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1. Introduction

This paper applies the growth accounting of Solow (1957) to the production function

for new ideas. The basic insight can be explained with a simple equation, highlighting

a stylized view of economic growth that emerges from idea-based growth models:

Economic
growth

=
Research

productivity
× Number of

researchers
e.g. 2% or 5% ↓(falling) ↑(rising)

Economic growth arises from people creating ideas. As a matter of accounting, we

can decompose the long-run growth rate into the product of two terms: the effective

number of researchers and their research productivity. We present a wide range of em-

pirical evidence showing that in many contexts and at various levels of disaggregation,

research effort is rising substantially, while research productivity is declining sharply.

Steady growth, when it occurs, results from the offsetting of these two trends.

Perhaps the best example of this finding comes from Moore’s Law, one of the key

drivers of economic growth in recent decades. This “law” refers to the empirical reg-

ularity that the number of transistors packed onto a computer chip doubles approxi-

mately every two years. Such doubling corresponds to a constant exponential growth

rate of around 35% per year, a rate that has been remarkably steady for nearly half a

century. As we show in detail below, this growth has been achieved by engaging an

ever-growing number of researchers to push Moore’s Law forward. In particular, the

number of researchers required to double chip density today is more than 18 times

larger than the number required in the early 1970s. At least as far as semiconductors

are concerned, ideas are getting harder and harder to find. Research productivity in

this case is declining sharply, at a rate that averages about 6.8% per year.

We document qualitatively similar results throughout the U.S. economy. We con-

sider detailed microeconomic evidence on idea production functions, focusing on places

where we can get the best measures of both the output of ideas and the inputs used to

produce them. In addition to Moore’s Law, our case studies include agricultural pro-

ductivity (corn, soybeans, cotton, and wheat) and medical innovations. Research pro-

ductivity for seed yields declines at about 5% per year. We find a similar rate of decline

when studying the mortality improvements associated with cancer and heart disease.
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Finally, we examine firm-level data from Compustat to provide another perspective.

While the data quality from this sample is not as good as for our case studies, the latter

suffer from possibly not being representative. We find substantial heterogeneity across

firms, but research productivity is declining in more than 85% of our sample. Averaging

across firms, research productivity declines at a rate of around 10% per year.

Perhaps research productivity is declining sharply within every particular case that

we look at and yet not declining for the economy as a whole. While existing varieties

run into diminishing returns, perhaps new varieties are always being invented to stave

this off. We consider this possibility by taking it to the extreme. Suppose each variety

has a productivity that cannot be improved at all, and instead aggregate growth pro-

ceeds entirely by inventing new varieties. To examine this case, we consider research

productivity for the economy as a whole. We once again find that it is declining sharply:

aggregate growth rates are relatively stable over time,1 while the number of researchers

has risen enormously. In fact, this is simply another way of looking at the original point

of Jones (1995), and for this reason, we present this application first to illustrate our

methodology. We find that research productivity for the aggregate U.S. economy has

declined by a factor of 41 since the 1930s, an average decrease of more than 5% per

year.

This is a good place to explain why we think looking at the macro data is insufficient

and why studying the idea production function at the micro level is crucial; Section 3

below discusses this issue in more detail. The overwhelming majority of papers on

economic growth published in the past decade are based on models in which research

productivity is constant.2 An important justification for assuming constant research

productivity is an observation first made in the late 1990s by a series of papers written

in response to the aggregate evidence.3 These papers highlighted that composition

effects could render the aggregate evidence misleading: perhaps research productivity

at the micro level is actually stable. The rise in aggregate research could apply to an

1There is a debate over whether the slower rates of growth over the last decade are a temporary
phenomenon due to the global financial crisis, or a sign of slowing technological progress. Gordon (2016)
argues that the strong US productivity growth between 1996 and 2004 was a temporary blip and that
productivity growth will, at best, return to the lower growth rates of 1973–1996. Although we do not need
to take a stance on this, note that if frontier TFP growth really has slowed down, this only strengthens our
argument.

2Examples are cited below after equation (1).
3The initial papers included Dinopoulos and Thompson (1998), Peretto (1998), Young (1998), and

Howitt (1999); Section 3 contains additional references.
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extensive margin, generating an increase in product variety, so that the number of

researchers per variety — and thus micro-level research productivity and growth rates

themselves — are constant. The aggregate evidence, then, may tell us nothing about

research productivity at the micro level. Hence the contribution of this paper: study

the idea production function at the micro level to see directly what is happening to

research productivity.

Not only is this question interesting in its own right, but it is also informative about

the kind of models that we use to study economic growth. Despite large declines in

research productivity at the micro level, relatively stable exponential growth is common

in the cases we study (and in the aggregate U.S. economy). How is this possible? Look-

ing back at the equation that began the introduction, declines in research productivity

must be offset by increased research effort, and this is indeed what we find. Moreover,

we suggest at the end of the paper that the rapid declines in research productivity

that we see in semiconductors, for example, might be precisely due to the fact that

research effort is rising so sharply. Because it gets harder to find new ideas as research

progresses, a sustained and massive expansion of research like we see in semiconduc-

tors (for example, because of the “general purpose technology” nature of information

technology) may lead to a substantial downward trend in research productivity.

Others have also provided evidence suggesting that ideas may be getting harder to

find over time. Griliches (1994) provides a summary of the earlier literature exploring

the decline in patents per dollar of research spending. Gordon (2016) reports extensive

new historical evidence from throughout the 19th and 20th centuries. Cowen (2011)

synthesizes earlier work to explicitly make the case. (Ben) Jones (2009) documents

a rise in the age at which inventors first patent and a general increase in the size of

research teams, arguing that over time more and more learning is required just to get

to the point where researchers are capable of pushing the frontier forward. We see our

evidence as complementary to these earlier studies but more focused on drawing out

the tight connections to growth theory.

The remainder of the paper is organized as follows. Section 2 lays out our concep-

tual framework and presents the aggregate evidence on research productivity to illus-

trate our methodology. Section 3 places this framework in the context of growth theory

and suggests that applying the framework to micro data is crucial for understanding the
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nature of economic growth. Sections 4 through 7 consider our applications to Moore’s

Law, agricultural yields, medical technologies, and Compustat firms. Section 8 then

revisits the implications of our findings for growth theory, and Section 9 concludes.

2. Research Productivity and Aggregate Evidence

2.1. The Conceptual Framework

An equation at the heart of many growth models is an idea production function taking

a particular form:
Ȧt
At

= αSt. (1)

Classic examples include Romer (1990) and Aghion and Howitt (1992), but many recent

papers follow this approach, including Aghion, Akcigit and Howitt (2014), Acemoglu

and Restrepo (2016), Akcigit, Celik and Greenwood (2016b), and Jones and Kim (2018).

In the equation above, Ȧt/At is total factor productivity growth in the economy. The

variable St (think “scientists”) is some measure of research input, such as the number

of researchers. This equation then says that the growth rate of the economy — through

the production of new ideas — is proportional to the number of researchers.

Relating Ȧt/At to ideas runs into the familiar problem that ideas are hard to mea-

sure. Even as simple a question as “What are the units of ideas?” is troublesome. We

follow much of the literature — including Aghion and Howitt (1992), Grossman and

Helpman (1991), and Kortum (1997) — and define ideas to be in units so that a constant

flow of new ideas leads to constant exponential growth in A. For example, each new

idea raises incomes by a constant percentage (on average), rather than by a certain

number of dollars. This is the standard approach in the quality ladder literature on

growth: ideas are proportional improvements in productivity. The patent statistics for

most of the 20th century are consistent with this view; indeed, this was a key piece

of evidence motivating Kortum (1997). This definition means that the left hand side

of equation (1) corresponds to the flow of new ideas. However, this is clearly just a

convenient definition, and in some ways a more accurate title for this paper would be

“Is exponential growth getting harder to achieve?”

We can now define the productivity of the idea production function as the ratio of



6 BLOOM, JONES, VAN REENEN, AND WEBB

the output of ideas to the inputs used to make them:

Research productivity :=
Ȧt/At
St

=
# of new ideas

# of researchers
. (2)

The null hypothesis tested in this paper comes from the relationship assumed in (1).

Substituting this equation into the definition of research productivity, we see that (1)

implies that research productivity equals α — that is, research productivity is constant

over time. This is the standard hypothesis in much of the growth literature. Under this

null, a constant number of researchers can generate constant exponential growth.

The reason this is such a common assumption is also easy to see in equation (1).

With constant research productivity, a research subsidy that increases the number of

researchers permanently will permanently raise the growth rate of the economy. In

other words “constant research productivity” and the fact that sustained research sub-

sidies produce “permanent growth effects” are equivalent statements.4 This clarifies

a claim in the introduction: testing the null hypothesis of constant research produc-

tivity is interesting in its own right but also because it is informative about the kind of

models that we use to study economic growth. The finding that research productivity is

declining virtually everywhere we look poses problems for a large class of endogenous

growth models. Moreover, the way we have defined ideas gives this concept economic

relevance: exponential growth (e.g. in semiconductor density or seed yields or living

standards) is getting harder to find.

