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1 Introduction

Properly valuing government commitments to pay benefits to or extract taxes from house-

holds is a longstanding issue in public finance. It figures prominently in cost-benefit analy-

sis, in valuing liabilities of government pension systems, and in assessing government inter-

and intra-generational redistribution. Were markets complete, one could simply check the

prevailing price of a given benefit or tax in a given contingent state. But markets are

far from complete for many reasons including the inability of the living to trade with the

unborn. Economists have attempted to overcome the missing-market problem by apply-

ing arbitrage pricing theory (APT) and treating government obligations as derivatives on

marketed assets—assets that arguably span the government’s promised payments, be they

positive, negative, safe or risky. Unfortunately, the assets/factors needed to span government

obligations may not exist. Alternatively, the specification of the spanning relationship may

materially alter the arbitrage pricing.1

An alternative approach is structural general-equilibrium modeling, which uses consumption-

asset pricing to value non-marketed government securities. Such pricing is based on marginal

compensating differentials—the extra current consumption needed to compensate agents for

forgoing future safe or risky net government payments. This approach, based on remaining

expected lifetime utility, fully captures the non-linear general equilibrium (GE) response of

the economy to shocks. In so doing, it eliminates the guesswork in specifying the nature

of government payment risk, albeit at the price of potentially mis-specifying the structural

model.

To date such GE analyses have primarily been based on infinitely-lived, single-agent mod-

els. Notwithstanding their widespread use, this framework appears unrealistic.2 The chief

concern is the assumption of intergenerational altruism. Such altruism effectively completes

intergenerational markets since current agents automatically internalize risks facing their

descendants. This can alter the intergenerational distribution of government-payment risk

since, as Barro (1974) showed, infinitely-lived agents fully offset government intergenerational

redistribution via private transfers. It can also change the economy’s general equilibrium

response to government policies – response that can amplify or reduce private-sector risk.

Since OLG models don’t include intergenerational altruism, they will, presumably, produce

1For example, Lucas and Zeldes (2006) and Geanakoplos and Zeldes (2010, 2011) postulate a different and
arguably more realistic reduced-form structure connecting lagged returns on a Social Security wage-growth
security, which pays off based on the realized growth rate of the wage, and stock returns than do Blocker,
Kotlikoff and Ross (2008). These differences in specifications produce significant differences in the valuation
of Social Security’s net liabilities.

2Altonji, Hayashi, and Kotlikoff (1992, 1997) and Hayashi, Altonji and Kotlikoff (1996) provide strong
evidence against operative intergenerational altruism underpinning this framework.
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different economic responses to macro shocks and, thus, different valuations of government

obligations depending on the policy in question.

Fortunately, recent computational advances permit simulating life-cycle models with

many periods, significant macro shocks, and alternative government policies. This paper

illustrates this approach, albeit in a highly stylized setting. It posits and simulates a ten-

period overlapping generations model to price government promises made to both current

and future generations. Prior to their births, future generations are assumed to have ex-

pected utility arising from consumption after they are born. Specifically, we assume an agent

age minus τ discounts utility from consumption (when alive) by an extra τ years—the time

it takes for her to be born.

Our model is a 10-period variant of Hasanhodzic and Kotlikoff’s (2013, 2017) 80-period

life-cycle model with aggregate risk and a one-period safe bond. Production is Cobb-Douglas

in capital and exogenously supplied labor. There are shocks to both total factor productivity

and capital’s rate of depreciation. Preferences over the single commodity are time separable

and isoelastic. There is also a one-period bond market. The Hasanhodzic-Kotlikoff solution

algorithm builds on Marcet’s (1988) method, which was further operationalized by Marcet

and Marshall (1994) and Judd, Maliar, and Maliar (2009, 2011). The method overcomes the

curse of dimensionality by solving for decision functions only in states that fall within the

economy’s ergodic set; i.e., in states that the economy will frequent, not those that it will

essentially never visit.3

We find that the pricing of both long- and short-dated riskless government payment

promises are closely anchored to the prevailing one-period risk-free return. Depending on

their payoff durations, these assets can be priced by discounting the future net payment at

rates either at or fairly close to the prevailing risk-free rate. Since the current return on

risk-free bonds can differ dramatically from the average risk-free return, our findings suggest

the importance of pricing government promises based on prevailing, not average historic

market returns.4 More surprising, short- and long-dated risky government payments, whose

amounts are proportional to the prevailing risky wage, are priced quite similarly to safe

pension promises, i.e., there is little risk adjustment. This is true notwithstanding our

model’s large macro shocks. On the other hand, we show that government obligations in the

3The Marcet method is not the only means of solving multi-period OLG models with macro shocks.
Krueger and Kluber (2004, 2006) apply Smolyak’s (1963) algorithm to efficiently choose grid values. Malin,
Krueger, and Kubler (2011) detail this method. Brumm and Scheidegger (2017) propose an adaptive sparse
grid approach to efficiently solve high-dimensional dynamic models, although their applications do not include
an OLG model.

4This point is particularly important for Social Security’s actuaries who, in the annual Social Security
Trustees Report, discount the system’s liabilities using an historic average real return.
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form of options are priced with a substantial risk premium. The message in these examples is

that risk-adjusted pricing is highly specific to the risk. We also find that pricing government

promises to the unborn, whether safe or risky, depends on the manner in which compensation

is provided. Another result involves the importance of the one-period bond market to valuing

obligations. The presence of the bond market matters, although less than one might expect.

Finally, we can use data generated by our model to explore the ability of arbitrage pricing to

get the prices right. We show that, with the right spanning assumptions, arbitrage pricing

theory (APT) can do remarkably well.

Our model is intentionally bare-bones to make qualitative, not precise quantitative points.

Its GE consumption-asset pricing is very different from the APT-based pricing frameworks of

Lucas and Zeldes (2006), Santos and Veronesi (2006), Goetzmann (2008), Blocker, Kotlikoff,

and Ross (2008), Khorasanee (2009), and Geanakoplos and Zeldes (2010, 2011). Although

we demonstrate that with the right reduced form, a GE structural or a reduced-form APT

approach can correctly price government I.O.U.s, we also show that specifying the wrong

APT reduced form can produce mis-pricing. Hence, the use of APT introduces an element

of risk not present in structural modeling. Of course, specifying the wrong structural model

also raises the risk of mis-pricing. Our goal here is not to adjudicate the two approaches. It’s

simply to suggest the potential for using large-scale CGE OLG models to price government

obligations and, indeed, private, non-marketed securities.

The next section reviews a small portion of the voluminous relevant literature. Subse-

quent sections present our model, describe its solution, discuss its calibration, examine the

precision and nature of our findings, and draw conclusions.5

2 Related Studies

There is a large literature concerning the proper means to value government net payment

promises, be they pension obligations, tax assessments, or returns from government invest-

ments. Lucas (2014) reviews key contributions and discusses the policy stakes involved. As

she points out, the sixties and early seventies witnessed a major debate over the proper

government discount rate. Hirschleifer (1964, 1966) argued for risk-adjusted discounting in

valuing government investments. Arrow and Lind (1970) argued for risk-free discounting

based on the government’s assumed superior ability to diversify idiosyncratic shocks and the

proposition that government investments are uncorrelated with macro risk.

Lucas (2014) sides with Hirschleifer, referencing the failure to detect idiosyncratic risk

5The model, except for the number of time periods, is identical to that in Hasanhodzic and Kotlikoff
(2017). Hence, we borrow freely from that paper in presenting the model and its solution method.
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in the pricing of securities. This as well as the myriad opportunities households have to

diversify investments implies that government promises to deliver future dollars should be

discounted at a higher rate the greater the risk of the payoff. Still, the “old” literature as

well as Lucas’ discussion makes clear that proper pricing of government promises, including

investment returns, depends on the financial-market-completing aspects of those promises

together with the other economic factors.

As Lucas (2012, 2014) stresses, getting the prices right matters. If, for example, govern-

ments borrow to invest in risky assets, but treat their future returns as risk-free, they will,

as Lucas puts it, falsely claim to have “a free money machine” and over invest. Disregarding

risk can also lead to the underfunding and over provision of government pensions as well as

an understatement of the true costs of government credit programs.

Clearly, having a fully specified CGE model permits precise consumption-based pricing

of government promises. Such modeling can, we believe, extend far beyond the highly

stylized framework presented here. This said, precisely how much detail RBC-in-OLG models

can accommodate remains to be seen. The alternative to structurally pricing government

promises is reduced-form, empirical pricing based on Ross’ (1976a, 1976b) Arbitrage Pricing

Theory (APT) and its associated risk-neutral, derivative-pricing and process-free pricing

theories.6

We say “reduced form” because the operationalization of this pricing method requires

positing and estimating how government promises co-vary with either marketed assets or a

subset of economic factors meant to capture undiversifiable economic risk. Lucas and Zeldes

(2006) is an early paper that applies modern asset-pricing theory and APT techniques to

value pension promises in a realistic setting. Their focus is on private-sector defined–benefit

pensions. But their approach extends automatically to government-provided pensions.

Blocker, Kotlikoff, and Ross (2008) also use risk-neutral derivative pricing to value pen-

sions. Their work differs from Lucas and Zeldes (2006) in two ways. First, they focus on

Social Security’s benefit and tax promises. Second, they relate the growth rate of wage rates

to current only or one-period-only lagged asset returns. They find very similar pricing of

wage growth rate securities regardless of the choice of contemporaneous or lagged regressors.

But their lagged regressors produce a much higher R-Squared.7

In contrast, Lucas and Zeldes (2006) posit a diffusion process for wages and stock val-

ues, which produces a small contemporaneous but significant long-term correlation between

earnings growth and stock returns. They justify their assumed process based on Goetz-

6See Cox and Ross (1976), Cox, Ingersol, and Ross (1977), Ross (1978), and Cox, Ross, and Rubinstein
(1979).

