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I. Introduction

Prices of risky assets, such as stocks and houses, fluctuate considerably without meaningful changes

in the underlying payoffs. These fluctuations, which are due to a host of rational and behavioral

mechanisms, are generically described as the result of a “time-varying risk premium”(see Cochrane

(2011); Shiller (2014) and Campbell (2014) for recent reviews). While fluctuations in risky asset

prices affect the macroeconomy in a multitude of ways, a growing empirical literature suggests

that aggregate demand plays a central role and therefore interest rate policy can mitigate the

macroeconomic impact of asset price shocks. Pflueger et al. (2018) show that prices of volatile

stocks have high predictive power for interest rates and economic activity, and Cieslak and Vissing-

Jorgensen (2017) argue that the Fed pays attention to stock prices and cuts interest rates after

stock price declines (“the Fed put”). However, the ability of interest policy to quickly respond to

asset price shocks is limited by a host of practical concerns such as exchange rate volatility, balance

sheet fragilities, decision lags and transmission lags. An important current concern is that, with

interest rates close to their effective lower bound in much of the developed world, interest rate

policy will be unable to respond to large negative asset price shocks.

This connection between risky asset prices and aggregate demand suggests that speculation– a

pervasive feature of financial markets driven by heterogeneous asset valuations– can lead to more

severe downturns. There is in fact an old tradition in macroeconomics that emphasizes speculation

as a central feature of asset prices in boom-bust cycles (see, e.g., Minsky (1977); Kindleberger

(1978)). In recent empirical work, Mian and Sufi (2018) argue that speculation also has played a

key role in the U.S. housing cycle. However, speculation and its interaction with aggregate demand

are largely missing from the modern macroeconomic theory connecting asset prices with economic

activity, which mostly focuses on financial frictions (see Gertler and Kiyotaki (2010) for a review).

This omission is especially important in the current low interest rate environment, as monetary

policy has even less space than usual to mop up a sharp decline in risky asset prices following a

speculative episode.

In this paper, we build a risk-centric macroeconomic model– that is, a model in which risky

asset prices are at the core of the analysis– with the two key features highlighted above. First, we

explore the role of the aggregate demand channel and interest rate frictions in causing recessions

driven by a rise in the “risk premium”– our catchall phrase for shocks to asset valuations. Second,

we study the impact of financial speculation on the severity of these recessions and derive the

implications for macroprudential policy. In order to isolate our insights, we remove all financial

frictions.

Our analysis relies on the standard aggregate demand mechanism present in the New Keynesian

model, but formulated in terms of a risk-centric decomposition (as opposed to the usual Euler-

equation based approach). Specifically, we decompose the demand block of the equilibrium into

two relations: an output-asset price relation that captures the positive association between asset

prices and aggregate demand through a wealth effect on consumption (and a marginal-Q effect on
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investment when we add investment); and a risk balance condition that describes asset prices given

risks, risk attitudes, beliefs, and the interest rate. This decomposition isolates the characterization

of asset prices from the “macroeconomics” side of the model. Therefore, it facilitates the study

of a variety of forces that affect asset prices– including financial speculation– in a macroeconomic

environment. Our decomposition also highlights that the interest rate policy influences aggregate

demand through its impact on financial markets and asset prices (whereas the New Keynesian

literature typically emphasizes intertemporal substitution considerations).1

Our model is set in continuous time with diffusion productivity shocks and Poisson shocks that

move the economy between high and low risk premium states. The supply side is a stochastic

endowment economy with sticky prices (which we extend to an endogenous growth model when

we add investment). The demand side has risk-averse consumer-investors who demand goods and

risky assets. We focus on “interest rate frictions” and “financial speculation.” By interest rate

frictions, we mean factors that might constrain or delay the adjustment of the risk-free interest

rate to shocks. For concreteness, we work with a zero lower bound on the policy interest rate, but

our mechanism is also applicable with other interest rate constraints such as a currency union, a

fixed exchange rate, or delays in the monetary policy reaction. By financial speculation, we mean

the trading of risky financial assets among investors that have heterogeneous valuations for these

assets. We capture speculation by allowing investors to have belief disagreements (with respect to

the transition probabilities between high and low risk premium states), but our results also apply

if speculation is driven by other sources of heterogeneous valuations. In particular, optimists in our

model can also capture more risk tolerant investors (e.g., banks or institutional investors), whereas

pessimists can capture less risk tolerant investors (e.g., households or retail investors).

To fix ideas, consider an increase in perceived volatility (equivalently, a decrease in optimism).

This is a “risk premium shock” that exerts downward pressure on risky asset prices without a

change in current productivity (the supply-determined output level). Consequently, monetary

policy responds by reducing the interest rate, which stabilizes asset prices and aggregate demand.

However, if the interest rate is constrained, the rise in the risk premium reduces asset prices and

generates a demand recession.

Dynamics play a crucial role in this environment, as the recession is exacerbated by feedback

mechanisms. When investors expect the higher risk premium to persist, the decline in future

demand lowers expected earnings, which exerts further downward pressure on asset prices. With

endogenous investment, there is a second mechanism, as the decline in investment lowers the growth

of potential output, which further reduces expected earnings and asset prices. In turn, the decline

in asset prices feeds back into current consumption and investment, generating scope for severe

spirals in asset prices and output. Figure I illustrates these dynamic mechanisms. The feedbacks

are especially powerful when investors are pessimistic and think the higher risk premium will persist.

Hence, average beliefs matter in our economy not only because they have a direct impact on asset

1Our decomposition (and its implications for the transmission of monetary policy) matches the reasoning in actual
central banks’statements when dealing with the risk-off events that have plagued the world economy over the last
few decades (see, e.g., Cieslak and Vissing-Jorgensen (2017)).
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Figure I: Output-asset price feedbacks during a risk-centric demand recession.

prices but also because they determine the strength of the amplification mechanism.

In this environment, belief disagreements (or heterogeneous asset valuations) matter in two

important ways. First, asset prices depend on the wealth-weighted average belief among optimists

and pessimists. Therefore, in the recession, greater wealth in the hands of optimists increases

asset prices as well as aggregate demand and output. This result highlights that wealth distribution

matters for aggregate demand not only because of financial frictions (e.g., Bernanke et al. (1999))

or heterogeneous marginal propensities to consume (MPC) (e.g., Auclert (2019)), as emphasized by

the previous macroeconomics literature, but also because of heterogeneous asset valuations. In fact,

in our model there are no financial frictions, and optimists and pessimists have the same MPCs.

Increasing optimists’wealth share in the recession raises aggregate spending, not because optimists

spend more than pessimists, but because they raise asset valuations and induce all consumer-

investors to spend more (while also increasing aggregate investment when we add investment).

Second, belief disagreements create speculation, which amplifies the fluctuations in asset valu-

ations and aggregate demand. Investors take speculative positions that reflect their beliefs. This

speculation makes the wealth-weighted belief extrapolate recent realizations– even though individ-

ual investors have fixed beliefs and do not extrapolate. In particular, good realizations vindicate

optimists and increase their wealth share, which makes the wealth-weighted belief more optimistic.

Conversely, bad realizations increase pessimists’wealth share and make the wealth-weighted belief

more pessimistic. Therefore, speculation amplifies the fluctuations in asset prices. When the in-

terest rate is constrained, speculation also amplifies demand-driven boom-bust cycles and worsens

macroeconomic outcomes.
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Specifically, we find that speculation during the low risk premium phase (boom) exacerbates

the recession when there is a transition to the high risk premium phase (bust). During the boom,

optimists take on risk by selling insurance contracts to pessimists that enrich optimists if the boom

persists but reduce their wealth share when there is a transition to recession. This reallocation of

wealth in the recession lowers asset prices and leads to a more severe recession.

These effects motivate macroprudential policy that restricts speculation during the boom. We

show that macroprudential policy that makes optimistic investors behave as-if they were more

pessimistic (implemented via portfolio risk limits) can generate a Pareto improvement in social

welfare. This result is not driven by paternalistic concerns– the planner respects investors’own

beliefs, and the result does not depend on whether optimists or pessimists are closer to the truth.

Rather, the planner improves welfare by internalizing aggregate demand externalities. During the

recession, the economy benefits from wealthy optimists (or high valuation investors) since they raise

asset prices and aggregate demand. However, optimists that take on speculative positions during

the boom (and pessimists that take the opposite side of those positions) do not internalize the

effect of their risk taking on asset prices and aggregate demand during the recession. This leads

to excessive risk taking by optimists that can be offset by macroprudential policy. Therefore, our

model supports a variety of policies used in practice– such as a leverage limit or a risk limit– that

preserve optimists’ (or high valuation investors’) wealth for the recession state. Moreover, our

model supports procyclical macroprudential policy. While macroprudential policy can be useful

during the recession, these benefits can be outweighed by its immediate negative impact on asset

prices. This adverse price impact is not a concern during the boom, as it is offset by the interest rate

policy, but it lowers asset prices and output in the recession since the interest rate is constrained.

While there is an extensive empirical literature supporting the components of our model (see

Section VII for a brief summary), we present additional empirical evidence consistent with our

results. We focus on three implications. First, our model predicts that shocks to asset valuations

generate a more severe demand recession when the interest rate is constrained. Second, the recession

reduces firms’earnings and leads to a further decline in asset prices. Third, the recession is more

severe when the shock takes place in an environment with more speculation.

To investigate these predictions, we assemble a quarterly panel data set of 20 advanced countries

between 1990 and 2017, and divide the panel into countries that are part of the Eurozone or the

European Exchange Rate Mechanism (the Euro/ERM sample) and those that have their own

currencies (the non-Euro/ERM sample). Countries in the first group have a constrained interest

rate with respect to local asset price shocks, since they share a common monetary policy. The

second group has a less constrained interest rate. We find that a negative house price shock in

a non-Euro/ERM country is associated with an initial decline in economic activity, followed by

a decline in the policy interest rate and output stabilization. In contrast, a similar shock in a

Euro/ERM country is not associated with an interest rate response (compared to other Euro/ERM

countries), and is followed by a more persistent and larger decline in economic activity. We also find

that the house price shock is followed by a larger decline in earnings and stock prices of publicly
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traded firms in the Euro/ERM sample (although the standard errors are larger for these results).

Finally, we find that past bank credit expansion– which we use as a proxy for speculation on house

prices– is associated with more severe outcomes following the house price shock in the Euro/ERM

sample (but not in the other sample).

Literature review. Our paper is related to three main literatures: two in macroeconomics and

one in finance. On the macroeconomics side, several recent papers within the New-Keynesian

literature emphasize demand shocks that might drive business cycles while also affecting asset

prices, such as “news shocks” (Beaudry and Portier (2006)), “noise shocks” (Lorenzoni (2009);

Blanchard et al. (2013)), “confidence shocks” (Ilut and Schneider (2014)), “uncertainty shocks”

(Basu and Bundick (2017); Fernández-Villaverde et al. (2015)), and “disaster shocks”(Isoré and

Szczerbowicz (2017)). Our first contribution to this literature is to reformulate the standard New

Keynesian model in terms of a risk-centric decomposition. With this decomposition at hand,

we provide an integrated treatment of these demand shocks. We refer to these demand shocks

as “risk premium shocks” to emphasize their close connection with asset prices and the finance

literature on time-varying risk premia.2 Our second contribution to this literature is to show that

heterogeneity in asset valuation matters in these environments. Among other things, heterogeneous

valuations lead to speculation that exacerbates demand recessions and provides a distinct rationale

for macroprudential regulation.

Another important macroeconomic literature focuses on uncertainty and its role in driving

macroeconomic fluctuations (e.g., Bloom (2009); Baker et al. (2016, 2019); Bloom et al. (2018)).

We contribute to this literature by showing how uncertainty affects aggregate activity through asset

prices and their impact on aggregate demand. We also illustrate that, in our model, uncertainty

shocks have stronger effects when monetary policy is constrained, consistent with recent empirical

evidence (e.g., Plante et al. (2018)). Finally, we show that ex-ante financial speculation amplifies

the damage from uncertainty shocks.

On the finance side, a large literature emphasizes investors’ beliefs as a key driver of finan-

cial boom-bust cycles (see, e.g., Gennaioli and Shleifer (2018) for the role of beliefs in the recent

crisis). A strand of this literature argues that heterogeneity in the degree of optimism combined

with short-selling constraints can lead to speculative asset price bubbles that substantially amplify

the financial cycle (e.g., Harrison and Kreps (1978); Scheinkman and Xiong (2003); Geanakoplos

(2010); Simsek (2013a); Barberis et al. (2018)). Related contributions emphasize that disagree-

ments exacerbate asset price fluctuations more broadly– even without short-selling constraints or

bubbles– because they create endogenous fluctuations in agents’wealth distribution (e.g., Basak

(2000, 2005); Detemple and Murthy (1994); Zapatero (1998); Cao (2017); Xiong and Yan (2010);

Kubler and Schmedders (2012); Korinek and Nowak (2016)). Our paper features similar forces but

2See Galí (2018) for an OLG variant of the New-Keynesian model with rational bubbles (see also Biswas et al.
(2018)), which also highlights the role of asset prices on aggregate demand. However, his analysis does not focus on
the risk-balance condition, which is a key block in our analysis. Also, there is a large body of work that emphasizes
the links between asset prices and macroeconomic outcomes through financial frictions (e.g., Kiyotaki and Moore
(1997)). Our model removes all these financial frictions for clarity.
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explores them in an environment where output is not necessarily at its supply-determined level.3

There are five additional connections worth highlighting. In our setting, speculation generates

macroeconomic outcomes as if there is a representative agent with extrapolative beliefs. This relates

our paper to a growing literature that emphasizes extrapolation as a key driver of asset prices and

business cycles (see, e.g., Bordalo et al. (2018, 2019)). While the two mechanisms are likely to

reinforce each other, speculation makes distinct predictions for trading volume and heterogeneity

in asset positions (see Remark 8).

The interactions between heterogeneous valuations, risk-premia, and interest rate lower bounds

are central themes of the literature on structural safe asset shortages and safety traps (see, for

instance, Caballero and Farhi (2018); Caballero et al. (2017b)). We contribute to this literature

by considering a broader set of factors that can drive the risk premium (in addition to safe asset

scarcity) and, more importantly, by focusing on dynamics. We analyze the connections between

boom and recession phases of recurrent business cycles driven by risk premium shocks. We show

that speculation between “optimists”and “pessimists”during the boom exacerbates a future risk-

centric demand recession, and we derive the implications for macroprudential policy. In contrast,

Caballero and Farhi (2018) show how “pessimists” can create a demand recession in otherwise

normal times and derive the implications for fiscal policy and unconventional monetary policy.4

At a methodological level, our paper belongs to the new continuous-time macrofinance literature

started by the work of Brunnermeier and Sannikov (2014, 2016a) and summarized in Brunnermeier

and Sannikov (2016b) (see also Basak and Cuoco (1998); Adrian and Boyarchenko (2012); He and

Krishnamurthy (2012, 2013); Di Tella (2017, 2019); Moreira and Savov (2017); Silva (2016); Di Tella

and Hall (2019)). This literature highlights the full macroeconomic dynamics induced by financial

frictions. While the structure of our economy shares many features with theirs, our model has

no financial frictions, and the macroeconomic dynamics stem not from the supply side (relative

productivity) but from the aggregate demand side.