2.2. Aggregate Evidence

The bulk of the evidence presented in this paper concerns the extent to which a con-

stant level of research effort can generate constant exponential growth within a rela-

tively narrow category, such as a firm or a seed type or Moore’s Law or a health condi-

tion. We provide consistent evidence that the historical answer to this question is no:

research productivity is declining at a substantial rate in virtually every place we look.

This finding raises a natural question, however. What if there is sharply declining

4The careful reader may wonder about this statement in richer models — for example, lab equipment
models where research is measured in goods rather than in bodies or models with both horizontal and
vertical dimensions to growth. These extensions will be incorporated below in such a way as to maintain
the equivalence between “constant research productivity” and “permanent growth effects.”
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research productivity within each product line, but the main way that growth proceeds

is by developing ever-better new product lines? First there was steam power, then

electric power, then the internal combustion engine, then the semiconductor, then

gene editing, and so on. Maybe there is limited opportunity within each area for pro-

ductivity improvement and long-run growth occurs through the invention of entirely

new areas. Maybe research productivity is declining within every product line, but still

not declining for the economy as a whole because we keep inventing new products. An

analysis focused on microeconomic case studies would never reveal this to be the case.

The answer to this concern turns out to be straightforward and is an excellent place

to begin. First, consider the extreme case where there is no possibility at all for produc-

tivity improvement in a product line and all productivity growth comes from adding

new product lines. Of course, this is just the original Romer (1990) model itself, and to

generate constant research productivity in that case requires the equation we started

the paper with:
Ȧt
At

= αSt. (3)

In this interpretation,At represents the number of product varieties and St is the aggre-

gate number of researchers. Even with no ability to improve productivity within each

variety, a constant number of researchers can sustain exponential growth if the variety-

discovery function exhibits constant research productivity.

This hypothesis, however, runs into an important well-known problem noted by

Jones (1995). For the U.S. economy as a whole, exponential growth rates in GDP per

person since 1870 or in total factor productivity since the 1930s — which are related

to the left side of equation (3) — are relatively stable or even declining. But measures

of research effort — the right side of the equation — have grown tremendously. When

applied to the aggregate data, our approach of looking at research productivity is just

another way of making this same point.

To illustrate the approach, we use the decadal averages of TFP growth to measure

the “output” of the idea production function. For the input, we use the NIPA measure of

investment in “intellectual property products,” a number that is primarily made up of

research and development spending but also includes expenditures on creating other

nonrival goods like computer software, music, books, and movies. As explained further

below, we deflate this input by a measure of the average annual earnings for men with
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Figure 1: Aggregate Data on Growth and Research Effort
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Note: The idea output measure is TFP growth, by decade (and for 2000-2014 for
the latest observation). For the years since 1950, this measure is the BLS Private
Business Sector multifactor productivity growth series, adding back in the con-
tributions from R&D and IPP. For the 1930s and 1940s, we use the measure from
Robert Gordon (2016). The idea input measure is gross domestic investment in
intellectual property products from the National Income and Product Accounts,
deflated by a measure of the nominal wage for high-skilled workers.

4 or more years of college so that it measures the “effective” number of researchers that

the economy’s R&D spending could purchase. These basic data are shown in Figure 1.

Note that we use the same scale on the two vertical axes to reflect the null hypothesis

that TFP growth and effective research should behave similarly. But of course the two

series look very different.

Figure 2 shows research productivity and research effort by decade. Since the 1930s,

research effort has risen by a factor of 23 — an average growth rate of 4.3 percent per

year. Research productivity has fallen by an even larger amount — by a factor of 41 (or

at an average growth rate of -5.1 percent per year). By construction, a factor of 23 of

this decline is due to the rise in research effort and so less than a factor of 2 is due to the

well-known decline in TFP growth.

The “new economy” of the 1990s exhibited a bounceback of TFP growth (see Jor-

genson and Stiroh (1999) or Fernald (2014)) that was even larger than the increase in
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Figure 2: Aggregate Evidence on Research Productivity
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Note: Research productivity is the ratio of idea output, measured as TFP growth,
to research effort. See notes to Figure 1 and the online data appendix. Both
research productivity and research effort are normalized to the value of 1 in the
1930s.

research in that decade, resulting in a slight increase in research productivity between

the 1980s and 1990s. But the overall trend is clear. For example, between the 1960s and

the 2000s, research productivity fell by a factor of 8.0. And between the 1980s and the

2000s, it fell by a factor of 1.7, with the entire amount due to rising research effort.

This aggregate evidence could be improved on in many ways. One might question

the TFP growth numbers — how much of TFP growth is due to innovation versus real-

location or declines in misallocation? One might seek to include international research

in the input measure. But reasonable variations along these lines would not change the

basic point: a model in which economic growth arises from the discovery of newer and

better varieties with limited possibilities for productivity growth within each variety ex-

hibits sharply-declining research productivity. If one wishes to maintain the hypothesis

of constant research productivity, one must look elsewhere. It is for this reason that the

literature — and this paper — turns to the micro side of economic growth.
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3. Refining the Conceptual Framework

In this section, we further develop the conceptual framework introduced in the previ-

ous section. First, we explain why the aggregate evidence just presented can be mis-

leading, motivating our focus on micro data. Second, we consider the measurement

of research productivity when the input to research is R&D expenditures (i.e. “goods”)

rather than just bodies or researchers (i.e. “time”). Finally, we discuss various exten-

sions to our calculation of research productivity.

3.1. The Importance of Micro Data

The null hypothesis that research productivity is constant over time is attractive con-

ceptually in that it leads to models in which changes in policies related to research

can permanently affect the growth rate of the economy. Several papers, then, have

proposed alternative models in which the calculations using aggregate data can be mis-

leading about research productivity. The insight of Dinopoulos and Thompson (1998),

Peretto (1998), Young (1998), and Howitt (1999) is that the aggregate evidence may

be masking important heterogeneity, and that research productivity may nevertheless

be constant for a significant portion of the economy. Perhaps the idea production

function for individual products shows constant research productivity. The aggregate

numbers may simply capture the fact that every time the economy gets larger we add

more products.5

To see the essence of the argument, suppose that the economy produces Nt dif-

ferent products, and each of these products is associated with some quality level Ait.

Innovation can lead the quality of each product to rise over time according to an idea

production function,
Ȧit
Ait

= αSit. (4)

Here, Sit is the number of scientists devoted to improving the quality of good i, and in a

symmetric case, we might have Sit = St
Nt

. The key is that the aggregate number of scien-

tists St can be growing, but perhaps the number per product St/Nt is not growing. This

can occur in equilibrium if the number of products itself grows endogenously at the

5This line of research has been further explored by Aghion and Howitt (1998), Li (2000), Laincz and
Peretto (2006), Ha and Howitt (2007), Kruse-Andersen (2016), and Peretto (2016a; 2016b).
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right rate. In this case, the aggregate evidence discussed earlier would not tell us any-

thing about the idea production functions associated with the quality improvements of

each variety. Instead, aggregation masks the true constancy of research productivity at

the micro level.

This insight provides one of the key motivations for the present paper: to study the

idea production function at the micro level. That is, we study equation (4) directly and

consider research productivity for individual products:

Research productivity :=
Ȧit/Ait
Sit

. (5)

3.2. “Lab Equipment” Specifications

In many applications, the input that we measure is R&D expenditures rather than the

number of researchers. In fact, one could make the case that this is a more desirable

measure, in that it weights the various research inputs according to their relative prices:

if expanding research involves employing people of lower talent, this will be properly

measured by R&D spending. When the only input into ideas is researchers, then de-

flating R&D expenditures by an average wage will appropriately recover the effective

quantity of researchers. In practice, R&D expenditures also typically involve spending

on capital goods and materials. As explained next, deflating by the nominal wage to

get an “effective number of researchers” that this research spending could purchase

remains a good way to proceed.

In the growth literature, these specifications are called “lab equipment” models,

because implicitly both capital and labor are used as inputs to produce ideas. In lab

equipment models, the endogenous growth case occurs when the idea production func-

tion takes the form

Ȧt = αRt, (6)

where Rt is measured in units of a final output good. For the moment, we discuss this

issue in the context of a single-good economy; in the next section, we explain how the

analysis extends to the case of multiple products.

To see why equation (6) delivers endogenous growth, it is necessary to specify the
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economic environment more fully. First, suppose there is a final output good that is

produced with a standard Cobb-Douglas production function:

Yt = Kθ
t (AtL)1−θ, (7)

where we assume labor is fixed, for simplicity. Next, the resource constraint for this

economy is

Yt = Ct + It +Rt (8)

That is, final output is used for consumption, investment in physical capital, or re-

search.

We can now combine these three equations to get the endogenous growth result.