70.454 compared to 0.105
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mann’s (2005) finding of a low annual correlation between aggregate wage growth and stock

returns.8 Geanakoplos and Zeldes (2010, 2011) also value Social Security promises using a

diffusion process, pointing to Benzoni et al. (2007) as providing additional support for the

assumption of low short-run, but high long-run correlations between wage growth rates and

stock returns.9

The different approaches generate quite different assessments of Social Security’s un-

funded liabilities. Blocker et al. (2008) find a significant understatement of these liabilities.

Social Security’s mistake, they argue, is not its failure to adjust for risk, but its failure to

adjust for safety. Social Security’s actuaries discount benefits, once they’ve been received

and become sure liabilities, at a rate far above the market rate on long-term TIPS (Treasury

Inflation Protected Securities). Although Geanakoplos and Zeldes (2010, 2011) report that

Social Security’s liabilities are significantly overstated, they adopt Social Security’s overly

high safe discount rate. Hence, their measure of Social Security’s liabilities, while it may be

closer to the mark than Blocker et al. (2008), appears biased upward.

Geanakoplos and Zeldes (2010, 2011) object to Blocker et. al. (2008)’s use of a short

(one-year) lag structure in their wage-growth pricing formulation. Geanakoplos and Zeldes

cite Benzoni, Collin-Dufresne, and Goldstein’s (2007) empirical analysis in stating that “in

the long run, per capita wages, per capita consumption, and the value of the stock market

are likely to be tightly correlated, in which case financial markets would add a risk-premium

to the discount rate or set of discount rates.” We agree that such correlations could represent

evidence that the riskiness of wage growth-rate securities is closely tied to asset returns in

the past. But standard neoclassical models, which, unlike Geanakoplos and Zeldes (2011),

feature capital accumulation and decumulation, will exhibit such correlations even absent

uncertainty. Indeed, as shown below, lagged returns help predict current wage growth in our

model. But the source of this correlation is the model’s ergodic process and the fact that

the size of the capital stock (our model’s stock market) is a principal determinant of the

wage. Consequently, reduced-form estimation may be picking up the economy’s underlying

transition path in which temporarily low levels of capital produce high current rates of return,

which, other things equal, will be followed by higher stocks of capital and real wages. Our

point, in short, is that correlation can reflect more than risk.

8Blocker et al. (2008)’s results based on contemporaneous regressors support Goetzmann’s finding. But
their one-year lagged results suggest that current wage growth is well explained by relatively recent asset
returns.

9Geanakoplos and Zeldes (2011) provide an interesting Lucas tree-type model involving the early revela-
tion of news about future productivity shocks. This information acquisition produces zero short-run but high
long-run correlation between wage growth and stock returns. Their model is, however, very different from
ours. Our model incorporates capital accumulation and decumulation. And its current return to capital as
well as its current wage growth is fully determined by current economic conditions.
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A different concern with each of the above-referenced APT-based studies that empirically

connect wage-growth rates to returns on stocks (as well as other assets) is that stock returns

aren’t necessarily well defined. Measured stock returns depend on firms’ announcements of

their leverage ratios. But, as Modigliani and Miller (1958) showed, leverage ratios, under

these authors’ assumed conditions, have no impact on the real economy. This implies, as

pointed out by Hasanhodzic (2014) and Hasanhodzic and Kotlikoff (2017), that announced

corporate leverage rates are simply linguistic measures, not fundamental economic concepts.

Consequently we are free to describe a given company’s leverage to be entirely different in

size and sign from what the company reports. Doing so can produce entirely different time

series of individual stock returns as well as correlations of stock returns, both current and

lagged, with current wage-growth rates.10

All the above said, our model provides a special opportunity to test APT in a controlled

manner. As we show, with the right APT specification, APT pricing does an excellent job

in approximating consumption-asset pricing based on our structural model. We also show,

however, that mis-specifying the reduced form or forming APT valuations based on average,

rather than contemporaneous returns, can be problematic.

3 The Model

Our model features G = 10 overlapping generations with total factor productivity and capital

depreciation shocks. Each agent works full time through retirement age R = 7, dies at age

G, and maximizes expected lifetime utility. Cohort members are identical. Each cohort

supplies 1 unit of labor each period when working. Hence, total labor supply equals the

retirement age R. Utility is time-separable and isoelastic with risk aversion coefficient γ.

u(c) =
c1−γ − 1

1− γ
. (1)

Production is Cobb-Douglas with output, Yt, given by

Yt = ztK
ψ
t L

1−ψ
t , (2)

10The Sharpe ratio will be invariant to the corporate labeling (descriptions) of its degree of leverage, but
only if the corporation reports the identical debt-equity ratio through time.
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where z is total factor productivity, ψ is capital’s share of output, Kt is capital, and Lt is

labor demand, which equals labor supply, R. Equilibrium factor prices satisfy

wt = zt(1− ψ)

(
Kt

R

)ψ
, (3)

rt = ztψ

(
Kt

R

)ψ−1

− δt, (4)

where depreciation δt ∼ N (µδ, σ
2
δ ) as in Ambler and Paquet (1994). Total factor productivity,

z, obeys

ln(zt+1) = ρ ln(zt) + εt+1, (5)

where εt+1 ∼ N (0, σ2).

3.1 Financial Markets

Households save and invest in either risky capital or one-period safe bonds. Investing 1 unit

of consumption in bonds at time t yields 1 + r̄t units in period t+ 1. The safe rate of return,

r̄t, is indexed by t since it is known at time t although it is received at time t+ 1. Bonds are

in zero net supply. Hence, households that are short (long) bonds, are borrowing (lending)

to one another. The total demand for assets of household age g at time t is denoted by θg,t

and its share of assets invested in bonds is denoted by αg,t. Households enter period t with

θg−1,t−1 in assets, which corresponds to the total assets they demanded the prior period.

Since investment decisions are made at the end of the period, the aggregate supply of capital

in period t, Kt, is the sum of assets brought by the households into period t, i.e.

Kt =
G∑
g=1

θg,t−1. (6)
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Bonds are in zero net supply11, hence for all t,

G∑
g=1

αg,tθg,t = 0. (7)

3.2 Social Security

Our model includes a pay-as-you-go Social Security system.12 Each retiree receives a benefit

each period equal to 0.35 times that period’s wage. This equals 0.15 times 7 divided by 3

reflecting our assumed 15 percent payroll tax rate and our model’s 7 workers per 3 retirees.

Hence, letting Hg,t denote the tax levied on the age-g household at time t and Bg,t denote

the benefit paid to the age-g household at time t, we have

Bg,t =

0.35× wt for g ∈ {8, 9, 10}

0 otherwise,
(8)

and

Hg,t =

0.15× wt for g ∈ {1, 2, . . . , 7}

0 otherwise.
(9)

11As shown in Green and Kotlikoff (2008), fiscal policy can be labeled in an infinite number of ways to
produce whatever time path of explicit and implicit debts the government wishes to report. Such relabeling
makes no difference to this or any other neoclassical model, i.e., all relabeled models are isomorphisms.
Hence, our model can be viewed as including government debt or not depending on the reader’s preferences.
With government debt included in the policy’s labeling, the left-hand-side of (7) would be larger by the
amount of debt. But the right-hand-side would also be larger by exactly the same amount, leaving the
capital stock unchanged.

12Although risk-free and risky returns are lower without Social Security, including Social Security makes
no difference to our findings.

8



3.3 Household Problem

At time t the economy’s state is (st, zt), where st = (x1,t, . . . , xG−1,t) denotes the set of

age-specific holdings of cash on hand.13

Vg(st, zt) = maxcg,t,αg,t

{
u(cg,t) + βE

[
Vg+1(st+1, zt+1)

]}
for g < G, and (10)

VG(st, zt) = u(cG,t), (11)

subject to

c1,t = `1wt − θ1,t −H1,t +B1,t, (12)

cg,t = `gwt +
[
αg−1,t−1(1 + r̄t−1) + (1− αg−1,t−1)(1 + rt)

]
θg−1,t−1 − θg,t −Hg,t +Bg,t, (13)

for 1 < g < G, and

cG,t = `Gwt +
[
αG−1,t−1(1 + r̄t−1) + (1− αG−1,t−1)(1 + rt)

]
θG−1,t−1 −HG,t +BG,t, (14)

where cg,t is the consumption of a g-year old at time t, and (12)–(14) are budget constraints

for age group 1, those between 1 and G, and for age group G. With the above definitions of

cg,t, cash on hand is simply defined as xg,t = cg,t + θg,t.

3.4 Equilibrium

Given the initial state of the economy, (x1,0, . . . , xG−1,0, z0), the recursive competitive equi-

librium is defined as follows.

Definition. The recursive competitive equilibrium is governed by the consumption func-

tions, cg(s, z), the share of savings invested in bonds, αg(s, z), factor demands of the rep-

resentative firm, K(s, z) and L(s, z), Social Security policy as well as the pricing functions

r(s, z), w(s, z), and r̄(s, z) such that:

13Note that xG,t, the cash on hand of the oldest generation is not included in the state vector. When
the depreciation shock, δ, is zero, the value of xG,t can be inferred from the other state variables. When δ
is random, this is no longer the case. Now the initial value of xG,t (or equivalently the initial value of δ)
is needed to fully characterize the economy’s initial-period consumption vector. But we still exclude xG,t
from the state vector because it provides no addition information about the economy’s future evolution.
Also, we can directly calculate xG,t and, thus, the consumption of the old for periods beyond the first.
The depreciation shock, δ, could be included in the list or state variables, but it is left out for notational
convenience since it is integrated out in forming the expectation of future remaining lifetime utility.
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1. Given the pricing functions, the value functions (10) and (11) solve the recursive prob-

lem of the households subject to the budget constraints (12)–(14), and θg, αg, and cg

are the associated policy functions for all g and all dates and states.

