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1. Introduction.

Most students of business economics are taught early on about the

learning curve and the role it plays in the cost structure of the firm.

Since the early articles by Wright (1936) and Hirsch (1952) that showed how

costs fall with cumulative output in the production of airframes and machine

tools, a variety of studies have demonstrated the existence of learning

curves in a wide range of industries, and management consultants have

stressed the importance of learning for production planning.1

More recently, studies such as those of Spence (1981) and Kalish (1983)

have shown how the presence of a learning curve can be taken into account

when setting price and output levels.2 These studies demonstrate that in

setting output, a firm should produce at a point where current marginal

cost exceeds marginal revenue. The reason is that an incremental unit of

current production reduces future production costs by moving the firm down

the learning curve, and therefore has a shadow value that partly offsets its

cost. Current production should be such that current marginal cost exceeds

marginal revenue by the amount of this shadow value.

Unfortunately, this point is of limited use as a guideline for

production. First, this shadow value can be hard to calculate. Second, and

more important, most firms face considerable uncertainty over future

demand, and hence prices. This means that the firm cannot know how much it

will produce in the future, or whether it will produce at all - its future

production decisions are contingent on the evolution of demand. This

complicates the valuation of the firm, the calculation of the current shadow

value of cumulative production, and the optimal production decision.3 And

as we will see, it can reduce the importance of learning effects for

production planning.
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This paper re-examines the implications of the learning curve, but in a

world of uncertainty. We consider a competitive firm whose production costs

decline with cumulative output. However, the price of the firm's output

evolves stochastically, so that all future production decisions are

contingent on the evolution of price, and future cumulative output is

unknown. We show how the firm's current decision to produce can be made in

a way that is consistent with its financial objective - the maximization of

its market value.4

If uncertainty over future output prices is spanned by the existing set

of traded assets in the economy (in a manner to be made clear below), the

firm's production problem can be treated as a problem in the valuation of a

contingent claim. As McDonald and Siegel (1985) have shown, a firm facing a

stochastic output price can be thought of as having a set of call options on

future production at every instant of time. Each call option has an

exercise price equal to production cost (which in our case declines with

cumulative output), and a payoff equal to the output price. The value of

the firm is therefore a contingent claim - in our case a function of both

price and cumulative output to date - and will satisfy a partial

differential equation that can be derived using the standard methods of

contingent claims analysis, or equivalently by dynamic programming.

We solve this differential equation using numerical methods. The

result is a simple optimal decision rule: produce when price exceeds a

critical level, which is a declining function of cumulative output. The

solution also yields the shadow value of a unit of cumulative output. We

show how this shadow value, as well as the total value of the firm, depend

on the volatility of price and other parameters. In particular, we show

that over the relevant range of prices, uncertainty reduces the shadow value



-3-

of cumulative production, and therefore increases the critical price

required for the firm to begin producing. In terms of practical production

decisions, this makes the learning curve less important than some have been

led to believe.

In the next section we begin with a simple deterministic model of a

firm facing a learning curve. This helps to illustrate the behavior of the

shadow value of cumulative output and its dependence on price, and provides

a benchmark for evaluating the effects of uncertainty. In Section 3 we

extend the model to allow for a stochastically evolving output price, and we

derive and solve an equation for the value of the firm and its optimal

operating strategy. Section 4 presents numerical examples, and shows how

the value of the firm, the shadow value of cumulative output, and the firm's

optimal operating strategy depend on the variance of price. Section 5

contains some concluding remarks.