First, notice that dividing both sides of the production function for final output by Y θ

and rearranging yields

Yt =

(
Kt

Yt

) θ
1−θ

AtL. (9)

Then, letting st := Rt/Yt denote the share of the final good spent on research, the idea

production function in (6) can be expressed as

Ȧt = αRt = αstYt = αst

(
Kt

Yt

) θ
1−θ

AtL. (10)

And rearranging gives

Ȧt
At

= α
(
Kt
Yt

) θ
1−θ × stL

research productivity “scientists”

(11)

It is now easy to see how this setup generates endogenous growth. Along a bal-

anced growth path, the capital-output ratio K/Y will be constant, as will the research

investment share st. If we assume there is no population growth, then equation (11)

delivers a constant growth rate of total factor productivity in the long-run. Moreover,

a permanent increase in the R&D share s will permanently raise the growth rate of the

economy.

Looking back at the idea production function in (6), the question is then how to

define research productivity there. The answer is both intuitive and simple: we deflate
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the R&D expenditures Rt by the wage to get a measure of “effective scientists.” Letting

wt = θ̄Yt/Lt be the wage for labor in this economy,6 (6) can be written as

Ȧt
At

=
αwt
At
× Rt
wt
. (12)

Importantly, the two terms on the right-hand side of this equation will be constant

along a balanced growth path (BGP) in a standard endogenous growth model. It is easy

to see that S̃t := Rt
wt

= Rt
Yt
· Ytwt = stL/θ̄. And of coursewt/At is also constant along a BGP.

In other words, if we deflate R&D spending by the economy’s wage rate, we get S̃t,

a measure of the number of researchers the R&D spending could purchase. Of course,

research labs spend on other things as well, like lab equipment and materials, but the

theory makes clear how S̃t is a useful measure for constructing research productivity.

Hence we will refer to S̃t as “effective scientists” or “research effort.”

The idea production function in (12) can then be written as

Ȧt
At

= α̃tS̃t (13)

where both α̃t and S̃t will be constant in the long run under the null hypothesis of en-

dogenous growth. We can therefore define research productivity in the lab equipment

setup in a way that parallels our earlier treatment:

Research productivity :=
Ȧt/At

S̃t
. (14)

The only difference is that we deflate R&D expenditures by a measure of the nominal

wage to get S̃. Under the null hypothesis of endogenous growth, this measure of re-

search productivity should be constant in the long run (and would only vary outside

the long-run because of changes in the capital-output ratio).

An easy intuition for (14) is this: endogenous growth requires that a constant pop-

ulation — or a constant number of researchers — be able to generate constant expo-

nential growth. Deflating R&D spending by the wage puts the R&D input in units of

“people” so that constant research productivity is equivalent to the null hypothesis of

endogenous growth.

6The “bar” over θ allows for the possibility, common in these models, that labor is paid proportionately
less than its marginal product because of imperfect competition.
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Equation (12) above also makes clear why deflating R&D spending by the wage is

important. If we did not and instead naively computed research productivity by divid-

ing Ȧt/At by Rt, we would find that research productivity would be falling because of

the rise inAt, even in the endogenous growth case. In other words, this naive approach

to research productivity would not really correspond to anything economically useful.

Economic theory suggests deflating by the research wage in order to get a meaningful

concept of research productivity, in this case, one that corresponds to an important

hypothesis in the growth literature.

As a measure of the nominal wage in our empirical applications, we use mean per-

sonal income from the Current Population Survey for males with a Bachelor’s degree or

more of education.7 This approach means that researchers of heterogeneous quality

are combined according to their relative wages. For example, if the best researchers are

hired first and subsequent researchers are less talented, the additional researchers will

be given a lower weight in our research measure. The potential depletion of research

talent is then appropriately incorporated in our empirical approach.8

3.3. Heterogeneous Goods and the Lab Equipment Specification

In the previous two subsections, we discussed (i) what happens if research productivity

is only constant within each product while the number of products grows and (ii) how

to define research productivity when the input to research is measured in goods rather

than bodies. Here, we explain how to put these two together.

Among the very first models that used both horizontal and vertical research to neu-

tralize scale effects, only Howitt (1999) used the lab-equipment approach. In that pa-

per, it turns out that the method we have just discussed — deflating R&D expenditures

7These data are from Census Tables P18 and P19, available at http://www.census.gov/topics/
income-poverty/income/data/tables.html. Prior to 1991, we use the series for “4 or more years of college.”
For years between 1939 and 1967, we use the series Bc845 from the Historical Statistics for the U.S.
Economy, Millennial Edition. Finally, for the aggregate research productivity calculation in Figure 1, we
require a deflator from the 1930s. We extrapolate the college earnings series backward into the 1930s using
nominal GDP per person for this purpose.

8A shortcoming of using the college earnings series is that the increase in college participation may
mean that less talented people are attending college over time. To the extent that this is true, our deflator
may understate the rise in the wage for a constant-quality college graduate and hence overstate the rise
in research productivity. As an alternative, we redid all our results using nominal GDP per person to
deflate R&D expenditures — which according to the discussion surrounding equation (12) is a valid way to
proceed. The results are similar, in part because the increases in research productivity that we document
are so large.

http://www.census.gov/topics/income-poverty/income/data/tables.html
http://www.census.gov/topics/income-poverty/income/data/tables.html
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by the economy’s average wage — works precisely as explained above. That is, research

productivity for each product should be constant if one divides the growth rate by the

effective number of researchers working to improve that product.9 This is true more

generally in these horizontal/vertical models of growth whenever product variety grows

at the same rate as the economy’s population. Peretto (2016a) cites a large literature

suggesting that this is the case: product variety and population scale together over

time and across countries.10 The two previous subsections then merge together very

naturally.

3.4. Stepping on Toes

One other potential modification to the idea production function that has been con-

sidered in the literature is a duplication externality. For example, perhaps the idea

production function depends on Sλt , where λ is less than one. Doubling the number of

researchers may less than double the production of new ideas because of duplication

or because of some other source of diminishing returns.

We could incorporate this effect into our analysis explicitly but choose instead to

focus on the benchmark case of λ = 1 for several reasons. First and foremost, our

measurement of research effort already incorporates a market-based adjustment for

the depletion of talent: R&D spending weights workers according to their wage, and less

talented researchers will naturally earn a lower salary. If more of these workers are hired

over time, R&D spending will not rise by as much. Second, adjusting for λ only affects

the magnitude of the trend in research productivity, but not the overall qualitative fact

of whether or not there is a downward trend. It is easy to deflate the growth rate of

research effort by any particular value of λ to get a sense for how this matters; cutting

9The main surprise in confirming this observation is that wt/Ait is constant. In particular, wt is
proportional to output per worker, and one might have expected that output per worker would grow with
At (an average across varieties) but also with Nt, the number of varieties. However, this turns out not to
be the case: Howitt includes a fixed factor of production (like land), and this fixed factor effectively eats
up the gains from expanding variety. More precisely, the number of varieties grows with population while
the amount of land per person declines with population, and these two effects exactly offset.

10Building on the preceding footnote, it is worth also considering Peretto (2016b) in this context. Like
Howitt, that paper has a fixed factor and for some parameter values, his setup also leads to constant
research productivity. For other parameter values (e.g. if the fixed factor is turned off), the wage wt
grows both because of quality improvements and because of increases in variety. Nevertheless, deflating
by the wage is still a good way to test the null hypothesis of endogenous growth: in that case, research
productivity rises along an endogenous growth path. So the finding below that research productivity is
declining is also relevant in this broader framework.
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our growth rates in half — an extreme adjustment — would still leave the nature of

our results unchanged. Third, one might expect a “short-run” value of λ to differ from

its “long-run” value. For example, the duplication and talent depletion effects could

certainly apply if we tried to double the amount of research in a given year. However, to

the extent that the increase occurs gradually over time, one might expect these effects

to be mitigated. Finally, there is no consensus on what value of λ one should use —

Kremer (1993) even considers the possibility that it might be larger than one because

of network effects and Zeira (2011) shows how patent races and duplication can occur

even with λ = 1. Appendix A shows the robustness of the main results in the paper to

our baseline assumption by considering the case of λ = 3/4, for example.

The remainder of the paper applies this framework in a wide range of different

contexts: Moore’s Law for semiconductors, agricultural crop yields, pharmaceutical

innovation and mortality, and then finally at the firm level using Compustat data.

4. Moore’s Law

One of the key drivers of economic growth during the last half century is Moore’s Law:

the empirical regularity that the number of transistors packed onto an integrated cir-

cuit serving as the central processing unit for a computer doubles approximately every

two years. Figure 3 shows this regularity back to 1971. The log scale of this figure

indicates the overall stability of the relationship, dating back nearly fifty years, as well

as the tremendous rate of growth that is implied. Related formulations of Moore’s Law

involving computing performance per watt of electricity or the cost of information

technology could also be considered, but the transistor count on an integrated circuit

is the original and most famous version of the law, so we use that one here.11

A doubling time of two years is equivalent to a constant exponential growth rate

of 35 percent per year. While there is some discussion of Moore’s Law slowing down

in recent years (there always seems to be such discussion!), we will take the constant

exponential growth rate as corresponding to a constant flow of new ideas back to 1971.

