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1 Introduction

Countries impose rules on their governments to constrain their policy decisions. Increas-

ingly prevalent are fiscal rules, in place in 97 countries in 2013, compared to only seven

countries in 1990.1 Governments however do not always respect these rules. For exam-

ple, in 2003, the governments of France and Germany violated the terms of the European

Union’s Stability and Growth Pact by running deficits above the allowed limit, without

facing any sanctions.2 Credible enforcement mechanisms are critical to the institution

of fiscal rules, for governments only abide to rules if the ensuing penalties for breaching

them are severe enough.

In this paper, we study the optimal design of fiscal rules under limited enforcement.

How restrictive is an optimal fiscal rule? Should the government violate it when the

economy is in distress? What is the optimal structure of penalties for violating the rule?

Our analysis of fiscal rules builds on the approach used in Amador, Werning, and

Angeletos (2006) and Halac and Yared (2014).3 We consider a government that is

present-biased towards public spending and privately informed about shocks affecting

the value of this spending. Society chooses a fiscal rule to trade off the benefit of

committing the government to not overspend against the benefit of granting it flexibility

to react to shocks. We depart from prior work by relaxing the assumption that rules

can be perfectly enforced. Motivated by real-world rules, we posit that fiscal rules must

be self-enforcing : the government must prefer to comply with the rule rather than face

the punishment that follows a breach. Such a punishment must also be self-enforcing,

meaning that the government in the future must have incentives to pursue it. These

self-enforcement requirements, combined with the government’s private information,

introduce new challenges into our problem; we consider a simple framework that allows

for a full characterization of the optimal self-enforcing fiscal rule.

Our environment is a small open economy in which the government makes spending

and borrowing decisions. In each period, an independent and identically distributed

(i.i.d.) shock to the social value of deficit-financed government spending is realized.

The government in each period is present-biased: compared to society, the government

overvalues current spending relative to the stream of future spending. This preference

structure results naturally from the aggregation of heterogeneous, time-consistent citi-

zens’ preferences (Jackson and Yariv, 2015, 2014), or as a consequence of turnover in a

1See IMF Fiscal Rules Data Set, 2013 and Budina et al. (2012).
2See The Economist, September 2, 2003: http://www.economist.com/node/2031381.
3See also Athey, Atkeson, and Kehoe (2005), Amador and Bagwell (2013), and Ambrus and Egorov

(2013).
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political economy setting (e.g., Aguiar and Amador, 2011).4 We assume that the shocks

to the value of spending are privately observed by the government, capturing the fact

that rules cannot explicitly condition on all contingencies in fiscal policy. Moreover, the

government has full discretion regarding the level of spending, capturing the fact that

any constraint on spending must be self-enforcing. A fiscal rule in this setting assigns

the government a level of spending for each shock, where this assignment must satisfy

the government’s private information and self-enforcement constraints.

To describe the forces underlying our model, suppose first that fiscal rules could

be perfectly enforced. Society then chooses a rule to optimally resolve the tradeoff

between commitment and flexibility. Fully committing the government to a spending

path would allow to implement the first best policy in the absence of private information,

whereas granting the government full flexibility would yield the first best policy in the

absence of a present bias. Given both private information and a present bias, however, a

tradeoff arises, and the first best is not implementable. Amador, Werning, and Angeletos

(2006) show that, under perfect enforcement (and certain distributional assumptions),

the solution to this tradeoff is a fiscal rule that takes the form of a deficit limit. In each

period, the government spends within the limit if the shock to the value of spending is

relatively low, and it spends at the limit if the shock is higher. The problem is essentially

static: the rule at each date prescribes future deficit limits that maximize future social

welfare, and dynamic incentives are thus not provided to the government.5

Our focus is on understanding the optimal fiscal rule when external enforcement is

not possible, so the rule must be self-enforcing. As is also true under perfect enforce-

ment, a self-enforcing rule must satisfy the government’s private information constraints:

given a realized shock, the government must prefer its assigned spending level and con-

tinuation value to those prescribed for a different shock. In addition, a self-enforcing rule

must satisfy the government’s self-enforcement constraints: given a realized shock, the

government must prefer its assigned spending level and continuation value to a spend-

ing level not prescribed for any shock. Any observable deviation at a date t—where the

government chooses a spending level corresponding to no shock—is optimally punished

by inducing the worst possible continuation from date t+1 onward.6 In fact, if this pun-

ishment is severe enough, self-enforcement constraints are non-binding; the government

always prefers to abide to the perfect-enforcement deficit limit to avoid the punishment.

4See also Persson and Svensson (1989), Alesina and Tabellini (1990), Alesina and Perotti (1995),
Lizzeri (1999), Tornell and Lane (1999), Battaglini and Coate (2008), and Caballero and Yared (2010).
Our formulation corresponds to the quasi-hyperbolic consumption model; see Laibson (1997).

5This feature is due to the assumption that shocks are i.i.d.; see Halac and Yared (2014).
6This follows from standard arguments; see Abreu (1988).
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Our main result is a characterization of the optimal self-enforcing fiscal rule when

self-enforcement constraints are binding. We show that this rule takes the form of a

maximally enforced deficit limit, which, if violated, leads to the worst punishment for

the government. The rule is thus similar to that under perfect enforcement, although it

differs in two aspects. First, the deficit limit imposed on the government is more relaxed

than the perfect-enforcement limit. Second, the optimal self-enforcing rule may provide

dynamic incentives, with the government breaching the deficit limit and triggering pun-

ishment under sufficiently high shocks.

To obtain this characterization, we begin by establishing general properties of opti-

mal incentive provision. Society incentivizes the government not to overspend by using

continuation values as reward and punishment. We show that in any optimal rule,

continuation values must take a bang-bang form, so the government receives either the

maximal reward or the worst punishment in the future, depending on its behavior in the

present.7 Using milder punishments would be less socially costly; however, the harshest

future punishment maximizes the range of shocks under which society can impose fiscal

discipline in the present, and we show that this maximizes social welfare.

Given a continuum of shocks with differentiable density, our bang-bang result re-

lies only on generic properties of the distribution function, which guarantee that the

information structure is rich enough that steepening incentives always allows to reduce

distortions. Under additional distributional assumptions, we are able to further show

that optimal bang-bang continuation values must be monotonic in the realized shock.

In fact, building on monotonicity, we characterize the spending allocation, establishing

that these distributional assumptions are sufficient, as well as necessary, for maximally

enforced deficit limits to be uniquely optimal.8

Specifically, when the perfect-enforcement rule is not self-enforcing, we show that

there are two possible cases for the optimal self-enforcing rule. In the first case, society

sets a relaxed deficit limit that satisfies the self-enforcement constraint under all shocks.

In the second case, society prescribes a tighter deficit limit with dynamic incentives:

the government receives the maximal continuation value if it respects the limit and the

worst continuation value if it breaches the limit, where the latter occurs following high

enough shocks. We show that the optimal choice for society depends on the distribution

of shocks and the government’s present bias. Given feasible continuation values, society

7As we discuss in the review of the literature and in more detail in Subsection 4.1, our bang-bang
result is related to, but different from, that in Abreu, Pearce, and Stacchetti (1990).

8These assumptions are similar to, but stronger than, those in Amador, Werning, and Angeletos
(2006). See Section 4.
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chooses a tight deficit limit enforced by dynamic incentives if and only if high shocks are

sufficiently rare and the government’s present bias is sufficiently severe. A deficit limit

that is respected under all shocks is not optimal in this case, as this limit would need

to be too relaxed to accommodate self-enforcement for high shocks that are unlikely.

Society is better off imposing a tighter deficit limit that binds under lower shocks, while

letting the government violate the limit and be punished following high shocks.

We complete our characterization of the optimal self-enforcing fiscal rule by exam-

ining the structure of punishment. We show that the worst punishment—which, as just

described, may be triggered in an optimal rule—takes the form of a maximally enforced

surplus limit. If the shock to the value of spending is relatively high, the government

respects the surplus limit and is rewarded with the maximal continuation value; if the

shock is relatively low, the government may violate the limit and be punished with the

worst continuation value. The logic for this result is analogous to that for the optimal

deficit limit, but reverse. A maximally enforced surplus limit minimizes social wel-

fare (and thus maximizes punishment) by incentivizing the government to overspend as

much as possible. Since the government is present-biased towards spending, incentiviz-

ing overspending relaxes self-enforcement constraints and achieves lower social welfare

than incentivizing underspending.

The form of the maximally enforced surplus limit implies that punishment is always

temporary. In particular, the economy remains in punishment only if shocks are rel-

atively low; when a high shock occurs, the economy transitions back to a maximally

enforced deficit limit, which is associated with the highest continuation value. An op-

timal fiscal rule with dynamic incentives is therefore self-enforced by transitions in and

out of the best and worst equilibria, with the economy fluctuating between periods of

fiscal rectitude and periods of fiscal profligacy.

Related literature. Our paper fits into the aforementioned literature on mechanism

design that studies the tradeoff between commitment and flexibility.9 This literature

is mainly concerned with environments with perfect enforcement, whereas we examine

the optimal rule under self-enforcement. Closely related is Amador and Bagwell (2016),

which considers the classic problem of regulating a privately informed monopolist but

in the absence of transfers. In a static setting with an ex-post participation constraint,

9In addition to the work previously cited, see Sleet (2004). More broadly, our paper relates to
the literature on delegation in principal-agent settings, including Holmström (1977, 1984), Alonso and
Matouschek (2008), and Ambrus and Egorov (2015). Hörner and Guo (2015), Li, Matouschek, and
Powell (2017), and Lipnowski and Ramos (2017) study related dynamic problems. The agent in these
settings has a bias applying to all periods, rather than a present bias as in our self-control problem.
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the paper shows that optimal regulatory policy takes the form of a threshold which

the monopolist satisfies unless it decides to shut down. In contrast to this paper, our

analysis does not rely on the perfect enforcement of thresholds, and it considers “money

burning” in the form of self-enforcing dynamic punishments.

Also related to our work is the literature on the political economy of fiscal policy.10

Dovis and Kirpalani (2017), in particular, examine deficit limits that are endogenously

enforced by reputational concerns. We depart by studying the optimal self-enforcing

fiscal rule under privately observed shocks and no restrictions on its structure. Our

work further contributes to the literature on hyperbolic discounting and the benefits

of commitment devices.11 Most closely related is Bernheim, Ray, and Yeltekin (2015),

which analyzes the self-enforcement of consumption rules for a consumer with quasi-

hyperbolic preferences. The paper shows that optimal punishments take the form of

temporary over-consumption; however, the model features no private information, and

as a consequence punishment does not occur along the equilibrium path.

Finally, the equilibrium dynamics in our environment, featuring fluctuation between

reward and punishment, together with our bang-bang characterization, are related to

the analysis of price wars in Green and Porter (1984) and more broadly the dynamics

of repeated games in Abreu, Pearce, and Stacchetti (1990). The latter provides condi-

tions under which the bang-bang property is necessary for optimality in settings with

repeated moral hazard. As our environment is one of repeated adverse selection, our

characterization is not a direct application of their result; yet, the intuition is related, as

we discuss in Subsection 4.1. Athey, Bagwell, and Sanchirico (2004) also address related

issues in a repeated Bertrand game with private information.

2 Model

We study a simple model of fiscal policy in which the government in each period makes

spending and borrowing decisions. Our environment is similar to that analyzed in

10In addition to Aguiar and Amador (2011) and the work in fn. 4, see Krusell and Rios-Rull (1999),
Acemoglu, Golosov, and Tsyvinski (2008), Yared (2010b), Azzimonti (2011), and Song, Storesletten,
and Zilibotti (2012). For a recent quantitative analysis of fiscal rules, see Alfaro and Kanczuk (2016),
Azzimonti, Battaglini, and Coate (2016), and Hatchondo, Martinez, and Roch (2017), and for a study
of coordinated fiscal rules across countries, see Halac and Yared (2017b).

11See for example Phelps and Pollak (1968), Laibson (1997), Barro (1999), Krusell and Smith, Jr.
(2003), Krusell, Kruscu, and Smith, Jr. (2010), Lizzeri and Yariv (2014), Bisin, Lizzeri, and Yariv
(2015), Cao and Werning (2017), and Moser and de Souza e Silva (2017).
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Amador, Werning, and Angeletos (2006) and Halac and Yared (2014).12 As discussed

in Section 3, our departure will be in considering fiscal rules that are self-enforcing as

opposed to externally enforced.

Consider a small open economy. At the beginning of each period, t ∈ {0, 1, . . .}, the

government observes a shock to the economy, θt > 0, which is the government’s private

information or type. θt is drawn from a bounded set Θ ≡
[
θ, θ
]

with a continuously

differentiable probability density function f(θt) > 0 and associated cumulative density

function F (θt).

Following the realization of θt in each period t, the government chooses public spend-

ing Gt ≥ 0 and debt Bt+1 subject to a budget constraint:

Gt = τ +
Bt+1

1 + r
−Bt, (1)

where τ > 0 is the exogenous fixed tax revenue collected by the government in each

period, Bt is the level of debt with which the government enters period t, and r is the

exogenous interest rate. B0 is exogenous and limt→∞
Bt+1

(1+r)t
= 0, so that all debts must

be repaid and all assets must be consumed. Note that cross-subsidization across types

is not possible: the net present value of public spending at any point cannot depend on

the government’s type, unlike in other models such as Atkeson and Lucas (1992) and

Thomas and Worrall (1990).13

Social welfare at the beginning of date t is

∞∑

k=0

δkE [θt+kU(Gt+k)] , (2)

where θtU(Gt) is the social utility from public spending at date t and δ ∈ (0, 1) is the

discount factor. The government’s welfare at date t after the realization of its type θt,

when choosing spending Gt, is

θtU(Gt) + β

∞∑

k=1

δkE [θt+kU(Gt+k)] , (3)

where β ∈ (0, 1).

12Amador, Werning, and Angeletos (2006) consider a two-period setting, but as shown in Amador,
Werning, and Angeletos (2003), under i.i.d. shocks the results apply directly to a multiple-period
environment.

13Other papers that build on these and also feature cross-subsidization are Sleet and Yeltekin (2006,
2008) and Farhi and Werning (2007).
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There are two important features of this environment. First, the government’s objec-

tive (3) following the realization of its type does not coincide with the social objective

(2). In particular, compared to society, the government overweighs the importance

of current spending relative to future spending. As mentioned in the Introduction,

this structure arises naturally when the government’s preferences aggregate citizens’

preferences. Jackson and Yariv (2015) show that with any heterogeneity in citizens’

preferences, every non-dictatorial aggregation method that respects unanimity must be

time inconsistent; moreover, any such method that is time separable must lead to a

present bias and thus a representation like that in (2)-(3).14 Our formulation can also

be motivated by political turnover. For instance, preferences such as these may emerge

in settings with political uncertainty where policymakers place a higher value on public

spending when they hold power and can make spending decisions. A bias of β ∈ (0, 1)

for a current policymaker can be interpreted in this sense as the probability that the

policymaker will be part of the government in the next and all future periods. Due to

turnover, policymakers are biased towards present spending relative to future spending

and incur excessively high debts; see, e.g., Aguiar and Amador (2011).