2. Wages and rates of return on capital satisfy (3) and (4).

3. The government budget constraint (8) is satisfied.

4. All markets clear.

5. For all age groups g = 1, . . . , G−1, optimal intertemporal consumption and investment

choice satisfies

1 = βEt
[(

1 + r(st+1, zt+1)
)u′(cg+1(st+1, zt+1))

u′(cg,t(st, zt))

]
(15)

and

0 = Et

[
u′(cg+1(st+1, zt+1))

(
r̄(st, zt)− r(st+1, zt+1)

)]
, (16)

where Et is the expectation operator.

4 Calibration

The parameters, apart from our assume 15 percent payroll tax, τ , are calibrated as follows.

4.1 Endowments and Preferences

As indicated, agents work for R = 7 periods and live for G = 10. This corresponds to real

life ages 20 to 80, so each period in our model represents 6 years. We set the quarterly

subjective discount factor, β, to 0.99. This implies a six-year value of 0.786 for β. Risk

aversion γ equals 3.

4.2 Technology

We calibrate the TFP process, z, based on Hansen (1985) and Prescott (1986).14 Hansen

estimates a quarterly value for the autocorrelation coefficient, ρ, of 0.95 and a standard

14This TFP formuation is standard. See, e.g., Cooley and Prescott (1995), Ŕıos-Rull and Santaeulalia-
Llopis (2010), Gomme, Rogerson, Rupert, and Wright (2005), and Judd, Maliar, and Maliar (2011).
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deviation, σ, of the innovation ε ranging from 0.007 to 0.01. Prescott’s (1986) estimates are

0.9 for ρ and 0.00763 for σ.

Our assumed quarterly values for ρ and σ are 0.95 and 0.01, respectively. On a six-year

basis they are 0.292 and 0.031, respectively, generating a mean TFP value of 1.000 with a

standard deviation of 0.032. We set the quarterly value of the standard deviation, ψ, of the

depreciation shock, δ, to 0.0144 (implying a six-year value of 0.346).15 This is higher than

the 0.0052 quarterly estimate of Ambler and Paquet (1994).

With this calibration of the shocks, the annualized rate of return on capital displays a

standard deviation of 4.211 percent, around a mean of 7.023 percent. This accords fairly well

with the return on aggregate U.S. wealth in the data, which is characterize by an annual

standard deviation of 4.886 percent and a mean of 6.512 percent.16 Moreover, with this

calibration the wage displays a standard deviation of 0.050 around a mean of 0.500, for a

coefficient of variation of 10 percent.

5 Solution Method and Its Precision

Our algorithm contains outer and inner loops. The outer loop solves for consumption func-

tions of each generation. The inner loop uses a combination of techniques from the numerical

analysis literature—Broyden, Gauss-Seidel, and Newton’s method—to compute the agents’

bond holdings and the risk-free rate that clears the bond market.

Recall that the state vector consists of cash-on-hand variables, xg,t, of generations 1

through G − 1 and exogenous shocks. Given the information at time t, agents decide how

much of their cash on hand to consume, cg,t. They also choose the proportion αg,t of their

savings to allocate to bonds at the prevailing risk-free rate r̄t. The outer loop starts by

making an initial guess of stationary generation-specific consumption functions, cg, as linear

polynomials in the state vector and the prevailing depreciation shock.17 Next, we take a draw

15We interpret Y (equation 2) as the net production function, and hence set the mean value of depreciation
to zero.

16To measure the empirical equivalent to the model’s return on capital we use the national income ac-
counting identity that Wt+1 = Wt + rtWt + Et − Ct − Gt, where Wt stands for national wealth at time t ,
Et stands for labor income at time t, Ct standards for household consumption at time t, and Gt stands for
government consumption at time t. We solve this identity for annual values of rt by plugging in values of
Wt, reported in the Federal Reserve’s Financial Accounts data, and Et, Ct, and Gt, reported by the Bureau
of Economic Analysis in the National Income Accounts. Our data for this calculation cover 1947-2015. All
data were converted into real dollars using the PCE index and measured at producer prices. The share of
labor earnings in proprietorship and partnership income was assumed to equal the overall share of labor
income to national income on a year-by-year basis.

17Although we do not include δ as part of the theoretical state space, using it as a regressor for approxi-
mating the consumption functions proved useful.
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of the path of shocks for T = 600 periods. We then run the model forward for T periods

using the economy’s initial conditions (which corresponds to the non-stochastic steady state

of the no-policy model), guessed consumption functions and the drawn shocks. I.e., we

compute cash-on-hand variables at time t + 1 using the information we have at time t and

the exogenous shocks at time t+ 1.18

At each time t, we compute the agents’ choice of bond shares and the risk-free rate that

clears the bond market. To solve for r̄t, we use Broyden’s method based on the bond-market

clearing condition (equation 7). This condition requires that the sum of bond holdings at

time t equals zero. The bond holdings at time t of each agent age g is αg,tθg,t. The choice of

the αg,t’s make them functions of r̄t. Hence, for given values of the θg,t’s, the bond-market

clearing condition is a function of r̄t and can be used, via Broyden’s method, to find the r̄t

that sustains market clearing.

For any given r̄t, the choice of αg,t’s is determined by Gauss-Seidel iterations to solve the

system of simultaneous G − 1 generation-specific Euler equations governing the choices of

the G− 1 α’s for the new values of those α’s. Specifically, for given guesses of each agent’s

value of α, other than that of agent i, we apply Newton’s method to agent i’s Euler equation

to determine the new guessed value of α for agent i.19

Simulating the model forward produces the data needed to update our guessed consump-

tion functions. Specifically, for each age group g and each period t, we evaluate the Euler

condition to determine what that age group’s consumption should be in that period. This

calculation is based on the derived period-t state variables and the current guessed con-

sumption functions of all age groups. These functions determine each age-g agent’s marginal

utility of consumption at t+ 1.

Following Judd, Maliar, and Maliar (2009, 2011), we then regress these time series of

age-specific consumption levels on the state variables plus the depreciation shock using least

squares with Tikhonov regularization. We use the new regression estimates to update, with

dampening, the polynomial coefficients of each guessed consumption function. We iterate

the updating of these functions based, always, on the same draw of the path of shocks until

all consumption functions converge. We evaluate the accuracy of our solutions using two

methods proposed in the literature—out-of-sample deviations from the exact satisfaction of

the Euler equations and the statistic proposed by Den Haan and Marcet (1989, 1994). We

also consider whether each age group accurately prices safe assets dated one period in the

future.

18The α’s and the r̄, which are determined at time t, are used to compute each age cohort’s cash-on-hand
in period t+ 1.

19Taking other unknowns as given is Gauss-Seidel.
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5.1 Out-of-Sample Deviations from the Perfect Satisfaction of Eu-

ler Equations

A satisfactory solution requires that generation-specific Euler equations (15) hold out of

sample. Hence, to test the accuracy of our solution, we draw a fresh sequence of 2000

sets of shocks for each simulated model. We then run the model forward for 2000 years,

imposing the drawn shocks, using the original consumption functions, cg, and clearing the

bond market by rerunning the model’s inner loop each year as we move through time. To

calculate out-of-sample, unit-free deviations from full satisfaction of the Euler equations, we

form

ε(sg,t, zg,t) = βEt
[(

1 + r(st+1, zt+1)
)u′(cg+1(st+1, zt+1))

u′(cg,t(st, zt))

]
− 1 (17)

for each period in the newly simulated time path and for each generation g ∈ {1, . . . , G−1}.
Finally, we compute the average, across time, of the absolute value of the deviations from

these Euler equations for each generation.

The top panel of Table 1 reports summary statistics, across generations, of their average

absolute deviations from Euler equations for our model with and without the bond market.20

As indicated, in all cases these deviations are at most 0.005.

The portfolio choice equations (16) and the bond market-clearing condition (7) hold very

precisely by construction, since the α’s and r̄ that satisfying them are calculated in the inner

loop with a high degree of precision. In particular, the average absolute deviations from

these equations, which theoretically should equal zero, are at most 3× 10−7 and 9.8× 10−5,

respectively, and in most cases are smaller by an order of magnitude.

5.2 The Den Haan-Marcet Statistic

An alternative precision test is provided by Den Haan and Marcet (1989, 1994). Taylor and

Uhlig (1990) use this test to compare alternative solution methods for nonlinear stochastic

growth models. We follow Taylor and Uhlig’s particular implementation method.

As above, we start with a fresh draw of shocks over T periods and simulate the model

forward based on these shocks, using the original consumption functions and clearing the

20Note, these deviations are not Euler errors, which capture differences in period t’s marginal utility and
period (t + 1)’s realized marginal utility (properly weighted by β and r(s′, z′)). Rather, they reference
mistakes in satisfying the Euler equation, i.e., the discrepancy in period t between the marginal utility and
its properly weighted time-t expectation.
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Min Mean Max

Bond Market 0.003 0.004 0.005

No Bond Market 0.002 0.003 0.005

Bond Market 4.521 9.613 12.410

No Bond Market 5.151 10.360 16.236

Mean Absolute Euler Equation Deviations

Den Haan-Marcet Statistic

Solution Precision

Table 1: The minimum, mean, and maximum values, calculated across generations, of the average, cal-
culated across time, of the absolute generation-specific, out-of-sample deviations from perfect satisfaction
of the Euler equations are reported in the top panel. The bottom panel reports the minimum, mean, and
maximum values across generations of the Den Haan-Marcet statistic. The model’s precision statistics are
computed in both the presence and the absence of the bond market.

bond market each period based on the inner loop technique (discussed above). We set T to

1200, twice the length of the original simulation. Then, for each generation-specific Euler

equation (15), we compute ηg, where g references the generation’s age at time t:

ηg(t) = β
(
1 + rt+1

)u′(cg+1,t+1)

u′(cg,t)
. (18)

We next regress, separately for each generation, their 1200 ηg values on a matrix xg consisting

of a constant, five lags of cg, and five lags of z. The regression coefficients, âg,

âg = (Σxg(t)
′xg(t)

)−1
(Σxg(t)

′ηg(t)
)
, (19)

are then used to construct the Den Haan-Marcet statistic mg as follows:

mg = â′g
(
Σxg(t)

′xg(t)
)(

Σxg(t)
′xg(t)ηg(t)

2
)−1(

Σxg(t)
′xg(t)

)
âg. (20)

If the generation-specific Euler equations (15) are satisfied, then Et−1[ηg(t)] = 0 must hold.