That is, we assume the output of the idea production for Moore’s Law is a stable 35

percent per year. Other alternatives are possible. For example, we could use decadal

11See the Wikipedia entry at https://en.wikipedia.org/wiki/Moores law.

https://en.wikipedia.org/wiki/Moores_law
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Figure 3: The Steady Exponential Growth of Moore’s Law

Source: Wikipedia, https://en.wikipedia.org/wiki/Moores law.

https://en.wikipedia.org/wiki/Moores_law
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growth rates or other averages, and some of these approaches will be employed later

in the paper. However, from the standpoint of understanding steady, rapid exponential

growth for nearly half a century, the stability implied by the straight line in Figure 3 is

a good place to start. And any slowing of Moore’s Law would only reinforce the finding

we are about to document.12

If the output side of Moore’s Law is constant exponential growth, what is happening

on the input side? Many commentators note that Moore’s Law is not a law of nature

but instead results from intense research effort: doubling the transistor density is of-

ten viewed as a goal or target for research programs. We measure research effort by

deflating the nominal semiconductor R&D expenditures of all the main firms by the

nominal wage of high-skilled workers, as discussed above. Our semiconductor R&D se-

ries includes research spending by Intel, Fairchild, National Semiconductor, Motorola,

Texas Instruments, Samsung, and more than two dozen other semiconductor firms and

equipment manufacturers. More details are provided in the notes to Table 1 below and

in the online data appendix.

The striking fact, shown in Figure 4, is that research effort has risen by a factor of

18 since 1971. This increase occurs while the growth rate of chip density is more or

less stable: the constant exponential growth implied by Moore’s Law has been achieved

only by a massive increase in the amount of resources devoted to pushing the frontier

forward.

Assuming a constant growth rate for Moore’s Law, the implication is that research

productivity has fallen by this same factor of 18, an average rate of 6.8 percent per year.

If the null hypothesis of constant research productivity were correct, the growth rate

underlying Moore’s Law should have increased by a factor of 18 as well. Instead, it

was remarkably stable. Put differently, because of declining research productivity, it is

around 18 times harder today to generate the exponential growth behind Moore’s Law

than it was in 1971.

Table 1 reports the robustness of this result to various assumptions about which

R&D expenditures should be counted. No matter how we measure R&D spending, we

see a large increase in effective research and a corresponding large decline in research

productivity. Even by the most conservative measure in the table, research productivity

12For example, there is a recent shift away from speed and toward energy-saving features; see Flamm
(forthcoming) and Pillai (2016). However, our analysis still applies historically.
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Figure 4: Data on Moore’s Law
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Note: The effective number of researchers is measured by deflating the nominal
semiconductor R&D expenditures of key firms by the average wage of high-skilled
workers. The R&D data includes research by Intel, Fairchild, National Semiconductor,
Texas Instruments, Motorola, and more than two dozen other semiconductor firms and
equipment manufacturers; see Table 1 for more details.

falls by a factor of 8 between 1971 and 2014.

The null hypothesis at the heart of many endogenous growth models — the con-

stancy of research productivity — is resoundingly rejected in the case of Moore’s Law.

The rise of information technology is an integral part of economic growth in recent

decades. One might have expected this rapidly-growing sector to be one of the more

natural places to find support for this aspect of endogenous growth theory. Instead, it

provides one of the sharpest critiques.

4.1. Caveats

Now is a good time to consider what could go wrong in our research productivity cal-

culation at the micro level. Mismeasurement on both the output and input sides are

clearly a cause for concern in general. However, there are two specific measurement

problems that are worth considering in more detail. First, suppose there are “spillovers”

from other sectors into the production of new ideas related to semiconductors. For
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Table 1: Research Productivity for Moore’s Law, 1971–2014

Factor Average Implied half-
decrease growth life (years)

Baseline 18 -6.8% 10.3

(a) Narrow 8 -4.8% 14.5

(b) Narrow (downweight conglomerates) 11 -5.6% 12.3

(c) Broad (downweight conglomerates) 26 -7.6% 9.1

(d) Intel only (narrow) 347 -13.6% 5.1

(e) Intel+AMD (narrow) 352 -13.6% 5.1

Note: The R&D measures are based on Compustat data and PATSTAT data, assembled with
assistance from Unni Pillai and Antoine Dechezlepretre. We start with the R&D spending data on
30 semiconductor firms plus an additional 11 semiconductor equipment manufacturers from all
over the world. Next, we gathered data from PATSTAT on patents from the U.S. patent office. The
different rows in this table differ in how we add up the data across firms. There are two basic ways
we treat the R&D data. In the “Narrow” treatment, we recognize that firms engage in different
kinds of R&D, only some of which may be relevant for Moore’s Law. We therefore weight a firm’s
R&D according to a (moving average) of the share of its patents that are in semiconductors (IPC
group “H01L”). For example, in 1970, 75% of Intel’s patents were for semiconductors, but by 2010
this number had fallen to just 8%. In the “Broad” category, we include all R&D by semiconductor
firms like Intel and National Semiconductor but use the patent data to infer semiconductor R&D
for conglomerates like IBM, RCA, Texas Instruments, Toshiba, and Samsung. The “downweight
conglomerates” label means that we further downweight the R&D spending of conglomerates
and newer firms like Micron and SK Hynix that focus on memory chips or chips for HDTVs and
automobiles by a factor of 1/2, reflecting the possibility that even their semiconductor patenting
data may be broader than Moore’s Law. Finally the last two rows show results when we consider
the “Narrow” measure of R&D but focus on only one or two firms. See the online data appendix for
more details.
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example, progress in a completely different branch of materials science may lead to a

new idea that improves computer chips. Such positive spillovers are not a problem for

our analysis since they would show up as an increase in research productivity rather

than as the declines that we document in this paper.13

A type of measurement error that could cause our findings to be misleading is if

we systematically understate R&D in early years and this bias gets corrected over time.

In the case of Moore’s Law, we are careful to include research spending by firms that

are no longer household names, like Fairchild Camera and Instrument (later Fairchild

Semiconductor) and National Semiconductor so as to minimize this bias: for example,

in 1971, Intel’s R&D was just 0.4 percent of our estimate for total semiconductor R&D

in that year. Throughout the paper, we try to be as careful as we can with measurement

issues, but this type of problem must be acknowledged.

5. Agricultural Crop Yields

Our next application for measuring research productivity examines the evolution of

crop yields for various crops over time. Due partly to the historical importance of

agriculture in the economy, crop yields and agricultural R&D spending are relatively

well-measured for various crops. For each of corn, soybeans, cotton, and wheat, we

measure ideas as crop yields, and research inputs as R&D expenditure directed at im-

proving those yields. Crop R&D is generally broken down into research on biologi-

cal efficiency (cross-breeding and bioengineering), mechanization, management, pro-

tection and maintenance, and post-harvest (see, for example, Huffman and Evenson

(2006)). We count research on biological efficiency and protection and maintenance as

the portion devoted to improving crop yields.

Figure 5 shows yields for our four crops back to the 1960s, measured in bushels or

pounds harvested per acre planted.14 These correspond to average yields realized on

13If such spillovers were larger at the start of our time period than at the end, we could be underestimat-
ing the impact of semiconductor R&D on productivity growth. We do not know of evidence suggesting
this. For example, see Lucking, Bloom and Van Reenen (2017).

14 For our measure of ideas, we use the national realized yields series for each crop available from the
U.S. Department of Agriculture National Agricultural Statistics Service (2016). Our measure of R&D inputs
consists of the sum of R&D spending by the public and private sectors in the U.S. Data on private sector
biological efficiency and crop protection R&D expenditures are from an updated USDA series based on
Fuglie et al. (2011), with the distribution of expenditure by crop taken from Perrin et al. (1983), Fernandez-
Cornejo et al. (2004), Traxler et al. (2005), Huffman and Evenson (2006), and University of York (2016).
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Figure 5: U.S. Crop Yields

1960 1970 1980 1990 2000 2010 2020
40

60

80

100

120

140

160

180

  

BUSHELS/ACRE

(a) Corn

1960 1970 1980 1990 2000 2010 2020
20

25

30

35

40

45

50

  

BUSHELS/ACRE

(b) Soybeans

1960 1970 1980 1990 2000 2010 2020
400

500

600

700

800

900

  

LBS/ACRE

(c) Cotton

1960 1970 1980 1990 2000 2010 2020
20

25

30

35

40

45

50

  

BUSHELS/ACRE

(d) Wheat

Note: Smoothed yields are computed using an HP filter with a smoothing parameter of 400.
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U.S. farms. They are therefore subject to many influences, including choice of inputs

and random shocks. These shocks, especially adverse weather and pest events, tend to

have asymmetric effects: adverse events cause much larger reductions in yields than

favorable events increase them, as indicated by the many large one-year reductions

followed by recoveries in the figure (see Huffman, Jin and Xu (2016)). Nevertheless,

yields across these four crops roughly doubled between 1960 and 2015.