Our results on macroprudential policy are related to recent work that analyzes the implications

of aggregate demand externalities for the optimal regulation of financial markets. For instance,

Korinek and Simsek (2016) show that, in the run-up to deleveraging episodes that coincide with a

zero-lower-bound on the interest rate, policies targeted at reducing household leverage can improve

welfare (see also Farhi and Werning (2017)). In these papers, macroprudential policy reallocates

wealth across agents and states so that agents with a higher MPC hold relatively more wealth when

the economy is depressed due to deficient demand. The mechanism in our paper is different and

3With respect to these papers, we show that speculation during the boom not only worsens the asset price bust but
also exacerbates the demand recession. Consequently, and unlike much of this literature, macroprudential policy that
restricts speculation can improve welfare even if the planner is not paternalistic and respects investors’(heterogeneous
and possibly over-optimistic) beliefs. Adding paternalistic concerns reinforces our normative conclusions (see Section
VI). More broadly, our paper is part of a large finance literature that investigates the effect of belief disagreements
and speculation on financial markets (e.g., Lintner (1969); Miller (1977); Varian (1989); Harris and Raviv (1993);
Chen et al. (2002); Fostel and Geanakoplos (2008); Simsek (2013b); Iachan et al. (2015)).

4Our paper is also related to an extensive literature on liquidity traps that has exploded since the Great Recession
(see, for instance, Tobin (1975); Krugman (1998); Eggertsson and Woodford (2006); Guerrieri and Lorenzoni (2017);
Hall (2011); Christiano et al. (2015); Rognlie et al. (2018); Midrigan et al. (2016); Bacchetta et al. (2016)).
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works through heterogeneous asset valuations (instead of heterogenous MPCs).5

The macroprudential literature beyond aggregate demand externalities is mostly motivated by

the presence of pecuniary externalities that make the competitive equilibrium constrained ineffi cient

(e.g., Caballero and Krishnamurthy (2003); Lorenzoni (2008); Bianchi and Mendoza (2018); Jeanne

and Korinek (2018)). The friction in this literature is market incompleteness or collateral constraints

that depend on asset prices (see Davila and Korinek (2016) for a detailed exposition). We show

that a decline in asset prices is damaging not only for the reasons emphasized in this literature,

but also because it lowers aggregate demand.

The rest of the paper is organized as follows. In Section II we present an example that illus-

trates the main mechanism and motivates the rest of our analysis. Section III presents the general

environment and defines the equilibrium. Section IV characterizes the equilibrium in a benchmark

setting with common beliefs. This section shows how risk premium shocks can lower asset prices

and induce a demand recession, and how feedback loops between asset prices and aggregate de-

mand exacerbate the recession. Section V characterizes the equilibrium with belief disagreements

and heterogeneous asset valuations. This section illustrates how a greater optimists’wealth share

increases asset valuations and mitigates the recession, and how speculation amplifies asset price

fluctuations and worsens the recession. Section VI shows the aggregate demand externalities as-

sociated with optimists’risk taking and establishes our results on macroprudential policy. Section

VII presents our empirical analysis and summarizes supporting evidence from the related literature.

Section VIII concludes. The (online) appendices contain the omitted derivations and proofs as well

as the details of our empirical analysis.

II. A stepping-stone risk-centric example

Here we present a simple, largely static example that serves as a stepping stone to our main dynamic

model. We start with a representative agent setup and characterize the standard aggregate demand

mechanism in the New Keynesian model, but formulated in terms of our risk-centric decomposition.

We use this decomposition to illustrate how “risk premium shocks”generate a demand recession

when the interest rate is constrained. We then consider heterogeneous valuations and illustrate

how speculation affects demand recessions.

A two-period risk-centric aggregate demand model. Consider an economy with two dates,

t ∈ {0, 1}, a single consumption good, and a single factor of production– capital. For simplicity,
capital is fixed and normalized to one. Potential output is equal to capital’s productivity, zt, but

actual output can be below this level due to a shortage of aggregate demand, yt ≤ zt. For simplicity,
we assume output is equal to its potential at the last date, y1 = z1, and focus on the endogenous

determination of output at the previous date, y0 ≤ z0. We assume the productivity at date 1 is

5See Farhi and Werning (2016) for a synthesis of some of the key mechanisms that justify macroprudential policies
in models that exhibit aggregate demand externalities.
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uncertain and log-normally distributed,

(1) log y1 = log z1 ∼ N
(
g − σ2

2
, σ2

)
.

We also normalize the initial productivity to one, z0 = 1, so that g captures the (log) expected

growth rate of productivity, and σ captures its volatility.

There are two types of assets. There is a “market portfolio”that represents claims to the output

at date 1 (which accrue to production firms as earnings), and a risk-free asset in zero net supply.

We denote the price of the market portfolio with Q, and its log return with

(2) rm (z1) = log
z1

Q
.

We denote the log risk-free interest rate with rf .

For now, the demand side is characterized by a representative investor, who is endowed with

the initial output as well as the market portfolio. At date 0, she chooses how much to consume, c0,

and what fraction of her wealth to allocate to the market portfolio, ωm, with the residual fraction

invested in the risk-free asset. When asset markets are in equilibrium, she will allocate all of her

wealth to the market portfolio, ωm = 1, and her portfolio demand will determine the risk premium.

We assume the investor has Epstein-Zin preferences with discount factor e−ρ and relative risk

aversion coeffi cient (RRA) γ. For simplicity, we set the elasticity of intertemporal substitution

(EIS) equal to one. Allowing for a more general EIS leaves our results qualitatively unchanged (see

Remark 2).

The supply side of the economy is described by New-Keynesian firms that have fixed nominal

prices (see Remark 1 below for the role of this assumption and Online Appendix Section B.1.3 for

details). These firms meet the available demand at these prices as long as prices are higher than

their marginal cost. These features imply that output is determined by the aggregate demand for

goods (consumption) up to the capacity constraint,

(3) y0 = c0 ≤ z0.

Since prices are fully sticky, the real interest rate is equal to the nominal interest rate, which is

controlled by the central bank. We assume that the interest rate policy attempts to replicate the

supply-determined output level. However, there is a lower bound constraint on the interest rate,

rf ≥ 0. Thus, the interest rate policy is described by rf = max
(
rf∗, 0

)
, where rf∗ is the natural

interest rate that ensures output is at its potential, y0 = z0.

To characterize the equilibrium, first note that there is a tight relationship between output and

asset prices. Specifically, the assumption on the EIS isolates the consumption wealth effect: the

investor consumes a fraction of her lifetime income in the first period,

(4) c0 =
1

1 + e−ρ
(y0 +Q) .
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Combining this expression with Eq. (3), we obtain the following equation:

(5) y0 = eρQ.

We refer to this equation as the output-asset price relation– generally, it is obtained by combining

the consumption function (and when there is investment, also the investment function) with goods

market clearing. The condition says that asset prices increase aggregate wealth and consumption,

which in turn leads to greater output.

Next, note that asset prices must also be consistent with equilibrium in risk markets. In Online

Appendix Section A.1, we show that, up to a local approximation, the investor’s optimal weight on

the market portfolio is determined by

(6) ωmσ ' 1

γ

E [rm (z1)] + σ2

2 − r
f

σ
.

In words, the optimal portfolio risk (left side) is proportional to “the Sharpe ratio”on the market

portfolio (right side). The Sharpe ratio captures the reward per risk, where the reward is determined

by the risk premium: the (log) expected return in excess of the (log) risk free rate. This is the

standard risk-taking condition for mean-variance portfolio optimization. It applies approximately

in the two-period model, and the approximation becomes exact when there is a representative

household and the asset markets are in equilibrium (ωm = 1).

Substituting the asset market clearing condition, ωm = 1, and the expected return on the

market portfolio from Eqs. (1) and (2), we obtain the following equation:

(7) σ =
1

γ

g − logQ− rf
σ

.

We refer to this equation as the risk balance condition– generally, it is obtained by combining

investors’optimal portfolio allocations with asset market clearing and the equilibrium return on

the market portfolio. The equilibrium level of the Sharpe ratio on the market portfolio (right side)

needs to be large enough to convince investors to hold the risk generated by the productive capacity

(left side).

Next, consider the supply-determined equilibrium in which output is equal to its potential,

y0 = z0 = 1. Eq. (5) reveals that this requires the asset price to be at a particular level, Q∗ = e−ρ.

Combining this with Eq. (7), the interest rate also needs to be at a particular level,

(8) rf∗ = g + ρ− γσ2.

Intuitively, the monetary policy needs to set the interest rate low enough to induce suffi ciently high

asset prices and aggregate demand to clear the goods market.

Now suppose the initial parameters are such that rf∗ > 0, so the equilibrium features Q∗, rf∗

and supply-determined output, y0 = z0 = 1. Consider a “risk premium shock” that raises the
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volatility, σ, or risk aversion, γ. The immediate impact of this shock is to create an imbalance in

the risk balance condition (7). The economy produces too much risk (left side) relative to what

investors are willing to absorb (right side). In response, the monetary policy lowers the risk-free

interest rate (captured by the decline in rf∗), which increases the risk premium and equilibrates

the risk balance condition (7). Intuitively, the central bank lowers the opportunity cost of risky

investment and induces investors to absorb more risk.

Next suppose the shock is large enough that the natural interest rate becomes negative, rf∗ < 0,

and the actual interest rate becomes constrained, rf = 0. In this case, the risk balance condition

is re-established via a decline in the price of the market portfolio, Q. This decline in asset prices

increases the expected return on risky investment, which induces investors to absorb risk. However,

the decline in Q reduces aggregate wealth and induces a demand-driven recession. Formally, we

combine Eqs. (5) and (7) to obtain

(9) log y0 = ρ+ logQ, where logQ = g − γσ2.

Note that, in the constrained region, asset prices and output are sensitive to beliefs about fu-

ture prospects. For instance, a decrease in the expected growth rate, g (pessimism)– rational or

otherwise– decreases asset prices and worsens the recession. In fact, while we considered shocks

that raise σ or γ, Eqs. (8) and (9) reveal that shocks that lower g lead to the same effects. The

key point for our risk-centric perspective is that g still operates by reducing the expected return

on risky assets and hence creating an imbalance in risk markets.

Heterogeneous valuations and speculation. We next consider heterogeneous asset valua-

tions and investigate how speculation affects demand recessions. We capture heterogeneous val-

uations with belief disagreements about productivity growth. Specifically, there are two types

of investors, optimists and pessimists, that believe log z1 is distributed according to, respectively,

N
(
go − σ2

2 , σ
2
)
andN

(
gp − σ2

2 , σ
2
)
. We assume go > gp so that optimists perceive greater growth.

Beliefs are dogmatic– that is, investors know each others’beliefs and they agree to disagree. Opti-

mists are endowed with a fraction α of the market portfolio and of date 0 output (and pessimists

are endowed with the remaining fraction). Hence, α denotes the wealth share of optimists. The

rest of the model is unchanged.

Following similar steps to those in the baseline case, we solve for “rstar”as (see Online Appendix

Section A.3),

(10) rf∗ ' αgo + (1− α) gp + ρ− γσ2.

When rf∗ < 0, the interest rate is constrained and rf = 0, so we have a demand recession with

(11) log y0 = ρ+ logQ, where logQ ' αgo + (1− α) gp − γσ2.

Hence equilibrium prices and output depend on optimists’wealth share, α. During the recession,
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increasing α improves outcomes because optimists increase asset prices, which increases aggregate

wealth and everyone’s spending. In our dynamic model, α is endogenous because investors (ex-

ante) speculate on their different beliefs. Moreover, speculation reduces α during the recession

because optimists think the risk premium shock is unlikely. This exacerbates the recession and

motivates macroprudential policy.

Remark 1 (Role of nominal price rigidity). In our model (as well as in other New Keynesian

models), nominal price rigidity plays two roles. First, and most importantly, it creates a real

interest rate rigidity. To see this, consider an alternative economy in which prices are fully flexible

and the nominal interest rate is at a lower bound. How would this economy react to a risk premium

shock that requires a decline in the real interest rate? By definition, the real rate is equal to the

nominal interest rate minus expected inflation in nominal prices. Since the nominal interest rate is

constrained, the economy must generate expected inflation: either the current nominal prices must

decline or the future nominal prices must increase (or a combination of the two). Nominal price

rigidity hinders such an adjustment and translates into real interest rate rigidity. As our analysis

illustrates, this rigidity reduces real asset prices in financial markets, which in turn reduces aggregate

demand in goods markets. Nominal price rigidity plays a second role by making firms respond to

the decline in aggregate demand by cutting production– instead of cutting their nominal price to

increase the demand for their goods (see Online Appendix Section B.1.3 for a formalization and

Remark 3 for a discussion of how partial price flexibility affects our results).

Remark 2 (More general EIS). In Online Appendix Section A.2, we extend the baseline two-period
model (without disagreements) to cases where the EIS is different from one. In these cases, a risk

premium shock affects output through two channels. As before, it exerts a downward influence

on asset prices and consumption through a wealth effect. But it also reduces the attractiveness of

investment opportunities, which further affects consumption depending on the balance of income

and substitution effects. When the EIS is greater than one, the second channel works against

the wealth effect because investors substitute toward consumption. When the EIS is less than

one, the second channel reinforces the wealth effect. Importantly, we show that the wealth effect

dominates regardless of the EIS. When the interest rate is constrained, a risk premium shock reduces

equilibrium output as well as the asset price. When the EIS is greater than one, the substitution

effect dampens these declines but it does not overturn them.

III. Dynamic environment and equilibrium

In this section we introduce our general dynamic environment and define the equilibrium. We

then partially characterize the equilibrium. In subsequent sections we further characterize this

equilibrium in various special cases of interest. Throughout, we simplify the analysis by abstracting

away from investment. In Online Appendix Section D, we extend the environment to introduce

investment and endogenous growth. We discuss additional results related to investment at the end

of Section IV.
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Potential output and risk premium shocks. The economy is set in infinite continuous time,

t ∈ [0,∞), with a single consumption good and a single factor of production, capital. Let kt,s
denote the capital stock at time t and in the aggregate state s ∈ S. Suppose that, when fully

utilized, kt,s units of capital produce Akt,s units of the consumption good. Hence, Akt,s denotes

the potential output in this economy. Capital follows the process

(12)
dkt,s
kt,s

= gdt+ σsdZt.

Here, g denotes the expected productivity growth, which is an exogenous parameter in the main

text (we endogenize it in Online Appendix Section D). The term dZt denotes the standard Brownian

motion, which captures “aggregate productivity shocks.”6

The states, s ∈ S, differ only in terms of the volatility of aggregate productivity, σs. For

simplicity, there are only two states, s ∈ {1, 2}, with σ1 < σ2. State s = 1 corresponds to a

low-volatility state, whereas state s = 2 corresponds to a high-volatility state. At each instant, the

economy in state s transitions into the other state s′ 6= s according to a Poisson process. We use

these volatility shocks to capture the time variation in the risk premium due to various unmodeled

factors (see Section II for an illustration of how risk, risk aversion, and beliefs play a similar role

in our analysis).