This implies that the coefficient vector, and, therefore, mg are zero, which is the null hy-

pothesis. Note that our solution method does not enforce this property, so as Den Haan and

Marcet (1994) point out, theirs is a challenging test.

Under the null, mg is distributed as χ2(11) asymptotically. Based on a two-sided test
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at the 2.5 percent significance level, we would fail to reject the null if mg lies outside the

interval (3.82, 21.92). In the bottom panel of Table 1 we compute the minimum, mean, and

maximum across generations of generation-specific statistics mg for our model in both the

presence and the absence of the bond market. In all cases, the mean across generations of

the statistic is well within the acceptance interval.

5.3 Discount Rates for Pricing a One-Period Goverment Payment

Promise

Yet a third way to test for our model’s accuracy is to consider our derived rates for discounting

one-period-ahead safe government payments. Combining equations 15 and 16 yields equation

21:

1/(1 + r̄(st, zt)) = βEt
[u′(cg+1,t+1(st+1, zt+1))

u′(cg,t(st, zt))

]
. (21)

This equation states that all generations at time t price a sure payment made a period from

the present at 1/(1 + r̄(st, zt)). In the asset-pricing tables presented below, the first column

presents the derived one-period ahead discount rates for generations of different ages. Since

our model’s solution doesn’t directly incorporate equation 21, differences in the values in

the first columns imply differences in 1/(1 + r̄(st, zt)) and represent a third measure of the

model’s goodness of fit. As will be apparent, there are differences in discount rates in the

first columns. For example, in our first pricing table, Table 3, the prevailing value for r̄(st, zt)

is 0.050 on an annualized basis. But one value in the column equals 0.048. This represents

a four percent difference in annualized discount rates, but only a 1.15 percent difference in

the price of the security.21

6 Valuing Government Promises

We first review consumption-asset pricing of government payments to the living and then

extend this method to pricing obligations to the unborn.

21This figure is calculated by dividing (1/1.048)6 by (1/1.05)6. Indeed, across all the tables presented
below, the largest discrepancy across generations in the pricing of a one-period safe security is 2.18 percent.
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6.1 Valuing Government Payment Promises to the Living

Equation 22 considers the impact on the remaining lifetime utility of an agent age g in year t

of paying mg,t units of corn to the government in period t and receiving ε̃t+τ × P̄t+τ from the

government in period t+τ , where the later term is the average value of the payment and the

former term, which has a mean of 1, is its random component. Equation 23 calculates how

much mg,t needs to increase to compensate for the receipt of the risky t+ τ payment. This

is marginal consumption-asset pricing. It tells us how much additional current consumption

is needed to compensate the agent (and, thereby, maintain her expected remaining lifetime

utility) for foregoing the future government payment.22 Note that if ε̃t+τ = 1 for all τ , the

government’s payment is a safe asset. Equation 24 relates the implied per period discount

rate, µ, to the price of the asset, and equation 25 annualizes it. This annualized discount

rate will be presented in the tables below.

EUg,t = u(cg,t −mg,t) + βEt[u(cg+1,t+1)] + . . . (22)

+ βτEt[u
(
cg+τ,t+τ + ε̃t+τ × P̄t+τ

)
] + · · ·+ β10−gEt[u(c10,t+10−g)],

dmg,t

dP̄t+τ
= βτ

Et[u
′(cg+τ,t+τ )× ε̃t+τ ]

u′(cg,t)
, (23)

dmg,t

dP̄t+τ
=

1

(1 + µg,t+τ )τ
, (24)

µannualg,t+τ = (1 + µg,t+τ )
1/6 − 1. (25)

6.2 Valuing Government Payment Promises to the Unborn

Equations 26–29 present the analogue to equations 22–25 for those not yet born:

22Equivalently, mg,t is the reduction in current consumption needed to offset the provision of the risky
payment at t+ τ . This derivative, evaluated at P̄t+τ , equals zero.
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EU−g,t = βgEt[u
(
c1,t+g −m−g,t

t+g∏
i=t+1

(1 + vi)
)
] + βg+1Et[u(c2,t+g+1)] + . . . (26)

+ βτEt[u
(
cτ−g+1,t+τ + ε̃t+τ × P̄t+τ

)
] + · · ·+ βg+9Et[u(c10,t+g+9)],

dm−g,t
dP̄t+τ

= βτ−g
Et[u

′(cτ−g+1,t+τ )× ε̃t+τ ]
Et[u′(c1,t+g)

∏t+g
i=t+1(1 + vi)]

, (27)

where vt equals r̄t−1 if the method of compensation is safe, and r̃t otherwise.23 The implied

discount factors are computed and annualized as follows:

dm−g,t
dP̄t+τ

=
1

(1 + µ−g,t+τ )τ
, (28)

µannual−g,t+τ = (1 + µ−g,t+τ )
1/6 − 1. (29)

The difference in compensation is that m−g,t, although determined at time t, can’t be

paid out to the unborn agent until the agent is born. In the meantime, m−g,t can be invested

either at the sequence of ensuing “risk-free” returns or the ensuing risky returns on capital.

As equation 27 makes clear, how m−g,t is invested will affect its size. This point is important.

It means, for example, that the means by which future generations would be compensated

for shutting down an ongoing government pension system will alter the calculated costs of

doing so. The U.S. Social Security system’s valuation of its unfunded liability is a case in

point.24 Social Security’s actuaries calculate its unfunded liability annually on both 75-year

and infinite-horizon bases.25 The word “liability” references what is owed. To Social Security

actuaries what is owed is what is needed, on average, to keep the system paying benefits.

But to economists, what is owed is what is needed to fully compensate the creditor. This

23Recall r̄t−1 is determined at time t− 1 and realized at time t.
24Social Security references this as their closed group liability.
25See tables VIE1 and VIF1 in https://www.ssa.gov/OACT.
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depends on the riskiness of Social Security’s net benefit promises and, as just pointed out,

on the risk arising due to the method used by Social Security to redeem its obligations to

future generations.

7 Results

Turning to the results, we begin by comparing the volatility of the model’s aggregate variables

with the data. Next, we present the discount rates associated with pricing the safe and risky

promises to the living and the unborn. We then consider the impact of the bond market on

pricing. Finally, we use the data generated by our model to study how well specific Arbitrage

Pricing Theory reduced forms can approximate the pricing of government obligations.

7.1 Comparing the Model’s Volatility of Per Capital Output and

Per Capita Consumption with the Data

Model/ Data S.D. (%)

Model 9.947

Real Net National Product, 1929-2015 5.937

Model 15.474

Real Personal Consumption Expenditures, 1929-2015 2.904

Output

Aggregate Consumption

Standard Deviation of Percent Deviations of Output and 

Consumption from Trend

Table 2: Standard deviations of percent deviations from trend of U.S. per capita real net national product
and U.S. per capita real personal consumption expenditures, 1929–2015 as well as standard deviations
of percent deviations from the mean of output and aggregate consumption in the model. Data source:
https://fred.stlouisfed.org. Reported NNP is converted to constant dollars using the GDP deflator. For each
of the two annual data series, we first detrend using the Hodrick-Prescott filter, and then aggregate using
6-year rolling windows. The latter is done to allow for a fair comparison of the data with the model, in
which each period represents six years. Using 6-year non-overlapping windows to aggregate the data yields
similar results, namely a standard deviation of 6.977 percent for NNP and 2.800 percent for consumption
expenditures.

Table 2 compares the variability of per capita output and per capita consumption from our

model to their empirical counterparts. Following Prescott’s (1986) procedure, we detrend

these per capita series for the years 1929 through 2015 and form standard deviations of

percent deviations from trend. Our model abstracts from growth, so we simply form the

standard deviation of our model’s percentage deviation of annual output from its mean. As
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the table shows, our model overstates actual per capita output variability by a factor of

almost 2. It overstates the variability of per capita consumption by a factor of roughly 5.

Hence, our finding (presented below) of small risk adjustment cannot be attributed to an

understatement of output variability.

7.2 Pricing Safe Promises to the Living

Each table in this section shows the discount rates that would be applied by an agent at a

given age who is a given number of periods away from receiving a sure payment in valuing

that payment.

1 2 3 4 5 6 7 8 9

1 0.050 0.053 0.056 0.058 0.060 0.061 0.063 0.064 0.065

2 0.049 0.052 0.055 0.057 0.060 0.061 0.063 0.064

3 0.051 0.053 0.056 0.058 0.061 0.062 0.064

4 0.048 0.052 0.055 0.057 0.060 0.062

5 0.049 0.052 0.055 0.058 0.060

6 0.050 0.053 0.056 0.058

7 0.050 0.053 0.056

8 0.051 0.054

9 0.049

Annual Discount Factors for a Safe Asset for the Living

Average 0.069 0.077

Model with Social Security

Low Risk-Free Rate, High Return on Capital Initial State

Periods Till Payoff Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Current 0.050 0.108

Table 3: Annual discount factors for a safe payment promised to the living. Initial state features a low
risk-free rate and a high return on capital.