Figure 6 shows the annualized average 5-year growth rate of yields (after smooth-

ing to remove shocks mostly due to weather). Yield growth has averaged around 1.5

percent per year since 1960 for these four crops, but with ample heterogeneity. These

5-year growth rates serve as our measure of idea output in studying the idea production

function for seed yields.

The green lines in Figure 6 show measures of the “effective” number of researchers

working on each crop, measured as the sum of public and private R&D spending de-

flated by the wage of high-skilled workers. Two measures are presented. The faster-

rising number corresponds to research targeted only at so-called biological efficiency.

This includes cross-breeding (hybridization) and genetic modification directed at in-

creasing yields, both directly and indirectly via improving insect resistance, herbicide

tolerance, and efficency of nutrient uptake, for example. The slower-growing number

additionally includes research on crop protection and maintenance, which includes

the development of herbicides and pesticides. The effective number of researchers

has grown sharply since 1969, rising by a factor that ranges from 3 to more than 25,

depending on the crop and the research measure.

It is immediately evident from Figure 6 that research productivity has fallen sharply

for agricultural yields: yield growth is relatively stable or even declining, while the

effective research that has driven this yield growth has risen tremendously. Research

productivity is simply the ratio of average yield growth divided by the number of re-

searchers.

Table 2 summarizes the research productivity calculation for seed yields. As already

noted, the effective number of researchers working to improve seed yields rose enor-

mously between 1969 and 2009. For example, the increase was more than a factor of

Data on U.S. public sector R&D expenditure by crop are from the U.S. Department of Agriculture National
Institute of Food and Agriculture Current Research Information System (2016) and Huffman and Evenson
(2006), with the distribution of expenditure by research focus taken from Huffman and Evenson (2006).
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Figure 6: Yield Growth and Research Effort by Crop
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(b) Soybeans
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(c) Cotton
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Note: The blue line is the annual growth rate of the smoothed yields over the following 5 years, from
Figure 5. The two green lines report “Effective Research”: the solid line is based on R&D targeting seed
efficiency only; the dashed line additionally includes research on crop protection. Both are normalized
to one in 1969. R&D expenditures are deflated by a measure of the nominal wage for high-skilled workers.
See footnote 14 and the online data appendix for more details.
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Table 2: Research Productivity by Crop, 1969–2009

— Effective research — Research Productivity
Factor Average Factor Average

Crop increase growth decrease growth

Research on seed efficiency only

Corn 23.0 7.8% 52.2 -9.9%

Soybeans 23.4 7.9% 18.7 -7.3%

Cotton 10.6 5.9% 3.8 -3.4%

Wheat 6.1 4.5% 11.7 -6.1%

Research includes crop protection

Corn 5.3 4.2% 12.0 -6.2%

Soybeans 7.3 5.0% 5.8 -4.4%

Cotton 1.7 1.3% 0.6 +1.3%

Wheat 2.0 1.7% 3.8 -3.3%

Note: In the first panel of results, the research input is based on R&D expenditures for seed
efficiency only. The second panel additionally includes research on crop protection. R&D
expenditures are deflated by a measure of the nominal wage for high-skilled workers. See
footnote 14 and the online data appendix for more details.
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23 for both corn and soybeans if we restrict attention to seed-yield research narrowly-

defined. If yield growth were constant (which is not a bad approximation across the

four crops as shown in Figure 6), then research productivity would on average decline

by this same factor. The last 2 columns of Table 2 show this to be the case. On average,

research productivity declines for crop yields by about 6 percent per year using the nar-

row definition of research and by about 4 percent per year using the broader definition.

6. Mortality and Life Expectancy

Health expenditures account for around 18 percent of U.S. GDP, and a healthy life is

one of the most important goods we purchase. Our third collection of industry case

studies examines the productivity of medical research.

Figure 7 shows U.S. life expectancy at birth and at age 65. This graph makes the

important point that life expectancy is one of the few economic goods that does not

exhibit exponential growth. Instead, arithmetic growth provides a better description of

the time path of life expectancy. Since 1950, U.S. life expectancy at birth has increased

at a relatively stable rate of 1.8 years each decade, and life expectancy at age 65 has risen

at 0.9 years per decade (see Deaton, 2013).

Also shown in the graph is the well-known fact that overall life expectancy grew

even more rapidly during the first half of the 20th century, at around 3.8 years per

decade. This raises the question of whether even arithmetic growth is an appropri-

ate characterization. We believe that it is for two reasons. First, there is no sign of a

slowdown in the years gained per decade since 1950, either in life expectancy at birth

or in life expectancy at age 65. The second reason is a fascinating empirical regularity

documented by Oeppen and Vaupel (2002). That paper shows that “record female life

expectancy” — the life expectancy of women in the country for which they live the

longest — has risen at a remarkably steady rate of 2.4 years per decade ever since 1840.

Steady linear increases in life expectancy, not exponential ones, seem to be the norm.

6.1. New Molecular Entities

Our first example from the medical sector is a fact that is well-known in the literature,

recast in terms of research productivity. Figure 8 shows the number of new molecu-
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Figure 7: U.S. Life Expectancy
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lar entities (“NMEs”) approved by the Food and Drug Administration. NMEs are new

drugs, including both chemical and biological products, that have been approved by

the FDA. Virtually all pharmaceutical advances in the last 50 years show up in these

counts (Zambrowicz and Sands, 2003). Famous examples that became commercial

blockbuster drugs are Zocor (for cholesterol), Prilosec (for gastroesophagal reflux), Clar-

itin (for allergies), Celebrex (for arthritis), and Taxol (for treating various types of can-

cer). Only two or three of the NMEs in any given year become commercial successes.

Among famous drugs, only morphine and aspirin do not show up in these counts,

because their discovery pre-dates the FDA. The flow of NMEs is well-known to show

very little trend, although 2014 and 2015 are two of the years with the most approvals.

Based on this fact, we proceed conservatively and measure idea output as the flow of

NMEs rather than as the percentage change.

We obtain data on pharmaceutical R&D spending from the Pharmaceutical Research

and Manufacturers of America (Phrma), which has conducted an annual survey of its

members back to 1970 and includes R&D performed both domestically and abroad

https://www.clio-infra.eu
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Figure 8: New Molecular Entities Approved by the FDA
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by these companies.15 Using the procedures described earlier, we get the research

productivity and effective research numbers shown in Figure 9. Research effort rises

by a factor of 9, while research productivity falls by a factor of 11 by 2007 before rising

in recent years so that the overall decline by 2014 is a factor of 5. Over the entire period,

research effort rises at an annual rate of 6.0 percent, while research productivity falls at

an annual rate of 3.5 percent.

Of course, it is far from obvious that simple counts of NMEs appropriately measure

the output of ideas; we would really like to know how important each innovation is. In

addition, the NMEs still suffer from an important aggregation issue, adding up across

a wide range of health conditions. These limitations motivate the approach described

next.

15A limitation is that it does not include R&D done by foreign companies that is performed abroad.
However, Figure 1 of Congressional Budget Office (2006) suggests that this is still a very useful measure.
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Figure 9: Research Productivity for New Molecular Entities
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6.2. Mortality

Consider a person who faces two age-invariant Poisson processes for dying, with ar-

rival rates δ1 and δ2. We think of δ1 as reflecting a particular disease we are studying,

such as cancer or heart disease, and δ2 as capturing all other sources of mortality. The

probability a person lives for at least x years before succumbing to type i mortality is

the survival rate Si(x) = e−δix, and the probability the person lives for at least x years

before dying from any cause is S(x) = S1(x)S2(x) = e−(δ1+δ2)x. Life expectancy at age

a, LE(a) is then well known to equal

LE(a) =

∫ ∞
0

S(x)dx =

∫ ∞
0

e−(δ1+δ2)xdx =
1

δ1 + δ2
. (15)

Now consider how life expectancy changes if the type imortality rate changes slightly.

It is easy to show that the expected years of life saved by the mortality change is

dLE(a) =
δi

δ1 + δ2
· LE(a) ·

(
−dδi
δi

)
. (16)

That is, the expected years of life saved from a decline in, say, cancer mortality is the

product of three terms. First is the fraction of deaths that result from cancer. Second is

the average years of life lost if someone dies from cancer at age a, and the final term is

the percentage decline in cancer mortality.