Investor types. There is a finite number of investor types denoted by i ∈ I. Investor types are
identical in all respects except for their beliefs about state transitions. Each type consists of a

continuum of identical investors with mass normalized to one. We focus on symmetric equilibria

in which investors within a type choose identical allocations.

Transition probabilities and belief disagreements. We let λis > 0 denote the perceived

Poisson transition probability in state s (into the other state) according to type i investors. These

probabilities capture the degree of investors’(relative) optimism or pessimism. For instance, greater

λi2 corresponds to greater optimism because investors expect the high-risk-premium conditions to

end relatively soon. Likewise, smaller λi1 corresponds to greater optimism because investors expect

the low-risk-premium conditions to persist longer. We first analyze the special case with common

beliefs (Section IV) and then investigate belief disagreements and speculation (Section V). When

investors disagree, they know each others’beliefs and they agree to disagree.

Menu of financial assets. There are three types of financial assets. First, there is a market

portfolio that represents a claim on all output. We let Qt,skt,s denote the price of the market

portfolio, so Qt,s denotes the price per unit of capital. We let rmt,s denote the instantaneous expected

6Note that fluctuations in kt,s generate fluctuations in potential output, Akt,s. We introduce Brownian shocks to
capital, kt,s, as opposed to total factor productivity, A, since this leads to a slightly more tractable analysis when we
extend the model to include investment (see Online Appendix Section D). In the main text, we could equivalently
introduce shocks to A and conduct the analysis by normalizing all relevant variables with At,s as opposed to kt,s.
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return on the market portfolio conditional on no transition. Second, there is a risk-free asset in

zero net supply. We denote its instantaneous return by rft,s. Third, in each state s, there is a

contingent Arrow-Debreu security that trades at the (endogenous) price ps
′
t,s and pays 1 unit of the

consumption good if the economy transitions into the other state s′ 6= s. This security is also in

zero net supply and it ensures that financial markets are dynamically complete.

Price and return of the market portfolio. Absent transitions, the price of the market port-

folio per unit of capital follows an endogenous diffusion process,

(13)
dQt,s
Qt,s

= µQt,sdt+ σQt,sdZt for s ∈ {1, 2} .

Combining Eqs. (12) and (13), the price of the market portfolio (absent transition) follows

(14)
d (Qt,skt,s)

Qt,skt,s
=
(
g + µQt,s + σsσ

Q
t,s

)
dt+

(
σs + σQt,s

)
dZt.

The expected return and the volatility of the market portfolio (absent transition) are then given by

(15) rmt,s =
yt,s

Qt,skt,s
+ g + µQt,s + σsσ

Q
t,s and σmt,s = σs + σQt,s.

Here, yt,s denotes the endogenous level of output at time t. The first term in rmt,s captures the

“dividend yield” component of return. The remaining terms capture the (expected) capital gain

conditional on no transition, which reflects the expected growth of capital, of the price per unit of

capital, and of their stochastic interaction.

Eqs. (13− 15) describe the prices and returns conditional on no state transition. If there is a

transition at time t from state s into state s′ 6= s, then the price per unit of capital jumps from Qt,s

to a potentially different level, Qt,s′ . Therefore, investors that hold the market portfolio experience

instantaneous capital gains or losses.

Consumption and portfolio choice. Investors continuously make consumption and portfolio

allocation decisions. Specifically, at any time t and state s, each type i investor has some finan-

cial wealth denoted by ait,s. She chooses her consumption rate, c
i
t,s; the fraction of her wealth to

allocate to the market portfolio, ωm,it,s ; and the fraction of her wealth to allocate to the contingent

security, ωs
′,i
t,s . The residual fraction, 1−ωm,it,s −ω

s′,i
t,s , is invested in the risk-free asset. For analytical

tractability, we assume the investor has log utility. In particular, we set the RRA and the EIS

equal to one (see Remark 6 in Section IV for a discussion of how a more general RRA affects our

results). The investor then solves a standard portfolio problem that we formally state in Online

Appendix Section B.1.1.
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Equilibrium in asset markets. Asset markets clear when the total wealth held by investors is

equal to the value of the market portfolio before and after the portfolio allocation decisions,

(16)
∑
i

ait,s = Qt,skt,s and
∑
i

ωm,it,s a
i
t,s = Qt,skt,s.

Contingent securities are in zero net supply, which implies

(17)
∑
i

ωs
′,i
t,s a

i
t,s = 0.

The market clearing condition for the risk-free asset (which is also in zero net supply) holds when

conditions (16) and (17) are satisfied.

Nominal rigidities and the equilibrium in goods markets. The supply side of our model

features nominal rigidities similar to the standard New Keynesian model. We relegate the details to

Online Appendix Section B.1.3. There is a continuum of monopolistically competitive production

firms that own the capital stock and produce intermediate goods (which are then converted into the

final good). For simplicity, these production firms have pre-set nominal prices that never change

(see Remark 3 below for a discussion of the case with partial price flexibility). The firms choose

their capital utilization rate, ηt,s ∈ [0, 1], which leads to output yt,s = ηt,sAkt,s. We assume firms

can increase factor utilization for free until ηt,s = 1 and they cannot increase it beyond this level.

As we show in the online appendix, these features imply that output is determined by aggregate

demand for goods up to the capacity constraint. Combining this with market clearing in goods,

output is determined by aggregate consumption (up to the capacity constraint),

(18) yt,s = ηt,sAkt,s =
∑
i

cit,s, where ηt,s ∈ [0, 1] .

Moreover, all output accrues to production firms in the form of earnings.7 Hence, the market

portfolio can be thought of as a claim on all production firms.

Interest rate rigidity and monetary policy. Our assumption that production firms do not

change their prices implies that the aggregate nominal price level is fixed. The real risk-free interest

rate, then, is equal to the nominal risk-free interest rate, which is determined by the interest rate

policy of the central bank. We assume there is a lower bound on the nominal interest rate, which

we set at zero for convenience,

(19) rft,s ≥ 0.

7 In this model, firms own the capital so the division of earnings is indeterminate. Since there is no investment,
this division is inconsequential. When we introduce investment in Online Appendix Section D, we make additional
assumptions to determine how earnings are divided between returns to capital and monopoly profits.
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The zero lower bound is motivated by the presence of cash in circulation (which we leave unmodeled

for simplicity).

We assume that the interest rate policy aims to replicate the level of output that would obtain

without nominal rigidities subject to the constraint in (19). Without nominal rigidities, capital is

fully utilized, ηt,s = 1 (see Online Appendix Section B.1.3). Thus, we assume that the interest rate

policy follows the rule

(20) rft,s = max
(

0, rf,∗t,s

)
for each t ≥ 0 and s ∈ S.

Here, rf,∗t,s is recursively defined as the instantaneous natural interest rate that obtains when ηt,s = 1

and monetary policy follows the rule in (20) at all future times and states.

Definition 1. The equilibrium is a collection of processes for allocations, prices, and returns such

that capital and its price evolve according to (12) and (13), the instantaneous return and the

volatility of the market portfolio are given by (15), investors maximize expected utility (cf. Online

Appendix Section B.1.1), asset markets clear (cf. Eqs. (16) and (17)), production firms maximize

earnings (cf. Online Appendix Section B.1.3), goods markets clear (cf. Eq. (18)), and the interest

rate policy follows the rule in (20).

Remark 3 (Partial price flexibility). Our assumption of fixed nominal prices is extreme. However,
allowing some nominal price flexibility does not necessarily circumvent the lower bound in (19).

In fact, if monetary policy follows an inflation targeting policy regime, partial price flexibility

leads to expected price deflation during a demand recession– the opposite of what the economy

needs to circumvent the lower bound on the nominal interest rate (see Remark 1). Intuitively,

individual firms respond to the recession by cutting their individual nominal prices, which increases

their individual demand given aggregate demand. However, the decline in nominal prices does not

necessarily stabilize aggregate demand– whether or not this happens depends on monetary policy.

In an inflation targeting regime, nominal prices decline during the recession and get stabilized at a

lower level once the economy exits the recession. This creates expected deflation that strengthens

the bound in (19) and exacerbates the recession (see Werning (2012); Korinek and Simsek (2016);

Caballero and Farhi (2018) for further discussion).

In the rest of this section, we provide a partial characterization of the equilibrium. In subse-

quent sections, we use this characterization to describe the equilibrium for various specifications of

investors’beliefs.

III.A. Equilibrium in the goods market

First consider the goods market. The following result establishes that there is a tight relationship

between output and asset prices as in the two period model.
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Lemma 1 (Output-asset price relation). The equilibrium level of output (per capital) satisfies

(21)
yt,s
kt,s

= Aηt,s = ρQt,s.

The equilibrium return and the volatility of the market portfolio (absent transition) are given by

(22) rmt,s = ρ+ g + µQt,s + σsσ
Q
t,s and σmt,s = σs + σQt,s.

As before, the output-asset price relation in (21) follows from the wealth effect. In view of log

utility, each investor optimally consumes a constant fraction of her wealth (see Online Appendix

Section B.1.1)

(23) cit,s = ρait,s.

This implies that aggregate consumption is a constant fraction of aggregate wealth [cf. (16)],

(24)
∑
i

cit,s = ρQt,skt,s.

Combining this with Eq. (18), we obtain the relation in (21). Substituting this into Eq. (15),

we further obtain Eq. (22). In view of the output-asset price relation, the dividend yield on the

market portfolio is equal to the consumption rate ρ.

As before, the output-asset price relation implies that full factor utilization, ηt,s = 1, obtains

only if the price per unit of capital is at a particular level Q∗ ≡ A
ρ . This is the effi cient price level

that ensures the implied consumption clears the goods market. Likewise, the economy features a

demand recession, ηt,s < 1, only if the price per unit of capital is strictly below Q∗. Combining

these observations with the interest rate policy in (20), we also summarize the goods market with

(25) Qt,s ≤ Q∗, rft,s ≥ 0, where at least one condition is an equality.

The equilibrium at any time and state takes one of two forms. If the natural interest rate is

nonnegative, then the interest rate policy ensures that the price per unit of capital is at the effi cient

level, Qt,s = Q∗, capital is fully utilized, ηt,s = 1, and output is equal to its potential, yt,s = Akt,s.

Otherwise, the interest rate is constrained, rft,s = 0, the price is lower, Qt,s < Q∗, and output is

determined by aggregate demand according to Eq. (21).

III.B. Equilibrium in asset markets

Next consider asset markets. The equilibrium in these markets depends on investors’ relative

wealth. We define type i investors’wealth share as

(26) αit,s =
ait,s

kt,sQt,s
.
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By definition, the wealth shares sum to one,
∑

i α
i
t,s = 1 [cf. (16)]. These wealth shares matter

because they determine the wealth-weighted average belief for the transition probability, defined as

(27) λt,s ≡
∑
i

αit,sλ
i
s.

We will show that asset prices are determined as-if there is a representative investor that has the

wealth-weighted average belief. However, the wealth-weighted average belief is not constant over

time because investors have speculative portfolios that affect their wealth shares. Therefore, we

start by characterizing investors’optimal portfolios and the resulting wealth dynamics. We use the

notation ẋ to denote the time derivative of variable x, i.e., α̇it,s =
dαit,s
dt denotes the drift in type i

investors’wealth share.

Lemma 2 (Wealth-share dynamics). Investors hold identical positions on the market portfolio,

(28) ωm,it,s = 1 for each i.

They hold possibly heterogeneous positions on the contingent security given by

(29) ωs
′,i
t,s = λis − λt,s.

Type i investors’wealth share evolves according to

(30)

α̇it,s
αit,s

= −ωs
′,i
t,s = λt,s − λis, if there is no state change,

αi
t,s′

αit,s
= λis

λt,s
, if there is a state change to s′.

Eq. (28) says that investors’belief disagreements do not affect their positions on the market

portfolio. In contrast, Eq. (29) shows that belief disagreements do affect investors’positions on the

contingent security, and Eq. (30) describes the resulting wealth dynamics. When type i investors

assign a relatively large probability to transition, λis > λt,s, they purchase the contingent security

that pays if there is a transition, ωs
′,i
t,s > 0. As long as the economy remains in the same state, their

wealth share drifts downward, α̇it,s < 0. However, if there is a transition to the other state, then

their wealth share makes an upward jump,
αi
t,s′

αit,s
> 1. Conversely, when type i investors assign a

relatively small probability to transition, they sell the contingent security. This ensures that their

wealth share drifts upward if the economy remains in the same state, and it makes a downward

jump if there is a transition. These dynamics are important for our main result (see Section V).

We provide a sketch proof of Lemma 2, which is useful for developing further intuition and ob-

taining additional results. We derive investors’portfolio optimality conditions in Online Appendix

Section B.1.1. A type i investor’s portfolio weight on the market portfolio is determined by

(31) ωm,it,s σ
m
t,s =

1

σmt,s

(
rmt,s − r

f
t,s + λis

1/ait,s′

1/ait,s

Qt,s′ −Qt,s
Qt,s

)
.
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That is, she invests in the market portfolio until the risk of her portfolio (left side) is equal to the

“Sharpe ratio”of the market portfolio (right side). This is similar to the optimality condition in the

two period model (cf. Eq. (6)), but the dynamic model also features state transitions. Our notion

of the Sharpe ratio accounts for potential revaluation gains or losses from transitions (the term
Qt,s′−Qt,s

Qt,s
) and the adjustment of marginal utility in case there is a transition (the term

1/ai
t,s′

1/ait,s
).8

Likewise, the investor’s optimal portfolio allocation to the contingent securities implies

(32)
ps
′
t,s

λis
=

1/ait,s′

1/ait,s
.

The portfolio weight, ωs
′,i
t,s , is implicitly determined as the level that ensures this equality. The

investor buys contingent securities until the perceived price-to-probability ratio of a state (or the

state price) is equal to the investor’s relative marginal utility in that state.

Substituting (32) into (31) shows that different investor types allocate identical portfolio weights

to the market portfolio, ωm,it,s = ωmt,s. Together with market clearing [cf. (16)], this implies Eq. (28).

To establish the remaining results in the lemma, we rewrite (32) in terms of wealth shares to

obtain [cf. (26)]

(33) αit,s′ = αit,sλ
i
s

1

κt,s
, where κt,s = ps

′
t,s

Qt,s′

Qt,s
.

Here, κt,s is a variable that depends on asset prices but that is common across investor types.

Aggregating this equation across all investor types, and using
∑

i α
i
t,s′ = 1, we obtain the second

part of Eq. (30). In Online Appendix Section B.1.2, we further derive Eq. (29) and the first part

of Eq. (30) by combining Eq. (33) with investors’budget constraints.

Remark 4 (Deterministic wealth dynamics within a state). Lemma 2 shows that investors’wealth
shares follow deterministic dynamics absent state transitions. This property is driven by Eq. (28),

which ensures that investors’relative wealth shares are not influenced by dZt. As our proof illus-

trates, Eq. (28) is driven by complete markets and constant RRA preferences. Complete markets

ensure disagreements per se do not induce investors to trade the market portfolio. Intuitively, since

investors disagree about transition risk, they settle these disagreements by trading the contingent

security for the corresponding risk instead of the market portfolio. Constant (and common) RRA

preferences ensure risk sharing considerations do not generate trade on the market portfolio either.