Tables 3 and 4 show the rates at which safe government payments are discounted, i.e.,

priced, in our model. These discount rates are defined in equations 22–25. Table 3 considers

initial conditions that feature a low risk-free return on bonds, namely 5.0 percent and a high

risky return on capital, namely 10.8 percent. Average returns on these securities, calculated

based on 600 observations, are, as indicated, 6.9 percent and 7.7 percent, respectively. Con-

sequently, the model is producing a risk premium, but one that’s relatively small.26 Table 4

26As Hasanhodzic (2015) shows, adding increasing marginal borrowing costs to our model can reproduce
the observed U.S. risk premium. Hasanhodzic and Kotlikoff (2017) replicate her results in an 80-period
model. We omitted such borrowing costs in this study to keep the model as simple as possible given that,
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1 2 3 4 5 6 7 8 9

1 0.087 0.087 0.086 0.085 0.084 0.084 0.083 0.082 0.082

2 0.087 0.086 0.086 0.085 0.084 0.083 0.082 0.082

3 0.085 0.084 0.084 0.082 0.082 0.081 0.080

4 0.087 0.087 0.086 0.085 0.085 0.084

5 0.088 0.087 0.087 0.086 0.085

6 0.088 0.087 0.087 0.086

7 0.089 0.088 0.088

8 0.088 0.088

9 0.087

Annual Discount Factors for a Safe Asset for the Living

Current 0.087 0.041

Average 0.069 0.077

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Periods Till Payoff Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Table 4: Annual discount factors for a safe payment promised to the living. Initial state features a high
risk-free rate and a low return to capital.

flips the relative sizes of prevailing (initial) risk-free and risky returns. The table’s risk-free

rate is 8.7 percent and its risky return is 4.1 percent. A quick glance at Tables 3 and 4 shows

that the discount rates needed to price safe payments are highly dependent on the prevailing

one-period safe rate of return. Thus Table 3’s discount rates are seemingly anchored to its

5.0 percent risk-free rate, whereas Table 4’s discount rates strongly reflect its 8.7 percent

discount rate.

As discussed above, were our solution method free of approximation error, the values in

the first column would each equal the prevailing risk-free rate. This isn’t the case, but, again,

the discrepancies, where they arise, are small and translate into even smaller percentage

differences in the price of a one-period-ahead safe asset.

The two tables’ results are interesting in three respects. First, none of the discount

rates, even many periods from the present, differ substantially from the initial-period risk-

free return. This is the sense in which we describe these discount rates as anchored by the

prevailing one-period safe return. Second, since the initial safe returns in the two tables are

5.0 percent and 8.7 percent, the discount rates across the two tables are very different. This

seems a both surprising and important finding. As we’ll see, this finding that prevailing

economic conditions are critical to pricing safe government obligations carries over to the

as we show, the risk premium is not the key to pricing government obligations. The key is the prevailing
risk-free rate, which varies considerably across states.
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pricing of risky obligations. This prescription to price based on current economic conditions

is at strong odds with actual U.S. government practice. Take the Social Security system’s

Annual Trustees Report. Its annual reported liabilities are routinely discounted at a roughly

3.0 percent real return regardless of the economy’s current position and real returns on TIPS

(Treasury Inflation Protected Securities).

Second, the pricing of safe payments a given number of periods into the future is ap-

proximately invariant to an agent’s age. Third, as one would expect, given that there is no

market for long-term safe assets and there is more uncertainty about the future the farther

out one goes, discount rates change with the distance in time until the payment is received.

More precisely, when the initial risk-free rate is below its mean, discount rates rise for pay-

ments farther out and vice versa when the initial risk-free rate is above its mean. In other

words, discount rates farther out are seemingly influenced by the mean risk-free rate. What’s

surprising is the small degree of that influence. In Table 3, for example, the discount rate

for a safe payment promised in six periods to a 3-period year-old is 6.2 percent, which is

higher by 1.2 percentage points than the initial 5.0 percent one-period safe rate. In Table 4,

the corresponding discount rate is 8.1 percent, which is 0.6 percentage points less than the

initial 8.7 percent one-period safe rate. Clearly, 6.2 percent is much closer to 5.0 than to 8.7.

Similarly, 8.1 percent is much closer to 8.7 percent than to 5.0 percent.

7.3 Pricing Risky Promises to the Living

Before turning to the pricing results associated with risky promises, let us examine how they

should differ from the corresponding results for the safe promises presented above. Equation

30 decomposes the pricing of a risky security into safe and risky components:

E[u′(ct+τ )× εt+τ ]
u′(ct)

=
E[u′(ct+τ )]

u′(ct)
+
Cov(u′(ct+τ ), εt+τ )

u′(ct)
, (30)

where E[εt+τ ] = 1.

The safe component is the price of a sure promise, which we valued in prior tables. The

risky component reflects the covariance of consumption with the shock to the level of the

average payment promised. If this covariance is small, risky promises will be valued/priced

like safe promises.

Tables 5 and 6 present pricing of risky promises for the respective initial conditions of

Tables 3 and 4. Tables 5 and 6 are identical to Tables 3 and 4 except that the former
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1 2 3 4 5 6 7 8 9

1 0.050 0.055 0.058 0.060 0.062 0.063 0.064 0.066 0.066

2 0.049 0.054 0.057 0.059 0.061 0.063 0.064 0.066

3 0.051 0.056 0.059 0.061 0.062 0.064 0.065

4 0.049 0.054 0.057 0.059 0.061 0.063

5 0.049 0.054 0.057 0.060 0.062

6 0.050 0.055 0.058 0.060

7 0.050 0.055 0.058

8 0.052 0.056

9 0.049

Annual Discount Factors for a Risky Asset for the Living

Model with Social Security

Low Risk-Free Rate, High Return on Capital Initial State

Average 0.069 0.077

Periods Till Benefit Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Current 0.050 0.108

Table 5: Annual discount factors for a risky payment to the living. Initial state features a low risk-free
rate and a high return to capital.

tables price promises to a sure unit of corn at different dates, whereas the latter tables price

promises to the same unit of corn, on average, but where the exact payment equals the same

average payment multiplied by εt—the ratio of the realized wage to its average value.

Note first that the discount rates (implicit security prices) in the pairs of tables corre-

sponding to the same initial condition, where one table in the pair incorporates no risk and

the other one incorporates risk—Tables 3 and 5, and Tables 4 and 6—are essentially identi-

cal. The difference in the two table entries for the same row and column represent the risk

premium. As is immediate from comparing the corresponding columns, the risk premium

is very close to zero. Consider, for example, the 8.2 percent rate at which an agent age 1

period discounts a safe promise 9 periods into the future in Table 4. If the promise is risky,

in the manner specified, the discount rate is 8.3 percent (see Table 6). Given equation 30,

the risk premium is calculated by subtracting each entry in Table 5 (6) from its counterpart

in Table 3 (4). Hence, the risk premium is only 0.1 percent. The risk premiums for other

combinations of current age and periods till benefit received are also essentially zero.

There are two potential explanations for this finding. One is that there is very little

unexpected variability in the government payment (i.e., in the wage, since the payment

is proportional to the wage). The second is that this variability is not correlated with

consumption.

Table 7 presents the coefficient of variation of the wage for each of the nine periods
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1 2 3 4 5 6 7 8 9

1 0.088 0.088 0.087 0.086 0.086 0.085 0.084 0.083 0.083

2 0.087 0.088 0.087 0.086 0.085 0.084 0.083 0.083

3 0.085 0.086 0.085 0.084 0.083 0.082 0.082

4 0.088 0.088 0.088 0.087 0.086 0.085

5 0.088 0.088 0.088 0.087 0.086

6 0.088 0.089 0.088 0.087

7 0.089 0.089 0.089

8 0.088 0.089

9 0.087

Annual Discount Factors for a Risky Asset for the Living

Current 0.087 0.041

Average 0.069 0.077

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Periods Till Payoff Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Table 6: Annual discount factors for pricing a risky payment to the living. The initial state features a high
risk-free rate and a low return on capital.

subsequent to the occurrence of the initial conditions introduced in Tables 3 and 4. These

coefficients, starting from the initial conditions of Tables 3 and 5, rise from 3.1 percent one

year out to 10.8 percent 9 years out. The corresponding coefficients starting from the initial

conditions of Tables 4 and 6 are virtually indistinguishable, rising from 3.1 percent to 10.2

percent.

This is a rather small degree of variability. Furthermore, not all of this variability reflects

risk. Some share of this variability was, by the nature of our model and its ergodic progress,

expected well before the payment was made. This provided agents time to adjust their

saving and, thereby, limit the impact of the wage “shock” on future consumption. This said,

the relatively small wage variability goes a long way to explaining why wage-based risky

government promises are valued as essentially safe.

These coefficients of variation may suggest that our model has too little risk. But, accord-

ing to Table 2, the model is producing more output and aggregate consumption variability

than the actual economy. As for wages, the coefficient of variation of the detrended median

wage of full-time male workers reported by the St. Louis Federal Reserve is 0.027.27. The

corresponding coefficient of variation of wages in our model’s simulated time series is 0.100.

27The data can be found at https://fred.stlouisfed.org/series/LEU0252881900A. It reports the median
usual weekly real earnings for full-time employed men from 1979 to 2016. After detrending, we convert the
weekly values to six-year values by multiplying them by 288 so that the results are comparable to the period
length in the model
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Hence, the model’s wage variability is almost four times higher than the economy’s.

1 2 3 4 5 6 7 8 9

0.031 0.075 0.093 0.102 0.108 0.110 0.110 0.109 0.108

0.031 0.064 0.079 0.088 0.095 0.098 0.099 0.100 0.102

Coefficient of Variation of the Wage for the Living

Periods Till Payoff Received

High Risk-Free Rate, Low Return on Capital

Low Risk-Free Rate, High Return on Capital

Initial State

Table 7: The coefficient of variation of the wage for each of the nine periods subsequent to the occurrence
of the initial conditions characterized by the low (high) risk-free rate and high (low) return to capital.

1 2 3 4 5 6 7 8 9

1 0.091 0.101 0.102 0.101 0.100 0.098 0.095 0.093 0.092

2 0.090 0.100 0.102 0.101 0.099 0.097 0.095 0.093

3 0.088 0.099 0.101 0.100 0.099 0.097 0.095

4 0.090 0.101 0.102 0.100 0.099 0.097

5 0.090 0.101 0.101 0.100 0.099

6 0.090 0.100 0.101 0.100

7 0.090 0.101 0.102

8 0.090 0.100

9 0.089

Average 0.069 0.077

Annual Discount Factors for a Risky Asset with Higher Payoff Volatility for the Living

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Periods Till Payoff Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Current 0.087 0.041

Table 8: Annual discount factors for pricing a high-volatility risky payment promised to the living. Here
εt has the same mean but ten times the standard deviation of εt associated with the regular risky asset. The
initial state is characterized by a high risk-free rate and a low return on capital.