Vaupel and Canudas-Romo (2003) show that this expression generalizes to a much

richer setting. In particular, the expected years of life saved is the product of three terms

with the same interpretation. For example, they allow for an arbitrary number of causes

of death each of which has a mortality rate that varies arbitrarily with age.16

As discussed at the start of this section, life expectancy tends to rise linearly. There-

fore, constant exponential growth in income per person is associated with constant

arithmetic increases in life expectancy, which in the aggregate average 1.8 years per

decade in the U.S. We therefore take the quantity described in equation (16) as our

measure of the output of ideas associated with declines in mortality for a given dis-

16Their formula involves an extra covariance term as well. In particular, the covariance between the age-
specific percentage decline in mortality associated with cancer and the years of life saved at age a when
cancer is averted. When the percentage decline in mortality rates is the same across ages, this covariance
is zero. More generally, it can differ from zero, but in many of the calculations in their paper, the covariance
is small.
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ease.17

The research input aimed at reducing mortality from a given disease is at first blush

harder to measure. For example, it is difficult to get research spending broken down

into spending on various diseases. Nevertheless, we implement a potential solution

to this problem by measuring the number of scientific publications in PUBMED that

have “Neoplasms,” for example, as a MESH (Medical Subject Heading) term. MESH is

the National Library of Medicine’s controlled vocabulary thesaurus.18 We do this in two

ways. Our broader approach (“publications”) uses all publications with the appropriate

MESH keyword as our input measure. Our narrower approach (“trials”) further restricts

our measure to those publications that according to MESH correspond to a clinical

trial. Rather than using scientific publications as an output measure, as other studies

have done, we use publications and clinical trials as input measures to capture research

effort aimed at reducing mortality for a particular disease.19

Figure 10 shows our basic “idea output” measures for mortality from all cancers,

from breast cancer, and from heart disease. Heart disease and cancer are the top two

leading causes of death in the United States, and in the spirit of looking as narrowly as

possible, we also chose to look at breast cancer mortality. For the two cancer types, we

use the 5-year mortality rate conditional on being diagnosed with either type of cancer

and see an S-shaped decline since 1975. This translates into a hump-shaped “Years of

life saved per 1000 people” — the empirical analog of equation (16). For example, for

all cancers, the years of life saved series peaks around 1990 at more than 100 years of

life saved per 1000 people before declining to around 60 years in the 2000s. For heart

disease, a substantial part of the decline in deaths comes from people not contracting

the disease in the first place, so we focus on the (smoothed) crude death rate for people

aged 55 to 64. The death rate declines at different rates in different periods, leading to a

17Our measures of life expectancy and mortality from all sources by age come from the Human Mortality
Database at http://mortality.org. To measure the percentage declines in mortality rates from cancer, we
use the age-adjusted mortality rates for people ages 50 and over computed from 5-year survival rates,
taken from the National Cancer Institute’s Surveillance, Epidemiology, and End Results program at http:
//seer.cancer.gov/.

18For more information on MESH, see https://www.nlm.nih.gov/mesh/. Our queries of the PUBMED
data use the webtool created by the Institute for Biostatistics and Medical Informatics (IBMI) Medical
Faculty, University of Ljubljana, Slovenia available at http://webtools.mf.uni-lj.si/.

19Lichtenberg (2017) takes a similar approach in an econometric framework for the years 1999–2013.
He uses a difference-in-differences specification to document an economically-significant correlation
between research publications related to various cancer sites and subsequent mortality and years of life
saved.

http://mortality.org
http://seer.cancer.gov/
http://seer.cancer.gov/
https://www.nlm.nih.gov/mesh/
http://webtools.mf.uni-lj.si/
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Figure 10: Mortality and Years of Life Saved
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Note: For the two cancer figures, the mortality rate is computed as negative the log of the
(smoothed) five-year survival rate for cancer for people ages 50 and higher, from the National
Cancer Institute’s Surveillance, Epidemiology, and End Results program at http://seer.cancer.gov/.
For heart disease, we report the crude death rate in each year for people aged 55–64. The “Years of
life saved per 1000 people” is computed using equation (16), as described in the text.

http://seer.cancer.gov/
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Table 3: Research Productivity for Medical Research

— Effective research — Research Productivity
Factor Average Factor Average

Disease increase growth decrease growth

All publications

Cancer, all types 3.5 4.0% 1.2 -0.6%

Breast cancer 5.9 5.7% 8.2 -6.8%

Heart disease 5.1 3.6% 5.3 -3.7%

Clinical trials only

Cancer, all types 14.1 8.5% 4.8 -5.1%

Breast cancer 16.3 9.0% 22.6 -10.1%

Heart disease 24.2 7.1% 25.3 -7.2%

Note: In the first panel, the research input is based on all publications in PUBMED with “Neo-
plasms” or “Breast Neoplasms” or “Heart Diseases” as a MESH keyword. The second panel restricts
to only publications involving clinical trials. Results for cancer and breast cancer cover the years
1975–2006, while those for heart disease apply to 1968–2011. See the online data appendix for more
details.

series of humps in years of life saved, but overall there is no large trend in this measure

of idea output.

Figure 11 shows our research input measure based on PUBMED publication statis-

tics. Total publications for all cancers increased by a factor of 3.5 between 1975 and

2006 (the years for which we’ll be able to compute research productivity), while publi-

cations restricted to clinical trials increased by a factor of 14.1 during this same period.

A similar pattern is seen for research on breast cancer and heart disease.

Research productivity for our medical research applications is computed as the

ratio of years of life saved to the number of publications. Figure 12 shows our research

productivity measures. The hump-shape present in the years-of-life-saved measure

carries over here. Research productivity rises until the mid 1980s and then falls. Overall,

between 1975 and 2006, research productivity for all cancers declines by a factor of 1.2

using all publications and a factor of 4.8 using clinical trials. The declines for breast

cancer and heart disease are even larger, as shown in Table 3.
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Figure 11: Medical Research Effort
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Note: The number of publications and clinical trials are taken from the PUBMED publications
database. For “publications,” the research input is based on all publications in PUBMED with
“Neoplasms” or “Breast Neoplasms” or “Heart Diseases” as a MESH keyword. The lines for “clinical
trials” restrict further to publications involving clinical trials.
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Figure 12: Research Productivity for Medical Research
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Note: Research productivity is computed as the ratio of years of life saved to the
number of publications.
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Several general comments about research productivity for medical research deserve

mention. First, for this application, the units of research productivity are different

than what we’ve seen so far. For example, between 1985 and 2006, declining research

productivity means that the number of years of life saved per 100,000 people in the

population by each publication of a clinical trial related to cancer declined from more

than 8 years to just over one year. For breast cancer, the changes are even starker: from

around 16 years per clinical trial in the mid 1980s to less than one year by 2006.

Next, however, notice that the changes were not monotonic if we go back to 1975.

Between 1975 and the mid-1980s, research productivity for these two cancer research

categories increased quite substantially. The production function for new ideas is ob-

viously complicated and heterogeneous. These cases suggest that it may get easier to

find new ideas at first before getting harder, at least in some areas.

7. Research Productivity in Firm-Level Data

Our studies of semiconductors, crops, and medicine are illuminating, but at the end of

the day, they are just case studies. One naturally wonders how representative they are

of the broader economy. In addition, some growth models associate each firm with a

different variety: perhaps the number of firms making corn or semiconductor chips is

rising sharply, so that research effort per firm is actually constant, as is research pro-

ductivity at the firm level. Declining research productivity for corn or semiconductors

could in this view simply reflect a further composition bias.20

To help address these concerns, we turn to Compustat data on US publicly-traded

firms. The strength of these data is that they are more representative than the case

studies, but of course they too have limitations. Publicly-traded firms are still a select

sample, and our measures of “ideas” and research inputs are likely less precise. How-

ever, as a complement to the case studies, we find this evidence helpful.

As a measure of the output of the idea production function, we use decadal averages

of annual growth in sales revenue, market capitalization, employment, and revenue

labor productivity within each firm. We take the decade as our period of observation to

20For example, Peretto (1998) and Peretto (2016b) emphasize this perspective on varieties, while Aghion
and Howitt (1992) take the alternative view that different firms may be involved in producing the same
variety. Klette and Kortum (2004) allow the number of varieties produced by each firm to be heterogeneous
and to evolve over time.
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smooth out fluctuations.

Why would growth in sales revenue, market cap, or employment be informative

about a firm’s production of ideas? This approach follows a recent literature empha-

sizing precisely these links. Many papers have shown that news of patent grants for a

firm has a large immediate effect on the firm’s stock market capitalization (e.g. Blundell,

Griffith and Van Reenen 1999; Kogan, Papanikolaou, Seru and Stoffman 2015). Patents

are also positively correlated with the firm’s subsequent growth in employment and

sales.

More generally, in models in the tradition of Lucas (1978), Hopenhayn (1992), and

Melitz (2003), increases in the fundamental productivity of a firm show up in the long

run as increases in sales and firm size, but not as increases in sales revenue per worker.21

This motivates our use of sales revenue or employment to measure fundamental pro-

ductivity. Hsieh and Klenow (2009) and Garcia-Macia, Hsieh and Klenow (2016) are

recent examples of papers that follow a related approach. Of course, in more general

models with fixed overhead labor costs, revenue labor productivity (i.e. sales revenue

per worker) and TFPR can be related to fundamental productivity (e.g. Bartelsman,

Haltiwanger and Scarpetta, 2013). And sales revenue and employment can change

for reasons other than the discovery of new ideas. We try to address these issues by

also looking at revenue productivity and through various sample selection procedures,

discussed below. These problems also motivate the earlier approach of looking at case

studies.

