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1 Introduction

There are substantial differences in economic outcomes by health. For example, even

among the relatively homogeneous group of men with a high-school degree, the healthy

earn, on average, 37% more than the unhealthy conditional on working. The difference in

wealth is even more remarkable. The gap in wealth by health starts at a relatively young

age and becomes very large by retirement time: in the same group, the median wealth of

the healthy at age 65 is 65% larger than that of the unhealthy (own calculations, see Section

5.1 for details).

These facts raise two important questions. First, what generates such a large difference

in economic outcomes by health? Second, given these large and prolonged differences, how

costly it is to be unhealthy from the entire life-cycle perspective?

We address these questions using a structural framework. In general, the differences in

economic outcomes by health can be due to three mechanisms: (i) health changes economic

circumstances; ii) economic circumstances affect health, (iii) healthy and unhealthy people

are ex-ante different. While we adopt the first mechanism, the novelty of our approach is

that we also allow for the third mechanism. In fact, modeling the latter is where we see a big

gap in the literature. While the existence of the third mechanism is well-recognized, most

structural models adopt a simple structure in which all ex-ante differences across people are

entirely captured by an observable and unidimensional variable, such as education.

Hence, a related fundamental, and still unanswered question is what is the role of fixed

unobserved characteristics––for instance, characteristics driven by genetics and experiences

early in life—and what are their long-lasting effects on health and economic outcomes. A

convincing answer to this question necessitates a much richer modeling of ex-ante differences,

which are likely multidimensional, and possibly correlated with each other.

Our focus on the role of factors that are predetermined early in life, or at birth, goes in

parallel with the recently growing empirical literature that documents the importance of the

effects of early-in-life factors over the entire life course (Anda et al., 2006; Barth et al., 2020;

Case et al. 2005 and 2010; Conti and Heckman, 2010; Cronqvist and Seigel, 2015; Felitti et

al., 1998; Harris et al., 2017). Because the findings from this literature are very compelling,

it is crucial to incorporate these new forces in structural models. Our paper does so in the

context of a rich quantitative framework.

Our analysis proceeds in several steps. We document several novel facts about long-

run health dynamics showing that they are complex and not consistent with a low-order

Markov process. Specifically, health transitions display strong duration dependence: the

longer people have been unhealthy (healthy), the less likely they are to become healthy

(unhealthy). We formulate and estimate a parametric model of health shocks that allows
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for both history-dependence and fixed heterogeneity, and that matches the patterns that we

observe. Finally, we incorporate our estimated health process in a life-cycle model. The

ex-ante differences across individuals in our model are three-dimensional and include fixed

heterogeneity in health (or health types), in labor productivity, and in the rate of time

preferences. We estimate the first two fixed factors and their correlation together with our

health process. We estimate the correlation between health types and the rate of time

preferences in our structural model by using the Method of Simulated Moments.

We focus on high school men to avoid the confounding effect of education and gender

on health and economic outcomes and to emphasize the role of fixed heterogeneity within

this relatively homogeneous group. For more accurate measurement, we use three datasets:

the Health and Retirement Study, the Panel Study of Income Dynamics, and the Medical

Expenditure Panel Survey.

Our estimated model is consistent with three sets of important facts. First, it captures

the dynamics of health, including its duration dependence. Second, it matches the observed

impact of bad health on earnings and labor supply (income-health gradient), medical spend-

ing, and life expectancy. Third, it captures the wealth-health gradient by matching the large

difference in wealth levels between the healthy and unhealthy over the lifespan.

Our first set of results relates to the estimation of the health process. We find that both

history-dependence and fixed heterogeneity (or health types) are important drivers of health

dynamics and that the role of health types is significant even when we control for long history

dependence. In addition, and importantly, the variation in the transition probabilities across

health types is much larger than that across health histories. This implies that health types

play an important role in explaining the high persistence of health and the occurrence of long

spells of bad health. Specifically, health types account for more than 70% of the variation

of the fraction of lifetime spent being unhealthy. We also show that fixed heterogeneity in

one’s health process is correlated with fixed heterogeneity in labor productivity: people with

low fixed productivity are more likely to be of a worse health type.

Our second set of results relates to the implications of our estimated structural life-

cycle model. Our estimates imply a strong correlation between one’s health type and rate

of time preferences: among the long-term unhealthy a larger fraction is less patient and

has a lower propensity to save. This is important to account for the wealth-health gradient:

when the correlation between patience and health type is shut down, the model substantially

underpredicts the wealth gap between the healthy and unhealthy, even though it still matches

the income-health gradient.

We find that the lifetime costs of bad health are large when measured both in monetary

and welfare terms. On average, people lose about $1,500 per year (in 2013 USD) over their
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entire life because of bad health. Our measure of monetary costs includes both direct (out-

of-pocket medical spending) and indirect (loss in labor earnings) costs. We find that the

latter component is a large contributor to the lifetime costs of bad health, especially for

working-age people, and arises because unhealthy individuals are less productive and work

less than healthy ones. In fact, even though total medical costs are substantial for the

long-term unhealthy, the effects of out-of-pocket costs are smaller due to health insurance

coverage.

Our welfare measure of the lifetime costs of bad health represents the consumption equiv-

alent variation for individuals in the counterfactual situation when they (unexpectedly) never

draw bad health realizations. We find that moving from this counterfactual to the baseline

would be equivalent to losing 10% of annual consumption, on average. A decomposition

exercise shows that the major contributor to the welfare costs is the effect of bad health

on expected lifespan: because life is valuable, bad health reduces welfare by shortening the

length of life.

Finally, we show that the monetary and welfare costs of bad health are very concentrated

and highly unequally distributed across health types. This happens because people with

different health types are strikingly different in terms of the fraction of their lifetime that

they spend being unhealthy. For example, on average, people with the worst health type

spend almost two third of their lifetime in bad health. This translates into a substantial

contribution of health types to the variation in the lifetime costs of bad health. That is,

health types account for close to 70% for the monetary costs and about a third for welfare

costs due to bad health. The smaller contribution of health types to the variation in welfare

costs is due to the fact that welfare costs are very sensitive to lifespan length and that health

types affect the length of unhealthy spells much more than they affect life expectancy.

Our study thus provides several novel contributions. First, it documents new facts related

to the long-run dynamics of health and shows that to account for this, health process has to

feature both long memory and fixed health types.

Second, it shows that the correlated multidimensional ex-ante heterogeneity in health, la-

bor productivity, and patience to a large extent contributes to the joint evolution of health,

income, and wealth over the life cycle. Thus, to account for the observed disparities in

economic outcomes by health in a life-cycle model, it is important to take ex-ante hetero-

geneity seriously. We thus add to the existing studies that commonly attribute the observed

health-related disparities in economic outcomes to ex-post health shocks and economic cir-

cumstances during adulthood.

Third, we develop a quantitative model designed to gauge the long-run or accumulated

effects of bad health over the entire life cycle. Using our framework, we are able to measure
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the comprehensive effects of bad health both in terms of monetary and welfare costs, and

evaluate the role of factors pre-determined early in life in generating these costs. To the best

of our knowledge, the accumulated effects of bad health over the life cycle have not been

assessed before due to the lack of data or an appropriate structural framework.

Related literature. The robust relationship between health and economic outcomes is

well-documented in the literature (see Cutler et al., 2011 for a review). There is growing

interest in using structural models including health to study a broad set of issues such

as health insurance reform (see Fang and Krueger, 2021, for an extensive review) or the

contribution of heath to inequality in earnings (Capatina et al., 2021; Hosseini et al., 2021b).

The findings of these studies crucially depend on what generates difference in economic

outcomes by health: a direct link between the two or ex-ante differences across individuals.

We contribute to the literature by emphasizing the role of correlated fixed characteristics for

the systemic economic disparity between health groups.

At a methodological level, quantitative structural studies on health-related questions

emphasize the importance of three points: (i) how we measure health, (iii) how best to

describe health dynamics, (iii) how to model the direct link between health and economic

outcomes.

In our study, we use self-reported health status, a discrete measure of health. This

variable is most commonly used in structural work partly because it is available in several

micro datasets and is consistently measured across them.1 In addition, several studies find

that self-reported health is highly correlated with other subjective and objective measures of

health and also has significant explanatory power in predicting future mortality, even after

controlling for many other factors (see Idler and Benyamini (1997) for a review, and Van

Doorsaler and Gerdtham (2002), and Pijoan-Mas and Rı́os-Rull (2014) for a more recent

examination). Finally, and very importantly, this measure is available for a long period of

time in the PSID (and the HRS), which makes it ideally suited to investigate the lifetime

costs of bad health.

Several recent studies have suggested an alternative measure of health: a continuous in-

dex constructed by aggregating several variables such as diagnosis of most common health

conditions, limitations of activities of daily living, cognitive impairments, etc. (Blundell et

al., 2020a; Hosseini et al., 2021a; Poterba et al., 2017). Capatina et al. (2021) and Prados

(2018) construct a more complex measure of health based on an extended list of detailed

diagnosed medical conditions available in the Medical Expenditure Survey (MEPS) Dataset.

1 We show that this variable is consistently measured in the PSID and the HRS (see Figures 1-2 in the
next section). Attanasio et al. (2011) compare this variable in the HRS and MEPS, and shows that the two
datasets are consistent.
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Such a measure is arguably closer to the objective underlying health, but the short panel

dimension of the MEPS offers limited opportunities to study its long-term dynamics. Im-

portantly, Blundell et al. (2020b) point out that properly accounting for ex-ante differences

across individuals is a more important modeling issue than the choice of health measure.

Our estimation provides new insights about the role of these ex-ante differences.

Turning to the dynamics of health, structural studies commonly assume it follows a first-

order Markov process. Some studies using a continuous health measure assume the AR(1)

specification augmented with transitory shocks and/or fixed effects (Blundell et al., 2020a;

Hosseini et al. 2021b). One of the key contribution of our study is to show that health

process has a long memory.

Regarding the mechanism directly linking health and economic outcomes, structural stud-

ies follow one of the following approaches. The most common approach is to assume that

health is exogenous and affects medical spending, labor productivity, and other economic

variables (Conesa et al. 2018; Jeske and Kitao, 2009; Pashchenko and Porapakkarm, 2013,

2017). The second approach is to assume that health is endogenous and can be affected

by medical spending (Jung and Tran, 2016; Ozkan, 2017), effort (Cole et al., 2018) or

healthy/unhealthy habits (Bolt, 2021; Hai and Heckman, 2021).2 In modeling the direct

link between health and economic outcomes, we follow the first approach, but we emphasize

the indirect link coming from the fact that both health and economic variables are affected

by correlated fixed factors.

At an applied level, there is a long list of empirical studies documenting the impact

of health on labor marker outcomes (see Currie and Madrian, 1999, for a review). Several

structural studies investigate the importance of health for economic decisions such as savings

(Ameriks et al., 2020; De Nardi et al., 2010, 2016; Hubbard et al., 1995; Lockwood, 2018;

Nakajima and Telyukova, 2020) or labor supply (Capatina, 2015; French, 2005; French and

Jones, 2011). However, the total losses imposed by bad health over the entire life-cycle has

not been assessed before. Arguably, fully understanding the accumulated costs of bad health,

its sources, and to what extent these costs are predetermined by factors formed at birth or

early age is very important for analyzing any health-related policy issues.

It is also important to mention the relationship to the literature assessing the value of

changes in longevity from the perspective of an individuals’ maximization of expected life-

time utility. Early examples include Arthur (1981), Rosen (1988), Shepard and Zeckhauser

(1984). More recently, Murphy and Topel (2006) apply this approach to quantify the welfare

2 A somewhat mixed approach is used by De Nardi et al. (2016) and Pashchenko and Porapakkarm
(2019) who assume medical spending are (partially) endogenous but cannot affect health. Another hybrid
approach is used by Capatina et al. (2021) who assume (endogenous) employment status can affect heath
transitions.
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gains from increased longevity during the 20th century and find that they are substan-

tial. These studies typically abstract from individual-level heterogeneity and focus on how

a representative cohort values longevity increases. We contribute to this line of research

by evaluating the welfare losses from shorter life expectancy arising from health shocks of

individuals who differ in ex-ante fixed characteristics and by decomposing these costs.

The rest of the paper is organized as follows. Section 2 documents empirical facts related

to health dynamics and estimates the health processes. Section 4 introduces our life-cycle

model and Section 5 describes its estimation. We present the results and conclusions in

Section 6 and Section 7, respectively.

2 Health and labor productivity

For our health process estimation, we primarily use the Panel Study of Income Dynamics

(PSID). When possible, we also use the Health and Retirement Study (HRS) to cross-check

moments from the PSID and to validate our estimated model. We report more detail about

these data sets, our samples, and how we use them in online Appendix A.

For each data set, we use a sample of male household heads with 12 to 14 years of

education (corresponding to the high school degree or at most 2 years of college education).

We normalize all nominal variables to the base year (2013) using the Consumer Price Index

(CPI).

We start by documenting the cross-sectional and time-series properties of self-reported

health status and individual-level fixed labor productivity. We then estimate a rich process

for health dynamics that is consistent with these moments and discuss its implications.

2.1 The evolution of health

In the PSID and the HRS, people rank their health as excellent , very good , good , fair

or poor. As common in the literature, we aggregate these answers into a binary measure

of health (see, for example, French (2005), Capatina (2015), Rust and Phelan (1997)) and

classify as healthy or in good health people who report their health to be in the first three

categories, and as unhealthy or in bad health people who report being in fair or poor health.

The left graph of Figure (1) displays the percentage of people that we classify as in bad

health by age. The dots correspond to the PSID data, while the crosses refer to HRS data.

The center and right panels display the two-year health transition probabilities. Details of

their construction are in online Appendix B.1.

Consistent with previous findings, more people are in bad health when older, the proba-

bility of recovering from bad health decreases with age, and that of becoming sick increases
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with age. In addition the PSID and the HRS yield a very similar picture.
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Figure 1: Health. Left panel: percentage of people in bad health by age. Middle panel: percentage of
people moving from bad to good health in the next two years. Right panel: percentage of people moving
from good to bad health in the next two years.
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Figure 2: Dynamics of health conditional on duration of previous health status. Each period is every two
years.

To better understand the dynamics of health, the top (and bottom) panel of Figure 2

display the probabilities of moving from bad (good) to good (bad) health over the next two
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years, conditional on being in bad (good) health for at least τ consecutive periods (with a

period being two years). We group observations in three age groups: 30-54, 55-69, and older

than 70 and report the resulting statistics from left to right.

An important feature of these graphs is that both the probability of recovering from bad

health and that of becoming unhealthy decline monotonically with duration: the longer an

individual has been unhealthy (healthy), the less likely he is to become healthy (unhealthy).

This pattern holds for all age groups.3

This form of duration dependence cannot be captured by the low-order Markov processes

for health that are commonly used in the literature (e.g., French, 2005; French and Jones,

2011; and Capatina, 2015). In fact, a first order Markov process implies that the transition

probability does not depend on how long one has been in the current health state. A second

order Markov process implies that one’s transition probability is the same for durations

longer or equal to two periods.

This negative duration dependence can be generated by two mechanisms. First, the

effects of health can compound. People who are sick for a long period of time might have

a lower recovery probability than those who are sick for a shorter period of time. Similarly,

people who recently recovered from bad health might have a larger probability of relapsing

than those who have been in good health for longer. This mechanism can be well represented

by a high-order Markov process.

Second, people may differ in their ability to recover or in their predisposition to become

sick. In this case, people who are more likely to recover move out of the bad health state

faster. Hence, the pool of the long-term unhealthy is predominantly composed of individuals

who are inherently less likely to recover. Likewise, among the pool of healthy people, some

might be more susceptible to a certain health condition, for instance due to their genetics or

lifestyle. This second mechanism is consistent with fixed heterogeneity in health transition

probabilities. In formulating our health process, we allow for both mechanisms (Section 2.3).

2.2 Health status and labor productivity

Previous work documents large heterogeneity in unobserved fixed characteristics that

affect people’s labor market outcomes, even within the same education group. Among others,

see Guvenen (2009) and Capatina (2015) for estimations that adopt different specifications of

labor income processes. Our goal now turns to determining whether fixed labor productivity

is related to health and its dynamics.

3 This negative duration dependence is a robust pattern. It also holds when we use the annual data
(using the 1984-1997 waves of the PSID). See De Nardi et al. (2018) for those results. It is also present
when we exclude people ever receiving Social Security Disability Insurance.
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To compute fixed labor productivity, we start by computing real labor income from the

PSID for workers younger than 70, who work at least 520 hours per year, and earn at least the

federal minimum wage. As French (2005), we then estimate the age profile of labor income

by health status among working individuals using the following fixed-effect regression:

log(incit) =
69∑
t=21

∑
j={G,B}

djt ×D
age
it ×Dhit=j + γ̂i + uit, (1)

where incit is persons’ i labor income at age t, djt is the coefficient on a dummy variable cap-

turing the interaction between one’s age and health status, and γ̂i is unobserved fixed labor

productivity. Since this specification includes cohort effects in individual fixed productivity,

we subsequently regress individual-level estimated fixed productivity on birth-year dummies

to remove them. We denote the resulting estimates as γi.

25 30 35 40 45 50 55 60

Age

0

0.25

0.5

0.75

1
Fraction of  < median

Good (PSID)

Bad (PSID)

Good (HRS)

Bad (HRS)

Figure 3: Fixed labor productivity by health status for both workers and non-workers: fractions of in-
dividuals with fixed productivity below the median (solid line for the healthy and line with dots for the
unhealthy).