2. A Deterministic Learning Curve Model.

We consider a firm that owns a single factory, and sells its output in

a competitive market at a price P. The firm's marginal production cost is

constant with respect to the rate of output, up to a capacity constraint,

which we arbitrarily set at 1. However, the firm faces a learning curve;

marginal cost declines with cumulative output, Q, until it reaches a minimum

level c:

C(Q)—ce
(1)

Q>Q
Here, c is the initial marginal production cost, and Q is the level of

cumulative output at which learning ceases, and cost reaches its constant

minimum level
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We will assume that the price of the firm's output grows over time at a

Ptknown and constant rate p, i.e. P(t) — P0e . (In Section 3 we expand the

model to allow for a stochastically varying price.) The firm's problem is

to choose a rate of output x(t), 0 < x < 1, to maximize:

Max V — f[P(t) - C(Q)]x(t)ertdt (2)
0

subject to dQ/dt x, Q(O) — 0, and P(t) — P0ePt. Because there is no

uncertainty in the problem, the discount rate is the risk-free rate, r.

The solution to this problem can be obtained by straightforward

application of dynamic programming. The optimal production rule is to

produce if:

P > C(0) -

VQ
— c -

VQ
(3)

where VQ denotes dV/dQ. First, suppose p — 0. In this case the firm either

produces now and forever (at its maximum capacity of x 1), or it never

produces. Therefore the integral in (2) can be evaluated directly:

V - (÷){r + -yem ;
p > c -

VQ)
Q <

(4)
P<cVQ

The shadow value of an additional unit of cumulative output, VQ evaluated

at Q 0, is then:

VQ(Q=O) = (7+r)[1
- erm] (5)

VQ is zero, however, if c - P is greater than the right-hand side of (5),

because in that case the firm will never produce. We will examine the

behavior of VQ shortly, but for the moment note that if the firm is

producing, VQ is independent of price. Although V depends on P, VQ only

reflects future cost savings from current production, and since the firm

continues to produce forever, these savings are independent of price. Also

note that if r = 0,
VQ

c(l - e'') — c - . This means that the firm
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should produce if P is at least as large as final marginal cost, . This is

the result obtained by Spence (1981), in a slightly different form.

Now suppose p > 0. In this case if P is sufficiently high, the firm

will produce immediately, and continue to produce forever. VQ is then given

by eqn. (5) above, and is again independent of price, so the critical price

above which production takes place is the same as for p 0.

If P is initially below the critical price, the firm will defer

production until some future time T, when P(T) — c -

VQ.
The lower limit of

the integral in (2) is now T, which must be determined. At t = 0 and Q = 0,

VQ is therefore:

VQ(Q=O) = )[l - em] (6)

Note that the smaller is P0, the larger is T. By setting p0PT c -
VQerT,

we find that T is given by:

T(P0) — ilog[ (1 - - e7+rm]] (7)

when < c - c-y[l - e i+r)Qm]/(l+r) and T — 0 otherwise. By substituting

(7) into (6), T can be eliminated, and we can determine how VQ depends on P.

Figure 1 illustrates the solution to the optimal production problem,

and the dependence of VQ on P, for the following set of parameter values:

initial marginal cost c 40, final marginal cost = 10, Q = 20 (so that y

(l/Q)log(c/c) — .0693), and r — .05. The graph shows VQ(P) for p 0,

.01, .03 and .05, as well as c - P. The finn produces when price equals or

exceeds the critical price P' — $19; at this price, VQ c - P — $21. If P

> p* the firm produces forever, so VQ is constant at $21. If P < P', the

firm will eventually produce (unless p = 0), because future cost savings are

discounted. The smaller is p the smaller is VQ because the longer it will

take for P to rise to P'. If p — 0, P does not rise at all, so VQ — 0.
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Although not shown in Figure 1, if r is smaller, VQ will be larger, and

for r — 0, p* — — 10. Viewed in real terms, an r of .05 is large, so the

rule of thumb "Produce when price is close to ultimate marginal cost" would

seem reasonable. Yet the anecdotal evidence suggests that firms usually

require price to be close to initial marginal cost. This may be because

firms use too high a discount rate, or, as we will see, because of

uncertainty over future prices.