Remark 5 (Separability of wealth dynamics and asset prices). Lemma 2 also implies that in-
vestors’wealth shares follow the same dynamics regardless of asset prices or monetary policy. This

separability property comes from assuming complete markets and log utility. As we discuss in the

previous remark, these assumptions imply that investors do not trade the market portfolio– such

trade would make asset prices relevant for wealth shares (see Caballero and Simsek (2019)). Log

8The presence of state transitions makes the Sharpe ratio in our model slightly different from its common definition,
which corresponds to the expected return in excess of the risk-free rate normalized by volatility.
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utility (which features RRA equal to one) is also necessary because, as captured by Eq. (33), it

ensures that investors’marginal utility depends only on their wealth. In particular, investors do not

have dynamic hedging motives– these motives would make asset prices relevant for wealth shares

(see Remark 6 and Online Appendix Section E for further discussion of the case with more general

RRA).

The separability property is convenient because it breaks the analysis with belief disagreements

into two steps. We first use Lemma 2 to characterize investors’wealth dynamics and the evolution

of the wealth-weighted average belief in (27). We then characterize equilibrium asset prices. The

following lemma facilitates the second step by establishing the equilibrium conditions for asset

prices given the wealth-weighted average belief. The proof follows from Eqs. (31− 33) and is

relegated to Online Appendix Section B.1.2.

Lemma 3 (Risk balance condition). The equilibrium price of the market portfolio satisfies

σmt,s =
1

σmt,s

(
rmt,s − r

f
t,s + λt,s

(
1− Qt,s

Qt,s′

))
,(34)

where rmt,s = ρ+ g + µQt,s + σsσ
Q
t,s and σmt,s = σs + σQt,s [cf. Lemma 1].

The equilibrium price of the contingent security satisfies

(35) ps
′
t,s = λt,s

1/Qt,s′

1/Qt,s
.

Eqs. (34− 35) are identical to their counterparts in an alternative economy in which a representa-

tive investor has the wealth-weighted average belief λt,s.

Lemma 3 shows that asset prices are determined as-if there is a representative investor that has

the wealth-weighted average belief. Eq. (34) is the risk balance condition: the dynamic counterpart

to Eq. (7) in the two-period model. In each state, the total risk in the economy (the left side) is

equal to the Sharpe ratio according to the wealth-weighted average belief (the right side). Note that

the Sharpe ratio accounts for the fact that the aggregate wealth and (aggregate) marginal utility

will change if there is a state transition.9 Likewise, Eq. (35) shows that the equilibrium price of

the contingent security reflects the wealth-weighted average belief and the change in (aggregate)

marginal utility after transition.

First-best equilibrium. For future reference, we derive the first-best equilibrium without inter-

est rate rigidities. In this case, there is no lower bound constraint on the interest rate, so the price

per unit of capital is at its effi cient level at all times and states, Qt,s = Q∗. Combining this with

9To see this, observe that the term
Qt,s′−Qt,s

Qt,s′
is actually equal to

1/Qt,s′
1/Qt,s

Qt,s′−Qt,s
Qt,s

. Here,
Qt,s′−Qt,s

Qt,s
denotes the

capital gains and
1/Qt,s′
1/Qt,s

denotes the aggregate marginal utility adjustment.
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Eq. (34), we solve for “rstar”as

(36) rf∗s = ρ+ g − σ2
s for each s ∈ {1, 2} .

Hence, in the first-best equilibrium the risk premium shocks are fully absorbed by the interest

rate. Note also that, by Lemma 2, investors’wealth shares do fluctuate when there are belief

disagreements. In the first-best equilibrium, these wealth-share fluctuations affect the equilibrium

price of the contingent security [cf. Eqs. (35)] but not the equilibrium price of capital, aggregate

demand, or the interest rate. Next, we characterize the equilibrium with interest rate rigidities.

IV. Common belief benchmark and amplification

In this section, we analyze the equilibrium in a benchmark case with a single investor type with

belief denoted by λs ≡ λis. We use this benchmark to illustrate how the spirals between asset prices
and output exacerbate the recession, and how pessimism amplifies these spirals.

Since the model is linear, we focus on equilibria in which the price per capital and the interest

rate remain constant within states, Qt,s = Qs and r
f
t,s = rfs . In particular, there is no price drift or

volatility within a state, µQt,s = σQt,s = 0. Combining this with Eq. (34), we obtain the risk balance

conditions

(37) σs =
ρ+ g + λs

(
1− Qs

Qs′

)
− rfs

σs
for each s ∈ {1, 2} .

The equilibrium is then characterized by finding four unknowns,
(
Q1, r

f
1 , Q2, r

f
2

)
, that solve the

two equations in (37) together with the two goods market equilibrium conditions in (25). We solve

these equations under the following parametric restriction.

Assumption 1. σ2
2 > ρ+ g > σ2

1.

In view of this restriction, the low-risk-premium state 1 features positive interest rates, effi cient

asset prices, and full factor utilization, rf1 > 0, Q1 = Q∗ and η1 = 1, whereas the high-risk-

premium state 2 features zero interest rates, lower asset prices, and imperfect factor utilization,

rf2 = 0, Q2 < Q∗ and η2 < 1. In particular, the analysis with common beliefs reduces to finding two

unknowns,
(
Q2, r

f
1

)
, that solve the two risk balance equations in (37) (after substituting Q1 = Q∗

and rf2 = 0).

Equilibrium in the high-risk-premium state. After substituting rf2 = 0, the risk balance

equation (37) for the high-risk-premium state s = 2 can be written as

(38) σ2 =
ρ+ g + λ2

(
1− Q2

Q∗

)
σ2

.
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If the price were at its effi cient level, Q2 = Q∗, the risk (the left side) would exceed the Sharpe ratio

(the right side). As in the two period model, the economy generates more risk than investors are

willing to absorb at the constrained interest rate. As before, the price per unit of capital, Q2, must

fall to equilibrate the risk markets. Rearranging the expression, we obtain a closed form solution,

(39) Q2 = Q∗
(

1− σ2
2 − (ρ+ g)

λ2

)
.

As this expression illustrates, we require a minimum degree of optimism to ensure an equilibrium

with positive price and output.

Assumption 2. λ2 > σ2
2 − (ρ+ g).

This requirement is a manifestation of an amplification mechanism that we describe next.

Amplification from endogenous output and earnings. In the two period model of Section

II, the future payoff from the market portfolio is exogenous (z1). Therefore, a decline in the price

of capital (Q) increases the dividend yield and the market return, rm (z1) = z1
Q [cf. Eq. (2)]. In

contrast, in the current model the instantaneous payoff from the market portfolio is endogenous

and given by yt,2 = ρQ2kt,2. Therefore, a decline in the price of the market portfolio does not

affect the dividend yield ( yt,2
Q2kt,2

= ρ) and leaves the market return absent transitions unchanged,

rmt,2 = ρ+g [cf. Eq. (22)]. Unlike in the two period model, a decline in asset prices does not increase

the market return (aside from state transitions). The intuition is that a lower price reduces output

and economic activity, which reduces firms’earnings and leaves the dividend yield constant. Thus,

asset price declines no longer play a stabilizing role through the dividend yield, leaving the economy

susceptible to a spiraling decline.

In view of this amplification mechanism, one might wonder how the risk market ever reaches

equilibrium once the price, Q2, falls below its effi cient level, Q∗. The stabilizing force is captured

by the last term in Eq. (38), λ2

(
1− Q2

Q∗

)
. A decline in the price increases the expected capital gain

from transition into the recovery state s = 1, which increases the expected return to capital and the

Sharpe ratio. The stabilizing force is stronger when investors are more optimistic and perceive a

higher transition probability into the recovery state, λ2. Assumption 2 ensures that the stabilizing

force is suffi ciently strong to counter the impact of the risk premium shock. If this assumption

were violated, a risk premium shock would trigger a downward price spiral that would lead to an

equilibrium with zero asset prices and zero output.

Finally, consider the comparative statics of the equilibrium price with respect to the exogenous

shifter of the risk premium, σ2
2 [cf. (36)]. Using Eq. (39), we obtain d(Q2/Q∗)

dσ22
= − 1

λ2
. Hence, risk

premium shocks reduce asset prices and output by a greater magnitude when investors are more

pessimistic about recovery (lower λ2). These observations illustrate that average beliefs matter in

this environment not only because they have a direct impact on asset prices but also because they

determine the strength of the amplification mechanism.
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Equilibrium in the low-risk-premium state. Following similar steps for the low-risk-premium

state s = 1, we also obtain a closed form solution for the interest rate in this state,

(40) rf1 = ρ+ g − σ2
1 − λ1

(
Q∗

Q2
− 1

)
.

Intuitively, given the expected return on capital the interest rate adjusts to ensure that the risk

balance condition is satisfied at the effi cient price level, Q1 = Q∗. For our conjectured equilibrium,

we also assume an upper bound on λ1, which ensures that the implied interest rate is positive.

Assumption 3. λ1 <
ρ+g−σ21
Q∗
Q2
−1
, where Q∗

Q2
is given by Eq. (39).

Note that Eq. (40) implies rf1 is decreasing in the transition probability, λ1, as well as in the asset

price drop conditional on transition, Q
∗

Q2
. Interest rates are kept relatively low because investors

fear a recession triggered by an increase in the risk premium when the interest rate is constrained.

The following result summarizes the equilibrium characterization in this section.

Proposition 1. Consider the model with a single belief type and Assumptions 1—3. There is an
equilibrium in which the price per capital and the interest rate are constant within each state,

Qt,s = Qs and r
f
t,s = rfs . The low-risk-premium state 1 features a positive interest rate, effi cient

asset prices and full factor utilization, rf1 > 0, Q1 = Q∗ and η1 = 1. The high-risk-premium state

2 features zero interest rate, lower asset prices, and a demand-driven recession, rf2 = 0, Q2 < Q∗,

and η2 < 1, as well as lower consumption and output, ct,2
kt,2

=
yt,2
kt,2

= ρQ2. The price in state 2 and

the interest rate in state 1 are given by Eqs. (39) and (40).

Equilibrium with investment and endogenous growth. In Online Appendix Section D,

we extend the baseline environment to incorporate investment. This leads to two main changes.

First, the growth rate in (12) becomes endogenous, gt,s = ϕ (ιt,s)− δ, where ιt,s =
it,s
kt,s

denotes the

investment rate per capital, ϕ (·) denotes a neoclassical production technology for capital, and δ
denotes the depreciation rate. Second, under the simplifying assumption that output accrues to

agents as returns to capital (i.e., no monopoly profits), optimal investment is an increasing function

of the price per unit of capital, Qt,s.10 Moreover, using a convenient functional form for ϕ (·), we
obtain a linear relation between the investment rate and the price, ι (Qt,s) = ψ (Qt,s − 1) for some

ψ > 0.

In this setting, aggregate demand is the sum of consumption and investment. Using the expres-

sion for optimal investment, we generalize the output-asset price relation (21) to

(41) Aηt,s = ρQt,s + ψ (Qt,s − 1) .

10Without this assumption, investment would be a function of Q̃t,s ≤ Qt,s, which represents a claim on the rental
rate of capital in future periods (excluding monopoly profits). The difference, Qt,s − Q̃t,s, captures the price of a
claim on monopoly profits. Hence, allowing for profits would have a quantitative impact on investment, though we
believe it would leave our qualitative results unchanged. We leave an investigation of this issue for future research.
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Hence, output is increasing in asset prices not only because asset prices generate a wealth effect on

consumption but also because they increase investment through a marginal-Q channel. Substituting

optimal investment into the endogenous growth expression, we further obtain

(42) gt,s = ψqt,s − δ, where qt,s = logQt,s.

Hence, this setting also features a growth-asset price relation: lower asset prices reduce investment,

which translates into lower endogenous growth and lower potential output in future periods. The

rest of the model is unchanged (see Online Appendix Section D for details).

In the online appendix, we characterize the equilibrium in this extended environment and gen-

eralize Proposition 1. We find that risk premium shocks– captured by a transition to state 2–

generate a decline in investment and endogenous growth as well as consumption and output, as in

the baseline model. The decline in investment and endogenous growth generates a second ampli-

fication mechanism that reinforces the mechanism we described earlier. Specifically, the recession

lowers asset prices further, not only by reducing output and earnings, but also by reducing growth

in potential output and earnings. Figure I in the introduction illustrates the two amplification

mechanisms. Henceforth, we return to the baseline model without investment.

Remark 6 (More general RRA). In Online Appendix Section E, we extend the baseline dynamic
model to cases where the RRA is different from one while keeping the EIS equal to one (see Remark

2 for the role of the EIS). This introduces dynamic hedging motives: investors’marginal utility for

future states reflects not only their wealth but also the attractiveness of investment opportunities

in the corresponding state. These motives affect our analysis in two ways. First, investors’wealth-

share dynamics are influenced by their relative dynamic hedging motives in addition to belief

disagreements. These effects complicate the analysis with belief disagreements (in particular, the

separability property from Section III.B no longer applies), but they are largely orthogonal to

the effects of speculation that we discuss subsequently. Second, with common beliefs (in which

case the analysis is tractable), dynamic hedging motives further amplify the effect of risk premium

shocks on asset prices and output in the empirically relevant case of RRA greater than one (see

Di Tella (2017)). Specifically, an increase in the (relative) risk premium in the high-risk-premium

state makes the investment opportunities in this state (relatively) less attractive, which increases

investors’willingness to hedge the high-risk-premium state. In equilibrium, this translates into a

lower price and output in the high-risk-premium state (and a lower interest rate in the low-risk-

premium state).

V. Belief disagreements and speculation

We now turn to the main case with belief disagreements. We show that a greater wealth share for

optimists raises asset valuations and mitigates the recession. We also establish that speculation

induced by belief disagreements exacerbates asset price fluctuations and worsens the recession.
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We restrict attention to two investor types, optimists and pessimists, with beliefs denoted by{(
λi1, λ

i
2

)}
i∈{o,p}. Beliefs satisfy the following assumption:

Assumption 4. λo2 > λp2 and λ
o
1 ≤ λ

p
1.

When the economy is in the high-risk-premium state, optimists find the transition into the low-

risk-premium state relatively likely (λo2 > λp2); when the economy is in the low-risk-premium state,

optimists find the transition into the high-risk-premium state relatively unlikely (λo1 ≤ λ
p
1). Hence,

optimism and pessimism are relative: an optimist is someone who is optimistic relative to a pes-

simist. In fact, we do not need to specify the “objective distribution” for our theoretical results

(including the welfare results). We do, however, need relative optimism and pessimism to be

persistent across the two risk premium states (see Remark 7 at the end of this section).

As our analysis in Section III.B suggests, the equilibrium with belief disagreements depends on

investors’wealth shares. In the two-type context, we simplify the notation and denote optimists’

wealth share without a superscript [cf. (26)]:

αt,s ≡
aot,s

kt,sQt,s
.

Pessimists’wealth share is the residual, 1 − αt,s =
apt,s

kt,sQt,s
. Optimists’wealth share, αt,s, is the

relevant state variable for this economy. Specifically, we will establish an equilibrium in which

all variables can be written as a function of αt,s. To this end, we also write the wealth-weighted

average belief as a function of optimists’wealth share [cf. (27)]:

(43) λt,s = λs (αt,s) ≡ αt,sλos + (1− αt,s)λps.