To measure the research input, we use a firm’s spending on research and devel-

opment from Compustat. This means we are restricted to publicly-listed firms that

report formal R&D, and such firms are well-known to be a select sample (e.g. dis-

proportionately in manufacturing and large). We look at firms since 1980 that report

non-zero R&D, and this restricts us to an initial sample of 15,128 firms. Our additional

requirements for sample selection in our baseline sample are

21This is obvious when one thinks about the equilibrium condition for the allocation of labor across
firms in simple settings: in equilibrium, a worker must be indifferent between working in two different
firms, which equalizes wages. But wages are typically proportional to output per worker. Moreover, with
Cobb-Douglas production and a common exponent on labor, sales revenue per worker would be precisely
equated across firms even if they had different underlying productivities. In a Lucas (1978) span of control
setting, more productive firms just hire more workers, which drives down the marginal product until it is
equated across firms. In alternative settings with monopolistic competition, it is the price of a particular
variety that declines as the firm expands. Regardless, higher fundamental productivity shows up as higher
employment or sales revenue, but not in higher sales per employee.
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1. We observe at least 3 annual growth observations for the firm in a given decade.

These growth rates are averaged to form the idea output growth measure for that

firm in that decade.

2. We only consider decades in which our idea output growth measure for the firm

is positive (negative growth is clearly not the result of the firm innovating).

3. We require the firm to be observed (for both the output growth measure and the

research input measure) for two consecutive decades. Our decades are the 1980s,

the 1990s, the 2000s (which refers to the 2000-2007 period), and the 2010s (which

refers to the 2010-2015 period); we drop the years 2008 and 2009 because of the

financial crisis.

We relax many of these conditions in our robustness checks.

Table 4 shows our research productivity calculation for various cuts of the Compus-

tat data: using sales revenue, market cap, employment, and revenue labor productivity

as our idea output measure and following firms that we observe for two, three, and

four decades. In all samples, there is substantial growth in the effective number of

researchers within each firm, with growth rates averaging between 2.4% and 8.8% per

year. Under our null hypothesis, this rapid growth in research should translate into

higher growth rates of firm-level sales and employment with a constant level of research

productivity. Instead, what we see in Table 4 are steady, rapid declines in firm-level

research productivity across all samples, at growth rates that range from -4.2% to -

14.5% per year for multiple decades.

Put differently, and reporting the results using sales revenue as a baseline, research

productivity declines by an average factor of 3.9 for firms that we can compare across

only two decades, by a factor of 9.2 across firms we can compare across three decades,

and by a factor of 40.3 across firms that we can compare across our entire 4 decade

sample, between 1980 and 2015.22

Averaging across all our samples, research productivity falls at a rate of about 9% per

year, cumulating to a 2.5-fold decline every decade. At this rate, research productivity

declines by a factor of about 15 over three decades of changes; put differently, it requires

15 times more researchers today than it did 30 years ago to produce the same rate of

22The averages we report throughout are weighted averages, using the effective number of researchers
in each firm as weights.
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Table 4: Research Productivity in Compustat Firm-Level Data

— Effective research — Research Productivity
Factor Average Factor Average

Sample increase growth decrease growth

Sales Revenue

2 decades (1712 firms) 2.0 6.8% 3.9 -13.6%

3 decades (469 firms) 3.8 6.7% 9.2 -11.1%

4 decades (149 firms) 13.7 8.7% 40.3 -12.3%

Market Cap

2 decades (1124 firms) 2.2 8.0% 3.4 -12.2%

3 decades (335 firms) 3.1 5.6% 6.3 - 9.2%

4 decades (125 firms) 7.9 6.9% 14.0 -8.8%

Employment

2 decades (1395 firms) 2.2 8.0% 2.8 -10.3%

3 decades (319 firms) 4.0 6.9% 18.2 -14.5%

4 decades (101 firms) 13.9 8.8% 31.5 -11.5%

Revenue Labor Productivity

2 decades (1444 firms) 1.9 6.4% 2.2 -7.9%

3 decades (337 firms) 1.6 2.4% 2.5 -4.5%

4 decades (109 firms) 2.5 3.1% 3.5 -4.2%

Note: The table shows averages of firm-level outcomes for effective research and research
productivity. Sales Revenue and Market Cap are deflated by the GDP implicit price
deflator. Revenue Labor Productivity is deflated Sales Revenue divided by Employment.
R&D expenditures are deflated by a measure of the nominal wage for high-skilled workers.
The average growth rate across 2 decades is computed by dividing by 10 years (e.g.
between 1985 and 1995); others follow this same approach. Averages are computed by
weighting firms by the median number of effective researchers in each firm across the
decades. See the online data appendix for more details.
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Figure 13: Compustat Distributions, Sales Revenue (2 Decades)

Note: Based on 1712 firms. 22.1% of firms have increasing research productivity.
Only 3.0% have research productivity that is roughly constant, defined as a
growth rate whose absolute value is less than 1% per year.

firm revenue growth.

The next three figures characterize the heterogeneity across firms in our Compus-

tat sample by showing the distribution of the factor changes in effective research and

research productivity across all the firms; to keep things manageable, we focus on

the results for sales revenue, but the results with other output measures are similar.

Figure 13 shows this distribution for the firms we observe for only two decades, while

Figures 14 and 15 shows the distributions for the firms observed for three and four

decades.

The heterogeneity across firms is impressive and somewhat reminiscent of the het-

erogeneity we see in our case studies. Nevertheless, it is clear from these histograms

that there is essentially no evidence that constant research productivity is a good char-

acterization of the firm-level data. The average, median, and modal firms experience

large declines in research productivity. There is a long tail of firms experiencing even

larger declines but also a small minority of firms that see increases in research produc-

tivity. The fraction of firms that exhibit something like constant research productivity

is tiny. For example, less than 5% of firms in any of the histograms have research

productivity changing (either rising or falling) by less than 1% per year on average.
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Figure 14: Compustat Distributions, Sales Revenue (3 Decades)

Note: Based on 469 firms. 11.9% of firms have increasing research productivity.
Only 4.3% have research productivity that is roughly constant, defined as a
growth rate whose absolute value is less than 1% per year.

Figure 15: Compustat Distributions, Sales Revenue (4 Decades)

Note: Based on 149 firms. 14.8% of firms have increasing research productivity.
4.7% firms in this sample have research productivity that is roughly constant,
defined as a growth rate whose absolute value is less than 1% per year.
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Table 5: Compustat Sales Data across 3 Decades: Robustness

— Effective research — Research Productivity
Factor Average Factor Average

Case increase growth decrease growth

Benchmark (469 firms) 3.8 6.7% 9.2 -11.1%

Winsorize g < .01 (986 firms) 2.3 4.1% 7.9 -10.3%

Winsorize top/bottom (986 firms) 2.3 4.1% 6.0 -8.9%

Research must increase (356 firms) 5.1 8.1% 11.6 -12.3%

Drop if any negative growth (367 firms) 5.6 8.6% 17.9 -14.4%

Median sales growth (586 firms) 3.8 6.6% 6.3 -9.2%

Unweighted averages (469 firms) 3.8 6.7% 9.2 -11.1%

Note: Robustness results reported for the sample of changes across 3 decades. “Winsorize g < .01”
means we replace any idea output measure that is less than 1% annually with a value of 1%. “Winsorize
top/bottom” does this same thing but winsorizes an equal number of firms at the top of the idea output
distribution. “Research must increase” means we require that the research measure be rising across the
decades. “Drop if any negative growth” means we drop firms that have any decade (across our 1980–2015
period) in which average market cap growth is negative. “Median sales growth” uses the median of sales
revenue growth in each decade rather than the mean. “Unweighted averages” gives each firm equal weight
in computing summary statistics, rather than weighting each firm by its effective number of researchers.

Table 5 provides additional evidence of the robustness of these results. In the inter-

ests of brevity, we report these results for the sales revenue output measure for firms

that we observe across three decades, but the results for our other output measures

and time frames are similar. The first row of the table repeats the benchmark results

described earlier. The second and third rows relax the requirement that sales growth

is positive. In the second row, we replace all growth rates less than 1% with 1%, while

in the third row we additionally winsorize an equal number of firms at the top of the

growth rate distribution. This increases the sample size considerably and brings the

R&D growth numbers down substantially. In both cases, research productivity falls

sharply, reassuring us that this sample selection criteria is not driving the results. The

fourth row imposes the restriction that research is increasing across the observed decades.

The fifth row tightens our restrictions and drops firm in which sales revenue declines

on average in any decade.The sixth row uses median sales growth in each decade rather

than mean sales growth as our output measure. And the last row reports unweighted
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averages rather than weighting firms by the effective number of researchers. The gen-

eral finding of substantial declines in research productivity is robust.

8. Discussion

The evidence presented in this paper concerns the extent to which a constant level of

research effort can generate constant exponential growth, either in the economy as a

whole or within relatively narrow categories, such as a firm or a seed type or a health

condition. We provide consistent evidence that the historical answer to this question is

no: as summarized in Table 6, research productivity is declining at a substantial rate in

virtually every place we look. The table also provides a way to quantify the magnitude

of the declines in research productivity by reporting the half-life in each case. Taking

the aggregate economy number as a representative example, research productivity de-

clines at an average rate of 5.3 percent per year, meaning that it takes around 13 years

for research productivity to fall by half. Or put another way, the economy has to double

its research efforts every 13 years just to maintain the same overall rate of economic

growth.

