of AI. In so doing, we 

choose to emphasize experiences as the means by which decision-makers come to know that 

function. Our goal here is to understand what this implies for the demand for AI and, in particular, 

how suppliers of AI services should go about pricing their services. We show that learning leads 

to some interesting dilemmas in setting AI pricing. In particular, learning may lead decision-

 
1 Over time, machines may learn to predict the utility function by observing human decisions. We leave this for future work. 
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makers to discover they have dominant actions and so do not need AI for prediction at all. This 

presents challenges for the long-term pricing of AI services. The mechanism driving this result is 

related to the price discrimination literature on the strategic effects of firms gaining information 

about consumers (e.g. Hart and Tirole 1988; Villas-Boas 2004; Acquisti and Varian 2005; Zhang 

2011; Fudenberg and Villas-Boas 2012). 

II. Model Set-Up 

Our baseline model is drawn from Agrawal et.al. (2017); itself inspired by Bolton and Faure-

Grimaud (2009). The decision-maker faces uncertainty over two states of the world, {𝜃., 𝜃/} with 

equal prior probabilities. There are two possible actions: a state independent action with known 

payoff of S (safe) and a state dependent action with unknown payoff, R or r as the case may be 

(risky). The agent does not know the payoff from the risky action in each state and must apply 

judgment to determine that payoff. We assume that there are only two possible payoffs from the 

risky action, R and r, where 𝑅 > 𝑆 > 𝑟. In the absence of judgment, the ex ante expectation that 

the risky action is optimal in state 𝜃5 is 𝑣; common across states. That is, 𝑣 is the probability in 

state 𝜃5 that the risky payoff is R rather than r. This is a statement about the payoff, given the state. 

In the absence of knowledge regarding the specific payoffs from the risky action, a decision can 

only be made on the basis of prior probabilities. In this case, the expected payoff from the risky 

action is 𝜌 ≡ 𝑣𝑅 + (1 − 𝑣)𝑟. We make the following assumptions: 

A1 (Safe Default) 𝜌 ≤ 𝑆  

A2 (Judgment Insufficient) =>(𝑅 + 𝑟) ≤ 𝑆  

(A1) states that, in the absence of judgment, the safe action is the default in each state. (A2) states 

that, if the agent knows the payoffs in each state, judgment alone will not change that default. 

If an AI is deployed to assist in this decision-making, what it does is provide an ex ante prediction 

of the state. To keep things simple, we assume that prediction is perfect and so, with an AI, the 

decision-maker knows the state with certainty. By (A2), without judgment, having an AI does not 

change the decision or payoff. With both judgment and a prediction, optimal state-contingent 

decision-making is possible and the decision-maker’s expected payoff is 𝜌∗ ≡ 𝑣𝑅 + (1 − 𝑣)𝑆 in 

each period. 
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III. Judgment Through Experience 

Judgment does not come for free. In Agrawal et.al. (2017), we assume that it takes thought (at 

the cost of time). By contrast, here we assume that judgment arises from experience. Specifically, 

an agent must actually experience a given state in order to, potentially, learn the payoffs from that 

state. If they do not know the state, they cannot learn about payoffs. 

Decision-makers discount with factor d < 1. If a state arises, they may gather enough experience 

to determine the optimal action and can make a choice based on that judgment. Otherwise, they 

can make a decision in the absence of that judgment. Importantly, they cannot learn the payoff 

associated with the state if they take the default action. Ignorance remains and their per period 

payoff is S. 

The timing of the game is as follows: 

1. (Prediction) The decision-maker is informed by the AI of the state that period. 

2. (Judgment) With probability, 1 − 𝜆, the decision-maker does not learn the payoff for the risky 

action in that state. With probability 𝜆, the decision-maker gains this knowledge and retains it 

into the future.  

3. (Action) Based on these outcomes, the decision-maker takes an action and payoffs are realized 

and the time period ends.  

