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Introduction

To win in an election, parties need to get their supporters out to vote. This paper
develops a model of political competition with two political parties that seek to max-
imize the probability of winning an election. The electorate includes rule-utilitarian
voters who participate in an election only if the benefits of a victory of their preferred
party outweigh the costs of voting. That is, participation is endogenous. Parties pro-
pose policies taking into account these implications for turnout. That is, policies are
endogenous. We show that parties face a trade-off between maximizing their base,
defined as the mass of citizens who are better off if the party wins, and getting their
supporters out to vote. This in turn translates into the central determinant of the
choice of policies, namely, a trade-off between mobilizing one’s own supporters and
demobilizing those of the adversary.

Our formal analysis combines the probabilistic voting model due to Coughlin and
Nitzan (1981) and Lindbeck and Weibull (1987) with the models of participation
in elections due to Harsanyi (1980), Coate and Conlin (2004) and Feddersen and
Sandroni (2006). In probabilistic voting models it is assumed that parties maximize
their vote shares and voters trade off idiosyncratic party preferences with the utility
they derive from the platforms that the competing parties propose.1 Appropriate
assumptions on the distribution of party preferences then ensure that equilibrium
policies are well-defined and the focus is on the characterization of the policies that
emerge in a probabilistic voting equilibrium. It is, however, assumed that everyone
who is eligible to vote participates in the election. This assumption is relaxed by
the literature that treats turnout as an endogenous political equilibrium outcome.
We follow the literature that models participation in an election as the outcome of
a rule-utilitarian calculation. The supporters, say, of party 1 formulate a rule for
participating in an election that trades off what is at stake for the supporters of party
1 against their costs of voting. As has been shown by Coate and Conlin (2004) and
Feddersen and Sandroni (2006), this approach yields comparative statics properties
of turnout that are consistent with stylized facts about participation in elections, e.g.,
participation is larger the closer is the race between the two alternatives, or the more
polarized preferences are. The literature on endogenous turnout views the alternatives
in an election as exogenously given, however. Choices are between a competitor and

1The probabilistic voting model is a special case of what has been coined a random participation
model by Rochet and Stole (2002).
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an incumbent, or between a reform and a status quo so that there is no analysis
of a party’s problem to refine the alternatives that are proposed so as to achieve a
higher turnout of its supporters and thereby a higher probability of winning. With
our approach, both the platform choices of parties and the turnout decisions of voters
are equilibrium outcomes.

It is a frequent observation that individuals with high incomes are more likely
to participate in elections than individuals with low incomes. We therefore study
the implications of our approach for a policy domain that allows for a differential
treatment of individuals with different incomes. A natural policy space is therefore
to consider non-linear income tax schedules, so that parties can propose tax schedules
that are, e.g., progressive, flat or regressive; they can propose high marginal tax rates
on the rich or earnings subsidies for the poor, etc. Note that the set of non-linear tax
policies is a multi-dimensional policy space. With such a policy space, the existence
of a Condorcet winner is not to be expected. This creates a complication for any
political economy analysis of non-linear tax systems. Our main contribution is to
provide a characterization of the non-linear income tax system that emerges in a
political equilibrium with endogenous turnout. Another contribution is to provide
sufficient conditions for the existence of a pure strategy equilibrium.

Equilibria with endogenous turnout are driven by strategic considerations that
have no analogue in models with exogenous turnout. With exogenous turnout, parties
“only” need to check whether they can deviate from a hypothetical equilibrium policy
to an alternative that makes a larger set of voters better off – of course, taking account
of the incentive and resource constraints that define the set of admissible tax policies.
With endogenous turnout, a larger set of supporters no longer translates automatically
into a larger probability of winning. An increase of the set of supporters may lead to
a decrease in the probability of winning. For instance, if party 1’s proposal becomes
more similar to the proposal of party 2, this may increase the set of individuals who
like party 1’s proposal better while at the same time reducing their incentive to vote.
Why bother to vote when the proposals are similar anyway, if the agent has no strong
idiosyncratic preference for either party?

Our main result is to show that the equilibrium policy has a particularly simple
form. The equilibrium is symmetric, i.e., both parties propose the same policy in
equilibrium. The equilibrium policy is determined by a weighted sum of two terms,
one reflecting a party’s benefit from mobilizing its own supporters and one reflecting
the benefit from demobilizing the supporters of the other party. The weights are gov-
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erned by the distribution of the voters’ party attachments. The intuitive explanation
is as follows. A party that seeks to win an election has to strike a balance between
providing benefits to its loyal supporters to get them out to vote and providing bene-
fits to the most loyal supporters of the rival to make sure that they have no reason to
vote. Moreover, if a party is unlikely to win, it focuses on its own supporters. If the
party is the favorite, by contrast, it puts most weight on minimizing turnout in favor
of the opponent. For this reason, a party that is left-leaning in the sense of having
more loyal supporters with below average income chooses to avoid high taxes on the
rich whenever it is the likely winner of an election. It chooses to propose significant
taxes on the rich only if it cannot expect to win. The same logic can explain why
a party that is supported to a larger extent by voters with above average income
and expects to win chooses, e.g., not to propose to replace a progressive income tax
system by a flat tax. It does so only when its chances of winning are low.

Our findings contrast with those of the probabilistic voting models. In these mod-
els, also known as swing voter models, participation is exogenous. The parties thus
do not face a trade-off between maximizing their base and getting their supporters
out to vote. All parties care about is to maximize their base, as a larger base trans-
lates mechanically into a larger number of votes. Policy proposals are therefore more
favorable to voters whose idiosyncratic party preferences are less pronounced. There
is no point to cater towards citizens who inelastically vote either for party 1 or for
party 2. With endogenous turnout, by contrast, parties also need to pay attention to
the incentives of their more loyal supporters to come to the ballot. That is, we show
that the key determinant of policies is not the strength of the response of the swing
voters but how the party attachments of voters vary with their incomes.

Our findings also contrast with those of the ethical voters models. With en-
dogenous payoffs, we find that political equilibrium policies are symmetric, i.e., both
parties propose the same tax policy. This is not compatible with the assumption in
the literature on endogenous turnout that there is a choice between two well-defined
and distinct political alternatives. It shows that endogenous turnout does not by itself
imply that parties have an incentive to differentiate from each other. It is true that
such differentiation would increase overall turnout. Parties, however, do not seek to
maximize turnout, but the probability of winning the election. This objective makes
both parties compromise between mobilizing their own supporters and demobilizing
the other party’s supporters – with the implication that their proposals are identical
in equilibrium.
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Our paper also contributes to the literature on optimal welfare-maximizing tax-
ation (Mirrlees (1971), Diamond (1998) and Saez (2001)). Specifically, we address
the fundamental question whether welfare-maximizing tax systems have a chance in
the political process, or, put differently, whether the political process gives rise to po-
litical failures, i.e., to outcomes with undesirable welfare properties. A planner who
maximizes a concave social welfare function assigns more weight to the well-being
of the poor than to the well-being of the rich. All else equal, marginal tax rates
should therefore increase with income. For parties who seek to win an election, the
well-being of voters has only instrumental value. We derive conditions on primitives –
i.e., the distribution of party preferences, attitudes towards participation in elections
and productive abilities – under which parties assign more weight to the well-being
of the rich than to the well-being of the poor, with the consequence that political
equilibrium tax schedules are incompatible with the maximization of a social welfare
function.

Our analysis of political failures provides support for the generalized social welfare
weights of Saez and Stantcheva (2016). They argue that tax polices are as if a
generalized social welfare function was maximized that may also reflect non-welfarist
value judgments or political economy forces. We provide an explicit characterization
of the generalized social welfare weights that correspond to the political equilibrium
policies in our setup and thereby develop a political economy microfoundation for
this idea. This provides in particular a rationale for the empirical finding of the high
implicit social welfare weights on the rich in Lockwood and Weinzierl (2016).

Throughout we make use of functional derivatives for an analysis of political equi-
librium policies. Piketty (1997) and Saez (2001) introduced the perturbation method
as an intuitive approach for the characterization of optimal tax systems. A rigorous
formal analysis of this idea requires the use of functional derivatives, see Golosov,
Tsyvinski and Werquin (2014). We show that these techniques are also useful for an
analysis of strategic interaction. First, a game in which two parties maximize the
probability of winning is a zero sum game. Consequently, a pure strategy equilibrium
exists if and only if the two parties’ proposals are a saddle point of the function that
gives party 1’s probability of winning. We use functional derivatives to determine
the conditions under which this function has a saddle point and the existence of pure
strategy equilibria can be ensured. Second, we use functional derivatives to analyze
whether the tax policies proposed by different parties are strategic substitutes or com-
plements. Best response problems – one party choosing a tax policy to maximize its
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probability of winning, taking as given the other party’s proposal – are akin to the
planning problems studied in the literature on optimal, welfare-maximizing taxation
only if the best response of one party is independent of the other party’s proposal,
i.e., only if there is a dominant strategy equilibrium.

The literature on probabilistic voting has focused on the special case of idiosyn-
cratic party preferences that are drawn from a uniform distribution. With a uniform
distribution, political equilibrium policies are also the maximizers of a utilitarian so-
cial welfare function. We show that a uniform distribution, moreover, gives rise to a
dominant strategy equilibrium, but only under the assumption that turnout is exoge-
nous. With endogenous turnout, by contrast, the two parties’ best response problems
are strategically intertwined. An analysis of political competition with endogenous
turnout is therefore also technically more demanding than the analysis of a proba-
bilistic voting model with exogenous turnout. We characterize these best responses
in closed for an arbitrary policy of the opponent.

Related literature. Our analysis draws on the literature on the paradox of voting,
i.e., on the question why people vote even if the chance of affecting the outcome is
negligible and going to the ballot box somewhat inconvenient. Downs (1957) and
Riker and Ordeshook (1968) are the classical references. Riker and Ordeshook classify
theories that give rise to the prediction that rational agents do not participate in
large elections as “positive, but not descriptive.” Various approaches have since been
explored to come up with a model that explains both participation and abstentions in
elections, see Feddersen (2004) for a survey. We draw on one strand of this literature
due to Harsanyi (1980), Coate and Conlin (2004) and Feddersen and Sandroni (2006).
In this approach, voters participate in elections because they feel a civic duty to
vote. More specifically, the civic duty is to follow a participation rule that requires
an individual to participate if her voting costs are below a cutoff and to abstain
otherwise. The cutoff is determined by rule-utilitarian calculus that weighs the social
benefits and the social costs of voting. The framework of Coate and Conlin (2004) and
Feddersen and Sandroni (2006) not only has plausible comparative statics properties
but also studies models with a continuum of voters. We are interested in redistributive
income taxation and employ the workhorse of this literature due to Mirrlees (1971).
The Mirrleesian model also has a continuum of agents. This makes it convenient to
take Coate and Conlin (2004) and Feddersen and Sandroni (2006) as the starting
point of our analysis.

5



We use the Mirrleesian model of non-linear income taxation, except that we do not
impose the assumption that the tax policy is chosen by a benevolent social planner.
There is a literature that studies political economy forces in connection with non-linear
taxation. There is, however, no predecessor that relates differences in participation
in the political process among low, middle and high income classes to the non-linear
tax policies that arise in a political equilibrium.2

We investigate the welfare properties of political equilibrium policies. We follow
Saez and Stantcheva (2016) who propose to interpret political economy outcomes us-
ing the notion of generalized social welfare weights. A related approach is taken by
Bierbrauer and Boyer (2016) who provide an analysis of whether analogues to the
fundamental theorems of welfare economics hold in models of political competition.
Lockwood and Weinzierl (2016) argue that it is difficult to reconcile the social welfare
weights found empirically with those implied by a social welfare function that values
redistribution from high to low incomes; taking abstention into account can explain
this finding.3

The remainder is organized as follows. Section 1 introduces a general setup for an
analysis of political competition that connects probabilistic voting with endogenous
turnout. The implications of this framework for political equilibrium outcomes are
spelled out in Section 2. We characterize political equilibrium tax policies in Section 3.
This section contains the main results of the paper. Section 4 clarifies the significance
of endogenous turnout by providing a comparison to a model with exogenous turnout.
We discuss political failures and equilibrium turnout in Section 5. Section 6 concludes
with a discussion of generalized social welfare weights. Unless stated otherwise, proofs
are relegated to the Appendix.

2Acemoglu, Golosov and Tsyvinski (2008) and Acemoglu, Golosov and Tsyvinski (2010) embed
dynamic problems of taxation into the political agency model due to Barro (1973) and Ferejohn
(1986). Farhi et al. (2012) use a probabilistic voting model in which legislatures lack powers of
commitment to study capital taxation. Bierbrauer and Boyer (2016) study Downsian competition
when politicians not only propose income tax schedules but also engage in pork-barrel spending.
Brett and Weymark (2017) and Roell (2012) embed non-linear income taxation into the citizen-
candidate framework that has been developed by Besley and Coate (1997) and Osborne and Slivinski
(1996).

3See also Weinzierl (2014).
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1 Endogenous turnout: a general framework

The voters’ preferences. There is competition between two political parties, J =

{1, 2}. Parties choose policies from a set of feasible policies P . Party j’s proposal
is denoted by pj. There is a continuum of voters of mass one. Voters differ in
their preferences over policies. They evaluate policies according to a utility function
u : P×Ω→ R, where Ω is a set of possible preference types. Thus, u(p, ω) is the utility
that a type ω-individual realizes under policy p. The cross-section distribution of
types is taken to be common knowledge. It is represented by a cumulative distribution
function F with density f .

Voters not only have preferences over policy outcomes but also idiosyncratic party
preferences. We assume that type ω of voter i votes for party 1 if

u(p1, ω) ≥ u(p2, ω) + εi ,

where εi ∈ R is a random variable that we refer to as agent i’s idiosyncratic preference
for party 2. Conditional on ω, party preferences of different voters are independent
and identically distributed. The probability that a type ω-individual votes for party 1
is given by B (u (p1, ω)− u (p2, ω) | ω), where B(· | ω) is the cumulative distribution
function that represents the distribution of party preferences among voters of type ω.
We denote the corresponding density by b(· | ω).

Special case. We frequently invoke the assumption that idiosyncratic party biases
follow a uniform distribution.

Assumption 1. For any one ω ∈ Ω, there are numbers s1(ω) ∈ (0, 1) and α(ω) > 0

so that

B(x | ω) =


0, if x < − s1(ω)

α(ω)
,

s1(ω) + α(ω) x, if x ∈
[
− s1(ω)

α(ω)
, 1−s1(ω)

α(ω)

]
,

1, if x > 1−s1(ω)
α(ω)

.

Whenever we invoke this assumption, we also assume that the support of the dis-
tribution is sufficiently wide so that B(x | ω) = s1(ω) + α(ω) x, for all values of
x = u (p1, ω)− u (p2, ω) that we are concerned with.

Under Assumption 1, if both parties make the same proposal so that p1 = p2 and
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hence u(p1, ω)− u(p2, ω) = 0, then

B(u(p1, ω)− u(p2, ω) | ω) = s1(ω) ,

i.e., s1(ω) is a measure of party 1’s strength in the subset of type ω citizens. It gives
the party’s support among ω-types in a situation where the parties propose the same
policies. Analogously, s2(ω) := 1 − s1(ω) is a measure of party 2’s strength. We
refer to s1(ω) and s2(ω) as measuring the attachment of type ω-voters to parties 1
and 2, respectively. The parameter α(ω), by contrast, measures the extra fraction
of type ω-voters that swing to party 1 if it deviates from p1 = p2 and offers more
utility to type ω-voters. As will become clear, the uniform distribution is useful in
that it allows us to capture in a transparent way the difference between a policy
that is targeted at swing voters – i.e., making more attractive offers to voter types
ω with a comparatively high value of α(ω) – and a policy that is targeted towards a
party’s most loyal voters – i.e., making more attractive offers to voter types ω with a
comparatively high value of sj(ω).

Votes. Given two policies p1 and p2, the mass of supporters of party 1, henceforth
referred to as its base, is given by

Γ1(p1, p2) = E[B(u(p1, ω)− u(p2, ω) | ω)]

and the base of party 2 equals Γ2(p1, p2) = 1 − Γ1(p1, p2), where the expectation
operator E always indicates the computation of a population average with respect
to different types ω. The base of each party is split into three groups, a group that
always votes, a group that always abstains, and a group of voters whose voting decision
follows from a rule-utilitarian calculation. The previous literature often refers to this
last group as ethical voters. We denote by q̃jv(ω) the fraction of definite voters among
the type ω supporters of party j, by q̃ja(ω) the fraction of definite abstainers and
by q̃ju(ω) the fraction of rule-utilitarian or ethical supporters. Obviously, q̃jv(ω) +

q̃ja(ω) + q̃ju(ω) = 1. We assume that these are random quantities both from the
perspective of parties when choosing platforms and from the perspective of voters
when choosing whether or not to vote. We write q̃j = {q̃jv(ω), q̃ja(ω), q̃ju(ω)}ω∈Ω for
the collection of random variables that refer to party j. We denote the expected value
of the random variable q̃ju(ω) by q̄ju(ω).
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Denote by σj the fraction of ethical voters among party j who turn out to vote.
The total number of votes for party 1 is then a random variable equal to

Ṽ 1(p1, p2, σ1, q̃1) = E[(q̃1v(ω) + σ1 q̃1u(ω))B(u(p1, ω)− u(p2, ω) | ω)] .