The second feature of our environment is that the realization of θt—which affects

the marginal social utility of public spending—is privately observed by the government

at date t. One interpretation is that fiscal rules imposed on the government cannot

explicitly condition on the value of θt, even if this shock were observable.15 An alter-

native interpretation is that the exact cost of public goods is only observable to the

policymaker, who may be inclined to overspend on these goods. A third possibility is

that citizens have heterogeneous preferences or heterogeneous information regarding the

optimal level of public spending, and the government sees an aggregate that the citizens

do not see (see Sleet, 2004).

To facilitate an explicit characterization of the optimal self-enforcing fiscal rule, we

assume:16

Assumption 1. U(Gt) = log(Gt).

Assumption 1 implies that welfare is separable with respect to the level of debt. To

see this, let the spending rate at date t be gt ∈ [0, 1], corresponding to the fraction of

14Specifically, any such time-separable aggregation method will be utilitarian, and by the results in
Jackson and Yariv (2014), it will thus be present-biased.

15Halac and Yared (2017a) study a delegation problem in which shocks can be verified by a rule-
making body at a cost.

16This assumption is made in previous work studying economies with hyperbolic discounting, includ-
ing Barro (1999) and, in the context of fiscal rules, Halac and Yared (2014).
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lifetime resources that are spent at t:

gt =
Gt

(1 + r)τ/r −Bt

. (4)

Denote the savings rate at date t by xt = 1− gt and let W (xt) ≡ δE[θt]U(xt)
(1−δ) . Using this

notation and Assumption 1, social welfare in (2) can be rewritten as

∞∑

k=0

δkE
[
θt+kU(gt+k) +W (xt+k)

]
+ χ(Bt), (5)

for a constant χ(Bt) that depends on Bt.
17 Analogously, the government’s welfare in

(3), following the realization of θt at date t, can be rewritten as

θtU(gt) + βW (xt) + β
∞∑

k=1

δkE
[
θt+kU(gt+k) +W (xt+k)

]
+ ϕ(Bt), (6)

for a constant ϕ(Bt) that depends on Bt.
18

Given the representation in (5) and (6), hereafter we consider the problem of a

government that chooses a spending rate gt and savings rate xt = 1− gt in each period

t. Following Bernheim, Ray, and Yeltekin (2015), we impose a lower bound ν and upper

bound 1− ν on gt so that payoffs (and thus punishments) are bounded; we take ν > 0

small enough that this constraint is otherwise non-binding.

In this environment, the first-best policy that maximizes social welfare (5) at date

t = 0 is defined by a stochastic sequence of spending and savings rates that satisfy

gfbt = gfb(θt) and xfbt = xfb(θt), where

θtU
′(gfb(θt)) = W ′(xfb(θt)). (7)

On the other hand, the government’s flexible policy is defined as the spending and

savings rates gft = gf (θt) and xft = xf (θt) that maximize the government’s welfare (6)

at date t, holding future government policies {gt+k, xt+k}∞k=1 fixed. The flexible policy

satisfies

θtU
′(gf (θt)) = βW ′(xf (θt)). (8)

17This constant is equal to
∑∞
k=0 δ

kE [θt+k]U((1 + r)k[τ(1 + r)/r −Bt]).
18This constant is equal to θtU(τ(1 + r)/r −Bt) + β

∑∞
k=1 δ

kE [θt+k]U((1 + r)k[τ(1 + r)/r −Bt]).
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3 Self-Enforcing Rules

A key feature of our analysis is that we allow the government to choose any feasible

spending rate gt in each period t. This is a main distinction from prior work, which

restricts the set of available actions by assuming that rules can be perfectly enforced.

We instead consider self-enforcing fiscal rules, motivated by the observation that, in

practice, governments are free to choose whether to abide to rules, and their choices

depend on the consequences of a breach. Hence, in our setting, a government’s current

spending decision must be self-enforced by the expected behavior of the government

in the future following this decision. Specifically, we define a self-enforcing rule as a

perfect public equilibrium of the interaction between successive governments. Such a

rule must satisfy a sequence of private information and self-enforcement constraints, as

we describe next.

3.1 Equilibrium Allocations

We consider the interaction between the governments in each period t. As is standard

in the dynamic contracting literature, we restrict attention to public strategies, namely

those that depend on the public history and current private information, but not on

any privately observed history. Let ht−1 = {g0, g1, ..., gt−1} ∈ [0, 1]t−1 denote the public

history of spending rates through time t − 1 and Ht−1 the set of all possible such

histories. A public strategy for the government in period t is σt (ht−1, θt), specifying,

for each history ht−1 ∈ Ht−1 and current government type θt ∈ Θ, a spending rate

gt (ht−1, θt) and associated savings rate xt (ht−1, θt) = 1− gt (ht−1, θt). A perfect public

equilibrium is a profile of public strategies σ = (σt (ht−1, θt))
∞
t=0 such that for each

t ∈ {0, 1, . . .}, σt (ht−1, θt) maximizes the t-period government’s welfare (6) given the

continuation strategies
(
σt+k

(
ht+k−1, θt+k

))∞
k=1

of all future governments. We henceforth

refer to perfect public equilibria as simply equilibria.

Let θt−1 = {θ0, θ1, . . . , θt−1} ∈ Θt−1 denote the history of shocks through time t− 1.

Associated with any strategy profile σ is a spending sequence,
{{

gt
(
θt−1, θt

)}
θt∈Θt

}∞
t=0

,

as a function of this history. Given a spending sequence and a realized history of shocks

θt−1, denote by Vt
(
θt−1

)
the corresponding continuation value (normalized by debt) in

period t:

Vt(θ
t−1) =

∞∑

k=0

δkE
[
θt+kU(gt+k(θ

t+k−1, θt+k)) +W (xt+k(θ
t+k−1, θt+k))

]
.
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The next lemma provides necessary and sufficient conditions for a spending sequence

to be supported by equilibrium strategies.

Lemma 1. A spending sequence
{{

gt
(
θt−1, θt

)}
θt∈Θt

}∞
t=0

is supported by equilibrium

strategies if and only if, for all t ∈ {0, 1, . . .},

θtU(gt(θ
t−1, θt)) + βW (xt(θ

t−1, θt)) + βδVt+1(θt−1, θt) (9)

≥ θtU(gt(θ
t−1, θ′t)) + βW (xt(θ

t−1, θ′t)) + βδVt+1(θt−1, θ′t) ∀θt, θ′t 6= θt,

and

θtU(gt(θ
t−1, θt)) + βW (xt(θ

t−1, θt)) + βδVt+1(θt−1, θt) (10)

≥ θtU(gf (θt)) + βW (xf (θt)) + βδV ∀θt,

where V is the lowest value of Vt
(
θt−1

)
supported by equilibrium strategies.

Constraint (9) is the private information constraint, capturing the fact that the

government at date t can misrepresent its type. This constraint guarantees that a gov-

ernment of type θt prefers to pursue its equilibrium policy rather than that of another

type θ′t; given (9), this unobservable deviation would entail a spending rate gt(θ
t−1, θ′t)

and continuation value Vt+1(θt−1, θ′t). Constraint (10) is the self-enforcement constraint,

capturing the fact that the government at date t can freely choose any feasible spending

rate gt. This constraint guarantees that a government of type θt prefers to pursue its

equilibrium policy rather than deviating to its flexible policy gf (θt) and being maxi-

mally punished with continuation value V . Note that the right-hand side of (10) is the

government’s minmax payoff.

Constraints (9) and (10) are clearly necessary along an equilibrium path. Further-

more, if a spending sequence satisfies these constraints, then it can be supported by an

equilibrium in which, following an observable deviation in period t, the government in

each following period reverts to the worst equilibrium, delivering a continuation value

V . Since an observable deviation is off the equilibrium path, it is without loss to assume

that it is maximally punished (Abreu, 1988).

3.2 Recursive Representation

A self-enforcing fiscal rule is a perfect public equilibrium as described in the previous

section, inducing a sequence of spending that satisfies the private information constraint

10



(9) and the self-enforcement constraint (10). A self-enforcing fiscal rule is optimal if it

maximizes social welfare (5) at time t = 0 subject to these constraints.

Given the repeated nature of our model and following the logic of Abreu, Pearce, and

Stacchetti (1990), we can represent the optimal self-enforcing rule recursively: rather

than optimizing over an entire spending sequence, we choose current spending and sav-

ings rates g (θ) and x (θ) as a function of the shock θ, along with a continuation value

V (θ) which is itself drawn from the set of values that satisfy the private information

and self-enforcement constraints. That is, letting
[
V , V

]
correspond to the set of con-

tinuation values supported by equilibrium strategies,19 an optimal self-enforcing fiscal

rule solves:

V = max
{g(θ),x(θ),V (θ)}θ∈Θ

E
[
θU(g (θ)) +W (x (θ)) + δV (θ)

]
(11)

subject to

θU(g (θ)) + βW (x (θ)) + βδV (θ) ≥ θU(g (θ′)) + βW (x (θ′)) + βδV (θ′) ∀θ, θ′ 6= θ, (12)

θU(g (θ)) + βW (x (θ)) + βδV (θ) ≥ θU(gf (θ)) + βW (xf (θ)) + βδV ∀θ, (13)

g (θ) + x (θ) = 1, (14)

V (θ) ∈
[
V , V

]
. (15)

The private information constraint (12) is a recursive formulation of (9), and the

self-enforcement constraint (13) is a recursive formulation of (10). Constraints (14) and

(15) are feasibility constraints. We say that a rule is incentive compatible if it satisfies

(12)-(13), and it is incentive compatible and feasible, or incentive feasible for short, if it

satisfies (12)-(15).

Analogous to the problem in (11), the worst punishment V corresponds to the solu-

tion to:

V = min
{g(θ),x(θ),V (θ)}θ∈Θ

E
[
θU(g (θ)) +W (x (θ)) + δV (θ)

]
(16)

subject to (12)-(15).

Throughout our analysis, we assume that the solutions to both problems (11) and

(16) admit piecewise continuously differentiable functions g (θ), which allows us to es-

19The set of equilibrium continuation values can be guaranteed to be convex by introducing a public
randomization device. Such a device however will not be used in the optimum, which has a bang-bang
nature. We thus omit the details to ease the exposition.
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tablish our results by the use of perturbations.20 An alternative approach to using

perturbation arguments would be to use Lagrangian methods, as in Amador, Werning,

and Angeletos (2003). Since our problem is not globally concave, however, a Lagrangian

approach would not establish uniqueness of the solution. Moreover, such an approach

would make it difficult to identify general properties that must hold in any solution,

as well as to obtain necessary and sufficient conditions for the optimality of maximally

enforced deficit limits. We are able to provide all these results using perturbations.

The next lemma follows from standard arguments; see Fudenberg and Tirole (1991):

Lemma 2. {g (θ) , x (θ) , V (θ)}θ∈Θ satisfies the private information constraint (12) if

and only if: (i) g(θ) is nondecreasing, and (ii) the following local private information

constraints are satisfied:

1. At any point θ at which g(·), and thus V (·), are differentiable,

dg(θ)

dθ
(θU ′(g(θ))− βW ′(x(θ))) + βδ

dV (θ)

dθ
= 0.

2. At any point θ′ at which g(·) is not differentiable,

lim
θ↑θ′
{θ′U(g(θ)) + βW (x(θ)) + βδV (θ)} = lim

θ↓θ′
{θ′U(g(θ)) + βW (x(θ)) + βδV (θ)} .

By the local private information constraints, government welfare is piecewise continu-

ously differentiable. Moreover, these constraints imply that the derivative of government

welfare with respect to θ is U(g(θ)). Hence, in an incentive compatible rule, government

welfare for type θ ∈ Θ satisfies

θU(g(θ))+βW (x(θ))+βδV (θ) = θU(g(θ))+βW (x(θ))+βδV (θ)+

∫ θ

θ

U(g(θ̃))dθ̃. (17)

Substitution of (17) into the social welfare function in (11) implies that social welfare

(normalized by debt) can be written as

1

β
θU(g(θ)) +W (x(θ)) + δV (θ) +

1

β

∫ θ

θ

U(g(θ))Q(θ)dθ, (18)

20Also, if the problem in (11) (respectively, (16)) admits multiple solutions that differ only on a
countable set of types, we select the solution that maximizes (respectively, minimizes) social welfare
for those types.
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where

Q (θ) ≡ 1− F (θ)− θf (θ) (1− β) .

This formulation will be useful for our characterization of the optimal self-enforcing

fiscal rule in the next section, which will appeal to properties of the function Q(θ).

For intuition, note that since the government is biased towards overspending relative

to society, higher levels of spending can be attributed to larger spending distortions.

In this sense, Q(θ) represents the weight that society places on spending distortions

associated with government type θ. The shape of this function will tell us how society

wishes to allocate distortions across different government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values[
V , V

]
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (θ) , x (θ) , V (θ)}θ∈Θ is a maximally enforced deficit limit if there exist

θ∗ ∈
[
0, θ
)

and finite θ∗∗ > max {θ∗, θ} such that

{g (θ) , V (θ)} =

{ {
min{gf (θ), gf (θ∗)}, V

}
{
gf (θ), V

} if θ ≤ θ∗∗,

if θ > θ∗∗,
(19)

where

θ∗∗U(gf (θ∗)) + βW (xf (θ∗)) + βδV = θ∗∗U(gf (θ∗∗)) + βW (xf (θ∗∗)) + βδV . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with θ∗ > θ and θ∗∗ < θ. Under this rule, types θ ∈ [θ, θ∗) and θ ∈
(
θ∗∗, θ

]
choose their

flexible spending rate gf (θ) and types θ ∈ [θ∗, θ∗∗] choose type θ∗’s flexible spending

rate gf (θ∗). Furthermore, types θ ≤ θ∗∗ (solid line) are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (θ) at all dates. In the Online Appendix, we provide a sufficient
condition for V > V to hold under the assumptions maintained for our main result in Proposition 2.
This condition amounts to the discount factor δ ∈ (0, 1) being high enough.
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Graph
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

continuation value V whereas types θ > θ∗∗ (dashed line) are maximally punished with

continuation value V . As shown in equation (20), the self-enforcement constraint holds

with equality for type θ∗∗. It is immediate that this rule satisfies the private information

constraint (12) and the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum

deficit limit, spending limit, or debt limit, where this limit would be associated with the

spending rate gf (θ∗). If the limit is satisfied, the government receives maximal reward

V ; if the limit is breached, the government receives maximal punishment V . Note that

the limit is breached along the equilibrium path if and only if θ∗∗ < θ; we will provide

conditions under which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1

that any solution to (11)-(15) must feature bang-bang continuation values, so the rule

provides high-powered incentives for the government not to overspend. This result

relies only on generic properties of the function Q(θ) that weighs spending distortions

in the social welfare representation in (18). Next, we show in Subsection 4.2 that under

additional assumptions on Q(θ), optimal bang-bang incentives must be monotonic, with

higher types receiving weakly lower continuation value than lower types. This facilitates

our characterization of optimal spending allocations in Subsection 4.3, which shows that

any solution to (11)-(15) is a maximally enforced deficit limit. We further establish

that the optimal limit is unique, and provide a necessary and sufficient condition for the

government to violate the limit following high enough shocks. Finally, in Subsection 4.4,

we show that our assumptions on Q(θ) are not only sufficient but also necessary for any

solution to (11)-(15) to be a maximally enforced deficit limit.

14



4.1 Bang-Bang Incentives

Society can use continuation values as rewards and punishments to discipline the gov-

ernment and reduce overspending. The next proposition shows that in any optimal

rule, these rewards and punishments are extreme. That is, continuation values are

bang-bang: given a feasible set [V , V ], along the equilibrium path V (θ) only travels to

extreme points in this set.