We next present our main result in this section, which characterizes the equilibrium with belief

disagreements. The result requires Assumptions 1—3 from the previous section to hold for both

beliefs. These assumptions ensure that there exists an equilibrium in which the low-risk-premium

state 1 always features a positive interest rate, effi cient price level, and full factor utilization,

rft,1 > 0, Qt,1 = Q∗, ηt,1 = 1, whereas the high-risk-premium state 2 always features a zero interest

rate, a lower price level, and insuffi cient factor utilization, rft,2 = 0, Qt,2 < Q∗, ηt,2 < 1.

Proposition 2. Consider the model with two belief types. Suppose Assumptions 1—3 hold for

each belief, and that beliefs are ranked according to Assumption 4. Then, there is an equilibrium

in which the log-price and interest rate can be written as functions of optimists’ wealth share,

qt,s = qs (αt,s) , r
f
t,s = rfs (αt,s), where optimists’wealth share evolves according to

(44)
α̇t,s
αt,s

= −ωs
′,o
t,s = (λps − λos) (1− αt,s) if there is no state change,

αt,s′
αt,s

= λos
λs(αt,s)

if there is a state change to s′.

In the high-risk premium state 2, the interest rate is zero, rf2 (α) = 0, and the log-price per
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capital is below the effi cient level, q2 (α) < q∗. The price function is the solution to the differential

equation

(45) q′2 (α) (λo2 − λ
p
2)α (1− α) = ρ+ g + λ2 (α)

(
1− exp (q2 (α))

Q∗

)
− σ2

2,

with boundary conditions q2 (0) = qp2 and q2 (1) = qo2. The solution, q2 (α), is strictly increasing in

α. In particular, greater optimists’wealth share in the high-risk-premium state, αt,2, increases the

price per capital, Qt,2, as well as consumption and output,
ct,2
kt,2

=
yt,2
kt,2

= ρQt,2.

In the low-risk-premium state 1, the log-price is at its effi cient level, q1 (α) = q∗, and the interest

rate is strictly positive, rf1 (α) > 0. The interest rate function is given by

(46) rf1 (α) = ρ+ g − λ1 (α)

(
Q∗

exp (q2 (α′))
− 1

)
− σ2

1 where α′ = α
λo1

λ1 (α)
.

The function rf1 (α) is strictly increasing in α. In particular, a greater optimists’wealth share in

the low-risk-premium state, αt,1, increases the interest rate, r
f
t,1.

The characterization of optimists’wealth dynamics follows from Lemma 3. When the economy

is in the recession state, optimists purchase the upside contingent security from pessimists (since

λo2 > λp2). As long as the economy remains in the recession state, optimists’wealth share drifts

downward. However, if there is a transition to the boom state, then optimists’ wealth share

makes an upward jump. Conversely, when the economy is in the boom state, optimists sell the

downside contingent security to pessimists (since λo1 ≤ λp1). This ensures that optimists’wealth

share drifts upward when the economy remains in the boom state, but it makes a downward jump

if there is a transition to the recession state. Figure II illustrates these dynamics for a particular

parameterization (described subsequently).

The rest of the proposition characterizes the equilibrium price in the high-risk state and the

interest rate in the low-risk state as functions of optimists’ wealth share. Eqs. (45) and (46)

are similar to their counterparts with common beliefs [cf. Eqs. (38) and (40)]. The main differ-

ence is that the asset price and the interest rate depend on the wealth-weighted average belief

in the corresponding state, λ2 (α) and λ1 (α). Since increasing optimists’wealth share, α, makes

the wealth-weighted average belief more optimistic (in either state), these equations suggest that

greater α should increase the asset price and the interest rate. The proposition verifies this intu-

ition. Figure III illustrates the equilibrium asset price and interest rate functions for a particular

parameterization.

Proposition 2 has two important implications. First, in the recession state, a greater wealth

share for optimists increases not only asset prices but also consumption and output (in view of

the output-asset price relation). This observation motivates policies that redistribute wealth to

optimists in the recession state– including macroprudential policy, which we analyze in the next

section. The result is reminiscent of the recent macroeconomics literature that emphasizes the im-

portance of wealth distribution for aggregate spending in environments with heterogeneous MPCs.
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Figure II: Equilibrium dynamics of investors’wealth shares with heterogeneous beliefs.

0 0.2 0.4 0.6 0.8 1

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

0.05

0.06

Figure III: Equilibrium price and interest rate functions with heterogeneous beliefs.
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However, the mechanism here is different and works through general equilibrium effects driven by

heterogeneous asset valuations. To see this, consider the effect of a wealth transfer from pessimists

to optimists in partial equilibrium– keeping asset prices unchanged, and in general equilibrium–

allowing asset prices to adjust. In partial equilibrium, this transfer would not stimulate aggregate

spending because pessimists and optimists have the same MPC (equal to ρ). As optimists increase

their spending, pessimists reduce their spending by the same amount. However, in general equi-

librium, the transfer increases asset prices and aggregate spending. In fact, relative to the partial

equilibrium benchmark, optimists and pessimists both increase their spending.

Second, the proposition implies that financial markets are effectively extrapolative even though

investors’beliefs are fixed. Good realizations increase optimists’wealth share, which raises effective

optimism and increases the asset price (in the high-risk-premium state) or the interest rate (in the

low-risk-premium state). Conversely, bad realizations reduce optimists’wealth share, which reduces

effective optimism and decreases the asset price or the interest rate. These results also imply that

speculation exacerbates asset price boom-bust cycles and leads to more severe recessions (see also

Remark 8 at the end of this section).

We next provide a sketch proof for Proposition 2, which provides further intuition. We then

present a simulation that illustrates how speculation exacerbates boom-bust cycles and demand

recessions.

Sketch proof of Proposition 2. The wealth dynamics in Eq. (44) follow from Lemma 2. Since

we search for an equilibrium that satisfies qt,s = qs (αt,s), and since αt,s follows a deterministic path

absent transition, qt,s also follows a deterministic path absent transition. Therefore, σ
Q
t,s = 0 (cf.

Remark 4).

To characterize the rest of the equilibrium, consider Lemma 3 that describes the risk balance

condition. Applying Eq. (34) for the high-risk-premium state s = 2 and substituting rft,2 = 0 and

σQt,2 = 0, µQt,2 =
dQt,2/dt
Qt,2

= q̇t,2, we obtain

(47) σ2 =
1

σ2

(
ρ+ g + q̇t,2 + λt,2

(
1− Q2

Q∗

))
.

This condition is similar to its counterpart with common beliefs, with two differences [cf. (38)].

First, the transition probability effectively depends on the wealth-weighted average belief, λt,2.

Second, the expected return to the market portfolio features the price drift term q̇t,2 [cf. (22)],

which is not necessarily zero because optimists’wealth share changes over time.

Combining Eqs. (44) and (47), we obtain a differential equation system that describes the

joint dynamics of the log price and optimists’wealth share, (qt,2, αt,2), conditional on no transition.

In Online Appendix Section B.3, we show that this system is saddle path stable: for any initial

wealth share, αt,2 ∈ (0, 1), there exists a unique equilibrium price level, qt,2 ∈ [qp2 , q
o
2), such that

the solution satisfies limt→∞ αt,2 = 0 and limt→∞ qt,2 = qp2 . We further show that the saddle path

is strictly increasing in αt,2. These observations imply that the equilibrium price is an increasing
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function of optimists’wealth share, q2 (α) (which corresponds to the saddle path). Substituting

this function into Eq. (47) and using Eq. (44), we also obtain the differential equation (45) that

characterizes this function in the α-domain.

Finally, we obtain Eq. (46) by applying the risk balance condition (34) for the low-risk-premium

state s = 1. The term α′ denotes optimists’wealth share after an immediate transition into the

high-risk-premium state [cf. Eq. (44)]. The interest rate is increasing in α both because the

wealth-weighted transition probability to the high-risk-premium state, λ1 (α), is decreasing in α;

and because the price that would obtain after transition, q2 (α′), is increasing in α.

Numerical illustration. We next illustrate the equilibrium characterized in Proposition 2 us-

ing a simple parameterization (see Online Appendix Section B.4 for details). For the baseline

parameters, we set g = 5%, ρ = 4%, σ2
1 = 2%, σ2

2 = 10%. For investors’beliefs about transition

probabilities, we set λo1 = 1
25 , λ

p
1 = 1

5 for the boom state and λ
o
2 = 1

5 , λ
p
2 = 1

25 for the recession state.

Figure II illustrates the corresponding dynamics for optimists’wealth share. Figure III illus-

trates the corresponding equilibrium prices. The left panel of Figure III illustrates the price of

capital in the recession (normalized by the effi cient price level) as a function of optimists’wealth

share. When pessimists dominate the economy, the price of capital and output decline by 25%.

In contrast, when optimists dominate, they decline by only 5%. The right panel of Figure III

illustrates the interest rate in the boom as a function of optimists’wealth share. The risk-free rate

during the boom is close to 7% when optimists dominate the economy but it is close to 0% when

pessimists dominate.

Amplification from speculation. We next use our numerical example to illustrate how spec-

ulation amplifies the business-cycle driven by risk premium shocks. We fix investors’beliefs and

simulate the equilibrium for a particular realization of uncertainty over a 40-year horizon. We

choose the objective simulation belief to be in the “middle” of optimists’and pessimists’beliefs

in terms of the relative entropy distance.11 We also focus on the “average path”– the path in

which the length of each boom or bust is exactly equal to its mean value implied by the simulation

belief. Figure IV illustrates the dynamics of equilibrium variables along this path. For comparison,

the dashed red line plots the equilibrium that would obtain in the common-beliefs benchmark if

all investors shared the “middle” simulation belief, and the circled blue line plots the first-best

equilibrium that would obtain without interest rate rigidities.

The figure illustrates two points. First, as we establish in Section IV, the price per unit of

11Formally, given two probability distributions (p (s̃))s̃∈S and (q (s̃))s̃∈S , the relative entropy of p with respect

to q is defined as
∑
s̃ p (s̃) log

(
p(s̃)
q(s̃)

)
. In a setting similar to ours, Blume and Easley (2006) show that investors

whose belief is closer to the objective distribution in terms of the relative entropy distance dominate the economy
in the long run. We choose the simulation belief (in both the boom and the recession state) to be in the “middle”
of optimists’and pessimists’beliefs to prevent this outcome and to ensure that there is a non-degenerate long-run
wealth distribution. This helps to illustrate the destabilizing effects of speculation without taking a stand on whether
optimists or pessimists are “correct.”Our welfare results in the next section do not require this assumption since we
evaluate investors’expected utilities according to their own beliefs.

28



0 5 10 15 20 25 30 35 40
0.02

0.10

0 5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40

0

0.02

0.04

0.06

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

Figure IV: A simulation of the equilibrium variables over time. The solid red lines illustrate the
equilibrium with belief disagreements. The dahed red lines (resp. the dotted blue lines) illustrate the common
belief benchmark (resp. the first-best benchmark).
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capital is more volatile and the interest rate is more compressed in the common-belief benchmark

than in the first-best equilibrium. In the high-risk-premium state, the interest rate cannot decline

enough to equilibrate the risk balance condition, which leads to a drop in asset prices and a demand

recession. Moreover, asset prices and output decline substantially even though the interest rate is

above the first-best level by only one percentage point– illustrating the amplification mechanism.

In the low-risk-premium state, the fear of transition into the recessionary high-risk-premium state

keeps the interest rate lower than in the first-best benchmark.

Second, risk-centric recessions are more severe when investors have belief disagreements (and

this also compresses interest rates). The intuition follows from Proposition 2. Speculation in the

low-risk-premium state decreases optimists’wealth share once the economy transitions into the

high-risk-premium state, as illustrated by the second-to-top panel of Figure IV. This translates

into lower asset prices and a more severe demand recession, as illustrated by the bottom panels

of Figure IV. Speculation also increases optimists’wealth share if the boom continues, but this

effect does not translate into higher asset prices or output since it is (optimally) neutralized by

the interest rate response. The adverse effects of speculation on demand recessions motivate the

analysis of macroprudential policy, which we turn to in the next section.

Remark 7 (Interpretation of belief disagreements). As this discussion suggests, what matters
for our results in this section is persistent heterogeneous valuations for risky assets that ensure:

(i) during the recession, a greater wealth share for high-valuation investors increases the (relative)

price of risky assets, and (ii) during the boom, high-valuation investors absorb relatively more of the

recession risks. Belief disagreements generate these features naturally, under the mild assumption

that optimists and pessimists do not flip roles between booms and recessions, but other sources

of heterogeneous valuations would lead to similar results.12 For example, with heterogeneous risk

aversion, more risk tolerant agents take on more aggregate risk (i.e., they insure less risk tolerant

agents), which reduces their wealth share and the (relative) price of risky assets following negative

shocks to fundamentals (see, for instance, Garleanu and Pedersen (2011); Longstaff and Wang

(2012)). From this perspective, belief disagreements can also capture institutional reasons for

heterogeneous valuations such as capacity or mandates for handling risk. Investment banks, for

example, have far more capacity to handle and lever risky positions than pensioners and money

market funds.

Remark 8 (Other sources of extrapolative dynamics). In our model, asset prices are determined
as-if there is a representative investor with the wealth-weighted average belief, λt,s [cf. Lemma

3]. Our analysis in this section shows that speculation generates extrapolative dynamics for the

wealth-weighted average belief. Therefore, an alternative model in which agents are homogeneous

but have individually extrapolative beliefs would generate identical price dynamics (as long as the

12The no-flipping assumption is supported by recent survey evidence that shows belief heterogeneity is largely
explained by persistent individual heterogeneity (Giglio et al. (2019)). The assumption is also consistent with an
extensive psychology literature that documents the prevalence of optimism, as well as its heterogeneity and persistence,
since it is largely a personal trait (see Carver et al. (2010) for a review).
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extrapolation mechanism generates identical paths for λt,s). However, unlike our model, such an

alternative model would feature homogeneous asset positions. Thus, it would not generate trading

volume, which is a distinctive feature of speculative episodes in practice (see, e.g., Hong and Stein

(2007); DeFusco et al. (2017)). More broadly, extrapolation and speculation are both likely to be

at play and reinforce each other during speculative episodes.

VI. Welfare analysis and macroprudential policy

Since our model features constrained monetary policy, most of the aggregate demand boosting

policies that have been discussed in the New Keynesian literature are effective in our environment.

We skip a discussion of these policies (our results still apply as long as these policies are imper-

fect). Instead, we focus on macroprudential policy interventions that impose restrictions on risk

market participants with the objective of obtaining macroeconomic benefits. In practice, most

macroprudential policies restrict risk taking by banks– especially large ones. Interpreting banks

as high-valuation investors (see Remark 7) or as lenders to such investors (see Section VII), we

capture these policies in reduced form by imposing portfolio risk limits on optimists.

Our model features heterogeneous beliefs, which makes the welfare analysis challenging. We

mainly focus on the standard Pareto criterion in which the planner evaluates investors’expected

utility according to the investors’own beliefs. This criterion ensures that our results are not driven

by paternalistic concerns. Rather, the planner improves welfare by internalizing aggregate demand

externalities. The standard criterion is also appropriate if we interpret belief disagreements as

a modeling device that captures heterogeneous valuations due to other factors (see Remark 7).