Analogously, the total number of votes for party 2 equals

Ṽ 2(p1, p2, σ2, q̃2) = E[(q̃2v(ω) + σ2 q̃2u(ω))(1−B(u(p1, ω) − u(p2, ω) | ω))] .

Turnout. The rule-utilitarian supporters of any one party j adhere to a rule for
participation in the election that maximizes the expected utility of the supporters of
party j, taking the costs of voting into account. As a consequence, turnout depends
on the parties’ policy proposals.

In the Appendix, we show that this problem of the rule-utilitarian supporters of
party 1 admits the following representation: Choose σ1 ∈ [0, 1] to maximize

π1(p1, p2, σ1, σ2) W 1(p1, p2)− κ σ1 Γ̄1u(p1, p2) , (1)

where π1(p1, p2, σ1, σ2) is the probability that party 1 wins, W 1(p1, p2) is the welfare
gain realized by the supporters of party 1 if their party 1 wins relative to the utility
they would get if party 2 won, and κ σ1 Γ̄1u(p1, p2) is a measure of expected voting
costs. We now explain these expressions in more detail.

The welfare gain satisfies

W 1(p1, p2) = E[G1
W (u(p1, ω)− u(p2, ω) | ω)] ,

where

G1
W (x | ω) :=

ˆ
(x− εi)1{εi ≤ x} b(εi | ω) dεi = B(x | ω) x − E1(x | ω) ,

with E1(x | ω) =
´ x
−∞ εi b(εi | ω) dεi, is the gain that type ω supporters of party 1

realize if party 1 wins and the utility difference u(p1, ω)− u(p2, ω) is equal to x. This
gain has two components: B(u(p1, ω)−u(p2, ω) | ω)(u(p1, ω)−u(p2, ω)) is the welfare
gain realized by the supporters of party 1 if party 1’s platform is implemented instead
of party 2’s platform, and E1(u(p1, ω)−u(p2, ω) | ω) is the sum of the gains (or losses)
that the supporters of party 1 realize because of their idiosyncratic party preference.
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We denote per capita voting costs by κ and assume them to be the same for all
rule-utilitarian voters. We interpret σ1 as the rule-utilitarian voter’s probability of
voting so that expected voting costs per capita are equal to k(σ1) = κ σ1.4 Total
expected voting costs are then given by κ σ1 Γ̄1u(p1, p2) where

Γ̄1u(p1, p2) = E[q̄1u(ω) B(u(p1, ω)− u(p2, ω) | ω)]

is the expected value of the mass of rule-utilitarian supporters of party 1.5

The analogous problem for the ethical supporters of party 2 is to choose σ2 ∈ [0, 1]

to maximize

(1− π1(p1, p2, σ1, σ2)) W 2(p1, p2)− κ σ2 Γ̄2u(p1, p2) , (2)

where Γ̄2u(p1, p2) = E[q̄2u(ω) (1 − B(u(p1, ω) − u(p2, ω) | ω))] is the mass of rule-
utilitarian supporters of party 2, W 2(p1, p2) = E[G2

W (u(p2, ω) − u(p1, ω) | ω)] is the
welfare gain realized by the supporters of party 2 if their party wins with, for any
x ∈ R,

G2
W (x | ω) := (1−B(−x | ω)) x + E2(−x | ω) ,

where E2(−x | ω) =
´∞
−x εi b(εi | ω) dεi. Lemma 8 in the Appendix shows what the

benefit functionsW 1 andW 2 are equal to for the special case of uniformly distributed
party biases.

Equilibrium turnout. Given p1 and p2, a pure strategy equilibrium of the turnout
game can be characterized by a pair of participation thresholds (σ1∗(p1, p2), σ2∗(p1, p2))

that are mutually best responses.

Best responses and equilibrium policies. We assume that parties seek to max-
imize their probability of winning. We will often take the policy proposal of party 2
as fixed and consider the best-response problem of party 1 so that, for given p2, party

4Feddersen and Sandroni (2006) and Coate and Conlin (2004) assume, by contrast, that any one
voter i has voting costs equal to κ σi, where σi is an idiosyncratic component that is i.i.d. across voters
and uniformly distributed over the unit interval. For them, σ1 is a cutoff so that all ethical supporters
of party 1 with σi ≤ σ1 are turning out to vote. In this case, k(σ1) = κ

´ σ1

0
σi di = κ 1

2 (σ1)2. For
our purposes, a linear cost function simplifies the exposition. In part B of the Appendix we clarify
how the analysis would have to be modified in the case of a quadratic cost function.

5The costs of those who always vote do not appear here because they are an additive constant
that does not affect the solution of the optimization problem.
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1 chooses p1 so as to maximize

π̄1(p1, p2) := π1(p1, p2, σ1∗(p1, p2), σ2∗(p1, p2)) .

The characterization of best responses allows us to clarify the logic of the two parties’
strategic interaction. For instance, it allows us to investigate whether the parties’
policy proposals are strategic substitutes or complements. It can also serve as an
input for an analysis of equilibrium policies. We distinguish between Nash equilibrium
policies and the policies that arise in a subgame perfect equilibrium. With both
solution concepts, the participation probabilities need to constitute an equilibrium of
the participation subgame, i.e.,

σ1 = σ1∗(p1, p2) and σ2 = σ2∗(p1, p2) .

A pair of subgame perfect equilibrium policies (p1, p2) then satisfies

π̄1(p1, p2) ≥ π̄1(p̂1, p2) , for all p̂1 ∈ P and π̄1(p1, p2) ≤ π̄1(p1, p̂2) , for all p̂2 ∈ P .

A pair of Nash equilibrium policies, by contrast, is such that

π1(p1, p2, σ1, σ2) ≥ π1(p̂1, p2, σ1, σ2) , for all p̂1 ∈ P ,

and
π1(p1, p2, σ1, σ2) ≤ π1(p1, p̂2, σ1, σ2) , for all p̂2 ∈ P .

For (p1, p2) to be a Nash equilibrium, it is required that the parties correctly an-
ticipate turnout and choose polices that maximize their winning probabilities, taking
this turnout as exogenously given. In a subgame perfect equilibrium, by contrast,
parties understand that alternative policy choices would also affect the equilibrium
of the participation subgame and take this repercussion into account. We are mainly
interested in subgame perfect equilibria that are interior, i.e., which are such that
turnout responds at the margin to changes in proposed policies. The characterization
of Nash equilibria is also of interest, however. First, a non-interior subgame perfect
equilibrium forces parties to find best replies to turnout rates that are locally unaf-
fected by changes in the platforms that the parties propose. Nash equilibrium policies
describe what parties do if turnout does not respond to proposed policies. Second,
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we show that Nash equilibrium policies are also similar to the equilibrium policies in
a probabilistic voting model with exogenous turnout, a useful benchmark.

Remarks on equilibrium existence. The setup introduced so far is very flex-
ible and nests prominent models of two-party competition. Models of Downsian
competition and probabilistic voting models usually impose the assumption that all
individuals always vote. Here, this amounts to assuming that, for all parties j and all
voter types ω, q̃jv(ω) = 1 and hence, q̃ja(ω) = q̃ju(ω) = 0 with probability 1. These
models differ, however, in their treatment of party preferences. They play no role in
Downsian models so that for all i, εi = 0 with probability 1 and hence, for any ω,

B(u(p1, ω)− u(p2, ω) | ω) =


0, if u(p1, ω) < u(p2, ω) ,
1
2
, if u(p1, ω) = u(p2, ω) ,

1, if u(p1, ω) > u(p2, ω) .

As is well-known, with a multi-dimensional policy space, pure strategy equilibria typ-
ically fail to exist in Downsian models of competition. Our analysis below focuses on
a particular multi-dimensional policy domain, the set of non-linear income tax poli-
cies. Since our framework nests the Downsian model as a special case, the existence
of pure strategy equilibria cannot be taken for granted.

Appropriate assumptions on the distribution of party preferences ensure existence
in probabilistic voting models with exogenous turnout. As will become clear below,
Nash equilibria typically exist in our framework under the same conditions as in
conventional probabilistic voting models.

The models on endogenous participation in large elections assume that for all voter
types ω, q̃jv(ω) = 0 and hence, q̃ju(ω)+ q̃ja(ω) = 1 with probability 1. An implication
is that a party’s probability of winning is equal to the probability of attracting more
rule-utilitarian voters than the opponent. Below, we provide conditions on primitives
that ensure the existence of a subgame-perfect equilibrium in this setting.

2 An equilibrium characterization

We provide an equilibrium characterization that allows to study specific policies in
the context of our model. We later use these insights for an analysis of political
competition over non-linear tax systems. As the first main result, we demonstrate in
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this section that parties face a tradeoff between maximizing their turnout advantage
and the size of their base.

From now on, we follow Coate and Conlin (2004) and Feddersen and Sandroni
(2006) and assume that there are no voters who come to the ballot irrespectively of
how high their voting costs are, i.e., every citizen is either of the rule-utilitarian or of
the abstaining type.

Assumption 2. For all ω, q̃1v(ω) = 0 and q̃2v(ω) = 0 with probability 1.

Harsanyi (1980) also allowed for voters who feel a civic duty to vote but do not
apply the rule-utilitarian logic. In the Appendix, we present a version of our model
that includes such voters and gives rise to an equilibrium analysis that is equivalent
to the one developed in the body of the text.

Lemma 1. Suppose that Assumption 2 holds. Take the parties’ proposals p1 and p2

as given. If the equilibrium of the turnout subgame (σ1∗(p1, p2), σ2∗(p1, p2)) satisfies
the first order conditions of the optimization problems (1) and (2), then

χ∗(p1, p2) :=
σ1∗(p1, p2)

σ2∗(p1, p2)
=
W 1(p1, p2)/Γ̄1u(p1, p2)

W 2(p1, p2)/Γ̄2u(p1, p2)
. (3)

The left-hand side of this equation is a measure of relative turnout: The larger
χ∗, the larger is the set of voters who turn out to vote for party 1 relative to the
set of voters who turn out to vote for party 2. The right hand side compares two
cost-benefit ratios; e.g., for the supporters of party 1, W 1/κ Γ̄1u relates the benefit
that comes with a victory of their preferred party to the expected cost of participating
in the election. According to equation (3), relative turnout depends on the ratio of
these cost-benefit-ratios.

We now impose additional structure that allows us to provide a clear exposition of
the parties’ objectives, while still taking into account the equilibrium in the turnout
subgame.

Assumption 3.

i) A type ω supporter of party 1 is as likely to be of the ethical type as a type ω
supporter of party 2. Formally, q̄u1(ω) = q̄u2(ω) =: q̄u(ω).

ii) There is uncertainty about the fraction of type ω supporters of either party who
are of the ethical type. Specifically, for party 1, there is a random variable η1 with
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support bounded from above by 1 and mean 0 so that q̃u1(ω) = q̄u(ω)(1 − η1), for all
ω. For party 2, there is another random variable η2 so that q̃u2(ω) = q̄u(ω)(1 − η2),
for all ω.

Part i) of Assumption 3 implies that

Γ̄1u(p1, p2) = E[q̄u(ω)]− Γ̄2u(p1, p2) . (4)

According to this equation, in expectation, the contributions of rule-utilitarian voters
to the two parties’ bases add up to a constant. Hence, a change in the proposed
policies that increases, say, the base for party 1, translates, one for one, into a decrease
of party 2’s base. According to part ii) the shares of rule-utilitarian supporters in
party j is a random variable and its deviations from its mean are driven by a random
variable ηj. As a consequence, there is uncertainty whether party 1 or party 2 will
be the winner of the election.6

Lemma 2. Under Assumptions 2 and 3,

π̄1(p1, p2) = P
(
χ∗(p1, p2)

Γ̄1u(p1, p2)

Γ̄2u(p1, p2)

)
, (5)

where P is the cdf of the random variable 1−η2
1−η1 .

According to this Lemma, the probability that party 1 wins the election is a
non-decreasing function of χ∗(p1, p2) Γ̄1u(p1,p2)

Γ̄2u(p1,p2)
. Therefore, party 1’s objective is to

maximize this expression and that party 2’s objective is to minimize it. Using equation
(4) we can write this expression also as

χ∗(p1, p2) M(Γ̄1u(p1, p2)) , where M(Γ̄1u(p1, p2)) =
Γ̄1u(p1, p2)

E[q̄u(ω)]− Γ̄1u(p1, p2)
(6)

is an increasing function of Γ̄1u(p1, p2)).
Equation (6) reveals that parties face a trade-off between maximizing their base

and getting their supporters out to vote. If turnout were exogenous, party 1 would
6We are assuming here that voting types (i.e., whether a given individual is a rule-utilitarian

voter or an always-abstaining) are drawn after policies have been proposed, i.e., after individuals
have been sorted to the parties’ bases (as a function of their payoff type ω and their preference type
ε). This allows for the possibility that voting behaviors differ across parties. For instance, party 1
may have good luck in the sense of having many rule-utilitarian supporters while party 2 has bad
luck, many abstaining supporters.
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simply focus on maximizing its base, Γ̄1u(p1, p2). If the base were exogenously given,
party 1 would maximize its turnout advantage χ∗(p1, p2). With both endogenous
turnout and an endogenous base, party 1 faces a trade-off between maximizing the
number of supporters and maximizing turnout.

To illustrate this trade-off suppose that p1∗ is a best response of party 1 to the
policy p2 proposed by party 2. Also suppose that the policy space P is such that
local deviations from p1∗ are well defined. Now consider a deviation p1 from p1∗ that
takes the form p1 = p1∗ + τ 1 h1, where h1 is a function that describes the direction
of the deviation from p1∗ and τ 1 is a scalar that measures the size of the deviation.
The deviation induces a payoff for party 1 equal to

χ∗(p1∗ + τ 1 h1, p2) M(Γ̄1u(p1∗ + τ 1 h1, p2)) .

Now, if p1∗ is a best response, then it must be true that this expression is, for any fea-
sible deviation h1, maximized by choosing the parameter τ 1 = 0. The corresponding
first order condition is

χ∗τ1(p
1∗, p2)M(Γ̄1u(p1∗, p2)) + χ∗(p1∗, p2)M ′(Γ̄1u(p1∗, p2))Γ̄1u

τ1(p1∗, p2) = 0 , (7)

where we let χ∗τ1(p
1∗, p2) := d

dτ1
χ∗(p1∗ + τ 1h1, p2)|τ1=0 and analogously for Γ̄1u

τ1(p1∗, p2).
To interpret this condition, suppose that P is the unit interval and that p1∗ lies

in the interior of it. (The logic of the argument applies for any policy space P
and any direction h1 for which the directional derivative is well-defined.) Models
of linear taxation, for instance, typically use this policy space.7 In these models,
tax revenues are used for redistribution so that higher tax rates are associated with
more redistributive or leftist policies. With P as the unit interval there is only one
feasible direction of policy reform, so that h1 is simply a constant. Now suppose
that party 1’s best response is such that its base could be increased by means of a
more leftist policy as Γ̄1u

τ1(p1∗, p2) > 0. Then, the first order condition (7) implies
that χ∗τ1(p

1, p2) < 0. Thus, a party whose base asks for more leftist policies sacrifices
turnout (and increases the turnout of the other party) by moving to the left. The
following Proposition summarizes.

Proposition 1. If p1∗ is a best response for party 1 that admits a characterization

7Prominent examples are Roberts (1977), Meltzer and Richard (1981) or Alesina and Angeletos
(2005).
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by the first order conditions in (7), then, for any feasible deviation h1,

χ∗τ1(p
1∗, p2) < 0 if and only if Γ̄1u

τ1(p1∗, p2) > 0 .

Proposition 1 shows that, with an interior equilibrium of the turnout subgame,
parties run into a tradeoff that forces them to compromise the implications of their
policy proposals for their turnout advantage with the implications of their policy
proposals for the size of their base. What is good for the base is bad for turnout and
vice versa. The Proposition highlights that this tradeoff is central to our analysis.
It does not yet illuminate, however, how parties resolve that tradeoff. Via equation
(3), χ∗(p1, p2) is an expression that also depends on Γ̄1u(p1, p2) and, in addition, on
W 1(p1, p2) and W 2(p1, p2). The following Proposition is more helpful in this respect.
It shows in part i) that the analysis of subgame perfect equilibrium policies can be
confined to the analysis of the saddle points of the function ψ(p1, p2) := W 1(p1,p2)

W 2(p1,p2)
.

We will also be interested in comparing subgame perfect equilibrium policies to Nash
equilibrium policies that do not take the endogeneity of turnout into account. By
part ii) of the Proposition, saddle points of the the function Γ̄1u(p1, p2) correspond to
Nash equilibrium policies.

Proposition 2.

i) Under Assumptions 2 and 3, if (p1, p2) is a pair of interior subgame perfect
equilibrium policies, then it is a saddle point of the function ψ(p1, p2) := W 1(p1,p2)

W 2(p1,p2)
.

ii) Under Assumptions 2 and 3, if (p1, p2) is a pair of Nash equilibrium policies,
then it is a saddle point of the function Γ̄1u(p1, p2).

According to part i) of the Proposition, if we want to study how party 1 resolves
the tradeoff between turnout and base, we can as well assume that party 1 seeks to
maximize ψ(p1, p2) := W 1(p1,p2)

W 2(p1,p2)
, i.e., an expression where the base no longer appears.