3. A Stochastic Model.

To incorporate uncertainty over future prices, we assume that the

output price, P, evolves according to the following stochastic process:

dP/P pdt + adz (8)

Here, p is the expected rate of change of P, a the standard deviation of

this rate of change, and dz is the increment of a Weiner process. Eqn. (8)

says that the current value of P is known, but future values are lognormally

distributed with a variance that grows linearly with the time horizon.

We assume that the output price P is spanned by the set of existing

traded assets in the economy (i.e. , capital markets are sufficiently

complete that there exists an asset, or a dynamic portfolio strategy using

existing assets, that is perfectly correlated with P). This implies that

the risk-adjusted discount rate for future output, which we denote by p, is

the expected return on the replicating portfolio. The expected rate of

change of the output price, p, will in general be less than this risk-

adjusted discount rate, i.e., p + 6, 6 > 0. For example, if the output

is a storable commodity, it may have a positive "convenience yield;"

inventory holders are willing to accept an expected rate of price

appreciation less than the expected return on assets with the same risk

because of the flow of convenience benefits that inventories provide.6
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With the assumption of spanning, we can value the firm and determine

its optimal (value-maximizing) operating strategy using contingent claims

analysis. Contingent claims analysis applied to options on traded

securities usually relies on a replicating portfolio strategy to price the

contingent claim relative to the underlying asset. However, it is not

necessary that the securities in the replicating portfolio actually be

traded. If the underlying asset is spanned by existing traded securities,

any contingent claim on that asset is also spanned by the existing assets,

and therefore can be valued using the same methodology.7

When P is stochastic, the firm may want to temporarily shut down (when

P is low), and later resume production if and when P rises sufficiently.

For simplicity, we will assume that there is no additional cost to stopping

and later resuming production.8 Of course, it may be optimal to produce

even if the current cash flow is negative: the value of current production

depends both on the current cash flow and on the amount by which future

costs are lowered. In other words, there is a shadow value to current

production which measures the benefit of moving down the learning curve.

The value of the firm will depend on P, and on how far it is along the

learning curve (i.e., on cumulative output, Q). In turn, the firm's

position on the learning curve depends on the production policy adopted: its

choice of instantaneous output will determine the instantaneous cash flow as

well as future production costs.

Under the assumptions described above, the firm's value-maximizing

production decision can be characterized as a stochastic control problem.

There are two state variables: the current market value of output, P, and

the firm's cumulative output to date, Q. The control variable is the

instantaneous rate of production, x(P,Q), subject to 0 � x � 1. The optimal
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production policy is the production rule, x*(P,Q), that maximizes the

current market value of the firm.

Because there are no adjustment costs or costs associated with changing

the level of production, the optimal production rule has the same feature as

in the deterministic model: the instantaneous level of production will be

either 0 or 1, according to whether the market price of the output is below

or above a critical price p*(Q)• This critical price is determined

endogenously with the (maximized) value of the firm. Using either the

continuous time replicating approach of Merton (1977) or the risk-neutral

valuation argument of Cox and Ross (1976) in conjunction with dynamic

programming, one can derive a partial differential equation for the value of

the firm, V(P,Q), under the optimal production rule. In Appendix A we show

that this equation is:

a2P2V + (r-8)PV+ VQ
- rV + [P - C(Q)] 0 ; P > P' (9a)

+ (r6)PV - rV — 0 ; P < P (9b)

This must be solved subject to the following boundary conditions:

V(0,Q) = 0 (l0a)

lim V(P,Q) = 1/6 (lOb)

p*(Q) - C(Q) +
VQ

0 (lOc)

V(P,Q) — V(P) (lOd)

Condition (lOa) is implied by equation (8) for the dynamics of P; if P

is ever zero, it will always remain zero, so the value of the firm will be

zero. Condition (lOb) follows from the fact that as the price becomes very

large, the firm will almost surely always produce. In that case the

incremental value of a $1 increase in price is just the present value of $1

per period paid forever, discounted at u - p 8. Condition (lOc) is the
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free boundary, above which it is optimal to produce. It follows from the

first-order condition for the optimization problem: The firm should produce

whenever price equals or exceeds marginal cost less the shadow value of

cumulative production, VQ.