Table 8 further investigates the risk premium associated with wage-based government

payment promises. It repeats Table 6, but applies a mean-preserving spread to increase the

variance of εt+τ by a factor of 10.28 Comparing the two tables shows that the long-term

discount rates rise by roughly 100 basis points. But, interestingly, the short-term discount

rates, although higher, remain close to the prevailing risk-free rate. Medium-term discount

rates rise by close to 150 basis points.

The message is that risk premiums associated with wage-linked government payments,

particularly long-term risk premiums, are responsive to the level of risk. Still, they seem

28To be specific, we use 10(εt+τ − E[εt+τ ]) + 1 where E[εt+τ ] = 1.
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smaller than one might expect.

Why are changes in wage rates so poorly correlated with changes in the marginal utility

of consumption? Part of the answer, discussed in Hasanhodzic and Kotlikoff (2013, 2017),

is that agents can use the one-period bond market to help insure each other against the

economy’s TFP and depreciation shocks. These risk-sharing arrangements will take into

account the autocorrelation in the TFP process as well as the natural ergodic process by

which the model, other things equal, returns to the mid point of its stochastic steady state.

Hence, they can provide insurance not only against immediate negative wage shocks, but

also the expected longer-term impact of such shocks.

Indeed, the ergodic nature of our stochastic OLG model means that current TFP and

depreciation shocks will have predictable impacts on future wages. Thus, some, if not most of

the “shock” to wages may come as no surprise to agents. Hence, for example, a 3-period year

old who experiences, along with other agents, large negative current TFP and depreciation

shocks can expect wages to be lower, on average, in future periods because it takes time for

the economy to adjust back to its standard position (ignoring ensuing shocks).

A second explanation is that workers experience multiple shocks over their lifetimes—

shocks that generally average out. This permits workers to effectively self insure. A third

explanation is that middle aged and older workers hold assets, the principal of which is

invariant to productivity if not depreciation shocks.

The left-hand-side panel of Table 9 presents a regression of wage growth at time t on a

constant and four lags of risky returns.29 The data used in this analysis come from simulating

the model over 600 periods starting from the initial condition corresponding to the model’s

average values of the state variables. Both current and lagged regressors (rates of return

lagged by one or four periods, where, again, each period represents six years) are significant

at least at a 5 percent level. Based on their model, Geanakoplos and Zeldes (2011) would view

the significance of the lagged regressors as reflecting early news about future productivity

shocks. But in our model, agents don’t learn about shocks until they occur. Instead, the

message of this regression—that the returns that arose in the past help predict wage growth

today—reflects the economy’s ergodic process. It also tells us that agents in our model can

infer much of what’s coming with respect to wage-based government payments far before

those payments are made.
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Intercept -0.127*** Intercept -0.108*** Intercept 0.096***

(0.000) (0.000) (0.000)

r(t) 0.037** r(t-1) 0.177*** r(t) -0.022***

(0.053) (0.000) (0.009)

r(t-1) 0.172*** rb(t-1) 0.010 rb(t) -0.157***

(0.000) (0.377) (0.000)

r(t-2) -0.025

(0.184)

r(t-1) 0.001

(0.954)

r(t-4) 0.012***

(0.006)

rb(t) 0.133*

(0.092)

rb(t-1) -0.149

(0.216)

rb(t-2) -0.095

(0.427)

rb(t-3) 0.139

(0.237)

rb(t-4) -0.003

(0.973)

Adj. R
2

0.761 Adj. R
2

0.758 Adj. R
2

0.072

p (F) 0.000 p (F) 0.000 p (F) 0.000

Obs. 596 Obs. 596 Obs. 596

Coefficients

Contemporanous plus 

four period lagged safe 

and risky returns

One period lagged safe 

and risky returns

Contemporanous safe 

and risky returns

Regressions of Growth Rate of Wages on Contemporaneous and Lagged 

Safe Returns (rb) and Risky Returns (r)

Significance

Table 9: Regressions of the growth rate of wages on contemporaneous and lagged returns. Statistical
significance is denoted by stars at the 10% (*), 5% (**) and 1% (***) levels, respectively.
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1 2 3 4 5 6 7 8 9

1 0.227 0.163 0.142 0.130 0.122 0.115 0.110 0.106 0.103

2 0.226 0.163 0.142 0.129 0.121 0.115 0.109 0.106

3 0.223 0.161 0.141 0.128 0.120 0.114 0.109

4 0.225 0.163 0.142 0.129 0.121 0.115

5 0.225 0.163 0.141 0.129 0.121

6 0.224 0.162 0.141 0.129

7 0.223 0.162 0.142

8 0.223 0.162

9 0.223

Current 0.087 0.041

Average 0.069 0.077

Annual Discount Factors for a Government Option for the Living

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Periods Till Payoff Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Table 10: Annual discount factors for a government option provided to the living. The payoff of the option
equals that of the risky asset if εt > 1 and zero otherwise. The initial state features a high risk-free rate and
a low return on capital.

7.4 Pricing a Government Option to Make Payments to the Living

Table 10 values a government option to make wage-tied payments to the agent, but only if

wages are above their mean. Otherwise, the payment is set to zero. These results illustrate

the capacity of the model to price all types of securities. The table considers the initial

conditions from Table 4, i.e., a high 8.7 percent risk-free rate and a low 4.1 percent return

on capital. This table’s 1-period-from-payoff discount rates (i.e., first column) are almost

three times as large as the rates presented in Table 6. These discount rates decline by over

one half as the number of periods to payoff rises from 1 to 9.

Clearly, the risk premiums decline the farther out the option. For the 1-period old agent,

the risk premium, measured on an annual basis, is roughly 22.5 percent less 8.7 percent,

the prevailing risk-free rate, or 13.8 percent. For a 9-period out payoff, the risk premium is

is 10.3 percent less 8.7 percent or just 1.6 percent. On the other hand, this risk premium

compounds, reducing in roughly half the price a current one-period-old agent would pay for

the option as compared to the sure payoff.30

29We will discuss other panels of this table in section 8.
30The amount 1

1.08254 is the price of a safe payment paying off in 9 periods as perceived by an age-1 period
agent (see column 9 in Table 4). The amount 1

1.10354 (see column 9 in Table 10)is the corresponding price of
the risky option. The number 54 is based on our assumption that each period stands for 6 years and we are
considering 9 times 6 periods into the future.
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7.5 Pricing Safe and Risky Payments to the Unborn

1 2 3 4 5 6 7 8 9

-1 0.089 0.087 0.085 0.084 0.083 0.083 0.082 0.081 0.081

-2 0.088 0.086 0.085 0.084 0.083 0.082 0.081 0.081 0.081

-3 0.087 0.085 0.084 0.083 0.082 0.082 0.081 0.081 0.080

-4 0.086 0.085 0.083 0.083 0.082 0.081 0.081 0.080 0.080

-5 0.085 0.084 0.083 0.082 0.081 0.081 0.080 0.080 0.080

-18 0.080 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.078

-19 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.078 0.078

-20 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.078 0.078

Annual Discount Factors for a Safe Asset for the Unborn

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Age at the Receipt of the Asset

C
u
rr

e
n
t 

A
g
e

...

Risky Method of Compensation

Risk-Free Rate Return on Capital

Current 0.087 0.041

Average 0.069 0.077

Table 11: Annual discount factors for pricing a safe payment promised to the unborn. The initial state
features a high risk-free rate and a low return on capital.

Tables 11 and 12 price government payments to future generations. Table 11 and consid-

ers safe payments and Table 12 considers risky payments. As indicated in equations 26 and

27, these tables consider the government compensating the unborn by holding aside a given

amount of resources, denoted by m−g,t, which is invested at the prevailing rates of return to

capital through the period of birth of the future generation in question. Since the results

are qualitatively very similar regardless of initial conditions, we present results just for the

initial conditions of Table 4.

Unlike in the prior tables, the discount rates of future generations vary more distinctly

by the age of the agent. For example, agents who are age -1 period discount a safe payment

1 period from now at an 8.9 percent rate, whereas agents age -20 discount at a 7.9 percent

rate.31 We also find that making the government payment risky (proportional to the wage)

makes virtually no difference to future generation’s pricing of these promises.
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1 2 3 4 5 6 7 8 9

-1 0.089 0.088 0.086 0.086 0.085 0.084 0.083 0.082 0.082

-2 0.089 0.087 0.086 0.085 0.084 0.083 0.082 0.082 0.081

-3 0.087 0.086 0.085 0.084 0.083 0.082 0.082 0.081 0.081

-4 0.087 0.085 0.084 0.083 0.083 0.082 0.081 0.081 0.081

-5 0.086 0.084 0.084 0.083 0.082 0.082 0.081 0.081 0.080

-18 0.080 0.080 0.079 0.079 0.079 0.079 0.079 0.078 0.078

-19 0.080 0.079 0.079 0.079 0.079 0.079 0.079 0.078 0.078

-20 0.079 0.079 0.079 0.079 0.079 0.079 0.078 0.078 0.078

Annual Discount Factors for a Risky Asset for the Unborn

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Risky Method of Compensation

Average 0.069 0.077

Age at the Receipt of the Asset
C
u
rr

e
n
t 

A
g
e

...

Risk-Free Rate Return on Capital

Current 0.087 0.041

Table 12: Annual discount factors for pricing a risky payment promised to the unborn. The initial state
features a high risk-free rate and a low return on capital.