The reason is that the influence of the base on χ∗ that appears in equation (3)
exactly cancels with the expression Γ̄1u(p1,p2)

Γ̄2u(p1,p2)
that also appears on the right hand side

of equation (5).8

8As we show in part C of the Appendix, this would be different with a quadratic cost function.
Both with linear and with quadratic costs, however, subgame perfect equilibria differ from Nash
equilibria because they require to take into account ψ(p1, p2) := W 1(p1,p2)

W 2(p1,p2) .
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3 Subgame perfect equilibrium and non-linear in-

come taxation

It is a stylized fact that individuals with high incomes are more likely to participate
in an election than individuals with low incomes. Studying how the endogeneity of
turnout affects equilibrium policies therefore is most interesting for polices that affect
the rich and the poor differently. Our main focus is thus on the tax and transfer
system – as opposed to, say, infrastructure investment or national defense (which we
cover in Appendix E). Thereby we can also shed light on the following important
question. Papers that provide calibrations of welfare-maximizing tax systems often
suggest that top tax rates should be much higher than currently observed in modern
democracies, see e.g. Diamond (1998), Saez (2001). Having higher taxes, say, on the
top 10 percent and using the proceeds in a way that benefits the population at large
should also be politically feasible. A vast majority would benefit from such a reform,
see e.g. Bierbrauer and Boyer (2017). So why are the observed taxes on the rich lower
than the theory predicts? We will show that a political economy analysis that takes
the endogeneity of turnout into account can offer an explanation.

3.1 Non-linear income taxation

From now on we take the policy domain to consist of redistributive tax policies.
Individuals value after-tax income or private goods consumption denoted by c and
incur a disutility from the productive effort that is needed to generate pre-tax income
y. The preferences of a type ω individual over (c, y)-pairs are taken to be quasi-
linear in private goods consumption and represented by a utility function c− v(y, ω).
The function v measures the cost of productive effort and satisfies v1 > 0 and v11 >

0. Moreover, preferences have the Spence-Mirrlees single crossing property so that
absolute and marginal effort costs are decreasing in the individual’s type, v2 < 0 and
v12 < 0. This property implies that higher types will end up having higher (before
and after tax) incomes than lower types. Thus, high types are “the rich” and low
types are “the poor”.

Party j proposes a function T j : R+ → R that assigns a tax payment to any level
of pre-tax-income y. Voters then choose c and y so as to maximize utility subject
to c = y − T j(y). Admissible tax functions are those that generate non-negative
tax revenue. We use a mechanism design approach to obtain a characterization of
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admissible tax systems, see part D of the Appendix for details. An admissible tax
system T j can be equivalently represented by a non-decreasing earnings function
yj : Ω→ R+. Under such an earnings function, the utility realized by any one type-ω
individual can be written as a sum of two terms, the minimal level of utility that is
realized by the “poorest” type and the extra utility realized by higher types. More
formally, the utility that a citizen of type ω realizes under earnings function yj is
given by

uj(ω) = uj −
ˆ ω

ω

v2(yj(z), z) dz , (8)

where uj is the poorest type’s utility and −
´ ω
ω
v2(yj(z), z) is the information rent

realized by a higher type ω > ω. This terminology reflects that private informa-
tion on types is the impediment to first-best redistribution. The poorest type’s
utility equals the virtual surplus that is associated with an earnings function yj.
The virtual surplus is a surplus measure that takes into account the information
rents that tax-payers realize and which reduces what is available for the lowest type.
To arrive at the virtual surplus, the surplus of aggregate output over costs of ef-
fort s(yj) := E [yj(ω)− v(yj(ω), ω)] is reduced by the aggregate information rent
−E[
´ ω
ω
v2(yj(z), z) dz] = −E[1−F (ω)

f(ω)
v2(yj(ω), ω)], where the equality follows from an

integration by parts. Thus,

uj = sv(y
j) = E

[
yj(ω)− v(yj(ω), ω) +

1− F (ω)

f(ω)
v2(yj(ω), ω)

]
. (9)

To summarize, for the application of non-linear income taxation, the policy space is
the set of all non-decreasing earnings function. Any such function generates a payoff
profile that is characterized by equations (8) and (9). We are particularly interested
in the marginal tax rates that are associated with the tax systems that the parties
propose. To get from a monotonic earnings function to the associated tax schedule
we use the first order condition of the utility-maximization problem that individuals
face in the presence of this tax system. If tax system T j implements earnings function
yj, then

1− T j ′(yj(ω)) = v1(yj(ω), ω) .

Hence, 1− v1(yj(ω), ω) is the marginal tax rate that type ω agents face.
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3.2 Subgame perfect equilibrium

We now turn to the tax functions that constitute a subgame perfect equilibrium. By
Proposition 2, subgame perfect equilibrium policies are associated with a saddle point
of the function ψ(y1, y2) := W 1(y1,y2)

W 2(y1,y2)
. In the following we provide a characterization.

We begin with an analysis of best responses. As will become clear, a best response
of party 1 is a weighted average of the policy that maximizes the welfare gains that
the supporters of party 1 realize if their party wins, W 1(y1, y2), and the policy that
minimizes the gains of the supporters of party 2 if their party wins, W 2(y1, y2). As a
preliminary step, we consider two auxiliary best response problems for party 1: first,
the problem to maximize what is at the stake for the the supporters of party 1; and
second, the problem to minimize what is at stake for the supporters of party 2.

3.2.1 Mobilizing the supporters of party 1, demobilizing the supporters
of party 2

We analyze the problem to choose y1 so as to maximize W 1(y1, y2).9 The following
notation will prove helpful. Remember that W 1(y1, y2) = E[G1

W (u1(ω)− u2(ω) | ω)].
We denote the derivative of the function G1

W (· | ω) by g1
W (· | ω) and write

ḡ1
W (ω | y1, y2) := E[g1

W (u1(ω′)− u2(ω′) | ω′) | ω′ ≥ ω]

=
´ ω̄
ω
g1
W (u1(ω′)− u2(ω′) | ω′) f(ω′)

1−F (ω)
dω′

for the average value of g1
W (u1(ω′) − u2(ω′) | ω′) among individuals with a type ω′

above some cutoff ω. To interpret these expressions, suppose that party 1 offers
slightly more utility to type ω′ individuals. Then g1

W (u1(ω′) − u2(ω′) | ω′) measures
the extra gain that type ω′-supporters of party 1 realize in the event that party 1
wins rather party 2. Therefore, ḡ1

W (ω | T 1, T 2) is the gain that party 1 can generate
by offering all agents with types above ω slightly more utility. The gain that party 1
can generate by slightly raising everybody’s utility is given by ḡ1

W (ω | y1, y2) and the

9We thereby provide a characterization of the solution to a relaxed problem , as opposed to the
full problem to maximize W 1(y1, y2) subject to the constraint that y1 is a non-decreasing function.
Obviously, if the solution to the relaxed problem is non-decreasing then it is also a solution to the
full problem. Otherwise, the solution of the full problem will give rise to bunching. While it is well
known how the analysis would have to be modified if bunching is an issue, see e.g. Hellwig (2007)
or Brett and Weymark (2017), the trade-offs that shape best responses are, however, more easily
exposed when focusing on the relaxed problem.
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ratio
G1
W (ω | y1, y2) :=

ḡ1
W (ω | y1, y2)

ḡ1
W (ω | y1, y2)

relates the gain from making everybody with a type above ω better off to the gain
from making everybody better off.

Lemma 3. Given y2, the solution to maxy1 W
1(y1, y2) is such that, for all ω,

T 1′(y1(ω))

1− T 1′(y1(ω))
= −1− F (ω)

f(ω)

(
1− G1

W (ω | y1, y2)
) v21(y1(ω), ω))

v1(y1(ω), ω)
. (10)

The left hand side of equation (10) is an increasing function of the marginal tax
rate on the income of type ω individuals, T 1′(y1(ω)). According to the Proposition,
this marginal tax is lower the larger is G1

W (ω | y1, y2), i.e., the larger are the gains
that can be generated by making the proposed policy more attractive to individuals
with incomes above y1(ω). Two other two terms appear on the right hand side of
equation (10). The first term, 1−F (ω)

f(ω)
, is the inverse of the hazard rate of the type

distribution. This term relates the number of people who pay higher taxes after a
slight increase of T 1′(y1(ω)), 1−F (ω), to the mass of people whose incentives to exert
effort are worsening after such an increase, f(ω). Thus, marginal tax rates should be
lower the less favorable is the ratio of people who pay more taxes to people whose
effort is discouraged. The second term, −v21(y1(ω),ω))

v1(y1(ω),ω)
, measures the strength of the

behavioral response of those whose effort is discouraged. It is related to the inverse of
the elasticity of labor supply with respect to changes in the net wage.10 The marginal
tax rate should be lower the larger is this elasticity.

The optimality condition in (10) could also be derived on the assumption that
party 1 seeks to maximize sv(y1) − E [G(ω) v2(y1(ω), ω)] for G(ω) = G1

W (ω | y1, y2),
i.e., a utilitarian welfare objective with particular weights on the rents that are re-
alized by types ω > ω. In this maximization problem the weighting function G is
exogenously fixed, albeit at the level that is induced by y2 and party 1’s best re-
sponse. Thus, equation (10) is akin to Diamond (1998)’s formula in that it provides

10To see this, interpret ω as a wage rate and h = y
ω as hours worked. Suppose that the cost

of productive effort depends only on hours worked, so that there is an increasing and convex cost

function ṽ with v(y, ω) = ṽ
(
y
ω

)
. Then, v21(y,ω)

v1(y,ω) = − 1
ω

(
1 +

ṽ′′( y
ω ) y

ω

ṽ′( y
ω )

)
, where

ṽ′′( y
ω ) y

ω

ṽ′( y
ω )

is the inverse

of the elasticity of hours worked with respect to the wage rate. In particular, if the function ṽ is

isoelastic so that ṽ
(
y
ω

)
=
(
y
ω

)1+ε, then
ṽ′′( y

ω ) y
ω

ṽ′( y
ω )

= 1
ε .
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a characterization of optimal marginal tax rates that distinguishes three components:
the inverse hazard rate associated with the income distribution, a weighting of infor-
mation rents, and an inverse elasticity term. Note that the best response of party 1
is only implicitly defined as the function y1 appears both on the left-hand side and
the right hand side of equation (10). Moreover, the function y2 also appears on the
right hand side of (10). Hence the weighting of rents by party 1 also depends on
the policy that is proposed by party 2. This strategic interdependence distinguishes
the analysis of political equilibrium policies from the analysis of the policies that a
benevolent social planner would choose.

The following Lemma describes the solution to another auxiliary problem for
party 1, namely the problem to choose policy with the objective to minimize what is
at stake for the supporters of party 2. We omit a proof and discussion of the Lemma
as it would involve only a straightforward adjustment of those of Lemma 3. The
Lemma involves a weighting function G2

W for information rents that is derived from
W 2(y1, y2) = E[G2

W (u2(ω) − u1(ω) | ω)] along the same lines as G1
W is derived from

W 1(y1, y2).

Lemma 4. Given y2, the solution to miny1 W
2(y1, y2) is such that, for all ω,

T 1′(y1(ω))

1− T 1′(y1(ω))
= −1− F (ω)

f(ω)

(
1− G2

W (ω | y1, y2)
) v21(y1(ω), ω))

v1(y1(ω), ω)
. (11)

3.2.2 The main result: Best responses and equilibrium policies

We now turn to party 1’s best response problem of interest and then provide an
equilibrium characterization. Let y2 be an arbitrary, but given function, possibly
equal to y2∗. Given y2 we analyze the problem to choose y1 with the objective to
maximize ψ(y1, y2) := W 1(y1,y2)

W 2(y1,y2)
. Suppose that y1∗ is a solution to that problem. Then,

it must also be the case that τ 1 = 0 solves the problem to choose a scalar τ 1 with the
objective to maximize

ψ(y1∗ + τ 1 h1, y2) =
W 1(y1∗ + τ 1 h1, y2)

W 2(y1∗ + τ 1 h1, y2)
.
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for any given but arbitrary function h1. That is, we can characterize y1∗ by the
requirement that, for τ 1 = 0,

d

dτ 1
ψ(y1∗ + τ 1 h1, y2)

∣∣∣∣
τ1=0

= 0 ,

or, equivalently, that

W 1
τ1(y

1∗, y2)

W 1(y1∗, y2)
−

W 2
τ1(y

1∗, y2)

W 2(y1∗, y2)
= 0 .

This expression shows that the best response trades off two considerations. First,
mobilizing the supporters of party 1, as represented by the termW 1

τ1(y
1∗, y2). Second,

demobilizing the supporters of party 2, as represented by the term W 2
τ1(y

1∗, y2). The
weights given to these two considerations ensure that both objectives change by the
same amount in percentage terms when the policy reform h1 is implemented.

We proceed by introducing notation for a weighted average of G1
W and G2

W :

GSP (ω | y1, y2) := λ1(y1, y2) G1
W (ω | y1, y2) + (1− λ1(y1, y2)) G2

W (ω | y1, y2) ,

where the weight λ1(y1, y2) satisfies

λ1(y1, y2) =

[
1 + ψ(y1, y2)

ḡ2
W (ω | y1, y2)

ḡ1
W (ω | y1, y2)

]−1

.

Recall that the probability that party 1 wins is a monotonic function of ψ(y1, y2) =
W 1(y1,y2)
W 2(y1,y2)

. Thus, the weighting of G1
W and of G2

W is such that G1
W receives, ceteris

paribus, more weight if party 2 is more likely to win and G2
W receives more weight

if party 1 is more likely to win. Importantly, when both parties propose the same
policies we can suppress the dependence of these expressions on y1 and y2 and write,
e.g., ḡ1s

W (ω) := E[g1
W (0 | ω′) | ω′ ≥ ω] or G1s

W (ω) =
ḡ1sW (ω)

ḡ1sW (ω)
, where the superscript s

stands for symmetry.

Theorem 1.

i) Given y2, if y1 is a maximizer of ψ(y1, y2) then, for all ω,

T 1′(y1(ω))

1− T 1′(y1(ω))
= −1− F (ω)

f(ω)

(
1− GSP (ω | y1, y2)

) v21(y1(ω), ω))

v1(y1(ω), ω)
. (12)

22



ii) If (y1, y2) is a saddle point of ψ, then y1 = y2, where y1 is such that, for all ω,

T 1′(y1(ω))

1− T 1′(y1(ω))
= −1− F (ω)

f(ω)
(1− GsSP (ω))

v21(y1(ω), ω))

v1(y1(ω), ω)
. (13)

The proof of the theorem involves an analysis of the Gateaux differentials of
the function ψ(y1, y2). Part i) of Theorem 1 characterizes party 1’s best response
to an arbitrary proposal of party 2, whereas part ii) characterizes subgame perfect
equilibrium policies. The characterization of best responses involves the functions y1

and y2 that jointly determine the weighting function GSP that enters the right hand
side of (12). In contrast, the second part of the theorem delivers an explicit and
closed-form characterization of the equilibrium weights.

To see that equation (13) indeed delivers an equilibrium characterization in terms
of the primitives of the model, note first that equilibrium policies have to be symmet-
ric. As we show in the Appendix, the first order condition that y1 needs to fulfill to
qualify as a maximizer of ψ(y1, y2) is equal to the first order condition that y2 needs to
fulfill to qualify as a minimizer. Thus, in equilibrium, the weight that party 1 places
on mobilizing its own supporters is exactly equal to the weight that party 2 places on
demobilizing the supporters of party 1. Analogously, the weight that party 1 places
on demobilizing the supporters of party 2 is equal to the weight that party 2 places
on mobilizing its own supporters. Second, all the endogenous quantities that appear
in the characterizes of best responses, i.e. G1

W , G1
W , W 1, W 2, and λ1, are functions of

the utility differences u1(ω)− u2(ω), ω ∈ Ω. With a symmetric equilibrium, we know
that u1(ω) − u2(ω) = 0, for all ω ∈ Ω. This observation allows us to pin down the
equilibrium values of all of these endogenous variables.

Suppose, for concreteness, that idiosyncratic party biases follow a uniform distri-
bution (Assumption 1). In this case,

G1s
W (ω) =

E[s1(ω′) | ω′ ≥ ω]

s̄1
, G2s

W (ω) =
E[s2(ω′) | ω′ ≥ ω]

s̄2
and λ1s =

[
1 +

W 1s/s̄1

W 2s/s̄2

]−1

,

with s̄1 := E [s1(ω)] and s̄2 := E [s2(ω)], and with W 1s = 1
2
E [s1(ω)2/α(ω)] and

W 2s = 1
2
E [s2(ω)2/α(ω)]. Hence, what drives marginal tax rates here are the functions

s1 : Ω→ [0, 1] and s2 : Ω→ [0, 1] with s2(ω) = 1− s1(ω). Suppose that α(ω) = ᾱ for
all ω so that all types are equally inclined to swing to the party offering a better deal.
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The weights λ1s and λ2s := 1− λ1s on the weighting functions G1s
W (ω) and G2s

W (ω) are
then entirely shaped by the functions s1 and s2. Recall that s1(ω) is a measure of
party 1’s competitive advantage in attracting type ω-voters: if the parties propose the
same policies, a fraction s1(ω) supports party 1 and the complement s2(ω) supports
party 2.