Figure 3 reports the fraction of people whose fixed labor productivity (γi) is below the

median for the healthy and the unhealthy. It shows that, for all age groups, the fraction of

unhealthy people having γi below the median (dotted line) is much higher than 50%, while

the corresponding fraction among the healthy (solid line) is about 50%. The results from

the HRS (crossed line) are very similar. This indicates that the composition of fixed labor

productivity of the healthy and unhealthy is different and that we need to account for this.

2.3 Our health process

From the previous sections, we have learned that health dynamics are not well represented

by low-order Markov processes and that a larger fraction of the unhealthy have low fixed
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labor productivity. In this section, we formulate a process for the evolution of health that

can capture both observations.

To account for the first observation, we allow our health process to feature both fixed

heterogeneity and a long history dependence. One important consideration, however, is that

the negative duration dependence that we find could partly result from the fact that we

combine poor and fair health in our measure of bad health, but that, in reality, these two

health states may differ in their persistence. To address this possibility, we no longer merge

poor and fair health into “bad” health. That is, we allow for three health states in our

estimated health process: {P, F,G} for poor, fair , and good health, respectively.

To account for the second observation, we allow one’s fixed health type to be correlated

with one’s fixed heterogeneity in labor productivity.

Furthermore, we set up our process for health dynamics based on two criteria. First, it

must capture the cross-sectional and dynamic moments of health that we document. Second,

it must be parsimonious, so that a structural life-cycle model including this health process

is computationally manageable.

As a result, we formulate our 3-state health process as an ordered-logit model with fixed

unobserved heterogeneity. We also assume that the future evolution of health depends on

an age polynomial, whose coefficients depend on which of the three health states the person

is in during the current period. In terms of memory dependence, we restrict the evolution

of health to depend on the number of consecutive periods of previous good or bad health,

that is, we combine the states of poor and fair health. In addition to preserving tractability,

combining the history of poor and fair health avoids the problem that the number of people

being in poor health for several consecutive waves is small.

More specifically, we assume that for an individual with current poor or fair health

(ht ∈ {P, F}), who has been in bad health for τB periods, the probability of being in poor

health, conditional on surviving to age t + 1, follows a logistic function (for the ease of

notation, we suppress individuals’ level subscript i)

Pr (Pt+1 | ht, τB, η) = Λ

(
T−1∑
τ=1

aBτ 1(τB=τ) + aBT 1(τB≥T ) + fhtage (t) + aBη Dη

)
, (2)

and that the probability of being in either fair or worse health at age t+ 1 is

Pr (Ft+1 ∪ Pt+1 | ht, τB, η) = Λ

(
T−1∑
τ=1

aBτ 1(τB=τ) + aBT 1(τB≥T ) + fhtage (t) + b1 + aBη Dη

)
, (3)

where Λ is the logistic function, and 1(·) is an indicator function which is equal to one if its
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argument is true and zero otherwise. The first two terms in the bracket capture the history

dependence, where τB is the number of consecutive periods an individual has been in bad

health (either poor or fair). We denote as T the longest possible history dependence (i.e.,

how many lags, including the current period, are included in our process).

We allow the transition probability to depend on age through fPage (t) and fFage (t), which

are second-order polynomials in age. Their coefficients can differ depending on whether one’s

current health status is poor or fair. The term b1 is a non-negative constant to ensure that

the cumulative probability is monotonically increasing.

The last term in the logit function, Dη, is the dummy variable for one’s fixed health

type. We assume there are three such types, which we denote as {η1, η2, η3}, and impose the

following rank in our estimation: aBη1 > aBη2 > aBη3 . Thus, η1-type has a lower chance to be

in better health than η2- and η3-types. We will refer to an individual with η1 and η3 as the

worst and best health types, respectively.

Similarly, the probability of being in poor health (and probability to be in poor or fair

health), conditional on surviving to age t+ 1 and being healthy for τG periods, is

Pr (Pt+1 | Gt, τG, η) = Λ
( T−1∑
τ=1

aGτ 1(τG=τ) + aGT 1(τG≥T ) + fGage (t) + aGηDη

)
, (4)

Pr (Ft+1 ∪ Pt+1 | Gt, τG, η) = Λ
( T−1∑
τ=1

aGτ 1(τG=τ) + aGT 1(τG≥T ) + fGage (t) + b2 + aGηDη

)
, (5)

where the type-dependent coefficients aGη allow each health type to have a different effect on

the transition probabilities of people currently in good and bad health.

It is worth noting that our specification nests the first-order Markov process for health

shocks that is commonly used in the literature, when we restrict: T = 1 and aBη = aGη = 0

for all health types.

Since one’s health type η is unobservable, we model the probability of an individual

having a certain health type as an ordered-logit model. Hence, the cumulative probability

of an individual having health type η ≤ ηj can be expressed as follows

Pr(η ≤ ηj | Xη
t0) =

{
Λ
(
bηj + Bη ×Xη

t0

)
for j = {1, 2} ,

1 for j = 3,
(6)

where bη1 and bη2 are the constant terms in the ordered-logit model, with bη1 < bη2 , t0 is the

earliest age at which we observe an individual in our sample, Xη
t0 is a set of characteristics

that can be informative about one’s health type and are observable as of at age t0, and

Bη are the corresponding coefficients (we provide more details on the construction of the
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log-likelihood function in online Appendix B.2).

The variables that we include in Xη
t0 are age t0, birth-year dummies (in 10-year windows),

health status ht0 , fixed labor productivity γ, and net worth kt0 . We allow for tercile dummies

for fixed productivity (γL, γM , γH), and hence for a non-linear relationship between γ and η.

We allow for quintile dummies for net worth, for each 5-year age window. The next section

reports our estimation results and discusses why we include these variables and what we

learn from our estimated processes.

Next, we turn to modeling survival. We do so by specifying the following logit model for

the two-year survival probability of an individual at age t, who has been in health state ht

for τh periods,

ζt (ht, τB) =Λ

(
2∑

τ=1

aζBτ 1(τB=τ) + aζB3 1(τB≥3) + f ζhtage (t)

)
if ht ∈ {P, F} ,

ζt (ht, τG) =Λ
( 2∑
τ=1

aζGτ 1(τG=τ) + aζG3 1(τG≥3) + f ζGage (t)
)

if ht = G. (7)

The first two terms in the logit function capture history dependence. Similar to the health

process, we combine the history of poor and fair health into that of bad health. The terms

f ζhtage (t), where ht ∈ {P, F}, and f ζGage (t) are linear functions of age.

Since the PSID’s sample size for older people is small, we estimate our survival proba-

bilities using data on males with a high school degree from the HRS. We then extrapolate

them to obtain the survival probabilities for younger people. Figure B1 in online Appendix

B.3 shows our estimated two-year survival probabilities.

After estimating our survival probabilities, we estimate Eq. (2)-(6) jointly by maximum

likelihood. We report the results in the next section. In estimation, we do not impose any

restrictions other than those necessary for a standard ordered-logit model. That is, in Eq.

(2)-(3) we impose aBη1 > aBη2 > aBη3 where aBη2 is normalized to zero. Similarly, in Eq. (4)-

(5) aGη2 is normalized to zero but there are no restrictions on aGη1 and aGη3 . Thus, we allow

for any possible ranking among
{
aGη1 , a

G
η2
, aGη3

}
. Finally, a cumulative probability must be

monotonically increasing; thus, b1 in Eq. (3) and b2 in Eq. (5) must be non-negative, and

bη1 ≤ bη2 in Eq. (6) .

It is worth noting that the identification of fixed heterogeneity comes from the dependence

of the health transition probabilities on how long one has been in the current health state.

That is, in a health process in which we allow for T lags, in the absence of health types, the

implied health transition probabilities are the same for people who spend T or more periods

in particular health state. Thus, the lower probability of exiting the current health status

after T lags in the data is attributed to the effect of fixed heterogeneity.
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2.4 Estimation results

We estimate several versions of our health process by allowing for history dependence T

from 1 to 5 lags. We report the results in Tables 1 and 2. Two results are worth noting.

First, in all specifications, the coefficients on health types
(
aBη1 , a

B
η3
, aGη1 , a

G
η3

)
are statistically

significant. Hence, even when we allow for 5 periods (corresponding to 8 lagged years) of

history dependence, health types matter for health evolution. This suggests that our result

that health types are important is not an artifact of projecting a high-order Markov process

into a low-order one.

Second, in all specifications, the estimated coefficients on health types imply that a

person with the best (worst) health type has a lower (higher) probability to be in poor

health regardless of his current health status.

It is worth noticing that, for ease of interpretation, Tables 1 and 2 report our parame-

ters’ statistical significance without taking into account that one’s productivity and survival

probabilities are estimated in a previous step and thus subject to uncertainty. To quantify

the effects of this simplification, online Appendix B.4 reports the results when we bootstrap

to compute the 90 and 95% confidence intervals for our estimated health process and health

types parameters. This check shows that the inference drawn in this case is consistent with

the one in our baseline case.

2.4.1 Predicting health types

Table 2 reports our estimated coefficients for the ordered-logit predicting one’s health

type which we specify in Eq. (6). It shows that one’s observed health status ht0 , fixed labor

productivity γ, and net worth kt0 are informative about one’s health type.

A larger positive coefficient on a variable implies that a person is more likely to be of the

worst health type (η1) and less likely to be of the best health type (η3). As expected, if an

individual’s health at age t0 is good (2nd row), he is significantly less likely to be of η1-type.

The opposite is true if his health is poor (3rd row).

In addition, in all specifications, the coefficients on both fixed productivity γ and net

worth kt0 are negative and decreasing in fixed productivity and net worth. Thus, people

with the worst health type are more likely to also have low fixed productivity. This can

help explain the patterns documented in Section 2.2. Moreover, after controlling for fixed

productivity, people from the upper quintile of the wealth distribution are less likely to be

of the worst (η1) health type.

Two forces can give rise to the fact that initial wealth at the first period that we observe

people is predictive of their health type conditional on fixed labor productivity. First, the
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.0752 0.0715 0.129 0.288 −
aB3 0.826∗∗∗ 0.810∗∗ 0.675∗∗

aB4 0.528 0.704∗∗

aB5 0.772∗∗

aBη1 2.270∗∗∗ 1.994∗∗∗ 1.604∗∗∗ 1.987∗∗∗ 2.111∗∗∗

aBη3 -2.043∗∗∗ -2.104∗∗∗ -1.346∗ -1.303∗∗ -1.506∗∗

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.391∗ -0.366∗ -0.369∗ -0.770∗∗∗ −
aG3 -0.242 -0.183 -1.086∗∗∗

aG4 -1.007∗∗∗ -1.691∗∗∗

aG5 -1.921∗∗∗

aGη1 4.527∗∗∗ 3.784∗∗∗ 1.637∗∗∗ 1.806∗∗∗ 2.006∗∗∗

aGη3 -1.447∗∗∗ -1.639∗∗∗ -2.318∗∗∗ -2.555∗∗∗ -2.871∗∗∗

N 9028 9765 11126 12096 13083

Table 1: Estimation results for the health process in Eq.(2)-(3) in the top panel and Eq.(4)-(5) in the
bottom panel. The columns refer to specifications controlling for different number of lags of past health.
The terms aBη2 and aGη2 are normalized to zero. Being in bad/good health for one period (τB = 1, τG = 1) is
the base case. All estimations include a quadratic in age whose coefficients depend on current health status
(poor, fair, good). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

T=5 T=4 T=3 T=2 T=1

age t0 -0.039 -0.025 0.005 0.001 -0.016

ht0 = G -1.457∗∗∗ -1.429∗∗∗ -1.879∗∗∗ -1.921∗∗∗ -2.250∗∗∗

ht0 = P 1.463 2.072∗ 2.410 2.386 1.022

2nd tercile of γ -0.247 -0.337 -0.509∗∗ -0.546∗∗ -0.642∗∗∗

3rd tercile of γ -1.203∗∗∗ -1.374∗∗∗ -1.188∗∗∗ -1.286∗∗∗ -1.355∗∗∗

2nd quintile of kt0 -0.002 -0.129 -0.048 -0.459∗ -0.469∗

3rd quintile of kt0 -0.620 -0.429 -0.367 -0.378 -0.603∗∗

4th quintile of kt0 -0.749 -0.606 -0.691∗ -0.701∗∗ -0.759∗∗∗

5th quintile of kt0 -2.348∗∗∗ -1.616∗∗∗ -1.169∗∗∗ -1.280∗∗∗ -1.264∗∗∗

Table 2: Estimation results to predict health type in Eq.(6). The columns refer to specifications controlling
for different number of lags of past health. Fair health status, 1st tercile of γ and 1st quintile of kt0 are the
base for the corresponding dummy variables. All estimations include dummy variables for 10-years windows
of birth year. ( ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 )

.

correlation between health type and patience might generate that healthier and more patient

people save more. Second, people with bad health types are more likely to be sick for long,
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to incur large earnings and medical expenses losses, and thus to have lower wealth. It is

plausible to think that the second pathway plays a relatively small role at younger ages

because typically at those ages medical costs and earning losses due to bad health are small.

To further evaluate the importance of the first pathway, that is the correlation between

patience and health types, we re-estimate our health model using only individuals whose

initial wealth kt0 is observed at younger ages (that is, age 39 and younger).4 These results

are similar to those that we obtain from the full sample. We report them in online Appendix

B.6. They confirm that people’s wealth the first time we observe them is informative about

their health types and is significant for those in the top wealth quintile, even in this younger

sample. This suggests that the correlation between health types and patience is important

and further supports our choice of incorporating this mechanism in our life-cycle model.

2.4.2 Transition probabilities

In our life-cycle model, we use our estimated health process with T = 3, which means 4

years of lagged dependence. We make this choice to keep our computational costs manageable

while preserving the rich dynamics of our health process.

Figure 4 plots the estimated transition probabilities to poor and good health for this

version of our health process - the full set of health transition probabilities are shown in

Figure B3 in the online appendix. The top, middle, and bottom panels refer to the case in

which people are currently in poor, fair and good health, respectively. Different line style

represent different health types, while colors refer to different health histories. The key

take-aways are as follows.

First, for all health states, as people get older, the probability of moving to a worse health

state increases, while the probability of moving to a better health state declines. The speed

of the increase/decline varies both by heath type and the duration of the current health

state.

Second, one’s health status is persistent: the longer an individual spends in the current

health state, the higher is the probability to stay in this state. The difference is especially

pronounced for those who spend at least three periods in the current health state (τ ≥ 3)

versus those who only spend two periods (τ = 2). The difference between the history of one

(τ = 1) versus two periods (τ = 2) is smaller, especially for people in fair and poor health.

Third, the variation in transition probabilities across health types is much larger than

that across health histories. For example, consider a 60-year old person who is in poor health

for one period (top left panel). If he is of the best health type η3 (red line with dots) he

4 The average initial age of observation in this restricted sample is between 25 and 30, depending on the
specification of lag dependence T .
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has an 20% probability of staying in poor health next period, while if he is of the worst

health type η1 (red solid line), this probability increases to 80%. If, instead, he has been in

bad health for three periods, the corresponding probabilities increase approximately by 10

percentage points for both best and worst health types.

The large variation by health types is similar for the transition probabilities from fair

and good health. This implies that health types play an important role in explaining the

high persistence of one’s health status and occurrence of long spells of bad health. In online

Appendix B.9 we illustrate this point in more details by showing the distribution of people

by the number of periods in bad health over the life-cycle.

Consistent with our findings about the importance of health types, Halliday (2008) uses

the PSID to estimate a dynamic process for health with fixed heterogeneity and heteroge-

neous persistence coefficients and finds that, for a large part of his sample, persistence is

mostly driven by fixed heterogeneity. Lange and McKee (2012) estimate a dynamic latent

health process using multiple health measures from HRS and document that heterogeneity

across individuals (random effects) is important in capturing the high persistence of objective

and self-reported health measures.

2.4.3 Initial distributions

η1 η2 η3
Pr (η) 0.08 0.35 0.57
Pr (η | γL) 0.13 0.44 0.43
Pr (η | γM) 0.08 0.36 0.56
Pr (η | γH) 0.04 0.24 0.72

Table 3: Top row: Initial distribution of individuals over health types at age 21. Other rows, joint
distribution of {η, γ} at age 21. The terms γL, γM , and γH refer to the bottom, middle, and top terciles of
the estimated fixed productivity distribution, respectively.

Table 3 reports the initial distribution of individuals over health types and the joint

distribution over health types and fixed labor productivity, based on our estimates of Eq.

(6) when T = 3. Our ordered-logit model allows the initial distribution of individuals over

health types to be asymmetric over three discrete points and to depend on the empirical

joint distribution of health status (poor/fair/good) and fixed productivity γ. We use the

distribution of health status and estimated fixed productivity γ of people aged between 19

and 24. Almost all individuals in this age range have been either in fair health for one period

or in good health for at least three periods. We report the joint distribution of health status

and fixed productivity in Table B7 in online Appendix B.8.

At age 21, only 8.3% of people are of the worst health type. The rows from 2nd to 4th of

Table 3 show that there are proportionately more η1- and less η3-types among people in the
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Figure 4: Estimated two-year transition probabilities (T = 3). Different line styles represent three health
types: solid line for η1-type, dashed line and line with dots for η2- and η3-type, respectively. Black, blue,
and red lines correspond to the number of consecutive periods in current health status (τ).

bottom tercile of the fixed productivity distribution (γL) compared to the top tercile (γH).

In other words, less productive people are also more likely to be of the worst health type.
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2.4.4 Comparing the implications of our processes with the data

We now turn to showing that our health and labor productivity processes generate data

that are consistent with those from the PSID and the HRS. Figures 1 and 2 show that

they match well the fraction of people in bad health by age and the two-year transition

probabilities between good and bad health by age, as well as their duration-dependence.