Finally, condition (lOd) gives the value of the firm when it has

produced to the point where production costs become constant (i.e. when Q —

At and beyond this level of cumulative production, the value of the

firm is a function only of price. To calculate that value, which we denote

by V(P), note that the firm faces a similar stochastic control problem as

before. Using the same methods that led to equations (9a) and (9b), we get

the following ordinary differential equation for the value of the firm when

Q ? m

c2P2V + (r-6)PV - rV + [P - C] 0 ; P > c (ha)

a2P2'cT + (r6)P' - r — 0 ; P < c (lib)

subject to the boundary conditions 9a, b, and c, except with & substituted

for P. These equations have the following analytical solution:

b1Pl ; P < c (12a)
V(P) =

b2P2 + P/6 - &/r ; P > (l2b)

where: l - (r-S-a2/2) + 2[(r-&-a2/2)2 + 2ra2]2 > 1

- (r-6-a2/2) -
12[(r-6-a2/2)2 + 2ra2]2 < 0

r - 2(r-6) 1
b1 - r6(l - (&) l > 0

r - 1(r-6) 1
b () >0
2 rS(1 -
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This solution for V(P) is interpreted as follows. When P < c the firm

does not produce. Then, b1Pl is the value of the firm's option to produce

in the future, should P increase. When P � , the firm produces. If,

irrespective of changes in P, the firm had no choice but to continue

producing in the future, the present value of the expected flow of profits

would be given by P/S - c/r. (Costs are certain and so are discounted at

the risk-free rate; future values of P are discounted at the risk-adjusted

rate p, but P is expected to grow at rate p, so the effective net discount

rate is u - p 8.) However, should P fall, the firm can stop producing.

The value of the option to stop producing is b2P2.

Eqn. (9b) has the following closed form solution that satisfies

condition (l0a):

V(P,Q) — aPl (13)

where l is the constant given above, and a must be chosen to satisfy the

remaining boundary conditions. However, eqn. (9a) does not have an

analytic solution and must be solved numerically. We employ a finite-

difference technique, transforming the continuous variables P and Q into

discrete variables, and the partial differential equation into a difference

equation. This equation is solved algebraically, and the solution proceeds

backwards as a dynamic program incorporating the optimal production decision

at each point. Hence the cutoff level, p*(Q), is solved for simultaneously

with the value of the firm.9 (Details of this procedure are in an appendix

that is available from the authors on request.)

4. Production Decisions and the Value of the Firm.

Table 1 shows a solution for the same parameter values as used in the

deterministic case shown in Figure 1: initial marginal cost c = 40, final

marginal cost 10, Q 20 (so that -y .0693), and r = .05. We set the



- 11 -

annual standard deviation a — .20, which is a conservative number for a

competitively produced commodity.1° Finally, we set 6 — .05. (Recall that

6 is the difference between the risk-adjusted discount rate p and the

expected rate of price growth, p. Thus if all price risk is diversifiable,

p — r so p 0, but if there is systematic risk, p > r so p > 0.)

The table shows, for various amounts of cumulative production, the

value of the firm as a function of price, as well as the critical price

required for the firm to produce (denoted by an asterisk). For example,

when cumulative production is zero (so that current cost is $40), the firm

should produce when price is $25.53 or more. At the $25.53 price, the value

of the firm is $178.53. At prices below $25.53 the firm does not produce,

but still has value because of the possibility that price will rise above

$25.53 in the future. As cumulative production increases the value of the

firm rises (because costs have been reduced), and the critical price falls.

For example, when cumulative production is 4.0 (so cost is $30.32), the

critical price is $20.09. The critical price falls to the long-run cost of

$10 as cumulative production reaches 20.11 At this point the firm has

reached the bottom of the learning curve, and the shadow value of cumulative

production is zero.