For λ1s close to 1, party 1 focuses on the maximization of the benefits to its
supporters W 1(·) and weighs the rents of individuals with incomes above y(ω) by
G1s
W (ω), with the implication that marginal tax rates for these voters are low if the

voters’ attachment to party 1 in this subset of the electorate, E[s1(ω′) | ω′ ≥ ω], is
strong. If instead λ1s is close to 0, party 1 focuses on the minimization of the benefits
for the supporters of the competing party W 2(·) and weighs the rents of individuals
with incomes above y(ω) by G2s

W (ω), with the implication that marginal tax rates for
these voters are low if the voters’ attachment to party 1 in this subset of the electorate
is weak. More generally, an inspection of λ1s shows that it is, ceteris paribus, small
if ψs = W 1s/W 2s is large. Recall that party 1’s equilibrium probability of winning is
given by π1s = P (W 1s/W 2s) and hence is a monotonic function ofW 1s/W 2s. Thus, a
low probability of winning comes with a large value of λ1s. It implies, moreover, that
party 1 puts less weight on reducingW 2(·) than on maximizingW 1(·), i.e., it will then
focus on making an attractive offer to its own supporters – that is, its primary goal
is to mobilize its voters. By contrast, if party 1 is the front-runner in the campaign it
puts more weight on mitigating W 2(·) than on boosting W 1(·) – that is, its primary
goal is to demobilize the supporters of the opposite party.

We summarize this discussion in the following Corollary to Theorem 1.

Corollary 1. Suppose that Ba is a family of distribution functions, one for each
type ω, so that Ba(x | ω) = s1

a(ω) + αa(ω) x. Denote the corresponding equilibrium
quantities by λ1s

a , π1s
a , etc. Let Bb be another family of distribution functions with

Bb(x | ω) = s1
b(ω) + αb(ω) x that gives rise to equilibrium quantities λ1s

b , π1s
b , etc.

Suppose that s̄1
a = s̄1

b so that either party has, on average, the same voter attachment.
Then

λ1s
a < λ1s

b if and only if π1s
a > π1s

b .

Consider the implications of this equilibrium characterization for one of the most
focal aspects of tax design, the marginal tax rates on the rich. If one party has a high
chance of winning and, moreover, little attachment from the rich, then equilibrium tax
policies involve only small tax distortions on high incomes. Also the disadvantaged
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party with more attachment from the rich chooses to propose moderate tax rates at
the top. The latter does so in an attempt to increase the stakes for its supporters, the
former does so in order to undo this attempt. This observation rationalizes why even
a more left-leaning party – a party with a comparatively high support from voters
with low incomes – may shy away from heavier taxes on the rich. If the party is
the likely winner of the election, low taxes on the rich are valuable as they help to
discourage the supporters of the other, more right-leaning party. Only a left leaning
party with a small probability of winning chooses to propose high taxes on the rich
and hence a large amount of lump-sum redistribution to increase the benefits that its
own supporters would realize in the unlikely event that it wins the election. The same
logic can explain why a more conservative or pro-market party that is supported to
a large extent by voters with above average incomes may not propose to abandon a
progressive tax system. If the party is the likely winner of the election, its focus is on
weakening the support for the competing leftist party. It therefore chooses to propose
a platform that is appealing also to voters with below average incomes.

3.3 Existence of a saddle point

Subgame perfect equilibria give rise to a non-trivial strategic interdependence of the
parties’ proposals. We noted above that the weighting of information rents that is
associated with a best response of party 1 depends on the policy proposed by party
2. The possibility that the parties choices are strategic substitutes or complements
raises the question whether the existence of pure strategy equilibria can be ensured.
Matching pennies is the prototype zero-sum game with strategic complements and
it is well-known that it does not have a pure strategy equilibrium. The following
Proposition shows that upon imposing Assumption 1 we can also state sufficient
conditions for the existence of a subgame perfect equilibrium.

Proposition 3. Suppose that Assumption 1 holds and moreover that s1(ω) = 1
2
, for

all ω. Also suppose that there is a number ζ so that α(ω) ≤ ζ, for all ω. Then, a pair
of policies that satisfies (13) is a saddle point of the function ψ.

Proposition 3 looks at a symmetric case in which each party attracts fifty percent
of the electorate in the case that both parties make the same proposal. Moreover, it
assumes that the distribution of idiosyncratic party preferences has a wide support, as
captured by the assumption that α(ω) is, for all ω, sufficiently small. The proof in the
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Appendix is of a stand alone interest as it shows how to use functional derivatives to
check second order conditions that ensure equilibrium existence. The distributional
assumptions primarily serve to simplify the analysis. They are stronger than needed
as there is a range of close enough distributions for which second order conditions are
also fulfilled.

4 Nash equilibrium vs subgame perfect equilibrium

4.1 Nash equilibrium policies

We now compare subgame perfect equilibrium policies to Nash equilibrium policies.
Nash equilibrium policies do not take the endogeneity of turnout into account. The
comparison therefore allows us to highlight how this endogeneity shapes equilibrium
policies. The following Proposition provides a characterization of Nash equilibrium
policies. A proof would involve only a straightforward adaptation of the arguments
in the proof of Lemma 3 and is therefore omitted.

Proposition 4. If (y1, y2) is a saddle point of the function Γ̄1u, then

T 1′(y1(ω))

1− T 1′(y1(ω))
= −1− F (ω)

f(ω)
(1− GN(ω | y1, y2))

v21(y1(ω), ω))

v1(y1(ω), ω)
, (14)

where

GN(ω | y1, y2) :=
b̄u(ω | y1, y2)

b̄u(ω | y1, y2)
,

and
b̄u(ω | y1, y2) := E[q̄u(ω′) b(u1(ω′)− u2(ω′) | ω′) | ω′ ≥ ω] .

Recall that b(u1(ω′) − u2(ω′) | ω′) measures the mass of type ω′-individuals that
party 1 can attract into its base by offering them slightly more utility. Potential voters,
however, are only the rule-utilitarian members of the base so that q̄u(ω′) b(u1(ω′) −
u2(ω′) | ω′) is the mass of potential voters that party 1 can attract by proposing a tax
policy that generates more utility for type ω′-individuals. Therefore, b̄u(ω | y1, y2) is
the mass of potential voters that party 1 can add to its base by offering all agents
with types above ω slightly more utility. The mass of potential voters that party 1
can attract by slightly raising everybody’s utility is given by b̄u(ω | y1, y2) and the
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ratio GN(ω | y1, y2) relates the political return of making everybody with a type above
ω better off to the political return of making everybody better off.

The Proposition provides a swing voter explanation for what shapes political equi-
librium tax policies. When considering, say, higher marginal taxes on high incomes,
parties take into account the extent to which “the rich” withdraw political support
in response to higher taxes. Thereby they also take into account the turnout rate
among “the rich”. To see these forces most clearly, suppose that idiosyncratic party
biases follow a uniform distribution (Assumption 1)). Then,

GN(ω | y1, y2) =
E[q̄u(ω′)α(ω′) | ω′ ≥ ω]

quα
, (15)

where quα := E[q̄u(ω)α(ω)]. Moreover, if all types swing in equal proportions, so
that for any pair ω and ω′, α(ω) = α(ω′), then the weighting of the different types’
information rents is entirely driven by their participation rates in elections. For
instance, if individuals with higher incomes are more likely to participate in the
election, then q̄u : ω 7→ q̄u(ω) is an increasing function so that GN(ω | y1, y2) is also
an increasing function. The formula in (14) would then stipulate that marginal tax
rates are, ceteris paribus, decreasing with income.

Recall that subgame perfect equilibrium policies were shaped by the functions
s1 : Ω→ [0, 1] and s2 : Ω→ [0, 1] that determine the distribution of voter attachments
to parties 1 and 2, respectively, among type ω-citizens. The weighting functions
G1
W and G2

W that are relevant for subgame perfect equilibrium policies depend only
on these two functions. Nash equilibrium policies, by contrast, are shaped by the
function ω 7→ q̄u(ω)α(ω). Taking into account the endogeneity of turnout turns a
swing voter model into a model that emphasizes voter attachments.11

11The participation rates {q̄u(ω)}ω∈Ω play no role for subgame perfect equilibrium policies. This
is a consequence of a modeling choice due to Feddersen and Sandroni (2006) and Coate and Conlin
(2004): When the rule-utilitarian supporters of party 1 formulate the rule for participating in an
election they weigh the benefits of everybody who is a supporter of party 1. In particular, they
include the benefits of the free-riders who are made better off if party 1 wins but would never
participate in an election. If they weighted only the benefits of those with a sense of civic duty, the
above formulas would become G1s

W (ω) = E[q̄u(ω′)s1(ω′)|ω′≥ω]

q1us
and G2s

W (ω) = E[q̄u(ω′)s2(ω′)|ω′≥ω]

q2us
, where

q1us := E[qu(ω)s1(ω)] and q2us := E[qu(ω)s2(ω)], with similar adjustments for the weight λ1s. With
this alternative modeling choice, differential turnout among poor, rich and middle class voters also
comes into play as an additional determinant of subgame perfect equilibrium policies.
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4.2 Strategic substitutes and complements

4.2.1 Preliminaries: using tax schedules as the policy domain

We briefly sketch an alternative equilibrium characterization in which the policy do-
main is taken to be the set of tax schedules – rather than the set of non-decreasing
earnings functions. This makes it possible to relate our analysis more directly to
standard concepts in public finance such as, e.g., the marginal cost of public funds.
More importantly, this turns out to be particularly useful for the analysis of whether
the two parties’ policies are strategic substitutes or complements.

As we explained in Section 3.1, we can directly let parties choose nonlinear
tax schedules, i.e., twice continuously differentiable functions T j : R+ → R, that
are such that the government budget remains balanced – that is, any extra rev-
enue (or loss) generated by the tax reform that we are considering, taking into
account the behavioral responses it induces on labor supply, is rebated (or taxed
away) lump-sum and uniformly to the population. We can replace the arguments
(y1, y2) and ω of all the functions we consider with (T 1, T 2) and y1 ≡ y1 (ω), re-
spectively. Consider for instance the problem of choosing T 1 so as to maximize
W 1(T 1, T 2) = E[G1

W (u(T 1, y1) − u(T 2, y2) | y1)], where the expectation is over the
incomes y1 that are realized if party 1 is elected. The details of the argument and
the derivations are in the Appendix.

Consider a reform of the platform T 1 in the direction h1 along with a lump-sum
rebate R1, so that the tax function proposed by party 1 becomes y 7→ T 1 (y) +

τ 1 [h1 (y)−R1]. By the envelope theorem, the utility of this agent decreases one-for-
one with the change in the total tax payment, that is, its Gateaux differential is given
by

uτ1(T
1, y1(ω)) = −h1(y1(ω)) +R1. (16)

Moreover, the net revenue generated by the tax reform h1, and hence the lump-sum
tax rebate, is the sum of a mechanical effect and a behavioral effect and is given by12

R1 =

ˆ ȳ1

y1

[(
1− FY 1(y1)

)
− T 1′(y1)

1− T 1′(y1)
y1ε̃(y1)fY 1(y1)

]
h1′(y1)dy1,

where ε̃ (ω) is the taxable income elasticity along the nonlinear budget constraint.
Collecting these terms, we can easily obtain the change in the expected gain of party

12See, e.g., Saez (2001), Golosov, Tsyvinski and Werquin (2014)
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1’s supporters, W 1
τ1(T

1, T 2). The optimum platform T 1 is such that W 1
τ1(T

1, T 2) = 0

for all tax reforms h1. This implies:

T 1′(y1)

1− T 1′(y1)
=

1− FY 1 (y1)

y1fY 1 (y1)

(
1− G1

W (y1 | T 1, T 2)
) 1

ε̃ (y1)
, (17)

where the weights G1
W (y1 | T 1, T 2) are the analogue of those defined in Lemma 3.

In the standard social welfare-maximization problem, the marginal value of public
funds is given by λW := E[g(u(T, y(ω)))], where G is the concave social welfare
function and g is its derivative. That is, λW is the value of rebating lump-sum one unit
of tax revenue uniformly to the entire population. Here, the corresponding variable
is λG1 := E[g1

W (u(T 1, y1(ω))−u(T 2, y2(ω)) | ω)] which appears in the denominator of
G1
W (y | T 1, T 2). It is the total political advantage that party 1 can secure over party

2 by rebating lump-sum one unit of tax revenue uniformly to the entire population.

4.2.2 Analyzing the strategic complementarities

Subgame perfect and Nash equilibria differ also in the way in which the best response
of party 1 depends on the proposal of party 2 and vice versa. For a systematic analysis
of this strategic interdependence we use the observation that the best response of party
1 proposes a tax schedule analogous to (17), where the weights G1

W in this formula
are replaced by GN if its best response seeks to maximize Γ̄1u and by GSP if it seeks
to maximize ψ. We focus on GN in what follows and then comment how the analysis
would have to be altered for GSP .

The dependence of GN on both y1 and y2 allows for an analysis of whether the tax
policies of different parties are strategic substitutes or complements. For instance, if
party 2 moves towards a tax schedule that has higher tax rates at the top, does this
imply that party 1’s best response also changes in the direction of higher tax rates
at the top? Functional derivatives can be used to operationalize questions of this
type. If the Gateaux differential of GN(ω | y1, y2) with respect to a change of y2 into
a direction of higher marginal tax rates at the top is positive, this implies that party
1’s best response will involve lower marginal tax rates on individuals of type ω. If it
is negative, it involves higher marginal taxes.

To analyze this question it is particularly convenient to adopt the alternative equi-
librium characterization developed in Section 4.2.1, whereby parties 1 and 2 choose
tax functions T 1, T 2 : R+ → R directly, rather than earnings functions y1, y2. We saw
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in equation (16) that by the envelope theorem, the indirect utility of agents moves
one-for-one with the change in their total tax payment, so that the Gateaux differen-
tial of utility when the tax schedule proposed by party 2 is perturbed in the direction
h2 is given by uτ2(T 2, ω) = −h2 (y2 (ω)). The following Proposition provides a char-
acterization of the Gateaux differential of the the weights GN(y1 | T 1, T 2) in response
to a tax reform h2 proposed by party 2.

Proposition 5. The Gateaux differential of GN(y1 | T 1, T 2) in a fixed but arbitrary
direction h2, evaluated at T 2, equals

GN,τ2(y1 (ω) | T 1, T 2)

GN(y1 (ω) | T 1, T 2)
=

E [h2 (y2 (ω′)) q̄u (ω′) b′ (u1 (ω′)− u2 (ω′) | ω′) | ω′ ≥ ω]

E [q̄u (ω′) b (u1 (ω′)− u2 (ω′) | ω′) | ω′ ≥ ω]

− E [h2 (y2 (ω′)) q̄u (ω′) b′ (u1 (ω′)− u2 (ω′) | ω′)]
E [q̄u (ω′) b (u1 (ω′)− u2 (ω′) | ω′)]

,

(18)
where uj (ω′) := u (T j, yj (ω′)). In particular, suppose that the initial equilibrium is
symmetric, so that T 1 = T 2 and hence u (T 1, y1 (ω)) = u (T 2, y2 (ω)) for all ω ∈ Ω.
For simplicity, suppose moreover that the expected fraction of ethical voters and the
number of swing voters is the same at all income levels, so that q̄u (ω) and b (0 | ω)

are constant, and that b′ (0 | ω) := b′ (0) ≶ 0 is constant. We obtain

GN,τ2(y1 (ω) | T 1, T 2) =
b′ (0)

b (0)

{
E
[
h2
(
y2 (ω′)

)
| ω′ ≥ ω

]
− E

[
h2
]}

. (19)

Thus, if the tax reform proposed by party 2 is increasing, i.e., it raises the statutory
tax payments by a larger amount for higher incomes, then party 1’s best response
does the same if b′ (0) < 0 (strategic substitutes) and does the opposite if b′ (0) > 0

(strategic complements).

The sign of these Gateaux differentials depends in particular on the curvature of
the functions {B(· | ω)}ω∈Ω, i.e., on the distribution of idiosyncratic party preferences.
With uniform distributions (Assumption 1), there are neither complementarities nor
substitutabilities in the parties tax schedules as b′ (x | ω) = 0, for any x and ω. Hence,
also GN,τ2(y1 (ω) | T 1, T 2) = 0 by equation (18). Thus, with uniform distributions of
party preferences, the parties’s choices are strategically neutral. The best response of
party 1 is then independent of what party 2 is proposing and vice versa. Put differ-
ently, the Nash equilibrium is then also a dominant strategy equilibrium. Equation
(19) shows that, starting from a symmetric equilibrium, the two parties’ policies are
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strategic substitutes if B is locally concave at 0 (i.e., b′ (0) < 0), and strategic comple-
ments otherwise (if b′ (0) > 0). Importantly, note that formula (18) is a closed-form
expression. Given the tax schedules T 1 and T 2 proposed by the two parties, and
given the tax reform h2, all of the variables of the equation are known; (18) therefore
delivers immediately the best response of party 1 to any arbitrary change in policy
by party 2, given any (possibly off-equilibrium) initial status quo (T 1, T 2).