However, if we interpret belief disagreements literally, then a paternalistic criterion such as the

belief-neutral welfare criterion developed by Brunnermeier et al. (2014) could be more appropriate.

In Section VI.C , we illustrate how to use a belief-neutral criterion in our context.

We provide a decomposition of investors’value functions that simplifies the theoretical analysis.

Specifically, since our model features complete markets and no frictions other than interest rate

rigidities, aggregate demand externalities are the only source of ineffi ciency. Therefore, the first-best

benchmark that corrects for these ineffi ciencies is Pareto effi cient. Motivated by this observation,

we decompose investors’value functions into two components: a first-best value function that would

obtain if there were no demand recessions and a gap value function that captures the loss of value

due to demand recessions. Introducing the gap value function simplifies the analysis considerably

because, up to a first order, macroprudential policies affect social welfare only through their impact

on investors’gap values.

Using the model with two belief types from the previous section, we first characterize investors’

value functions in equilibrium according to their own beliefs. We also define the gap value functions

and illustrate the aggregate demand externalities. We then consider macroprudential policy that

induces optimists to act more pessimistically (by imposing appropriate portfolio risk limits). We

show that this policy can lead to a Pareto improvement of social welfare. We focus on macropru-
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dential policy in the boom (low-risk-premium) state and briefly discuss macroprudential policy in

the recession (high-risk-premium) state.

VI.A. Equilibrium value functions

Because the model is linear, a type i investor’s expected utility can be written as (see Online

Appendix Section B.1.1)

(48) V i
t,s

(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vit,s.

Here, vit,s denotes the normalized value function per unit of capital stock. Consider the equilibrium

characterized in Proposition 2. In Online Appendix Section C.1, we characterize the normalized

value corresponding to this equilibrium as the solution to the differential equation system,

(49) ρvit,s −
∂vit,s
∂t

= log ρ+ qt,s +
1

ρ

 g − 1
2σ

2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) + λis
(
vit,s′ − vit,s

)
.

The equilibrium price, qt,s, affects the investor’s welfare since it determines output and consumption

[cf. Eqs. (24) and (21)]. Consumption growth, g, and volatility, σ2
s, also affect welfare. Finally,

speculation affects the investor’s (perceived) welfare. This is captured by the term −
(
λis − λt,s

)
+

λis log
(
λis
λt,s

)
, which is zero with common beliefs and strictly positive with disagreements.

Gap value function. To facilitate the policy analysis, we break down the normalized value

function into two components,

(50) vit,s = vi,∗t,s + wit,s.

Here, vi,∗t,s denotes the first-best value function that would obtain if there were no interest rate

rigidities. It is characterized by solving Eq. (49) with the effi cient price level, qt,s = q∗, for each

t, s. The residual, wit,s = vit,s − v
i,∗
t,s , denotes the gap value function, which captures the loss due

to interest rate rigidities and demand recessions. The first-order impact of macroprudential policy

on social welfare depends only on the gap value function. Using Eq. (49), we characterize the gap

value function as the solution to the following system,

(51) ρwit,s = qt,s − q∗ +
∂wit,s
∂t

+ λis
(
wit,s′ − wit,s

)
.

The gap value function corresponds to the investor’s present discounted value of utility losses from

output gaps relative to the effi cient level. In view of the output-asset price relation (21), the

function accounts for the output gaps in terms of the asset price gaps. Recall that the equilibrium

features qt,1 = q∗ and qt,2 < q∗. Thus, the key objective of policy interventions is to increase the
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asset price in the high-risk-premium state, in order to mitigate the demand recession.

VI.B. Aggregate demand externalities

In Online Appendix Section C.1 we show that the gap value can be written as a function of optimists’

wealth share, wis (α). Combining Eqs. (51) and (44), we characterize this function as the solution

to the following system in the α-domain,

(52) ρwis (α) = qs (α)− q∗ − (λos − λps)α (1− α)
∂wis (α)

∂α
+ λis

(
wis′
(
α′
)
− wis (α)

)
,

where α′ = α λos
λs(α)

. Recall that the price function in the high-risk-premium state, q2 (α), is increas-

ing in optimists’wealth share [cf. Figure III]. This leads to the following result.

Lemma 4. The gap value function satisfies dwis(α)
dα > 0 for each s, i and α ∈ (0, 1).

Optimists’wealth share is a scarce resource that brings asset prices and output in the recession

state closer to its first-best level. Thus, the gap value function in the recession state is increasing

in optimists’wealth share. The gap value function in the boom state is also increasing, because the

economy can always transition into the recession state, where optimists’wealth share is useful (see

Lemma 5 below for a ranking of the marginal value of optimists’wealth across the two states).

This result also illustrates the aggregate demand externality. Optimists’ wealth share is an

endogenous variable that fluctuates due to investors’portfolio decisions [cf. Figure IV]. Individual

optimists who take positions in contingent markets– and pessimists who take the other side of

these positions– do not take into account the impact of their decisions on asset prices and social

welfare. This leads to ineffi ciencies that can be corrected by macroprudential policy.

VI.C. Macroprudential policy

To evaluate the direction of the ineffi ciency, we consider a constrained policy exercise where the

planner can induce optimists to choose allocations as if they have less optimistic beliefs.13 Specifi-

cally, optimists are constrained to choose allocations as-if they have the beliefs λo,pl ≡
(
λo,pl1 , λo,pl2

)
,

which satisfy λo,pl1 ≥ λo1 and λ
o,pl
2 ≤ λo2. Pessimists continue to choose allocations according to their

own beliefs. Throughout, we use λi,pls to denote investors’as-if beliefs and λis to denote their actual

beliefs. For pessimists, the two beliefs coincide. We also use λ
pl
s (α) = αλo,pls + (1− α)λps to denote

the weighted average as-if belief.

In Online Appendix Section C.2, we show that the planner can implement this policy by im-

posing inequality restrictions on optimists’portfolio weights, while allowing them to make uncon-

strained consumption-savings decisions. To understand this implementation, note that optimists’

13For simplicity, we restrict attention to time-invariant policies. The planner commits to a policy at time zero,(
λo,pl1 , λo,pl2

)
, and implements it throughout.
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position on the contingent security is given by [cf. Eq. (44)]

(53) ωs
′,o,pl
t,s =

(
λo,pls − λps

)
(1− αt,s) .

With their own beliefs, optimists sell the contingent security in the boom state, ω2,o
t,1 ≤ 0 (since λo1 ≤

λp2), and purchase it in the recession state, ω
1,o
t,2 > 0 (since λo2 > λp2). Therefore, Eq. (53) implies

that, in the boom state, the planner prevents optimists from selling too much of the contingent

security, ω2,o
t,1 ≥ ω2,o

t,1 . In the recession state, the policy prevents optimists from purchasing too

much of the contingent security, ω1,o
t,2 ≤ ω1,o

t,2 . In either state, the policy also constrains optimists’

weight on the market portfolio not to exceed the market average, ωm,ot,s ≤ 1. In the absence of this

constraint, optimists would speculate by increasing their exposure to the market portfolio.

The characterization of the equilibrium with macroprudential policy is the same as in Section

V. In particular, Eqs. (44) and (47) still hold with the only difference that investors’beliefs are

replaced by as-if beliefs, λi,pls . We denote the resulting price functions with qpls (α) to emphasize

that they are determined by as-if beliefs. The equation system that characterizes the gap value

function is given by the following analogue of Eq. (52),

(54) ρwis (α) = qpls (α)− q∗ −
(
λo,pls − λps

)
α (1− α)

∂wis (α)

∂α
+ λis

(
wis′
(
α′,pl

)
− wis (α)

)
,

where α′,pl = α λo,pls

λ
o,pl
s (α)

. This system illustrates that the macroprudential policy can affect the gap

value through two channels. First, it might affect equilibrium asset prices (captured by the term

qpls (α)). Second, the policy affects the dynamics of optimists’wealth share, which influence the gap

value. For example, in the boom state s = 1, the policy increases λo,pl1 , which increases optimists’

wealth share after a transition to the recession (captured by the term, α
′,pl) at the expense of

reducing optimists’wealth share if there is no transition (captured by the term −
(
λo,pls − λps

)
).

Planner’s Pareto problem. To trace the Pareto frontier, we allow the planner to make a one-

time wealth transfer among the investors at time zero. In Online Appendix Section C.2, we show

that the planner’s Pareto problem can be reduced to

(55) max
λo,pl

vpl0,s = α0,sv
o
0,s + (1− α0,s) v

p
0,s.

Hence, the planner maximizes a wealth-weighted average of investors’ normalized values. The

wealth shares (chosen by the planner via the one-time transfer) correspond to the planner’s Pareto

weight on optimists and pessimists. We decompose the planner’s value function into first-best and

gap value components, vpl0,s = vpl,∗0,s + wpl0,s.

Since the first-best benchmark does not feature any frictions, it is Pareto effi cient (due to

the First Welfare Theorem). This in turn implies that the marginal impact of the policy on the

planner’s first-best value function is zero,
∂vpl,∗0,s

∂λo,pl

∣∣∣∣
λo,pl=λo

= 0. Consequently, the first order impact
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of the policy is characterized by its impact on the planner’s gap value function,

(56) wpl0,s = α0,sw
o
0,s + (1− α0,s)w

p
0,s.

Macroprudential policy in the boom state. Now suppose the economy is in the boom state

s = 1. The planner can use macroprudential policy in the current state, λo,pl1 ≥ λo1 (she can

induce optimists to act as if transition into the recession is more likely), but not in the other state

λo,pl2 = λo2 (she cannot influence optimists’actions in the recession state). Effectively, this policy

induces optimists to sell less of the contingent security that pays in case there is a transition to the

recession, while also preventing optimists from increasing their position in the market portfolio.

We next present our main result in this section that shows this policy improves welfare. The result

requires a technical assumption (no disagreement in state s = 1) that we discuss subsequently.

Proposition 3. Consider the equilibrium with two belief types characterized in Proposition 2.

Suppose agents’beliefs satisfy λo1 = λp1 and consider the macroprudential policy in the boom state,

λo,pl1 ≥ λo1 (and suppose λ
o,pl
2 = λo2). The policy increases the gap value according to each belief,

∂wi1 (α)

∂λo,pl1

∣∣∣∣∣
λo,pl1 =λo1

> 0 for each i ∈ {o, p} and α ∈ (0, 1) .

The policy also increases the planner’s value, ∂vpl1 (α)

∂λo,pl1

∣∣∣∣
λo1

=
∂wpl1 (α)

∂λo,pl1

∣∣∣∣
λo1

> 0. In particular, regardless

of the planner’s Pareto weight, there exists a Pareto improving macroprudential policy.

We next present a heuristic derivation of this result, which facilitates the intuition. For small

changes, macroprudential policy in the boom state does not affect current asset prices, which remain

equal to the effi cient level, qpl1 (α) = q∗ (since the interest rate in the boom state is not constrained).

Hence, the policy affects the gap value only through its impact on optimists’wealth dynamics and

the associated aggregate demand externalities. Differentiating Eq. (54), for s = 1, with respect to

optimists’as-if beliefs and evaluating at the no-policy benchmark, λo,pl1 = λo1, we obtain

(57)
(
ρ+ λi1

) ∂wi1 (α)

∂λo,pl1

= α (1− α)

[
∂wi2 (α′)

∂α
− ∂wi1 (α)

∂α

]
+ λi1

∂wi2 (α′)

∂λo,pl1

.

Here, α′ = α
λo1

λ1(α)
= α given the assumption λo1 = λp1.

The two terms inside the brackets capture the direct impact of the policy on welfare through

aggregate demand externalities. The first term illustrates that the policy generates positive aggre-

gate demand externalities– because it increases optimists’wealth share if there is a transition into

the recession state. On the other hand, the second term illustrates that the policy also generates

negative aggregate demand externalities– because it reduces optimists’wealth share if there is no

transition. In a dynamic setting, macroprudential policy in the boom state is associated with some

costs as well as benefits. The costs emerge because the policy prevents optimists from accumulating
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wealth that could be useful in a future recession. However, intuition suggests the benefits should

outweigh the costs as long as future recessions are not too different from an imminent recession.

The following lemma verifies this under the assumption λo1 = λp1.

Lemma 5. When λo1 = λp1, the gap value function satisfies
dwi2(α′)
dα >

dwi1(α)
dα for each i and α ∈ (0, 1).

As expected, optimists are more useful if there is an immediate transition to the recession

state, in which case their benefits materialize immediately. Any delay in this transition reduces the

benefits by postponing them. Combining this lemma with Eq. (57) provides a heuristic derivation

of Proposition 3 (see Online Appendix Section C.2 for the proof).

What happens when we relax the assumption λo1 = λp1? This is largely a technical assumption.

Our numerical simulations (e.g., Figure V) suggest that a version of Proposition 3 also holds when

λo1 < λp1 under appropriate technical assumptions, but we are unable to provide a proof.
14

Figure V illustrates the result for our earlier parameterization, which features λo1 < λp1. We

fix the optimists’wealth share (α = 1
2) and calculate the effect of macroprudential policy on the

planner’s value function and on its components. The policy reduces the planner’s first-best value

function, since it distorts investors’allocations according to their own beliefs. However, for small

policy changes, this decline is small (due to the First Welfare Theorem). The policy also increases

the planner’s gap value function. This increase is large enough that the policy increases the actual

value function and generates a Pareto improvement. As the policy becomes larger, the gap value

continues to increase whereas the first-best value decreases. Moreover, the decline in the first-best

value is negligible for small policy changes but it becomes sizeable for large policy changes. Thus,

the constrained-optimal macroprudential policy obtains at an intermediate level.

Macroprudential policy according to a belief-neutral gap-value criterion. When we in-

terpret belief disagreements literally (see Remark 7), it is questionable whether the utility from

speculation should count toward social welfare. A recent literature argues that the Pareto criterion

is not the appropriate notion of welfare for environments with belief disagreements. If investors’

beliefs are different due to mistakes (e.g., in Bayesian updating), then it is arguably more appro-

priate to evaluate their utility according to a belief that is common across investors. This approach

removes the speculative utility from welfare calculations, and it motivates larger policy interven-

tions. In this case, macroprudential policy not only improves macroeconomic outcomes but it also
14There are two distinct challenges. First, we cannot generalize Lemma 5, although the ranking is intuitive and

should hold unless there are strong nonlinearities in the gap value function. Specifically, the proof of Lemma 5
establishes

∂wi1 (b0,1)

∂b
=

λi1
λi1 + ρ

∫ ∞
0

e−(ρ+λi1)t
(
ρ+ λi1

) ∂wi2 (bt,2)

∂b
dt,

where b0,1 denotes a transformed version of α at the initial state, and bt,2 denotes the same variable after a transition
into the recession state after a period of length t. When λo1 = λp1, we also have bt,2 = b0,1 (since there is no speculation

in the boom state), which yields
∂wi1(b0,1)

∂b
=

λi1
λi1+ρ

∂wi2(b0,1)
∂b

<
∂wi2(b0,1)

∂b
. When λo1 < λp1, the same result holds and

the ranking is unchanged if the value function is linear in the transformed variable b. Hence, the ranking can fail
only if there are suffi ciently large nonlinearities in the gap value function.
Second, in the more general case pessimists and optimists disagree about the benefits of macroprudential policy.