Note from Figure 1 that in the absence of uncertainty, the initial

critical price is much lower - about $19. To see how uncertainty affects

the firm's production decision, it is useful to examine the shadow value of

cumulative production, VQ and its dependence on both price and a. Figure 2

shows VQ as a function of P for a — 0, .05, .1, .2, .3, and .5, for zero

cumulative production. Also shown is the line c - P. The critical price,

p* satisfies P — c -

VQ.
and so is given by the intersection of the VQ

curve with the line c - P. When a — 0, p — r - 6 — 0, so VQ is zero up to
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the critical price of $19, and then is constant at $21 (as in Figure 1).

Note that the larger is a, the larger is P'. For example, when a — 5

is about $31.

The effect of price uncertainty on the shadow value of cumulative

production depends on the current level of price. The possibility of future

increases in price raises VQ and the possibility of decreases reduces it.

At prices well below the critical price for a — 0, it is the possibility of

increases in price that dominates, so price uncertainty increases VQ. To

see this, note that if a — 0, price can never increase (because 5 = r), so

future cost savings have no value if price is low. However if a > 0, price

may eventually rise sufficiently so that the firm produces, and thus

reductions in future costs have some value. For low F, the greater is a the

greater is the probability that the firm will begin to produce during some

finite horizon, and thus the greater is the present value of reductions in

future costs.

At higher prices the net effect is the opposite. Consider prices equal

to or exceeding the for a 0. If a — 0, production will continue

indefinitely, but if a > 0 price may fall in the future to the point at

which the firm shuts down (temporarily). The higher is a the sooner is this

likely to occur, and the greater is the proportion of time that the firm can

expect not to produce. Thus the higher is a the lower is the present value

of future cost savings, i.e. the lower is VQ. Also, as Figure 2 shows, the

higher is the critical price required for production.

Although an increase in uncertainty increases the critical price it

also increases the value of the finn at every price. Figure 3 shows the

value of the firm, V, as a function of P for a = 0, .1, .2, .3, and .5,

again for zero cumulative production. (For a . 2 the curve corresponds to
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the second column in Table 1.) As McDonald and Siegel (1985) have shown,

for every future time t the firm has an option to produce that is analogous

to a European call option on a common stock. The exercise price of each

option is the production cost C(Qt), so that the net payoff from exercising

is P - C(Q). (The exercise price is stochastic, because future production

cost is contingent on the evolution of price.) The value of each call

option is a convex function of price, and therefore is increasing in a. The

value of the firm is the total value of an infinite number of such call

options, one for every future time t, and therefore also increases with a.

Figure 4 shows the effects of changes in 6, the difference between the

risk-adjusted discount rate, i, and the expected rate of price growth, p.

(In each case r — .05, and a — .20.) Note that the higher is 6, the lower

is VQ and the higher is the critical price P* required for production. To

see why, suppose first that the firm is not producing (P < P*). Then the

higher is 6 the lower is p, so the greater is the time before production is

expected to commence, and the lower is the present value of future cost

savings. (This is much the same as the deterministic case shown in Figure

1.) Now suppose the firm is producing (P � P*). Now the higher is 6, the

shorter is the expected time before the firm will shut down (temporarily),

which again makes future cost savings worth less. Although not shown, the

total value of the firm V(P) is also smaller when 6 is higher, because price

is not expected to grow as fast.

5. Conclusions.

We have shown how a firm's optimal production decision can be derived

when there is learning-by-doing and uncertainty over future prices. 3y

assuming that the output price is spanned by existing assets, no

assumptions were needed regarding risk aversion or risk-adjusted discount
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rates - our production rule always maximizes the market value of the firm.

For simplicity we have assumed that marginal production cost is constant

with respect to the rate of output, but this assumption can easily be

relaxed. In addition, the model can be adapted to incorporate uncertainty

over factor prices as well as the price of output.