1 2 3 4 5 6 7 8 9

-1 0.086 0.085 0.084 0.083 0.083 0.082 0.081 0.081 0.080

-2 0.085 0.084 0.083 0.082 0.082 0.081 0.081 0.080 0.080

-3 0.084 0.083 0.082 0.081 0.081 0.080 0.080 0.080 0.079

-4 0.083 0.082 0.081 0.081 0.080 0.080 0.080 0.079 0.079

-5 0.083 0.081 0.081 0.080 0.080 0.079 0.079 0.079 0.079

-18 0.077 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076

-19 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076

-20 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076

Annual Discount Factors for a Safe Asset for the Unborn

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Safe Method of Compensation

Average 0.069 0.077

Age at the Receipt of the Asset

C
u
rr

e
n
t 

A
g
e

...

Risk-Free Rate Return on Capital

Current 0.087 0.041

Table 13: Annual discount factors for pricing a safe payment promised to the unborn. These safe govern-
ment payment promises to be made at different future dates are reinvested at the risk-free rate. The initial
state features a high risk-free rate and a low return on capital.
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1 2 3 4 5 6 7 8 9

-1 0.087 0.086 0.085 0.084 0.084 0.083 0.082 0.082 0.081

-2 0.086 0.085 0.084 0.083 0.082 0.082 0.081 0.081 0.081

-3 0.085 0.084 0.083 0.082 0.082 0.081 0.081 0.080 0.080

-4 0.084 0.083 0.082 0.082 0.081 0.081 0.080 0.080 0.080

-5 0.083 0.082 0.082 0.081 0.081 0.080 0.080 0.079 0.079

-18 0.077 0.077 0.076 0.076 0.076 0.076 0.076 0.076 0.076

-19 0.077 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076

-20 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076

Annual Discount Factors for a Risky Asset for the Unborn

Model with Social Security

High Risk-Free Rate, Low Return on Capital Initial State

Safe Method of Compensation

Average 0.069 0.077

Age at the Receipt of the Payoff
C
u
rr

e
n
t 

A
g
e

...

Risk-Free Rate Return on Capital

Current 0.087 0.041

Table 14: Annual discount factors for pricing a risky payment promised to the unborn. These risky
government payment promises to be made at different future dates are reinvested at the risk-free rate. The
initial state features a high risk-free rate and a low return on capital.

7.5.1 Impact of Method of Compensation on Pricing Payments to the Unborn

Like Tables 11 and 12, Tables 13 and 14 present the rates at which unborn (future) gen-

erations would discount safe government payment promises to be made at different future

dates. However, while the former pair of tables consider a risky method of compensation

under which the amount m is reinvested at the risky return to capital, the later pair of tables

consider a “safe” method of compensation under which the amount m is reinvested at the

sequence of safe rates of return. In all four tables the initial condition is characterized by a

high risk-free rate and a low return on capital first introduced in Table 4.

Comparing Tables 11 and 13, which price safe promises, we can see that the discount

rates are uniformly lower when the method of compensation is safe. For example, agents

who are age -1 period discount a safe promise to be received when they are born at an 8.9

percent rate when the method of compensation is risky, whereas they discount at an 8.6

percent rate when the method of compensation is safe. Similarly, agents who are -20 periods

old discount at a 7.9 percent rate when the method of compensation is risky, and at a 7.6

31Under the alternative initial conditions, one-year out discount rates are again close to the prevailing
discount rates for younger future agents. But they can be higher or lower for older future generations
depending on the initial state.

30



percent rate when it is safe. Comparing Tables 12 and 14 shows that the same conclusions

hold when pricing risky promises.

1 2 3 4 5 6 7 8 9

-1 0.046 0.046 0.046 0.047 0.047 0.048 0.048 0.049 0.049

-2 0.048 0.047 0.047 0.048 0.048 0.049 0.049 0.050 0.050

-3 0.049 0.048 0.048 0.049 0.049 0.049 0.050 0.050 0.050

-4 0.050 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.051

-5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051 0.051

-18 0.054 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053

-19 0.054 0.054 0.053 0.053 0.053 0.053 0.053 0.053 0.053

-20 0.054 0.054 0.054 0.053 0.053 0.053 0.053 0.053 0.053

Risk-Free Rate Return on Capital

Current 0.040 0.057

Average 0.046 0.056

Annual Discount Factors for a Safe Asset for the Unborn

Model without Social Security and Typical Initial State

Risky Method of Compensation

Age at the Receipt of the Asset

C
u
rr

e
n
t 

A
g
e

...

Table 15: Annual discount factors for pricing a safe payment promised to the unborn. These safe govern-
ment payment promises to be made at different future dates are reinvested at the return to capital (“risky
method of compensation”). The initial state corresponds to a typical state of the economy (the middle of
the ergodic distribution).

Tables 15 and 16 present a case where the discrepancy between discount rates for different

methods of compensation is particularly pronounced. These tables price a safe promise to

the unborn in a model without Social Security and starting from a typical initial state. Now,

the discount rate declines from 4.6 percent with risky method of compensation to 4.2 percent

with safe method of compensations for a -1 period old agent, and from 5.4 percent with risky

method of compensation to 4.8 percent with safe method of compensation for a -20 periods

old agent. Interestingly, 5.4 percent is close to the average return on capital of 5.6 percent,

and 4.8 percent is close to the average risk-free rate of 4.6 percent. This result makes sense.

Since starting from a typical state there is no transition period during which the economy

will revert to some average state of nature, the rates of return that will prevail in each of the

ensuing 20 periods (until the -20 period old agent is born) will average out to their long-run

average values. Hence, it is those long-run average values that will matter most for pricing.
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1 2 3 4 5 6 7 8 9

-1 0.042 0.043 0.044 0.045 0.046 0.046 0.047 0.048 0.048

-2 0.043 0.043 0.044 0.045 0.046 0.047 0.047 0.048 0.048

-3 0.043 0.044 0.045 0.046 0.046 0.047 0.048 0.048 0.048

-4 0.045 0.045 0.046 0.046 0.047 0.047 0.048 0.048 0.049

-5 0.045 0.046 0.046 0.047 0.047 0.048 0.048 0.048 0.049

-18 0.048 0.048 0.048 0.048 0.049 0.049 0.049 0.049 0.049

-19 0.048 0.048 0.048 0.048 0.049 0.049 0.049 0.049 0.049

-20 0.048 0.048 0.048 0.048 0.049 0.049 0.049 0.049 0.049

Average 0.046 0.056

Annual Discount Factors for a Safe Asset for the Unborn

Model without Social Security and Typical Initial State

Safe Method of Compensation

Age at the Receipt of the Asset

C
u
rr

e
n
t 

A
g
e

...

Risk-Free Rate Return on Capital

Current 0.040 0.057

Table 16: Annual discount factors for pricing a safe payment promised to the unborn. These safe gov-
ernment payment promises to be made at different future dates are reinvested at the risk-free rate (“safe
method of compensation”). The initial state corresponds to a typical state of the economy (the middle of
the ergodic distribution).

7.6 Impact of the Bond Market on Pricing

In Tables 17–18 we consider the importance of the bond market to asset pricing. In both

tables, the initial state of the economy is characterize by the low risk-free rate and the high

return on capital first considered in Table 3. In simulating the model without a bond market,

we simply omit the choice of αg,t as well as the constraint that bond holdings sum to zero. The

macro economy with no bond market is essentially identical to that with the bond market.

The bond market certainly helps different generations share contemporaneous shocks, but

it doesn’t materially impact the economy’s aggregate variables.32 This is evident, in part,

from the same 7.7 percent average return on capital reported in both the pricing tables that

include and the ones that exclude the bond market. To be clear, the two models produce

different consumption functions, but in the case of the return to capital, the differences in

the average return is in the fourth decimal place.

The basic message from comparing results with the same initial conditions (identical

state vectors) with and without the bond market is that both safe and risky government

payments may be priced either lower or higher without the bond market depending on the

asset in question, the age of the agent, and the timing of the payoff. But our prior finding

32This is the same finding reported in Hasanhodzic and Kotlikoff (2013, 2017) and Hasanhodzic (2015).
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1 2 3 4 5 6 7 8 9

1 0.058 0.059 0.061 0.062 0.063 0.064 0.063 0.064 0.063

2 0.053 0.055 0.057 0.059 0.060 0.060 0.061 0.061

3 0.053 0.055 0.057 0.058 0.058 0.059 0.059

4 0.049 0.051 0.054 0.054 0.055 0.056

5 0.047 0.050 0.051 0.051 0.053

6 0.046 0.046 0.049 0.050

7 0.040 0.043 0.046

8 0.043 0.043

9 0.042

Current ̶̶ 0.108

Average ̶̶ 0.077

Annual Discount Factors for a Safe Asset for the Living

Model with Social Security and No Bond Market

Same Initial State as in the Case of Low Risk-Free Rate, High Return on Capital

Periods Till Payoff Received
C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Table 17: Annual discount factors for pricing a safe payment to the living assuming no bond market. Initial
state features the same low risk-free rate and high return to capital as in the corresponding table with the
bond market.

1 2 3 4 5 6 7 8 9

1 0.058 0.060 0.062 0.063 0.064 0.064 0.064 0.065 0.064

2 0.053 0.056 0.059 0.060 0.061 0.061 0.062 0.062

3 0.053 0.056 0.058 0.059 0.060 0.060 0.061

4 0.049 0.053 0.055 0.055 0.057 0.058

5 0.048 0.051 0.052 0.054 0.055

6 0.047 0.048 0.051 0.053

7 0.040 0.046 0.050

8 0.043 0.047

9 0.042

Current ̶̶ 0.108

Average ̶̶ 0.077

Annual Discount Factors for a Risky Asset for the Living

Model with Social Security and No Bond Market

Same Initial State as in the Case of Low Risk-Free Rate, High Return on Capital

Periods Till Payoff Received

C
u
rr

e
n
t 

A
g
e

Risk-Free Rate Return on Capital

Table 18: Annual discount factors for pricing a risky payment to the living with no bond market. Initial
state features the same high risk-free rate and low return to capital as in the corresponding table with the
bond market.
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that safe and risky promises are discounted at essentially the same rates continues to hold.

