
NBER WORKING PAPER SERIES

FUND TRADEOFFS

Lubos Pastor
Robert F. Stambaugh

Lucian A. Taylor

Working Paper 23670
http://www.nber.org/papers/w23670

NATIONAL BUREAU OF ECONOMIC RESEARCH 
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2017, Revised October 2019

This paper previously circulated under the title “Portfolio Liquidity and Diversification: Theory and 
Evidence.” The views in this paper are the responsibility of the authors, not the institutions they are 
affiliated with, nor of the National Bureau of Economic Research. We are grateful for comments from 
our conference discussants Daniel Andrei, James Choi, Wayne Ferson, Mark Grinblatt, Paul Irvine, 
Marcin Kacperczyk, Clemens Sialm, Ashish Tiwari, and Mungo Wilson. We are also grateful for comments 
from Jonathan Berk, Gene Fama, Laszlo Jakab, Don Keim, Rob Vishny, Jeff Wurgler, and Yao Zeng, 
conference participants at the AIM Investment Conference, AQR Insight Award Finalists Competition, 
Conference on Professional Asset Management (Erasmus), Duke/UNC Asset Pricing Conference, 
ESSFM Gerzensee, European Finance Association, FARFE (MIT), Five-Star Conference on Research 
in Finance (NYU Stern), GSU-CEAR Finance Conference, NBER Conference on New Developments 
in Long-Term Asset Management, Q Group, Western Finance Association, and seminar participants 
at Boston University, Tulane University, University of Chicago, University of Illinois at Urbana-Champaign, 
University of Pennsylvania, University of Utah, and WU Vienna. We are also grateful to Will Cassidy, 
Yeguang Chi, and Pierre Jaffard for superb research assistance. This research was funded in part by 
the Fama-Miller Center for Research in Finance and the Center for Research in Security Prices at Chicago 
Booth.

At least one co-author has disclosed a financial relationship of potential relevance for this research. 
Further information is available online at http://www.nber.org/papers/w23670.ack

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official 
NBER publications.

© 2017 by Lubos Pastor, Robert F. Stambaugh, and Lucian A. Taylor. All rights reserved. Short sections 
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



Fund Tradeoffs
Lubos Pastor, Robert F. Stambaugh, and Lucian A. Taylor 
NBER Working Paper No. 23670
August 2017, Revised October 2019
JEL No. G11,G23

ABSTRACT

We study tradeoffs among active mutual funds' characteristics. In both our equilibrium model and 
the data, funds with larger size, lower expense ratio, and higher turnover hold more-liquid 
portfolios. Portfolio liquidity, a concept introduced here, depends not only on the liquidity of the 
portfolio's holdings but also on the portfolio's diversification. We also confirm other model-
predicted tradeoffs: Larger funds are cheaper. Larger and cheaper funds are less active, based on 
our new measure of activeness. Better-diversified funds hold less-liquid stocks; they are also 
larger, cheaper, and trade more. These tradeoffs provide novel evidence of diseconomies of scale 
in active management.

Lubos Pastor
University of Chicago
Booth School of Business
5807 South Woodlawn Ave
Chicago, IL  60637
and NBER
lubos.pastor@chicagobooth.edu

Robert F. Stambaugh
Finance Department
The Wharton School
University of Pennsylvania
Philadelphia, PA   19104-6367
and NBER
stambaugh@wharton.upenn.edu

Lucian A. Taylor
Finance Department
The Wharton School
University of Pennsylvania
2300 Steinberg Hall - Dietrich Hall
3620 Locust Walk
Philadelphia, PA 19104-6367
luket@wharton.upenn.edu



1. Introduction

Mutual funds manage tens of trillions of dollars. Through their investment decisions, these

funds play a major role in allocating capital in the economy. Myriad studies investigate fund

performance, but few address fund characteristics. We show that fund characteristics, par-

ticularly the tradeoffs among them, provide new insights into the economics of mutual funds.

Chief among these insights are novel perspectives on diseconomies of scale in active asset

management. Assuming such diseconomies, Berk and Green (2004) argue that investors allo-

cate money across funds such that, in equilibrium, each fund has zero expected performance

relative to a passive benchmark. If expected performance is always zero, then investigating

scale diseconomies by empirically linking fund size with performance faces an inherent chal-

lenge. While multiple studies report a negative size-performance relation, the evidence is

fairly sensitive to the methodological approach.1 In contrast, we argue that relations among

fund characteristics offer strong evidence of scale diseconomies in active management. For

example, we show that larger funds tend to trade less and hold more-liquid portfolios, a clear

indication of decreasing returns to scale.

We derive equilibrium relations among four key fund characteristics: fund size, expense

ratio, turnover, and portfolio liquidity. This last characteristic is novel. While the literature

presents a variety of liquidity measures for individual securities, it offers little guidance for

assessing liquidity at the portfolio level. We introduce the concept of portfolio liquidity,

and we show that diseconomies of scale lead funds to trade off this characteristic against

others in important ways. Our measure of portfolio liquidity is derived theoretically based

on the simple idea that a portfolio is more liquid if it has lower trading costs. Specifically, if

one trades equal dollar amounts of two portfolios, the portfolio with lower trading costs has

greater liquidity.

Our equilibrium model relates portfolio liquidity to fund size, expense ratio, and turnover.

When choosing its characteristics, a fund recognizes that lower liquidity and higher turnover

raise expected gross profits but also raise transaction costs. Those costs increase in the

fund’s size as well. This role of fund size is recognized by investors when they decide how

much capital to allocate to the fund, as in Berk and Green (2004).

The model implies a novel link between the four key mutual fund characteristics. Funds

with larger size, lower expense ratios, and higher turnover should have more-liquid portfolios.

We investigate these implications in a sample of 2,789 active U.S. equity mutual funds from

1See, for example, Pástor, Stambaugh, and Taylor (2015), Reuter and Zitzewitz (2015), and Zhu (2018).
For additional evidence on returns to scale in mutual funds, see Chen et al. (2004), Bris et al. (2007), Pollet
and Wilson (2008), Yan (2008), and Harvey and Liu (2017), among others.
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1979 through 2014. When we estimate the cross-sectional regression of portfolio liquidity

on fund size, expense ratio, and turnover in our panel dataset, we find strong support for

the model. All three slopes have their predicted signs and are highly significant, both

economically and statistically. Funds that are larger, less expensive, and trade more tend to

hold more-liquid portfolios, as the model predicts. According to our model, these tradeoffs

are induced by diseconomies of scale. Intuitively, a large fund optimally reduces its trading

costs by trading less and holding a more-liquid portfolio.

A fund’s size trades off negatively with its expense ratio in our model. As in Berk and

Green (2004), a fund’s fee revenue is determined by its skill, so charging a higher expense ratio

simply dictates a smaller fund. We find strong evidence of this tradeoff—a large negative

correlation between fund size and expense ratio—in the data.

With decreasing returns to scale, a fund also faces a tradeoff between its size and how

actively it pursues profit opportunities. Our model delivers a novel measure of a fund’s

activeness that combines the fund’s turnover with its portfolio liquidity. The latter charac-

teristic depends on the portfolio’s weights versus the benchmark, with a less-liquid portfolio

being more active. In that respect our measure of activeness resembles the popular active

share measure of Cremers and Petajisto (2009). Portfolio holdings are only part of the story,

though. In our model, a fund is also more active if it trades more. The model implies that

smaller funds as well as more expensive funds should be more active, and we find evidence

of both tradeoffs in the data. Similar properties for the turnover component of activeness

also emerge strongly in the data: funds that trade less are larger and cheaper, both across

funds and over time.

A fund’s scale is typically equated to its size, measured as assets under management

(AUM). Our study implies a new concept of scale, which depends not only on the fund’s

size but also on its activeness. In our model, funds face decreasing returns to scale, but the

implied measure of scale is size times activeness, not simply size. This idea makes sense.

If two funds manage equal amounts of money, but one of them deploys its money more

actively, it seems reasonable to view that fund as operating at a larger scale, essentially

leaving a bigger footprint in the market.

In deriving our measure of portfolio liquidity, we apply a familiar concept: less-liquid

assets are costlier to trade. We extend this concept to portfolios, viewing a portfolio as an

asset and thereby considering the cost of trading the portfolio as a given basket of securities.

When assessing portfolio liquidity, it seems natural to consider the average liquidity of the

portfolio’s constituents. For example, portfolios of small-cap stocks tend to be less liquid

than portfolios of large-cap stocks. While this assessment is a useful starting point, it is
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incomplete. We show that a portfolio’s liquidity depends not only on the liquidity of the

stocks held in the portfolio but also on the degree to which the portfolio is diversified:

Portfolio Liquidity = Stock Liquidity×Diversification . (1)

The more diversified a portfolio, the less costly is trading a given fraction of it. For example,

a fund trading just 1 stock will incur higher costs than a fund spreading the same dollar

amount of trading over 100 stocks, even if all of the stocks are equally liquid. Throughout,

we focus on equity portfolios, but these ideas are more general.

Our measure of portfolio liquidity is easy to calculate from the portfolio’s composition.

Following equation (1), our measure has two components. The first, stock liquidity, is the

average liquidity of the portfolio’s holdings. The second component, diversification, has its

own intuitive decomposition:

Diversification = Coverage× Balance . (2)

Coverage reflects the number of stocks in the portfolio. Portfolios holding more stocks have

greater coverage. Balance reflects how the portfolio weights the stocks it holds. Portfolios

with weights closer to market-cap weights have greater balance.

Diversification’s role in portfolio liquidity is important empirically. We compute our mea-

sures of portfolio liquidity and diversification for the mutual funds in our sample. We find

that fund portfolios have become more liquid over time, from 1979 through 2014. Average

portfolio liquidity almost doubled over the sample period, driven by diversification. Diversi-

fication quadrupled, as both of its components in equation (2) rose steadily. Coverage rose

because the number of stocks held by the average fund grew from 54 to 126. Balance rose

because funds’ portfolio weights increasingly resembled market-cap weights.2

Our model predicts tradeoffs between diversification and other fund characteristics. In

equilibrium, funds with more-diversified portfolios should be larger and cheaper, they should

trade more, and their stock holdings should be less liquid. We find strong empirical support

for all four predictions. The negative relation between diversification and stock liquidity

implies that these components of portfolio liquidity are substitutes: funds holding less-liquid

stocks make up for it by diversifying more, and vice versa. The components of diversification,

coverage and balance, are also substitutes: portfolios with lower coverage tend to be better

balanced, and vice versa. Both substitution effects are predicted by our model.

Funds trading less-liquid portfolios will likely find greater profit opportunities, before

trading costs, but less-liquid portfolios are also costlier to trade. This role of liquidity

2The increased resemblance of active funds’ portfolios to the market benchmark is also apparent from
measures such as active share and tracking error (e.g., Cremers and Petajisto, 2009, and Stambaugh, 2014).
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in the profit-cost tradeoff has implications for the turnover-performance relation analyzed

by Pástor, Stambaugh, and Taylor (2017). Specifically, the time-series relation between a

fund’s turnover and its subsequent performance should be stronger for funds with less-liquid

portfolios. We find this implication holds strongly in the data.

Our focus on fund characteristics, and the tradeoffs among them, seems novel. Some of

the concepts we address are familiar, however. One strand of related literature studies re-

turns to scale in active management. This literature explores the hypothesis that as a fund’s

size increases, its ability to outperform its benchmark declines (Berk and Green, 2004).3 This

hypothesis is motivated by liquidity constraints. Being larger erodes performance because

a larger fund trades larger dollar amounts, and trading larger dollar amounts incurs higher

proportional trading costs. The hypothesis has received some empirical support. Several

studies report that fund size negatively predicts fund performance, but the evidence is some-

what sensitive to the methodology applied, as discussed earlier. Unlike this prior literature,

we do not examine fund performance. Our analysis of tradeoffs among fund characteristics

reveals different evidence of decreasing returns to scale. We find that larger funds tend to

have lower turnover and higher portfolio liquidity. This evidence is in line with our model,

in which diseconomies of scale lead larger funds to trade less and hold more-liquid portfolios,

either by holding more-liquid stocks or by diversifying more. Our results represent strong

evidence of decreasing returns to scale, with a refined notion of scale, as explained earlier.

Two other studies provide related evidence on returns to scale. Pollet and Wilson (2008)

find that mutual funds respond to asset growth mostly by scaling up existing holdings rather

than by increasing the number of stocks held. But the authors also find that larger funds

and small-cap funds are less reluctant to diversify in response to growth, exactly as our

theory predicts. In their comprehensive analysis of mutual fund trading costs, Busse et al.