As is now well known, when a firm can shut down and later resume

production, its value is increased by uncertainty over future prices. For a

firm facing a learning curve, however, the shadow value of cumulative

production is reduced by price uncertainty over the relevant range of

prices, so that a higher price is required for the firm to produce. For

those industries in which the learning curve is an important determinant of

cost, this has a curious implication: Other things equal, during periods of

high volatility firms ought to be producing less, but are worth more.
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Aviendix - Derivation of Equation (9)

Our assumption that P is spanned by traded assets implies that there

exists a dynamic portfolio strategy that "replicates" the total return on P;

i.e., one can invest in an asset/portfolio with price dynamics dP — (p-8)Pdt

+ o-Pdz, which pays a dividend at rate SPdt.

Let F(P,Q) be the solution to equation (9),

aP2F, + (r-6)PF +
XFQ

- rF + x[P-c(Q)] — 0, (9')

with 0 � x 1, and boundary conditions 10(a) - 10(d). From Ito's Lemma:

dF — [ a2P2F + (-5)PF -1 xFJdt + cPFdz. (A.l)

Substituting from (A.l):

dF = FdP + [rF - (r&)PF - x(P-cfldt. (A.2)

The continuous-time portfolio strategy with a fraction A(t) invested in

the asset that replicates P, a fraction l-A(t) invested in the riskless

asset, and which makes net withdrawals at a rate x(P-C), has d)mamics:

dY = AY1' 6dtl + (l-A)Yrdt - x(P-C)dt. (A.3)

Choosing A FP/Y, we have:

dY — F(dP+6dt) + (YF)rdt - x(P-C)dt (A.4)

Hence, dF - dY — r(F-Y)dt. If the initial value of the portfolio is chosen

as Y — F, then the portfolio Y will always have the same value as F. Since

portfolio Y has the same value as the contingent claim V(P,Q) at the

boundaries, and receives the same net payments as the contingent claim, in a

well-functioning capital market it must be the portfolio that replicates

the contingent claim. But Y — F, so the value of the contingent claim is F,

the solution to eqn.(9) and boundary conditions above.
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Table 1 - Value of Firm and Optimal Production Rule

Cumulative Production (and Current Cost)
0.00 4.00 8.00 12.00 16.00

(40.00) (30.32) (22.98) (17.41) (13.20)

20.00

(10.00)

42.95 495.30 546.50 613.86 646.28 664.38 670.12
41.26 462.72 531.49 580.74 613.13 631.23 636.96
39.65 431.58 499.84 548.96 581.33 599.42 605.16
38.09 401.85 469.52 518.49 550.82 568.91 574.65
36.60 373.49 440.49 489.27 526.56 539.65 545.38
35.16 346.49 412.69 461.26 493.51 511.59 517.32
33.78 320.83 386.09 434.41 466.60 484.68 490.41
32.46 296.49 360.67 408.69 440.82 458.88 464.61
31.19 273.47 336.38 384.06 416.10 434.16 439.89
29.96 251.77 313.20 360.48 392.43 410.47 416.20
28.79 231.40 291.11 337.91 369.75 387.78 393.50
27.66 212.39 270.08 316.33 348.03 366.04 371.76
26.58 194.75 250.10 295.70 327.24 345.23 350.95
25.53 178.53* 231.15 276.00 307.36 325.31 331.03
24.53 163.76 213.24 257.21 288.33 306.25 311.98
23.57 150.22 196.35 239.29 270.15 288.03 293.75
22.65 137.79 180.50 222.24 252.78 270.61 276.32
21.76 126.40 165.70 206.03 236.20 253.96 259.67
20.91 115.94 151.97 190.65 220.39 238.06 243.77
20.09 106.35 139.32* 176.09 205.32 222.89 228.60
19.30 97.56 127.80 162.35 190.97 208.42 214.12
18.54 89.49 117.23 149.42 177.33 194.62 200.32
17.81 82.09 107.53 137.31 164.38 181.49 187.18
17.12 75.30 98.64 126.01 152.11 169.00 174.67
16.44 69.07 90.48 115.54 140.50 157.13 162.69
15.80 63.36 83.00 105.92* 129.55 145.86 151.50
15.18 58.12 76.13 97.16 119.26 135.19 140.79
14.59 53.31 69.83 89.12 109.61 125.09 130.65
14.01 48.90 64.06 81.75 100.62 115.55 121.06
13.46 44.86 58.76 74.99 92.29 106.57 112.00
12.94 41.15 53.90 68.79 84.61* 98.13 103.47
12.43 37.74 49.44 63.10 77.62 90.22 95.45
11.94 34.62 45.35 57.88 71.20 82.84 87.93
11.47 31.76 41.60 53.09 65.31 76.00 80.89
11.02 29.13 38.16 48.70 59.91 69.68* 7433
10.59 26.72 35.00 44.67 54.95 63.92 68.24
10.18 24.51 32.11 40.98 50.41 58.63 62.61*
9.78 22.48 29.45 37.59 46.24 53.78 57.43
9.39 20.62 27.02 34.48 42.41 49.33 52.68
9.03 18.92 24.78 31.63 38.90 45.25 48.33
8.67 17.35 22.73 29.01 35.69 41.51 44.33
8.33 15.92 20.85 26.61 32.74 38.08 40.66
8.00 14.60 19.13 24.41 30.03 34.93 37.30