In the general model with endogenous turnout, analyzing the substitutability be-
tween the two parties policies again requires evaluating Gateaux differentials to eval-
uate how GSP (y1 (ω) | T 1, T 2) depends on the proposal of party 2. We focus on a
simple special case here (see Appendix for the more general expressions). Assume
that initially, both parties propose the same platform T 1 = T 2, and that Assumption
1 holds with α (ω) = ᾱ for all ω. In response to a reform h2 of the platform T 2 pro-
posed by party 2, the weights G1

W (· | T 1, T 2) that party 1 would use if its objective
were to mobilize its own supporters (i.e., maximize W 1 (y1, y2)) change by, for all
ω ∈ Ω,

G1
W,τ2 (y1 (ω) | T 1, T 2)

ᾱG1
W (y1 (ω) | T 1, T 2)

=
E [h2 (y2 (ω′)) | ω′ ≥ ω]

E [s1 (ω′) | ω′ ≥ ω]
− E [h2 (y2 (ω′))]

E [s1 (ω′)]
. (20)

Similarly, the weights G2
W (· | T 1, T 2) that Party 1 would use if its objective was to

de-mobilize Party 2’s supporters (i.e., minimize W 2 (y1, y2)) change by, for all ω ∈ Ω,

−
G2
W,τ2 (y1 (ω) | T 1, T 2)

3ᾱG2
W (y1 (ω) | T 1, T 2)

=
E [h2 (y2 (ω′)) | ω′ ≥ ω]

E [s2 (ω′) | ω′ ≥ ω]
− E [h2 (y2 (ω′))]

E [s2 (ω′)]
. (21)

Finally, the relative weight λ1 (T 1, T 2) that Party 1 puts on the first of these objectives
changes by a constant λ1

τ2 (T 1, T 2) independent of income y, which can generally be
positive or negative depending on the mean and variance of s1 and its correlation with
the reform h2 (see the Appendix). Using these expressions, it is then straightforward
to obtain the adjustments in the weights GSP (· | T 1, T 2) that determine party 1’s
proposed tax schedule in the subgame perfect equilibrium:

GSP,τ2(y1 (ω) | T 1, T 2) =λ1G1
W,τ2 + (1− λ1)G2

W,τ2 + λ1
τ2

(
G1
W − G2

W

)
,

for all ω ∈ Ω. The first two terms of this expression account for the adjustments in
the weights G1

W ,G2
W associated with both objectives of party 1 (mobilizing its own
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base and demobilizing that of party 2), while the third term accounts for the change
in the relative importance λ1 of each of these objectives in response to the reform
h2. For concreteness, suppose that s1 (ω) = s2 (ω) = 1

2
for all ω, so that both parties

have an equal attachment of the electorate at each income level. In this case, we
have G1

W = G2
W and λ1 = 1

2
. For high enough incomes, we have G1

W,τ2 > 0 and
G2
W,τ2 < 0 in response to a reform by party 2 that raises taxes on the rich, i.e.,

such that E [h2 (y2 (ω′)) | ω′ ≥ ω] increases with ω. That is, in order to mobilize its
supporters (resp., demobilize those of the opponent), party 1 tends to decrease (resp.,
increase) the marginal tax rates on the rich. Since G2

W,τ2 = −3G1
W,τ2 , we get GSP,τ2 < 0

for high incomes, so that the second objective dominates and the two parties’ policies
are strategic complements. Note moreover that both G1

W,τ2 and G2
W,τ2 are increasing

with income y1, so that the best response of party 1 is to decrease the progressivity
of its tax schedule.

5 Additional considerations

5.1 Political failures

We now discuss to what extent political equilibrium policies are appealing from a
normative perspective. We therefore relate them to the tax policy that maximizes a
social welfare function SWF = E [G(u(ω))], where G is a concave transformation and
u(ω) is the utility level that a type ω individual realizes under a given tax policy. Let
g denote the derivative of G. Then ḡ(ω | y) := E[g(u(ω′) | ω′ ≥ ω] is the welfare gain
that is realized if all individuals with incomes above y(ω) are made slightly better off,
and the ratio GD(ω | y) := ḡ(ω|y)

ḡ(ω|y)
relates this welfare gain to the one that would be

obtained under a tax reform that raises everybody’s utility – i.e., the denominator is
the marginal value of public funds.

Proposition 6. (Diamond, 1998) A welfare maximizing tax system is such that,
for all ω,

T ′(y(ω))

1− T ′(y(ω))
= −1− F (ω)

f(ω)
(1− GD(ω | y))

v21(y(ω), ω))

v1(y(ω), ω)
. (22)

We omit a formal proof of Proposition 6 as it requires only a straightforward
adaptation of the proof of Lemma 3. With a concave social welfare function, the
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weighting function GD(· | y) is decreasing. Ceteris paribus, i.e. keeping the inverse
hazard rate and the elasticity of labor supply constant – marginal tax rates should
therefore increase with income.

This observation is useful for a welfare analysis of political equilibrium outcomes.
If a weighting function for information rents G can be derived from a social welfare
function, then ω′ < ω implies that G(ω′ | y) ≥ G(ω | y) as individuals with lower
income cannot receive a lower weight in the social welfare function. If the weighting
function associated with a political equilibrium violates this monotonicity property
then we can conclude that the political outcome is incompatible with the objective
of welfare-maximization. We then say that there is a political failure.

Depending on the primitives, both Nash and subgame perfect equilibria may give
rise to such political failures. For instance, with a uniform distribution of idiosyncratic
party preferences (Assumption 1), GN(ω | y1, y2) is given by expression (15), so that
if α is constant across types but the inclination to vote increases with income, so that
q̄u is an increasing function, then Nash equilibrium policies give rise to a political
failure. Now consider subgame perfect equilibrium policies, again under Assumption
1. Recall that GsSP (ω) is a convex combination of two weighting functions G1

W and G2
W ,

where the weight on G1
W is low if party 1 has a high chance of winning. Suppose that

s1 is a decreasing function and s2 an increasing function, then the weighting function
G1
W is decreasing and the weighting function G2

W is increasing. In this scenario, if
party 1’s winning probability is sufficiently close to one, subgame perfect equilibrium
policy gives rise to a political failure.

5.2 Equilibrium turnout

Parties in our model do not care about turnout by itself. They care about turnout
only to the extent that it increases their probability of winning an election. For
this purpose, only the turnout advantage over the competing party is important; i.e.,
parties prefer a large share in small set of voters over a small share in a large set of
voters. The following Proposition enables us to formalize this claim.

Proposition 7. Under Assumptions 2 and 3,

σ1∗(y1, y2) =
W 1(y1, y2)

κ Γ̄1u(y1, y2)
ψ(y1, y2) ρ(ψ(y1, y2)) , (23)

where ρ(·) is the density function of the random variable 1−η2
1−η1 .

33



According to Proposition 7, if party 1 wanted to maximize its number of voters
– rather than its probability of winning – it would choose y1 so as to maximize the
right hand side of (23). In a subgame perfect equilibrium, by contrast, it chooses
y1 with the objective to maximize ψ(y1, y2) – recall that, under Assumptions 2 and
3, party 1’s probability of winning is a monotonic function of ψ(y1, y2). That is, in
equilibrium parties have opportunities to increase overall turnout, but choose not to
use them as this would be detrimental for their probability of winning.

More formally, let BC1(y1, y2) = W 1(y1,y2)

κ Γ̄1u(y1,y2)
be a shorthand for the benefit-cost

ratio that drives the turnout of the rule-utilitarian supporters of party 1, and let
Π1(ψ(y1y2)) := ψ(y1, y2) ρ(ψ(y1, y2)) capture how the probability of a victory of
party 1 affects this turnout ratio. To show that party 1 could deviate – from a
subgame perfect equilibrium allocation or merely a platform that is a best response
in the sense of maximizing party 1’s probability of winning for a given platform of
party 2 – in a way that increases turnout, we look at the Gateaux-differential of
ln(σ1∗(y1, y2)) for an arbitrary direction h1,

σ1∗
τ1(y

1, y2)

σ1∗(y1, y2)
=
BC1

τ1(y
1, y2)

BC1(y1, y2)
+

Π1′(ψ(y1y2)) ψτ1(y
1y2)

Π1(ψ(y1y2))
.

If y1 is a best response for party 1, then for any direction h1, ψτ1(y1y2) = 0 and hence
σ1∗
τ1

(y1,y2)

σ1∗(y1,y2)
=
BC1

τ1
(y1,y2)

BC1(y1,y2)
. Thus, any deviation into a direction that increases BC1(y1, y2)

will have a negligible effect on party 1’s probability of winning, and a first order effect
on the turnout of its supporters.

Previous analyses of ethical voter models by Coate and Conlin (2004) and Fed-
dersen and Sandroni (2006) have shown that overall turnout increases if elections
are close or if preferences over alternatives are more polarized. The observation that
closeness is conducive to overall turnout has a resemblance to the implication of equa-
tion (23) that turnout is increasing in the semi-elasticity of the probability of winning
with respect to ψ1, ψ(y1, y2) ρ(ψ(y1, y2)). If we interpret a close race as one in which
small changes in the proposed policies have large consequences for relative turnout
and hence also for each party’s probability of winning, then it is indeed an implication
of (23) that turnout tends to be larger if elections are close.

Our analysis has no straightforward analogue to the finding that polarization
drives turnout. The analysis of polarization in Feddersen and Sandroni (2006) is
based on the premise that the expected benefits to the supporters of party 1 and the
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expected benefits to the supporters of party 2 add up to a constant which is, moreover,
independent of the probability of winning. In our setting, this would require the
existence of a number W̄ so that, for all (y1, y2) and for all π1 ∈ [0, 1], π1W 1(y1, y2)+

(1−π1)W 2(y1, y2) = W̄ . Feddersen and Sandroni provide comparative statics results
on how turnout varies with W̄ . In our setting the expected benefits of the supporters
of parties 1 and 2 do not add up to a constant, so that we cannot perform a similar
exercise. The observations that equilibria are symmetric and that a deviation from
equilibrium policies would increase overall turnout is therefore a related finding. It
shows that a lack of polarization leaves room for an increase of overall turnout.

6 Conclusion: endogenous social welfare weights

The theory of optimal taxation characterizes the tax policy that would be chosen by
a benevolent social planner with the objective to maximize social welfare. However,
there are many “reasonable” social welfare functions. The literature then often refers
to “society’s social welfare function” as the relevant one but typically does not provide
a precise formulation of how society would come to agree on a given social welfare
function. Still there are attempts to identify society’s social welfare function empiri-
cally. The idea is to use the ABC formula for welfare-maximizing taxation (22), data
on the tax system, the earnings distribution and labor supply elasticities to map out
society’s social welfare weights G, see e.g. Blundell et al. (2009). Bargain et al. (2011),
Zoutman, Jacobs and Jongen (2016) or Lockwood and Weinzierl (2016).

Propositions 4 and 6 and Theorem 1 contain different ABC-formulas. Proposition
4 gives the tax rates that are predicted by a swing voter model with exogenous
turnout, Proposition 6 characterizes welfare-maximizing taxes, and Theorem 1 takes
into account the endogeneity of turnout. Each of these formulas provides a different
interpretation of the G-term that can be mapped out given data on the tax system, the
earnings distribution and labor supply elasticities. The data cannot tell us, however,
how plausible these different interpretations are. This requires criteria external to
the formal framework developed here. What we can say, however, is that it makes
little sense to let the data speak about what society’s social welfare function looks
like without at the same time having an explanation for how society would come to
settle on a specific social welfare function.

In fact, Arrow’s impossibility shows that it may be entirely infeasible to aggregate
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individual preferences over tax policies into a social welfare function. What is feasible,
by contrast, is to reinterpret any process that selects a tax schedule from the set of
Pareto-efficent tax schedules as if it was the choice of an agent with preferences over
the set of Pareto-optima, see Samuelson (1967). Saez and Stantcheva (2016) recognize
that observed tax policies are not entirely driven by welfare considerations, but also by
non-welfarist value judgments or political economy forces. They propose to capture
these forces by means of generalized social welfare functions. Thus, observed tax
policies are interpreted as if there had been an agent who made a selection from
the set of Pareto optima and who used a generalized social welfare function for this
purpose.

In the preceding analysis we have analyzed a strategic game between political par-
ties who propose non-linear tax schedules to an electorate that consists of individuals
with heterogenous incomes. We have shown that political equilibrium tax policies can
be represented by ABC-formulas akin to those that are used to characterize welfare-
maximizing tax systems. Thus our analysis provides a detailed and microfounded
formalization that political economy forces can indeed be captured by generalized
social welfare weights. Moreover, we emphasize that these generalized social welfare
weights are objects which are endogenous to the political process and, in particular,
that alternative models of political competition give rise to alternative social welfare
weights. We have also shown that political equilibrium outcomes may be incompat-
ible with the maximization of a concave social welfare function. Generalized social
welfare weights are therefore needed. The class of traditional social welfare weights
cannot capture such political failures.
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A Appendix

Derivation of equation (1)

Given two party proposals p1 and p2, and given the turnout for party 2, σ2, the best response
problem of the rule-utilitarian supporters of party 1 is to choose σ1 so as to maximize the expected
value of the following expression

1
(
Ṽ 1(p1, p2, σ1, q̃1) ≥ Ṽ 2(p1, p2, σ2, q̃2)

)
E[B(u(p1, ω)− u(p2, ω) | ω) u(p1, ω)]

+
(

1− 1
(
Ṽ 1(p1, p2, σ1, q̃1) ≥ Ṽ 2(p1, p2, σ2, q̃2)

))
×

E[B(u(p1, ω)− u(p2, ω) | ω) u(p2, ω) + E1(u(p1, ω)− u(p2, ω) | ω)]

−k(σ1) E[q̃1u(ω) B(u(p1, ω)− u(p2, ω) | ω)]− κ E[q̃1v(ω) B(u(p1, ω)− u(p2, ω) | ω)] .

In this expression, 1 is an indicator function and

1
(
Ṽ 1(p1, p2, σ1, q̃1) ≥ Ṽ 2(p1, p2, σ2, q̃2)

)
E[B(u(p1, ω)− u(p2, ω) | ω) u(p1, ω)]

is utilitarian welfare realized by the supporters of party 1 in the event that their wins. Analogously,

(1− 1 (·))E[B(u(p1, ω)− u(p2, ω) | ω) u(p2, ω) + E1(u(p1, ω)− u(p2, ω) | ω)]

is utilitarian welfare if party 2 wins, where

E1(u(p1, ω)− u(p2, ω) | ω) :=

ˆ
εi 1(εi ≤ u(p1, ω)− u(p2, ω)) b(εi | ω) dεi ,

is the sum of the gains (or losses) that the supporters of party 1 realize in this event because of their
idiosyncratic party preference. Voting costs do not depend on which party wins the election.

Upon exploiting the linearity of the expectations operator and dropping terms that do not
depend on σ1, we can equivalently write this optimization problem as follows: Choose σ1 ∈ [0, 1] to
maximize

π1(p1, p2, σ1, σ2) W 1(p1, p2)− κ σ1 Γ̄1u(p1, p2) , (24)

where π1(p1, p2, σ1, σ2) is the probability of the event Ṽ 1(p1, p2, σ1, q̃1) ≥ Ṽ 2(p1, p2, σ2, q̃2), and

W 1(p1, p2) = E[G1
W (u(p1, ω)− u(p2, ω) | ω)] ,

where, for any x ∈ R,
G1
W (x | ω) := B(x | ω) x − E1(x | ω) ,
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is the welfare gain that is realized by the supporters of party 1 if their party wins and

Γ̄1u(p1, p2) = E[q̄1u(ω) B(u(p1, ω)− u(p2, ω) | ω)]

is the expected value of the mass of rule-utilitarian supporters of party 1.

Proof of Lemma 1

Under Assumption 2 the parties’ vote numbers are, respectively, given by

Ṽ 1(p1, p2, σ1, σ2) = σ1 E[q̃1u(ω)B(u(p1, ω)− u(p2, ω) | ω)] =: σ1 Γ̃1u(p1, p2) ,

and

Ṽ 2(p1, p2, σ1, σ2) = σ2 E[q̃2u(ω)(1−B(u(p1, ω)− u(p2, ω) | ω))] =: σ2 Γ̃2u(p1, p2) .

Given p1 and p2, the probability that party 1 wins the election is therefore equal to the probability
of the event

σ1

σ2
≥ Γ̃2u(p1, p2)

Γ̃1u(p1, p2)
.

Given p1 and p2, denote by P(· | p1, p2) the cdf and by ρ(· | p1, p2) the density of the random
variable Γ̃2u(p1,p2)

Γ̃1u(p1,p2)
. Thus,

π1(p1, p2, σ1, σ2) = P
(
σ1

σ2
| p1, p2

)
. (25)

We take the party platforms p1 and p2 as given and characterize equilibrium turnout. We say
that the turnout subgame has an interior equilibrium if 0 < σ1∗(p1, p2) < 1 and 0 < σ2∗(p1, p2) < 1.
An interior equilibrium is characterized by the first order conditions

π1
σ1(·) W 1(p1, p2)− κ Γ̄1u(p1, p2) = 0 , (26)

and
− π1

σ2(·) W 2(p1, p2)− κ Γ̄2u(p1, p2) = 0 . (27)

Using equation (25), these first order conditions can also be written as

ρ

(
σ1

σ2
| p1, p2

)
σ1

σ2

1

σ1
W 1(p1, p2)− κ Γ̄1u(p1, p2) = 0 , (28)

and

ρ

(
σ1

σ2
| p1, p2

)
σ1

σ2

1

σ2
W 2(p1, p2)− κ Γ̄2u(p1, p2) = 0 . (29)

Equations (28) and (29) allow us to pin down the equilibrium value of relative turnout,

χ∗(p1, p2) :=
σ1∗(p1, p2)

σ2∗(p1, p2)
=
W 1(p1, p2)/Γ̄1u(p1, p2)

W 2(p1, p2)/Γ̄2u(p1, p2)
. (30)
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as had to be shown.