Proposition 1 (necessity of bang-bang). Suppose Q(θ) satisfies the following generic

properties:

(i) Q′(θ) 6= 0 almost everywhere;

(ii) If θ ≤ θL < θH ≤ θ and Q(θL) = Q(θH) = Q̂, then
∫ θH
θL

Q(θ)dθ 6=
∫ θH
θL

Q̂dθ.

Then in any solution to (11)-(15), for all θ ∈ (θ, θ), V (θ) ∈
{
V , V

}
and V (θ) is left- or

right-continuous at θ.

Proposition 1 shows that the bang-bang property is necessary for social welfare

maximization. As in other repeated game settings, an optimal fiscal rule using only

extreme continuation values always exists in our framework; this is true simply because

an interior continuation value V (θ) can be assigned in expectation by randomizing over

V and V . Proposition 1 proves a stronger result: any rule that prescribes interior

continuation values is strictly dominated by one with high-powered incentives.

This proposition is consistent with the work of Abreu, Pearce, and Stacchetti (1990),

who provide general conditions under which the bang-bang property is necessary for

optimality in environments of repeated moral hazard (see Theorem 7, p.1055 in their

paper). There are important differences, however, between our result and theirs. On the

one hand, establishing the necessity of bang-bang continuation values is facilitated in

our self-control setting by the fact that the set of continuation values is one-dimensional,

unlike in their model. On the other hand, new difficulties arise when establishing the

bang-bang property in our setting of repeated adverse selection as opposed to moral

hazard. Under moral hazard, local perturbations that spread out continuation values

for a given public realization of uncertainty are always incentive feasible and socially

beneficial, as they induce more desirable actions.22 In contrast, under adverse selection,

local perturbations that spread out continuation values can reduce social welfare (for

22For example, in a standard principal-agent model with linear preferences over consumption and
continuous disutility of effort, spreading out continuation values for a given realization of output allows
to induce higher effort.
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example, if Q′(θ) < 0); moreover, even when such perturbations are socially beneficial

(for example, if Q′(θ) > 0), they may violate the monotonicity of the spending schedule

required by incentive compatibility.

Despite these differences, the intuition for our bang-bang result is related to that in

Abreu, Pearce, and Stacchetti (1990) in that it stems from the richness of the information

structure.23 Given a continuum of types, this richness is guaranteed by conditions (i)

and (ii) in Proposition 1, and it implies that society can always reduce distortions by

steepening incentives. Condition (i) states that over any sufficiently small interval, Q(θ)

is either strictly decreasing or strictly increasing; as a result, society benefits from moving

spending distortions towards either lower types or higher types, respectively. Condition

(ii) extends this property: if Q(θ) takes the same value at two endpoints of an interval—

so that society weighs spending distortions at these endpoints equally—this condition

requires that the average weight on distortions over the interval be different from that

of the endpoints. That is, society strictly prefers to concentrate distortions within the

interval or at an endpoint. We note that given f(θ) continuously differentiable, (i) and

(ii) are generic properties of {f(θ), β} pairs which characterize Q(θ) for θ ∈ Θ.24

It is also worth noting that the result in Proposition 1 does not rely on the presence

of self-enforcement constraints and would continue to hold absent (13). As such, our

bang-bang characterization of continuation values applies more generally to other self-

control problems. One example is the problem of Amador, Werning, and Angeletos

(2006) under our Assumption 1 on preferences; this assumption ensures that spending

is interior, as required for our characterization.25 We conjecture that the arguments

may also extend to the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.26 We establish the result in three steps; we next provide a summary which may

give intuition and serve as a guide to follow the proof.

Step 1 shows that V (θ) is a step function, so dynamic incentives are not provided

23See Yared (2010a) for a related discussion in a repeated adverse selection model.
24Condition (i) fails only if θf ′(θ)/f(θ) = −(2 − β)/(1 − β) for a positive mass of types, but then

any arbitrarily small perturbation of β would render the condition true. Similarly, condition (ii) fails

only if Q(θL) = Q(θH) = Q̂ and
∫ θH
θL

Q(θ)dθ =
∫ θH
θL

Q̂dθ for some θL, θH ∈ Θ. However, the condition

would then hold for any arbitrarily small perturbation of f(θ) over (θL, θH) which preserves the value

of
∫ θH
θL

f(θ)dθ but not that of
∫ θH
θL

F (θ)dθ.
25Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos

(2006) in which spending is at a corner and, as a result, interior punishments can be optimal.
26Some of the arguments we use for regions where Q′(θ) < 0 are similar to those employed by Athey,

Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.
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locally to the government. Suppose instead that V (θ) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [θL, θH ]. By Lemma 2, g(θ) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can

take a subinterval such that Q′(θ) > 0 or Q′(θ) < 0 for all θ ∈ [θL, θH ].27 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(θ) < gf (θ), and hence V ′(θ) < 0, for all θ ∈ [θL, θH ]. If Q′(θ) < 0,

we construct a flattening perturbation that rotates the increasing g(θ) schedule clockwise

over [θL, θH ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (θ) function. This perturbation is socially beneficial because, given

Q′(θ) < 0, society prefers to concentrate spending distortions on lower rather than

higher types. If instead Q′(θ) > 0, we construct a steepening perturbation that drills a

hole in the g(θ) schedule by making allocations in (θL, θH) no longer available, which

entails increasing dynamic incentives by moving interior continuation values towards

V (θL) or V (θH). This perturbation is socially beneficial because, given Q′(θ) > 0,

society prefers to concentrate spending distortions on higher rather than lower types.

We obtain that V (θ) must be a step function, and we also show that V (θ) must be left-

or right-continuous at each θ ∈ (θ, θ).

Step 2 of the proof establishes that V (θ) ∈ {V , V } at any point θ at which dg(θ)
dθ

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

θ must belong to an interval with flexible spending and constant continuation value V ∈
[V , V ]. However, if V ∈ (V , V ), we can construct incentive feasible perturbations similar

to those above: if Q′(θ) < 0 over the interval, we perform a flattening perturbation

that rotates the spending schedule clockwise; if Q′(θ) > 0, we perform a steepening

perturbation that drills a hole in the spending schedule. By the logic in Step 1, these

perturbations strictly increase social welfare, so V ∈ (V , V ) cannot be optimal.

Step 3 completes the proof by showing that V (θ) ∈ {V , V } at any point θ at which
dg(θ)
dθ

= 0. By the results in Step 1 and Step 2, if V (θ) ∈ (V , V ) for such a point,

then this point belongs to a stand-alone segment [θL, θH ] with g(θ) = g and V (θ) = V

for all θ ∈ [θL, θH ], for some g > 0 and V ∈ (V , V ), and with g(θ) jumping at each

boundary (unless θL = θ or θH = θ). We then show that there exists an incentive

feasible perturbation that changes g and V slightly and strictly increases social welfare.

This perturbation uses the fact that condition (ii) in Proposition 1 holds. For example,

if it is the case that
∫ θH
θL

Q(θ)dθ > Q(θL), we perform a segment-shifting steepening

perturbation: we increase g and change V so as to leave the government welfare of type

27Note that given f(θ) continuously differentiable, condition (i) in Proposition 1 implies that the set
of types θ such that Q′(θ) = 0 is nowhere dense.
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θH unchanged, thus increasing spending for types θ ∈ (θL, θH ] and letting type θL jump

down to a lower spending rate. This perturbation is socially beneficial because, given∫ θH
θL

Q(θ)dθ > Q(θL), society prefers to concentrate spending distortions on θ ∈ (θL, θH ]

compared to θL. Analogous perturbations apply to other instances of condition (ii):

if
∫ θH
θL

Q(θ)dθ < Q(θL), we perform a segment-shifting flattening perturbation where

we reduce g; if Q(θH) 6=
∫ θH
θL

Q(θ)dθ, we construct segment-shifting steepening and

flattening perturbations where we keep the government welfare of type θL unchanged.

4.2 Monotonic Incentives

To further characterize the schedule of continuation values V (θ), and solve for the op-

timal rule in the next subsection, we make the following assumption:

Assumption 2. There exists θ̂ ∈ Θ such that

θ
f ′(θ)

f(θ)
> −2− β

1− β if θ < θ̂, and (21)

θ
f ′(θ)

f(θ)
< −2− β

1− β if θ > θ̂. (22)

Assumption 2 states that Q(θ) is strictly decreasing for θ < θ̂ and strictly increasing

for θ > θ̂, with a minimum value Q(θ̂) ≤ Q(θ) < 0. Note that the assumption allows

for either of the inequalities in (21) or (22) to hold for all θ ∈ Θ; in this case θ̂ is

defined as either the upper bound or the lower bound of the set Θ, respectively. As-

sumption 2 satisfies properties (i) and (ii) in Proposition 1 and holds for a broad range

of distributions, including the uniform, exponential, log-normal, and gamma distribu-

tions. This assumption is similar to, but stronger than, the distributional assumption

used in Amador, Werning, and Angeletos (2006); we will show in Subsection 4.4 that

Assumption 2 is necessary for our characterization of optimal self-enforcing rules.

We maintain Assumption 2 for the remainder of our analysis. The next lemma shows

that, given the implied shape of Q(θ), optimal incentives are monotonic.

Lemma 3. In any solution to (11)-(15), V (θ) is weakly decreasing, left-continuous at

θ = θ, and right-continuous at θ = θ with V (θ) = V .

Together with the bang-bang property established in Proposition 1, this lemma im-

plies that either the continuation value is at its maximum level V for all types θ ∈ Θ, or

it jumps down from V to V at some interior point θ ∈ Θ. The intuition for this result

is related to the shape of the Q(θ) function that tells us how society wishes to allocate
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spending distortions across types. If θ > θ̂, society benefits from concentrating spending

distortions on relatively high types; this is achieved by using high-powered incentives

that punish high levels of spending by lowering the continuation value from V to V . In

contrast, if θ < θ̂, society benefits from concentrating spending distortions on relatively

low types; this is achieved by using low-powered incentives that keep the continuation

value constant at V .

The proof of Lemma 3 in the Appendix proceeds in three steps, which we briefly

summarize here. Step 1 shows that any interval with continuation value V must lie above

θ̂. To see why, note that the self-enforcement constraint requires that all types in the

interval spend flexibly. Then if Q′(θ) < 0 for such types, we can perform an incentive

feasible flattening perturbation that rotates the spending schedule g(θ) clockwise; by

the logic in Step 1 in the proof of Proposition 1, this perturbation is socially beneficial.

Hence, we must have Q′(θ) > 0, and by Assumption 2 the interval must lie above θ̂.

Step 2 shows that if V (θ∗∗) = V for some type θ∗∗ ≥ θ̂, then V (θ) = V for all

θ ≥ θ∗∗. Suppose by contradiction that V (θ) = V for some θ > θ∗∗. Extending the

continuity result established in Proposition 1 to type θ yields that there exists an interval

[θL, θH ], θL > θ∗∗, with V (θ) = V for all θ in the interval. However, if dg(θ)
dθ

> 0 for

θ ∈ [θL, θH ], we can perform an incentive feasible steepening perturbation that drills

a hole in the g(θ) schedule; by the logic in Step 1 in the proof of Proposition 1 and

Q′(θ) > 0, this perturbation is socially beneficial. Moreover, if g(θ) is constant over

a stand-alone segment [θL, θH ], we can perform an incentive feasible segment-shifting

steepening perturbation that slightly reduces spending and changes the continuation

value so as to leave type θL equally well off; by the logic in Step 3 in the proof of

Proposition 1 and Q′(θ) > 0, this perturbation is socially beneficial. Thus, a segment

[θL, θH ] with continuation value V and θL > θ∗∗ cannot exist, proving the claim.

Given any type θ∗∗ as just defined, Step 3 completes the proof by showing that

θ∗∗ > θ. If this were not the case, we would have V (θ) = V for all types θ ∈ Θ.

However, a global perturbation that increases the continuation value for all types would

then be incentive feasible and strictly increase social welfare.

4.3 Optimal Self-Enforcing Fiscal Rule

The following proposition states the main result of the paper:

Proposition 2 (optimal self-enforcing fiscal rule). If {g (θ) , x (θ) , V (θ)}θ∈Θ is a so-

lution to (11)-(15), then there exist θ∗ ∈
[
0, θ
)

and finite θ∗∗ > max {θ∗, θ} satisfying

(19)-(20). Hence, any optimal self-enforcing rule is a maximally enforced deficit limit.
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By Proposition 1 and Lemma 3, either all government types θ ∈ Θ receive the highest

continuation value V , or the continuation value jumps down from V to V at a point

θ∗∗ ∈ (θ, θ). To establish Proposition 2, we take θ∗∗ as given and solve for the optimal

allocation above and below this point. If θ ∈ (θ∗∗, θ], the allocation is characterized by

the binding self-enforcement constraint with {g(θ), V (θ)} = {gf (θ), V }. If θ ∈ [θ, θ∗∗],

we show that the spending schedule g(θ) must be continuous, so the allocation takes

the form of bounded discretion. Since a minimum spending requirement would reduce

social welfare, a maximum spending limit gf (θ∗) is optimal for types in this range.

The proof that g(θ) is continuous over [θ, θ∗∗] builds on perturbation arguments sim-

ilar to those used in the previous subsections. Given the absence of dynamic incentives,

a discontinuity would entail a hole in some range
[
θL, θH

]
; that is, g (θ) would jump

at a point θM ∈
(
θL, θH

)
such that types θ ∈

(
θL, θM

)
spend at gf (θL) < gf (θ) and

types θ ∈
(
θM , θH

)
spend at gf (θH) > gf (θ). However, if θM < θ̂, an incentive feasible

perturbation that slightly closes the hole by raising θL strictly increases social welfare:

given Q′(θ) < 0, the benefit of lowering spending for types right above θM outweighs the

cost of raising spending for types right above θL. Moreover, if θM ≥ θ̂, then
(
θM , θH

]

is a stand-alone segment over which g(θ) = g and Q′(θ) > 0, and by the logic in Step 2

in the proof of Lemma 3, an incentive feasible segment-shifting steepening perturbation

strictly increases social welfare. It follows that g(θ) cannot be discontinuous below θ∗∗.

Proposition 2 proves that any optimal rule must be a maximally enforced deficit

limit, but it is silent on whether this limit is violated along the equilibrium path, that

is, whether θ∗∗ < θ. To address this issue, define θe ∈
[
0, θ
]

as the threshold type

corresponding to the optimal deficit limit under perfect enforcement, as in the work of

Amador, Werning, and Angeletos (2006). Given Assumption 2, θe is the unique solution

to28
∫ θ

θe

Q(θ)dθ = 0. (23)

Clearly, if a deficit limit associated with maximum spending rate gf (θe) is self-

enforcing, then by Proposition 2 it is optimal:

Corollary 1. If

θU(gf (θe)) + βW (xf (θe)) + βδV ≥ θU(gf (θ)) + βW (xf (θ)) + βδV , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with θ∗ = θe and

θ∗∗ ≥ θ.

28Note that Q(θ) = 1 for θ < θ.
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When condition (24) holds, the highest type θ, and therefore all types θ ∈ Θ, prefer to

respect the perfect-enforcement limit gf (θe) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives.