(2017) report that larger funds trade less and hold more-liquid stocks. This evidence, which

overlaps with our findings, also supports our model. In the language of equation (1), Busse

et al. show that larger funds have higher stock liquidity; we show they also have higher

diversification. The evidence of Busse et al. is based on a sample much smaller than ours

(583 funds in 1999 through 2011), dictated by their focus on trading costs. Neither Busse et

al. nor Pollet and Wilson do any theoretical analysis.

Our study is also related to the literature on portfolio diversification. The implications

of diversification for risk are well understood. We show that diversification also has impor-

3This is the hypothesis of fund-level decreasing returns to scale. A complementary hypothesis of industry-
level decreasing returns to scale is that as the size of the active mutual fund industry increases, the ability
of any given fund to outperform declines (see Pástor and Stambaugh, 2012, and Pástor, Stambaugh, and
Taylor, 2015). In this paper, we focus on the fund-level hypothesis.
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tant implications for transaction costs and diseconomies of scale in active management. We

propose a new measure of diversification that has strong theoretical motivation. Our mea-

sure blends features of two ad-hoc measures, the number of stocks held and the Herfindahl

index of portfolio weights. By using our measure, we show that mutual funds have become

substantially more diversified over time, yet their diversification remains relatively low.4 We

also derive predictions for the determinants of diversification. Funds with more-diversified

portfolios should be larger and cheaper, they should trade more, and their holdings should

be less liquid, on average. We find strong empirical support for all of these predictions.

The rest of the paper is organized as follows. Section 2 introduces our measure of portfolio

liquidity. Section 3 examines the tradeoffs among fund characteristics. Section 4 analyzes

tradeoffs that involve the components of portfolio liquidity, including diversification. Section

5 addresses tradeoffs that involve fund activeness. Section 6 explores fund tradeoffs in the

form of simple correlations. Section 7 rethinks the concept of scale. Section 8 contrasts our

setting with that of Berk and Green (2004). Section 9 analyzes the turnover-performance

relation. Section 10 concludes. Additional material is in Appendices A and B. Further

empirical results are in the Internet Appendix, which is available on the authors’ websites.

2. Introducing Portfolio Liquidity

The definition of portfolio liquidity is based on trading costs: If one trades the same dollar

amounts of two portfolios, the portfolio generating lower trading costs has greater liquidity.

We show that this fundamental concept is captured by the following measure:

L =

(
N∑
i=1

w2
i

mi

)−1
, (3)

where N is the number of stocks in the portfolio, wi is the portfolio’s weight on stock i, and

mi denotes the weight on stock i in a market-cap-weighted benchmark portfolio. The latter

portfolio can be the overall market, the most familiar benchmark, or it can be the portfolio

of all stocks in the sector in which the portfolio is focused, such as large-cap growth. We

apply both choices in our empirical analysis of active mutual funds.5

To derive our measure, we begin with the familiar concept that less-liquid assets are

costlier to trade. We apply this concept to portfolios by considering the cost of trading the

4Low diversification by institutional investors is also reported by Kacperczyk, Sialm, and Zheng (2005),
Pollet and Wilson (2008), and others. Household portfolios also exhibit low diversification, as shown by
Blume and Friend (1975), Polkovnichenko (2005), Goetzmann and Kumar (2008), and others.

5In our main regression results, reported in Tables 1 through 5, L is always defined with respect to the
fund’s sector benchmark, such as large-cap growth, because we include sector-quarter fixed effects.
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portfolio as a whole, as if it were just another asset. That is, if D is the total dollar amount

traded of the portfolio, the dollar amount traded of stock i is

Di = Dwi. (4)

The corresponding total trading cost is

C =
N∑
i=1

DiCi , (5)

where Ci is the cost per dollar traded of stock i. We assume Ci is larger when trading a

larger fraction of Mi, the market capitalization of stock i. Specifically,

Ci = c
Di

Mi

, (6)

where the positive constant c is identical across the stocks in the benchmark. For example,

if the benchmark is a small-cap value style index, c is the same for all stocks in that style,

but stocks of different styles can have different values of c.6 Equation (6) reflects the basic

idea that larger trades have higher proportional trading costs, such as price impact. This

idea has strong empirical support (e.g., Keim and Madhavan, 1997). We also consider two

other ways of capturing the same idea: in Section 3.4, we modify equation (6) to allow for

either nonlinearity or dependence on the stock’s trading volume.

Combining equations (4) through (6), we can rewrite the total trading cost as

C = (c/M) D2

(
N∑
i=1

w2
i

mi

)
︸ ︷︷ ︸

L−1

, (7)

where mi = Mi/M . We define M as the market capitalization of all stocks in the benchmark

portfolio, which allows L to be compared across portfolios having the same benchmark.

Equation (7) shows that the expression for portfolio liquidity, given by equation (3), arises

from trading costs. Trading a given dollar amount, D, of a portfolio with lower liquidity, L,

incurs a greater total cost, C.

Portfolio liquidity is a characteristic that does not hinge on the trading behavior of

whoever might hold the portfolio. For example, we do not assume any mutual fund actually

trades each stock according to equation (4). The same portfolio can be held by two different

funds trading in different ways, yet there is only one portfolio-specific value of L. In this

respect we maintain the perspective on liquidity that is widely accepted for individual stocks.

Measures of a stock’s liquidity, such as its bid-ask spread or its turnover, do not hinge on

6Even within the same style, liquidity varies across stocks, as we explain in Section 4.1.
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the behavior of whoever is trading the stock. Two investors trading equal amounts of the

same stock often incur different costs, depending on how patiently they trade, how they

execute their trades, etc. Nevertheless, less-liquid stocks are generally assumed to be costlier

to trade. We simply assume the same about portfolios. In our analysis of fund tradeoffs

in the following section, we assume that funds holding portfolios with lower L incur higher

trading costs, ceteris paribus, regardless of how these funds trade.

Our measure of portfolio liquidity takes values between 0 and 1. The least liquid portfolio

is fully invested in a single stock, the one with the smallest market capitalization among

stocks in the benchmark. The liquidity of this portfolio is equal to the benchmark’s market-

cap weight on that smallest stock, so L can be nearly 0. A portfolio can be no more liquid

than its benchmark, for which L = 1. This statement is proven in Appendix A, but its simple

intuition follows from equation (6). When trading a given dollar amount of the benchmark

portfolio, which has market-cap weights, the proportional cost of trading each stock is equal

across stocks. With this cost denoted by κ, the proportional cost of the overall trade is also

κ. If the benchmark portfolio is perturbed by buying one stock and selling another, then

more weight is put on a stock whose proportional cost is now greater than κ, and less weight

is put on a stock whose proportional cost is now smaller than κ. Therefore, the proportional

cost of trading the same dollar amount of this alternative portfolio exceeds κ.

Another important property of our portfolio liquidity measure L in equation (3) is that it

is increasing in the portfolio’s diversification, as indicated in equation (1). Better-diversified

portfolios are more liquid. We clarify the role of diversification in Section 4.

3. Tradeoffs Among Fund Characteristics

In this section, we examine the relations among key characteristics of active funds: portfolio

liquidity, fund size, expense ratio, and turnover. We first derive such relations theoretically,

from optimizing behavior of fund managers and investors. We then verify these relations

empirically.

3.1. Fund Characteristics in Equilibrium

Consider an actively managed mutual fund over a single period. We assume the fund’s

expected total trading cost over this period is given by the function

C(A, T, L) = θAγT λL−φ , (8)
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where A is the fund’s size (AUM), T is its turnover (dollar amount traded divided by AUM),

and L is the liquidity of the fund’s portfolio. The constants θ, γ, λ, and φ are positive. We

assume γ > 1, so trading costs are increasing and convex in A, capturing this familiar role of

fund size modeled by Berk and Green (2004). Unlike that study, we let trading costs depend

not only on A but also on T and L. The relevance of T for equation (8) is clear, because a

fund that trades more incurs higher trading costs, holding A and L constant.

The presence of portfolio liquidity, L, in equation (8) is motivated by the arguments from

Section 2. Recall from equation (7) that a portfolio with a lower L incurs higher trading

costs, holding fixed the fund’s traded dollar amount, D = AT . Saying that it is costlier to

trade a portfolio with a lower L is like saying it is costlier to trade a stock with a higher

bid-ask spread or any other illiquidity measure. Saying that such a stock is costlier to trade

does not assume one trades the stock in a particular way, e.g., trading at the bid and ask

quotes. In the same vein, saying that a fund with a lower L incurs higher trading costs does

not assume the fund trades its portfolio in a particular way, e.g., trading stocks in proportion

to portfolio weights. We assign a negative but flexible role to L in determining trading costs

(as well as flexible positive roles to A and T ) by treating the exponents in equation (8) as

free parameters. That equation nests equation (7) as a special case when θ = c/M , γ = 2,

λ = 2, and φ = 1. In other words, the simple trading-cost function derived earlier motivates

our assumption that costs increase convexly in A, increase in T , and decrease in L.

The roles of A, T , and L in equation (8) receive some empirical support from Edelen,

Evans, and Kadlec (2013), who construct a proxy for fund trading costs, “position-adjusted

turnover.” This proxy is increasing in both T and A and decreasing in the number of holdings,

a component of L. The proxy also takes into account the fund’s market-cap category. The

authors show that position-adjusted turnover is related to other fund characteristics in ways

consistent with its interpretation as a measure of trading costs.

The fund’s expected gross return, before fees and trading costs, depends on the fund’s

skill as well as how actively that skill is applied. To capture this interaction, we model the

expected benchmark-adjusted gross return as

a = µ g(T, L) , (9)

where µ is a fund-specific positive constant reflecting skill in identifying profitable trading

opportunities.7 How actively the fund applies that skill is represented by the function g(T, L).

The roles of T and L in equation (9) are discussed in more detail in Section 5. Like Berk and

7While it is simplest to think of fund skill as known and equal to µ, our framework easily accommodates
unknown skill. In general, µ can be interpreted as skill perceived by both fund managers and investors.
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Green (2004), we assume a fund’s size directly affects its trading costs but not its expected

gross return, so A does not appear in equation (9).

An actively managed fund chooses its portfolio liquidity, L, turnover, T , and expense

ratio, f . The fund’s objective is to maximize its total revenue,

F = fA , (10)

where f is the fund’s expense ratio, i.e., the fee rate charged by the fund to its investors,

expressed as a fraction of AUM. The fund’s size, A, is chosen by investors. Our basic

equilibrium relation among fund characteristics follows from the fund’s first-order condition

for f . We address the optimal choice of T and L in Section 5. Given T and L, denote the

fund’s proportional trading cost as a function of A by

q(A;T, L) = C(A, T, L)/A . (11)

The fund’s expected benchmark-adjusted net return to investors equals

α = a− q(A)− f , (12)

where we temporarily suppress T and L in q( ) for notational ease.

We assume that, given the fund’s decisions, investors choose A so that α in equilibrium is

a constant, known to the fund. That constant could be α = 0, as assumed by Berk and Green

(2004), or any other α 6= 0. A non-zero alpha could, for example, reflect compensation for

search costs, as in Gârleanu and Pedersen (2018). The equilibrium value of α can also vary

across funds. For example, α can vary across investment styles if the degree of competition

among funds varies across styles (e.g., Hoberg, Kumar, and Prabhala, 2018).

Define h = a− α− f , and note from equation (12) that A = q−1(h). Differentiating the

right-hand side of equation (10) with respect to f gives

dF

df
= A+ f

[
d

dh

(
q−1(h)

)] dh
df

= A+ f

[
1

q′ (q−1(h))

]
(−1)

= A− f
[

1

q′(A)

]
(13)

Setting dF
df

= 0 then gives

f = Aq′(A). (14)

For the cost function in equation (8), it is easily verified that equation (14) implies

f = (γ − 1)q(A;T, L), (15)
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with T and L restored in the notation. Taking logs and rearranging, again using equation

(8), delivers the equilibrium relation:

lnL =
1

φ
ln[(γ − 1)θ] +

(
γ − 1

φ

)
lnA− 1

φ
ln f +

(
λ

φ

)
lnT , (16)

or

lnL = b0 + b1 lnA− b2 ln f + b3 lnT . (17)

Funds may differ in their skill level, µ, and activeness function, g(T, L), but we assume

they face the same cost function in equation (8). This assumption implies that b0, b1, b2,

and b3 are positive constants across funds. Equation (17) then captures the cross-sectional

tradeoffs among the four fund characteristics: portfolio liquidity L, fund size A, expense

ratio f , and turnover T . Funds that are larger, cheaper, and trade more have more liquid

portfolios. These predictions stem from the novel result in equation (15) that links an

optimizing fund’s expense ratio to its equilibrium proportional trading cost, q. From this

result, we can easily understand the implication of changing one variable on the right-hand

side of equation (17) while holding the other two variables constant across funds. Holding

f constant, thus keeping the proportional trading cost constant, and holding T constant, a

larger fund size, A, dictates a more liquid portfolio to offset the otherwise higher proportional

costs of trading larger amounts. Because a higher f implies a higher proportional trading cost

in equilibrium, that higher cost must arise from lower liquidity if A and T are held constant.