So too does the key point that the pricing of government promises, whether safe or risky,

depends critically on the economy’s current position.

The impact of the bond market can be seen by comparing the first columns in Tables

3 and 17, both of which price a safe government payment one period out. In the former

table, each of the discount rates for a safe payment one year out is very close to 5.0 percent,

the prevailing risk free rate. In the later table, the rates range from 5.8 to 4.0 percent—a

sizable difference. The rates are, with one exception, higher for younger agents and lower

for older agents. This pattern of higher discount rates for the young and lower rates for the

old extends to longer-dated safe government payments.

These results are intuitive. With the short-term bond market, older generations limit

their risk by buying bonds from younger generations. This means that absent the ability to

buy and sell bonds, the young value a safe asset less than the elderly, i.e., they discount a

safe payment at a higher rate.33

Next consider Table 18, which prices risky government payments provided to the living

in the absence of a bond market. The discount rates are strikingly similar to those in Table

17. Hence, once again we find no risk premium for a risky compared to a safe payment.

This is true even for end-of-period 1 payments. The other key point about our results with

no bond market is that the discount rates, as in the case with a bond market, are largely

anchored by what the short-term bond rate would be in the presence of a bond market.

8 Using Our Structural Model To Evaluate Arbitrage

Pricing

Data generated by our model can be used to determine how well specific APT reduced-

forms can approximate the correct pricing of government obligations. Recall that Table 9,

first introduced in Section 7.3, presents regressions of the growth rate of wages on contem-

poraneous safe and risky returns, on returns lagged by one period, and on contemporaneous

plus multiple lagged returns.

Note that using either multiple lags plus contemporaneous returns or one-period lags pro-

duces high R2s – above 0.75. In contrast, the R2 in the regression with just contemporaneous

returns is only 0.072. On the other hand, each regression has highly significant variables.

33Younger generations face relatively more risk from TFP shocks than older ones whose principal is in-
sulated from the shocks. But this principal is directly impacted by depreciation shocks. Such shocks also
impact workers via lower wages, but on balance the risks facing the elderly from both shocks appear to
outweigh those facing the young, who, of course, have more periods over which to recoup losses.
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The first regression with 4 lags plus contemporaneous returns provides only limited support

for the Lucas and Zeldes (2006) and Geanakoplos and Zeldes (2010,2011) view that returns

and wages are strongly correlated over the long term, but not over the short term. Of course,

these authors are making observations about actual data, not data simulated from a highly

stylized model. They are also focused on correlations in annual data, not correlations in

what amounts to roughly six-year data.34

1 2 3 4 5 6 7 8 9

High Rb, Low R; Prevailing Rb 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084

High Rb, Low R; Average Rb 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

Low Rb, High R; Prevailing Rb 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.057 0.057

Low Rb, High R; Average Rb 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

High Rb, Low R; Prevailing Rb 0.087 0.085 0.085 0.084 0.079 0.075 0.073 0.072 0.071

High Rb, Low R; Average Rb 0.070 0.071 0.071 0.071 0.067 0.064 0.062 0.061 0.060

Low Rb, High R; Prevailing Rb 0.054 0.056 0.056 0.057 0.053 0.051 0.050 0.049 0.048

Low Rb, High R; Average Rb 0.074 0.073 0.072 0.072 0.067 0.065 0.063 0.061 0.060

Contemporaneous Returns

Lagged Returns

Periods Till Payoff Received

Annual Discount Rates Based on APT 

Table 19: Annual discount-rate results from using the APT pricing formulas of Blocker, Kotlikoff, and
Ross (2006) to value wage-based payment promises for the same initial high risk-free, low risky rate and low
risk-free, high risky rate cases considered previously in the paper. The APT pricing is based on wage-growth
rate regressions using either contemporaneous returns or one-period lagged returns. Valuation results from
using both the prevailing risk-free rate and the average risk-free rate are presented.

Blocker, Ross and Kotlikoff (2006) present formulas for APT pricing based on wage-

growth rate regressions using either a) contemporaneous returns or b) one-period lagged

returns. In the case of contemporaneous returns, they posit the following relationship be-

tween annual wage growth rates and current returns on market securities.

wt+1

wt
= 1 + α +

∑
i

βifi,t + εt, (31)

where wt is the economy’s average wage at time t, α is a constant, fi,t is the return to asset

i at time t, and the βi’s are regression coefficients.

To value an obligation that’s proportional to the future level of wt+1, they determine the

amount, Ai,t, one would need to invest in risky asset i and the amount Bt one would need to

34The basis for the correlation between current returns and wage growth in our model is simply a standard
production function in which both labor and capital can be immediately adjusted. Modifying this frame-
work to incorporate capital adjustment costs would move our model closer to the Lucas-Tree model that
Geanakoplos and Zeldes (2011) posit to support their empirical findings.
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invest in a safe asset yielding an assumed fixed safe return, r̄, to replicate wt+1, apart from

idiosyncratic risk. This entails setting Ai,t = βi and Bt =
1+α−

∑
i βi

1+r̄
. The value, VT , of a

wage growth security that pays out wT in expected value is given by

Vt,T = w0

(1 + α + r̄
∑

i βi
1 + r̄

)T
. (32)

In the case that wage growth is related to one-period lagged returns, the analogous

formula is

Vt,T = w0

(1 + α +
∑

i βif
′
i,t−1

1 + r̄

)(1 + α + r̄
∑

i βi
1 + r̄

)T−1

. (33)

These two formulas differ in important ways from our consumption-asset pricing. Equa-

tion 32 assumes that the safe rate of return, r̄, is constant through time. It also provides

the same pricing no mater the age of the recipient of the government’s promise to make

a payment that’s proportional to the wage.35 Finally, although we implement the formula

using either the prevailing or average safe rate of return, the formula itself doesn’t depend

on time since, again, r̄ is assumed time-invariant. Equation 33 does depend on time insofar

as it includes lagged returns. But as with equation 32, it assumes a time-invariant interest

rate.

Blocker et al. (2006) also point out that APT pricing becomes highly complex if one

prices wage growth based on asset returns extending over many lags. As mentioned, Lucas

and Zeldes (2006) and Geanakoplos and Zeldes (2010, 2011) surmount this APT pricing

complexity by assuming a tightly structured reduced form relating wage growth to past

security returns.36

Table 19 presents eight sets of annualized discount-rate results from using these APT pric-

ing formulas to value the same wage-based risky government payment promises considered

in Tables 5 and 6. Table 19’s discount rates are directly comparable to their counterparts

in those tables. The first four rows in the table are based on the contemporaneous-returns

regression. Rows 1 and 2 consider the initial high risk-free, low risky returns case. Rows 3

35The value of such a promise is simply proportional to VT .
36Benzoni et al. (2007) test for cointegration between labor and capital income by running an augmented

Dickey-Fuller (ADF) test to check whether the variable representing the difference between log-aggregate
labor income and log-dividend is stationary. In our model, the dividend in any period is given by rtKt, and
the difference between the log of wages and the log of dividends is always a constant (log( wt

rtKt
) = 1−α

10α ).
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and 4 consider the initial low risk-free, high risky rate case. Rows 1 and 3 use the prevail-

ing risk-free rate in the valuation formula. Rows 2 and 4 follow Social Security actuaries’

practice of using the average risk-free rate. Row 5 through 8 are the counterparts of rows 1

through 4 except that they use the one-period lagged return formula.

The first thing to point out is that Table 19’s discount rates based on contemporaneous

returns are close, but not identical to those based on returns lagged one period. This

suggests the importance of correctly specifying the reduced form of the arbitrage pricing

relationship. The second point is that the APT pricing is fairly similar to that reported

in Tables 5 and 6 provided one implement the formulas using prevailing, not average safe

rates of return. The upshot here is that which APT formulation one uses matters, but the

particular implementation of the formula matters even more. If one uses, as do the Social

Security actuaries, average rather than prevailing safe rates of return in forming estimates

of government liabilities, one will produce very different pricing. This is particularly clear

by comparing rows 3 and 4 and rows 7 and 8 in Table 19.

9 Conclusion

The proper way to value government commitments when markets are incomplete is a long-

standing, fundamental, yet unresolved question in economics. The reduced-form approach,

which relies on arbitrage pricing, requires strong assumptions about the availability of span-

ning securities (or implicit factors) and the manner of spanning. The alternative approach,

taken here, is to posit, calibrate, and solve a structural model and use consumption-asset

pricing (compensating variation) to price government obligations.

In the past, the curse of dimensionality limited economists’ ability to solve what is ar-

guably one of the most realistic such structural frameworks—a large-scale OLG model with

macro shocks. But computational breakthroughs have made solving OLG in RBC models

eminently feasible. This paper provides an example. It solves a 10-period OLG model with

large, indeed overly large productivity and depreciation shocks.

We use our model to price safe and risky, short- and long-term government payment

promises made to both current and future generations. We find that prevailing, rather than

average (across-time) short-term safe real bond rates play a crucial role in determining the

pricing of short-, medium-, and even long-term safe government net payment promises. They

also are of prime importance to the pricing of risky government net payments. Indeed, we

find remarkably small risk premiums when the government’s net payment being valued is

proportional to the economy’s wage rate. The model does, however, generate large risk
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premiums (i.e., much higher discount rates/lower prices) for government options, which

promise payments only in good times. We also show that a short-term bond market has

an important, if small impact on pricing government obligations. Finally, we find that, at

least in our context, APT pricing can approximate consumption-asset pricing reasonably

well provided it is implemented using prevailing safe rates of return.

Our paper’s goal was modest—showing in a very simple framework that one can price

securities in large-scale OLG models, which are buffeted by macro shocks, but whose financial

markets are incomplete. Pricing government obligations is just one of a plethora of securities

that can be priced with the machinery used here.
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