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (θe) is not self-enforcing. In this case, there exists

a unique type θb > θe corresponding to the tightest deficit limit that all types θ ∈ Θ

would respect:

θU(gf (θb)) + βW (xf (θb)) + βδV = θU(gf (θ)) + βW (xf (θ)) + βδV . (25)

The next proposition provides a necessary and sufficient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

∫ θ

θb

(
Q(θ)−Q(θ)

)
dθ ≥ 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with θ∗ = θb and

θ∗∗ = θ. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with θ∗ ∈ (θe, θb) and θ∗∗ < θ.

When the perfect-enforcement limit gf (θe) is not self-enforcing, society faces the

following tradeoff. On the one hand, society can raise the value of θ∗ to the point

that the associated limit gf (θ∗) satisfies the self-enforcement constraint of type θ and

thus all types θ ∈ Θ. This option entails setting θ∗ = θb and θ∗∗ = θ and has the

benefit of avoiding socially costly punishments along the equilibrium path, albeit at the

cost of allowing significant overspending within the relaxed deficit limit. On the other

hand, society can impose a tighter deficit limit gf (θ∗) which does not satisfy the self-

enforcement constraint of all types. This option sets θ∗ < θb and θ∗∗ < θ and induces

higher discipline on types θ ≤ θ∗∗, but at the cost of imposing punishments on path

whenever a shock θ > θ∗∗ is realized.

Proposition 3 shows that which of these two options is optimal for society depends on

whether condition (26) holds or not. The intuition for this condition is familiar by now:

it tells us how society wishes to allocate spending distortions, and in particular whether
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society prefers to concentrate distortions on types θ ∈ [θb, θ) versus θ. A relaxed deficit

limit that avoids punishments concentrates distortions on θ ∈ [θb, θ), whereas tightening

the deficit limit by the use of punishments moves distortions towards θ.

Taking feasible continuation values as given, condition (26) is determined by the

distribution of shocks and the government’s present bias. Specifically, (26) holds if

high shocks are relatively frequent (so f(θ) and thus −Q(θ) > 0 are high) and the

government’s present bias is not too severe (so
∫ θ
θb
Q(θ)dθ < 0 is high). In this case—

which would arise, for example, if θ̂ = θ, such as under a uniform distribution of shocks—

imposing punishments on high types is very costly, and, moreover, society can satisfy

these types’ self-enforcement constraints without relaxing the deficit limit by much.

The optimal rule therefore sets a relaxed deficit limit that all types respect, namely

with θ∗ = θb and θ∗∗ = θ.

In contrast, if high shocks are relatively rare and the government’s present bias is

severe, condition (26) does not hold. In this case—which would arise under θ̂ < θ

and f(θ) close enough to zero—the cost of punishing high types is relatively low, and,

moreover, society would need to raise the limit gf (θ∗) significantly if it were to satisfy

the self-enforcement constraints of all types. Hence, it is optimal to set a tighter deficit

limit, and let a positive mass of government types θ ∈ (θ∗∗, θ] violate the limit and

receive maximal punishment on the equilibrium path.29

Given the properties of Q(θ), Proposition 3 shows that there exist a unique threshold

θ∗ and associated θ∗∗ satisfying (20) that optimally resolve the tradeoff between imposing

fiscal discipline and avoiding punishments on path. As a result, the deficit limit that

maximizes social welfare is unique.

4.4 Discussion of Distributional Assumption

The results in Subsection 4.3 show that Assumption 2 is sufficient to obtain the unique

optimality of maximally enforced deficit limits for any given continuation values {V , V }.
In this section, we explore the necessity of this distributional assumption for our findings.

Definition 2. Assumption 2 is weakly violated if there exist θL, θH ∈ Θ, θH > θL, and

∆ > 0 such that (i) Q′(θ) ≥ 0 for θ ∈ [θL, θL+∆] and (ii) Q′(θ) ≤ 0 for θ ∈ [θH−∆, θH ].

Assumption 2 is strictly violated if the inequalities in (i) and (ii) are strict.

We find that both weak and strict violations of Assumption 2 would affect our results:

29While Proposition 3 conditions on a given set of feasible continuation values [V , V ], one can derive
from this result sufficient conditions for punishment to occur or not along the equilibrium path regardless
of these values. See Subsection 5.2 for a discussion.
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Proposition 4 (necessity of distributional assumption). If Assumption 2 is weakly

violated, then there exist continuation values {V , V } for which not every solution to

(11)-(15) is a maximally enforced deficit limit. Moreover, if Assumption 2 is strictly

violated, then there exist continuation values {V , V } for which no solution to (11)-(15)

is maximally enforced deficit limit.

This proposition shows that Assumption 2 is not only sufficient but also necessary

for maximally enforced deficit limits to be uniquely optimal. In this sense, our analysis

imposes the minimal structure that guarantees the unique optimality of this class of

rules, which resemble fiscal rules commonly used in practice in the form of a deficit limit

or a spending or debt limit. Note that both weak and strict violations of Assumption 2

are possible even when Q(θ) satisfies properties (i) and (ii) in Proposition 1. Under

these violations, an optimal self-enforcing rule may thus feature bang-bang incentives

yet induce an allocation that would not be implementable by a deficit limit. We prove

the first part of Proposition 4 by construction and the second part by contradiction.30

5 Punishment and Dynamics

Section 4 characterized the optimal self-enforcing fiscal rule taking the set of feasible

continuation values as given. In this section, we complete our characterization by de-

scribing the allocations that underly the continuation values used in an optimal rule.

5.1 Worst Punishment

The worst punishment for the government, given by the continuation value V , deter-

mines the tightness of the self-enforcement constraints in (13). Moreover, as shown in

Proposition 3, this punishment is induced along the equilibrium path whenever the op-

timal deficit limit under perfect enforcement is not self-enforcing and condition (26) is

not satisfied. The next proposition describes the allocation underlying V , which solves

the program in (16).

30As noted in Subsection 4.2, Assumption 2 is stronger than the distributional assumption used in

Amador, Werning, and Angeletos (2006). Define θa as the lowest value such that
∫ θ
θ
Q(θ̃)dθ̃ ≤ 0 for all

θ ≥ θa. Then using our notation and taking f(θ) to be differentiable, Amador, Werning, and Angeletos
(2006) assume Q′(θ) ≤ 0 for all θ ≤ θa. One can verify that there are distributions F (θ) satisfying this
assumption for which Assumption 2 is strictly violated, and therefore for which there exist continuation
values {V , V } such that no solution to (11)-(15) is a maximally enforced deficit limit.
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Proposition 5 (characterization of punishment). If {g (θ) , x (θ) , V (θ)}θ∈Θ is a solution

to (16) subject to (12)-(15), then there exist finite θ∗p > θ and θ∗∗p ∈
[
θ,min

{
θ∗p, θ

})

satisfying

{g(θ), V (θ)} =

{ {
max{gf (θ), gf (θ∗p)}, V

}

{gf (θ), V }
if θ ≥ θ∗∗p ,

if θ < θ∗∗p ,

where

θ∗∗p U(gf (θ∗p)) + βW (xf (θ∗p)) + βδV = θ∗∗p U(gf (θ∗∗p )) + βW (xf (θ∗∗p )) + βδV .

Hence, the worst punishment is a maximally enforced surplus limit. Moreover, the worst

punishment is unique.

In the absence of self-enforcement constraints, the worst punishment would entail

forcing all government types to choose either the highest or the lowest feasible spending

rate so that the value V is minimized. However, such a harsh punishment would not be

self-enforcing. Proposition 5 shows that the worst punishment that is self-enforcing takes

the form of a maximally enforced surplus limit, associated with a minimum spending

rate gf (θ∗p). Government types that respect the surplus limit by spending above gf (θ∗p)

are maximally rewarded with continuation value V ; government types that violate the

surplus limit by spending below gf (θ∗p) are maximally punished with continuation value

V . Because a positive mass of types θ ≥ θ∗∗p respect the limit, the equilibrium transitions

back to the allocation associated with value V with strictly positive probability.

A maximally enforced surplus limit minimizes social welfare by incentivizing over-

spending. Intuitively, given a government type θ, there are two ways in which society

can induce low welfare: either by inducing spending below the first-best rate gfb (θ),

or by inducing spending above this rate. Since the government is biased towards over-

spending in the present, the latter relaxes self-enforcement constraints, and it is thus

a more efficient means of reducing welfare. As a result, in the worst-punishment al-

location, all types spend above their first-best rate, and in fact weakly above their

flexible rate. Moreover, consistent with Proposition 1, overspending is incentivized by

the use of bang-bang continuation values: society maximally rewards government types

that spend above the surplus limit and maximally punishes those that spend below the

limit.31 High-powered incentives allow society to maximize distortions.

The proof of Proposition 5 follows from analogous arguments to those used to obtain

31These features are related to the results of Bernheim, Ray, and Yeltekin (2015), who study self-
enforcing consumption rules in an environment without shocks or private information. They find that
the worst punishment takes the form of over-consumption followed by maximal reward.
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Proposition 2. The main difference, of course, is that instead of maximizing the social

welfare function in (18), the worst punishment minimizes this function. As a result, the

arguments that apply to types θ < θ̂ when maximizing welfare—which make use of the

fact that Q (θ) in (18) is strictly decreasing in this region—instead apply to types θ > θ̂

when minimizing welfare—since −Q (θ) is strictly decreasing in this region. The same

is true with regards to the arguments that apply to types θ > θ̂ in the maximization of

welfare, which now apply to types θ < θ̂ in the minimization of welfare. This explains

why the worst punishment is a maximally enforced surplus limit while the optimal rule is

a maximally enforced deficit limit. One step that requires additional care is establishing

that the optimal surplus limit is indeed respected by some government types; that is,

the worst punishment is not an absorbing state with {g(θ), V (θ)} = {gf (θ), V } for all

θ ∈ Θ. We prove this by showing that a limit that is respected by types θ arbitrarily

close to θ achieves lower social welfare than assigning flexible spending and maximal

punishment to all types: the cost of increasing overspending outweighs the benefit of

increasing the continuation value for high enough types.

5.2 Bang-Bang Dynamics

Given our characterization in Proposition 2 and Proposition 5, the maximal reward and

the worst punishment,
{
V , V

}
, can be shown to solve the following system:

V = max
θ∗,θ∗∗>θ∗

{
1

β(1− δ)

(∫ θ∗

0

U(gf (θ))Q(θ)dθ +

∫ θ∗∗

θ∗
U(gf (θ∗))Q(θ)dθ +

∫ θ

θ∗∗
U(gf (θ))Q(θ)dθ

)}

(27)

subject to

∫ θ∗∗

θ∗
(U(gf (θ))− U(gf (θ∗)))dθ = βδ(V − V );

V = min
θ∗p,θ

∗∗
p <θ

∗
p

{
1

β(1− δ)

(∫ θ∗∗p

0

U(gf (θ))Q(θ)dθ +

∫ θ∗p

θ∗∗p

U(gf (θ∗p))Q(θ)dθ +

∫ θ

θ∗p

U(gf (θ))Q(θ)dθ

)}

(28)

subject to

∫ θ∗p

θ∗∗p

(U(gf (θ∗p))− U(gf (θ)))dθ = βδ(V − V ).

The objective functions above are written using an analogous representation of social

welfare as in (18), except that we use the form of the optimal rules obtained in Proposi-

tion 2 and Proposition 5, and we take the reference type to be arbitrarily close to zero as
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opposed to equal to θ.32 Similarly, the binding self-enforcement constraints for types θ∗∗

and θ∗∗p under the optimal deficit limit and surplus limit, respectively, are written using

an analogous representation of government welfare as in (17). Programs (27) and (28)

show that the larger the difference between the maximal reward and the worst punish-

ment, (V − V ), the more society can relax self-enforcement constraints, which allows to

sustain a higher reward and a worse punishment. An optimal self-enforcing rule yields

the highest value of V and lowest value of V that solve this fixed point problem.33

As discussed in Subsection 4.1, the optimal self-enforcing fiscal rule features a bang-

bang property, so that along the equilibrium path continuation values only travel to

extreme points in the feasible set [V , V ]. Given this bang-bang form, the dynamics

induced by the optimal rule depend on the tightness of self-enforcement constraints and

the distribution of shocks. By Corollary 1 and Proposition 3, if either the optimal deficit

limit under perfect enforcement is self-enforcing or condition (26) holds, the equilibrium

features no dynamics: the same deficit limit gf (θ∗) is imposed in every date. In contrast,

if the perfect-enforcement deficit limit is not self-enforcing and condition (26) does not

hold, Proposition 3 and Proposition 5 imply that the economy transitions in and out of

the best equilibrium associated with value V and the worst punishment associated with

value V . Starting from the initial period, the government is subject to a deficit limit

gf (θ∗). If the realized shock is θ ≤ θ∗∗, the government respects the deficit limit and

the best equilibrium restarts in the second period; if the realized shock is θ > θ∗∗, the

government violates the deficit limit and the equilibrium transitions to punishment in

the second period. Starting from a punishment period, the government is subject to a

surplus limit gf (θ∗p). If the realized shock is θ ≥ θ∗∗p , the government respects the surplus

limit and the equilibrium transitions to the best equilibrium in the next period; if the

realized shock is θ < θ∗∗p , the government violates the surplus limit and the equilibrium

remains in punishment in the next period.

The primitives of the model determine whether self-enforcement constraints bind and

condition (26) does not hold, as required for dynamic incentives to be provided to the

32Noting that f(θ) = 0 (and thus Q(θ) = 1) for θ < θ and limθ↓0{θU(gf (θ)) + δW (xf (θ))} = 0.
33The first-order conditions of programs (27) and (28) are intuitive. For example, suppose the perfect-

enforcement rule is not self-enforcing and (26) does not hold, so that by Proposition 3, θ∗∗ < θ in an
optimal self-enforcing rule. Then the first-order condition of (27) yields

∫ θ∗∗

θ∗
(Q(θ)−Q(θ∗∗))dθ = 0.

Analogous to (23) and (26), this condition says that an optimal maximally enforced deficit limit balances
spending distortions across government types: θ∗ and θ∗∗ are such that the average distortion on types
θ ∈ [θ∗, θ∗∗) is weighted equally as that on type θ∗∗.
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government. Self-enforcement constraints will bind so long as the highest shock θ is suf-

ficiently extreme. Intuitively, as θ increases, the difference between type θ’s per-period

welfare from flexible spending, θU(gf (θ)) + βW (xf (θ)), and this type’s per-period wel-

fare from spending at the perfect-enforcement limit, θU(gf (θe)) +βW (xf (θe)), becomes

larger, and for high enough θ condition (24) cannot hold. Regarding (26), as discussed

in Subsection 4.3, it depends on the distribution of shocks and the government’s present

bias whether this condition holds for a given set of continuation values. In particular,

the condition will fail provided that −Q(θ) > 0 is low enough—which holds if high

shocks are unlikely—and β is low enough—which means that tight rules are not self-

enforcing under high shocks. For any continuation values {V , V } and parameter β < 1,

a sufficient condition for (26) to fail is that f(θ) approach zero as θ approaches θ.

In sum, our analysis shows that the presence of shocks that are sufficiently extreme

and rare (relative to the government’s present bias) is a sufficient condition for pun-

ishments to occur along the equilibrium path. The optimal deficit limit under perfect

enforcement is not self-enforcing in this case, and society would have to set an excessively

lax deficit limit to ensure that the government always respects it. Instead, it is optimal

to impose a tighter limit which the government respects only under non-extreme shocks,

and to temporarily transition to maximal punishment when extreme shocks occur.