Finally, holding A and f constant, the greater cost of heavier trading (i.e., larger T ) must be

offset by holding a more liquid portfolio in order to maintain the same proportional trading

cost.

Equation (17) is quite general. Its derivation specifies neither a functional form for

g(T, L) nor how T and L are chosen by the fund. In Section 5, we consider a specification

for g(T, L) that provides insights into the choices of T and L and implies tradeoffs between

a fund’s activeness and its size and fee rate.

3.2. Empirical Evidence

We analyze a sample of 2,789 actively managed U.S. domestic equity mutual funds covering

the 1979–2014 period. To construct this sample, we begin with the dataset constructed by

Pástor, Stambaugh, and Taylor (2015, 2017), which combines and cross-validates data from

the Center for Research in Securities Prices (CRSP) and Morningstar. We add three years of

data and merge in the Thomson Reuters dataset of fund holdings. We restrict the sample to

fund-month observations whose Morningstar category falls within the traditional 3×3 style
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box (small/mid/large-cap interacted with growth/blend/value). This restriction excludes

non-equity funds, international funds, and industry-sector funds. We exclude index funds

because our model is designed for active funds trying to outperform a benchmark. We also

exclude funds of funds and funds smaller than $15 million. We classify each fund into one

of nine sectors corresponding to Morningstar’s 3×3 style box.8

For each fund, we compute its characteristics at each quarter-end. To compute fund

size, we cross-verify monthly AUM between CRSP and Morningstar, as described in Pástor,

Stambaugh, and Taylor (2015). We obtain annual data on funds’ expense ratios and turnover

from CRSP. Expense ratio includes the fund’s administrative and management fees. Expense

ratio does not include brokerage commissions or other transaction costs, so funds with higher

trading costs do not mechanically charge a higher expense ratio. Turnover is the minimum

of the fund’s dollar purchases and sales during the fiscal year, scaled by the fund’s average

total net assets. This measure aims to exclude trades induced by fund inflows and outflows,

thus capturing trades that are largely discretionary. This is the measure of turnover that

funds report to the SEC. Following Pástor, Stambaugh, and Taylor (2017), we winsorize

turnover at the 1st and 99th percentiles. A more detailed description of our sample is in

Appendix B.

For each fund and quarter-end, we compute portfolio liquidity from the fund’s quarterly

holdings data. Initially, we compute portfolio liquidity by using the market portfolio as the

benchmark. Our definition of the market portfolio includes ordinary common shares (CRSP

share code with first digit equal to 1) and REIT shares of beneficial interest (CRSP share

code of 48). This definition is guided by the end-of-sample holdings of the world’s largest

mutual fund, Vanguard’s Total Stock Market Index fund, as we explain in Appendix B.

To test the predictions from equation (17), we estimate this equation as a panel regression

of ln(L) on the other fund characteristics in our mutual fund dataset:

lnLi,t = b0,s,t + b1 lnAi,t − b2 ln fi,t + b3 lnTi,t + εi,t , (18)

where the subscripts denote fund i and quarter t (i.e., the unit of observation is fund/quarter).

The regression specification (18) modifies equation (17) in several ways: it takes a stand on

which quantities vary and which do not, it adds an error term, εi,t, and it allows the intercept,

b0,s,t, to be sector-quarter specific. We explain these choices in the following paragraphs.

Fund characteristics A, f , T , and L vary across both funds and time. Some of this

8Morningstar assigns funds to style categories based on the funds’ reported portfolio holdings, and it
updates these assignments over time. Since the assignments are made by Morningstar rather than the funds
themselves, there is no room for benchmark manipulation of the kind documented by Sensoy (2009). The
benchmark assigned by Morningstar can differ from that reported in the fund’s prospectus.
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variation comes from heterogeneity in the exogenous skill parameter µ. For a given µ, the

fund chooses its f , T , and L to maximize its fee revenue. Depending on the form of g(T, L),

there may also be multiple optimal choices of f , T , and L for a given value of µ.9 Such a

setting is presented in Section 5. In general our model allows the choices of f , T , and L to

vary flexibly across funds. These choices dictate each fund’s A, as investors allocate money

to funds to achieve a given equilibrium α. We assume the cost function parameters γ, λ,

and φ from equation (8) are constant across funds and time, and thus so are the regression

slopes b1, b2, and b3, by equations (16) and (17).

We add an error term, εi,t, to the model-predicted equation (17), for two reasons. First,

no model is perfect. Second, L could be measured with error because it is computed from

fund holdings data, which omit small holdings. To avoid the attenuation bias associated

with this potential measurement error, we include L on the left-hand side of our regression.

Another reason to include L on the left-hand side is that it is the novel quantity, whose

determinants we wish to investigate. We assume that εi,t is uncorrelated with the right-hand

side variables in equation (18).

The intercept b0,s,t represents sector-quarter fixed effects, where s is the sector to which

fund i is assigned by Morningstar. Including these fixed effects offers three benefits. First,

we treat our model’s predictions as cross-sectional, and the fixed effects isolate variation

across funds in the same sector and quarter. In principle, one could also view our model

as describing a given fund solving a series of single-period problems. However, applying

the model to a fund’s time series would confront the problem that two fund characteristics,

expense ratio and turnover, are measured in a way that is poorly suited for time-series

analysis: they are measured only annually, and expense ratios vary little even across years.

Second, by including sector-quarter fixed effects, we effectively use L defined with respect to

a sector-specific benchmark rather than the market.10 Third, from equations (16) and (17),

the intercept b0,s,t depends on the cost-function parameter θ, which reflects market liquidity.

The fixed effects allow market liquidity to vary both over time and across sectors.

Finally, note that equation (17) does not represent a causal relation. Instead, it cap-

tures the equilibrium relation among the jointly determined, endogenous fund characteristics.

9In that case, a fund’s specific choices of f , T , and L can be determined by various factors that are outside
of, and yet consistent with, our model. For example, funds may choose a fee rate that is customary for their
sector or family. Also, a given manager’s knowledge and training may be best suited to a high-turnover
strategy, so the manager would choose high T , which then dictates a high L or high f .

10Sector-benchmarked L is equal to market-benchmarked L divided by the fraction of the total stock market
capitalization accounted for by the sector. Since that fraction is sector-specific within a given quarter, sector-
benchmarked ln(L) is equal to market-benchmarked ln(L) minus a sector-quarter-specific constant that is
absorbed by our fixed effects. Nonetheless, estimates of equation (17) that use only quarter fixed effects,
equivalent to using market-benchmarked L, are quite similar (see the Internet Appendix).

12



Testing our model does not require that we estimate any causal relations.

Table 1 provides strong support for the model’s predictions in equation (17). The slope

coefficients on all three regressors have their predicted signs, not only for the multiple regres-

sion, which is implied by the model, but also for simple regressions. Moreover, all three slopes

are highly significant in the multiple regression. The slope on fund size (t = 13.76) shows

that larger funds tend to have more-liquid portfolios. A one-standard-deviation increase

in the logarithm of fund size is associated with a 0.22 standard-deviation increase in ln(L)

(sector- and quarter-adjusted). The slope on expense ratio (t = −11.26) shows that cheaper

funds tend to have more-liquid portfolios. The economic significance of expense ratio is com-

parable to that of fund size: a one-standard-deviation increase in ln(f) is associated with a

0.24 standard-deviation decrease in ln(L). Finally, the slope on turnover (t = 4.93) shows

that funds that trade more tend to have more-liquid portfolios. A one-standard-deviation

increase in ln(T ) is associated with a 0.10 standard-deviation increase in ln(L). We conclude

that funds with less-liquid portfolios trade less and are smaller and more expensive, fully in

line with our theory.

The results in Table 1 are not obvious. For example, one might surmise that funds whose

portfolios are closer to passive benchmarks trade less because tracking an index requires

little turnover. This hypothesis predicts a negative relation between L and T . Our finding

of a positive relation rejects this hypothesis, but it supports our model.

3.3 Robustness

The results in Table 1 survive a number of robustness exercises that check consistency across

subsamples. We construct subsamples by forming subperiods or by separating funds using

characteristics not included in the model. Details for all of the subsample results are reported

in the Internet Appendix. We divide the sample period into two subperiods, 1979 through

2004 and 2005 through 2014, which contain roughly the same number of fund-quarter obser-

vations. The counterparts of Table 1 for both subperiods look very similar to the original.

Next, we form subsamples by separating the fund universe based on variables that proxy

for the extent to which a fund faces an investment clientele less subjected to marketing

or more sensitive to return performance. Prior studies find such variables are associated

with alpha (Del Guercio and Reuter, 2014), but recall that our model is robust to cross-

sectional differences in equilibrium alphas. We therefore expect to find similar results in

both subsamples. In all cases, we split the universe at essentially a variable’s median value.

First, we separate funds based on the fraction of AUM generated through broker marketing,
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as Del Guercio and Reuter (2014) find that investors in broker-sold funds are less responsive

to returns, and Christoffersen, Evans, and Musto (2013) find that payments to brokers

predict fund flows. For both the high- and low-broker-sold subsamples, we obtain estimates

very similar to those in Table 1. Second, we separate funds based on the 12b-1 fee, another

marketing proxy (e.g., Barber, Odean, and Zheng (2005)). Both the high- and low-fee

subsamples produce estimates very similar to those in Table 1. Third, we separate funds

into those with and without an institutional share class, as Evans and Fahlenbrach (2012)

find that flows from institutional investors are more sensitive to a fund’s performance and

fees. Both subsamples produce results very similar to those in Table 1.

We also form subsamples by separating funds according to the number of stocks a fund

holds, again splitting the fund universe at the median. We use this variable to proxy crudely

for the extent to which an active fund employs quantitative strategies. Abis (2018), for

example, finds that quantitative funds hold more stocks. Again, both subsamples exhibit

similar results.

We also investigate the robustness of our results to including other fund characteristics

that may impact a fund’s liquidity. In our empirical tests, we compute L as the liquidity of

the fund’s equity portfolio, omitting cash holdings. The fraction of a fund’s total AUM held

in cash may impact the choice of the equity portfolio’s liquidity. A cash buffer may allow a

fund to trade in and out of equity positions more patiently or to deal more efficiently with

investor flows to and from the fund. Those abilities may allow the fund to have a less liquid

equity portfolio. Such an effect can enter our model through the value of θ that multiplies

the cost function in equation (8). A higher cash weight can imply a lower θ, i.e., lower

trading costs for the fund’s equity portfolio, given that portfolio’s characteristics. A lower

value of θ implies a lower value of b0 in equation (17), but the implied values of b1, b2, and

b3 are unchanged. Consistent with these predictions, when we add the fund’s cash weight

as an independent variable to the regression in (18), that variable enters with a significantly

negative coefficient, but the coefficients on A, T , and f are virtually unchanged. Motivated

by the above fund-flow consideration, we also include the fund’s flow volatility as a control in

equation (18), measured as the standard deviation of the fund’s 12 monthly flows during the

previous calendar year, winsorized at the 1st and 99th percentiles. Again the coefficients on

A, T , and f are very similar to those in Table 1. Results for these regressions are reported

in the Internet Appendix.

We consider robustness to methodology as well. We re-estimate our regressions at the

annual rather than quarterly frequency. We compute standard errors using two-way cluster-

ing by both fund and quarter, versus our main specification in which we cluster by fund to
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account for the persistence of a fund’s characteristics over time. These alternatives produce

results very similar to those in Table 1. See the Internet Appendix for details.

3.4 Portfolio Liquidity Under Different Trading Costs

We also consider alternative measures of portfolio liquidity that are derived as in Section 2

but with a stock’s trading cost specified differently from equation (6). One modification of

equation (6) replaces the stock’s market capitalization by its trading volume:

Ci = c
Di

Vi
, (19)

where Vi is dollar trading volume for stock i. Under this specification, what matters for

the proportional cost of a trade is the size of the trade relative to the stock’s total trading.