There are three phases to experience: (i) Full experience: when the agent has learned payoffs in 

both states, resulting in a discounted payoff from this point of: =
=AB𝜌

∗. (ii) Partial experience: Let 

𝜋5 denote the expected present discounted value if the agent already knows what the optimal action 

is in 𝜃5. Then: 

𝜋5 =
.
/
(𝜌∗ + 𝛿𝜋5) +

.
/
F(1 − 𝜆)(𝑆 + 𝛿𝜋5) + 𝜆

.
.GH

𝜌∗I 

⟹ 𝜋5 =
(.K L

=AB)M
∗K(.GN)O

/(.GP.G=>NQH)
 

And finally, (iii), no experience with expected discounted payoff of: 

Π = 𝜆(𝜌∗ + 𝛿𝜋5) + (1 − 𝜆)(𝑆 + 𝛿Π) 

⟹ Π = (.GH)(.GN)/OK(/GH)NM∗

(.GH)(/G(/GN)H)
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Thus, there is a learning period of uncertain length followed by a period whereby the agent can 

apply full experience to decisions into the future earning 𝜌∗ on average. As l increases, so does Π, 

showing that prediction and judgment are complements in this model. 

IV. Pricing AI as a Service 

Without any judgment or experience, the net present discounted value earned by the agent would 

be =
=AB𝑆. Without initial access to an AI, the agent cannot apply judgment and gain experience to 

improve upon this. This suggests that a monopolist provider of AI could charge a fixed sum of 

Π − =
=AB𝑆. Moreover, as Π is increasing in l, that provider would want to target agents with 

judgment ability (or ease) as high as possible first before moving on to worse judges. 

There are several challenges to pricing AI with a once off payment. First, such algorithms often 

are run by the provider and not hosted as a distinct app by the user. Therefore, there are on-going 

costs to be recouped and users may be reluctant to pay up front for such a service. Second, 

algorithms hosted by the provider may improve at a more rapid rate. The provider may then want 

a means of monetizing those improvements.  

For these reasons, we consider pricing of AI as an ongoing service with a subscription fee of p 

per period. If the AI provider does not have knowledge of the experience level – and indeed, the 

experience – of each agent, this is a non-trivial pricing problem. 

To see this, let us consider the purchase decisions of fully experienced agents who know their 

payoff function. For some of these agents, they would have found that neither the safe nor risky 

action is dominated and their per period expected payoff is =>(𝑅 + 𝑆). They can realize these 

payoffs with prediction but in the absence of prediction, they earn S per period (by A1). Thus, their 

willingness to pay for prediction is =>(𝑅 − 𝑆). For other agents, their experience has shown them 

that one of the actions is dominated. Those agents either earn R or S per period but do not need 

prediction to do so. What this means is that the long-term market for prediction is at most a share 

2𝑣(1 − 𝑣) of the original market; that is, prediction is only valuable to those who have found 

neither action to be dominated. To keep things simple, we now assume that 𝑣 = =
>. A fully 

experienced agent will continue to purchase AI if =>(𝑅 − 𝑆) ≥ 𝑝. If the provider, charges a price 

based on this, they will earn =V(𝑅 − 𝑆) per period. 
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What determines whether a partially experienced agent pays for the AI service? If they have 

learned that the risky action is optimal in one state, their expected discounted payoff is 𝜋W where: 

𝜋W =
.
/
(𝑅 + 𝛿𝜋W) +

.
/
F(1 − 𝜆)(𝑆 + 𝛿𝜋W) + 𝜆

(XWKOG/Y)
Z(.GH)

I − 𝑝 

⟹ 𝜋W =
WK L

V(=AB)(XWKOG/Y)K(.GN)OG/Y

/(.GP.G=>NQH)
 

If this agent did not have access to an AI after this point, their expected discounted payoff would 

be: =
=ABmax	{

.
Z
(3𝑅 + 𝑟), 𝑆}. On the other hand, if a partially experienced agent learned the safe 

action was optimal in one state, their expected discounted payoff is 𝜋O where: 

𝜋O =
.
/
(𝑆 + 𝛿𝜋O) +

.
/
F(1 − 𝜆)(𝑆 + 𝛿𝜋O) + 𝜆

(WKXOG/Y)
Z(.GH)

I − 𝑝 

⟹ 𝜋O =
OK L

V(=AB)(WKXOG/Y)K(.GN)OG/Y

/(.GP.G=>NQH)
 

If this agent did not have access to an AI after this point, their expected discounted payoff would 

be: =
=AB𝑆. These two options differ both in terms of the payoffs they generate while learning as well 

as what the potential upside is from moving to full experience. If the agent has learned that the 

risky action is optimal, this upside is `V𝑅 +
=
>𝑆 − 𝑝 while otherwise it is =>𝑅 +

`
V𝑆 − 𝑝. Thus, 𝜋W >

𝜋O.  