A natural question is whether or not these empirical patterns can be reproduced in

a general equilibrium model of growth. One class of models that is broadly consistent

with this evidence is the semi-endogenous growth approach of Jones (1995), Kortum

(1997), and Segerstrom (1998).23 These models propose that the idea production func-

tion takes the form
Ȧt
At

= (αA−βt ) · St. (17)

Research productivity declines as At rises, so that it gets harder and harder to generate

constant exponential growth. The elasticity β governs this process. That is, it measures

the extent of dynamic diminishing returns in idea production, with a higher β meaning

that research productivity declines more rapidly as At increases.

Comparing both sides of equation (17), one can see that constant exponential growth

requires a growing number of researchers St. In fact, if Ȧt/At is constant over time, it

must be that

gA =
gS
β

(18)

23Jones (2005) provides a broad overview of this class of models.
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Table 6: Summary of the Evidence on Research Productivity

Extent of
Time Average annual Half-life Diminishing

Scope Period growth rate (years) Returns, β

Aggregate economy 1930–2015 -5.3% 13 3.4

Moore’s law 1971–2014 -6.8% 10 0.2

Corn, version 1 1969–2009 -9.9% 7 7.2

Corn, version 2 1969–2009 -6.2% 11 4.5

Soybeans, version 1 1969–2009 -7.3% 9 6.3

Soybeans, version 2 1969–2009 -4.4% 16 3.8

Cotton, version 1 1969–2009 -3.4% 21 2.5

Cotton, version 2 1969–2009 +1.3% -55 -0.9

Wheat, version 1 1969–2009 -6.1% 11 6.8

Wheat, version 2 1969–2009 -3.3% 21 3.7

New molecular entities 1970–2015 -3.5% 20 ...

Cancer (all), publications 1975–2006 -0.6% 116 ...

Cancer (all), trials 1975–2006 -5.7% 12 ...

Breast cancer, publications 1975–2006 -6.1% 11 ...

Breast cancer, trials 1975–2006 -10.1% 7 ...

Heart disease, publications 1968–2011 -3.7% 19 ...

Heart disease, trials 1968–2011 -7.2% 10 ...

Compustat, sales 3 decades -11.1% 6 1.1

Compustat, market cap 3 decades -9.2% 8 0.9

Compustat, employment 3 decades -14.5% 5 1.8

Compustat, sales/emp 3 decades -4.5% 15 1.1

Note: The growth rates of research productivity are taken from other tables in this paper. The half life is
the number of years it takes for research productivity to fall in half at this growth rate. The last column
reports the extent of diminishing returns in producing exponential growth, according to equation (17).
This measure is only reported for cases in which the idea output measure is an exponential growth rate
(i.e. not for the health technologies, where units would matter).
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where gx denotes the constant growth rate of any variable x. The growth rate of the

economy equals the growth rate of research effort deflated by the extent of diminishing

returns in idea production. Rising research effort and declining research productivity

offset — endogenously in this framework — to deliver constant exponential growth.

Finally, this analysis can be applied across different firms, goods, or industries, fol-

lowing the insights of Ngai and Samaniego (2011), who develop a semi-endogenous

growth model with heterogeneity in the dynamic spillover parameters of the idea pro-

duction functions. Some goods, like semiconductors, can have rapid productivity growth

because their β is small, while other goods like the speed of airplanes or perhaps the

education industry itself could have slow rates of innovation because their β is large.

Nevertheless, all of these products could exhibit constant exponential growth if the

amount of research effort put toward innovation is itself growing exponentially.

This framework helps us address a phenomenon that might at first have appeared

puzzling: research productivity is declining very rapidly in the fastest growing sector

in the economy, semiconductors. Why? In particular, why are we throwing so many

resources at a sector that has such sharp declines in research productivity?

The last column of Table 6 reports estimates of β for each of our case studies, ac-

cording to equation (17), and the results speak to the semiconductor puzzle we just

highlighted. In particular, semiconductors is the application with the smallest value of

β, coming in at 0.2, suggesting that it is the sector with the least degree of diminishing

returns in idea production: A is growing at 35% per year, while research productivity

is falling at 7% per year. From (17), this implies a value of β of 7/35 = 0.2. In contrast,

economy-wide TFP growth averages about 1.5% per year, while research productivity

is declining at a rate of about 5% per year, yielding a β of more than 3! So in fact,

semiconductors shows much less diminishing returns than the economy as a whole.

Research productivity for semiconductors falls so rapidly, not because that sector

has the sharpest diminishing returns — the opposite is true. It is instead because

research in that sector is growing more rapidly than in any other part of the economy,

pushing research productivity down. A plausible explanation for the rapid research

growth in this sector is the “general purpose” nature of information technology. De-

mand for better computer chips is growing so fast that it is worth suffering the declines

in research productivity there in order to achieve the gains associated with Moore’s Law.
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9. Conclusion

A key assumption of many endogenous growth models is that a constant number of

researchers can generate constant exponential growth. We show that this assumption

corresponds to the hypothesis that the total factor productivity of the idea production

function is constant, and we proceed to measure research productivity in many differ-

ent contexts.

Our robust finding is that research productivity is falling sharply everywhere we

look. Taking the U.S. aggregate number as representative, research productivity falls

in half every 13 years — ideas are getting harder and harder to find. Put differently,

just to sustain constant growth in GDP per person, the U.S. must double the amount of

research effort searching for new ideas every 13 years to offset the increased difficulty

of finding new ideas.

This analysis has implications for the growth models that economists use in our

own research, like those cited in the introduction. The standard approach in recent

years employs models that assume constant research productivity, in part because it

is convenient and in part because the earlier literature has been interpreted as being

inconclusive on the extent to which this is problematic. We believe the empirical work

we have presented speaks clearly against this assumption. A first-order fact of growth

empirics is that research productivity is falling sharply.

Future work in the growth literature should determine how best to understand this

fact. One possibility is the semi-endogenous growth models discussed in the preceding

section. These models have important implications. For example, they have a “Red

Queen” prediction in which we have to run faster and faster to maintain constant ex-

ponential growth.24 If the growth rate of research inputs were to slow, this could cause

economic growth itself to slow down. It is possible that this contributes to the global

slowdown in productivity growth during the past fifteen years.

One way in which the overall interpretation of the evidence in this paper could be

wrong is if there is indeed declining research productivity in every sector, but the entire

increase in aggregate R&D occurs in making quality/productivity improvements for

individual varieties. The separate idea production function for producing new varieties

24Recall Lewis Carroll’s Through the Looking Glass: “Now, here, you see, it takes all the running you can
do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as
that!”
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could then exhibit constant research productivity if in fact the research going to create

new varieties is not increasing over time. While this is conceptually possible, it seems

unlikely. We do not have any growth models in the literature that suggest this could

occur in an equilibrium in which there is population growth. Why, despite a grow-

ing population and constant research productivity, would the equilibrium allocation

feature a constant number of researchers creating new varieties? Nevertheless, this

loophole is one that future research may wish to consider.

Alternatively, there are other possible explanations for declining research produc-

tivity. Incumbent firms may be shifting to “defensive” R&D to protect their market posi-

tion, and this could cause research productivity to decline; Dinopoulos and Syropoulos

(2007) provide a model along these lines. Or perhaps declines in basic research spend-

ing (potentially related to the U.S. decline in publicly-funded research as a share of

GDP) have negatively impacted overall research productivity. Clearly this would have

important policy implications.25

That one particular aspect of endogenous growth theory should be reconsidered

does not diminish the contribution of that literature. Quite the contrary. The only

reason models with declining research productivity can sustain exponential growth in

living standards is because of the key insight from that literature: ideas are nonrival.

And if research productivity were constant, sustained growth would actually not require

that ideas be nonrival; Akcigit, Celik and Greenwood (2016b) show that fully rivalrous

ideas in a model with perfect competition can generate sustained exponential growth

in this case. Our paper therefore clarifies that the fundamental contribution of en-

dogenous growth theory is not that research productivity is constant or that subsidies

to research can necessarily raise growth. Rather it is that ideas are different from all

other goods in that they do not get depleted when used by more and more people.

Exponential growth in research leads to exponential growth in At. And because of

nonrivalry, this leads to exponential growth in per capita income.

25For example, see Akcigit, Hanley and Serrano-Velarde (2016a).
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A Appendix: Robustness Results: Allowing λ < 1

Table A1 shows the robustness of our results to the baseline assumption that there is no

diminishing returns to research in the idea production function. See the discussion in

Section 3.4. for more details. For this set of results, we assume the input into the idea

production function is Sλ where λ = 3/4. As expected, the growth rates of research

productivity are about three-fourths as large as in the baseline case, reported in the

main text in Table 6, but they are substantially negative nearly everywhere we look.
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