6 Concluding Remarks

This paper has studied the role of self-enforcement in determining the optimal structure

of fiscal rules. Under perfect enforcement, an optimal rule takes the form of a deficit

limit which is never breached in equilibrium. Under self-enforcement, an optimal rule

is a maximally enforced deficit limit, which, if violated, leads to the worst punishment

for the government. We established necessary and sufficient conditions under which the

government violates the deficit limit along the equilibrium path, following bad enough

shocks to the economy. In this case, the economy fluctuates between periods of reward—

with a maximally enforced deficit limit that constrains overspending—and periods of

punishment—with a maximally enforced surplus limit that incentivizes overspending.

The government enters a reward phase whenever it satisfies the imposed deficit or surplus

limit, and transitions into a punishment phase whenever it violates the limit. These

transitions ensure that both the maximally enforced deficit limit and the maximally

enforced surplus limit are self-enforcing.

Our focus has been on a situation in which external enforcement is absent and the
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optimal fiscal rule under perfect enforcement is not self-enforcing. It is worth noting

that our analysis also applies to situations in which external enforcement is possible but

limited. Society may be able to impose sanctions on the government beyond those that

are self-enforcing, yet these may not be severe enough to guarantee perfect enforcement.

Our analysis in Section 4 applies to this case without change, taking V to be the harshest

possible punishment that society can impose. An optimal rule is a maximally enforced

deficit limit, which, if violated, leads to the worst punishment, including externally

enforced penalties. Provided that these penalties are sufficiently small, the perfect-

enforcement deficit limit may not be implementable, and punishments would arise along

the equilibrium path under the conditions derived in Section 4.

We believe there are potentially interesting directions for future research. We would

like to explore in future work the extent of our bang-bang characterization in Proposi-

tion 1; as we have noted, our result does not rely on self-enforcement and may apply

to other models of repeated adverse selection. Another possible direction would be to

consider an extension of our model with more general time-inconsistent preferences. The

problem would change compared to our quasi-hyperbolic setting: while in our formu-

lation the preferences of the government regarding future policies coincide with those

of society, a government’s bias that extends to future periods would make the problem

closer to one of repeated delegation. Additionally, our setting can be enriched to con-

sider a group of countries or subnational regions subject to a common fiscal rule which

must be self-enforcing. The properties of an optimal common rule would depend on

governments’ self-enforcement constraints and the nature of collective punishments.

Finally, while we have focused on fiscal policy, the insights of this paper may be

applied to other settings featuring a commitment-versus-flexibility tradeoff and self-

enforcement. For example, consider an individual who suffers from a self-control prob-

lem and establishes rules for himself to curb his consumption of a temptation good

such as television or alcohol. Such an individual values rules that impose discipline

on himself, but also benefits from having flexibility to increase his consumption of the

temptation good when he finds this consumption to be highly valuable. Furthermore,

in the absence of external enforcement, any rule the individual imposes on himself must

be self-enforcing. In this context, our results imply that an optimal rule takes the form

of a consumption threshold, which the individual may violate when his value of con-

sumption is high enough. Violation of the threshold leads to punishment in the form

of over-consumption. That is, to limit his consumption of the temptation good, the

individual would transition in and out of periods of self-enforcing binging.
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A Proofs

This Appendix contains the proofs of Proposition 1, Lemma 3, and Proposition 2. See

the Online Appendix for the remaining proofs and supplementary discussions.

A.1 Preliminaries

We describe two functions that we will use in our proofs.

Lemma 4. Given θL ≤ θM ≤ θH , define the functions

SL(θL, θM) =

∫ θM

θL

(
βθ − θL

)
f (θ) dθ + (1− β) θMf(θM)(θM − θL),

SH(θH , θM) =

∫ θH

θM

(
βθ − θH

)
f(θ)dθ + (1− β) θMf(θM)(θH − θM).

Then SL(θL, θM) > 0 if Q′(θ) < 0 for all θ ∈ (θL, θM), SL(θL, θM) < 0 if Q′(θ) > 0 for

all θ ∈ (θL, θM), SH(θH , θM) > 0 if Q′(θ) > 0 for all θ ∈ (θM , θH), and SH(θH , θM) < 0

if Q′(θ) < 0 for all θ ∈ (θM , θH).

Proof. Consider the claims about SL(θL, θM). Note that SL(θ, θM)|θ=θM = 0, and hence

SL(θL, θM) = −
∫ θM
θL

dSL(θ,θM )
dθ

dθ. Moreover,

dSL(θ, θM)

dθ
= −

∫ θM

θ

f(θ̃)dθ̃ + (1− β) θf(θ)− (1− β) θMf(θM),

and thus dSL(θ,θM )
dθ

|θ=θM = 0. Therefore, SL(θL, θM) =
∫ θM
θL

∫ θM
θ

d2SL(θ̃,θM )

dθ̃
2 dθ̃dθ, where

d2SL(θ, θM)

dθ2 = (2− β) f (θ) + (1− β) θf ′ (θ) .

Note that d2SL(θ,θM )

dθ2 > 0 if Q′(θ) < 0, d2SL(θ,θM )

dθ2 = 0 if Q′(θ) = 0, and d2SL(θ,θM )

dθ2 < 0 if

Q′(θ) > 0. The claims about SL(θL, θM) follow.

The proof for the claims about SH(θH , θM) is analogous and thus omitted.
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A.2 Proof of Proposition 1

We proceed in three steps.

Step 1. We show that in any solution to (11)-(15), V (θ) is a step function and g(θ)

and V (θ) are left- or right-continuous at each θ ∈ (θ, θ].

Note first that by the local private information constraints, V (θ) is piecewise con-

tinuously differentiable. Suppose by contradiction that V (θ) is not a step function.

Then there is an interval over which dV (θ)
dθ

exists and is not zero, and therefore a sub-

interval [θL, θH ] over which dV (θ)
dθ

is either strictly positive or strictly negative, with

V < V (θ) < V . By the private information constraint (12), g(θ) must be continuous

and strictly increasing over [θL, θH ]. By property (i) in Proposition 1, it suffices to

consider the following two cases:

Case 1: Suppose Q′(θ) < 0 for all θ ∈ [θL, θH ]. We show that there exists an incen-

tive feasible flattening perturbation that rotates the increasing spending schedule g(θ)

clockwise over [θL, θH ] and strictly increases social welfare. Define

U =
1(

θH − θL
)
∫ θH

θL
U (g (θ)) dθ.

For given κ ∈ [0, 1], let g̃ (θ, κ) be the solution to

U (g̃ (θ, κ)) = κU + (1− κ)U (g (θ)) , (29)

which clearly exists. Let x̃(θ, κ) = 1− g̃(θ, κ) and define Ṽ (θ, κ) as the solution to

θU (g̃ (θ, κ)) +βW (x̃ (θ, κ)) + βδṼ (θ, κ)

= θU(g(θL)) + βW (x(θL)) + βδV (θL) +

∫ θ

θL
U(g̃(θ̃, κ))dθ̃. (30)

The original allocation corresponds to κ = 0. We consider a perturbation where we

increase κ marginally above zero if and only if θ ∈ [θL, θH ]. Note that differentiating

(29) and (30) with respect to κ yields

dg̃ (θ, κ)

dκ
=

U − U (g (θ))

U ′ (g̃ (θ, κ))
, (31)

dg̃ (θ, κ)

dκ
(θU ′ (g̃ (θ, κ))− βW ′ (x̃ (θ, κ))) + βδ

dṼ (θ, κ)

dκ
=

∫ θ

θL

dg̃(θ̃, κ)

dκ
U ′(g̃(θ̃, κ))dθ̃. (32)
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Substituting (31) in (32) yields that for a type θ ∈ [θL, θH ], the change in government

welfare from a marginal increase in κ is equal to

D (θ) ≡
∫ θ

θL

(
U − U(g(θ̃))

)
dθ̃.

We begin by showing that the perturbation satisfies constraints (12)-(15). For the

private information constraint (12), note that D(θL) = D(θH) = 0, so the perturbation

leaves the government welfare of types θL and θH (and that of types θ < θL and θ > θH)

unchanged. Using Lemma 2 and the representation in (17), it then follows from equation

(30) and the fact that g̃(θ, κ) is nondecreasing that the perturbation satisfies constraint

(12) for all θ ∈ Θ and any κ ∈ [0, 1].

To prove that the perturbation satisfies the self-enforcement constraint (13), we

show that the government welfare of types θ ∈ [θL, θH ] weakly rises when κ increases

marginally. Since D(θL) = D(θH) = 0, it is sufficient to show that D(θ) is concave over

(θL, θH) to prove that D(θ) ≥ 0 for all θ in this interval. Indeed, we verify:

D′ (θ) = U − U (g (θ)) ,

D′′ (θ) = −U ′ (g (θ))
dg (θ)

dθ
< 0.

Lastly, observe that constraint (14) is satisfied by construction, and constraint (15)

is satisfied if κ > 0 is small enough. The latter claim follows from the fact that, by

assumption, V (θ) ∈ (V , V ) for θ ∈ [θL, θH ] in the original rule. Hence, for κ > 0 small

enough, there exist Ṽ (θ, κ) ∈ [V , V ] satisfying (29)-(30) for all θ ∈ [θL, θH ].

We next show that the perturbation strictly increases social welfare. The change in

social welfare from an increase in κ is equal to

∫ θH

θL

[
dg̃ (θ, κ)

dκ
(θU ′ (g̃ (θ, κ))−W ′ (x̃ (θ, κ))) + δ

dṼ (θ, κ)

dκ

]
f (θ) dθ.

Substituting with (32) yields

∫ θH

θL

[
dg̃ (θ, κ)

dκ
θU ′ (g̃ (θ, κ))

(
1− 1

β

)
+

1

β

∫ θ

θL

dg̃(θ̃, κ)

dκ
U ′(g̃(θ̃, κ))dθ̃

]
f (θ) dθ.
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Substituting with (31) and integrating, this expression simplifies to

1

β

∫ θH

θL

(
U − U (g (θ))

) (
F (θH)− F (θ)− (1− β) θf (θ)

)
dθ.

This is an integral over the product of two terms. The first term is strictly decreasing in θ

since g (θ) is strictly increasing over [θL, θH ]. The second term is also strictly decreasing

in θ; this follows from Q′(θ) < 0 for all θ ∈ [θL, θH ]. Therefore, these two terms are

positively correlated with one another, and thus the change in social welfare is strictly

greater than

1

β

∫ θH

θL

(
U − U (g (θ))

)
dθ

∫ θH

θL

(
F (θH)− F (θ)− (1− β) θf (θ)

)
dθ,

which is equal to 0. It follows that the change in social welfare from the perturbation is

strictly positive. Hence, in any solution to (11)-(15), if V (θ) is continuous and Q′(θ) < 0

over a given interval, then V ′(θ) = 0 over the interval.

Case 2: Suppose Q′(θ) > 0 for all θ ∈ [θL, θH ]. Recall that g(θ) is continuous and strictly

increasing over [θL, θH ]. We begin by showing that the self-enforcement constraint can-

not bind for all θ ∈ [θL, θH ]. Suppose it did. Using the representation of government

welfare in (17), this implies

∫ θH

θ

(U(gf (θ̃))− U(g(θ̃)))dθ̃ = 0 (33)

for all θ ∈ [θL, θH ]. Note that the allocation must then satisfy {g(θ), V (θ)} = {gf (θ), V }
for all θ ∈ (θL, θH): given g(θ) continuous, implicit differentiation of (33) with respect

to θ given (33) holding with equality implies g(θ) = gf (θ); given this, the binding self-

enforcement constraint yields V (θ) = V . However, this contradicts the assumption that

V (θ) ∈ (V , V ) for all θ ∈ [θL, θH ]. Hence, we obtain that the self-enforcement constraint

cannot bind for all types in the interval, and without loss we take the interval to be such

that this constraint is slack for all θ ∈ [θL, θH ].

We show that there exists a steepening perturbation that is incentive feasible and

strictly increases social welfare. Specifically, consider drilling a hole around a type θM

within [θL, θH ] so that we marginally remove the allocation around this type. That is,

type θM can no longer choose g(θM) and V (θM) and is indifferent between jumping to

the lower or upper limit of the hole. With some abuse of notation, denote the limits of

the hole by θL and θH , where the perturbation marginally increases θH from θM . Since
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the self-enforcement constraint is slack for all θ ∈ [θL, θH ], the perturbation is feasible.

The change in social welfare from the perturbation is equal to

∫ θH

θM

(
dg(θH)

dθH
(
θU ′(g(θH))−W ′(x(θH))

)
+ δ

dV (θH)

dθH

)
f(θ)dθ

+
dθM

dθH
(
θMU(g(θL)) +W (x(θL)) + δV (θL)− θMU(g(θH))−W (x(θH))− δV (θH)

)
f(θM).

Note that by the private information constraint for θH ,

dg(θH)

dθH
(
θHU ′(g(θH))− βW ′(x(θH))

)
+ βδ

dV (θH)

dθH
= 0, (34)

and by indifference of θM ,

θMU(g(θL)) + βW (x(θL)) + βδV (θL) = θMU(g(θH)) + βW (x(θH)) + βδV (θH). (35)

Substituting with these expressions, the change in social welfare is equal to

dg(θH)

dθH
U ′(g(θH))

∫ θH

θM

(
θ − θH

β

)
f(θ)dθ+

dθM

dθH
θM
(
U(g(θL))− U(g(θH))

)(
1− 1

β

)
f(θM).

(36)

Differentiating (35) with respect to θH and substituting with (34) yields

dθM

dθH
=
dg(θH)

dθH
U ′(g(θH))

(θH − θM)

U(g(θH))− U(g(θL))
.

Substituting back into (36) and dividing by 1
β
dg(θH)

dθH
U ′(g(θH)) > 0, we find that the

change in social welfare takes the same sign as

SH(θH , θM) =

∫ θH

θM

(
βθ − θH

)
f(θ)dθ + (1− β) θMf(θM)(θH − θM).

Since Q′(θ) > 0 for all θ ∈ [θM , θH ], Lemma 4 implies SH(θH , θM) > 0, and thus the

perturbation strictly increases social welfare. Hence, in any solution to (11)-(15), if V (θ)

is continuous and Q′(θ) > 0 over a given interval, then V ′(θ) = 0 over the interval.

It follows from Case 1 and Case 2 that V (θ) is a step function in any solution to

(11)-(15). We now show that in any such solution, g(θ) and V (θ) must be right- or

left-continuous at each θ ∈ (θ, θ]. Suppose by contradiction that this is not true at some
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θ ∈ (θ, θ]. Denote the left limit by {g(θ−), V (θ−)} = limθ′↑θ{g(θ′), V (θ′)}. By Lemma 2,

0 < θ
(
U(g(θ))− U(g(θ−))

)
= β

(
W (x(θ−)) + δV (θ−)−W (x(θ))− δV (θ)

)
.

Given β ∈ (0, 1), this implies

θ
(
U(g(θ))− U(g(θ−))

)
< W (x(θ−)) + δV (θ−)−W (x(θ))− δV (θ).

It follows that a perturbation that assigns {g(θ−), V (θ−)} to type θ is incentive feasible,

strictly increases social welfare from type θ, and does not affect social welfare from types

other than θ. Hence, g(θ) and, by Lemma 2, V (θ) must be left- or right-continuous at

each θ ∈ (θ, θ].

Step 2. We show that in any solution to (11)-(15), if dg(θ)
dθ

> 0, then V (θ) ∈ {V , V }.