The planner takes a weighted average of these perceptions, which complicates the analysis.
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Figure V: Welfare effect of macroprudential policy in the boom state according to the Pareto
criterion. The solid red line illustrates the change in the planner’s total value. The dashed black line (resp.
the dotted blue line) illustrates the change in the planner’s gap value (resp. the first-best value).

mitigates the microeconomic costs associated with speculation (see, e.g., Simsek (2013b); Dávila

(2017); Heimer and Simsek (2019)).

In our context, when investors have belief disagreements it might be natural for a planner to

focus exclusively on increasing investors’gap value, wis (α), as opposed to their total value, vis (α).

This sidesteps diffi cult questions about whether speculation increases or reduces welfare. It also

accords well with the goals of macroprudential policy in practice: the planner exclusively focuses

on minimizing output gaps relative to a frictionless benchmark. While reasonable, this approach

still faces a major challenge: given that the planner thinks investors’beliefs might be wrong, what

belief should she use to evaluate the gap value?

In recent work, Brunnermeier et al. (2014) offer a belief-neutral welfare criterion that circum-

vents this problem. The basic idea is to require the planner to evaluate welfare according to a single

belief, but also to make the welfare comparisons robust to the choice of the single belief. Specifically,

their baseline criterion says that an allocation is belief-neutral superior to another allocation if it

increases welfare under every belief in the convex hull of investors’beliefs. Proposition 3 suggests

their criterion can be useful in this context since macroprudential policy increases the gap value

according to each belief.

For a numerical illustration, fix some h ∈ [0, 1] and let whs
(
α;λo,pl1

)
denote the value function

for an investor when the planner implements policy λo,pl1 and evaluates utility under the beliefs λhs =

λps + h (λos − λps) for each s.15 Figure VI illustrates the effect of macroprudential policy on the gap
value according to the optimists’belief (solid line) and the pessimists’belief (dotted line). As the

figure suggests, tightening the policy toward λo,pl1 = 0.104 generates a belief-neutral improvement in

15This value function solves the differential equation system (54) after replacing the actual belief, λis, with the
belief λhs .
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Figure VI: Welfare effect of macroprudential policy in the boom state according the belief-
neutral gap value criterion. The solid line (resp. the dotted line) illustrates the change in the gap value
evaluated under the optimists’belief (resp. the pessimists’belief).

gap value. Beyond this level, tightening the policy improves the gap value according to pessimists

but not according to optimists– who perceive smaller benefits from macroprudential policy since

they find the transition into the recession state unlikely. In this example, the belief-neutral optimal

policy represents a substantial intervention: it induces optimists to act as if λo,pl1 = 0.104 (roughly a

10% chance of transition to recession in a year) whereas optimists’own belief is λo1 = 0.04 (roughly

a 4% chance of transition) and pessimists’belief is λp1 = 0.2 (roughly a 20% chance of transition).

Note that the belief-neutral gap-value criterion supports a much larger policy intervention than the

Pareto criterion (cf. Figure V).

Dynamics of equilibrium with macroprudential policy. We next consider how macropru-

dential policy in the boom state affects the dynamics of equilibrium variables. Figure VII illustrates

the evolution of equilibrium over a 40-year horizon when the planner implements the belief—neutral

optimal policy, λo,pl1 = 0.104. For comparison, the figure also replicates the evolution of the equi-

librium variables without macroprudential policy from Figure IV. Macroprudential policy in the

boom state ensures optimists’wealth share drops less when there is a transition into the recession

state. This leads to higher asset prices and output when the economy transitions to the recession.

However, the policy is not without its drawbacks. As the periods before year 10 illustrate, macro-

prudential policy in the boom state slows down the growth of optimists’wealth share when the

economy remains in the boom state.

Macroprudential policy in the recession state. Our analysis so far concerns macroprudential

policy in the boom state and maintains the assumption that λo,pl2 = λo2. In Online Appendix Section

C.2, we analyze the opposite case when the economy is currently in the recession state s = 2 and
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Figure VII: A simulation of the equilibrium variables over time with macroprudential policy.
The dashed blue line (resp. the solid red line) illustrates the equilibrium with disagreements and with
macroprudential policy (resp. without macroprudential policy).
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the planner can apply macroprudential policy in this state, λo,pl2 ≤ λo2 (she can induce optimists

to act as if the recovery is less likely), but not in the other state, λo,pl1 = λo1. Proposition 4

in the appendix shows that, in contrast to Proposition 3, this policy can reduce social welfare.

Consider the two counteracting forces. As before, macroprudential policy increases the gap value

by increasing optimists’wealth share if the economy stays in the recession state. However, unlike

before, macroprudential policy also reduces current asset prices because the price is below the

effi cient level, qpl2 (α) < q∗, and it is increasing in optimists’as-if optimism, λo,pl2 (see Eq. (39)). This

channel reduces the gap value (see Eq. (54)). When optimists’wealth share is large (α → 1), the

latter channel dominates and macroprudential policy reduces the gap value and social welfare. Even

when the current asset price channel does not dominate, macroprudential policy in the recession

state is less useful than in the boom state. We verify this intuition in numerical simulations.

It is important to emphasize that macroprudential policy in the boom state does not lower asset

prices due to the monetary policy response. Specifically, recall that the policy increases optimists’

as-if pessimism in the boom state, λo,pl1 . While this does not affect the asset price in the boom

state, qpl1 (α) = q∗, it reduces the interest rate for a given level of optimists’wealth share, rf1 (α)

(see Eq. (40)). As macroprudential policy reduces the demand for risky assets, monetary policy

lowers the interest rate to dampen its effect on asset prices and aggregate demand.

Our analysis in this section provides support for procyclical macroprudential policy. In states

where output is not demand constrained (in our model, the boom state s = 1), macroprudential

policy that restricts high-valuation investors’risk taking is desirable. This policy improves welfare

by ensuring that high-valuation investors bring more wealth to the demand-constrained states,

which increases asset prices and output. In states where output is demand constrained (in our

model, the recession state s = 2), macroprudential policy is less useful because it has an immediate

negative impact on asset prices and aggregate demand.

VII. Empirical evidence

Our empirical analysis focuses on three predictions. First, our model predicts that risk premium

shocks generate an interest rate reduction when the interest rate is not constrained, and a more

severe demand recession when the interest rate is constrained. Second, the recession reduces firms’

earnings and leads to a further reduction in asset prices. Third, the recession is more severe when

the shock takes place in an environment with more speculation. To investigate these predictions, we

compare the response to house price shocks in Eurozone countries (which have constrained interest

rates with respect to national shocks) to the response in non-Eurozone developed countries (which

have less constrained interest rates). At the end of the section, we discuss empirical evidence from

the recent literature which suggests that similar results apply for price shocks to other asset classes,

such as stocks, and for other interest rate constraints, such as the zero lower bound.

While our model relies on the zero lower bound constraint, the mechanisms are more general,

and we find it more convenient to work with the currency-union constraint in our empirical analysis.
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The zero lower bound has only recently become a practical constraint, limiting data availability,

and it calls for an asymmetric specification that requires separate responses to positive and negative

price shocks (since the monetary policy can raise the interest rate in response to positive shocks).

In contrast, individual Eurozone countries have had constrained interest rates (with respect to

national shocks) for much longer, and the constraint has been symmetric.

A major challenge in this exercise is identifying the risk premium shock that drives asset prices.

As we clarify in Section II, the exact source of the shock is not important for our mechanisms (e.g.,

risk, risk aversion, and beliefs have similar effects). Therefore, our strategy is to control for factors

that do not act as a risk premium shock according to our model. In particular, we control for

supply shocks and demand shocks that are not specific to house prices– including monetary policy

shocks– and we interpret the residual change in house prices as a plausibly exogenous risk premium

shock. Specifically, our risk premium shock is a surprise change in house prices in a country after

controlling for contemporaneous and recent changes in output and the policy interest rate.16

Our model has a single type of capital, which can be interpreted as a value-weighted average of

housing, stocks, and other assets in positive net supply. We focus on house prices for two reasons.

First, housing wealth is large and its size (relative to output) is comparable between Eurozone

and non-Eurozone developed countries (see Table F.3 in Online Appendix Section F). In contrast,

stock markets in Eurozone countries are typically much smaller than in non-Eurozone developed

countries, which makes stocks less suitable for our empirical strategy (see Table F.4 in the online

appendix). Second, house prices are less volatile and seem to react to monetary policy shocks

with some delay (see Figure F.6 in the online appendix). This feature enables us to control for

monetary policy shocks by including contemporaneous and past realization of policy interest rates.

We also interpret the future changes in interest rates as the monetary policy response to the risk

premium shock, which enables us to test a key prediction of our model. This strategy works less

well for stocks, because stock prices react to monetary policy shocks quickly, which might create a

correlation between stock prices and interest rates with the opposite sign (since stock price declines

driven by monetary policy shocks are typically followed by interest rate hikes– the opposite of risk

premium shocks).17

Data sources. We assemble a quarterly cross-country panel data set of financial and economic

variables for advanced economies. We obtain data on house price indices from the quarterly dataset

16While our controls are imperfect, we also report the differential effects of these shocks in Eurozone countries
compared to their effects outside the Eurozone, which provides additional robustness. For example, our model
illustrates that permanent supply shocks (e.g., an increase in A) shift asset prices and output regardless of whether
the interest rate is constrained (see Sections III and IV). This suggests that common omitted supply shocks would
lead to a similar bias inside and outside the Eurozone, and this bias is mitigated by focusing on the differential
responses.
17Formally, we assume house prices react to monetary policy shocks with a delay of at least one quarter. Figure F.6

in the appendix plots impulse responses to shocks to the policy interest rate and provides support for this assumption.
Specifically, a surprise increase in the policy interest rate is followed by a decline in house prices, but the response
starts after the first quarter and takes several quarters to complete. The same figure shows that the assumption is
clearly violated for stock prices. A surprise increase in the policy interest rate also reduces stock prices, but all of the
response takes place in the same quarter as the shock.
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described in Mack et al. (2011). We obtain data on macroeconomic activity such as GDP, invest-

ment, and consumption from the OECD. We also obtain financial market data such as the policy

interest rate, stock price indices, and earnings (of publicly traded firms) from Global Financial Data

(GFD) and the Bank for International Settlements (BIS). Online Appendix Section F describes the

data sources and variable construction.

Sample selection. Our sample covers 20 advanced economies from the first quarter of 1990 until

the last quarter of 2017. Our selection of countries is driven by the availability of consistent house

price data. We start the sample in 1990 because monetary policy in most advanced economies had

shifted from focusing on stabilizing inflation to stabilizing output by this time, as in our model.

Our results are robust to alternative sample selections.18

To capture interest rate constraints, we divide the data into two categories. The first category,

which we refer to as the Euro/ERM sample, consists of country-quarters in which the country

was a member of the Euro area or the European Exchange Rate Mechanism (ERM) for most of

the calendar year. The ERM system, which preceded the Euro, required member countries to

keep their exchange rates within a narrow band of a central currency. This system constrained

countries’relative policy interest rates (albeit imperfectly) and most member countries eventually

adopted the Euro. The countries in the Euro area share the same policy interest rate (determined

by the European Central Bank). The second category, which we refer to as the non-Euro/ERM

sample, consists of the remaining country-quarters. Table F.1 in the online appendix describes the

Euro/ERM status by country and year.

Empirical specification. To describe how the economy behaves after house price shocks, we

follow the local projection method developed by Jordà (2005). In particular, we regress several

outcome variables at various horizons after time t on (residual) house price changes at time t.

Specifically, we estimate equations of the type

(58) Y h
j,t+h − Y h

j,t−1 = αhj + γht + βp,h (−∆ logPj,t) + βc,hcontrolsj,t + εhj,t,

where j denotes the country, t denotes the quarter, h denotes the horizon, Y denotes an outcome

variable, P denotes the (real) house price index, and ∆ logPj,t = logPj,t − logPj,t−1 denotes

its quarterly log change. We include time and country fixed effects, so our “house price shock”

is a decline in house prices in a quarter, after accounting for the average price decline in the

sample countries and various other controls within the country. Our control variables include the

contemporaneous value and 12 lags of the first difference of log GDP– to control for supply shocks

and demand shocks that are not specific to house prices. Likewise, we include the contemporaneous

value and 12 lags of the policy interest rate– to control for monetary policy shocks. We also include

12 lags of the first difference of log house prices– to capture the momentum in house prices– and

18Figures F.4 and F.5 in the online appendix show that starting the sample in 1980 leaves our results (except for
the effect on inflation) qualitatively unchanged.
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12 lags of the first difference of the outcome variable– to control for other dynamics that might

influence the outcomes. We weight each regression by countries’relative GDP, and estimate (58)

for horizons 0 to 12.

To evaluate the responses within and outside the Eurozone, we include indicator variables for

Euro/ERM and non-Euro/ERM status, and we interact all right-hand-side variables (including the

fixed effects) with these indicators. We let βp,heuro and β
p,h
non denote the coeffi cient on the interaction

of the price shock with the corresponding indicator. Our specification is equivalent to running

the regressions separately within the Euro/ERM and non-Euro/ERM samples.19 We report the

sequence of coeffi cients,
{
βp,heuro

}12

h=0
and

{
βp,hnon

}12

h=0
, which provide an estimate of the impulse

response functions for the respective samples. We also report 95% confidence intervals calculated

according to Newey and West (1987) standard errors with a bandwidth of 20 quarters.

We look at outcome variables for which our model makes a clear prediction, such as the policy

interest rate, the unemployment rate (a proxy for factor underutilization), and the logs of GDP,

investment, and consumption. We also include the log (core) CPI. Even though it is constant in our

model (by assumption), variants of our model predict that it should decline in a demand recession.

We analyze public firms’earnings and log stock prices to investigate spillover and amplification

effects, as well as log house prices to investigate the price dynamics following the initial shock.

All relevant variables except for the policy interest rate are adjusted for inflation to focus on real

effects, as in our model. For earnings, we use the ratio of earnings to the initial stock price level as

our dependent variable (which generates meaningful units).20

Table F.2 in the online appendix describes the summary statistics by Euro/ERM status for the

variables that enter our regression analysis. The Euro/ERM sample has 760 country-quarters and

the non-Euro/ERM sample has 1130 country-quarters.21 Both samples are unbalanced because a

few countries have imperfect data coverage in earlier years (and because a few countries transi-

tion between samples). The two samples are comparable except that the non-Euro/ERM sample

experienced slightly faster growth over the sample period.