Proof of Lemma 2

Under Assumption 3,

Γ̃1u(p1, p2) = (1− η1) Γ̄1u(p1, p2) and Γ̃2u(p1, p2) = (1− η2) Γ̄2u(p1, p2) .

The probability of the event that party 1 wins the election is therefore equal to the probability of
the event

σ1 (1− η1) Γ̄1u(p1, p2) ≥ σ2 (1− η2) Γ̄2u(p1, p2)

or, equivalently,
σ1

σ2

Γ̄1u(p1, p2)

Γ̄2u(p1, p2)
≥ 1− η2

1− η1
.

By the definition of P, this probability can be written as

P
(
σ1

σ2

Γ̄1u(p1, p2)

Γ̄2u(p1, p2)

)
,

where, by Lemma 1, with an interior equilibrium of the participation subgame,

σ1

σ2
= χ∗ .

Proof of Proposition 2

Part i) of Proposition 2 follows from the observation that party 1 seeks to maximize χ M(Γ̄1u)

and that party 2 seeks to minimize this expression. With χ viewed as an exogenous quantity and
since M is an increasing function, this is equivalent to party 1 choosing p1 with the objective to
maximize Γ̄1u(p1, p2) and party 2 choosing p2 with the objective to minimize this expression. Hence,
if (p1∗, p2∗) is a pair of Nash equilibrium policies then these constitute a saddle point of the function
Γ̄1u : (p1, p2) 7→ Γ̄1u(p1, p2).

Part ii) follows from taking the endogeneity of turnout into account so that

χ M(Γ̄1u) = χ∗(p1, p2) Γ̄1u(p1,p2)
Γ̄2u(p1,p2)

= W 1(p1,p2)
W 2(p1,p2) .

where the second equality follows from Lemma 1. Hence, if (p1∗, p2∗) is a pair of subgame perfect
equilibrium policies then these constitute a saddle point of the function ψ : (p1, p2) 7→ ψ(p1, p2) =
W 1(p1,p2)
W 2(p1,p2) .
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Proof of Lemma 3

We begin by stating party 1’s best response problem in a way that enables an analysis using a
Gateaux differential. Let y1 = y1∗ + τ1 h1, be a perturbed version of party 1’s best response y1∗, in
which τ1 is a scalar and h1 : Ω→ R is a function. If y1∗ is a best response, then, for any perturbation
(τ1, h1),

E
[
G1
W

(
sv(y

1∗)−
´ ω

ω
v2(y1∗(z), z) dz − u2(ω) | ω

)]
≥ E

[
G1
W

(
sv(y

1∗ + τ1 h1)−
´ ω

ω
v2(y1∗(z) + τ1 h1(z), z) dz − u2(ω) | ω

)]
.

(31)

Equivalently, for any function h1, τ1 = 0 must be a maximizer of the auxiliary function

A(τ1 | y1∗, y2) = E

[
G1
W

(
sv(y

1∗ + τ1 h1)−
ˆ ω

ω

v2(y1∗(z) + τ1 h1(z), z) dz − u2(ω) | ω

)]
.

In the following, we will characterize y1∗ by analyzing the implications of the requirement that the
derivative of this expression with respect to τ1, evaluated at τ1 = 0, is equal to zero, i.e.

Aτ1(y1∗, y2) = 0 , (32)

for all functions h1. Formally, Aτ1(y1∗, y2) is the Gateaux differential of

E

[
G1
W

(
sv(y

1)−
ˆ ω

ω

v2(y1(z), z) dz − u2(ω) | ω

)]

in direction h1 evaluated at y1 = y1∗.
We note that

Aτ1(y1∗, y2) = E

[
g1
W (ω | y1∗, y2)

(
sv,τ1(y1∗)−

ˆ ω

ω

h1(z) v21(y1∗(z), z) dz

)]
, (33)

where

g1
W (ω | y1∗, y2) := b

(
sv(y

1∗)−
ˆ ω

ω

v2(y1∗(z), z) dz − u2(ω) | ω

)
and

sv,τ1(y1∗) = E
[
h1(ω)

(
1− v1(y1∗(ω), ω) + 1−F (ω)

f(ω) v21(y1∗(ω), ω)
)]

is the Gateaux differential of the virtual surplus sv(y1) in direction h1 evaluated at y1 = y1∗.
Equation (33) can now be rewritten as

Aτ1(y1∗, y2) = ḡ1
W (ω | y1∗, y2)E

[
h1(ω)

(
1− v1(y1∗(ω), ω) + 1−F (ω)

f(ω) v21(y1∗(ω), ω)
)]

−E
[
g1
W (ω | y1∗, y2)

´ ω

ω
h1(z) v21(y1∗(z), z) dz

] (34)

where, for any ω ∈ Ω, ḡ1
W (ω | y1∗, y2) := E[g1

W (ω′ | y1∗, y2) | ω′ ≥ ω]. Moreover, an integration by
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parts shows that

E

[
g1
W (ω | y1∗, y2)

ˆ ω

ω

h1(z) v21(y1∗(z), z) dz

]
= E

[
h1(ω) ḡ1

W (ω | y1∗, y2)
1− F (ω)

f(ω)
v21(y1∗(ω), ω)

]
(35)

so that condition (32) can equivalently be written as the requirement that, for all functions h1,

E

[
h1(ω)

(
1− v1(y1∗(ω), ω) + (1− G1

W (ω | y1∗, y2))
1− F (ω)

f(ω)
v21(y1∗(ω), ω)

)]
= 0 (36)

where G1
W (ω | y1∗, y2) =

ḡ1
W (ω|y1∗,y2)

ḡ1
W (ω|y1∗,y2)

. Condition (36) can hold only if, for all ω,

1− v1(y1∗(ω), ω) + (1− G1
W (ω | y1∗, y2))

1− F (ω)

f(ω)
v21(y1∗(ω), ω) = 0 , (37)

or, equivalently, if

1− v1(y1∗(ω), ω)

v1(y1∗(ω), ω)
= −(1− G1

W (ω | y1∗, y2))
1− F (ω)

f(ω)

v21(y1∗(ω), ω)

v1(y1∗(ω), ω)
. (38)

Using T 1′(y1∗(ω)) = 1− v1(y1∗(ω), ω) we can rewrite this equation as

T 1′(y1∗(ω))

1− T 1′(y1∗(ω))
= −(1− G1

W (ω | y1∗, y2))
1− F (ω)

f(ω)

v21(y1∗(ω), ω)

v1(y1∗(ω), ω)
, (39)

which is what had to be shown.

Proof of Theorem 1

Best responses

Let y2 be an arbitrary, but given function, possibly equal to y2∗. Given y2 we look at the problem
to choose y1 with the objective to maximize

ψ(y1, y2) =
W 1(y1, y2)

W 2(y1, y2)
.

Suppose that y1∗ is a solution to that problem. The, it must also be that case that τ = 0 solves the
problem to choose a scalar τ1 with the objective to maximize

ψ(y1∗ + τ1 h1, y2) =
W 1(y1∗ + τ1 h1, y2)

W 2(y1∗ + τ1 h1, y2)
.

for any given but arbitrary function h1. That is, we can characterize y1∗ be the requirement that,
for τ1 = 0,

ψτ1(y1∗ + τ1 h1, y2) = 0 ,
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or, equivalently, that

W 1
τ1(y1∗, y2) W 2(y1∗, y2)−W 1(y1∗, y2) W 2

τ1(y1∗, y2) = 0 .

The following Lemma provides a characterization of W 1
τ1 and W 2

τ1 and of the analogous expres-
sions W 1

τ2 and W 2
τ2 that are relevant for party 2’s best response problem. We omit a proof of the

Lemma as it would require only an easy adaptation of the arguments in the proof of Lemma 3.

Lemma 5. The derivative of W 1 with respect to τ1 evaluated at (y1∗, y2) equals

W 1
τ1(y1∗, y2) =

ḡ1
W (ω | y1∗, y2)E

[
h1(ω)

{
1− v1(y1∗(ω), ω) + 1−F (ω)

f(ω)

(
1− G1

W (ω | y1∗, y2)
)
v21(y1∗(ω), ω)

}]
.

(40)
The derivative of W 2 with respect to τ1 evaluated at (y1∗, y2) equals

W 2
τ1(y1∗, y2) =

−ḡ2
W (ω | y1∗, y2)E

[
h1(ω)

{
1− v1(y1∗(ω), ω) + 1−F (ω)

f(ω)

(
1− G2

W (ω | y1∗, y2)
)
v21(y1∗(ω), ω)

}]
.

(41)
The derivative of W 1 with respect to τ2 evaluated at (y1, y2∗) equals

W 1
τ2(y1, y2∗) =

−ḡ1
W (ω | y1, y2∗)E

[
h2(ω)

{
1− v1(y2∗(ω), ω) + 1−F (ω)

f(ω)

(
1− G1

W (ω | y1, y2∗)
)
v21(y2∗(ω), ω)

}]
.

(42)
The derivative of W 2 with respect to τ2 evaluated at (y1, y2∗) equals

W 2
τ2(y1, y2∗) =

ḡ2
W (ω | y1, y2∗)E

[
h2(ω)

{
1− v1(y2∗(ω), ω) + 1−F (ω)

f(ω)

(
1− G2(ω | y1, y2∗)

)
v21(y2∗(ω), ω)

}]
.

(43)

We introduce additional notation: For any pair (y1, y2), let

Q(y1, y2) := ḡ1
W (ω | y1, y2) W 2(y1, y2)

and
R(y1, y2) := ḡ2

W (ω | y1, y2) W 1(y1, y2) .

Also let
S(y1, y2) = Q(y1, y2) +R(y1, y2) ,

q(y1, y2) :=
Q(y1, y2)

S(y1, y2)
,
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and

r(y1, y2) :=
R(y1, y2)

S(y1, y2)
.

Finally, let

GSP (ω | y1, y2) := q(y1, y2) G1
W (ω | y1, y2) + r(y1, y2) G2

W (ω | y1, y2) .

Using this notation and collecting the terms in Lemma 5 yields the following Lemma.

Lemma 6. The sign of the derivative of ψ with respect to τ1 evaluated at (y1∗, y2) is equal to the
sign of

W 1
τ1(y1∗, y2) W 2(y1∗, y2)−W 1(y1∗, y2) W 2

τ1(y1∗, y2) =

S(y1∗, y2)E
[
h1(ω)

{
1− v1(y1∗(ω), ω) + 1−F (ω)

f(ω)

(
1− GSP (ω | y1∗, y2)

)
v21(y1∗(ω), ω)

}]
.

(44)

The sign of the derivative of ψ with respect to τ2 evaluated at (y1, y2∗) is equal to the sign of

W 1
τ2(y1, y2∗) W 2(y1, y2∗)−W 1(y1, y2∗) W 2

τ2(y1, y2∗) =

S(y1, y2∗)E
[
h2(ω)

{
1− v1(y2∗(ω), ω) + 1−F (ω)

f(ω)

(
1− GSP (ω | y1, y2∗)

)
v21(y2∗(ω), ω)

}]
.

(45)

Subgame perfect equilibrium

If y1∗ and y2∗ are mutually best responses, then it must be the case that

W 1
τ1(y1∗, y2∗) W 2(y1∗, y2∗)−W 1(y1∗, y2∗) W 2

τ1(y1∗, y2∗) = 0 ,

for all functions h1 and

W 1
τ2(y1∗, y2∗) W 2(y1∗, y2∗)−W 1(y1∗, y2∗) W 2

τ2(y1∗, y2∗) = 0 ,

for all functions h2. By Lemma 6 this requires that, for all ω,

1− v1(y1∗(ω), ω) + 1−F (ω)
f(ω)

(
1− GSP (ω | y1∗, y2∗)

)
v21(y1∗(ω), ω) = 0 , (46)

and
1− v1(y2∗(ω), ω) + 1−F (ω)

f(ω)

(
1− GSP (ω | y1∗, y2∗)

)
v21(y2∗(ω), ω) = 0 . (47)

An inspection of (46) and (47) yields the following Lemma.

Lemma 7. In any interior subgame perfect equilibrium, y1∗ = y2∗.

To complete the proof of Theorem 1 we note that that

GSP (ω | y1∗, y2∗) = λ1 G1s
W (ω)− λ2 G2s

W (ω) ,

46



where the expressions on the right hand side of this equality have been defined in the body of the
text. Using this observation, rearranging the terms in (46), and using that T ′(y(ω)) = v1(y(ω), ω)

yields equation (13) in the body of the text.

Proof of Proposition 3

Suppose that a pair of policies (y1∗, y2∗) satisfies the first order conditions (46) and (46) in the proof
of Proposition 1. We seek to show that (y1∗, y2∗) is a saddle point of the function

ψ(y1, y2) =
W 1(y1, y2)

W 2(y1, y2)
.

We now state this saddle point condition in a way that enables an analysis using functional deriva-
tives. Let y1 = y1∗ + τ1 h1, be a perturbed version of y1∗, in which τ1 is a scalar and h1 : Ω → R
is a function. Analogously, let y2 = y1∗ + τ1 h1, be a perturbed version of y2. The saddle point
condition according to which, for all (y1, y2),

ψ(y1, y2∗) ≤ ψ(y1∗, y2∗) ≤ ψ(y1∗, y2)

can therefore be written as: For any pair of perturbations (τ1, h1) and (τ2, h2),

ψ(y1∗ + τ1 h1, y2∗) ≤ ψ(y1∗, y2∗) ≤ ψ(y1∗, y∗2 + τ2 h2) . (48)

Equivalently, for all functions (h1, h2), the point (τ1, τ2) = (0, 0) must be a saddle-point of

ψ(y1∗ + τ1 h1, y2∗ + τ2 h2) =
W 1(y1∗ + τ1 h1, y∗2 + τ2 h2)

W 2(y1∗ + τ1 h1, y∗2 + τ2 h2)
.

Having a saddle point requires that all entries of the Jacobi-matrix

Jψ(y1∗, y2∗) =

(
ψτ1(y1∗, y2∗)

ψτ2(y1∗, y2∗)

)

are equal to zero and that the Hessian

Hψ(y1∗, y2∗) =

(
ψτ1,τ1(y1∗, y2∗) ψτ1,τ2(y1∗, y2∗)

ψτ1,τ2(y1∗, y2∗) ψτ2,τ2(y1∗, y2∗)

)

is indefinite. The policies (y1∗, y2∗) satisfying the first order conditions (46) and (46) is equiv-
alent to all entries of the Jacobi-matrix being equal to zero. Hence, what remains to be shown
is that Hψ(y1∗, y2∗) is indefinite. To this end, it suffices to show that ψτ1,τ1(y1∗, y2∗) < 0, and
ψτ2,τ2(y1∗, y2∗) > 0. These two inequalities can be shown to hold provided that

∂

∂τ1

{
W 1
τ1(y1∗, y2∗) W 2(y1∗, y2∗)−W 1(y1∗, y2∗) W 2

τ1(y1∗, y2∗)
}
< 0 ,
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and
∂

∂τ2

{
W 1
τ2(y1∗, y2∗) W 2(y1∗, y2∗)−W 1(y1∗, y2∗) W 2

τ2(y1∗, y2∗)
}
> 0 ,

or, equivalently, if

W 1
τ1,τ1(y1∗, y2∗) W 2(y1∗, y2∗)−W 1(y1∗, y2∗) W 2

τ1,τ1(y1∗, y2∗) < 0 , (49)

and
W 1
τ2,τ2(y1∗, y2∗) W 2(y1∗, y2∗)−W 1(y1∗, y2∗) W 2

τ2,τ2(y1∗, y2∗) > 0 . (50)

Exploiting Assumption 1. Recall that, under Assumption 1,

W 1(y1, y2) = E

[
s1(ω)

(
u1(ω)− u2(ω)

)
+

1

2
α(ω)

(
u1(ω)− u2(ω)

)2
+

1

2

(
s1(ω)2

α(ω)

)]
and

W 2(y1, y2) = E

[
s2(ω)

(
u2(ω)− u1(ω)

)
+

1

2
α(ω)

(
u2(ω)− u1(ω)

)2
+

1

2

(
s2(ω)2

α(ω)

)]
.

Also note that for u1(ω)− u2(ω) = z

ḡ1
W (ω | y1, y2) := s1(ω) + α(ω) z ,

and for u2(ω)− u1(ω) = z′,
ḡ2
W (ω | y1, y2) := s2(ω) + α(ω) z .