For an additional external validation of our health process, we turn to a balanced panel

of males with a high-school degree aged 55 to 66 years old in the HRS. Figure 5 reports

the number of waves spent in bad health over a ten-year period, conditional on one’s initial

health at age 55-56. Since the HRS is a bi-annual survey, an individual can only report

being unhealthy for at most five periods over the ten year period that we focus on. The

darker bars refer to the HRS data, the medium-shaded ones refer to the PSID data, and the

lightest ones come from simulations from our estimated processes. The PSID data in the

left graph of Figure 5 show that while almost 70% of those initially healthy at age 55-56

continue being healthy in all five waves, a non-trivial fraction (5.7%) becomes unhealthy

and stays unhealthy for 4-5 waves during the next ten years. The right panel shows that

among those already unhealthy at age 55-56, 51% stay unhealthy during the next 4-5 waves.

Overall, there is a substantial fraction of people with very long spells of bad health. This

Figure also shows that our estimated processes match the long-term distribution of people

in bad health.
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Figure 5: The number of waves being in bad health between age 57-58 and 65-66 conditional on health
status at age 55-56. Bad health includes both fair and poor health.

As we have seen in Section 2.2, there are more people with low fixed productivity among

the unhealthy. Hence, as a final validation exercise, we report the joint distribution of health

and fixed labor productivity. Figure 6 displays the fraction of people in the bottom two
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Figure 6: Fraction of people in the bottom two terciles of fixed labor productivity (blue lines) or bottom
tercile of labor productivity (red lines) among those in good health (left panel) and bad health (right panel).
Bad health includes both fair and poor health. The terms γL and γM correspond to the lowest and middle
terciles of the fixed productivity distribution.

terciles of fixed labor productivity (blue lines) or bottom tercile (red lines) among those in

good health (left panel) and bad health (right panel) from the PSID data, the HRS data, and

the data simulated from our estimated processes, during all of the working period. The terms

γL and γM correspond to the lowest and middle terciles of the fixed productivity distribution,

respectively. This graph reveals that our statistical model for health and productivity also

reproduces these features of the data well.

It is important to point out that, in our simulations, we fix the initial joint distribution

of health status and fixed productivity at age 21 as we observe it in the data. Hence, the

relationship between fixed productivity and health later in the life-cycle is generated solely

by two forces. First, the correlation between one’s health type (η) and fixed productivity

(γ) at age 21, and second by how one’s health type affects one’s evolution of health. At age

21, the percentage of γL-people (worst productivity) among the unhealthy is above 50%. If

health type and fixed productivity were independently distributed, after the age of 21 this

number would quickly decrease since the fraction of newly sick people of each γ-type will

always be 1/3. Note that we do not directly exploit this joint evolution of health and labor

productivity in our estimation, i.e., the health transitions are not a function of fixed labor

productivity (see Eq. (2)-(5)). Thus, the ability of our model to reproduce it gives our model

additional credibility.
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2.5 What are the health types?

As we have seen, health types play an important role in determining health persistence.

They also imply that people differ in their predisposition to fall sick and to recover from

illness.

Health types can be related to variation in genetic predisposition and/or lifestyle, where

the latter can be partly due to habits developed in childhood. In fact, several studies find

that childhood circumstances have a long lasting effect on adult health.

For evidence supporting these mechanisms, we turn to the HRS, which contains a wealth

of information that is useful to study these questions. From it, we use a balanced panel of

healthy men age 55-56, and whom we observe until they are aged 65-66 (the same sample

used to construct Figure 5).

# unhealthy Individuals’ characteristics (HRS) model

periods % smoking BMI % father alive % mother alive parents’ educ (yrs) % η1 % η3

0-1 22.6 27.9 21.6 48.4 10.1 / 10.5 0.1 78
2-3 27.1 29.5 21.5 50.4 9.2 / 9.9 3 12
4-5 44.4 29.8 16.1 36.5 8.4 / 9.2 25 2

Table 4: Characteristics of a balanced panel of people who are healthy at age 55-56 and alive for the
subsequent ten years, organized by the number of unhealthy periods between ages 57 and 66. BMI is the
average Body Mass Index. The first and second numbers in the education column refer to average education
years of father and mother in each cell, respectively.

# unhealthy
periods

Polygenic scores (HRS)

educational attainment smoking BMI longevity

0-1 -0.120 0.003 -0.006 -0.06
2-3 -0.216 0.023 0.127 -0.065
4-5 -0.708 0.092 0.140 -0.250

Table 5: Average polygenic scores of people who are healthy at age 55-56 and alive for the subsequent ten
years, organized by the number of unhealthy periods between ages 57 and 66.

Table 4 sorts our HRS sample based on the total number of unhealthy periods that

they report over the subsequent ten-year interval. It shows a correlation between the future

number of unhealthy periods and factors that can be linked to lifestyle recorded at age 55-56

or genetics.

In particular, individuals who report being unhealthy for four to five periods between

ages 57 and 66 are much more likely, at age 55, to have ever smoked, to have a higher body

mass index (BMI), and less likely to have living parents. In addition, people with longer

unhealthy spells have less educated parents. This is consistent with the findings of Case et

al. (2002), who show that parental income and education have a significant impact on child’s

health and thus on subsequent health in adulthood.
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Overall, Table 4 shows that even among a relatively homogeneous sample of healthy

males at age 55-56 with the same educational attainment, there is heterogeneity in some

fixed or long-lasting factors, which in turn are correlated with their health evolution over

the next ten years.

These features of the data are consistent with our model of health dynamics: the last two

columns of Table 4 show that in a comparable sample simulated from our model, there are

substantial differences in health type composition. While among people with at most one

unhealthy period, 78% are of the best health type and almost no one is of the worst health

type, among people experiencing 4 to 5 unhealthy periods, only 2% are of the best health

type and 25% are of the worst health type.

Table 5 documents the relationship between the number of unhealthy periods (our proxy

for health types) and genetic variables that have been found to predict key economic out-

comes: polygenic scores. That is, polygenic scores (PGS) are indices created by combining

genetic markers that predict certain individuals’ outcomes (for more details, see Papageorge

and Thom (2020) and Barth et al. (2020)).

We report four PGSs: for educational attainment, for lifestyle-related behaviors such as

smoking and BMI, and for longevity. A higher score refers to genetic variation that predicts

higher education level, higher propensity to be a smoker, to have higher BMI, and a longer

lifespan, respectively. Each scores is normalized to have mean of zero and variance of one.

Table 5 reports the average scores of the same HRS sample as the previous table and also

sorts by the number of unhealthy periods.

People reporting 4-5 unhealthy periods between the ages of 57 and 66 have, on average,

a noticeably lower score for educational attainment and longevity, and higher scores for

smoking and BMI compared with those who report at most one unhealthy period. Online

Appendix C.1 shows that this finding is robust when we use the 25th, 50th, and 75th percentiles

of the polygenic scores distribution.

These features of the data confirms the view that health outcomes can, to a certain

extent, be traced back to factors determined early in life. Because our agents start adult life

at age 21, we capture these features of the data as health types in our stylized model.

In addition, the existence of pre-determined factors affecting health is supported by a

growing empirical literature, which we review in online Appendix C.2.

3 What about endogenous health?

Our paper assumes that one’s health evolution is pre-determined and thus exogenous in

adulthood. That is, we do not allow either monetary investments or healthy behaviors to
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affect the evolution of health. A key reason for our choice is that we want to identify the

effect of health types while keeping our model tractable, both in terms of computations and

parameter identification. But because the evolution of health is an important topic, in this

section, we discuss what we know from the literature in terms of the effects of medical spend-

ing on health, and what the PSID data tells us about the effects of exercise, a potentially

key determinant of health (see for instance Krueger et al. (2018)) for which the PSID has

good data.

Starting from medical expenses, the key problem is that sick people spend more on

medical goods and services and tend to stay sick longer and die faster than people who are

healthy and spend less on medical goods and services. Thus, the raw data makes it hard

to find that medical spending has a postive effect on health. Among the studies which use

some credible (and hard to find) exogenous sources of variation in medical spending, many

find that medical expenses have small or no effects on health and mortality (for instance

Brook et al. (1983), Fisher at al. (2003), Finkelstein and McKnight (2008), and Black et al.

(2017)). Also, and importantly, Danesh et al. (2023) shows that in the Netherlands, where

medical care is free, there is no differential access to medical care and yet people with higher

income live substantially longer than those with lower income. This paper also finds that a

large share of these mortality differences is explained by chronic diseases whose prevalence is

already heterogenous by income earlier in life. Hence, these findings indicate that there are

important factors determining mortality and health differences that have little to do with

the health care system and heterogeneity in medical spending. Given that it is difficult to

convincingly establish to what extent medical spending improves health and extends lives,

and that in many cases the empirical evidence suggests that these effects can be small, we

abstract from this interesting force in this paper.

Turning to exercise, our goal is to evaluate whether allowing for a link between exercise

and health overturns our findings about the importance of health types. Thus, we include

exercise in our model of health dynamics.

More specifically, the PSID asks people about the number of times per week that they

engage in light or heavy exercise. In each survey wave, we assign people who report doing no

exercise to a “no exercise” category, those who report doing only light exercise at least once

per week to “light” exercise, and those who report doing heavy exercise at least once per

week (while also possibly engaging in light exercise) to “heavy” exercise.5 We denote with

DEX the dummy for each exercise category. We modify our health transition dynamics as

follows. We add the term aGEDEX for the health transitions from good health in Eq. (4)-(5),

5 There is a strong correlation between light and heavy exercise, hence people who engage in heavy
exercise often also report engaging in light exercise.
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and the term aBEDEXDht for the transitions from poor or fair health in Eq. (2)-(3). In the

latter, Dht is the dummy variable of whether an individual is currently in poor or fair health.

This way we allow for possibly different effect of exercise for those in fair versus poor health.

Our health type prediction equation remains that in Eq. (6).

Furthermore, we estimate these processes by making the identifying assumption that a

future health shock realized over the next two years (that is between t and t + 1) does not

influence exercise in the current period. Krueger et al. (2018) follow a similar strategy for

6-year health transitions.

Table 6 reports the resulting estimates for these health processes, while online Appendix

C.3 displays those for our health types prediction equation. Several things are worth noticing

about these results. First, both the size and the significance of the coefficients in our original

specification without exercise are very consistent with the specification that includes exercise.

In particular, the effect of health types remains important for one’s future health evolution

even when conditioning for exercise behavior. Second, light exercise has little effect on one’s

future health dynamics, regardless of one’s previous health history. Third, some heavy (and a

combination of heavy and light) exercise does play some role in preventing future bad health,

but only if one is in good or fair health to start with. Instead, once one is in poor health,

both light and heavy exercise do little to improve one’s future health outcomes. Fourth,

and importantly, the coefficients on one’s health types are larger than those on exercise,

indicating that not only health types remain important once we condition for exercise, but

they have a larger impact.

To better illustrate the effects of each exercise category (none, light, heavy), Figure 7

reports a subset of transition probabilities for our baseline health process (in which we keep

track of health during the previous three periods) for people who have been in good health

for one period. The graph on the left hand side plots the estimated probability of turning to

poor health over the next 2 years, while the graph on the right hand side plots the probability

of remaining in good health.

The figure helps quantify what we already see in the tables: people who exercise have

better health transitions compared to those who do not, and the difference is especially

pronounced for heavy exercise. However, the variation in health transitions due to exercise

is much smaller than the variation due to health types.

For instance, at age 61 the probability of turning to poor health for η1 types (top three

lines) decreases from 41%, to 35%, and to 25% as one goes from no exercise to heavy exercise.

The corresponding numbers for η2 types (middle three lines) fall from 9% with no exercise

to 4.5% with heavy exercise. For η3 types (bottom three lines), exercise only marginally

affects the chance of moving to poor health. Interestingly, the graph on the right hand side
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shows that exercise increases the probability of staying in good health for η3 types from 92%

with no exercise to 96% with heavy exercise. When comparing across health types we can

see that the probability of turning to poor health for a 61-year-old individual who does not

exercise is 41% for η1, 7% for η2, and 0.4% for η3. The gaps by type in the probability of

staying healthy are also big.

T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types including exercise

aB2 0.095 0.031 0.048 0.245 −
aB3 0.827∗∗ 0.656∗ 0.618∗∗

aB4 0.755∗∗ 0.630

aB5 1.053∗∗∗

aBη1 1.576∗∗∗ 1.679∗∗∗ 1.894∗∗∗ 2.149∗∗∗ 2.157∗∗∗

aBη3 -1.773∗∗∗ -1.459∗∗∗ -1.031 -1.202∗∗∗ -1.395∗∗∗

Light#poor health 0.324 0.250 0.158 0.030 0.059

Light#fair health 0.007 0.055 0.027 -0.002 0.026

Heavy#poor health -0.248 -0.284 -0.328 -0.321 -0.339∗∗∗

Heavy#fair health -0.505∗∗ -0.530∗∗ -0.555∗∗ -0.606∗∗ -0.569∗∗

Coefficients of history-dependence terms and health types including exercise

aG2 -0.380 -0.277 -0.383∗ -0.535∗∗∗ −
aG3 -0.0803 0.121 -0.741∗∗∗

aG4 -0.872∗∗ -1.072∗∗∗

aG5 -1.597∗∗∗

aGη1 2.509∗∗∗ 2.245∗∗∗ 1.961∗∗∗ 2.066∗∗∗ 2.023∗∗∗

aGη3 -1.596∗∗∗ -1.991∗∗∗ -2.516∗∗∗ -2.647∗∗∗ -2.815∗∗∗

Light -0.248 -0.224 -0.248 -0.298∗ -0.328∗

Heavy -0.702∗∗∗ -0.754∗∗∗ -0.722∗∗∗ -0.752∗∗∗ -0.741∗∗

N 8799 9521 10381 11279 12181

Table 6: Estimation results for the health process including exercise behavior. The columns refer to
specifications controlling for different number of lags of past health. The terms aBη2 and aGη2 are normalized
to zero. No exercise, being in bad/good health for one period (τB = 1, τG = 1) and the first tercile of fixed
productivity (γ1) is the base case. ( ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 )

To quantify the maximum possible contribution of exercise to health over one’s lifetime

(rather than just from one period to the next) and compare it with that of health types, we

next simulate a large number of individuals for each health type, and for whom we fix one’s

exercise behavior to be always the same over all of the life cycle. That is, every person can

only exercise as follows: either never exercise, or always engage in light exercise, or always

exercise heavily. We then use these simulated paths to compute the expected number of

unhealthy periods between the ages of 21 and 80 by one’s health type and exercise behavior.

Table 7 reports the results and confirms that exercise does matter but that health types

have a larger effect. For instance, comparing columns reveals that people of the worst health
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Figure 7: Estimated two-year probabilities of turning to poor health (left panel) and good health (right
panel) after having been in good health for one period (when keeping track of three periods of past health)
by exercise category. On the left hand side, the top three lines refer to the low health types (η1), the middle
three lines to the middle health type (η2) and the bottom three lines to the best health types (η3). On
the right hand side, the ordering of these groupings is reversed. Within each grouping, different line types
correspond to exercise behavior, with the dotted line referring to the no exercise group, the dashed line to
the light exercise group, and the solid line to the heavy exercise group.

type (η1) can decrease the average number of lifetime unhealthy periods from 14.4 to 12.3

(hence by over four years), by going from no exercise to always exercising heavily. People

of the intermediate health type (η2) can decrease the number of lifetime unhealthy periods

from 7 to 4.5 (five years), while those of the best health type (η3) can reduce their lifetime

unhealthy periods from 1 to 0.5 (one year). However, comparing rows shows that among

people who never exercise the number of lifetime unhealthy periods goes from 14.4 for the

worst health types, to 1 for the best health types. The variation by types is similarly large

for light and heavy exercise behavior.

Health type
Exercise category

always none always light always heavy
η1 14.4 13.9 12.3
η2 7.0 6.4 4.5
η3 1.0 0.8 0.5

All 5.7 5.3 4.0

Table 7: Average number of unhealthy periods (each lasts 2 years) between 21 and 80 years old by health
type when keeping track of health during the current period and the two previous ones. The first, second,
and third columns correspond to the cases when individuals never exercise, always only do light exercise, or
always engage in heavy exercise.

Thus, we find that even when controlling for exercise behavior, health types are a key

determinant of the number of unhealthy periods during one’s life, which in turn, is a crucial
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determinant of the lifetimes costs of bad health. We now turn to our structural model to

quantify the effects of these forces.

4 Our life-cycle model

In this section, we develop a life-cycle model with health uncertainty. In it, health affects

people through multiple channels and evolves according to the processes described in the

previous section.

4.1 Demographics, preferences, and labor income

A model period is two years long and each individual lives at most T periods. During

the first R − 1 periods of life people chooses whether to work or not. At age R everyone

retires. We denote the health-dependent survival probability from age t to t+ 1 as ζht .

At age t an agent’s health, ht, can be either good (G), fair (F ), or poor (P ), and next

period’s health status depends on current health status, the length of the current health

spell τ , and health type ηi ∈ {η1, η2, η3}. See Section 2.3 for more details.

Health and economic outcomes in our model are linked via two mechanisms. First,

health directly affects medical spending, productivity, disutility from work, access to health

insurance, and survival probabilities. These direct effects have been used in other structural

models with health uncertainty, including by Capatina (2015), French (2005), French and

Jones (2011), Pashchenko and Porapakkarm (2013, 2016a, 2017), and Rust and Phelan

(1997).

Second, individuals differ in ex-ante characteristics, that is in their fixed labor productiv-

ity, health type, and patience, and these characteristics can be correlated with each other.6

This correlation captures the fact that some factors that are determined early in life can

influence all three fixed factors (see discussion in Section 2.4.1). This mechanism creates an

additional compositional difference between the healthy and the unhealthy. That is, among

the unhealthy there can be more impatient people, and this can partially account for the

observed disparities in economic outcomes between the two groups.