If dg(θ)
dθ

> 0 at some θ ∈ Θ, then g(θ) is continuous and strictly increasing over some

interval, call it [θL, θH ], which contains θ. By Step 1, V (θ) must be constant over the

interval at some value V ∈ [V , V ], which implies g(θ) = gf (θ) for all θ ∈ [θL, θH ]. We

establish that V ∈
{
V , V

}
. Suppose by contradiction that V < V < V . As in Step 1,

it suffices to consider the following two cases:

Case 1: Suppose Q′(θ) < 0 for all θ ∈ [θL, θH ]. Then given V ∈ (V , V ), the arguments in

Case 1 of Step 1 above apply, implying that there exists an incentive feasible flattening

perturbation that rotates the spending schedule clockwise over [θL, θH ] and strictly

increases social welfare. Therefore, we must have V (θ) ∈
{
V , V

}
for all θ ∈ [θL, θH ].

Case 2: Suppose Q′(θ) > 0 for all θ ∈ [θL, θH ]. Then given V ∈ (V , V ), the arguments in

Case 2 of Step 1 above apply, implying that there exists an incentive feasible steepening

perturbation that drills a hole in the spending schedule within [θL, θH ] and strictly

increases social welfare. Therefore, we must have V (θ) ∈
{
V , V

}
for all θ ∈ [θL, θH ].

Step 3. We show that in any solution to (11)-(15), if dg(θ)
dθ

= 0, then V (θ) ∈ {V , V }.

Suppose by contradiction that dg(θ)
dθ

= 0 and V (θ) ∈ (V , V ) for some type θ ∈ Θ.

By Step 1 and Step 2, this type belongs to a stand-alone segment, call it [θL, θM ], such

that g(θ) = g and V (θ) = V for all θ ∈ [θL, θM ], for some g > 0 and V ∈ (V , V ),

and g(θ) jumps at each boundary unless θL = θ or θM = θ. Observe that the self-

enforcement constraint must be slack for all θ ∈ (θL, θM). This follows from the fact

that the spending rate and the continuation value are constant over [θL, θM ]. Hence, if
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(13) were to hold as an equality at some θ′ ∈ (θL, θM), this constraint would be violated

for either θ ∈ [θL, θ′) or θ ∈ (θ′, θM ].

We show that there exists an incentive feasible perturbation that strictly increases

social welfare. We consider segment-shifting steepening and flattening perturbations

that marginally change the constant spending rate by dg ≶ 0 and change V so as to

keep unchanged the government welfare of either type θL or type θM . As we describe

next, which perturbation within this class we perform depends on the shape of the

function Q(θ) over [θL, θM ].

Using condition (ii) in Proposition 1, suppose first that
∫ θM
θL

Q(θM)dθ <
∫ θM
θL

Q(θ)dθ.

Then we consider a perturbation that marginally changes the spending rate by dg < 0

and keeps type θL equally well off. This means that dV
dg

is given by

−
(
θLU ′(g)− βW ′(x)

)
+ βδ

dV

dg
= 0, (37)

where x = 1− g. Note that this perturbation reduces θM , in the sense that the highest

types in [θL, θM ], arbitrarily close to θM , will now jump up to a higher allocation. This

higher allocation is the allocation over which type θM was initially indifferent if θM < θ

and such an allocation satisfies self-enforcement constraints; otherwise, we let the per-

turbation introduce these allocations (which will satisfy private information constraints,

and will involve flexible spending and maximal punishment if the self-enforcement con-

straint of θM is binding in the original allocation). Calling the allocation to which type

θM jumps up the allocation of type θH , the indifference condition of θM is

θMU(g) + βW (x) + βδV = θMU(g(θH)) + βW (x(θH)) + βδV (θH).

To verify feasibility, note that the self-enforcement constraint is slack for all θ ∈ (θL, θM),

V ∈ (V , V ), and the government welfare of types θL and θM remains unchanged with

the perturbation. Hence, the perturbation is feasible for dg arbitrarily close to zero.

The change in social welfare due to the perturbation is equal to

∫ θM

θL

(
− (θU ′(g)−W ′(x)) + δ

dV

dg

)
f (θ) dθ

+
dθM

dg

(
θMU (g) +W (x) + δV − θMU(g(θH))−W (x(θH))− δV (θH)

)
f(θM).

Substituting with (37) and the indifference condition of type θM yields that the change
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in social welfare is equal to

− U ′(g)

∫ θM

θL

(
θ − θL

β

)
f(θ)dθ − dθM

dg
θM
(
U(g(θH))− U(g)

)(
1− 1

β

)
f(θM). (38)

Differentiating the indifference condition of type θM and substituting with (37) yields

dθM

dg
= −U ′ (g)

(
θM − θL

)

U
(
g
(
θH
))
− U (g)

.

Substituting back into (38) and dividing by 1
β
U ′(g) > 0, we find that the change in

social welfare takes the same sign as

−SL(θL, θM) = −
[∫ θM

θL

(
βθ − θL

)
f(θ)dθ + (1− β) θMf(θM)(θM − θL)

]
,

which can be rewritten as

−SL(θL, θM) = −
∫ θM

θL

∫ θM

θ

Q′(θ̃)dθ̃dθ = −
∫ θM

θL
(Q(θM)−Q(θ))dθ = 0. (39)

By the assumption that
∫ θM
θL

Q(θM)dθ <
∫ θM
θL

Q(θ)dθ, the above expression is strictly

positive, implying that the perturbation strictly increases social welfare.

We can perform analogous perturbations in the other instances of condition (ii)

in Proposition 1. If
∫ θM
θL

Q(θM)dθ >
∫ θM
θL

Q(θ)dθ, we consider a perturbation that

marginally changes the spending rate by dg > 0 and keeps type θL equally well off.

Arguments analogous to those above imply that the perturbation is incentive feasible.

Moreover, one can verify that the change in social welfare from the perturbation is given

by SL(θL, θM), which is strictly positive in this case. If
∫ θM
θL

Q(θM)dθ =
∫ θM
θL

Q(θ)dθ,

then by condition (ii) we must have
∫ θM
θL

Q(θL)dθ 6=
∫ θM
θL

Q(θ)dθ. We then consider

perturbations that marginally change the spending rate by dg ≶ 0 and keep type θM

equally well off. Arguments analogous to those above imply that these perturbation are

incentive feasible. Moreover, one can verify that the implied change in social welfare is

given by either SH(θM , θL) or −SH(θM , θL), depending on the sign of dg, where

SH(θM , θL) =

∫ θM

θL

∫ θ

θL
Q′(θ̃)dθ̃dθ =

∫ θM

θL
(Q(θ)−Q(θL))dθ. (40)

Hence, given
∫ θM
θL

Q(θL)dθ 6=
∫ θM
θL

Q(θ)dθ, one of these perturbations strictly increases
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social welfare in this case.

A.3 Proof of Lemma 3

Step 1. We show that in any solution to (11)-(15), if V (θ∗∗) = V , then θ∗∗ ≥ θ̂.

By Proposition 1, if V (θ∗∗) = V for some θ∗∗ ∈ Θ, then V (θ) = V over an interval

[θL, θH ] that contains θ∗∗. We establish that θL ≥ θ̂. Suppose by contradiction that

θL < θ̂. Note that the self-enforcement constraint (13) requires g(θ) = gf (θ) for all

θ ∈ [θL, θH ]. Then we can perform a flattening perturbation that rotates the spending

schedule clockwise over a subset of [θL, θH ] that contains type θL and is below θ̂, analo-

gous to the perturbation used in Step 2 in the proof of Proposition 1. By the arguments

in that step, this perturbation is incentive feasible. Moreover, since Q′(θ) < 0 for all

types θ in the subset (by the subset being below θ̂ and Assumption 2), the perturbation

strictly increases social welfare. It follows that θL ≥ θ̂, proving the claim in this step.

Step 2. We show that in any solution to (11)-(15), if V (θ∗∗) = V , then V (θ) = V for

all θ ≥ θ∗∗.

Suppose by contradiction that V (θ∗∗) = V for some θ∗∗ ∈ Θ and V (θ) > V for some

θ > θ∗∗. By Step 1, θ∗∗ ≥ θ̂. We first show that there exist θH > θL > θ∗∗ such that

V (θ) = V for all θ ∈ [θL, θH ]. Suppose this is not true. Then by the contradiction

assumption and Proposition 1, V (θ) must jump up at θ. However, this contradicts the

claim in Step 1 in the proof of Proposition 1 that V (θ) is left-continuous at θ. Therefore,

given Proposition 1 and the contradiction assumption, we must have θH > θL > θ∗∗ such

that V (θ) = V for all θ ∈ [θL, θH ].

We next establish that g(θ) = g for all θ ∈ [θL, θH ] and some g > 0. Suppose by

contradiction that dg(θ)
dθ

> 0 for some type θ ∈ [θL, θH ]. Note that the private information

constraint (12) implies g(θ) = gf (θ) in the neighborhood of such a type θ. Then we

can perform an incentive feasible steepening perturbation in this neighborhood as that

described in Step 1 in the proof of Proposition 1, which drills a hole in the spending

schedule g(θ). By the arguments in that step, this perturbation strictly increases social

welfare. It follows that dg(θ)
dθ

= 0 for any θ > θ∗∗ such that V (θ) = V .

Finally, we show that a segment [θL, θH ] with V (θ) = V and g(θ) = g > 0 for all

θ ∈ [θL, θH ] and θL > θ∗∗ cannot exist. Consider the closest such segment to θ∗∗, so

that θL is the lowest point above θ∗∗ at which the continuation value jumps from V to

V . Take θH to be the lowest point above θL at which g(θ) jumps, or take θH = θ if g(θ)

does not jump above θL. Then [θL, θH ] is a stand-alone segment with constant spending
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g and continuation value V = V . Moreover, note that g > gf (θL); this follows from

Lemma 2 given the jump in continuation value at θL. There are two cases to consider.

Case 1: Suppose g < gf (θH). Note that by θL > θ∗∗ ≥ θ̂ and Assumption 2,
∫ θH
θL

Q(θ)dθ >∫ θH
θL

Q(θL)dθ. Moreover, given gf (θH) > g > gf (θL), we can perform an incentive fea-

sible segment-shifting steepening perturbation analogous to that in Step 3 in the proof

of Proposition 1; this perturbation marginally reduces g and lowers V so as to keep

the government welfare of type θL unchanged while letting type θH jump to a higher

spending rate. By the arguments in that step, this perturbation strictly increases social

welfare, contradicting the assumption that g < gf (θH).

Case 2: Suppose g ≥ gf (θH). Then Lemma 2 requires θH = θ, as the private information

constraint would be violated if g(θ) ≥ gf (θH) jumps up and V (θ) weakly decreases

at θH . Note that since the self-enforcement constraint (13) is satisfied for θ = θL

and g ≥ gf (θH), this constraint must hold as a strict inequality for all θ ∈ (θL, θH ].

Then we can perform an incentive feasible segment-shifting steepening perturbation

that marginally reduces g and lowers V so as to keep the government welfare of type

θL unchanged, like that in Case 1 above, except that in this case θH needs not jump to

a higher spending rate. Using the representation in (18), the change in social welfare

from the perturbation is equal to

−U ′(g)

∫ θH

θL
Q(θ)dθ,

which is strictly positive given θL ≥ θ̂ and Assumption 2. This contradicts the assump-

tion that g ≥ gf (θH).

Case 1 and Case 2 imply that a segment [θL, θH ] with V (θ) = V and g(θ) = g > 0

for all θ ∈ [θL, θH ] and θL > θ∗∗ cannot exist, completing the proof of this step.

Step 3. We show that in any solution to (11)-(15), V (θ) is right-continuous at θ with

V (θ) = V .

By the previous steps and Proposition 1, if V (θ) = V for some θ ∈ Θ, then there

exists θ∗∗ ∈ Θ such that V (θ) = V for all θ > θ∗∗ and, if θ∗∗ > θ, V (θ) = V for all θ ∈
(θ, θ∗∗). We begin by establishing that indeed θ∗∗ > θ. Suppose by contradiction that

θ∗∗ = θ and thus V (θ) = V for all θ ∈ (θ, θ]. Then the self-enforcement constraint (13)

implies g(θ) = gf (θ) for all θ ∈ (θ, θ]. Consider an incentive feasible global perturbation

that assigns V (θ) = V to all θ ∈ [θ, θ] and assigns type θ the limiting allocation to
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its right. This perturbation is incentive feasible and strictly increases social welfare,

contradicting the assumption that θ∗∗ = θ.

Given θ∗∗ > θ, we complete the proof by showing that V (θ) = V . Suppose by

contradiction that V (θ) < V . By the claims above, this implies that the continuation

value jumps up from V (θ) to V at θ. By Lemma 2, the private information constraint at

θ requires limθ↓θ g(θ) > gf (θ). Moreover, the private information constraint for higher

types requires that there exist θL > θ such that g(θ) = gf (θL) and V (θ) = V for

all θ ∈ (θ, θL]. Then we can perform an incentive feasible global perturbation that

assigns types θ ∈ [θ, θL] the allocation {g(θ), V (θ)} = {gf (θ), V }. Since gf (θ) > gfb(θ)

and θU(g(θ)) + W (x(θ)) is strictly concave, this perturbation strictly increases social

welfare. It follows that we must have V (θ) = V in any solution to (11)-(15).

A.4 Proof of Proposition 2

By Proposition 1, Lemma 3, and the self-enforcement constraint (13), in any solution

to (11)-(15), there exists θ∗∗ > 0 such that {g(θ), V (θ)} = {gf (θ), V } for all θ > θ∗∗ and

V (θ) = V for all θ < θ∗∗ (where it is possible that θ∗∗ > θ). Moreover, by the same

logic as in the last paragraph of Step 1 in the proof of Proposition 1, V (θ∗∗) = V (with

g(θ∗∗) < gf (θ∗∗)) in any such solution. Since the self-enforcement constraint holds with

equality at θ∗∗, it follows that

θ∗∗U(g(θ∗∗)) + βW (x(θ∗∗)) + βδV = θ∗∗U(gf (θ∗∗)) + βW (xf (θ∗∗)) + βδV . (41)

This characterizes the allocation for θ ≥ θ∗∗. To characterize the allocation for θ < θ∗∗,

we first establish that g(θ) is continuous over [θ, θ∗∗]. Recall from the proof of Lemma 3

that θ∗∗ ≥ θ̂. There are two cases to consider:

Case 1: Suppose by contradiction that g(θ) has a point of discontinuity below θ̂: there is

a type θM < θ̂ which is indifferent between choosing lim
θ↑θM

g(θ) and lim
θ↓θM

g(θ) > lim
θ↑θM

g(θ).

Note that given V (θ) = V for all θ ∈ [θ, θ∗∗] and θ∗∗ ≥ θ̂, there must be a hole with

types θ ∈ [θL, θM) bunched at gf (θL) and types θ ∈ (θM , θH ] bunched at gf (θH), for

some θL < θM < θH . Now consider perturbing the rule by marginally increasing θL,

in an effort to slightly close the hole. This perturbation leaves the government welfare

of types strictly above θM unchanged and is clearly incentive feasible. The change in
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social welfare from the perturbation is equal to

dgf (θL)

dθL

∫ θM

θL

(
θU ′(gf (θL))−W ′(xf (θL))

)
f (θ) dθ

+
dθM

dθL
[
θM
(
U(gf (θL))− U(gf (θH))

)
+W (xf (θL))−W (xf (θH))

]
f(θM).