It follows from Theorem 1 that y1∗ = y2∗, hence W 1(y1∗, y2∗) > 0 and W 2(y1∗, y2∗) > 0.
Sufficient conditions for the validity of (49) and (50) are therefore that

W 1
τ1,τ1(y1∗, y2∗) < 0 and W 2

τ1,τ1(y1∗, y2∗) > 0 , (51)

and
W 1
τ2,τ2(y1∗, y2∗) > 0 and W 2

τ2,τ2(y1∗, y2∗) < 0 . (52)

We can now use the expressions for W 1
τ1 , W 2

τ1 , W 1
τ2 and W 2

τ2 in Lemma 5 to compute W 1
τ1,τ1 ,

W 2
τ1,τ1 , W 1

τ2,τ2 and W 2
τ2,τ2 . If we evaluate the resulting expressions in the limit case as α(ω)

arbitrarily close to zero for all ω, we can verify that (51) and (52) indeed hold. For instance,
we then find that

W 1
τ1,τ1(y1∗, y2∗) = s̄1(ω)E

[
h1(ω)2

(
−v11(y∗(ω), ω) +

1− F (ω)

f(ω)

(
1− s̄1(ω)

s̄1(ω)

)
v211(y∗(ω), ω)

)]
,

where s̄1(ω) := E
[
s1(ω′) | ω′ ≥ ω

]
. With s1(ω) = 1

2 , for all ω,

1− s̄1(ω)

s̄1(ω)
= 0 ,
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for all ω, so that

W 1
τ1,τ1(y1∗, y2∗) = s̄1(ω)E

[
h1(ω)2 (−v11(y∗(ω), ω))

]
< 0 .

Variational approach: using tax schedules as the policy domain

We briefly sketch an alternative equilibrium characterization in which the policy domain is taken to
be the set of tax schedules – rather than the set of non-decreasing earnings functions. This makes
it possible to relate our analysis more directly to standard concepts in public finance such as, e.g.,
the marginal cost of public funds. More importantly, this turns out to be particularly useful for the
analysis of whether the two parties’ policies are strategic substitutes or complements.

As we explained in Section 3.1, we can directly let parties choose nonlinear tax schedules, i.e.,
twice continuously differentiable functions T j : R+ → R. To prevent parties from arbitrarily raising
agents’ utilities by lowering their taxes, we must impose that any tax reform that a party can propose
is budget-neutral. Without loss of generality, this is equivalent to imposing that any extra revenue
(or loss) generated by the tax reform that we are considering, taking into account the behavioral
responses it induces on labor supply, is rebated (or taxed away) lump-sum and uniformly to the
population. Since there is a one-to-one map between earnings functions and tax schedules, we can
replace the arguments

(
y1, y2

)
of all the functions we consider with

(
T 1, T 2

)
. Moreover, since there

is a one-to-one map between types and incomes for a given tax schedule, we can use interchangeably
the arguments ω or y1 ≡ y1 (ω) for all of our variables.

Consider for instance the problem of choosing T 1 so as to maximize W 1(T 1, T 2), where

W 1(T 1, T 2) = E[G1
W (u(T 1, y1(ω))− u(T 2, y2(ω)) | ω)]

= E[G1
W (u(T 1, y1)− u(T 2, y2) | y1)] ,

where the indirect utility of an agent with type ω and income yj (ω) under the policy T j is given
by u

(
T j , yj (ω)

)
= yj (ω) − T j

(
yj (ω)

)
− v

(
yj (ω) , ω

)
. The second equality follows from a change

of variables from types ω to incomes y1 (ω), and the expectation is over the incomes y1 that are
realized if party 1 is elected.

Consider a reform of the platform T 1 in the direction h1 along with a lump-sum rebate R1, so
that the tax function proposed by party 1 becomes y 7→ T 1 (y) + τ1

[
h1 (y)−R1

]
. By the envelope

theorem, the utility of this agent decreases one-for-one with the change in the total tax payment,
that is, its Gateaux differential is given by

uτ1(T 1, y1(ω)) = −h1(y1(ω)) +R1. (53)

Moreover, the net revenue generated by the tax reform h1, and hence the lump-sum tax rebate, is
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given by13

R1 =

ˆ ω̄

ω

[
h1
(
y1 (ω)

)
− T 1′ (y (ω))

1− T 1′ (y (ω))
y (ω) ε̃ (ω)h1′ (y (ω))

]
f (ω) dω

=

ˆ ȳ1

y1

[(
1− FY 1(y1)

)
− T 1′(y1)

1− T 1′(y1)
y1ε̃(y1)fY 1(y1)

]
h1′(y1)dy1,

where we define the taxable income elasticity along the nonlinear budget constraint by ε̃ (ω) =
ε(ω)

1+ε(ω)ϕ(y(ω)) with ε (ω) = v1(y(ω),ω)
y(ω)v11(y(ω),ω) and ϕ (y) = yT 1′′(y)

1−T 1′(y) . The second equality follows from
a change of variables from types ω to incomes y1 (ω), using the distribution of incomes FY 1 that
arises if party 1 implements the policy T 1, and an integration by parts. The change in tax revenue is
composed of the sum of two terms: a mechanical effect, coming from the fact that each agent ω pays
a higher tax bill h1

(
y1 (ω)

)
, absent any behavioral responses; and a behavioral effect, according to

which an increase in the marginal tax rate by h1′ (y (ω)) reduces the labor supply and hence the
income of agent ω by y(ω)

1−T j′(y(ω)) ε̃ (ω), of which a share T 1′ (y (ω)) accrues to the government.
Collecting these terms, we obtain that in response to a reform of the platform T 1 in the direction

h1, along with the lump-sum rebate that ensures budget neutrality, the change in the expected gain
W 1(T 1, T 2) of the supporters of Party 1 if they win the election is equal to

W 1
τ1(T 1, T 2) = E

[
g1
W (u(T 1, y1)− u(T 2, y2) | y1)× uτ1(T 1, y1)

]
= − E

[
g1
W (u(T 1, y1)− u(T 2, y2) | y1)h1(y1)

]
+ E

[
g1
W (u(T 1, y1)− u(T 2, y2) | y1)

]
R1 .

Finally, an integration by parts implies that we can rewrite the first term in the right hand side of
the previous expression as

−
ˆ ȳ1

y1

[ˆ ȳ1

y1

g1
W (u(T 1, y1′)− u(T 2, y2′) | y1′)fY 1(y1′)dy1′

]
h1′ (y1

)
dy1 ,

where in this expression y2′ denotes the income that an agent who would earn y1′ under party 1’s
platform gets if party 2 is elected instead, given the two tax schedules

(
T 1, T 2

)
.

The optimum platform T 1 is such that W 1
τ1(T 1, T 2) = 0 for all tax reforms h1. Straightforward

algebra shows that this implies

T 1′(y1)

1− T 1′(y1)
=

1− FY 1

(
y1
)

y1fY 1 (y1)

(
1− G1

W (y1 | T 1, T 2)
) 1

ε̃ (y1)
, (54)

where we let ḡ1
W (y1 | T 1, T 2) = E[g1

W (u(T 1, y1′)− u(T 2, y2′) | y1′) | y1′ ≥ y1] and

G1
W (y1 | T 1, T 2) :=

ḡ1
W (y1 | T 1, T 2)

ḡ1
W (y1 | T 1, T 2)

.

This formula is equivalent to that we derived using mechanism design arguments in Lemma 3.

13See, e.g., Saez (2001), Golosov, Tsyvinski and Werquin (2014).
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In the standard social welfare-maximization problem, the marginal value of public funds is given
by λW := E[g(u(T, y(ω)))], where G is the concave social welfare function and g is its derivative.
That is, λW is the value of rebating lump-sum one unit of tax revenue uniformly to the entire
population. Here, the corresponding variable is λG1 := E[g1

W (u(T 1, y1(ω)) − u(T 2, y2(ω)) | ω)]

which appears in the denominator of G1
W (y | T 1, T 2). It is the total political advantage that party

1 can secure over party 2 by rebating lump-sum one unit of tax revenue uniformly to the entire
population.

Proof of Proposition 5

We start by the following lemma, the proof of which is straightforward algebra.

Lemma 8. Under Assumption 1,

E1(x | ω) =
1

2
α(ω)

(
x2 −

(
s1(ω)

α(ω)

)2
)

and E2(x | ω) =
1

2
α(ω)

((
s2(ω)

α(ω)

)2

− x2

)
,

W 1(y1, y2) = E

[
s1(ω)

(
u1(ω)− u2(ω)

)
+

1

2
α(ω)

(
u1(ω)− u2(ω)

)2
+

1

2

(
s1(ω)2

α(ω)

)]
and

W 2(y1, y2) = E

[
s2(ω)

(
u2(ω)− u1(ω)

)
+

1

2
α(ω)

(
u2(ω)− u1(ω)

)2
+

1

2

(
s2(ω)2

α(ω)

)]
.

In the case of exogenous turnout, we have

b̄u
(
y1 | T 1, T 2

)
=
´ ȳ1

y1 q̄
u
(
y1′) b (u (T 1, y1′)− u (T 1, y2′) | y2′) fY 1(y1′)

1−FY 1 (y1)dy
1′,

where in the integral we used a change of variables from types ω′ to incomes y1′ = y1 (ω′) under
party 1’s policy T 1, and where y2′ denotes the income that the corresponding type ω′ would earn
under party 2’s policy T 2. The Gateaux differential of b̄uτ2

(
y1 | T 1, T 2

)
in the direction h2 is thus

given by

b̄uτ2

(
y1 | T 1, T 2

)
=
´ ȳ1

y1 h
2
(
y2′) q̄u (y1′) b (u (T 1, y1′)− u (T 2, y2′) | y1′) fY 1(y1′)

1−FY 1 (y1)dy
1′,

since we argued in Section 4.2.1 that uτ2

(
T 2, y2′) = −h2

(
y2′). The weights in party 1’s best
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response are given by GN
(
y1 | T 1, T 2

)
=

b̄u(y1|T 1,T 2)
b̄u(y1|T 1,T 2)

, so that their Gateaux differential is equal to

GN,τ2

(
y1 | T 1, T 2

)
=

´ ȳ1

y1 h2(y2′)q̄u(y1′)b(u(T 1,y1′)−u(T 2,y2′)|y1′)
f
Y 1(y1′)

1−F
Y 1 (y1)

dy1′

´ ȳ1

y1 q̄u(y1′)b(u(T 1,y1′)−u(T 1,y2′)|y2′)fY 1 (y1′)dy1′

−GN
(
y1 | T 1, T 2

) ´ ȳ1

y1 h2(y2′)q̄u(y1′)b(u(T 1,y1′)−u(T 2,y2′)|y1′)fY 1(y1′)dy1′

´ ȳ1

y1 q̄u(y1′)b(u(T 1,y1′)−u(T 1,y2′)|y2′)fY 1 (y1′)dy1′

= GN
(
y1 | T 1, T 2

) ´ ȳ1

y1 h2(y2′)q̄u(y1′)b(u(T 1,y1′)−u(T 2,y2′)|y1′)
f
Y 1(y1′)

1−F
Y 1 (y1)

dy1′

´ ȳ1

y1 q̄u(y1′)b(u(T 1,y1′)−u(T 2,y2′)|y1′)
f
Y 1 (y1′)

1−F
Y 1 (y1)

dy1′

−
´ ȳ1

y1 h2(y2′)q̄u(y1′)b(u(T 1,y1′)−u(T 2,y2′)|y1′)fY 1(y1′)dy1′

´ ȳ1

y1 q̄u(y1′)b(u(T 1,y1′)−u(T 1,y2′)|y2′)fY 1 (y1′)dy1′

]
.

This proves equation (18). Suppose now that the initial equilibrium is symmetric, so that T 1 = T 2

and hence u
(
T 1, y1 (ω)

)
= u

(
T 2, y2 (ω)

)
for all ω ∈ Ω, and that q̄u (ω), b (0 | ω), and b′ (0 | ω) :=

b′ (0) are constant. We get

GN,τ2

(
y1 | T 1, T 2

)
GN (y1 | T 1, T 2)

=
b′ (0)E

[
h2
(
y2 (ω′)

)
| ω′ ≥ ω

]
b (0)

−
b′ (0)E

[
h2
(
y2 (ω′)

)]
b (0)

,

which leads to equation (19).
Now suppose that turnout is endogenous. In this case, we first have

g1
W (x | ω) =

d

dx

[
B (x | ω)x−

ˆ x

−∞
εib (εi | ω) dεi

]
= B (x | ω) ,

G1
W

(
y1 | T 1, T 2

)
=
E
[
B
(
u
(
T 1, y1′)− u (T 2, y2′) | y1′) | y1′ ≥ y1

]
E [B (u (T 1, y1′)− u (T 2, y2′) | y1′)]

.

The Gateaux differential of G1
W in the direction h2 reads

G1
W,τ2

(
y1 | T 1, T 2

)
=
E
[
h2
(
y2′) b (u (T 1, y1′)− u (T 2, y2′) | y1′) | y1′ ≥ y1

]
E [B (u (T 1, y1′)− u (T 2, y2′) | y1′)]

− G1
W

(
y1 | T 1, T 2

) E [h2
(
y2′) b (u (T 1, y1′)− u (T 2, y2′) | y1′)]

E [B (u (T 1, y1′)− u (T 2, y2′) | y1′)]

=G1
W

(
y1 | T 1, T 2

){E [h2
(
y2′) b (u (T 1, y1′)− u (T 2, y2′) | y1′) | y1′ ≥ y1

]
E [B (u (T 1, y1′)− u (T 2, y2′) | y1′) | y1′ ≥ y1]

−
E
[
h2
(
y2′) b (u (T 1, y1′)− u (T 2, y2′) | y1′)]

E [B (u (T 1, y1′)− u (T 2, y2′) | y1′)]

}
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Second, we have

g2
W (x | ω) =

d

dx

[
(1−B (−x | ω))x+

ˆ ∞
−x

εib (εi | ω) dεi

]
=1−B (−x | ω) + 2xb (−x | ω) ,

G1
W

(
y1 | T 1, T 2

)
=

1− E
[
B
(
∆u′ | y1′) | y1′ ≥ y1

]
− 2E

[
(∆u′) b

(
∆u′ | y1′) | y1′ ≥ y1

]
1− E [B (∆u′ | y1′)]− 2E [(∆u′) b (∆u′ | y1′)]

,

where we let ∆u′ := u
(
T 1, y1′)− u (T 2, y2′), and hence

G2
W,τ2

(
y1 | T 1, T 2

)
G2
W (y1 | T 1, T 2)

=−
3E
[
h2
(
y2′) b (∆u′ | y1′) | y1′ ≥ y1

]
+ 2E

[
h2
(
y2′) (∆u′) b′

(
∆u′ | y1′) | y1′ ≥ y1

]
1− E [B (∆u′ | y1′) | y1′ ≥ y1]− 2E [(∆u′) b (∆u′ | y1′) | y1′ ≥ y1]

+
3E
[
h2
(
y2′) b (∆u′ | y1′)]+ 2E

[
h2
(
y2′) (∆u′) b

(
∆u′ | y1′)]

1− E [B (∆u′ | y1′)]− 2E [(∆u′) b (∆u′ | y1′)]
.

Third, we have

dτ2

W 1
(
T 1, T 2

)
W 2 (T 1, T 2)

=
W 1

(
T 1, T 2

)
W 2 (T 1, T 2)

{
E
[
h2
(
y2′) g1

W

(
∆u′ | y1′)]

E [G1
W (∆u′ | y1′)]

+
E
[
h2
(
y2′) g2

W

(
∆u′ | y1′)]

E [G2
W (∆u′ | y1′)]

}
,

dτ2

ḡ2
W

(
y1 | T 1, T 2

)
ḡ1
W

(
y1 | T 1, T 2

) =
−3E

[
h2
(
y2′) b (∆u′ | y1′)]− 2E

[
h2
(
y2′) (∆u′) b′

(
∆u′ | y1′)]

E [B (∆u′ | y1′)]

+
ḡ2
W

(
y1 | T 1, T 2

)
ḡ1
W

(
y1 | T 1, T 2

) E [h2
(
y2′) b (∆u′ | y1′)]

E [B (∆u′ | y1′)]
,

dλ1
(
T 1, T 2

)
(λ1 (T 1, T 2))

2 =−

[
ḡ2
W

(
y1 | T 1, T 2

)
ḡ1
W

(
y1 | T 1, T 2

)dτ2

W 1
(
T 1, T 2

)
W 2 (T 1, T 2)

+
W 1

(
T 1, T 2

)
W 2 (T 1, T 2)

dτ2

ḡ2
W

(
y1 | T 1, T 2

)
ḡ1
W

(
y1 | T 1, T 2

)] ,
and finally,

GSP,τ2

(
y1 | T 1, T 2

)
= λ1G1

W,τ2 +
(
1− λ1

)
G2
W,τ2 + λ1

τ2

[
G1
W − G2

W

]
.

Starting from a symmetric equilibrium where Assumption 1 holds with α (ω) = ᾱ and E
[
s1(ω)

]
=

E
[
s2(ω)

]
= 1

2 , we get

G1
W,τ2

(
y1 | T 1, T 2

)
G1
W (y1 | T 1, T 2)

=
ᾱ

E [s1(ω)]

{
E
[
s1(ω)

]
E [s1(ω) | y1 (ω) ≥ y1]

E
[
h2
(
y2′) | y1′ ≥ y1

]
− E

[
h2
(
y2′)]} ,

G2
W,τ2

(
y1 | T 1, T 2

)
G2
W (y1 | T 1, T 2)

=− 3ᾱ

E [s2(ω)]

{
E
[
s2(ω)

]
E [s2(ω) | y1 (ω) ≥ y1]

E
[
h2
(
y2′) | y1′ ≥ y1

]
− E

[
h2
(
y2′)]} ,

λ1
τ2

(
T 1, T 2

)
λ1 (T 1, T 2)

=− ᾱ
(
1− λ1

){( 1

E [s1(ω)]
− 3

E [s2(ω)]
+

2

E [s1(ω)2]

)
E
[
h2
(
y2 (ω)

)
s1(ω)

]
+

(
1

E [s1(ω)]
− 3

E [s2(ω)]
+

2

E [s2(ω)2]

)
E
[
h2
(
y2 (ω)

)
s2(ω)

]}
.