Formally, we assume that the discount factor (βi) can take two values, βi ∈ {βlow, βhigh},
where βlow < βhigh. At age 21 (when an individual enters the model) the joint distribution

6 Many studies find heterogeneity in patience, including Epper et al. (2018), Lawrance (1991), Warner
and Pleeter (2001). In addition, Cronqvist and Siegel (2015) find that genetic differences explain a significant
fraction of the variation in saving propensities across individuals, potentially through a link to the rate of
time preferences or self-control. Several macroeconomic studies point out the importance of heterogeneity in
rates of time preferences to explain wealth inequality (Carroll et al., 2017, Hendricks, 2007a, 2007b; Krueger
et al., 2016; Krusell and Smith, 1998, Samwick, 1998).
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of the discount factor and health type, {βi, ηi}, is captured by Pr(βj|ηm) ∈ [0, 1], where

j ∈ {low, high} and m ∈ {1, 2, 3} . The total number of types in the model is 3× 2× 3, that

is three health types, two patience types, and three fixed productivity types. We assume

that β and γ are correlated through the health types. Hence, controlling for one’s health

type, β and γ are independent.

An individual is endowed with one unit of time that can be used for either leisure or

work. Labor supply (lt) is thus indivisible; lt ∈ {0, 1}. Work implies a fixed utility cost φW .

For people with fair and poor health, there is an additional disutility from working, denoted

φF and φP , respectively. We assume that the preferences of individuals over consumption

and leisure take the following form:

u(ct, lt, ht) =
(ct/nt)

1−ρ

1− ρ
− φW1{lt>0} − φF1{ht=F,lt>0} − φP1{ht=P,lt>0} + b, (8)

where ρ is risk-aversion and nt is an age-specific household size.7 We follow Hall and Jones

(2007) by adding a positive term b to ensure that individuals in our model value their life;

i.e., the continuation value of being alive exceeds the utility when deceased. This matters

when we compute the welfare costs of bad health, because otherwise sick people would be

happy about dying sooner.

As in De Nardi (2004), individuals also derive utility from leaving a bequest of size k

υ(k) = θBeq
(k + kBeq)

1−ρ

1− ρ
,

where θBeq determines the strength of the bequest motive and kBeq determines to what extent

bequests are a luxury good.

Earnings are given by zht lt, where zht is an idiosyncratic productivity component given by

zht = λht Υt, (9)

where λht is a deterministic function of age and current health (good, fair or poor), while Υt

is the stochastic shock that we specify in Section 4.4.

7 We incorporate the family size nt into the model in order to make the wealth profile produced by the
model consistent with the profiles constructed from the PSID. (See Section 5.1 for details on the construction
of the targeted wealth profile). We take the average family size nt from the PSID. The average family size
is 1.9 at age 21, it increase to 3.18 at age 39 before declining to 2.07 at age 65 and further to 1.02 at age 99.
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4.2 Medical expenses and health insurance

During each period, every agent receives a medical expense shock
(
xht
)

which depends on

age and current health. We denote the distribution of medical shocks as Gt(xht |ht). Online

Appendix D.1 discusses how we estimate these shocks.

Individuals in our model also differ in their health insurance status: working age people

can be uninsured or covered by different types of private insurance, that is individual or

employer-sponsored health insurance (ESHI). In contrast, retirees are covered by Medicare.

We index the individual’s insurance status by using iH , where iH = 0 corresponds to being

uninsured, iH = 1 corresponds to having individual insurance, iH = 2 corresponds to group

insurance (or ESHI), and iH = 3 corresponds to Medicare. All types of insurance only provide

partial medical expenses coverage. We denote by cvg
(
xht , iH

)
the fraction of medical expenses

covered by insurance and allow it to be a function of one’s medical shock and insurance type.

Note that cvg
(
xht , 0

)
= 0.

A working-age individual receives an offer to buy ESHI with probability Probt, which

depends on age (t), fixed labor productivity (γ), and health (ht ∈ {G,F, P}). We estimate

Probt from the MEPS. The variable gt characterizes the status of the offer: gt = 1 if an

individual gets an offer, and gt = 0 otherwise. Only working individuals with an offer (lt = 1,

gt = 1) can purchase the ESHI insurance. We assume that an employer who offers ESHI

fully covers the premium, i.e., the employer contribution is 100%. On average, employers

who offer ESHI contribute about 80% of the premium for single coverage and about 70% for

family coverage (Kaiser Family Foundation, 2004). We abstract from workers’ contribution

for simplicity. This assumption does not affect our results but helps lower computational

costs because working individuals with an ESHI offer always buy insurance.

Every working-age individual can buy health insurance in the individual health insurance

market at the price pI (ht, t), which depends on one’s age and health. We assume that an

individual’s insurance premium is based on his expected medical costs and administrative

loads:

pI (ht, t) = ξEMt (ht, t) + ϕh. (10)

The term ξ is a proportional load, while ϕh is a fixed load. We allow the fixed load to

depend on health to capture the fact that unhealthy individuals may face more frictions

when purchasing insurance through the individual market, for example, through search costs

or a larger probability of being denied coverage due to pre-existing conditions.

The expected medical costs covered by insurance are

EMt (ht, t) =
∑
xht

xht cvg
(
xht , 1

)
Gt(xht |ht).
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We denote the Medicare premium as PMCR. This corresponds to the Medicare Part B

premium.

4.3 Taxation and social transfers

We model the tax system as follows. Working households pay payroll taxes, which include

the Medicare tax (τMCR) and the Social Security tax (τss). The latter only affects earnings

below yss. There is a consumption tax τc and a tax on capital income τk. There is a

progressive labor income tax T (y) which we specify as Heathcole et al. (2020)

T (y) = y − aτ0 y1−aτ1 . (11)

The progressivity of the tax system is captured by aτ1. We explain how we set taxes and

transfers in online Appendix D.2.

We represent several existing means-tested programs (Medicaid, food stamps, Disability

Insurance, and Supplement Security Income) in a stylized way through a public safety-net

program, T SI(c). This program guarantees every household a minimum consumption floor

c. This floor also captures the existence of uncompensated care or medical bankruptcy. In

fact, in 2004, 85 percent of the uncompensated care was paid by the government.

Retirees receive Social Security benefits ss. In practice, these payments depend on an

individual’s history of earnings. To capture the existing variation in pension benefits without

increasing computational costs, we approximate the benefits using the following approach.

First, we divide individuals into groups based on their health just before retirement hR−1,

on their last draw of the persistent productivity shock νR−1 (see Section 4.4), and on their

ex-ante heterogeneity (γ,η,β). Then, for each group, we compute average earnings over the

17 model periods (34 years) with the highest earnings. Then we apply the Social Security

benefits formula to these average earnings. This way, Social Security benefits in our model

can be represented as ss(hR−1, νR−1, γ, η, β).

4.4 The labor productivity shock

Our labor productivity process is given by

zht = λht Υt = λht exp(νt) exp(γ), (12)

νt = ρννt−1 + εt; εt ∼ N(0, σ2
ε), (13)

γ ∼ N(0, σ2
γ),
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where λht is a deterministic component that depends on age and health (ht ∈ {G,F, P}) and

the idiosyncratic component Υt consists of a persistent shock νt and fixed productivity γ. We

assume that γ is normally distributed and online Appendix B.5 shows that this assumption

is consistent with the data. To obtain the initial distribution of fixed productivity and

health type, we discretize γ into three terciles. Table 3 reports the conditional probability

distribution from our maximum likelihood estimation.

To account for selection, we estimate the deterministic component of labor productivity

λht in the second stage of our estimation procedure, as in French (2005). This is important

because the fraction of unhealthy workers is significantly below 100%, so the average income

conditional on working could be a biased estimate of λht if there is selection into employment.

Though computationally costly, our strategy also ensures that the model reproduces the

income-health gradient in the data (Figure 10 and Table 9), which is important for evaluating

the costs of bad health through the labor market channel.8 Online Appendix D.3 details the

estimation of the stochastic part of the productivity component.

4.5 Timing of the model

The timing of the model is as follows. At the beginning of the period, individuals learn

their productivity, health and ESHI offer status. Based on this information, an individual

decides his labor supply (lt) and insurance choice (iH). At the end of the period, the

medical expenses shock (xht ) is realized. After paying the out-of-pocket medical expenses, an

individual chooses his consumption (ct) and savings for the next period (kt+1). The problem

of retirees is simpler; they only choose consumption and savings for the next period.

4.6 The optimization problem

Working age individuals (t < R). At the beginning of each period, the state variables

for an individual i are capital (kt), health status (ht ∈ {G,F, P}), length of the current

health spell (τ ∈ {1, 2, 3}), productivity shock (νt), ESHI offer status
(
gt ∈ {0, 1}

)
, age

(t ∈ {1, 2, ..., R− 1}), fixed productivity (γ ∈ {γL, γM , γH}), health type (η ∈ {η1, η2, η3})
and discount factor (β ∈ {βlow, βhigh}). To make our expression less cluttered, we omit the

subscript i for all state variables. We denote the vector of state variables as St.
The value function of a working age individual at the beginning of period t is:

Vt (St) = max
lt,iH

∑
xht

Gt(xht |ht)Wt(St; lt, iH , xht ) (14)

8 An alternative method would be to perform the Heckman selection correction to the data, but this
approach requires a variable serving as a valid exclusion restriction, which is typically hard to find.
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where

Wt(St; lt, iH , xht ) = max
ct,kt+1

u (ct, lt, ht) + β
[
ζht Et

(
Vt+1 (St+1)

)
+
(
1− ζht

)
θBeq

(kt+1+kBeq)
1−ρ

1−ρ

]
(15)

subject to

kt (1 + (1− τk) r)+zht lt−xht
(
1− cvg(xht , iH)

)
−P h

t −Tax+T SI (c) = (1+τc)ct+kt+1 (16)

P h
t =

0 ; if iH ∈ {0, 2}

pI (ht, t) ; if iH ∈ {1}
(17)

T SI(c) = max
(

0, (1 + τc)c+ Tax+ P h
t + xht

(
1− cvg(xht , iH)

)
− kt(1 + (1− τk) r)− zht lt

)
Tax = T

(
zht lt
)

+ τMCRz
h
t lt + τss min

(
zht lt, yss

)
(18)

Wt(St; lt, iH , xht ) is the interim value function conditional on the labor supply and in-

surance choices after the medical shock is realized. The conditional expectation on the

right-hand side of Eq. (15) is over
{
ht+1, z

h
t+1, gt+1

}
. Eq. (16) is the budget constraint; in

this constraint P h
t is the insurance premium, which is described in Eq. (17). In Eq. (18),

the first term is the income tax and the last two terms are payroll taxes.

Retired individuals (t ≥ R). The state variables for retired people are assets (kt), health

status (ht), length of the current health spell (τ), medical shock
(
xht
)
, health status at 64

(hR−1 ∈ {P, F,G}), productivity shock before retirement (νR−1), age (t ∈= {R, ..., T}), fixed

producivity type (γ), health type (η), and discount factor (β). We denote the vector of state

variables as SRt .

The value function of a retired household is:

Vt
(
SRt
)

=
∑
xht

Gt(xht |ht)Wt(SRt ;xht ) (19)

where

Wt(SRt ;xht ) = max
ct,kt+1

u (ct, 0, ht) + β
[
ζht Et

(
Vt+1

(
SRt+1

) )
+
(
1− ζht

)
θBeq

(kt+1+kBeq)
1−ρ

1−ρ

]
(20)

subject to

kt (1 + (1− τk) r)+ss−xht
(
1− cvg(xht , 3)

)
−PMCR−T (ss)+T SI (c) = (1+τc)ct+kt+1 (21)
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T SI(c) = max(0, (1 + τc)c+ T (ss) + PMCR + xht (1− cvg(xht , 3))− kt(1 + (1− τk) r)− ss)

Wt(SRt ;xht ) is the interim value function conditional on medical shock realization. The

conditional expectation on the right-hand side of Eq. (20) is over ht+1. Eq. (21) is the

budget constraint.

5 Model estimation

In this section, we explain our strategy to estimate the model parameters, describe the

estimation results, and illustrate the fit of the model to the data, including non-targeted

moments.

5.1 Estimation strategy

We adopt a two-step estimation strategy. In the first step, we set parameters related to

demographics, taxes, social security benefits, and health insurance, and estimate the shock

processes directly from the data. We explain how we estimate our first-step parameters in

Online Appendix D. The survival probability and health process are taken from Section 2.4.

We fix the interest rate r at 2%. We set risk aversion ρ to 3, a value commonly used in

structural life-cycle studies.

Given the parameters and the shock processes from the first step, we implement the

Method of Simulated Moments to estimate our remaining model parameters. We minimize

the weighted sum of square differences between the targeted and simulated moments using

the inverse of squared standard errors as the weights. The set of parameters estimated at

the second stage is {b, φW , φF , φP , λGt , λFt , λPt , βlow, βhigh, P r (βlow|η) , P r (βhigh|η) , θBeq, kBeq,

c}. Our targeted moments are described below.

The Value of Statistical Life (VSL) We set the target average VSL among the working-

age population in our model to $2 millions. The VSL represents the monetary value corre-

sponding to the reduction in mortality risk that would prevent one statistical death. More

formally, it is the marginal rate of substitution between wealth and survival probability. In

our framework, it can be expressed as follows:9

VSLt =
∂Vt/∂ζ

h
t

∂Vt/∂kt

9 Since b enters the utility function additively, we can estimate b that reproduces the targeted VSL after
getting the estimates of the other parameters.
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Viscusi (1993) provided an extensive review documenting that the estimates vary from $1

million to $16 millions (in 1990 dollars). The US government agencies (Department of

Transportation, Food and Drug Administration, Environmental Protection Agency) use the

VSL of $1-10 millions in their analysis involving a mortality risk (Robinson, 2007). Because

we set the targeted VSL to the lower end of the empirical estimates, we obtain a lower bound

for the non-pecuniary effects of health. As discussed below, our results show that even under

this parameterization the non-pecuniary effects of health are large. In online Appendix E.4

we report the results from an alternative parameterization when the VSL is equal to $6

millions, which emphasizes the non-pecuniary effects of health more.

Labor market outcomes We target the fraction of workers and average labor income

conditional on working for each age and health status (good, fair, and poor). Figure 10

reports our targeted moments from the PSID as dots/crosses and our model implications as

solid lines. The labor income profiles in the right panel come from our estimated coefficients

in Eq. (1) and include fixed productivity (γ) for each age and health. Since the estimated

labor income profiles among workers in poor and fair health are quite similar, we estimate

their targeted labor income profiles from the pooled sample of people in poor and fair health.

Related, it is worth pointing out that, even though the targeted labor income profile for

people in poor and fair health is the same, their estimated deterministic productivities (λFt ,

λPt ) are different due to their selection into employment.

Wealth moments We target the 25th, 50th, and 75th percentiles of wealth, conditional on

being healthy and unhealthy (poor+fair) by 5-year age windows (dashed lines in Figure 8).

We discard the wealth moments below age 25 because we assume that individuals enter the

model with zero assets.

To construct our targeted wealth profiles, we use net worth from the PSID (1994, 1999-

2017).10 Because net worth is measured at the household level and our model abstracts from

heterogeneity in family size, we adjust observed wealth by family size as follows:

wealthit =
∑
j=G,B

(
djageD

age
it + dj1nit + dj2n

2
it + dj3n

3
it

)
1{hit=j} +

2013∑
t=1994

dtDt + resit, (22)

where wealthit is net worth, Dage
it and Dt are age and year dummy variables, and nit is the

number of individuals in a family unit. Given the estimated coefficients and the residuals

10 Net worth is given by the sum of the values of business/farm, checking/saving accounts, real estate,
stock, vehicles, other assets, annuity/IRA accounts, and home equity, less the value of mortgages/debts. We
convert it to 2013 dollars using the CPI.
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resit, we replace nit in the above equation with the average family size at each age, nt, to get

our measure of net worth.11 Then we construct the targeted 25th, 50th, and 75th percentiles

of wealth distribution among people in good and bad health, and report them as dashed

lines in Figure 8. As a comparison, we also apply the same method to net worth in the HRS

(1994-2012) and plot the results as dotted/crossed marks in Figure 8.
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Figure 8: Wealth profiles by health status : data vs model.
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Figure 9: Wealth gradient : data vs model.

The wealth profiles from the two datasets are remarkably similar. Figure 8 displays

the wealth-health gradient typically documented in the literature: Figure 9 emphasizes this

gradient by plotting the gap in wealth between the healthy and the unhealthy. This gap

starts at relatively young ages and widens until retirement age. This feature of the data

suggests that it is important to model the entire life-cycle to understand the costs of bad

health.

11 We compute
∑

j=G,B

(
d̂jageD

age
it + d̂j1nt + d̂j2n

2
age + d̂j3n

3
age

)
1{hit=j}+ d̂2013 + r̂esit, where d̂j and r̂esit are

the estimated coefficients and the residuals from Eq. (22). By construction, we remove the variation in net
worth due to the variation in family size that is orthogonal to health status and age.
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5.2 Second step estimation results

The third column of Table 8 reports our estimated preference parameters and consump-

tion floor. The discount factors play an important role in wealth accumulation before retire-

ment and its distribution; our estimated βlow and βhigh are 0.877 and 0.992, respectively.12

The correlation between the discount factor and health type is identified by matching the

wealth levels of the healthy and the unhealthy. We find a strong correlation between one’s

discount factor and health type: the fraction of impatient people (βlow) among those with

η1- and η2-types is about 80%, while the fraction among those with the best health type (η3)

is slightly less than 40%. The average discount factors among η1- and η2-types is 0.90 and

the average among η3−type is 0.95. The unconditional average of the discount factor in our

model, E(β), is 0.932.