By the definition of gf (θL), we have θLU ′(gf (θL)) = βW ′(xf (θL)), and by indifference

of type θM (with V (θ) constant over [θ, θ̂)), we have

θMU(gf (θL)) + βW (xf (θL)) = θMU(gf (θH)) + βW (xf (θH)). (42)

Substituting these into the expression above yields that the change in social welfare due

to the perturbation is equal to

dgf (θL)

dθL
U ′(gf (θL))

∫ θM

θL

(
θ − θL

β

)
f (θ) dθ+

dθM

dθL

(
1

β
− 1

)
θMf(θM)

(
U(gf (θH))− U(gf (θL))

)
.

(43)

Note that differentiating the indifference condition (42) with respect to θL (and substi-

tuting again with θLU ′(gf (θL)) = βW ′(xf (θL))) yields

dθM

dθL
=
dgf (θL)

dθL
U ′(gf (θL))

(θM − θL)

U(gf (θH))− U(gf (θL))
.

Substituting this back into (43) and dividing by 1
β
dgf (θL)

dθL
U ′(gf (θL)) > 0, we find that

the change in social welfare takes the same sign as

SL(θL, θM) =

∫ θM

θL

(
βθ − θL

)
f (θ) dθ + (1− β) θMf(θM)(θM − θL).

By θM < θ̂, Assumption 2, and Lemma 4, SL(θL, θM) > 0. Thus, the perturbation

strictly increases social welfare, showing that g(θ) cannot jump at a point below θ̂.

Case 2: Suppose by contradiction that g(θ) is discontinuous at a point θ ∈ [θ̂, θ∗∗]. Note

that since V (θ) = V for all θ ∈ [θ̂, θ∗∗], we can apply the same logic as in Step 2 in the

proof of Lemma 3 to show that dg(θ)
dθ

= 0 over any continuous interval in [θ̂, θ∗∗]. Now

using the arguments in Case 1 above, this means that if g(θ) jumps at a point in [θ̂, θ∗∗],

then there exists a stand-alone segment with constant spending in [θ̂, θ∗∗]. However,

using again the arguments in Step 2 in the proof of Lemma 3, we can then show that

there exists an incentive feasible segment-shifting steepening perturbation that strictly
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increases social welfare. Thus, g(θ) cannot jump at a point θ ∈ [θ̂, θ∗∗].

Case 1 and Case 2 imply that g(θ) is continuous over [θ, θ∗∗]. It follows that the

allocation over this range must be bounded discretion with either a minimum spending

rate or a maximum spending rate or both. The arguments in Step 3 in the proof of

Lemma 3 imply that a minimum spending rate is suboptimal, and Lemma 2 implies

g(θ∗∗) = gf (θ∗) for gf (θ∗) < gf (θ∗∗) which satisfies (41).

To complete the proof, we now show that θ∗ < θ, so the maximum spending rate

binds for types θ ∈ (θ∗, θ]. Suppose by contradiction that this is not the case, meaning

that {g(θ), V (θ)} = {gf (θ), V } for all θ ∈ Θ. Consider an incentive feasible perturbation

which assigns {g(θ), V (θ)} = {gf (θ − ε), V } for all θ ∈ [θ − ε, θ], where ε > 0 is

chosen to be small enough as to continue to satisfy the self-enforcement constraint (13)

for all types. Using the representation in (18), the change in social welfare from this

perturbation is equal to

∫ θ

θ−ε
(U(gf (θ − ε))− U(gf (θ)))Q(θ).

Since gf (θ− ε) < gf (θ) and Q(θ) < 0 for all θ ∈ (θ− ε, θ) given ε > 0 arbitrarily small,

the perturbation strictly increases social welfare.
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B Supplementary Appendix for Online Publication

B.1 Proof of Lemma 1

We begin by proving necessity. Conditional on a public history ht−1, type θt can choose

to follow the equilibrium strategy associated with (ht−1, θ′t) from t onward for any θ′t 6=
θt, instead of that associated with (ht−1, θt). This provides immediate spending rate

gt(θ
t−1, θ′t) and continuation value Vt+1(θt−1, θ′t). Condition (9) is necessary for any such

unobservable deviation to be weakly dominated. In addition, conditional on a public

history ht−1, type θt can choose spending rate gf (θt). In equilibrium, this leads to a

continuation value V ′ associated with public history {ht−1, gf (θt)}. By definition of V ,

the continuation value V ′ weakly exceeds V . Thus, condition (10) is necessary for a

deviation to gf (θt) to be weakly dominated.

To establish sufficiency, take a spending sequence that satisfies (9) and (10). We con-

struct equilibrium strategies as follows. Consider a public history along the equilibrium

path in which ht−1 corresponds to a positive probability realization of the spending

sequence. Given θt, the government chooses the level of spending associated with a

history of shocks θt under the spending sequence. If instead ht−2 corresponds to a pos-

itive probability realization of the spending sequence, but {ht−2, gt−1} does not, then

the government follows the continuation strategy associated with continuation value V .

Condition (9) implies that any unobservable deviation is weakly dominated, and con-

dition (10) implies that any observable deviation is weakly dominated. Therefore, the

spending sequence is supported by these equilibrium strategies.

B.2 Proof of Proposition 3

Assume that (24) does not hold. We begin with some preliminaries.

For a given threshold θ′, denote by b(θ′) the type exceeding θ′ at which (20) holds:

b(θ′)U(gf (θ′)) + βW (xf (θ′)) + βδV = b(θ′)U(gf (b(θ′))) + βW (xf (b(θ′))) + βδV . (44)

Note that for any θ′, b(θ′) > θ′ is uniquely defined, with b′(θ′) > 0. By the definition of

a maximally enforced deficit limit in Definition 1, b(θ∗) = θ∗∗, and by the definition of

θb in equation (25), b(θb) = θ.

Consider a maximally enforced deficit limit with threshold θ′ and associated b(θ′).

Under such a limit, types θ ∈ [θ′, b(θ′)] are bunched at the flexible spending rate of θ′ and

receive the maximal reward V , whereas types θ > b(θ′) spend at their flexible rate and
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receive the maximal punishment V . We will consider a perturbation where we marginally

reduce the threshold θ′ and let type b(θ′), whose self-enforcement constraint initially

holds with equality, jump up to a spending rate gf (b(θ′)) with maximal punishment V .

The change in social welfare from this perturbation is equal to:

M(θ′) = −dg
f (θ′)

dθ′

∫ b(θ′)

θ′

(
θU ′(gf (θ′))−W ′(xf (θ′))

)
f(θ)dθ

−b′(θ′)
(

b(θ′)U(gf (θ′)) +W (xf (θ′)) + δV

−b(θ′)U(gf (b(θ′)))−W (xf (b(θ′)))− δV

)
f(b(θ′)).

By the definition of gf (θ′), we have θ′U ′(gf (θ′)) = βW ′(xf (θ′)). Substituting with this

and type b(θ′)’s binding self-enforcement constraint (44) yields

M(θ′) = −dg
f (θ′)

dθ′
U ′(gf (θ′))

∫ b(θ′)

θ′

(
θ − θ′

β

)
f (θ) dθ (45)

−b′(θ′)
(

1

β
− 1

)
b(θ′)f(b(θ′))

(
U(gf (b(θ′)))− U(gf (θ′))

)
.

Note that differentiating the indifference condition (44) with respect to θ′ (and substi-

tuting again with θ′U ′(gf (θ′)) = βW ′(xf (θ′))) yields

b′(θ′) =
dgf (θ′)

dθ′
U ′(gf (θ′))

(b(θ′)− θ′)
U(gf (b(θ′)))− U(gf (θ′))

.

Substituting this back into (45), we obtain

M(θ′) =
1

β

dgf (θ′)

dθ′
U ′(gf (θ′))

[
−
∫ b(θ′)

θ′
(βθ − θ′) f (θ) dθ − (1− β) b(θ′)f(b(θ′))(b(θ′)− θ′)

]
.

(46)

Note that using integration by parts, we have

∫ b(θ′)

θ′
(1− F (θ)) dθ = (1− F (b(θ′)))b(θ′)− (1− F (θ′))θ′ +

∫ b(θ′)

θ′
θf (θ) dθ,

which yields

∫ b(θ′)

θ′
Q(θ)dθ = (1− F (b(θ′)))b(θ′)− (1− F (θ′))θ′ +

∫ b(θ′)

θ′
βθf (θ) dθ

= (1− F (b(θ′)))b(θ′)− (1− F (b(θ′)))θ′ +

∫ b(θ′)

θ′
(βθ − θ′) f (θ) dθ. (47)
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Rearranging terms yields

−
∫ b(θ′)

θ′
(βθ − θ′) f (θ) dθ = −

∫ b(θ′)

θ′
Q(θ)dθ + (1− F (b(θ′)))(b(θ′)− θ′).

Substituting back into (46), we obtain that the change in social welfare from the per-

turbation is equal to

M(θ′) =
1

β

dgf (θ′)

dθ′
U ′(gf (θ′))

[∫ b(θ′)

θ′
(Q(b(θ′))−Q(θ)) dθ

]
. (48)

Since 1
β
dgf (θ′)
dθ′

U ′(gf (θ′)) > 0, M(θ′) takes the same sign as the term in square brackets.

The derivative of M(θ′) is equal to

M ′(θ′) =
1

β

d
(
dgf (θ′)
dθ′

U ′(gf (θ′))
)

dθ′

[∫ b(θ′)

θ′
(Q(b(θ′))−Q(θ)) dθ

]
(49)

+
1

β

dgf (θ′)

dθ′
U ′(gf (θ′)) [Q(θ′)−Q(b(θ′)) +Q′(b(θ′))b′(θ′)(b(θ′)− θ′)] .

The following auxiliary lemmas will be useful to prove the proposition.

Lemma 5. Suppose (24) does not hold. Any solution to (11)-(15) is a maximally

enforced deficit limit with θ∗ ≤ θb.

Proof. By Proposition 2, all we need to prove is that any optimal deficit limit sets a

threshold θ∗ ≤ θb. Suppose by contradiction that an optimal deficit limit sets θ∗ > θb.

Consider a perturbation where we reduce this threshold marginally. Note that the self-

enforcement constraint is satisfied for all θ ∈ Θ given a limit θ∗ > θb; that is, b(θ∗) > θ.

Thus, substituting with f(θ) = 0 for all θ > θ in (45), the change in social welfare from

this perturbation is equal to

− dgf (θ∗)

dθ∗
U ′(gf (θ∗))

∫ θ

θ∗

(
θ − θ∗

β

)
f(θ)dθ. (50)

Analogous to the derivation in (47), note that

∫ θ

θ∗
Q(θ)dθ =

∫ θ

θ∗
(βθ − θ∗) f (θ) dθ,

and thus
∫ θ
θ∗

(
θ − θ∗

β

)
f(θ)dθ takes the same sign as

∫ θ
θ∗
Q(θ)dθ. Recall that by (23),
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∫ θ
θe
Q(θ)dθ = 0. Since (24) does not hold, θb > θe, and by the contradiction assump-

tion, θ∗ > θb > θe. It follows then from Assumption 2 that
∫ θ
θ∗
Q(θ)dθ < 0 and thus

∫ θ
θ∗

(
θ − θ∗

β

)
f (θ) dθ < 0. Since dgf (θ∗)

dθ∗
U ′(gf (θ∗)) > 0, we obtain from (50) that the

perturbation strictly increases social welfare. The claim follows.

Lemma 6. Suppose (24) does not hold and consider a maximally enforced deficit limit

with threshold θ′ ≤ θb and associated b(θ′). If M(θ′) = 0 and b(θ′) ≥ θ̂, then M ′(θ′) > 0.

Proof. Using (48) and the fact that 1
β
dgf (θ′)
dθ′

U ′(gf (θ′)) > 0, the condition M(θ′) = 0

implies ∫ b(θ′)

θ′
(Q(b(θ′))−Q(θ)) dθ = 0.

By b(θ′) ≥ θ̂, Q(b(θ′)) < 0. Given Assumption 2, the above equality therefore requires∫ b(θ′)
θ′

Q(θ)dθ < 0 and Q(θ′) > Q(b(θ′)). Moreover, substituting the above equality in

(49), we obtain

M ′(θ′) =
1

β

dgf (θ′)

dθ′
U ′(gf (θ′)) [Q(θ′)−Q(b(θ′)) +Q′(b(θ′))b′(θ′)(b(θ′)− θ′)] .

Since 1
β
dgf (θ′)
dθ′

U ′(gf (θ′)) > 0, Q(θ′) > Q(b(θ′)) (as just established), and Q′(b(θ′)) > 0

(by b(θ′) ≥ θ̂), it follows that M ′(θ′) > 0.

We now proceed to prove the claims in the proposition. Suppose first that condition

(26) holds. Suppose by contradiction that an optimal deficit limit sets θ∗ < θb and thus

θ∗∗ = b(θ∗) < θ. Since this is an interior optimum, the first-order condition M(θ∗) = 0

must be satisfied, and by the proof of Lemma 3, θ∗∗ ≥ θ̂. Hence, it follows from Lemma 6

that M ′(θ∗) > 0. Now note that by condition (26), M(θb) ≤ 0, that is, a perturbation

that marginally decreases the threshold from θb weakly reduces social welfare. Since

M(θ∗) = 0, M ′(θ∗) > 0, and M(θ) is continuous, it follows that there must exist a point

θ0, with θ∗ < θ0 ≤ θb, such that M(θ0) = 0 and M ′(θ0) ≤ 0. However, given M(θ0) = 0

and b(θ0) > θ∗∗ ≥ θ̂, Lemma 6 implies M ′(θ0) > 0, a contradiction. It follows that a

deficit limit with θ∗ < θb cannot be optimal. Moreover, by Lemma 5, a deficit limit with

θ∗ > θb cannot be optimal either, and thus the unique optimal rule is a deficit limit with

threshold θ∗ = θb.

Suppose next that condition (26) does not hold. Then M(θb) > 0, which means that

a perturbation that marginally decreases the threshold from θb strictly increases social

welfare. It follows that an optimal deficit limit cannot set θ∗ = θb, and by Lemma 5,
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an optimal deficit limit must set θ∗ < θb. Moreover, by Lemma 6, such an optimum

must be unique. The reason is that any interior optimum must satisfy the first-order

condition M(θ∗) = 0. Given M(θ) continuous, the existence of multiple optima would

then require the existence of a point θ′ with M(θ′) = 0 and M ′(θ′) ≤ 0, contradicting

Lemma 6.

Finally, we show that if (26) does not hold, the unique solution θ∗ < θb must satisfy

θ∗ > θe. Note that θe is defined by equation (23), which implies Q(θe) > 0 and, for

any θ′ ∈ (θe, θ),
∫ θ′
θe
Q(θ)dθ > 0. It follows that if θ∗ < θe, then

∫ b(θ∗)
θ∗

Q(θ)dθ > 0.

Now if θ∗ < θe < θb, the first-order condition M(θ∗) = 0 must be satisfied, and by the

proof of Lemma 3, b(θ∗) ≥ θ̂. However, as shown in the proof of Lemma 6 above, these

conditions require
∫ b(θ∗)
θ∗

Q(θ)dθ < 0, yielding a contradiction. We conclude that θ∗ < θe

cannot hold.