This leads to a pricing dilemma on the part of an AI provider. They have two pricing options: 

they can set p so that min	{𝜋W − =
=ABmax c

.
Z
(3𝑅 + 𝑟), 𝑆d , 𝜋O − =

=AB𝑆} ≥ 0 thereby, selling to the 

entire market or price above this level so that either 𝜋W ≥ =
=ABmax c

.
Z
(3𝑅 + 𝑟), 𝑆d or 𝜋O ≥ =

=AB𝑆 

and sell to half of the market. The following proposition demonstrates, however, that, for a far-

sighted AI provider, servicing the entire market is the more profitable approach; however, the AI 

provider does not extract the full value of the prediction despite having perfect knowledge of the 

state. 

Proposition 1. For d sufficiently high, the AI provider will maximize profits by covering the entire 

market with a price equal to: 

𝑝 = N
/(NKZ(.GH))

(𝑅 − 𝑆). 
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PROOF: We first examine the prices in the proposition that would result in full inclusion. The 

prices are such that 𝜋W ≥ =
=AB𝑚𝑎𝑥g

=
V
(3𝑅 + 𝑟), 𝑆h and 𝜋O ≥ =

=AB𝑆 so there is full inclusion with 

partially experienced agents. Specifically, note that the price where 𝜋W = =
=AB𝑆, 𝑝 =

(V(=AB)i`L)
>PLiV(=AB)Q

(𝑅 − 𝑆) > L
>PLiV(=AB)Q

(𝑅 − 𝑆) which is the price where 𝜋O = =
=AB𝑆. It is useful to examine 

whether these prices will result in inclusion with fully experienced agents. Note also that the price 

where 𝜋W = =
V(=AB)

(3𝑅 + 𝑟), 𝑝 = >(>jAkAl)(=AB)iL(kAjiB(>jAkAl))
>PLiV(=AB)Q

> L
>PLiV(=AB)Q

(𝑅 − 𝑆). Thus, the price 

in the proposition is the only price that will support full inclusion at the partial experience phase. 

Will this price also support inclusion at the full experience stage; that is, is 𝑝 ≤ =
>(𝑅 − 𝑆)? Note 

that N
/(NKZ(.GH))

< =
> so this is satisfied. Note, however, that (V(=AB)i`L)

>PLiV(=AB)Q
(𝑅 − 𝑆) > =

>(𝑅 − 𝑆) and that, 

as 𝛿 → 1, /(/OGWGo)(.GH)KN(WGOKH(/OGWGo))
/PNKZ(.GH)Q

→ (WGOKH(/OGWGo))
/

> =
>(𝑅 − 𝑆). Thus, under these 

conditions, setting a price that excludes some agents at the partial experience phase, causes future 

demand by fully experienced agents to fall to 0. 

When we examine pricing to agents with no experience, note that: 

Π = 𝜆.
/
(𝑅 + 𝛿𝜋W + 𝑆 + 𝛿𝜋O) + (1 − 𝜆)(𝑆 + 𝛿Π) − 𝑝 

⟹Π =
𝜆./(𝑅 + 𝛿𝜋W + 𝑆 + 𝛿𝜋O) + (1 − 𝜆)𝑆 − 𝑝

1 − (1 − 𝜆)𝛿  

The issue is whether an AI provider can charge a price that extracts the maximal rents at this phase; 

i.e., so that Π = =
=AB𝑆. If this could be done, p will be: 𝑝 = 𝜆=>P𝑅 + 𝛿𝜋W + 𝑆 + 𝛿𝜋O −

>
=AB𝑆Q. 

Substituting and solving for p we have: 

𝑝 = 𝜆 (/GH)(.G(.GN)H)
ZGHPpGN(qKN)GH(ZGqN)Q

(𝑅 − 𝑆) 

However, it easy to check that at this price 𝜋O < =
=AB𝑆, so this would not result in full inclusion 

beyond that phase. Moreover, as 𝛿 → 1, this price becomes (𝑅 − 𝑆). Therefore, the price in the 

proposition is the only fully inclusive price resulting in a long-run per period payoff of more than 
=
>𝑝 =

L
V(LiV(=AB))