Parameters Baseline No correlation

(Annual) discount factor {βlow, βhigh} {0.877, 0.992} {0.895, 0.992}
% βlow by ηi at age 20 Pr (βlow|η1) 78% 55.6%

” Pr (βlow|η2) 79% 55.6%

” Pr (βlow|η3) 38% 55.6%

Bequest parameter θBeq 1,905 1,256

” κBeq $182,707 $168,577

(Annual) consumption floor c $3,505 $4,116

Table 8: Preference parameters and the consumption floor. Both β and c are convented into annual values.

The estimated bequest parameters θBeq and kBeq, which mostly affect wealth decumula-

tion after retirement, are 1,905 and 182,707, respectively. In a one-period consumption-saving

model with a risk aversion of 3, these values imply that, during the last period of life, the

bequest motive becomes operational at an asset level of $15,000 and the marginal propensity

to bequeath (MPB) is 0.92. In other words, individuals with assets below $15,000 would not

leave bequests, while individuals with assets above $15,000 would leave 92 cents out of every

additional dollar for bequests. These numbers are within the range of values found in other

studies. For example, the estimation in De Nardi et al. (2010) implies a bequest threshold of

about $36,000 and a MPB of 0.88. Pashchenko (2013) provides a comparison of the MPBs

and bequest thresholds across several structural life-cycle studies.

The annual consumption floor, which mostly affects the savings of those with lower

income, is $3,505. This estimate is consistent with those from other structural models

featuring the full life-cycle, medical spending uncertainty, and endogenous labor supply.

12 In online Appendix E.1 we explain in detail how the difference in estimated discount factors in our
model compares to other studies that allow for heterogeneity in the rate of time preferences.
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More specifically, Capatina’s (2015) estimate of the consumption floor is $4,114 (in 2006

USD) while Pashchenko and Porapakkarm’s (2017) estimate is $1,540 (in 2003 USD).

5.3 Model fit

Figure 10 compares the employment rate (left panel) and the average labor income of

workers (right panel) generated by our model (solid lines) with the targeted profiles from the

PSID (dots and crosses).13 Our model matches the important differences in labor market

outcomes across health status very well.
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Figure 10: Employment by health (left panel) and average labor income among workers by health (right
panel). The dotted and crossed marks are from the PSID while the solid lines are from our model.

Figure 8 displays the wealth profiles from our model (solid line) and the data (with

dashed lines for the PSID and dots/crosses for the HRS).14 Our model matches the wealth

gap between healthy and unhealthy people for the 25th, 50th, and 75th percentiles. It is

especially worth noting that, even though everyone starts with zero assets in our model,

our simulated profiles track very well the widening wealth-health gradient by age. Since the

monetary costs of bad health (low earnings and high medical spending) among the young

are relatively small compared to older groups, the wealth gradient for the younger group is

mostly explained by the larger fraction of βlow-individuals among the unhealthy.

Our model also matches additional dimensions of the data by health that we do not

target. The first three columns of Tables 9 and 10 show that it replicates the distribution of

13 The annual labor income profiles from the model are constructed from dividing two-year labor income
by two.

14 While we capture overall wealth inequality quite well, our model does not generate enough wealth
inequality at the very top. Previous literature shows that two important economics mechanisms are crucial
to explain that. They are entrepreneurial choices (Quadrini, 1999 and Cagetti and De Nardi 2006) and the
intergenerational transmission of bequests and human capital (De Nardi, 2004). For tractability, and because
our paper is not about modeling the saving decisions of the very rich, we abstract from these mechanisms.
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people by health conditional on both income and wealth. More specifically, the table reports

the percentage of unhealthy people by income and wealth terciles. In the data, conditioning

on age group, there are much more unhealthy people in the lowest terciles of earnings and

wealth. Our model matches these additional features of the data well. Capturing these

aspects of the data is important to properly evaluate the long-term effects of bad health.

PSID (HRS) Model
bottom 1/3 middle 1/3 top 1/3 bottom 1/3 middle 1/3 top 1/3

25-34 14% 5% 3% 11% 3% 1%
35-44 18% 7% 3% 17% 3% 3%
45-54 26% 9% 6% 23% 8% 4%
55-64 30% (38%) 17% (21%) 9% (13%) 32% 10% 7%

Table 9: Percentage of unhealthy (poor+fair) individuals in each earnings tercile. Left panel: data from
PSID (data from HRS is in parentheses). Right panel: model.

PSID (HRS) Model
bottom 1/3 middle 1/3 top 1/3 bottom 1/3 middle 1/3 top 1/3

25-34 10% 10% 6% 6% 5% 4%
35-44 14% 14% 5% 9% 9% 5%
45-54 20% 15% 9% 15% 13% 6%
55-64 32% (37%) 17% (23%) 12% (15%) 23% 18% 8%
65-74 35% (39%) 26% (24%) 16% (16%) 32% 24% 11%
75+ 46% (43%) 34% (31%) 21% (28%) 38% 31% 21%

Table 10: Percentage of unhealthy (poor+fair) individuals in each wealth tercile. Left panel: data from
PSID (data from HRS is in parentheses). Right panel: model.

6 Results

In this section, we use our estimated life-cycle model to deliver several interesting results.

First, we illustrate the importance of the correlation between our ex-ante fixed character-

istics in generating the observed health-related wealth inequality. Second, we construct a

comprehensive measure of the monetary costs of bad health over the life-cycle. Third, we

evaluate the welfare losses due to bad health realizations, a metric that takes into account

both the pecuniary and non-pecuniary consequences of bad health. For both monetary and

welfare losses, we first report the average annual losses over the life-cycle and we then provide

a decomposition analysis to understand how different aspects of bad health contribute to its

total effect.
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6.1 Compositional differences and the wealth-health gradient

As we have seen in the previous subsection, our estimates imply a non-trivial composi-

tional difference between the healthy and unhealthy, which is due to the estimated correlation

between health types and the rate of time preferences. To quantify its importance, we esti-

mate an alternative model in which one’s discount factor is orthogonal to one’s health type

and, consequently, to one’s health status.

Formally, we set Pr(βlow|ηm) = 0.556 for all health types. This number corresponds

to the overall fraction of people with low patience in our baseline economy. Then, we re-

estimate our model by matching the same targets. We call this version of our model the

“no-correlation” model. It is important to notice that it still features all of the channels

through which bad health can affect individuals’ savings.

Wealth percentile PSID (HRS) Baseline
No correlation

Pr (βlow|ηi) = 0.556

25th pct $92 ($117) $89 $93
50th pct $213 ($220) $224 $201
75th pct $476 ($383) $502 $435

Table 11: Unconditional wealth quartiles at age 60-64 (in 1,000 USD).

Wealth difference
by health status

PSID (HRS) Baseline
No correlation

Pr (βlow|ηi) = 0.556

25th pct $56 ($47) $67 $58
50th pct $142 ($98) $146 $35
75th pct $210 ($222) $260 $99

Table 12: Wealth-health gradient at age 60-64 (in 1,000 USD) . The table reports the wealth difference
between healthy and unhealthy (poor+fair) people for each wealth quartile.

Our estimated parameters for the “no-correlation” model are similar to those from our

baseline model, including for the rates of time preferences (βlow, βhigh) (See the last column

of Table 8 for their values). It is worth pointing out that even the “no correlation” model

requires heterogeneity in time preferences to match the age-profile of the wealth distribu-

tion. This is a commonly used approach in the literature that aims at matching wealth

inequality (e.g., Hendricks, 2007a, 2007b). Our model-simulated data matches the wealth

quartiles unconditional on health status. See the second and fourth columns of Table 11 for

a comparison of the 25th, 50th, and 75th wealth percentiles for the 60-64 age group in the

PSID (and HRS) and in the “no-correlation” model, respectively. As a reference, we also

report the corresponding statistics from the baseline model. The “no-correlation” model also

matches the employment rate and the average labor income by health status conditional on

working (the income-health gradient).
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The “no-correlation” model, however, falls short of replicating the observed large differ-

ences in wealth by health status (See Table 12). For example, for people near retirement,

the difference between the median wealth of the healthy and that of the unhealthy is only

$35k in this no-correlation model, compared to about $140k in the PSID and our baseline

model.

From these findings, we conclude that, even for a relatively homogeneous group of males

with the same education level, the direct effect of bad health (low earnings, high out-of-

pocket medical expenses and shorter life expectancy) only partially accounts for the observed

difference in accumulated wealth between the healthy and unhealthy, and that the income-

health gradient does not imply the wealth-health gradient.

Consistent with our findings, Poterba et al. (2017) use HRS data to document that there

is a large difference in asset growth between those in the top and bottom one-third of health

status (they construct a continuous health index) between the ages of 51 and 61. They

also find that only 20-40% of the differences in asset growth can be attributed to the lower

earnings and annuity income of those in poor health.

6.2 The monetary losses due to bad health

While previous literature has noted that health deterioration leads to worse outcomes, a

comprehensive evaluation of the effects of bad health was not previously done. To achieve

this goal, we fold the consequences of bad health on a number of dimensions (income, med-

ical spending, etc.) into one measure. We do so by comparing each individual with his

counterfactual self when he does not face any bad health realization throughout his lifetime,

but faces the same environment. This computation allows us to capture both the pecuniary

(by comparing net income) and non-pecuniary (by comparing utility) costs of bad health

over all of the life cycle. In addition, it allows us to decompose the portion of health costs

that is due to ex-ante differences (the types) and ex-post bad luck (the shocks).

Importantly, our approach has an important advantage over estimating the costs of bad

health directly from the data. Without a model, in fact, we can only compare different indi-

viduals, either healthy or unhealthy, after controlling for observable characteristics. But, as

we show earlier in this paper, healthy and unhealthy people differ in unobservable character-

istics (health type, permanent productivity, and preferences), and this biases the estimated

costs of bad health. Instead, we compare the exact same people, in the exact same environ-

ment.

To formalize our computation, denote income net of total medical spending of an indi-

vidual i at time t in the baseline and counterfactual cases as yBSit and yHit , respectively. The

difference between yBSit and yHit represents the pecuniary costs of bad health in period t. Our

40



measure of the lifetime costs of bad health averages these costs over the life-cycle and is

computed as 1

T̂

T̂∑
t=1

yHit−yBSit
(1+r)t

, where T̂ is either the age of death or the last year of the working

stage of life-cycle (64 years old).15 We use r = 2% for all calculations in this section and

report the corresponding results when r = 0% in online Appendix E.2.

All η1 η2 η3

Over life cycle (21-death)

Percentage of time in bad health 15% 58% 23% 4%

Income losses + total medical costs $1,511 $8,896 $1,935 $225
(Percentage of average earnings) a (3.9%) (23%) (5%) (0.6%)

Over working age (21-64)

Percentage of time in bad health 10% 55% 14% 1%

Income losses + total medical costs $1,031 $7,147 $1,201 $76
(Percentage of average earnings) a (2.7%) (18%) (3%) (0.2%)

a Average earnings in our baseline model is $38,648 per year.

Table 13: Annual monetary losses due to bad health (poor+fair). The top panel is over life cycle till death
while the bottom panel is between 21 and 64 (working ages). The interest rate for computing the present
value is 2%.

Table 13 displays the average lifetime costs of bad health over the entire life-cycle (top

panel) and over the working period (bottom panel), starting from age 21. Two main points

are worth noticing. First, on average, because of bad health realizations, people experience

monetary losses over their entire life cycle of about $1,500 per year, and average losses over

the working period of about $1,000 per year.

Second, the inequality in monetary losses across different health types is large. While

people with the best health type (η3) experience losses of only about $200 per year over the

entire life-cycle, this number is close to $9,000 for people with the worst health type (η1).

The reason for this remarkable difference can be seen in the second row of the table: while

people with the best health type spend only 4% of their lifetime being unhealthy, people with

the worst health type find themselves in bad health for more than half of their life (58%).

Thus, the large lifetime losses of the worst health type are driven by the long sickness spells

which make up for a large portion of their relatively short lifespans.

Next, we turn to decomposing the sources of the monetary losses due to bad health.

Table 14 displays the distribution of these losses by three components: medical costs paid

by insurance, out-of-pocket medical costs, and income losses. The left-hand-side panel in

15 For the monetary losses over working age (21-64), T̂ is set to the age of death if an individual dies
before reaching the age of 64 years old.
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Over life-cycle (21-death) Over working periods (21-64)
All η1 η2 η3 All η1 η2 η3

Annual monetary losses $1,511 $8,896 $1,935 $225 $1,031 $7,147 $1,201 $76

Composition (%)

- Medical costs paid by insurance 36% 33% 39% 39% 32% 33% 33% 18%
- Out-of-pocket medical costs 27% 22% 30% 36% 20% 20% 21% 11%
- Income losses 37% 45% 31% 24% 48% 47% 46% 71%

Table 14: Composition of annual monetary loss due to bad health (poor+fair) using 2% interest rate when
computing the present value.

this table refers to the entire life-cycle, while the right-hand-side panel refers to the working

stage only (age 21 to 64). In both cases, a substantial portion of the losses is due to income

drops: it is the largest component of the losses that are not covered by insurance. In case of

the working-age population, income losses represent almost half of total monetary losses due

to bad health. Over the entire life-cycle the contribution of income losses due to bad health

is about 40%. This difference is mainly due to the fact that medical spending increases

quickly with age and thus plays a more important role for older people. Another important

observation is that only about a third of monetary losses due to bad health are covered by

insurance.

Overall, two important conclusions can be drawn from the results presented in this sec-

tion. First, the lifetime monetary costs of bad health are substantial and those born with

the worst health type have significantly higher costs over their life-cycle. Second, studies

that confine the effects of bad health only to medical expenses significantly underestimate

the total losses that unhealthy people experience over their lives.

6.3 The welfare losses due to bad health

Because bad health also affects one’s disutility from working and life expectancy, welfare

is a more comprehensive measure than the monetary costs of bad health. The first and last

column of Table 15 suggest that the effects of bad health on welfare could be large because

of its effects on life expectancy: people who do not experience any bad health shocks live,

on average, six additional years. Hence, we now turn to computing how bad health affects

one’s welfare and through which channels.

Baseline When everyone is
all η1 η2 η3 variation due to η always healthy

Average age at death 77.4 63.0 73.8 81.5 21 % 83.4

Table 15: Average age at death in the baseline case. In the counterfactual scenario, since everyone is
healthy, the distribution of age at death is the same for all ηi.
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To construct our welfare measure, we follow the same logic used when measuring the

monetary costs: we compare each individual with his hypothetical self in a situation when

his health is always good but everything else is the same. We then compute the percent-

age reduction in annual consumption that makes the person’s welfare in the counterfactual

environment to be the same as in the baseline.

Formally, the realized lifetime utility of an individual in the baseline is

UBS =

T̂d+1∑
t=1

βt
(
u(c∗t , l

∗
t , ht)× 1alivet + (1− 1alivet) θBeq

(k∗t + kBeq)

1− ρ

1−ρ )
,

where {c∗t , l∗t , k∗t }
T̂d
t=20 are optimal decisions, and T̂d is age at death. 1alivet is an indicator

function that equals one if a person is alive in period t and zero otherwise. We can similarly

define the counterfactual lifetime utility of the same person in case of good health during

each period.

The (realized) welfare costs of bad health is the reduction in consumption (λc) such that

one’s lifetime utility in the counterfactual is the same as that in the baseline:

UBS =

T̂Hd +1∑
t=1

βt
(
u
(

(1− λc) c∗∗t , l∗∗t , ht = G
)
× 1alivet + (1− 1alivet) θBeq

(k∗∗t + kBeq)

1− ρ

1−ρ )
,

where {c∗∗t , l∗∗, k∗∗t } and T̂Hd are the optimal decisions and age at death in case of unexpected

continuous good health, respectively. To convert this magnitude to dollar values, we also

report it as an annual consumption reduction or λcc
∗∗, where c∗∗ is one’s average consumption

over the lifetime when drawing only good health realizations.

all η1 η2 η3 βL βH

Compensated consumption equivalence $1,933 $6,380 $2,690 $854 $1,866 $2,018
(% consumption equivalence, λc) (10.6%) (36.8%) (14.8%) (4.4%) (10.3%) (11%)

Contribution (%)

- Only medical expenses losses 25% 39% 22% 17% 24% 26%
- Only income losses 38% 57% 42% 9% 55% 17%
- Only non-monetary losses 44% 32% 33% 77% 14% 79%

Table 16: Welfare losses due to bad health (poor+fair). The dollar value is calculated from λcc
∗∗ where λc

and c∗∗ are the percentage of consumption reduction and average life time consumption of each individual
when always healthy.

Table 16 displays the compensating consumption equivalent (CCE) averaged over all

individuals and by health type and discount factor type.16 The first line shows that, on

16 The dollar values of monetary and welfare losses are not directly comparable. To compute monetary
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average, CCE represents 10.6% of annual consumption (or $1,933), thus indicating substan-

tial welfare consequences of experiencing bad health. While the welfare losses vary little by

discount factor type, there are remarkable differences by health types. Removing bad health

realizations for people with the worst health type (η1) is worth around a third of their annual

consumption, while for people with the best health type (η3) it is worth less than 5%. This

is perhaps not surprising given the average person with the worst heath type spend more

than half of their life in bad health. Table E13 in Appendix E.3 reports welfare losses by

patience, health, and productivity types.