B.3 Proof of Proposition 4

Let θL, θH ∈ Θ and ∆ > 0 be defined as in Definition 2. We prove the proposition by

proving the following three claims.

Claim 1. If Assumption 2 is strictly violated and a maximally enforced deficit limit

{θ∗, θ∗∗} is a solution to (11)-(15) for given values {V , V }, then θ∗ ≤ θL and θ∗∗ ≥ θH .

Proof of Claim 1. Suppose Assumption 2 is strictly violated. Suppose by contradiction

that a maximally enforced deficit limit with θ∗ > θL is a solution to (11)-(15). Then

analogous to Step 1 in the proof of Proposition 1, consider a perturbation that drills

a hole in the spending schedule in the range [θL, θL + ε] for arbitrarily small ε > 0

satisfying θL + ε < min
{
θ∗, θL + ∆

}
. This perturbation is incentive feasible. Moreover,

since Q(θ) is strictly increasing in this range, the arguments in Step 1 in the proof of

Proposition 1 imply that this perturbation strictly increases social welfare. It follows

that θ∗ > θL cannot hold and we must have θ∗ ≤ θL.

Next, suppose by contradiction that a maximally enforced deficit limit with θ∗∗ < θH

is a solution to (11)-(15). Then consider a perturbation of the allocation for types

θ ∈ [θH − ε, θH ] for arbitrarily small ε > 0 satisfying θH − ε > max
{
θ∗∗, θH −∆

}
. The

perturbation assigns these types a constant spending rate ĝ and continuation value V̂ so

as to leave the government welfare of types θH−ε and θH unchanged. This perturbation

is incentive feasible, and we can show that it strictly increases social welfare. Since the

self-enforcement constraint (13) binds for types θH − ε and θH under the original and
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thus the perturbed allocation, the representation of government welfare in (17) implies

∫ θH

θH−ε
(U(ĝ)− U(gf (θ)))dθ = 0. (51)

Using the representation in (18), the change in social welfare from the perturbation is

equal to

1

β

∫ θH

θH−ε
(U(ĝ)− U(gf (θ)))Q(θ)dθ. (52)

This is an integral over the product of two terms. Note that U(ĝ)−U(gf (θ)) is strictly

decreasing in θ and Q(θ) is also strictly decreasing in θ over the range [θH − ε, θH ].

Hence, the two terms are positively correlated with one another, which implies that the

change in social welfare is strictly greater than

∫ θH

θH−ε
(U(ĝ)− U(gf (θ)))dθ

∫ θH

θH−ε
Q(θ)dθ, (53)

which equals zero by (51). It follows that the perturbation strictly increases social

welfare; therefore, θ∗∗ < θH cannot hold and we must have θ∗∗ ≥ θH .

Claim 2. Suppose Assumption 2 is strictly violated. There exist continuation values

{V , V } for which no solution to (11)-(15) is a maximally enforced deficit limit.

Proof of Claim 2. Suppose Assumption 2 is strictly violated. By Claim 1, if a maximally

enforced deficit limit {θ∗, θ∗∗} solves (11)-(15), then θ∗ ≤ θL and θ∗∗ ≥ θH . Consider the

indifference condition (20) which defines, for any given θ∗, a unique value of θ∗∗ > θ∗.

This condition shows that (θ∗∗−θ∗) is continuous in (V −V ) and approaches 0 as (V −V )

goes to 0. It follows that there exists Λ > 0 such that if (V − V ) < Λ, then (θ∗∗ − θ∗)
is small enough that θ∗ ≤ θL < θH ≤ θ∗∗ cannot hold. Thus, if the continuation values

{V , V } satisfy (V − V ) < Λ, a maximally enforced deficit limit is not a solution to

(11)-(15).

Claim 3. Suppose Assumption 2 is weakly violated. There exist continuation values

{V , V } for which not every solution to (11)-(15) is a maximally enforced deficit limit.

Proof of Claim 3. Suppose Assumption 2 is weakly violated and a maximally enforced

deficit limit {θ∗, θ∗∗} is a solution to (11)-(15). Then {θ∗, θ∗∗} satisfy condition (20) and

analogous arguments as in the proof of Claim 2 above imply that there exist continuation

values {V , V } such that θ∗ ≤ θL < θH ≤ θ∗∗ cannot hold. This means that given such

continuation values, any maximally enforced deficit limit {θ∗, θ∗∗} solving (11)-(15) must
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have either θ∗ > θL or θ∗∗ < θH (or both). Suppose first that θ∗ > θL. Then consider a

perturbation as in the proof of Claim 1 above which drills a hole in the range [θL, θL+ε]

for arbitrarily small ε > 0 satisfying θL+ε < min
{
θ∗, θL + ∆

}
. The same arguments as

in the proof of Claim 1, given Q′(θ) ≥ 0 for θ ∈ [θL, θL+ε], imply that this perturbation

weakly increases social welfare. The resulting allocation is therefore a solution to (11)-

(15), and it is not a maximally enforced deficit limit.

Suppose next that θ∗∗ < θH . Then consider a perturbation as in the proof of Claim

1 above which modifies the allocation for types θ ∈ [θH − ε, θH ] for arbitrarily small

ε > 0 satisfying θH − ε > max
{
θ∗∗, θH −∆

}
. The perturbation assigns these types a

constant spending rate ĝ and continuation value V̂ so as to leave the government welfare

of types θH − ε and θH unchanged. The same arguments as in the proof of Claim 1,

given Q′(θ) ≤ 0 for θ ∈ [θH−ε, θH ], imply that this perturbation weakly increases social

welfare. The resulting allocation is therefore a solution to (11)-(15), and it is not a

maximally enforced deficit limit.

B.4 Proof of Proposition 5

The proof of this proposition is analogous to the proof of Proposition 2, with the unique-

ness claim following from the same logic as in the proof of Proposition 3. We therefore

describe this proof only briefly here, focusing on the steps that are different from those

in the previous proofs.

Observe first that Proposition 1 applies when solving the program in (16), by the

same arguments as when solving the program in (11). The reason is that perturbations

that apply whenever Q′(θ) > 0 in the maximization of social welfare will now apply

whenever Q′(θ) < 0 in the minimization of social welfare, and vice versa.

The analog of Lemma 3 also holds: in any solution to (16), V (θ) is weakly increasing,

right-continuous at θ = θ, and left-continuous at θ = θ with V (θ) = V . Steps 1-3 of the

proof of Lemma 3 are isomorphic in the sense that the arguments applying to types θ < θ̂

now apply to types θ > θ̂, and vice versa. However, there are two notable modifications

to the proof of this lemma; we describe them next.

The first modification involves Case 2 in Step 2 in the proof of Lemma 3. In that case,

we take a segment [θL, θH ] with θH = θ and perform a segment-shifting perturbation

that marginally reduces g and lowers V so as to keep the government welfare of type

θL unchanged. In contrast, we would now take a segment [θL, θH ] with θL = θ and

perform a segment-shifting perturbation that marginally increases g and lowers V so as

to keep the government welfare of type θH unchanged. Note that using the logic of the
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representation in (18) but with reference type θ instead of θ, we can write social welfare

(normalized by debt) as

1

β
θU(g(θ)) +W (x(θ)) + δV (θ) +

1

β

∫ θ

θ

U(g(θ))Qp(θ)dθ, (54)

where

Qp(θ) = Q(θ)− 2(1− F (θ)). (55)

Using this representation, the change in social welfare from the perturbation is equal to

U ′(g)

∫ θH

θL
Qp(θ)dθ.

Since Qp(θ) < 0 for all θ ∈ Θ, it follows that the perturbation strictly reduces social

welfare. This contradicts the assumption that the original allocation would solve (16).

The second modification concerns an argument in Step 3 in the proof of Lemma 3.

In that argument, we rule out the possibility that V (θ) = V for all θ ∈ Θ in a solution

to (11). We can show that this possibility cannot arise in a solution to (16) either,

although the argument is different. To show this here, suppose by contradiction that

V (θ) = V for all θ ∈ Θ in a solution to (16). The self-enforcement constraint (13) then

implies g(θ) = gf (θ) for all θ ∈ Θ. Moreover, given the representation in (18), social

welfare equals

1

β
θU(gf (θ)) +W (xf (θ)) + δV +

1

β

∫ θ

θ

U(gf (θ))Q(θ)dθ. (56)

Consider a global perturbation in which all types θ ∈ Θ are assigned the allocation

corresponding to a maximally enforced surplus limit {θ∗p, θ∗∗p } with θ∗∗p > θ and Q(θ∗∗p ) <

0 (and θ∗∗p ’s self-enforcement constraint binding given the flexible allocation of θ∗p, as

defined in Proposition 5). Note that Q(θ∗∗p ) < 0 is feasible since Q(θ) < 0. Under

this construction, Q(θ) < 0 for all θ ≥ θ∗∗p by Assumption 2. Using an analogous

representation to (56) and taking into account that the perturbation keeps type θ’s

allocation unchanged, we find that the change in social welfare from the perturbation is

equal to ∫ θ∗p

θ∗∗p

(U(gf (θ∗p))− U(gf (θ))Q(θ)dθ. (57)

Since gf (θ∗p) > gf (θ) and Q(θ) < 0 for all θ ∈ [θ∗∗p , θ
∗
p], it follows that the perturbation
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strictly reduces social welfare. Therefore, the original allocation with V (θ) = V for all

θ ∈ Θ is not a solution to (16).

Given Proposition 1 and the analog of Lemma 3 as described above, the next step is

to show that g(θ) is continuous for θ ≥ θ∗∗p . Here analogous arguments to those in the

proof of Proposition 2 apply. The optimality of a binding minimum spending limit then

also follows from analogous arguments as in that proof, with the exception that we now

appeal to the representation of social welfare in (54). Finally, uniqueness of the optimal

limit follows from analogous logic as in the proof of Proposition 3.

B.5 Sufficient Conditions for V > V

Our analysis in Section 4 takes the set of feasible continuation values [V , V ] as given

and assumes V > V . The following lemma provides a sufficient condition under which

this inequality is satisfied and thus continuation values can be used as reward and

punishment to discipline the government. This condition amounts to the discount factor

being sufficiently high, or the government’s present bias being sufficiently severe, so the

current government places a high enough value on restraining future public spending.

We maintain Assumption 2 for this result.

Lemma 7. Suppose δ > δ̂, where δ̂ ≡ 1

1−Q(θ̂)
∈ (0, 1). Then V > V .

Proof. Take δ > δ̂ and suppose by contradiction that V = V . Then by the self-

enforcement constraint (13), in equilibrium the government chooses its flexible spending

rate at all dates, that is, g(θ) = gf (θ) and V (θ) = V = V for all θ ∈ Θ. Using the

representation of social welfare in (18), this yields

V =
1

β
θU(gf (θ)) +W (xf (θ)) + δV +

1

β

(∫ θ

θ

U(gf (θ))Q(θ)dθ

)
. (58)

Given this value of V , and for a given threshold θ∗∗ ∈ (θ, θ) and ε ≥ 0, let us construct

an equilibrium with the following allocation:

{g (θ) , V (θ)} =

{ {
min{gf (θ), gf (θ∗∗ − ε)}, V (θ∗∗, ε)

}
{
gf (θ), V

} if θ ≤ θ∗∗,

if θ > θ∗∗,
(59)

where

θ∗∗U(gf (θ∗∗−ε))+βW (xf (θ∗∗−ε))+βδV (θ∗∗, ε)−θ∗∗U(gf (θ∗∗))−βW (xf (θ∗∗))−βδV = 0

(60)
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and V (θ∗∗, ε) is the corresponding social welfare:

V (θ∗∗, ε) =
1

β
θU
(
min

{
gf (θ), gf (θ∗∗ − ε)

})
+W

(
max

{
xf (θ), xf (θ∗∗ − ε)

})
+ δV (θ∗∗, ε)

+
1

β

( ∫ θ∗∗−ε
θ

U
(
gf (θ)

)
Q (θ) dθ +

∫ θ∗∗
θ∗∗−ε U

(
gf (θ∗∗ − ε)

)
Q (θ) dθ

+
∫ θ
θ∗∗
U
(
gf (θ)

)
Q (θ) dθ

)
. (61)

The system (58)-(61) corresponds to an equilibrium under a maximally enforced

deficit limit, associated with maximum spending rate gf (θ∗∗ − ε). Government types

θ ≤ θ∗∗ abide to the limit and receive continuation value V (θ∗∗, ε) (associated with

restarting the equilibrium in the next period), whereas types θ > θ∗∗ spend at their

flexible rate and receive continuation value V (associated with choosing the flexible

spending rate at all future dates).

For any θ∗∗, the system admits a solution with ε = 0, in which case V (θ∗∗, ε) = V .

Suppose the system also admitted a solution with ε > 0 for some θ∗∗ ∈ (θ, θ). In this

case, equation (60) would imply V (θ∗∗, ε) > V . Moreover, since the system (58)-(61) is

incentive feasible and satisfies (12)-(15), this would imply V ≥ V (θ∗∗, ε) > V , yielding

the contradiction that we are seeking. To prove the claim, we therefore proceed by

showing that the system (58)-(61) admits a solution with ε > 0 for some θ∗∗ ∈ (θ, θ).

There are two cases to consider.

Case 1: Suppose θ̂ > θ. Choose θ∗∗ = θ̂. A given ε ≥ 0 yields (58), (59), and (61).

To establish the existence of a solution with some ε > 0, we must thus verify that the

left-hand side of (60) equals 0 for such a value. Note that the left-hand side of (60)

equals 0 for ε = 0, is strictly negative for ε sufficiently close to θ̂, and is continuous in

ε. It follows that, if the left-hand side of (60) is positive for ε > 0 arbitrarily close to

0, then there exists ε > 0 for which the left-hand side of (60) equals 0. Consider the

derivative of the left-hand side of (60) with respect to ε (where we have substituted

with θ∗∗ = θ̂ and used the fact that gf (θ) = θ/[θ + βδE [θ] /(1− δ)]):

− θ̂

θ̂ − ε
+

θ̂ + βδE [θ] /(1− δ)
θ̂ − ε+ βδE [θ] /(1− δ)

− δ

1− δ

∫ θ̂

θ̂−ε

(
1

θ̂ − ε
− 1

θ̂ − ε+ βδE [θ] /(1− δ)

)
Q(θ)dθ.

(62)

This derivative equals 0 at ε = 0. Consider the second derivative of the left-hand side

of (60) evaluated at ε = 0:

−1

θ̂
+

1

θ̂ + βδE [θ] /(1− δ)
− δ

1− δ

(
1

θ̂
− 1

θ̂ + βδE [θ] /(1− δ)

)
Q(θ̂).
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This simplifies to

(
1

θ̂
− 1

θ̂ + βδE [θ] /(1− δ)

)(
−1− δ

1− δQ(θ̂)

)
> 0, (63)

where the inequality follows from δ > δ̂ and Q(θ̂) ≤ Q(θ) = −θf(θ)(1− β) < 0.

By (62) and (63), the left-hand side of (60) achieves a local minimum at ε = 0. This

implies that the left-hand side of (60) is positive for ε > 0 arbitrarily close to 0, which

completes the argument.

Case 2: Suppose θ̂ = θ. Choose θ∗∗ = θ̂ + υ for some υ > 0 which can be taken to be

arbitrarily small. Then the same steps as in Case 1 apply, where the condition analogous

to (63) for small enough υ holds given δ > δ̂ and the continuity of Q(θ). The claim

follows.
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