Denote vi = Vi/V , where V is total dollar trading volume summed across all stocks. The

total trading cost in equation (7) then becomes

C = (c/V ) D2

(
N∑
i=1

w2
i

vi

)
︸ ︷︷ ︸

L−1
V

. (20)

In this case, our portfolio liquidity measure from equation (3) is modified as indicated in

equation (20). To compute this alternative version of L, which we denote by LV , we use

each stock’s trading volume, Vi, over the previous three months. Table 2 reports results

when Table 1 is recomputed by using LV . All three fund characteristics (size, expense ratio,

turnover) again enter significantly in the predicted directions, with coefficient estimates that

are quite similar to the original values.

In equation (6), the cost per dollar traded of a stock increases linearly with the ratio of

the dollar amount traded to the stock’s market capitalization. Trading, say, 1% of a stock’s

market capitalization then costs twice as much per dollar traded compared to trading 0.5%

of the stock’s capitalization. We can allow a nonlinear relation by generalizing equation (6)

as

Ci = c
(
Di

Mi

)η
, (21)

where η > 0. The trading cost in equation (7) then becomes

C =
(
c

Mη

)
D1+η

(
N∑
i=1

w1+η
i

mη
i

)
︸ ︷︷ ︸

L−1
η

, (22)
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so that our portfolio liquidity measure is modified as labeled by Lη in equation (22). The

linear specification in equation (6) sets η = 1. Kyle and Obizhaeva (2016) examine costs of

portfolio transition trades and conclude that a linear function fits the data slightly less well

than a square-root relation, i.e., η = 0.5. For values of η ranging from 0.1 to 0.9, Table 3

reports results of re-estimating the original multiple regression reported in the last column

of Table 1. Size, expense ratio, and turnover consistently enter significantly in the predicted

directions, with t-statistics quite similar to those in Table 1. While the t-statistics are little

changed, the coefficients on all three variables become smaller in absolute magnitude as η

decreases. The latter effect is consistent with φ becoming larger in magnitude as L becomes

less sensitive to trading larger fractions of a stock’s total shares. Recall that φ is minus the

exponent on L in the fund’s cost function given by equation (8), and note from equations

(16) and (17) that φ is also the denominator of the coefficients on size, expense ratio, and

turnover. If the fraction of a stock’s market cap that a fund trades is assigned a weaker

role (lower η) in trading costs, then it makes sense that the resulting measure of portfolio

liquidity must exert a stronger role (higher φ) in order to capture liquidity’s effects.

As explained at the outset, a portfolio’s liquidity depends not only on the liquidity

of its securities but also on the portfolio’s diversification. The above alternative versions

of L still incorporate diversification, because their underlying trading-cost derivations still

treat the portfolio as an asset. Our main measure of L in equation (3) has a correlation

(in logs) of 0.96 with the L in equation (20) and at least 0.98 with the L in equation

(22) for η ≥ 0.1. In contrast, if we re-compute our measure of portfolio liquidity with

the diversification component excluded, using the decomposition in the next section, the

correlation with our original measure is just 0.71.

4. Liquidity Tradeoffs

In this section, we examine fund tradeoffs that involve components of portfolio liquidity.

After identifying these components in Section 4.1, we present empirical evidence of their

tradeoffs in Section 4.2.
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4.1. Components of Portfolio Liquidity

We show in Appendix A that portfolio liquidity from equation (3) can be decomposed as

L =
1

N

N∑
i=1

Li︸ ︷︷ ︸
Stock Liquidity

×
(
N

NM

) [
1 + Var∗

(
wi
m∗i

)]−1
︸ ︷︷ ︸

Diversification

. (23)

The first component of L is the equal-weighted average of Li = Mi/M , with M denoting the

average market capitalization of stocks in the benchmark. That is, M = 1
NM

∑NM
j=1Mj, where

NM is the number of stocks in the benchmark. We label this component “stock liquidity”

because Li captures the liquidity of stock i relative to all stocks in the benchmark. Stock

liquidity is larger (smaller) than 1 if the portfolio’s holdings have a larger (smaller) average

market capitalization than the average stock in the benchmark.

Using a stock’s market capitalization to measure its liquidity follows from our assumption

(6), which implies that trading $1 of stock i incurs a cost proportional to 1/mi. This

implication is intuitive—trading a given dollar amount of a small-cap stock (whose mi is

small) incurs a larger price impact than trading the same dollar amount of a large-cap stock

(whose mi is large). Moreover, market capitalization is closely related to other measures

of stock liquidity in the data. For example, we calculate the correlations between the log

of market capitalization and the logs of two popular measures, the Amihud (2002) measure

of illiquidity and dollar volume, across all common stocks. The two correlations average

-0.91 and 0.90, respectively, across all years in our sample period. In a robustness analysis,

we show that alternative measures of stock liquidity, namely the Amihud measure, dollar

volume, and the bid-ask spread, produce similar tradeoff results, especially with quarter fixed

effects (see the Internet Appendix). Dollar volume is the appropriate measure of a stock’s

liquidity in the alternative version of L presented in equation (20). Finally, it makes little

difference whether market capitalization is float-adjusted or not: the correlation between

the logs of float-adjusted and unadjusted market capitalization is 0.98.11 We use unadjusted

market capitalization in our empirical analysis to maximize data coverage.

The second component of L is “diversification.” We choose this label for the second factor

in equation (23) because that factor includes several elements that are commonly used to

judge the extent to which a portfolio is diversified, as explained below.

Broadly speaking, diversification refers to spreading one’s wealth across many assets in a

balanced fashion. The implications of diversification for portfolio risk are well understood.

11We compute this correlation using data on the Russell 3000 stocks from 2011 to 2014. Data on stocks’
shares outstanding are from CRSP. Data on float-adjusted shares outstanding are from Russell.
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We show that diversification also has implications for transaction costs: better-diversified

portfolios are cheaper to trade. Such portfolios are more liquid because they incur lower

trading costs than more concentrated portfolios with the same size and turnover.

Diversification is a foundational concept in finance, yet there is no accepted standard

for measuring it. In an important early contribution, Blume and Friend (1975) use two

measures. The first one is the number of stocks in the portfolio. This measure is also used

by Goetzmann and Kumar (2008), Ivković, Sialm, and Weisbenner (2008), Pollet and Wilson

(2008), and others. The idea is that portfolios holding more stocks are better diversified.

While this idea is sound, the measure is far from perfect. Consider two portfolios holding the

same set of 500 stocks. The first portfolio weights the stocks in proportion to their market

capitalization. The second portfolio is 99.9% invested in a single stock while the remaining

0.1% is spread across the remaining 499 stocks. Even though both portfolios hold the same

number of stocks, the first portfolio is clearly better diversified.

The second measure of diversification used by Blume and Friend is the sum of squared

deviations of portfolio weights from market weights, essentially a market-adjusted Herfindahl

index. The Herfindahl index measures portfolio concentration, the inverse of diversification.

Studies that have designed related portfolio measures include Kacperczyk, Sialm, and Zheng

(2005), Goetzmann and Kumar (2008), and Cremers and Petajisto (2009), among others.

Our measure of portfolio diversification blends the ideas from both of the above measures.

As one can see from equation (23), our measure can be further decomposed as

Diversification =
(
N

NM

)
︸ ︷︷ ︸

Coverage

×
[
1 + Var∗

(
wi
m∗i

)]−1
︸ ︷︷ ︸

Balance

. (24)

The first component, “coverage,” is the number of stocks in the portfolio (N) divided by the

number of stocks in the benchmark (NM). Dividing by NM makes sense. If all firms in the

benchmark were to merge into one conglomerate, a portfolio holding only the conglomerate’s

stock would be perfectly diversified despite holding only a single stock. Given NM , portfolios

holding more stocks have larger coverage. Coverage is always between 0 and 1, with the

maximum value reached if the portfolio holds every stock in the benchmark.

The second component, “balance,” reflects the extent to which the portfolio’s weights

resemble market-cap weights, regardless of the number of stocks in the portfolio. The term

Var∗ (wi/m
∗
i ) is the variance of wi/m

∗
i with respect to the probability measure defined by

m∗i = mi/
∑N
i=1mi, so that

∑N
i=1m

∗
i = 1.12 If portfolio weights equal market-cap weights,

12Note that
∑NM

i=1 mi = 1, but
∑N

i=1mi ≤ 1, because N ≤ NM . Var∗ (.) can be easily computed using the
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so that wi/m
∗
i = 1, then Var∗(wi/m

∗
i ) = 0 and balance equals 1. Like coverage, balance is

always between 0 and 1.

Equation (24) shows that a portfolio is well diversified if it holds a large fraction of the

benchmark’s stocks and if its weights are close to market-cap weights. Given the ranges of

coverage and balance, diversification is always between 0 and 1. The benchmark portfolio

has coverage and balance both equal to 1.13

Figure 1 provides some history of L and its components for active mutual funds. Panel A

plots the time series of the cross-sectional means of L across all funds, relative to the market

benchmark. Average L doubled between 1980 and 2000, indicating that fund portfolios

became substantially more liquid relative to the market benchmark. To understand this

pattern, we plot in Panel B the time series of the two components of L: stock liquidity and

diversification. Stock liquidity rose sharply in the late 1990s, explaining the contemporaneous

increase in L observed in Panel A, but it declined steadily in the 21st century.14 Judging by

this large decline, one might expect fund portfolios to have become less liquid in the 21st

century, but that is not the case, as shown in Panel A. The reason is that fund portfolios have

become much more diversified, with diversification almost tripling between 2000 and 2014.

The two opposing effects, the decrease in stock liquidity and the increase in diversification,

roughly cancel out, resulting in a flat pattern in L since 2000.

The sharp increase in diversification after 2000 is striking. To shed more light on it, we

plot in Panel C the components of diversification: balance and coverage. Both components

rise steadily, especially after 2000.15 The increase in coverage, equal to N/NM , is dissected in

Panel D. The average N rises essentially linearly from 54 in 1980 to 126 in 2014, indicating

that funds hold an increasingly large number of stocks. In contrast, the number of stocks in

the market plummets from about 8,600 in the late 1990s to fewer than 5,000 in 2014. The

observed increase in coverage is thus driven by a combination of a rising N and falling NM .

Together, Panels C and D show that active mutual funds have become more index-like.

The time-series patterns in Figure 1 could be driven by fund entry or exit. Instead,

expression Var∗ (wi/m
∗
i ) =

∑N
i=1 w

2
i /m

∗
i − 1. Details are in Appendix A.

13Our measure of diversification is easy to calculate from equation (24). Those wishing to circumvent the
calculation of variance with respect to the m∗ probability measure can follow a simple two-step approach:
first compute L from equation (3) and then divide it by stock liquidity, following equation (23).

14This decline indicates that the average stock held by mutual funds became smaller relative to the average
stock in the benchmark. Either funds tilted their portfolios toward smaller stocks or the average benchmark
stock increased in size. Evidence of the former effect is provided by Blume and Keim (2017), who show that
institutional investors increased their holdings of smaller stocks in recent decades.

15The upward trends in both components of diversification, as well as the resulting upward trend in
portfolio liquidity, are statistically significant, as we show in the Internet Appendix.
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we find these patterns are driven largely by within-fund variation, though the increase in

diversification is also significantly affected by fund entry and exit. In particular, the increase

in N over the past decade is explained mainly by entry and exit. One possible channel is

the entry of quantitative funds, which tend to hold many stocks and whose numbers swelled

over the past decade (see Abis, 2018). We show these results in the Internet Appendix. That

Appendix also provides cross-sectional descriptive evidence on L and its components.

4.2. Empirical Evidence of Tradeoffs

In addition to the main fund tradeoffs implied by equation (17), our model also implies

tradeoffs that involve the components of portfolio liquidity. Equation (23) implies that

ln(L) = ln(Stock Liquidity) + ln(Diversification) . (25)

Combined with equation (17), this equation implies

ln(Diversification) = b0 + b1 lnA− b2 ln f + b3 lnT − ln(Stock Liquidity) , (26)

where b0, b1, b2, and b3 are the same constants as before. Equation (26) makes strong

predictions about the determinants of portfolio diversification. In equilibrium, funds with

more-diversified portfolios should be larger and cheaper, they should trade more, and their

stock holdings should be less liquid, on average.