This proves in particular equations (20) and (21).
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Proof of Proposition 7

Using Lemmas 1 and 2 and the first order conditions of the optimization problems in (24), we can
write

σ1∗(y1, y2) =
W 1(y1, y2)

κ Γ̄1u(y1, y2)
χ∗(y1, y2)

Γ̄1u(y1, y2)

Γ̄1u(y1, y2)
ρ

(
χ∗(y1, y2)

Γ̄1u(y1, y2)

Γ̄2u(y1, y2)

)
(55)

χ∗(y1, y2) =
W 1(y1, y2)/Γ̄1u(y1, y2)

W 2(y1, y2)/Γ̄2u(y1, y2)
. (56)

Substituting (56) into (55) yields (7).

B A model that includes ethical voters who always

vote
We assume that the random variables q̃1 and q̃2 are driven by aggregate shocks that affect the shares
of definite and rule-utilitarian voters one the one hand and of definite abstainers on the other so that
the following two properties are satisfied: First, the ratio of definite and rule-utilitarian voters is not
subject to randomness; i.e., shocks affect the ratio of potential voters to definite abstainers without
affecting the internal composition of the set of potential voters. Second, among the supporters of
party j, the ratio of definite to rule-utilitarian voters is the same for all types.

Assumption 4. There is a pair of independent random variables, η1 and η2, so that, for all ω,

q̃1v(ω) = q̄1v(ω) η1 and q̃1u(ω) = q̄1u(ω) η1

and
q̃2v(ω) = q̄2v(ω) η2 and q̃2u(ω) = q̄2u(ω) η2.

In addition, there are numbers q1v, q1u, q2v and q2u so that, for all ω,

q̄1v(ω) = q1v and q̄1u(ω) = q1u

and
q̄2v(ω) = q2v and q̄2u(ω) = q2u .

Under Assumption 4 the total number of votes for party 1 can be written as

Ṽ 1(p1, p2, σ1, q̃1) = η1 V 1(p1, p2, σ1)

where V 1(p1, p2, σ1) := m1(σ1) Γ1(p1, p2) and m1(σ1) := q1v+σ1 q1u is a multiplier that determines
how party 1’s base Γ1(p1, p2) is transformed into actual votes. Analogously, the votes for party 2
are given by Ṽ 2(p1, p2, σ2, q̃2) = η2 V 2(p1, p2, σ2), where V 2(p1, p2, σ2) := m2(σ2) Γ2(p1, p2) and
m2(σ2) = q2v + σ2 q2u. Armed with this notation, we can express the probability that party 1 wins
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as

π1(p1, p2, σ1, σ2) = P
(
V 1(p1, p2, σ1)

V 2(p1, p2, σ2)

)
= P

(
m1(σ1)

m2(σ2)

Γ1(p1, p2)

Γ2(p1, p2)

)
, (57)

where P is the cdf of the random variable η2

η1 . Its density function is denoted by ρ. Note that
imposing Assumption 4 implies a multiplicative separability between the term

χ(σ1, σ2) =
m1(σ1)

m2(σ2)
, (58)

that is shaped by the rule-utilitarian voter’s participation thresholds and the ratio of their bases

γ(p1, p2) =
Γ1(p1, p2)

Γ2(p1, p2)

so that we can write
π1(p1, p2, σ1, σ2) = P

(
χ(σ1, σ2) γ(p1, p2)

)
. (59)

Turnout. For now, we take the party platforms p1 and p2 as given and characterize the parties’
equilibrium turnout. We say that the turnout game has an interior equilibrium if 0 < σ1∗(p1, p2) < 1

and 0 < σ2∗(p1, p2) < 1. If the function P is continuously differentiable then an interior equilibrium
is characterized by the first order conditions

π1
σ1(·) W 1 − κ q1u Γ1 = 0 , (60)

and
− π1

σ2(·) W 2 − κ q2u Γ2 = 0 . (61)

Using Assumption 4 we can rewrite these conditions as

ρ(·)χ(σ1, σ2)

q1v + σ1 q1u
W 1 − κ Γ1 = 0 , (62)

and
ρ(·)χ(σ1, σ2)

q2v + σ2 q2u
W 2 − κ Γ2 = 0 . (63)

Equations (62) and (63) imply that

χ(σ1, σ2) =
W 1/κ Γ1

W 2/κ Γ2
=

W 1/Γ1

W 2/ Γ2
, (64)

which is the same expression as (3) in the body of the text.

Probability of winning. Suppose first that parties seek to maximize the probability of
winning. Let

χ∗(p1, p2) = χ(σ∗1(p1, p2), σ∗2(p1, p2))
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be the ratio of the parties support multipliers m1 and m2 that is induced by a pair of policies p1

and p2. Thus, with the solution concept of subgame perfect equilibrium, party 1 seeks to maximize

P
(
χ∗(p1, p2)

Γ1(p1, p2)

Γ2(p1, p2)

)
and party 2 seeks to minimize this expression. As P is a non-decreasing function we can as well
assume that party 1 maximizes

χ∗(p1, p2)
Γ1(p1, p2)

Γ2(p1, p2)

or any monotone transformation of it such as e.g.

ln
(
χ∗(p1, p2)

)
+ ln

(
Γ1(p1, p2)

)
− ln

(
Γ2(p1, p2)

)
. (65)

Remark 1. The “conventional” probabilistic voting model can be viewed as a special case of this
that is defined by two properties. First, since turnout is exogenous and universal, χ∗(p1, p2) = 1, for
all (p1, p2) and hence ln

(
χ∗(p1, p2)

)
= 0. Second, and again for the reason that turnout is exogenous

and universal, V 1 = Γ1(p1, p2) and V 2 = Γ2(p1, p2) = 1 − Γ1(p1, p2). In the probabilistic voting
model, the objective of party 1 can therefore be taken to be ln

(
Γ1(p1, p2)

)
− ln

(
1− Γ1(p1, p2)

)
or

simply V 1 = Γ1(p1, p2). I.e. maximizing the probability of winning is the same as maximizing the
number of votes.

Moreover:

Remark 2. With Nash equilibrium as the solution concept, the parties view χ(σ1, σ2) as exoge-
nously fixed, albeit at the level that is induced by the equilibrium policies. Party 1 then seeks to
maximize

ln
(
Γ1(p1, p2)

)
− ln

(
Γ2(p1, p2)

)
and party 2 seeks to minimize this expression. Since Γ2(p1, p2) = 1 − Γ1(p1, p2), party 1’s ob-
jective can as well simply taken to be Γ1(p1, p2) and Γ2(p1, p2) can be taken to be the objective
of party 2. Nash equilibrium then requires that p1 solves maxp̂1∈P Γ1(p̂1, p2) and that p2 solves
max2̂1∈P Γ2(p1, p̂2). Note that these equilibrium are also the equilibrium conditions in the “conven-
tional” probabilistic voting model. Thus, equilibrium existence in the “conventional” probabilistic
voting model implies the existence of a Nash equilibrium in the given setup.

If the turnout subgame has an interior equilibrium, then the probability of winning for party 1
can be written in a reduced form that no longer involves an explicit reference to the participation
thresholds σ1 and σ2. Specifically, equation (64) implies that the winning probability in (59) becomes

π̄1(p1, p2) = P
(
ψ(p1, p2)

)
for ψ(p1, p2) :=

W 1(p1, p2)

W 2(p1, p2)
. (66)

Thus, as in the main body of the text (Proposition 2), under Assumption 4, if (p1, p2) is a pair of
interior subgame perfect equilibrium policies, then it it is a saddle point of the function ψ.
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C Quadratic cost functions
An adaptation of the arguments in the Proof of Lemma 1 to the case of a quadratic cost function
reveals that

χ∗(p1, p2) :=
σ1∗(p1, p2)

σ2∗(p1, p2)
=

(
W 1(p1, p2)/Γ̄1u(p1, p2)

W 2(p1, p2)/Γ̄2u(p1, p2)

) 1
2

. (67)

To get to this equation one has to follow the same steps as in the proof of this lemma, while taking
account of the fact that the first order conditions (26) and (27) have to be adjusted. With a quadratic
cost function they are

π1
σ1(·) W 1(p1, p2)− κ σ1 Γ̄1u(p1, p2) = 0 , (68)

and
− π1

σ2(·) W 2(p1, p2)− κ σ2 Γ̄2u(p1, p2) = 0 . (69)

Following the same steps as in the proof of Lemma 2 reveals that party 1’s probability of winning
is, again, given by

π̄1(p1, p2) = P
(
χ∗(p1, p2)

Γ̄1u(p1, p2)

Γ̄2u(p1, p2)

)
.

Upon plugging the expression for χ∗(p1, p2) in (67) into this expression we find that

π̄1(p1, p2) = P

((
W 1(p1, p2) Γ̄1u(p1, p2)

W 2(p1, p2) Γ̄2u(p1, p2)

) 1
2

)

Thus, the probability that party 1 wins the election is a monotonic function of W
1(p1,p2) Γ̄1u(p1,p2)

W 2(p1,p2) Γ̄2u(p1,p2)
.

Consequently, with a quadratic cost function, an interior subgame perfect equilibrium is associated
with a saddle point of the function

ψqu(p1, p2) =
W 1(p1, p2) Γ̄1u(p1, p2)

W 2(p1, p2) Γ̄2u(p1, p2)
.

Recall that, with a linear cost function, it is associated with a saddle point of

ψ(p1, p2) =
W 1(p1, p2)

W 2(p1, p2)
.

In both cases a Nash equilibrium is associated with a saddle point of

Γ̄1u(p1, p2)

or, equivalently, a saddle point of

M(Γ̄1u(p1, p2)) =
Γ1u(p1, p2)

E[q̄u(ω)]− Γ1u(p1, p2)
=

Γ1u(p1, p2)

Γ2u(p1, p2)
.

Thus, both with a linear and a quadratic cost function, a difference between subgame perfect and
Nash equilibrium policies arises because the function ψ(p1, p2) is relevant for the former but not for
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the latter. The relevant functional forms differ, however.

D A characterization of admissible tax systems
We use a mechanism design approach to characterize the set of admissible tax systems. By the
taxation principle, see e.g. Hammond (1979) or Guesnerie (1995), an allocation (c, y) consisting of
a consumption schedule c : Ω → R+ and an earnings schedule y : Ω → R+ can be induced by an
income tax if and only if it satisfies the resource constraint,

E[y(ω)] ≥ E[c(ω)] (70)

and incentive compatibility constraints: For all ω and ω′,

u(ω) ≥ c(ω′)− v(y(ω′), ω) . (71)

where
u(ω) := c(ω)− v(y(ω), ω) . (72)

gives the utility that a type ω individual realizes under allocation (c, y).
It is also well known how to obtain a characterization of incentive compatible allocations in

models with quasilinear preferences, see e.g. Myerson (1981). An application of the envelope theorem
makes it possible to show that incentive compatibility holds if and only if two conditions are satisfied:
First, for all ω,

u(ω) = u−
ˆ ω

ω

v2(y(z), z) dz , (73)

where u := u(ω) is a shorthand for the lowest type’s utility and −
´ ω
ω
v2(y(z), z) dz is the information

rent that higher types realize in the presence of incentive compatibility constraints. Second, y is
a non-decreasing function, i.e. individuals with higher productive abilities must not earn less than
individuals with lower productive abilities.

We can use these insights to derive a representation of preferences over tax polices in a reduced
form that only depends on the income function y and no longer involves a reference to the consump-
tion function c. This will enable us to represent a party’s problem of choosing a tax policy as an
optimization problems that no longer involve resource and incentive constraints.

Suppose that (c, y) is incentive compatible, then using (72), (73) and an integration by parts we
obtain

E[c(ω)] = u+ E

[
v(y(ω), ω)− 1− F (ω)

f(ω)
v2(y(ω), ω)

]
.

Plugging this expression into the public sector budget constraint E[y(ω)] − E[c(ω)] = 0 yields an
expression for u; it is equal to the virtual surplus:

u := sv(y) := E

[
y(ω)− v(y(ω), ω) +

1− F (ω)

f(ω)
v2(y(ω), ω)

]
. (74)
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The virtual surplus is a surplus measure that takes account of the information rents that tax-payers
realize. To arrive at the virtual surplus, the surplus of aggregate output over costs of effort

s(y) := E [y(ω)− v(y(ω), ω)]

is reduced by the aggregate information rent

−E
[ˆ ω

ω

v2(y(z), z) dz

]
= −E

[
1− F (ω)

f(ω)
v2(y(ω), ω)

]
.

Indirect utility induced by an incentive compatible allocation can now be written as a sum of
virtual surplus and information rents

u(ω) := sv(y)−
ˆ ω

ω

v2(y(z), z) dz . (75)

With this characterization, the utility realized by a type ω individual depends on the whole earnings
schedule y : Ω→ R+ but no longer on the consumption schedule c : Ω→ R+.

When we study political competition over income tax schedules, we will denote party 1’s proposal
by y1 : Ω → R+ and party 2’s proposal by y2 : Ω → R+ and we denote by u1(ω) and u2(ω) the
associated utility levels for a type ω individual.

We are particularly interested in the marginal tax rates that are associated with the tax systems
that the parties propose. To get from an incentive compatible allocation to the associated tax
schedule T we use the first order condition of the utility-maximization problem that individuals face
in the presence of this tax system. If tax system T induces an incentive compatible allocation (c, y),
then

1− T ′(y(ω)) = v1(y(ω), ω) .

Hence, 1− v1(y(ω), ω) is interpreted as the marginal tax rates that type ω agents face.

E Public goods
Our framework for studying endogenous turnout and endogenous platforms in political competition
is developed for a generic policy domain. We have emphasized that the set of non-linear income tax
systems is a policy domain of particular interest. That said, our framework can also be applied to
study the implications of endogenous turnout for political competition over other policy domains.
In this section, we briefly summarize the results from such an analysis. Specifically, we report on
the implications of our framework for public goods provision.

Individuals have preferences over public goods that are given by u(ω, p) = ω p − k(p), where
p ∈ R+ denotes the quantity of the public good, ω ∈ Ω is an individual’s public goods preference
and the cost function k captures the per capita cost of public goods provision.14 We begin with a

14In an economy with a continuum of individuals and private information on public goods prefer-
ences, equal cost sharing is the only way of satisfying robust incentive compatibility, budget balance
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characterization of the public good provision level that party 1 would choose if its sole objective was
to mobilize its supporters. In this case, it would choose q1 with the objective to maximize

W 1(p1, p2) = E[G1
W (ω p1 − k(p1)− u(p2, ω) | ω)] .

Given p2, the first order condition characterizing the optimal choice of p1 is

E
[
G1
W (ω | p1, p2) ω

]
= k′(p1) where G1

W (ω | p1, p2) =
g1
W (u(p1, ω)− u(p2, ω) | ω)

E[g1
W (u(p1, ω)− u(p2, ω) | ω)]

.

This first order condition is a political economy analogue to the Samuelson rule for first-best public
good provision. For the given setup, the Samuelson rule stipulates that E[ω] = k′(p), i.e., it requires
equal weights for all public goods preferences. For the purpose of mobilizing its supporters, party
1 does not apply equal weights. Instead the public good preferences of different individuals are
weighted according to the function G1

W . The public good provision level that party 1 would choose
if it only wanted only to demobilize the supporters of party 2 is such that

E
[
G2
W (ω | p1, p2) ω

]
= k′(p1) ,

and the policy that maximizes W 1(p1p2)
W 2(p1,p2) satisfies

E[GSP (ω | p1, p2) ω] = k′(p1)

where
GSP (ω | p1, p2) := λ1(p1, p2) G1

W (ω | p1, p2) + (1− λ1(p1, p2)) G2
W (ω | p1, p2) .

Again, the party compromises between mobilizing its own supporters and demobilizing the support-

ers of the other party – with the weight on the own supporters being smaller if the party is more

likely to win.

Strategic substitutes and complements: Public goods vs non-linear taxa-
tion

For public good provision, it is particularly easy to determine whether the provision levels of different
parties are substitutes or complements. Suppose that

∂

∂p2
E[GSP (ω | p1, p2) ω] > 0 ,

i.e., that an increase of party 2’s provision level leads to an increase of the GSP -weighted average of
public goods preferences. Then the best response of party 1 is to also increase its provision level,

and anonymity, see Bierbrauer and Hellwig (2016).
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i.e., the parties choices are then strategic complements. If, by contrast,

∂

∂p2
E[GSP (ω | p1, p2) ω] < 0 ,

they are strategic substitutes.
For non-linear income taxation, this analysis is more complicated as it has to be applied sep-

arately for each level of income. There may be a complementarity in marginal tax rates for high
incomes and a substitutability in marginal tax rates for low incomes, etc. A public good is jointly
consumed by all individuals. One cannot have a high public good provision level for some people
and a low public good provision level for others. This simplifies the analysis of the parties’ strategic
interdependence.

For non-linear income taxation, the formal expression that allows us to analyze how strategic
substitutabilities and complementarities vary with incomes or productive abilities is the Gateaux
differential of the weighting functions G. This Gateaux differential is a function, it gives a different
value for each type ω. For public good provision, we only have to look at how a population average
of public goods preferences changes with the parties proposals. The formal analysis therefore does
not require functional derivatives but only standard calculus.
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