The other lines of Table 16 report the contribution of various factors to the welfare losses

of bad health. We compute them by performing three counterfactual experiments. In the

first experiment, bad health only affects one’s medical spending. In the second one, bad

health only affects one’s productivity and disutility from work, i.e., there is no effect on

life expectancy or medical spending. In the third one, bad health only affects one’s survival

probability, i.e., individuals who become sick experience a decline in their life expectancy but

no change in their productivity, disutility from work, or medical spending. In each of these

three experiments, we recompute the corresponding compensating consumption equivalent

by comparing one of the counterfactual baselines with the hypothetical situation of no bad

health realizations. We report the resulting CCE as the percentage of the CCE corresponding

to the situation when health affects people through all channels (first row of the table).17

The largest source of welfare losses due to bad health is its effect on life expectancy

(44%), followed by its effect on income (38%). There is, however, substantial heterogeneity

in terms of the importance of different channels for people with different health types and

discount factors.

While for people with the worst health type, almost 60% of welfare losses come from the

income channel, for people with the best health type this number is only 9%. At the same

time, while the survival channel contributes only a third to the welfare losses of people with

the worst health type (η1), it represents almost 80% of the welfare losses of those with the

best health type (η3). This difference is largely due to the correlation between health type

and discount factor. In fact, the survival channel has little impact on the welfare of impatient

people (only 14%), but plays a dominant role for patient people (almost 80%), as reported

in the last two columns of this table. The latter is due to their different discount factor and

hence valuation of events that happen later in life, like a reduction in life expectancy.

losses, we discount the reduction in resources at each age by 1/(1 + r) = 0.98. To compute welfare losses,
we discount the sum of lifetime utilities by discount factors 0.877 and 0.992 for inpatient and patient people,
respectively.

17 Our decomposition exercise is not supposed to sum to 100% by construction. The purpose of this
exercise is to rank the importance of each channel through which health affects individuals.
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Another important dimension to consider is the concentration of losses due to bad health

and the contribution of health types to its total variation. The first three columns of Table

17 display the percentage of aggregate losses experienced by people in the top 5%, 10%, and

20% of the distribution for monetary and welfare losses, respectively. For both measures,

the distribution of lifetime costs of bad health is highly concentrated: for example, people

at the top 10% of the distribution account for 56% and 42% of the monetary and welfare

losses due to bad health, respectively. There is, however, a significant difference depending

on the measure of costs used. Monetary costs are noticeably more concentrated: while the

top 5% accounts for 24% of welfare losses, the top 5% accounts for almost 40% of monetary

losses. The difference is much smaller for the top 20% of the distribution, thus indicating

that this gap is largest among people at the very top of the losses distribution. The lower

concentration of welfare losses is due to the fact that individuals’ consumption is shielded

from the highest monetary losses by means-tested insurance (guaranteed consumption floor).

Over life cycle (21-death) variation due to η
top 5% top 10% top 20%

Monetary losses (21-death)

- Income losses + total medical costs 38% 56 % 75% 69%

Welfare losses
- Compensated consumption equivalence 24% 42% 71% 30%

Table 17: Concentration of losses due to bad health (poor+fair) and variation of losses due to health types.
The reported numbers in column 2 to 4 are in percentage of aggregate loss at top 5%, 10%, and 20%. For
monetary loss, we use 2% interest rate when computing the present value and include the costs paid by
insurance. The results when the costs paid by insurance are excluded are very similar.

The last column of Table 17 displays the contribution of health types η to the variance

of the lifetime losses due to bad health. It shows that health types play an important role

in explaining the variance of lifetime losses: its contribution counts for 69% of the variation

in monetary losses and for 30% in that of welfare losses.

The difference in the contribution of health types to the variance of two different measures

of losses is due to the following. Health types account for 73% of the variation of the fraction

of lifetime spent being unhealthy (see also second row of Table 13), this, in turn, is an

important factor generating monetary losses. In contrast, the contribution of health types

to life expectancy is smaller (about 20%, see Table 15). Because the largest contributor to

welfare is life expectancy, health types play less of a role in explaining variation in welfare.

In sum, bad health generates large welfare costs, of the order of 10% of annual consump-

tion on average. This happens because bad health lowers life expectancy and because of

limited insurance opportunities against monetary losses. In addition, and importantly, the
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variation in welfare losses and (even more) in monetary losses, is due to fixed health types

and is thus related to factors that are likely pre-determined earlier in life.

7 Conclusions and directions for future research

Understanding and quantifying an issue is a necessary condition to design an effective

policy intervention. We develop a structural framework for evaluating the differences in

economic outcomes by health and for measuring the lifetime consequences of being unhealthy

over the life-cycle. Our approach emphasizes the complex nature of health dynamics and the

role played by multidimensional ex-ante differences across individuals. Our measurement

exercise provides a comprehensive assessment that can be used as a starting point for policy

analysis.

We provide several important findings. Regarding our estimated health process, we find

that health types are important drivers of health dynamics and that the variation in health

transitions due to health types is much larger than that due to history-dependence. Regard-

ing the implications of our estimated life-cycle model, we show that taking into account the

correlated structure of ex-ante differences across individuals is important to understand the

disparity in economic outcomes by health. More specifically, the worse economic outcomes

of the unhealthy are to a large extent due to the fact that, compared to the healthy, they

are more likely to have lower fixed labor productivity and to be less patient.

We use our estimated model to evaluate the lifetime consequences of being unhealthy

and we find these consequences to be substantial, both in monetary and welfare terms. On

average, people lose about $1,500 per year (in present terms) over the life-course because of

bad health realizations. In welfare terms, bad health realizations are, on average, equivalent

to a 10% reduction in annual consumption. Our decomposition analysis shows that an

important component of the monetary costs is the loss in labor income, especially for people

of working age, while the effects of health on life expectancy are very important drivers of

welfare costs. We also document that both measures of lifetime costs are very concentrated

and unequally distributed across health types and that the contribution of health types to

the variation in the lifetime costs of bad health is large, especially for monetary costs.

Thus, our measure of the lifetime costs of bad health and its decomposition emphasizes

several points that are important to take into account when designing policy. First, that bad

health creates large costs that accumulate over one’s lifetime. Second, that these costs far

exceed those of medical expenses (in fact, we find that foregone labor income and lower life

expectancy are key determinants of the costs of bad health). Third, that, to a significant

extent, one’s lifetime costs of bad health are predetermined by one’s health type, i.e., by
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genetic endowments and early life circumstances.

Thus, our measure of the lifetime costs of bad health and its decomposition emphasizes

several points that are important to take into account when designing policy. First, bad

health creates large costs that accumulate over one’s lifetime. Second, these costs far ex-

ceed those of medical expenses (in fact, we find that foregone labor income and lower life

expectancy are key determinants of the costs of bad health). Third, to a significant extent,

one’s lifetime costs of bad health are predetermined by one’s health type, i.e., by genetic

endowments and early life circumstances.

These findings have several important policy implications. To start, health insurance

only partly insures the costs of bad health in that it covers, at best, only medical expenses,

which are only one portion of the costs of bad health. Then, labor market policies targeted

towards unhealthy people are potentially very beneficial. Finally, most effective polices

should target one’s health type’s formation. These policies include various genetic treatments

and improving a child’s early life environment. Our results thus move the focus to these

policies and our paper provides a framework that can be used to better measure the long-

term consequences of improving people’s health types earlier during the life cycle.

A second important direction for future research is to better understand the direct ef-

fects of health on labor market productivity. Our results show that an important part of the

monetary costs of bad health comes from its effect on labor income. It is possible that this

occurs because health affects human capital accumulation. Modeling this relationship also

raises several identification issues. For instance, how does health affect human capital? Is it

through human capital investment or learning by doing? How should we capture the corre-

lation between health types and fixed factors affecting labor productivity? In our approach,

we estimate fixed labor productivity directly from the data. With endogenous human cap-

ital the issue of estimating ex-ante fixed factors affecting human capital accumulation and

estimating their correlation with health types becomes very complex, especially since they

must be estimated inside the structural model.

Finally, it is also important to understand the micro-foundations of the ex-ante difference

across individuals. Our estimates show that fixed characteristics, namely, health types,

patience, and fixed labor productivity, are correlated. What are the mechanisms generating

this correlation? What is the role of genetics and personality traits versus circumstances

early in life? Understanding and modeling these issues requires incorporating the childhood

stage of the life-cycle and modeling children’s human capital formation through parental time

and monetary investments. This approach also requires incorporating recent insights from

personality psychology into a structural framework (see for instance Almlund et al., 2011,

for a review). While challenging, the importance of this line of research for policy analysis
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cannot be underestimated: our results emphasize the importance of fixed characteristics for

generating large losses due to bad health. Hence, developing policies to prevent these losses

requires understanding the formation of these characteristics.
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Online appendix

A The data

We use three data sets: the Panel Study of Income Dynamics (PSID), the Health and

Retirement Study (HRS), and the Medical Expenditure Panel Survey (MEPS). The PSID

tracks individuals over a long period of time and contains excellent information, for instance,

on self-reported health status, and on labor supply during the entire working stage. The

HRS has a large sample size and a lot of information on people age 50+, including wealth,

health, and labor supply. The MEPS contains high-quality information about both total

and out-of-pocket medical spending. Thus, using all three data sets allows us to exploit the

advantages of all of them and to construct the best possible data for the United States.

For each data set, we select a sample of male household heads with 12 to 14 years of

education (that is, with a high school degree or at most 2 years of college). We normalize

all nominal variables to the 2013 base year using the Consumer Price Index (CPI).

The PSID is a nationally representative panel that surveys individuals and their families.

It started in 1968, on an annual basis, but has been administered bi-annually since 1997.

Individuals’ self-reported health is available from 1984. We use all available waves from

1984 to 2017. To construct our panel data sample, we include individuals who do not have

missing observations on self-reported health status and assign the longitudinal weight in

2013 (our base year) as individual weight.18 This gives us a sample of 2,038 individuals or

26,194 individual-wave observations (on average, individuals are observed for 12.9 waves).

To construct the bi-annual panel data for the maximum likelihood estimation of our two-year

health process, we further drop every other wave prior to 1997.

In addition to using the PSID to estimate the health process that we describe in Section

2, we also use it for both our first and second steps estimation. At the first step, we use

the PSID to estimate the annual labor income shock process (which we model as an AR(1)).

We describe our estimation of the annual income process and its conversion to the bi-annual

discretized process to be used in our model in Appendix D.3.

At the second step, we use the PSID to construct the targeted moments for the estimation

of our life-cycle model listed in Section 5.1, namely, labor income, employment and wealth.

The wealth data is available only in the 1994 and 1999-2017 waves.

We use the HRS to estimate health-dependent survival probabilities after age 50. When

possible, we also use the HRS to validate moments from the PSID. In addition, we use

the HRS to validate our estimated model. We use 1994-2017 waves of the RAND HRS

18 Our results are robust to using equal weights.
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Longitudinal file 2016 (v1).

We use MEPS for our first step estimation. Specifically, we use it to estimate total medical

expense shocks, coverage of employer-sponsored (ESHI) and individual health insurance, and

the probability of obtaining ESHI. The medical spending reported in MEPS is cross-checked

with insurers and providers and is thus very accurate.19 We use waves 1999/2000-2016/2017

of MEPS.

B Health process estimation

This section provides additional information regarding our paper’s empirical findings.

Specifically, it provides more details on the estimation of the health process described in

Section 2 and explains how we construct our health transition probabilities and likelihood

function. It also provides several estimation results, including our survival probabilities,

health process estimation using different samples, and the full set of transition probabilities.

Finally, it illustrates the implications of our health process in terms of the distribution of

people by length of unhealthy spells.

B.1 Constructing two-year health transition probabilities

The two-year transition probabilities in Figure 1 are constructed as follows. Denote hit as

health status of an individual i at age t. The probability of moving to good health conditional

on currently being in bad health can be expressed as∑
i
1(hit=B ∩ hit+1=G)∑

i
1(hit=B ∩ hit+1={B,G}) .

The term 1 (·) is the indicator function, which is equal to one if its argument is true and

zero otherwise.

To construct the health transition profiles in Figure 2, denote the sequence of health

statuses of an individual i in the past τ periods up to age t as hτit. For people age 30 to 54

years old, we compute the probability of moving to good health during the next two years

(t+ 1), conditional on being unhealthy for at least τ consecutive periods as follows:

54∑
t=30

∑
i
1(hτit=B ∩ hit+1=G)

54∑
t=30

∑
i
1(hτit=B ∩ hit+1={B,G})

.

19 Pashchenko and Porapakkarm (2016b) provide more details on the MEPS dataset.
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B.2 Likelihood function for the two-year health process

Consider an individual i whose health is observed for consecutive J periods. Denote as t0

the earliest age of an uninterrupted health sequence till age t0 + J : {hi,t0 , hi,t0+1, ...hi,t0+J}.
If an individual is of ηj-type, the conditional probability of the observed health sequence can

be constructed from Eq. (2)-(5) and the estimated conditional survival probability in Eq. (7).

Denote the conditional probability of this health sequence as Pr (ht0+τ .., ht0+J | hi,t0 ..., hi,t0+τ−1, ηj).
Since one’s health type ηj is unobserved, we compute one’s expected likelihood function

using ∑3
j=1 Pr

(
ηj|Xη

i,t0

)
× Pr (hi,t0+τ , .., hi,t0+J | hi,t0 ..., hi,t0+τ−1, ηj) ,

where Pr
(
ηj|Xη

i,t0

)
is derived from the cumulative probability in Eq. (6). The probability

above independent across individuals. Hence, we can write the overall log-likelihood as the

sum of individuals’ log-likelihoods,

L (Θ) =
∑N

i=1 log
(∑3

j=1 Pr
(
ηj|Xη

i,t0

)
× Pr (hi,t0+τ , .., hi,t0+J | hi,t0 ..., hi,t0+τ−1, ηj)

)
,

where Θ is the set of parameters in Eq. (2)-(6).

B.3 Estimating two-year survival probabilities

Figure B1 shows our estimated two-year survival probabilities from the HRS. Several

observations are in order. First, one’s survival probability decreases in health and the gap

between people in poor and fair health is significantly larger than that between people in fair

and good health. Second, one’s health history does not matter much for people currently

in poor or fair health, while it does matter for those whose current health is good. That is,

people older than 70 who spend at least three periods in good health have noticeably higher

chances to survive than their counterparts who have recently recovered from bad health and

have thus been in good health for just one or two periods.
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Figure B1: Estimated two-year survival probabilities by health status and health history.

B.4 Using bootstrapping to estimate confidence intervals

In the main text, we proceed in two steps when estimating our health process in Eq.(2)-

(6). We first estimate labor productivity from the PSID and survival probability from the

HRS, and then use these estimates in our maximum likelihood estimation. In this section,

we account for the estimation error in fixed labor productivity and survival probabilities by

using bootstrapping to compute the 90 and 95% confidence intervals for our estimated health

process and health types parameters. More specifically, we re-sample from both our HRS

and PSID samples for 1000 times. For each of these draws, we re-estimate fixed productivity

and survival probabilities, and use each set of results when estimating our health process

with a maximum likelihood.

Tables B1 and B2 report our estimated coefficients and their 95% confidence interval (in

parentheses and below each estimate). We mark each estimate with ∗∗ and ∗ when the 95%

and 90% bootstrapped confidence interval for that parameter excludes zero, respectively.