Column 1 of Table 4 provides strong support for these predictions. Fund size, expense

ratio, and turnover help explain diversification with the predicted signs, and the slopes have

magnitudes similar to those in column 4 of Table 1. The new regressor, stock liquidity,

also enters with the right sign and is highly significant, both statistically (t = −21.61) and

economically. A one-standard-deviation increase in ln(Stock Liquidity) is associated with a

0.95 decrease in ln(Diversification), for example, a decrease in diversification from 0.26 to

0.10. Stock liquidity and diversification are thus substitutes: funds tend to make up for the

low liquidity of their holdings by diversifying more. This evidence fits our model.

The estimated slope on stock liquidity, −0.621, is significantly different from its model-

predicted value of −1. Our model is clearly not perfect, but no model is, and even an

imperfect model can be useful. The usefulness of our model in this context lies in its novel

prediction that funds face a tradeoff between their diversification and the average liquidity

of their holdings. This prediction is strongly supported in the data as the aforementioned

slope, −0.621, is significantly negative. Our model may be too simple to nail down the

slope’s magnitude, but it makes a new and correct prediction about its sign.
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The tradeoffs involving diversification are very robust. They obtain not only for our

theoretically motivated measure of diversification from equation (24) but also for three ad-

hoc measures: the Herfindahl index of portfolio weights, the number of stocks in the portfolio,

and the R-squared from the regression of fund returns on benchmark returns. Moreover, the

tradeoffs obtain not only with sector-quarter fixed effects, as in Table 4, but also with quarter

fixed effects. Finally, the tradeoffs also emerge from simple correlations. For example, the

within-sector cross-sectional correlation between diversification and stock liquidity is -41%.

See the Internet Appendix for details.

Next, we drill deeper by decomposing diversification following equation (2):

ln(Diversification) = ln(Coverage) + ln(Balance) . (27)

Combined with equation (26), this equation implies

ln(Coverage) = b0 + b1 lnA− b2 ln f + b3 lnT − ln(Stock Liquidity)− ln(Balance) (28)

and

ln(Balance) = b0 + b1 lnA− b2 ln f + b3 lnT − ln(Stock Liquidity)− ln(Coverage) . (29)

These equations make predictions about the determinants of portfolio coverage and balance.

Columns 2 and 3 of Table 4 support those predictions. In both regressions, all the

variables enter with the predicted signs. Most of the variables are highly significant; only

turnover in column 3 is marginally significant. The slopes on balance in column 2 and

coverage in column 3 are both negative, indicating that coverage and balance are substitutes.

Funds that are less diversified in terms of coverage tend to be more diversified in terms of

balance, and vice versa.

Finally, column 4 of Table 4 tests the prediction analogous to that in equation (26), except

that diversification and stock liquidity switch sides: the former appears on the right-hand side

and the latter on the left-hand side of the regression. The evidence again supports the model,

though a bit less strongly. Three of the four slopes have the right sign and are significant.

The slope on turnover is insignificant. The slope on diversification has the predicted sign,

but it differs from its model-predicted value of −1. A similar discrepancy appears in columns

2 and 3. As noted earlier, our model is too simple to capture the magnitudes of all slope

coefficients, but at least it makes correct predictions about their signs.

The results in Table 4 survive a variety of robustness checks, similar to those discussed

earlier in the context of Table 1. For example, we conduct subsample analysis, change data

frequency, and double-cluster standard errors. For details, see the Internet Appendix.
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5 . Fund Activeness

Funds actively apply their skill in an effort to reap profits. Recall that the function g(T, L) in

equation (9) captures how actively skill is applied. We refer to this function as “activeness.”

We hypothesize that g(T, L) is increasing in turnover, T , and decreasing in portfolio liquidity,

L. That is, a fund is more active if it trades more and if it holds a less-liquid portfolio.

We hypothesize that g(T, L) is increasing in T because we find it reasonable for the

expected benchmark-adjusted gross return in equation (9) to be increasing in T . An active

fund cannot expect to generate profits without trading. A positive role for T emerges also

from the theory and evidence of Pástor, Stambaugh, and Taylor (2017), who establish a

positive link between a fund’s turnover and its performance.16 Intuitively, higher turnover

means the fund is more frequently applying its skill in identifying profit opportunities.

We hypothesize that g(T, L) is decreasing in L because we expect both components of

L, stock liquidity and diversification, to be negatively related to activeness. The role of

stock liquidity in activeness reflects evidence that mispricing is greater among less-liquid

and smaller stocks (e.g., Sadka and Scherbina, 2007, and Stambaugh, Yu, and Yuan, 2015),

consistent with arguments that arbitrage is deterred by higher trading costs and greater

volatility (e.g., Shleifer and Vishny, 1997, Pontiff, 2006). A fund tilting toward such stocks

is more actively pursuing mispricing where it is most prevalent.

Both components of diversification—coverage and balance—explain diversification’s role

in activeness. By holding fewer stocks (i.e., lower coverage), a fund can focus on its best

trading ideas, leading to higher expected gross profits. By deviating more from market-cap

weights (i.e., lower balance), a fund can place larger bets on its better ideas, again boosting

performance. Theoretical settings in which portfolio concentration (i.e., lower diversifica-

tion) arises optimally include Merton (1987), van Nieuwerburgh and Veldkamp (2010), and

Kacperczyk, van Nieuwerburgh, and Veldkamp (2016). Empirical evidence linking portfo-

lio concentration to performance includes results in Kacperczyk, Sialm, and Zheng (2005),

Ivković, Sialm, and Weisbenner (2008), and Choi et al. (2017).

16Additional evidence on the turnover-performance relation in mutual funds is presented by Wermers
(2000), Chen, Jagadeesh and Wermers (2001), Kacperczyk, Sialm, and Zheng (2005), and others. Turnover
is related to the fund’s investment horizon, whose relation to fund performance is analyzed by Yan and Zhang
(2009), Cremers and Pareek (2016), and Lan, Moneta, and Wermers (2018). The latter study also reports
that large-cap funds tend to have longer investment horizons than small-cap funds, which is consistent with
our model to the extent that a longer investment horizon indicates low turnover.
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5.1. Choosing Activeness: Implications

We begin by assuming activeness takes the simple form g(T, L) = TψLβ. Also, to simplify

the analysis in this subsection, we assume α = 0 in equilibrium (Berk and Green, 2004).

If there exists a maximum for fee revenue with respect to T , L, and f , then ψ = λ/γ and

β = −φ/γ (as shown in the Appendix). Therefore, we specify activeness as

g(T, L) = T λ/γL−φ/γ . (30)

This specification provides an interesting set of tradeoffs for a fund. With activeness given

by equation (30), a fund does not have unique values of T , L, and f that maximize its fee

revenue, F . The fund instead trades off different values of those quantities that produce the

same maximized F , given the fund’s skill, µ. Specifically, the fund can choose any values of

T , L, and f that satisfy equation (30) and the relation,

µg(T, L) =
γ

γ − 1
f, (31)

which rearranges equation (12), setting α = 0, replacing a by the right-hand side of equation

(9), and replacing q(A) by its implied value from equation (15). For example, the fund can

arbitrarily choose its fee rate, f , which then dictates its activeness, g(T, L), via equation

(31). Given that level of activeness, the fund can arbitrarily choose its portfolio liquidity, L,

which then dictates its turnover, T , via equation (30).

A higher fee rate dictates greater activeness but does not produce greater fee revenue.

It simply dictates a smaller fund. To see this, first recall from Section 3.1 that A = q−1(h),

where q( ) is the proportional cost in equation (11), and h = µg(T, L) − α − f . It follows

from equation (8) that q−1(h) =
[
(1/θ)T−λLφh

]1/(γ−1)
. Multiplying by f and substituting

µg(T, L)− f for h (setting α = 0) gives fee revenue, F = fA, as

F = f
(

1

θ
T−λLφ [µg(T, L)− f ]

) 1
γ−1

. (32)

We then substitute from equations (30) and (31) into equation (32) to obtain

F = µ
γ
γ−1 (γ − 1)

(
1

θγγ

) 1
γ−1

. (33)

A fund’s equilibrium fee revenue is pinned down by the fund’s skill µ, holding the cost

parameters θ and γ constant. It makes sense for more skilled funds to earn higher fee

revenue, and this prediction is not unique to our model.17 The fee revenue, F = fA, does

17Skill also determines fee revenue in the model of Berk and Green (2004). See Section 8 for further
discussion. Berk and van Binsbergen (2015) also discuss the relation between skill and fee revenue.
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not depend on f because when f changes, A adjusts in the opposite direction to keep F

constant. Irrelevance of f for F also occurs, for example, in the equilibrium models of Berk

and Green (2004), Hugonnier and Kaniel (2010), and Stambaugh (2014).

The data confirm that when g(T, L) is computed as in equation (30), it depends signifi-

cantly on both T and L in the correct directions. Pairing the regression estimates of b1, b2,

and b3 in equation (17) with their corresponding functions of γ, λ, and φ in equation (16)

delivers implied estimates of 0.138 and −1.367 for the exponents of T and L, respectively,

in equation (30). Dividing those values by their standard errors, computed via the delta

method, gives t-statistics of 4.58 and −13.98. Both T and L thus enter g(T, L) significantly.

We obtain two implications for activeness: (i) larger funds choose to be less active,

controlling for f , and (ii) higher-fee funds choose to be more active, controlling for A. To

see these, we divide the right-hand side of equation (32), which equals fA, by f to obtain

A =
(

1

θ
T−λLφ [µg(T, L)− f ]

) 1
γ−1

. (34)

We then substitute from equations (30) and (31) to obtain

A = g−
γ
γ−1

[
f

θ(γ − 1)

] 1
γ−1

. (35)

Taking logs and rearranging gives

ln(g) = d0 + d1 ln(f)− d2 ln(A) , (36)

where d1 and d2 are positive and d0 = −(1/γ) ln[θ(γ − 1)]. Thus, g is increasing in f and

decreasing in A. Intuitively, larger funds, facing diseconomies of scale, optimally reduce

their trading costs by reducing their activeness. Lower-fee funds also choose to be less active

because they are less skilled, holding size constant.

Suppose we were to compute observations of g from equation (30), with the exponents

on T and L implied by the coefficients from the regression corresponding to equation (17),

as discussed above. Then the regression corresponding to equation (36) would deliver es-

timates of d1 and d2 that are simple transformations of our previously reported estimates

of the coefficients in equation (17). In other words, the data would supply no additional

information about the implied fund tradeoffs involving activeness. Therefore, we instead

look for empirical confirmation of these tradeoffs when g is computed in a simpler way.
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5.2. Computing Activeness: Evidence

Our simplified calculation of activeness is motivated by the same setting in which we derive

our portfolio liquidity measure. In that setting, a portfolio is viewed as just another asset,

effectively traded as such, with each stock’s traded amount being proportional to its portfolio

weight. Recall that if a fund trades its portfolio that way, its cost function is given by equation

(8) with γ = 2, λ = 2, and φ = 1. Applying those parameter values to equation (30) gives

g(T, L) = TL−1/2, (37)

our empirical measure of activeness.

With g computed as in equation (37), we estimate the regression corresponding to equa-

tion (36). The results are reported in Table 5. As our model predicts, activeness is related

negatively to fund size and positively to expense ratio. Both relations are very strong, with

t-statistics of about 10 in magnitude. These relations obtain not only in the multiple re-

gression but also in simple regressions, with t-statistics exceeding 13 in magnitude. Like

Tables 1 through 4, Table 5 reports results with sector-quarter fixed effects, but including

just quarter fixed effects produces very similar results. We also find very similar results in

two subsamples, 1979 through 2004 and 2005 through 2014. See the Internet Appendix.

Our activeness measure from equation (37) has a correlation of 55%, in logs, with the

popular active share measure of Cremers and Petajisto (2009). Active share is computed

by using only portfolio weights of the fund and the benchmark, as is our portfolio liquidity

measure, L. Both active share and L capture deviations of portfolio weights from benchmark

weights, so it is not surprising that the correlation between active share and L is high, −79%,

in logs. But our measure of activeness incorporates not only L but also T . This inclusion

of turnover captures the intuitive notion that a fund is more active if it trades more. The

presence of turnover in activeness, and its absence from active share, is the main difference

between the two measures. Yet when we replace activeness by active share in Table 5, we

obtain the same conclusions: smaller funds and higher-fee funds tend to be more active.