(𝑅 − 𝑆) as the provider always serves half of the fully experienced agents. 
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We have also shown that for d sufficiently high, any candidate exclusionary price will result in 

prices that exceed =>(𝑅 − 𝑆). Thus, for d sufficiently high, the AI provider will not find it profitable 

to exclude agents at any stage. � 

 

Intuitively, when some initial judgment is complete, there is either good news (in that the risky 

strategy is optimal) or bad news (in which it is not). An inclusion strategy requires price to be low 

enough that following bad news, learning still occurs. However, while the upside potential for the 

user following good news is higher than that following bad news, the value of prediction after full 

experience is gained is the same. Thus, the AI provider has no mechanism by which they can share 

in the upside. Given this, they choose to price low and not exclude any users at this stage. Half of 

the users eventually opt out when they find that either the safe or risky action is dominant.  

What this means is that an AI provider, who cannot implement upfront pricing, is restricted in 

the value they can appropriate. While learning can yield good or bad news to the decision-maker, 

good news may cause prediction to lose its value as the decision-maker discovers the risky action 

is dominant. Thus, the AI provider must sacrifice rents in order to ensure that they can capture 

some rents as the decision-maker gains experience. 

Can versioning – selling an AI product which has lower performance – improve this outcome 

for the AI provider? The intuition would be that until they are fully experienced, users will 

purchase the lower performing product allowing the AI provider to charge more in the long-term. 

The downside is a lower performing product may slow the gathering of experience and push that 

long-term out further. The details of this are left to future work.2 

V. Judgment Through Experimentation 

Using an experience frame to understand judgment suggests an alternative way of ‘learning’ the 

reward function: experimentation. In particular, when coupled with prediction, a decision-maker 

could, by choosing the risky action, evaluate whether that is the right action for that state. The 

expected cost would be 𝑆 − 𝜌. In this conception, we have the following: 

 
2 Also left for future work is what happens if the discount factor is low. We conjecture that the provider may still be able to sell AI to facilitate 

judgment and the identification of dominated actions. However, in the case, the demand from a given customer may be so short-term that it may be 
better to sell AI as a once off and lose advantages that come from providing it as a service. 
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𝜋5 =
.
/
(𝜌∗ + 𝛿𝜋5) +

.
/
r𝜌 + 𝛿 .

.GH
𝜌∗s 

⟹ 𝜋5 =
.

.GH𝜌
∗ + 𝜌

2 − 𝛿  

Thus, the expected present discount payoff prior to any experience is:  

Π = 𝜌 + 𝛿𝜋5 

⟹ Π = .
/GH

r(3 − 𝛿)𝜌 + H
.GH

𝜌∗s 

The convenient property of this frame is that it relates the cost of judgment explicitly to the 

expected cost of experimentation. In particular, as r decreases, experimentation becomes more 

costly.  

These calculations presume that the decision-maker finds it worthwhile to experiment. If no 

experiment is undertaken, the present discounted payoff is =
=AB𝑆. Thus, it may be the case that there 

is no value for an AI as the cost of experimentation may be too high.  

Even if this were not the case, in assessing the demand for AI under experimentation, we need 

to consider the fact that decision-makers can use experimentation to discover whether they have 

dominated actions or not. Depending on v, by running repeated experiments, even in the absence 

of knowledge of which state has arisen, the decision-maker can potentially infer whether the risky 

or safe action is preferred in both states. In this case, as we noted earlier, there would be no further 

demand for an AI. 

Working out the full equilibrium outcome under experimentation is beyond the scope of our 

analysis in this short paper. However, we believe that, in some environments, this could prove to 

be an interesting driver of the demand for AI and how it evolves. 

Conclusion 

Recent analysis (Brynjolfsson et.al., 2018, Felten et al., 2018) has viewed the introduction of AI 

as substituting for human labor in a given task. Our approach decomposes the task and shows that 

AI complements human judgment. In particular, we show that AI facilitates the use of experience 

to understand utility functions. This is something we would expect to be stronger in newer and 

more complex decisions. In macroeconomic models that examine the creation of new tasks 

(Acemoglu & Restrepo, 2017), AI drives that creation by freeing up labor. Here, we posit a direct 

role for AI in those new tasks. Moreover, we show that this has a non-straightforward impact on 
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the demand for AI and how it is priced. Thus, the impact of AI is likely to be more complex than 

the analyses based on straight substitution imply. 
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