This check shows that the inference drawn in this case is consistent with the one in our

baseline case.
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.0752 0.0715 0.129 0.288 −
(-0.31, 0.45) (-0.31, 0.42) (-0.25, 0.52) (-0.1, 0.74)

aB3 0.826∗∗ 0.810∗∗ 0.675∗∗

(0.21, 1.36) (0.2, 1.32) (0.14, 1.22)

aB4 0.528 0.704∗

(-0.12, 1.08) (-0.05, 1.21)

aB5 0.772∗

(-0.03, 1.38)

aBη1 2.270∗∗ 1.994∗∗ 1.604∗∗ 1.987∗∗ 2.111∗∗

(1.35, 3.29) (1.01, 3.1) (1.09, 2.7) (1.16, 2.58) (1.69, 2.52)

aBη3 -2.043∗∗ -2.104∗∗ -1.346∗∗ -1.303∗ -1.506∗∗

(-2.78, -0.77) (-3.08, -0.92) (-2.89, -0.0) (-2.21, -0.42) (-2.41, -0.44)

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.391∗∗ -0.366∗∗ -0.369∗∗ -0.770∗∗ −
(-0.68,-0.05) (-0.65,-0.001) (-0.7,-0.07) (-1.13,-0.48)

aG3 -0.242 -0.183 -1.086∗∗

(-0.58, 0.23) (-0.54, 0.33) (-1.7,-0.76)

aG4 -1.007∗∗ -1.691∗∗

(-1.55,-0.41) (-2.1,-0.92)

aG5 -1.921∗∗

(-2.24,-1.36)

aGη1 4.527∗∗ 3.784∗∗ 1.637∗∗ 1.806∗∗ 2.006∗∗

(1.78, 26.2) (1.79, 5.84) (1.2, 5.7) (1.24, 5.0) (1.52, 2.54)

aGη3 -1.447∗∗ -1.639∗∗ -2.318∗∗ -2.555∗∗ -2.871∗∗

(-1.98, -0.97) (-2.46, -1.1) (-3.07, -1.8) (-3.22, -2.24) (-3.39, -2.58)

N 9028 9765 11126 12096 13083

Table B1: Estimation results for the health process in Eq. (2)-(3) in the top panel and Eq. (4)-(5) in the
bottom panel. The columns refer to specifications controlling for different number of lags of past health.
The terms aBη2 and aGη2 are normalized to zero. Being in bad/good health for one period (τB = 1, τG = 1) is
the base case. All estimations include a quadratic in age whose coefficients depend on current health status
(poor, fair, good). The numbers in parentheses are the 95th confidence interval from bootstrapped samples.
The asterisks ∗∗ (∗) refer to estimates for which the 95% (90%) confidence interval excludes zero.
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T=5 T=4 T=3 T=2 T=1

age t0 -0.039 -0.025 0.005 0.001 -0.016
(-0.15, 0.02) (-0.11, 0.02) (-0.03, 0.05) (-0.04, 0.03 ) (-0.05, 0.01)

ht0 = G -1.457∗∗ -1.429∗∗ -1.879∗∗ -1.921∗∗ -2.250∗∗

(-2.4, -0.81) (-2.32, -0.58) (-2.47, -0.91) (-2.61, -1.41) (-2.92, -1.8)

ht0 = P 1.463 2.072∗∗ 2.410∗∗ 2.386∗ 1.022
(-0.51, 3.5) (0.17, 4.63) (0.24, 5.44) (-0.29, 3.9) (-1.26, 3.32)

2nd tercile of γ -0.247 -0.337 -0.509∗∗ -0.546∗∗ -0.642∗∗

(-1.25, 0.3) (-1.26, 0.19) (-1.16, -0.07) (-0.97, -0.16) (-1.05, -0.28)

3rd tercile of γ -1.203∗∗ -1.374∗∗ -1.188∗∗ -1.286∗∗ -1.355∗∗

(-2.3, -0.54) (-2.55, -0.74) (-2.2, -0.76) (-1.9, -0.83) (-1.85, -0.91)

2nd quintile of kt0 -0.002 -0.129 -0.048 -0.459∗∗ -0.469∗∗

(-1.12, 0.64) ( -1.32, 0.39) (-0.71, 0.33) (-1.02, -0.15) (-0.99, -0.18)

3rd quintile of kt0 -0.620 -0.429 -0.367∗∗ -0.378∗∗ -0.603∗∗

(-2.2, 0.08) (-1.82, 0.06) (-1.18, -0.07) (-1.06, -0.16) (-1.13, -0.32)

4th quintile of kt0 -0.749∗ -0.606∗ -0.691∗∗ -0.701∗∗ -0.759∗∗

(-3.0, 0.002) (-2.1, 0.02) (-1.57, -0.23) (-1.23, -0.26) (-1.21, -0.33)

5th quintile of kt0 -2.348∗∗ -1.616∗∗ -1.169∗∗ -1.280∗∗ -1.264∗∗

(-5.58, -1.48) (-4.3, -0.75) (-2.7, -0.8) (-2.36, -0.86) (-2.05, -0.87)

Table B2: Estimation results for the equation predicting health type, that is Eq. (6). The columns refer to
specifications controlling for different number of lags of past health. We set fair health status, 1st tercile of
γ and 1st quintile of kt0 as the base for the corresponding dummy variables. All estimations include dummy
variables for 10-years windows of birth year. The numbers in parentheses are the 95th confidence interval
from bootstrapped samples. The asterisks ∗∗ (∗) refer to estimates for which the 95% (90%) confidence
interval excludes zero.

.
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B.5 The distribution of productivity fixed effects

To evaluate whether the assumption of the normal distribution in our quantitative model

is consistent with the data, we plot the standardized estimates of the fixed labor productivity

in Figure B2, together with the fitted curve of a standard normal distribution. The graph

shows that the distribution of our estimated γ is reasonably well approximated by the fitted

normal distribution.
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Figure B2: Distribution of estimated fixed productivity.

B.6 Estimating the two-year health process (younger starting ages)

Tables B3 and B4 report the estimation results from Eq. (2)-(6) when we restrict the

sample to individuals whose age t0 is less than or equal to 39. The average t0 in the restricted

sample is between 25 and 30 years old, depending on the specification of T . These tables

shows that the results for this more restricted sample are similar to those that we use for

our main specification.
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.015 0.030 0.136 0.441∗∗ −
aB3 0.565 0.612∗ 0.543∗∗

aB4 0.045 0.179

aB5 0.289

aBη1 2.347∗∗∗ 2.143∗∗∗ 1.915∗∗∗ 1.698∗∗∗ 1.886∗∗∗

aBη3 -2.901∗∗∗ -2.870∗∗∗ -2.36∗∗∗ -2.388∗∗∗ -1.799∗∗∗

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.487∗ -0.283 -0.436∗ -0.795∗∗∗ −
aG3 -0.558∗ -0.433 -1.215∗∗∗

aG4 -1.401∗∗∗ -1.687∗∗∗

aG5 -1.979∗∗∗

aGη1 4.532∗∗∗ 4.418∗∗∗ 4.090∗∗∗ 3.683∗∗∗ 1.715∗∗∗

aGη3 -1.417∗∗∗ -1.567∗∗∗ -2.304∗∗∗ -2.741∗∗∗ -2.771∗∗∗

N 6064 7212 8668 9982 11346

Table B3: Estimation results for the health process in Eq.(2)-(3) in the top panel and Eq.(4)-(5) in the
bottom panel when the sample includes only individuals whose age t0 is less or equal to 39 years old. The
columns refer to specifications controlling for different number of lags of past health. The terms aBη2 and

aGη2 are normalized to zero. Being in bad/good health for one period (τB = 1, τG = 1) is the base case. All
estimations include a quadratic in age whose coefficients depend on current health status (poor, fair, good).
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

T=5 T=4 T=3 T=2 T=1

age t0 -0.162∗ -0.089∗ 0.038 -0.005 -0.026

ht0 = G -0.795 -0.995∗ -1.696∗∗∗ -1.892∗∗∗ -2.182∗∗∗

ht0 = P 1.466 1.507 1.936 0.866 -0.376

2nd tercile of γ -0.250 -0.357 -0.557∗ -0.494∗ -0.679∗∗∗

3rd tercile of γ -1.716∗∗∗ -1.865∗∗∗ -1.788∗∗∗ -1.529∗∗∗ -1.546∗∗∗

2nd quintile of kt0 -0.277 -0.0637 -0.0546 -0.830∗∗ -0.669∗∗

3rd quintile of kt0 -0.380 -0.233 -0.300 -0.348 -0.578∗∗

4th quintile of kt0 -1.289 -0.853 -0.667∗ -0.753∗∗ -0.677∗∗

5th quintile of kt0 -2.192∗∗ -1.345∗∗ -1.566∗∗∗ -1.547∗∗∗ -1.431∗∗∗

Table B4: Estimation results to predict health type in Eq.(6) when the sample includes only individuals
whose age t0 is less or equal to 39 years old. The columns refer to specifications controlling for different
number of lags of past health. Fair health status, 1st tercile of γ and 1st quintile of kt0 are the base for the
corresponding dummy variables. All estimations include dummy variables for 10-years windows for birth
year. ( ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 )

.
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B.7 Estimating the two-year health process (all education groups)

Education is a common determinant of many important outcomes. To further investigate

the relationship between health types and education, we expand our PSID and HRS samples

to include all education groups, namely, less than high school, high school, and at least

college. We then repeat the estimation steps in Section 2.3 and include education dummy

variables as an additional covariate in Eq. (6). We report the results in Table B5 and B6.

The results confirm our finding that education is insufficient to capture the variation in

health types that we document. Moreover, these additional estimates confirm our estimated

relationship between fixed productivity and wealth quintiles, in the context of a larger sample

size.

Similar to our estimation when using only high school group, Table B6 shows that people

with a higher fixed productivity and higher initial wealth are less likely to be of the worst

health type. The last two rows of Table B6 also highlight that having higher education is a

significant predictor of better health types.
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T=5 T=4 T=3 T=2 T=1

Coefficients of history-dependence terms and health types in Eq. (2)-(3)

aB2 0.554∗∗∗ 0.495∗∗∗ 0.507∗∗∗ 0.821∗∗∗ −
aB3 1.181∗∗∗ 1.094∗∗∗ 1.206∗∗∗

aB4 0.933∗∗∗ 1.236∗∗∗

aB5 1.562∗∗∗

aBη1 1.011∗∗∗ 1.204∗∗∗ 1.099∗∗∗ 1.324∗∗∗ 1.909∗∗∗

aBη3 -0.418 -0.646 -0.464 -0.732∗ -1.419∗∗∗

Coefficients of history-dependence terms and health types in Eq. (4)-(5)

aG2 -0.432∗∗ -0.363∗∗ -0.355∗∗ -0.729∗∗∗ −
aG3 -0.499∗∗ -0.382∗ -1.140∗∗∗

aG4 -1.039∗∗∗ -1.452∗∗∗

aG5 -1.856∗∗∗

aGη1 1.404∗∗∗ 1.669∗∗∗ 1.772∗∗∗ 1.914∗∗∗ 1.967∗∗∗

aGη3 -1.292∗∗∗ -1.775∗∗∗ -1.966∗∗∗ -2.486∗∗∗ -2.964∗∗∗

N 17811 19261 21918 23745 25593

Table B5: Estimation results for the health process in Eq.(2)-(3) in the top panel and Eq.(4)-(5) in the
bottom panel when the sample includes all education groups. The columns refer to specifications controlling
for different number of lags of past health. The terms aBη2 and aGη2 are normalized to zero. Being in bad/good
health for one period (τB = 1, τG = 1) is the base case. All estimations include a quadratic in age whose
coefficients depend on current health status (poor, fair, good). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

T=5 T=4 T=3 T=2 T=1

age t0 -0.140∗ -0.081∗∗ -0.018 -0.013 -0.022

ht0 = G -1.952∗∗∗ -2.150∗∗∗ -2.469∗∗∗ -2.598∗∗∗ -2.452∗∗∗

ht0 = P 0.099 0.275 3.059 0.425 -0.042

2nd tercile of γ -1.418∗∗ -1.024∗∗∗ -1.045∗∗∗ -0.949∗∗∗ -0.869∗∗∗

3rd tercile of γ -2.457∗∗ -1.750∗∗∗ -1.805∗∗∗ -1.721∗∗∗ -1.741∗∗∗

2nd quintile of kt0 -0.608 -0.304 -0.172 -0.274 -0.278
3rd quintile of kt0 -1.016∗ -0.429 -0.465 -0.660∗∗ -0.713∗∗∗

4th quintile of kt0 -1.614∗∗ -0.919∗∗ -0.794∗∗ -0.846∗∗∗ -0.830∗∗∗

5th quintile of kt0 -2.955∗∗ -1.421∗∗∗ -0.925∗∗ -0.899∗∗∗ -0.729∗∗∗

high school group -1.362∗ -0.881∗ -0.734∗∗ -0.568∗ -0.450∗

college group -3.369∗∗ -2.295∗∗∗ -1.966∗∗∗ -1.641∗∗∗ -1.414∗∗∗

Table B6: Estimation results to predict health type in Eq.(6) when the sample includes all education groups
(less than high school, high school, and college). The columns refer to specifications controlling for different
number of lags of past health. Less than high school, fair health status, 1st tercile of γ and 1st quintile of
kt0 are the base case for the corresponding dummy variables. All estimations include dummy variables for
10-years windows of birth year. ( ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 )

.
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B.8 The two-year health transition probability (T = 3)

Table B7 reports the initial joint distribution of health status and fixed productivity

taken from our PSID sample for people between the ages of 19 and 24 and shows that worse

initial health and low fixed productivity are positively correlated.

γL γM γH

Pr (h21 = F, τ21 = 1 | γ) 0.084 0.062 0.026

Pr (h21 = G, τ21 = 3 | γ) 0.926 0.938 0.973

Table B7: Joint distribution between health status and fixed productivity (h21, τ21) between age 19 and
24. The term τ21 represents the number of consecutive periods that an individual has been in health status
h21. The terms {γL, γM , γH} refer to the three fixed productivity terciles.

Figure B3 reports our estimated transition probabilities for all health states when T=3.

It features very large differences by health types. Figure B4 shows that our health transition

probabilities, together with the initial measure of health types (η) in Table 3, reproduce the

fractions of people in fair and poor health by age that we observe in the data.
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Figure B3: Estimated two-year transition probabilities (T = 3). Different line styles represent three health
types: solid line for η1-type, dashed line and line with dots for η2- and η3-type, respectively. Black, blue,
and red lines correspond to the number of consecutive periods in the current health status (τ). The panels
in the first, second, and third rows correspond to the case when individuals are currently in poor, fair, and
good health, respectively. The first, second, and third columns correspond to poor, fair, and good health in
the next two years.
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Figure B4: Fraction of people in bad health

B.9 What accounts for the long spells of bad health?

We also use our estimated bi-annual model of health dynamics to compute the distribu-

tion of the number of unhealthy periods over one’s lifetime. The left graph of Figure B5

plots the distribution of people by the total number of periods spent unhealthy between the

age of 21 and 80, while the dashed line in the right panel shows the corresponding cumu-

lative distribution. Most people are relatively healthy over their life course: 70% of people

experience no more than 5 periods of bad health. However, a non-trivial number of people

spend more than a third of time being unhealthy between the age of 21 and 80: almost

10% of people experience 10 or more periods in bad health (note that the number of periods

between the age of 21 and 80 is 30).

The right panel of Figure B5 illustrate how this distribution differs across health types

by comparing two groups: the solid line with circles refers to people of the worst health

type (η1), while the dotted one refers to those with better health types (η2 and η3). Among

η2- or η3-individuals (solid line), almost no one experiences more than 15 unhealthy periods

between the age of 21 and 80. In contrast, slightly more than 30% of η1-people are unhealthy

for 15 periods or longer. Thus, even though the measure of η1-people is small (8.3% at age

21), they primarily account for the long right tail of the unhealthy period distribution in the

left panel. In other words, long spells of bad health are mostly due to fixed heterogeneity,

rather than to repeated bad realizations from a persistent health shock.
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Figure B5: Distribution by lifetime unhealthy periods (age 21-80). Left panel: distribution among all
individuals. Right panel: cumulative distribution of individuals with different heath types.

C Health types’ interpretation

C.1 Polygenic scores and health outcomes in the HRS

In Section 2.5, we report the relationship between health and individuals’ fixed char-

acteristics using a balanced panel of individuals observed consecutively between age 55/56

and 65/66. In Table 4, the sample size for individuals with 0-1 periods being unhealthy is

between 794 and 904, depending on the variable, while the sample size for 2-3 periods and

4-5 periods are 123-140 and 54-63, respectively. For the polygenic scores in Table 5, the

sample size for individuals with 0-1, 2-3, and 4-5 periods being unhealthy are 611, 73, and

31, respectively.

In this section, we further investigate the correlation between health and genetic en-

dowments. To do so, we use the same HRS sample as in Table 5 in the main text, and

report the 25th, 50th, and 75th percentiles of four polygenic scores among individuals with

different number of unhealthy periods. The resulting pattern is similar to the one reported

in Table 5, where we only reported average polygenic scores. Among people reporting 4-5

unhealthy periods, all percentiles of the polygenic score for educational attainment are no-

ticeably lower. In contrast, all percentiles of the polygenic scores associated with unhealthy

behaviors (smoking and BMI) are higher for this group (one exception is the 25th percentile

of polygenic score for BMI). All percentiles of polygenic score predicting longevity among

those reporting 4-5 unhealthy periods are also consistently lower.
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# unhealthy
periods

Polygenic scores (HRS)

educational attainment smoking BMI longevity

25th percentile

0-1 -0.761 -0.692 -0.665 -0.761
4-5 -1.610 -0.487 -0.725 -0.950

50th percentile

0-1 -0.120 0.036 0.003 -0.028
4-5 -0.682 0.127 0.215 -0.332

75th percentile

0-1 0.473 0.720 0.666 0.560
4-5 -0.075 0.734 1.089 0.486

Table C8: The 25th, 50th, and 75th percentiles of various polygenic scores by the number of unhealthy
periods between ages 57 and 66. All individuals are healthy at age 55-56.

C.2 Empirical studies supporting the existence of health types

In this section we review the empirical literature studying the role of pre-determined

factors in adult health. These studies can be broadly divided into two groups.

The first group of studies focuses on genetic contributions to health. Romeis et al. (2000)

use several thousands of male-male twin pairs from the Vietnam Era Twin Registry. They

find that the genetic contribution to adult health is 40%. Silventoinen et al. (2007) study a

sample of Finnish twins and conclude that heritability accounts for 33% of variation in self-

reported health at the age of 25. Studies that use actual genetic data find smaller but still

significant contribution of genetic factors to health. For example, Harris et al. (2017) show

that 13% of the variation in self-reported health can be explained by all common genetic

variants.

The second group of studies focuses on the contribution of early childhood circumstances

to adult health. Case et al. (2005) show that each chronic condition at age 7 raises the

probability of reporting a chronic condition at age 42 by 4%. Moreover, if the condition

is still present at age 16, the effect is twice as large. Conti and Heckman (2010) show

that childhood health has a significant effect on the probability of having poor health at

age 30, even controlling for cognitive and non-cognitive ability. Campbell et al. (2014)

use biomedical data and show that early childhood intervention can significantly improve

objective health measures in adulthood. Several studies investigate the role of Adverse

Childhood Experiences (ACE), such as having experienced or witnessed physical or mental

abuse. They show that ACE has long-lasting effects: individuals with high ACE score when

children have substantially worse health in their middle and old age (Anda et al., 2006;

Felitti et al., 1998).

Taken together, this (growing) evidence shows that genetic factors and early childhood

circumstances have significant impact on adult health, giving additional support to our
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findings that ex-ante heterogeneity is an important determinant of health dynamics.

C.3 Health types determination when including exercise behavior

in health transitions

Table C9 reports the estimates of one’s health type prediction when a dummy variable

for exercise categories is included in the evolution of the health process (see Section 3).