Cremers and Petajisto report similar results. We also obtain the same conclusions when

replacing activeness by another proxy, the inverse of the R-squared from the regression of

fund returns on benchmark returns. See the Internet Appendix.
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6 . Tradeoffs: Simple Correlations

The tradeoffs implied by our model take the form of multiple regressions (e.g., equation (17)),

but they emerge also from simple correlations. In this section, we analyze the correlations

among the four main fund characteristics. To understand these correlations in the context

of our model, we need additional assumptions.

6.1. Larger Funds Are Cheaper

Our model predicts a negative correlation between fund size, A, and expense ratio, f . We

derive this prediction from equation (33), in which a fund’s equilibrium fee revenue, F = Af ,

is determined by the fund’s skill, µ. Holding µ constant, A and f are perfectly negatively

correlated across funds. If µ varies across funds, the correlation between A and f is no

longer perfect, but it remains negative as long as µ is not highly correlated with f across

funds. Specifically, let βµ,f denote the slope from the cross-sectional regression of ln(µ) on

ln(f). Our model implies a negative cross-sectional correlation between A and f as long as

βµ,f < (γ − 1)/γ (see Appendix A for the proof). It makes sense for βµ,f to be positive,

in that more skilled funds should be able to charge higher fee rates. Nonetheless, it seems

plausible for βµ,f to be small enough to satisfy the assumption because in practice, expense

ratios have a variety of determinants beyond skill (marketing, distribution, etc.).

Empirical evidence strongly supports the prediction that larger funds are cheaper. Table

6 reports correlations between fund characteristics, again measured in logs. In our mutual

fund dataset, the cross-sectional within-sector correlation between fund size and expense

ratio is −31.5% (t = −15.27). Larger funds clearly charge lower expense ratios. This

evidence is consistent with our model. Others have also reported a negative correlation

between size and expense ratio for active mutual funds (e.g., Warner and Wu, 2011). One

potential explanation is that funds’ administrative costs tend to decline with AUM, but

funds need not pass those savings along to investors. The negative correlation occurs in

part because some fund advisory contracts set the management fee to decline in AUM (e.g.,

Deli, 2002). That practice is consistent with our model, which appears to be the first formal

theory supporting a negative relation between size and expense ratio.

The correlation between fund size and expense ratio is also strongly negative in the time

series for the typical fund, −25.1% (t = −17.54). In computing the time-series correlations

in Panel B of Table 6, we need to account for the substantial growth in the dollar values

of stocks that renders dollar AUM unappealing as a time-series measure of fund size: AUM
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values in the 1980s are not comparable to those today. To address this fact, we divide each

fund’s AUM by the contemporaneous total stock market capitalization. Pástor, Stambaugh,

and Taylor (2015) also deflate fund size by stock-market value when analyzing a time series

of fund size.

6.2. Larger and Cheaper Funds Are Less Active

Recall from equation (36) that the fund’s activeness, g(T, L), is positively correlated with

f , controlling for A, and negatively correlated with A, controlling for f . These correlations

obtain also without controls, under additional assumptions. If skill (µ) is constant across

funds, both simple correlations are perfect. The positive correlation between g and f follows

directly from equation (31). The negative correlation between g and A obtains when we

substitute for f from equation (31) into equation (35), yielding

A =
1

g
µ

1
γ−1 (γθ)−

1
γ−1 . (38)

The product of fund size and activeness, Ag, is determined by µ. Holding µ constant, A

is perfectly negatively correlated with g. If µ varies across funds, both correlations retain

their signs as long as µ is not too highly correlated with f or A. Specifically, let βµ,A denote

the slope from the regression of ln(µ) on ln(A). The model implies a negative correlation

between g and A as long as βµ,A < γ − 1 and a positive correlation between g and f as long

as βµ,f < 1 (see Appendix A for the proof). Empirical evidence strongly supports both of

these predictions, as shown in columns 1 and 2 of Table 5. Funds that are larger and cheaper

are less active, as the model predicts.

One way a fund can be less active is to trade less. The above predictions for g(T, L) imply

that, controlling for L, T should be negatively related to fund size and positively related

to expense ratio. This is indeed true in the data, as we show in the Internet Appendix.

Moreover, the relations hold even without controlling for L. In Table 6, T is negatively

correlated with fund size, both in the cross section and in the time series: the correlations

are −10.5% (t = −6.00) and −14.7% (t = −12.11), respectively. In addition, T is positively

correlated with expense ratio: the correlation is 13.0% (t = 6.34) in the cross section and

10.5% (t = 7.54) in the time series. Deli (2002) also reports that funds with higher turnover

charge more. In short, larger and cheaper funds trade less.
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6.3. Funds with More-Liquid Portfolios Are Larger and Cheaper

Table 4 shows that the partial correlation between L and A is positive, and also that the

partial correlation between L and f is negative. Both relations hold strongly even in simple

correlations, as shown in Table 6. The correlations between L and A are 28.5% (t = 17.77)

and 30.8% (t = 18.00) in the cross section and time series, respectively. The correlations

between L and f are −29.1% (t = −13.29) and −11.8% (t = −6.78). These correlations

also emerge from the simple-regression results reported in Table 1. In short, funds with

more-liquid portfolios are larger and cheaper, as predicted by our model.

The cross-sectional correlations that involve L are extremely robust. The correlations in

Panel A of Table 6 are computed from panel regressions with quarter-sector fixed effects,

which isolate cross-sectional correlations within sectors.18 Those correlations are therefore

weighted averages of cross-sectional correlations, where the averaging is across all quarters

in our sample. It turns out that the cross-sectional relations involving L hold not only on

average, but also in every single quarter in our sample. This stunning fact is plotted in

Figure 2. Both correlations involving L retain the same sign in every quarter between 1980

and 2014. In fact, in each quarter, their magnitudes exceed 20% in absolute value.

Two other cross-sectional correlations discussed earlier are similarly strong, which is why

we plot their time series in Figure 2. The correlation between fund size and expense ratio,

analyzed in Section 6.1, is negative in every single quarter, varying between −0.74 and −0.23

across quarters. The correlation between turnover and expense ratio, analyzed in Section

6.2, is positive in every quarter, varying between 0.10 and 0.36.

While Figure 2 plots cross-sectional correlations, the time-series correlations reported in

Table 6 are of similar magnitudes. The time-series correlation between L and fund size,

30.8%, is particularly strong. It shows that when a fund gets larger, its portfolio becomes

more liquid. This fact is easily interpreted in the context of our theory. Consider a fund that

receives a large inflow. Cognizant of decreasing returns to scale, the fund’s manager makes

the fund’s portfolio more liquid. And vice versa—after a large outflow, a fund can afford to

make its portfolio less liquid.

To illustrate these effects, we pick the example of Fidelity Magellan, the largest mutual

fund at the turn of the millenium. Figure 3 plots the time series of Magellan’s AUM and

18We also compute plain cross-sectional correlations (i.e., including quarter fixed effects instead of sector-
quarter fixed effects). The results are very similar to those in Panel A of Table 6 so we report them only in the
Internet Appendix. In that Appendix, we also show the results from another robustness exercise, in which
we recompute Table 6 for two subperiods containing roughly the same number of fund-month observations.
The results in both subsamples look very similar to the full-sample ones.
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its portfolio liquidity. The comovement between the two series is striking. Between 1980

and 2000, Magellan’s assets grew rapidly, in large part due to the fund’s stellar performance

under Peter Lynch in 1977 through 1990. Over the same period, and especially after 1993,

the liquidity of Magellan’s portfolio also grew rapidly. From 1993 to 2001, Magellan’s L

grew from 0.1 to 0.4, a remarkable increase equal to nearly five standard deviations of the

sample distribution of L. After 2000, though, Magellan’s assets shrank steadily, and by 2014,

they were down by almost 90%. Over the same period, Magellan’s L was down also, back

to about 0.1. A natural interpretation is that Magellan’s large size around 2000 forced the

fund’s managers to increase the liquidity of Magellan’s portfolio to shelter the fund from the

pernicious effects of decreasing returns to scale.

7 . Rethinking Scale

What is a fund’s scale? Following Berk and Green (2004), active funds are typically viewed

as facing decreasing returns to scale, with scale given by fund size, i.e., AUM. Our framework

offers a new perspective on scale. In our setting, funds face decreasing returns to scale, but

scale depends not only on size but also on activeness.

Let Π denote the fund’s expected dollar profit net of trading costs (but before fees). From

equations (8) and (9), this profit is given by

Π = aA− C(A, T, L)

= µg(T, L)A− θAγT λL−φ . (39)

When the fund chooses activeness, so that g(T, L) is given by equation (30), then

Π = µT λ/γL−φ/γA− θAγT λL−φ

= µS − θSγ , (40)

where

S = T λ/γL−φ/γA

= g(T, L)A . (41)

The net profit function given by equation (40) is concave in S (recall that γ > 1). That is,

the fund faces decreasing returns to scale with respect to S.

The fund’s scale, S, is activeness times size, not just size. This concept of fund scale

makes intuitive sense. If two funds manage equal amounts of money, but one fund deploys

its money more actively, that fund leaves a bigger footprint in the market.
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If one considers size alone as a fund’s scale, one must condition on a given level of the

fund’s activeness. The value of activeness, g, affects the degree to which the fund faces

decreasing returns with respect to size, A. Decreasing returns are often discussed in the

context of the fund’s alpha, with α decreasing in A (for a given a fee rate, f). The strength

of that negative relation, however, depends on the fund’s g. For the latter given by equation

(30) and for the cost function in equation (8), equation (12) becomes

α = µg − θgγAγ−1 − f , (42)

so
∂α

∂A
= −θ(γ − 1)gγAγ−2 < 0 . (43)

An increase in A depresses α more when the fund has a greater g. In other words, both size

and activeness matter for the degree to which the fund faces decreasing returns to scale.

8 . Relation to Berk and Green (2004)

Besides delivering a different concept of scale, our setting departs from that of Berk and

Green (2004), hereafter BG, in other key respects. First, we incorporate both turnover and

portfolio liquidity. The fund’s choices of those characteristics, absent from BG, enter the

fund’s trading costs as well as its activeness. Our setting considers four fund characteristics:

size, expense ratio, turnover, and portfolio liquidity. Only two of them, size and expense

ratio, appear in the BG setting. Our richer setting allows us to obtain new insights into

the tradeoffs involving turnover and portfolio liquidity, as well as the tradeoffs involving the

components of portfolio liquidity: stock liquidity, diversification, coverage, and balance.

The BG setting can be shown to imply tradeoffs between characteristics for a given fund,

but in a more limited way than ours. The most straightforward is the tradeoff between size

and expense ratio. In the BG setting, a fund that cuts its fee rate attracts additional capital,

which is indexed at low cost. The fund’s size is thus inversely related to its expense ratio.

By adding mild assumptions to the BG setting, we can also derive tradeoffs between a

fund’s size and the two fund characteristics that do not explicitly appear in that setting.

Assuming the fund’s indexed portion has zero turnover, the BG setting implies a negative

relation between a fund’s size and its turnover. It also implies a positive relation between

size and portfolio liquidity, our newly introduced measure.19 Thus, although not discussed

19This relation follows from the following result, which we derive in Appendix A: If a portfolio with
liquidity L is combined with the benchmark (index fund), the liquidity of the resulting combination, L̃,
obeys L̃−1 = 1 + ω2(L−1 − 1), where ω is the non-indexed (active) fraction of the fund.

30



by BG, it is possible to derive some relations among the four fund characteristics in their

setting. Importantly, however, in the BG setting all four characteristics have a single quantity

driving those relations—the fraction of the fund that is indexed. So, for example, one cannot

consider the implications for size and expense ratio if the fund were to increase its turnover

but not change portfolio liquidity. In the BG setting, an increase in turnover would have

to reflect a lower fraction indexed, so it would have to be accompanied by a decrease in

portfolio liquidity. In our setting, each fund characteristic can potentially trade off against

independent variation in the others.

Finally, by providing a more complete specification of trading costs that incorporates

turnover and liquidity, we are able to derive equation (17) and apply it cross-sectionally,

whereas BG do not make cross-sectional predictions about fund characteristics. Instead, BG

focus on the performance-flow relation induced by the updating of investors’ beliefs.

9 . Liquidity and the Turnover-Performance Relation

As discussed earlier, active funds that trade less-liquid portfolios will likely find greater profit

opportunities, before trading costs, but less-liquid portfolios are also costlier to trade. This

role of liquidity in the tradeoff between gross profit and trading costs has implications for

the relation between a fund’s turnover and its subsequent performance.