Note:
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FOOTNOTES

1. For examples, see Aichian (1963), Rapping (1965), Baloff (1971), and
Lieberman (1984). For a number of years, the Boston Consulting Group
(1972) made the explanation of the existence and implications of the
learning curve a central focus of their corporate consulting practice.

2. The learning curve also has implications for strategic behavior, which
we will not address in this paper. Strategic considerations are
discussed by Spence (1981) and Fudenberg and Tirole (1983). We also
ignore learning spillovers from one firm to another; see Zimmerman
(1982) for estimates of learning externalities in the construction of

nuclear power plants.

3. As Spence (1979) has shown, if the discount rate is zero and there is
no uncertainty over future demand or cost, current marginal revenue can
be set equal to the ultimate marginal cost that will prevail when the
firm has reached the bottom of the learning curve. However, there is
no reason to for the discount rate to be zero, and there is every
reason for future demand to be uncertain.

4. Dierkens (1984) examines the decision to invest in a production
technology with uncertainty, in which costs decline with cumulative
output. However in her model the only allowed change in production is
a once and for all abandonment.

5. Note that different learning curves can be characterized by different
values for the parameters c and -y. For example, the firm may have a
choice between two production technologies, one with a high level of
initial unit cost (c) but with a steeper learning curve (i.e., higher y).

6. If there is a futures market for the output, the convenience yield can
be estimated from the spot and futures prices. See Brennan and
Schwartz (1985) and McDonald and Siegel (1984).

7. See Merton (1977), and the discussion on pages 7-8 in Majd and Myers

(1986)

8. It is not difficult to include costs of stopping and restarting
production. See Brennan and Schwartz (1985) for a model of a mining
firm that includes these costs.

9. We employ this method in Majd and Pindyck (1987). For a useful
discussion of finite difference methods, see Brennan and Schwartz (1978).

10. Bodie and Rosansky (1980) report the following annual standard
deviations of percentage price changes over 1950 - 1976: wheat, 30.7

percent; corn, 26.3; oats, 19.5; eggs, 27.9; broilers, 39.2; cattle,
21.6; hogs, 36.6; wool, 37.0; cotton, 36.2; orange juice, 31.8; copper,
47.2; silver, 25.6; and lumber, 34.7.

11. In Table 1 the critical price is $10.18 when cumulative production is
20. This is an artifact of the discretization used to obtain a solution.
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