T=5 T=4 T=3 T=2 T=1

age t0 -0.0418 -0.0315 -0.0371 -0.0334 -0.0395

ht0 = G -1.886∗∗∗ -2.282∗∗∗ -3.001∗∗∗ -2.841∗∗∗ -2.943∗∗∗

ht0 = P 0.948 1.349 1.726 1.996 -0.448

2nd tercile of γ -0.223 -0.309 -0.440∗ -0.509∗∗ -0.543∗∗

3rd tercile of γ -1.056∗∗ -1.085∗∗∗ -1.097∗∗∗ -1.196∗∗∗ -1.215∗∗∗

2nd quintile of kt0 0.0377 -0.122 0.033 -0.277 -0.281
3rd quintile of kt0 -0.557 -0.177 -0.083 -0.136 -0.294
4th quintile of kt0 -0.441 -0.308 0.015 -0.077 -0.243
5th quintile of kt0 -2.092∗∗∗ -0.994∗∗ -1.194∗∗∗ -1.282∗∗∗ -1.383∗∗∗

Table C9: Estimation results for one’s health type prediction when allowing for exercise to affect health.
Fair health status, 1st tercile of γ and 1st quintile of kt0 are the base case for the corresponding dummy
variables. All estimations also include dummy variables for 10-years windows of birth year. ( ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001 )

.

D First step estimation details

D.1 Medical shocks and insurance coverage

To estimate medical expenses, we follow Pashchenko and Porapkkarm (2017). That

is, we first convert medical expenses in the MEPS to 2013 price using the CPI. Second,

we compute total medical expenses for each individual over two-year periods. Third, we

separate our sample into 12 age groups (20-24, 25-29, 30-34, ..., 75+), where we assign the

age of each group to the mid-point of the corresponding age interval. For example, 22 for

20-24, 27 for 25-29, 32 for 30-34, etc. Then, for every age group, conditional on health status

in the first year (poor, fair, good), we divide the two-year medical expenses into 3 bins: the

bottom 50%, 50-90%, and the top 90%. After computing average of medical expenses in each

bin, we multiply them by 1.60 for people younger than 65 years old and by 1.90 for people

65 or older to make medical spending in our model consistent with the aggregate medical

spending in the National Health Expenditure Accounts (NHEA). We then fit the resulting
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adjusted medical expenses with a quadratic function of age. Figure (D6) shows the medical

costs for each grid separately for each health status.

20 30 40 50 60 70 80 90

Age

0

50

100

150

200

250

300

1
0
0
0
 U

S
D

Poor health

Top 10 percentile

50-90 percentile

Bottom 50 percentile

20 30 40 50 60 70 80 90

Age

0

50

100

150

200

250

300

1
0

0
0

 U
S

D

Fair health

Top 10 percentile

50-90 percentile

Bottom 50 percentile

20 30 40 50 60 70 80 90

Age

0

50

100

150

200

250

300

1
0

0
0

 U
S

D

Good health

Top 10 percentile

50-90 percentile

Bottom 50 percentile

Figure D6: Two-year Medical expense grids by health status, xht .
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Figure D7: Private health insurance coverages: cvg
(
xht , iH

)
, iH ∈ {1, 2}.

To determine the fraction of medical expenses covered by private insurance cvg(xht , iH)

where iH ∈ {1, 2}, we do the following. We estimate medical expenses paid by private

insurers as a function of total medical expenses and year dummies using only individuals

who are categorized as individually insured or group-insured. Then, we convert our estimates

into the fraction of expenses covered by insurers. Figure D7 shows the estimated coverage

by medical expense grids.

For the parameters related to private health insurance market, we use Pashchenko and

Porapakkarm (2017)’s estimates and set the proportional load ξ to 1.07, and the fixed loads

ϕh to $100 for the healthy and $2,100 for those in fair or poor health (annually).20

D.2 Tax system

We set the Medicare, Social Security, and consumption tax rates to 2.9 percent, 12.4

percent, and 5.67 percent, respectively. We use the Social Security rules for 2013, hence we

20 Since the loads existing in individual health insurance market are unobservable, we use the indirect
estimates obtained by Pashchenko and Porapakkarm (2017). In their model with rich representation of
the US health insurance market these loads are identified from the observed purchase of individual health
insurance.
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set the maximum (annual) taxable income for Social Security (yss) to $113,700. We set the

capital tax rate to 36%, as Holter et al. (2019).

For the progressive labor income tax function, we follow Holter et al. (2019) whose

estimates of aτ0 and aτ1 depend on family structure. Since the average family size nt in

our model ranges from 1.9 to 3.2, we set aτ0 and aτ1 to 0.940772 and 0.158466, respectively,

which corresponds to their estimates for married families with one child.21

D.3 Stochastic labor productivity

We use the PSID (annual data before 1997 and bi-annual after 1997) to estimate our

labor income shock process. We define workers as described in Section 2.2 and compute

their annual labor income, defined as earnings plus income from business. We have 17,277

individual-wave observations from 1,730 individuals whom we observe working at least in

two waves. We obtain earning residuals (γi + uit) from a fixed effect regression of Eq. (1).22

Next, we construct the empirical autocovariance matrix of the earning residuals and

estimate the parameters of the productivity shock by minimizing the distance between the

empirical autocovariance matrix and the corresponding matrix implied by Eq.(13).23 Our

resulting estimates of annual labor income shock are ρν = 0.947, σ2
ε = 0.02, σ2

ν0
= 0.09, and

σ2
γ = 0.051, and are within the range of values estimated in the literature. We then use

the estimated annual AR(1) process to simulate annual income shock for a large number

of individuals. From this simulated data, we construct age-dependent transition matrix for

two-year labor income shock with 9 grid points, equally-spaced and expanding with age. We

discretize the fixed productivity into three terciles {γL, γM , γH}.

D.4 Summary of the parametrization of the baseline model

Table D10 below summarizes parameters of our life-cycle model.

21 Since income in our model is over two years, we convert it into annual income before applying the tax
function. Then we convert the resulting tax obligations into two-year payments. We use the same approach
for the Social Security benefits.

22 Note that the parameters in Eq. (13) are assumed to be independent of health status and age. Since
most workers are healthy and over 90% of healthy people work, we are less concerned about the selection
problem when estimating the parameters of Υt directly from the data. An alternative approach is to use
only the sample of healthy workers younger than 60, but this would reduce our sample size.

23 This is a standard procedure commonly used in the literature. See for example, Storesletten et al.
(2004) and French (2005).
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Parameter name Notation Value Source

Parameters set outside the model
Risk aversion ρ 3.0
Average family size nt 1.9-3.2 PSID
Tax function parameters aτ0 0.940772 Holter, et al. (2019)

aτ1 0.158466 ”
capital income tax τk 36% ”
consumption tax τc 5% ”
Medicare premium (per year) PMCR $1,055
Labor productivity

- Persistence parameter (annual) ρν 0.9472 PSID
- Variance of innovations (annual) σ2

ε 0.0198 ”
- Initial distribution σ2

ν0
0.093 ”

- Fixed effects σ2
γ 0.051 ”

Proportional load in ind ins ξ 1.07
Fixed load in ind ins (per year) ϕh

- healthy $100 Pashchenko and Porapakkarm (2017)
- unhealthy (poor+fair) $2,100 ”

Parameters used to match some targets
Discount factors (per year) βlow, βhigh 0.877,0.992 wealth profiles

% individual with βlow by η at 20 Pr(βlow|η1) 77.8% ”
Pr(βlow|η2) 79.4% ”

Pr(βlow|η3) 38.0% ”

Bequest parameters
- Strength θBeq 1,905 ”

- Shifter kBeq $182,707 ”

Consumption floor (per year) c $3,505 ”

Per-period utility of being alive b 7.149 VSL of $2M

Table D10: Parameters of the baseline model
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E Additional results

In this section, we provide supplementary discussions and additional results about the

implications of our estimated structural model. More specifically, we discuss our results

about the estimated heterogeneity in discount factors and compare them with estimates

from other studies. We also report the monetary costs of bad health computed using an

alternative interest rate and the welfare costs of bad health when the VSL is higher than in

our baseline estimation.

E.1 Discussion of the estimated heterogeneity in the rate of time

preferences.

Our estimated discount factors are 0.877 and 0.992 for impatient and patient groups, re-

spectively. In this section, we compare the difference in the rates of our time preferences with

those from other studies that allow for patience heterogeneity and structurally estimating

them to match wealth moments.

Among the structural studies that allow for heterogeneity in discount rates, we can

distinguish two groups. The first group, starting from the seminal paper of Krusell and Smith

(1998) and including Hubmer et al. (2019) and Krueger et al. (2016), shows that a small

difference in discount rates is enough to generate “enough” wealth inequality. These studies

use as relevant moments Gini coefficient or wealth holdings among different percentiles of

the wealth distribution and feature households that are infinitely lived (or age stochastically

and thus can also potentially live infinitely).

The second group of studies find that significantly larger difference in patience are needed

to match the data. Crawford and O’Dea (2020) estimate a structural model on linked

survey and administrative data in the UK and find substantial heterogeneity in discount

rates: the bottom/top 10% of the estimated discount rate distribution is equal to 0.98/1.125,

respectively. French and Jones (2011) use a rich model to account for retirement and saving

decision after age 50 (estimated using the HRS data) and estimate discount factors varying

from 0.8 to more than 1 for different groups of people. Hendricks (2007b), which, as the first

group of papers focuses on the impact of discount factor heterogeneity on wealth inequality,

estimates discount factor varying across people from 0.91 to more than 1 in his benchmark

model. Moser and Olea de Souza e Silva (2019) use the HRS and the CPS find discount rates

varying from 0.905 to 0.999 between the 10th and the 90th percentile of their distribution.

These studies target wealth moments conditional on age in their estimation. A common

modeling feature of these studies is a deterministic (non-stochastic) life-cycle framework and

the presence of a bequest motive.
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Because we model a deterministic life-cycle structure and bequest motives, and we target

wealth inequality evolution over the life-cycle, our paper belongs to the second group of

studies.

The intuition why in our kind of framework the estimated heterogeneity in discount rates

tends to be larger is due to the absence of impatient households according to Carroll (1997)’s

definition among certain age groups. Let us elaborate a bit on this point.

Based on Carroll (1997), in a standard model without uncertainty and with no income

growth (income is the same and equal to y in the current and future periods), households

are impatient if the following is true:

u′(y) ≥ β(1 + r)u′(y),

which corresponds to the Euler equation of an individual who chooses to set his savings to 0.

This leads to the impatience condition β(1 + r) ≤ 1. In our framework with bequest motive

and survival uncertainty, this impatience condition can be represented as follows:

u′(y) ≥ β(1 + r)(ζu′(y) + (1− ζ)v′(0)),

where v′(0) is the marginal utility of leaving no bequests and ζ is survival probability. Using

our parametrization of bequest and utility functions, the expression above can be written as

follows

1 ≥ β(1 + r)

ζ + (1− ζ) η

(
φ

y

)−σ .
Consider, for example, a relatively young individual with survival probability ζ equal

to 0.99. In the absence of a bequest motive, an individual would be considered impatient

in our model if his discount factor is below 0.99 (since our interest rate is 2%). Using our

estimates of the bequest motive, the threshold β that makes such an individual impatient

becomes 0.83, assuming that he has average income. As one’s survival probability decreases

and income increases with age, the cutoff that defines impatience goes down. This means

that after a certain age, all individuals become patient.

When all individuals in a certain group are at the same side of the impatience cutoff, it is

harder to generate wealth inequality compared to the situation in which some individuals are

patient and some are impatient. We are facing this situation since we are targeting wealth

inequality by age. Thus, we need a larger heterogeneity in discount factors to generate

difference in saving behavior among individuals of a certain age since they are all patient

under the modified definition of patience, that is the one that accounts for bequest motives.
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In terms of interpretation, in our framework β represents certain characteristics that are

fixed ex-ante and affect saving behavior. They can be interpreted as people’s non-cognitive

abilities and, more precisely, as the ability to delay gratification. Research in personality

psychology starting from the seminal work of Mischel et al. (1989) show that the patience or

ability to delay gratification measured in childhood is significantly correlated with outcomes

later in life.

While the economic mechanism linking patience or ability to delay gratification and sav-

ing behavior is well-understood, it is less clear how exactly this type of non-cognitive abilities

affects health and labor market outcomes, once controlling for education. However, there

is evidence that such a relationship does exist. For example, Golsteyn et al. (2014) using

a survey data in Sweden linked to administrative records show that there exists substantial

adverse relationship between high rate of time preferences measured at age 13 and health

and labor outcomes later in life.

E.2 Monetary losses of bad health when the interest rate is zero

To compute the monetary costs of bad health we use the following formula:

lossi =
1

T̂

T̂∑
t=1

yHit − yBSit
(1 + r)t

.

where yBSit and yHit are income net of total medical spending of an individual i at time t in the

baseline and counterfactual case with no bad health realizations, respectively. In the main

text, we use the interest rate of 2% to compute the losses. In this section, we recompute the

losses using the interest rate of 0%. The results of this exercise are reported in Tables E11

and E12. The overall losses are larger when lower interest rate is used, but the decomposition

exercise reveals the same pattern regarding the importance of income and medical spending

losses. The corresponding concentration of monetary losses and its variation due to health

type are reported in the upper part of Table E15. The overall patterns are similar to the

case when using 2% interest rate.
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All η1 η2 η3

Over life cycle (21-death) using 0% interest rate

% of time in bad health 15% 58% 23% 4%

Income losses + total medical costs $3,303 $16,800 $4,613 $627
(% of average earnings) a (8.5%) (43%) (12%) (1.6%)

Over working age (21-64) using 0% interest rate

% of time in bad health 10% 55% 14% 1%

Income losses + total medical costs $2,026 $13,267 $2,569 $130
(% of average earnings) a (5.2%) (34%) (6.6%) (0.3%)

a Average earnings in our baseline model is $38,648 per year.

Table E11: Annual monetary loss due to bad health (poor+fair) using 0% interest rate. The top panel is
over life cycle till death while the bottom panel is between 21 and 64 (working ages).

Over life-cycle (21-death) Over working periods (21-64)
All η1 η2 η3 All η1 η2 η3

Annual monetary losses $3,303 $16,800 $4,613 $627 $2,026 $13,267 $2,569 $130

Composition (%)

- Medical costs paid by insurance 35% 32% 36% 43% 28% 30% 26% 19%
- Out-of-pocket medical costs 28% 21% 32% 41% 18% 18% 19% 10%
- Income losses 37% 47% 32% 15% 54% 51% 55% 70%

Table E12: Composition of annual monetary loss due to bad health (poor+fair) using 0% interest rate
when computing the present value.
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E.3 Welfare losses by type

all
βL βH

η1 η2 η3 η1 η2 η3

γL $2,113 $5,702 $2,083 $202 $6,903 $3,881 $946
(13.2%) (35.0%) (12.5%) (1.2%) (47.6%) (25.2%) (6.0%)

γM $2,003 $6,314 $2,320 $248 $8,295 $4,614 $1,202
(10.7%) (33.5%) (12.3%) (1.3%) (47.8%) (24.9%) (6.3%)

γH $1,684 $6,232 $2,341 $246 9,774 $5,370 $1,433
(8.0%) (29.6%) (11.4%) (1.2%) (48.7%) (25.1%) (6.6%)

Table E13: Welfare losses due to bad health (poor+fair). The dollar value is calculated from λcc
∗∗ where

λc and c∗∗ are the percentage of consumption reduction and average life time consumption of each individual
when always healthy. The percentage of consumption compensation (λc) is reported in parentheses.

Table E13 displays the welfare losses by patience, health, and productivity type.

E.4 Alternative calibration with VSL of $6 millions

In our baseline parameterization, we adjust the scaling parameter b so that the value

of statistical life (VSL) among working age population implied by our model is $2 million

dollars. In this section, we report the results from an alternative parameterization when b

is set to match a VSL of $6 millions. Note that all other parameters in the model are the

same as in the baseline. The welfare losses when the targeted VSL is set to a higher value

are reported in Table E14. Not surprisingly, the importance of non-pecuniary consequence

of bad health increases, compared with the baseline case. This is because with higher VSL,

life is more valuable and there are larger welfare costs of bad health coming from a shorter

lifespan.

The lower part of Table E15 reports the concentration of welfare losses and its variation

due to health types. A comparison with Table 17 in the main text reveals that the increase in

VSL does not affect the concentration of welfare losses. In contrast, a larger VSL noticeably

lowers the contribution of health types toward the variance of welfare losses because the

survival channel becomes a larger fraction of welfare losses and health types contribute

relatively less to variation in life expectancy.
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all η1 η2 η3 βL βH

Compensated consumption equivalence $2,320 $6,416 $3,025 $1,321 $1,860 $2,896
(% consumption equivalence, λc) (12.6%) (37.2%) (16.6%) (6.8%) (10.3%) (15.5%)

Contribution (%)

- Only medical expenses losses 22% 40% 20% 12% 24% 20%
- Only income losses 32% 58% 38% 6% 56% 13%
- Only non-monetary losses 60% 47% 47% 86% 20% 92%

Table E14: Welfare loss due to bad health (poor+fair) using VSL=$6M. The dollar value is calculated
from λcc

∗∗ where λc and c∗∗ are the percentage of consumption reduction and average life time consumption
of each individual when always being healthy.

Over life cycle (21-death) variation due to η
top 5% top 10% top 20%

Monetary losses (21-death) using 0% interest rate

- Income losses + total medical costs 32% 49 % 71% 69%

Welfare losses using VSL=$6M

- Compensated consumption equivalence 23% 43% 74% 17%

Table E15: Concentration of losses due to bad health (poor+fair) and variation due to health types.
The reported numbers in column 2 to 4 are in percentage of aggregate loss at top 5%, 10%, and 20%. For
monetary loss, we use 0% interest rate when computing the present value and include the costs paid by
insurance. (The results when excluding insurance are similar.) The welfare loss is based on the case when
the VSL is calibrated to $6M.
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