The basic turnover-performance relation has a simple motivation. A fund is likely to

trade more in periods when it identifies more opportunities. In the framework of Pástor,

Stambaugh, and Taylor (2017), a fund’s trades in the current period establish positions

that yield profits in subsequent periods, as prices correct. Time-varying profit opportunities

then imply a positive time-series relation between a fund’s turnover and its subsequent

performance, as that study finds empirically.

Portfolio liquidity’s role in the turnover-performance relation arises from its role in the

profit-cost tradeoff noted above. If trading costs are high, then so too must be the gross

profit opportunities that justify trading. The turnover-performance relation should therefore

be stronger for funds whose trades are more costly, as Pástor, Stambaugh, and Taylor (2017)

explain. That study confirms this implication empirically, using fund categories as rough

proxies to identify funds having higher trading costs, such as funds investing in small-cap

stocks. We investigate the same implication, but we instead use a fund characteristic linked

directly to trading costs: portfolio liquidity. If a fund exploits profit opportunities by trading

a less-liquid portfolio, the gross profit opportunities need to be larger, because a given amount
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of trading is costlier when portfolio liquidity is lower. Applying the same reasoning as Pástor,

Stambaugh, and Taylor (2017), we expect the turnover-performance relation to be stronger

for less liquid portfolios.

We follow that study in regressing each fund’s benchmark-adjusted return in month t

on the fund’s turnover for the most recent fiscal year ending before month t, adding back

the expense ratio to the return. Also as in that study, we include fund fixed effects, thereby

estimating the time-series relation between a fund’s turnover and its subsequent performance.

Unlike that study, our regression includes an independent variable that interacts turnover

with the illiquidity of the fund’s portfolio. This interaction term should enter positively if

the turnover-performance relation is indeed stronger for a fund facing higher trading costs,

i.e., a fund trading a less-liquid portfolio.

To capture the interaction of turnover with portfolio illiquidity, we use the quantity

already defined in equation (37), namely our activeness measure, TL−1/2. Because portfolio

liquidity, L, enters this quantity inversely, activeness reflects the desired interaction between

turnover, T , and portfolio illiquidity.20 We regress a fund’s performance on not only the

fund’s turnover but also on its activeness, expecting activeness to enter positively.

The results in Table 7 confirm this prediction. The relation between activeness and

subsequent performance is positive and strongly significant.21 For the multiple regression

reported in column 3, which includes turnover as well as activeness, the t-statistic on active-

ness is 7.33. The slope on activeness is positive and highly significant also when we control

for portfolio illiquidity, as we show in the Internet Appendix. This result provides further

evidence of portfolio liquidity’s empirical relevance for trading costs, given the role such costs

should play in the turnover-performance relation.

10. Conclusions

We model and document strong tradeoffs among the most salient characteristics of active

mutual funds: fund size, expense ratio, turnover, and portfolio liquidity. We find empirically

that funds with smaller size, higher expense ratios, and lower turnover tend to hold less-liquid

portfolios. They also hold less-diversified portfolios. All of these findings are predicted by our

20Since we do not take the logarithm of L in this turnover-performance regression, we winsorize L−1/2 at
the 1st and 99th percentiles before interacting it with T to compute activeness.

21This time-series relation complements prior results documenting positive cross-sectional relations be-
tween fund performance and other measures of fund activity, such as active share (Cremers and Petajisto,
2009) and R-squared (Amihud and Goyenko, 2013). Our focus is not on the activeness-performance relation
per se but rather on the role of L in the turnover-performance relation found in earlier work.
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equilibrium model, in which the key fund characteristics are jointly determined. Additional

predictions also hold in the data. For example, larger funds are cheaper, funds that trade less

are larger and cheaper, and funds that are less active are larger and cheaper. Table 8 lists

the paper’s 25 predicted relations between fund characteristics, along with the corresponding

t-statistics reported earlier. Virtually all of the predictions receive strong empirical support.

Our results provide novel and compelling evidence of decreasing returns to scale in active

management. A fund’s scale is captured by its activeness times AUM, not just AUM.

Another contribution of our study is to introduce the concept of portfolio liquidity. We

show that a portfolio’s liquidity depends not only on the liquidity of its holdings but also

on its diversification. We derive simple measures of portfolio liquidity and diversification.

Based on these measures, we find that active mutual funds’ portfolios have become relatively

more liquid over time, mostly as a result of becoming more diversified. We also find that

the components of portfolio liquidity are substitutes: funds holding less-liquid stocks tend

to diversify more, and funds holding fewer stocks choose portfolio weights closer to market-

cap weights. Finally, we confirm empirically our prediction that the turnover-performance

relation is stronger for funds with less-liquid portfolios.

Our empirical analysis focuses on U.S. equity mutual funds. Future research can apply

our concepts and measures to portfolios held by other types of institutions, such as hedge

funds, private equity funds, fixed income mutual funds, and pension funds. More research

into relations among fund characteristics also seems warranted.
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Figure 1. Time Series of Average Portfolio Liquidity and Its Components. This

figure plots the quarterly time series of the cross-sectional means of portfolio liquidity, stock

liquidity, diversification, coverage, balance, and the number of stocks held by each fund. Liq-

uidity, diversification, and its components are computed with respect to the market bench-

mark. In Panel D we also plot the number of stocks in the market portfolio.
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Figure 2. Cross-Sectional Correlations Over Time. This figure plots monthly time

series of the cross-sectional correlation between the two variables noted in the legend. All

variables are measured in logs. For each correlation, we drop months with fewer than 30

observations. To convert portfolio liquidity from a quarterly to a monthly variable, we take

portfolio liquidity from the current month or, if missing, from the previous two months.

Portfolio liquidity is computed with respect to the market benchmark.
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Figure 3. Fidelity Magellan Fund. This figure plots Magellan’s assets under manage-

ment (AUM) and portfolio liquidity, computed with respect to the market benchmark.
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Table 1

Explaining Mutual Funds’ Portfolio Liquidity

This table presents results from OLS panel regressions in which the dependent variable is a

mutual fund’s portfolio liquidity, L. The regressors—fund size, A, expense ratio, f , and fund

turnover, T—are measured contemporaneously with the dependent variable. All variables

are measured in logs. The unit of observation is the fund/quarter. All regressions include

sector×quarter fixed effects (FEs) and cluster by fund. The R2 values in the penultimate

row include the FEs’ contribution. The last row contains the R2 values from the regression

of the dependent variable on the FEs alone. t-statistics are in parentheses.

(1) (2) (3) (4)

Fund Size 0.157 0.124
(17.77) (13.76)

Expense Ratio -0.766 -0.608
(-13.29) (-11.26)

Turnover 0.0408 0.101
(1.93) (4.93)

Observations 88925 89017 81892 76928
R2 0.627 0.623 0.591 0.652
R2 (FEs only) 0.594 0.588 0.591 0.598
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Table 2

Explaining Volume-Based Portfolio Liquidity

This table presents results for the same regressions as in Table 1 except that portfolio liquidity

is computed as LV in equation (20), using dollar volume.

(1) (2) (3) (4)
Fund Size 0.159 0.133

(15.62) (13.18)

Expense Ratio -0.743 -0.617
(-11.51) (-10.75)

Turnover 0.180 0.242
(7.67) (10.48)

Observations 88922 89014 81889 76925
R2 0.596 0.589 0.574 0.631
R2 (FEs only) 0.568 0.562 0.564 0.572
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Table 3

Explaining Portfolio Liquidity Under Nonlinear Trading Costs

This table presents results corresponding to the last column in Table 1, except that portfolio

liquidity is computed as Lη in equation (22), using a nonlinear function for proportional

trading costs. The last column in Table 1 corresponds to η = 1, whereas this table reports

results for lower values of η, as identified by the column headings.

η=0.1 η=0.3 η=0.5 η=0.7 η=0.9
Fund Size 0.00922 0.0298 0.0534 0.0798 0.109

(11.46) (12.06) (12.62) (13.13) (13.56)

Expense Ratio -0.0519 -0.163 -0.283 -0.409 -0.541
(-11.66) (-11.70) (-11.63) (-11.49) (-11.34)

Turnover 0.00870 0.0273 0.0473 0.0683 0.0901
(4.77) (4.86) (4.91) (4.93) (4.93)

Observations 76928 76928 76928 76928 76928
R2 0.724 0.710 0.694 0.677 0.660
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Table 4

Explaining the Components of Portfolio Liquidity

This table presents results from four OLS panel regressions with dependent variables noted

in the column headers. All regressors are measured contemporaneously with the dependent

variable. All variables are measured in logs. The unit of observation is the fund/quarter. All

regressions include sector×quarter fixed effects (FEs) and cluster by fund. The R2 values in

the penultimate row include the FEs’ contribution. The last row contains the R2 values from

the regression of the dependent variable on the FEs alone. t-statistics are in parentheses.

(1) (2) (3) (4)
Stock

Diversification Coverage Balance Liquidity

Fund Size 0.134 0.0940 0.0452 0.0122
(15.00) (12.08) (7.54) (2.35)

Expense Ratio -0.622 -0.408 -0.238 -0.132
(-11.00) (-9.33) (-6.95) (-5.26)

Turnover 0.122 0.102 0.0247 -0.0146
(5.96) (6.37) (1.92) (-1.32)

Stock Liquidity -0.621 -0.337 -0.308
(-21.61) (-14.21) (-14.90)

Balance -0.0447
(-2.08)

Coverage -0.0343
(-2.09)

Diversification -0.264
(-24.49)

Observations 76928 76928 76928 76928
R2 0.465 0.336 0.286 0.882
R2 (FEs only) 0.240 0.163 0.172 0.857
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Table 5
Explaining Fund Activeness

This table presents results from OLS panel regressions with the dependent variable equal
to Activeness. Activeness equals TL−1/2, where T is turnover and L is portfolio liquidity.
All regressors are measured contemporaneously with the dependent variable. All variables
are measured in logs. The unit of observation is the fund/quarter. All regressions include
sector×quarter fixed effects (FEs) and cluster by fund. The last row contains the R2 values
from the regression of the dependent variable on the FEs alone. The R2 values in the
penultimate row include the FEs’ contribution. t-statistics are in parentheses.

(1) (2) (3)
Fund Size -0.138 -0.100

(-13.23) (-9.53)

Expense Ratio 0.712 0.558
(13.14) (10.12)

Observations 76928 76928 76928
R2 0.392 0.398 0.415
R2 (FEs only) 0.356 0.356 0.356
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Table 6
Correlations Among Fund Characteristics

This table reports correlations among the given fund characteristics, all measured in logs.
Panel A reports correlations across funds within sector-quarters. Starting with our full
panel dataset, we first de-mean each variable using the mean across all observations in the
same sector and quarter, then we compute the full-sample correlation between the two de-
meaned variables. Panel B reports time-series correlations within funds, which we compute
analogously except that we de-mean each variable using each fund’s time-series mean. Fund
size is scaled by total stock market capitalization. Portfolio liquidity is defined with respect
to the market benchmark. t-statistics are computed clustering by fund and adjusting for
de-meaning.

Fund Expense Portfolio
Size Ratio Liquidity Turnover

Panel A: Cross-Sectional Correlations Within Sectors

Fund Size 1

Expense Ratio -0.315 1
(-15.27)

Portfolio Liquidity 0.285 -0.291 1
(17.77) (-13.29)

Turnover -0.105 0.130 0.039 1
(-6.00) (6.34) (1.93)

Panel B: Time-Series Correlations

Fund Size 1

Expense Ratio -0.251 1
(-17.54)

Portfolio Liquidity 0.308 -0.118 1
(18.00) (-6.78)

Turnover -0.147 0.105 -0.109 1
(-12.11) (7.54) (-6.76)
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Table 7
Activeness and the Turnover-Performance Relation

The dependent variable is the fund’s net return plus expense ratio minus Morningstar’s desig-
nated benchmark return in month t. Turnover and Activeness are measured for the most re-
cent time period that ends before month t. For this analysis, we use L computed with respect
to the market benchmark. Following Pástor, Stambaugh, and Taylor (2017), all regressions
include fund fixed effects and cluster by Morningstar sector × month. Heteroskedasticity-
robust t-statistics are in parentheses.

(1) (2) (3)
Turnover (T ) 0.00123 -0.000625

(6.53) (-2.26)

Activeness (TL−1/2) 0.000162 0.000190
(8.67) (7.33)

Observations 320712 235337 235337
R2 0.015 0.016 0.016
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Table 8
Review of Predicted Relations

This table lists the paper’s predicted relations between fund characteristics. The last column
contains the corresponding t-statistics, reported in the previous tables. In most cases, the
predicted relation between two characteristics controls for others, so the t-statistic is from a
multiple regression. All predictions are cross-sectional except the last, which is a within-fund
time-series prediction.

Predicted
Fund Characteristics Relation t-statistic

Portfolio Liquidity Fund Size + 13.8
Portfolio Liquidity Expense Ratio − −11.3
Portfolio Liquidity Turnover + 4.9
Diversification Fund Size + 15.0
Diversification Expense Ratio − −11.0
Diversification Turnover + 6.0
Diversification Stock Liquidity − −21.6
Coverage Fund Size + 12.1
Coverage Expense Ratio − −9.3
Coverage Turnover + 6.4
Coverage Stock Liquidity − −14.2
Coverage Balance − −2.1
Balance Fund Size + 7.5
Balance Expense Ratio − −7.0
Balance Turnover + 1.9
Balance Stock Liquidity − −14.9
Stock Liquidity Fund Size + 2.4
Stock Liquidity Expense Ratio − −5.3
Stock Liquidity Turnover + −1.3
Activeness Fund Size − −9.5
Activeness Expense Ratio + 10.1
Fund Size Expense Ratio − −15.3
Fund Size Turnover − −6.0
Expense Ratio Turnover + 6.3
Future Return Activeness + 7.3
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Ivković, Zoran, Clemens Sialm, and Scott Weisbenner, 2008, Portfolio concentration and the

performance of individual investors, Journal of Financial and Quantitative Analysis 43,

613–655.

Kacperczyk, Marcin, Clemens Sialm, and Lu Zheng, 2005, On the industry concentration of

actively managed equity mutual funds, Journal of Finance 60, 1983–2011.

Kacperczyk, Marcin, Stijn Van Nieuwerburgh, and Laura Veldkamp, 2016, A rational theory

of mutual funds’ attention allocation, Econometrica 84, 571–626.

Keim, Donald, and Ananth Madhavan, 1997, Transaction costs and investment style: An

inter-exchange analysis of institutional equity trades, Journal of Financial Economics

46, 265–292.

46



Kyle, Albert S., and Anna A. Obizhaeva, 2016, Market microstructure invariance: Empirical

hypotheses, Econometrica 84, 1345–1404.

Lan, Chunhua, Fabio Moneta, and Russ Wermers, 2018, Holding horizon: A new measure

of active investment management, Working paper, University of Maryland.

Merton, Robert C., 1987, A simple model of capital market equilibrium with incomplete

information, Journal of Finance 42, 483–510.
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Appendix A. Proofs

Proof that the most liquid portfolio is the benchmark portfolio:

Starting from equation (3), we solve the following constrained minimization problem:

min
{wi}

NM∑
i=1

w2
i

mi

subject to
NM∑
i=1

wi = 1 , (A1)

where NM is the number of stocks in the benchmark. The problem is convex, so the first-

order conditions describe the minimum. Denoting the optimal portfolio weights by w̃i and

the Lagrange multiplier by ζ, the first-order conditions are 2w̃i
mi
− ζ = 0, so that w̃i = ζmi

2
.

Substituting into the constraint yields
∑NM
i=1

ζmi
2

= 1, which implies ζ
2

∑NM
i=1 mi = 1, which in

turn implies ζ = 2, which then gives w̃i = mi.

A different proof, which is instructive in its own right, relies on a perturbation argument.

Consider a portfolio with liquidity L. We perturb this portfolio by buying a bit of stock i

and selling a bit of stock j, so the new portfolio weights are w∗i = wi + u and w∗j = wj − u,

where u > 0 and all other weights remain the same. The portfolio’s illiquidity changes to

(
L−1

)∗
=

∑
n/∈{i,j}

w2
n

mn

+
(wi + u)2

mi

+
(wj − u)2

mj

= L−1 + 2u

(
wi
mi

− wj
mj

)
+ u2

(
1

mi

+
1

mj

)
. (A2)

If the original portfolio is the benchmark portfolio, for which wi/mi = wj/mj = 1, it follows

immediately that any perturbation increases portfolio illiquidity: (L−1)
∗
> L−1.

Proof of equation (23):

First, define m =
∑N
i=1mi and note that

m =
N∑
i=1

mi =
N∑
i=1

Mi

M
=

∑N
i=1Mi∑NM
i=1 Mi

=
N

NM

× 1

N

N∑
i=1

Mi

1
NM

∑NM
j=1Mj

. (A3)

Second, rearrange the inverse of portfolio liquidity from equation (3) as follows:

L−1 =
N∑
i=1

w2
i

mi

=
1

m

N∑
i=1

w2
i

m∗i
=

1

m

N∑
i=1

m∗i

(
wi
m∗i

)2

=
1

m
E∗


(
wi
m∗i

)2


=
1

m

(E∗
{
wi
m∗i

})2

+ Var∗
(
wi
m∗i

) =
1

m

[
1 + Var∗

(
wi
m∗i

)]
, (A4)

where E∗ is the expectation with respect to the m∗ measure. Combining equations (A3) and

(A4) yields equation (23).
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Proof of the statement from Section 5.1 that leads to equation (30):

Substituting g(T, L) = TψLβ into equation (32), we obtain fee revenue as

F =
(

1

θ
fγ−1

[
µTψ−λLβ+φ − fT−λLφ

]) 1
γ−1

. (A5)

The fund maximizes F by choosing not only f (see equation (31)) but also T and L:

∂F

∂T
=

1

γ − 1

(
F γ−1

) 1
γ−1
−1
(

1

θ

)
fγ−1

[
µ(ψ − λ)Tψ−λ−1Lβ+φ + fλT−λ−1Lφ

]
= 0 (A6)

∂F

∂L
=

1

γ − 1

(
F γ−1

) 1
γ−1
−1
(

1

θ

)
fγ−1

[
µ(β + φ)Tψ−λLβ+φ−1 − fφT−λLφ−1

]
= 0 . (A7)

Setting the bracketed terms equal to zero, we obtain

µ g(T, L) =
λ

λ− ψ
f (A8)

µ g(T, L) =
φ

φ+ β
f , (A9)

where equation (A8) follows from equation (A6) and equation (A9) follows from equation

(A7). Recall that maximizing F with respect to f leads to equation (31): µ g(T, L) = γ
γ−1 f .

Combining that equation with equations (A8) and (A9), we see that for all three first-order

conditions to have a solution, we must have

λ

λ− ψ
=

φ

φ+ β
=

γ

γ − 1
, (A10)

which implies ψ = λ/γ and β = −φ/γ, which in turn immediately implies equation (30).

Proofs of statements from Section 6:

First, we prove that the cross-sectional correlation between fund size and expense ratio

is negative as long as βµ,f < (γ − 1)/γ. Take logs in equation (33), so that

ln(A) = − ln(f) +
γ

γ − 1
ln(µ) + constant , (A11)

and note that

Cov(ln(A), ln(f)) = Cov(− ln(f) +
γ

γ − 1
ln(µ), ln(f))

=
γ

γ − 1
Cov(ln(µ), ln(f))− Var(ln(f)) . (A12)

This covariance is negative if Cov(ln(µ), ln(f))/Var(ln(f) < γ−1
γ

, or βµ,f <
γ−1
γ

.

Second, we prove that the correlation between g and f is positive as long as βµ,f < 1.

Take logs in equation (31), so that

ln(g) = ln(f)− ln(µ) + ln(
γ

γ − 1
) , (A13)
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and note that

Cov(ln(g), ln(f)) = Cov(ln(f)− ln(µ), ln(f))

= Var(ln(f))− Cov(ln(µ), ln(f)) . (A14)

This covariance is positive if Cov(ln(µ), ln(f))/Var(ln(f) < 1, or βµ,f < 1.

Finally, we prove that the correlation between g and A is negative as long as βµ,A < γ−1.

Take logs in equation (38), so that

ln(g) =
1

γ − 1
ln(µ)− ln(A) + constant , (A15)

and note that

Cov(ln(g), ln(A)) = Cov(
1

γ − 1
ln(µ)− ln(A), ln(A))

=
1

γ − 1
Cov(ln(µ), ln(A))− Var(ln(A)) . (A16)

This covariance is negative if Cov(ln(µ), ln(A))/Var(ln(A) < γ − 1, or βµ,A < γ − 1.

Proof of the statement from footnote 19:

Suppose an active portfolio is blended with a passive benchmark so that ω ∈ [0, 1] is

the weight on the active portfolio and 1 − ω is the weight on the benchmark. The active

portfolio has liquidity L and weights wi; the benchmark has liquidity of one and weights mi.

The blended portfolio’s weights are w̃i = ωwi + (1− ω)mi. Its illiquidity is

L̃−1 =
∑
i

w̃2
i

mi

=
∑
i

ω2w2
i + 2ω (1− ω)wimi + (1− ω)2m2

i

mi

= ω2L−1 + 2ω (1− ω)

(∑
i

wimi

mi

)
+ (1− ω)2

= ω2L−1 + 1− ω2. (A17)

In words, the blended portfolio’s illiquidity is a weighted average of the illiquidities of the

active portfolio and the benchmark, where the weights are ω2 and 1 − ω2. Also note that

L̃−1 ≤ L−1: indexing a part of the portfolio reduces the portfolio’s illiquidity.
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Appendix B. Data

To construct our sample of actively managed U.S. domestic equity mutual funds, we

begin with the 1979–2011 dataset constructed by Pástor, Stambaugh, and Taylor (2015),

whose detailed description is in the online Data Appendix to that paper. We expand the

dataset by merging it with the Thomson Reuters dataset of fund holdings and adding data

from 2012 through 2014. We exclude funds identified by CRSP or Morningstar as index

funds, funds whose name contains the word “index,” and funds classified by Morningstar as

funds of funds. We exclude fund-month observations with expense ratios below 0.1% per

year since they are extremely unlikely to belong to actively managed funds. Finally, we

exclude fund-month observations with lagged fund size below $15 million in 2011 dollars.

We aggregate share classes belonging to the same fund.22

When computing portfolio weights w, we drop all fund holdings that are not included in

our definition of the market portfolio, which is guided by the holdings of Vanguard’s Total

Stock Market Index fund. This fund tracks the CRSP US Total Market Index, which is

designed to track the entire U.S. equity market. We find that 98.9% of the fund’s holdings

are either ordinary common shares (CRSP share code, shrcd, with first digit equal to 1)

or REIT shares of beneficial interest (shrcd = 48). We therefore define the market as all

CRSP securities with these share codes. This definition includes foreign-incorporated firms

(shrcd = 12), many of which are deemed domestic by CRSP (they make up 1.4% of the

Vanguard fund’s holdings), but it excludes securities such as ADRs (shrcd = 31) and units

or limited partnerships (shrcd first digit equal to 7). A fund’s holding can fall outside the

market if its CUSIP cannot be linked to the CRSP database (1.0% of the Vanguard fund’s

holdings), or if the security is in CRSP but outside our definition of the market (0.1% of the

Vanguard fund’s holdings). These holdings mainly represent cash, bonds, and other non-

equity securities. For the median (average) fund/month observation in our sample, 2.3%

(3.5%) of holding names and 1.9% (3.1%) of holding dollars are outside the market.

Monthly fund returns, net of expense ratio, are from CRSP and Morningstar. Following

Pástor, Stambaugh, and Taylor (2015), we require that CRSP and Morningstar agree closely

on a fund’s return; otherwise we set it to missing.

For any fund-level variable requiring holdings data, we set the variable to missing if there

is a large discrepancy in a fund’s AUM between our CRSP/Morningstar database and the

Thomson Reuters holdings database. We compute the ratio of the fund’s AUM according

22Many mutual funds offer multiple share classes, which represent claims on the same underlying assets but
have different fee structures. Different share classes of the same fund have the same Morningstar FundID.
We aggregate all share classes of the same fund. Specifically, we compute a fund’s size by summing AUM
across the fund’s share classes, and we compute the fund’s expense ratio, returns, and other variables by
asset-weighting across share classes.
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to CRSP/Morningstar to the fund’s AUM obtained by adding up all the fund’s holdings

from Thomson Reuters. If this ratio exceeds 2.0 or is less than 0.5, we set all holdings-based

measures to missing. This filter drops the holdings-based variables for 3.4% of fund/quarter

observations. We suspect that some of these large discrepancies are due to poor links between

Thomson Reuters and CRSP/Morningstar.
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