House price shocks and demand recessions. Figure VIII plots the estimated sequences of

coeffi cients by Euro/ERM status (see Figure F.1 in the online appendix for the differenced coeffi -

cients). The panels in the top two rows illustrate our main empirical findings. The top left panel

shows that, in the non-Euro/ERM sample (dashed blue line), a decline in house prices is followed

19The point estimates from our regression are identical to those obtained from running separate regressions within
each sample. However, because our standard errors account for autocorrelation of the residuals, the joint regression
will have slightly different standard errors (for example, the joint regression will account for the fact that residuals
are correlated from before and after a country joined the ERM). The joint regression is preferable because it uses
more data and thus gives more precise standard errors.
20Earnings sometimes take a negative value, which makes a log transformation problematic. Instead, we change the

specification in (58) slightly so that the dependent variable is
earn ingst+h−earn ingst−1

sto ck pricet−1
. Likewise, we adjust the control

variables that feature earnings by dividing them by the stock price at quarter t− 1.
21These are the sample sizes for our baseline regression in which the outcome variable is the policy interest rate and

the horizon is 0 (see (58)). For some regressions, the sample size is slightly smaller, because we estimate outcomes
at future horizons (which removes some data from the end of the sample period) and because some variables do not
have complete coverage.
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by a sizeable and persistent decline in the policy interest rate. By contrast, in the Euro/ERM

sample (solid red line), a decline in house prices does not lead to an additional decline in the coun-

try’s interest rate relative to other Euro/ERM countries, illustrating the interest rate constraint.22

The remaining panels in the top two rows illustrate that the shock is followed by a more severe

demand recession in a Euro/ERM country than in a non-Euro/ERM country. In fact, the panels

on GDP, investment, and consumption suggest that the shock initially leads to similar effects in

both samples but is followed by milder outcomes in the non-Euro/ERM sample.

These results are consistent with our prediction that risk premium shocks lead to a more severe

demand recession when the interest rate is constrained. From the lens of our model, the interest

rate policy mitigates a demand recession driven by a local risk premium shock outside the Eurozone

but not within the Eurozone.23

Spillover effects and amplification. The panels at the bottom row of Figure VIII illustrate the

effect of the house price shock on asset markets. The panels on earnings and stock prices establish

that there are spillover effects on the stock market: specifically, earnings and stock prices decline

more in the Euro/ERM sample than in the other sample (although the estimates are imprecise due

to the high volatility of earnings and prices). The remaining panel illustrates that, after the initial

shock, house prices decline more persistently and by a larger amount in the Euro/ERM sample.

These results are consistent with our prediction that the demand recession reduces firms’earn-

ings and leads to a further decline in asset prices. From the lens of the model, stock prices (resp.

house prices) decline less in the non-Euro/ERM sample due to the interest rate response, which not

only increases the price to earnings ratio (resp. price to rent ratio) but also mitigates the recession

and supports earnings (resp. rents).24

Speculation and further amplification. We need a proxy for speculation to test the final

prediction of our model. We choose a measure of bank credit, which is a major catalyst of specula-

22For the Euro era, the Euro/ERM-wide policy interest rate response is common to all countries and is captured by
our time-fixed effects. During the ERM era, there were severe cross-country monetary policy constraints. Figure F.3
in the online appendix illustrates the results from the same regression without time-fixed effects. The figure shows
that a negative house price shock in the Euro/ERM sample leads to a decline in the Euro/ERM-wide policy interest
rate, but the magnitude of this decline is smaller than in the other sample. This is because house price shocks have
a national (or idiosyncratic) component, and the Euro/ERM-wide policy interest rate arguably responds only to the
Euro/ERM-wide (or systematic) component of these shocks.
23 In our model, risk premium shocks generate a less severe recession in unconstrained countries because the interest

rate policy response leads to a smaller decline in asset prices. This suggests that asset price changes might provide
an inaccurate measure of the underlying shock. We believe our analysis is robust to this concern for three reasons.
First, to the extent that this concern is relevant, it biases the empirical analysis against finding support for our
mechanisms because it implies that an equivalent magnitude of asset price decline corresponds to a larger underlying
shock if the country has an unconstrained interest rate. Second, the concern is less relevant in practice than in our
model because the interest rate policy affects all assets, which implies that risk-driven price declines in one asset class
(such as housing) are partially absorbed by price increases in other asset classes. Third, the concern is less relevant
for house prices because they seem to react to interest rate changes with some delay (see Figure F.6 in the online
appendix). In fact, the panel of Figure VIII on house prices suggests that the interest rate response only partially
stabilizes risk-driven house price changes, and only with some delay.
24We cannot test the predictions on rents because we do not have reliable data.
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Figure VIII: Impulse responses to one percent decrease in real house prices. The panels illustrate
the results from the regression specification in (58) with the addition of the indicator variables for Euro/ERM
and non-Euro/ERM status as well as the interaction of all right-hand-side variables with these indicators.
The solid red (resp. dashed blue) lines plot the coeffi cients corresponding to the the negative log house price
variable when the Euro/ERM status is equal to 1 (resp. 0). For the units, “percent”corresponds to 0.01 log
units (i.e., it is approximate) and “pp”corresponds to percentage points. All regressions include time and
country fixed effects; contemporaneous value and 12 lags of the first difference of log GDP; contemporaneous
value and 12 lags of the policy interest rate; 12 lags of the first difference of log house prices; 12 lags of the
first difference of the outcome variable. The dotted lines show 95% confidence intervals calculated according
to Newey-West standard errors with a bandwidth of 20 quarters. All regressions are weighted by countries’
PPP-adjusted GDP in 1990. Data is an unbalanced quarterly panel that spans 1990Q1—2017Q4. All variables
except for those in the top panel are adjusted for inflation. Earnings are normalized by the stock price in
the quarter before the shock (see Footnote 20). We describe our sources and variable definitions in Online
Appendix Section F.
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tion in housing markets. First, banks can be thought of as high-valuation investors (“optimists”)

because they have a greater capacity to handle risk than non-institutional investors, and they have

real estate exposures through mortgage loans. Under this interpretation, bank credit provides a

measure of banks’ exposure to the housing market. Second, banks lend to other high-valuation

investors in the housing markets, such as optimistic homebuyers that use bank credit to purchase

larger homes or second homes. When bank credit is easily available, perhaps because of banks’

optimism about house prices, these high-valuation investors wield a greater influence in the hous-

ing market (see Simsek (2013a) for a formalization). Thus, bank credit provides a broad proxy for

speculation in the housing market.

Our specific measure of bank credit comes from Baron and Xiong (2017), who construct a

variable, “credit expansion”, defined as the change in the bank credit-to-GDP ratio in the last three

years. They standardize this variable by its mean and standard deviation within each country so

that the measure is high when bank credit expansion in a country has been high in recent years

relative to its historical trends. They show that their standardized measure predicts the likelihood

of a large decline in bank equity prices, and despite the elevated risk it also predicts lower average

returns on bank equity. Their preferred interpretation is that bank equity investors are excessively

optimistic or neglect crash risk, which in our framework would translate into greater speculation

(by banks or their borrowers).

We use BIS data on bank credit to households and nonfinancial firms to construct a close

analogue of Baron and Xiong’s standardized credit expansion variable (see Online Appendix Section

F for details). We then run the same regressions as in (58), but we include the interaction of the

price shock with standardized credit expansion. That is, we estimate

(59)

Y h
j,t+h − Y h

j,t−1 = αhj + γht +

 βp,h (−∆ logPj,t)

+βpc,h (−∆ logPj,t)× credit expansion-std

+ βc,hcontrolsj,t + εj,t.

In addition to the earlier controls, we include 12 lags of standardized credit expansion to capture its

direct impact. As before, we interact all right-hand-side variables with the Euro/ERM and the non-

Euro/ERM status indicators. We let βpc,heuro and β
pc,h
non denote the coeffi cient on the interaction of the

shock and credit with these indicators. The sequence of coeffi cients,
{
βpc,heuro

}12

h=0
and

{
βpc,hnon

}12

h=0
,

provide an estimate of the additional effect of the shock when credit expansion has been one

standard deviation above average (relative to its baseline effect with average credit).

Figure IX plots these sequences and illustrates our findings (see Figure F.2 in the online appendix

for the differenced coeffi cients). The panels in the first two rows show that, in the Euro/ERM

sample, house price shocks lead to a greater decline in economic activity when credit expansion

has been high in recent years. In contrast, credit expansion does not change the effect of the house

price shock in the non-Euro/ERM sample. These results support our prediction that risk premium

shocks lead to a more severe demand recession (in constrained economies) when they take place in

an environment with elevated speculation.
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On the other hand, the bottom row of Figure IX presents inconclusive results that neither

support nor refute our predictions. We do not find meaningful differences for the additional effect

of house price shocks on earnings or house prices when credit expansion has been high (in either

sample). We do find a negative effect on stock prices for the Euro/ERM sample, but the effect is not

statistically significantly different from the other sample. That said, since standard errors are large,

we cannot rule out sizeable effects either. While we tentatively conclude that speculation proxied by

credit expansion is associated with deeper risk-centric demand recessions, further empirical research

should verify the robustness of this conclusion and the precise channels through which speculation

affects the recession.

Other supporting evidence. Our empirical analysis is related to Mian and Sufi (2014, 2018),

who use regional data within the U.S. to provide evidence for the central role played by the house

price cycle and housing speculation in the Great Recession.

Mian and Sufi (2014) argue that house price declines explain much of the job losses between

2007 and 2009. Our results for the Euro/ERM sample suggest that similar results hold in cross-

country data, while the non-Euro/ERM sample suggests that monetary policy can mitigate the

adverse effects of house price shocks. Moreover, while Mian and Sufi (2014) emphasize household

deleveraging as the key channel by which house price declines cause damage, some of our empir-

ical results (e.g., the investment response) suggest there are other mechanisms as well. As our

model demonstrates, house price declines could lower aggregate demand even without household

deleveraging or other financial frictions– although these additional ingredients would amplify the

effects.

Mian and Sufi (2018) argue that housing speculation amplified the house price cycle and led to

a more severe downturn. As in our empirical exercise, they emphasize bank credit expansion as a

major catalyst of speculation. They find that the U.S. areas more exposed to credit expansion in

the early 2000s featured greater speculative trading activity (measured from detailed transaction

data) and greater belief disagreements (measured from survey data). They argue that the same

areas experienced a larger housing boom but also a much greater bust, so they ended the housing

cycle with lower house prices and economic activity. Our empirical results on speculation (although

less detailed) suggest similar results hold in cross-country data. Our model illustrates how greater

speculation during the boom naturally leads to lower prices and economic activity once the economy

transitions to recession.

In recent work, Pflueger et al. (2018) present evidence that suggests risk premium shocks in

the stock market also affect aggregate demand and interest rates. Specifically, they construct a

measure of risk appetite for the U.S. as the price of high (idiosyncratic) volatility stocks relative

to low volatility stocks. They show that a decrease in their measure of risk appetite is followed

by a slowdown in economic activity and a decline in the risk-free rate– similar to our results for

the non-Euro/ERM sample. Pflueger et al. (2018) argue that their risk appetite measure explains

almost half of the variation of the one year risk-free rate in the U.S. since 1970. This suggests that
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Figure IX: Additional impulse responses to one percent decrease in real house prices when
credit expansion has been one standard deviation above average. The panels illustrate the results
from the regression specification in (59) with the addition of the indicator variables for Euro/ERM and
non-Euro/ERM status as well as the interaction of all right-hand-side variables with these indicators. The
solid red (resp. dashed blue) lines plot the coeffi cients corresponding to the interaction of the negative log
house price and the standardized credit expansion variables when the Euro/ERM status is equal to 1 (resp.
0). For the units, “percent” corresponds to 0.01 log units (i.e., it is approximate) and “pp” corresponds
to percentage points. All regressions include time and country fixed effects; contemporaneous value and 12
lags of the first difference of log GDP; contemporaneous value and 12 lags of the policy interest rate; 12
lags of the first difference of log house prices; 12 lags of the first difference of the outcome variable; and 12
lags of standardized credit expansion. The dotted lines show 95% confidence intervals calculated according
to Newey-West standard errors with a bandwidth of 20 quarters. All regressions are weighted by countries’
PPP-adjusted GDP in 1990. Data is an unbalanced quarterly panel that spans 1990Q1—2017Q4. All variables
except for those in the top panel are adjusted for inflation. Earnings are normalized by the stock price in
the quarter before the shock (see Footnote 20). We describe our sources and variable definitions in Online
Appendix Section F.

48



the time varying risk premium is an important driver of the risk-free rate in practice. Chodorow-

Reich et al. (2019) provide further support for the link between the stock market and aggregate

demand. Using regional data within the U.S., they find that a decline in local stock wealth (driven

by aggregate stock prices) decreases local payroll and employment. They also find stronger effects in

nontradable industries but no effects for tradable industries, consistent with a consumption wealth

effect as in our model.

Focusing on a value-weighted average of house and stock prices, Jordà et al. (2019) argue that

low frequency fluctuations in the risk premium in developed economies have been associated with a

collapse of safe asset returns (as opposed to a spike in risky asset returns). In particular, when the

risk premium rises, the risk-free rate tends to fall and the value-weighted average risky asset returns

remain relatively stable, as in our model. Looking at more recent years, Del Negro et al. (2017)

provide a comprehensive empirical evaluation of the different mechanisms that have put downward

pressure on interest rates and show that risk and liquidity considerations played a central role (see

also Caballero et al. (2017a)).

Finally, our mechanisms are supported by a literature that investigates the macroeconomic

impact of “uncertainty shocks.”Using vector autoregressions (VARs), Bloom (2009) shows that an

increase in the volatility index in the U.S. is followed by a slowdown in economic activity. Moreover,

although his model does not emphasize monetary policy, his empirical analysis shows that the shock

is followed by a decline in the federal funds rate. This response suggests the effects could be more

severe if the interest rate were constrained. Recent empirical work verifies this intuition and shows

that uncertainty shocks in the U.S. are associated with a greater decline in economic activity when

the federal funds rate is close to zero, arguably because of the zero lower bound constraint on the

interest rate (see, for instance, Caggiano et al. (2017); Plante et al. (2018)).

VIII. Final remarks

We develop a risk-centric macroeconomic model to focus on the role of the aggregate demand

channel in causing recessions driven by risky asset price fluctuations, and to study the effect of

financial speculation on the severity of these recessions. Our analysis reformulates the standard

New Keynesian model in terms of a risk-centric decomposition that puts asset prices at the center

of the analysis. When the interest rate is constrained, a rise in the risk premium lowers asset

prices and triggers a demand recession, which further drives down asset prices. The feedbacks are

especially powerful when investors are pessimistic and think the higher risk premium will persist.

Hence, average beliefs play a central role in the recession phase not only because they affect asset

valuations but also because they determine the strength of the amplification mechanism. In the ex-

ante boom phase, belief disagreements (and more broadly, heterogeneous valuations) matter because

they induce investors to speculate. This speculation exacerbates the recession because it depletes

high-valuation investors’wealth when the risk premium rises, which leads to a greater decline in

asset prices and economic activity. Macroprudential policy in the boom improves outcomes by
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restricting speculation and preserving high-valuation investors’wealth during the recession. This

policy intervention leads to a Pareto improvement because it internalizes the aggregate demand

externalities that result from speculation.

Our analysis supports “the Fed put”: the tendency of central banks to cut interest rates in

response to asset price declines driven by risk premium shocks. In our model, as long as the central

bank can cut interest rates without constraints, the economy remains in the first best. The lower

bound constraint on the interest rate can be thought of as the inability to provide a put beyond

a certain point. Moreover, our amplification mechanism implies that even small constraints on

the interest rate can generate large recessions (see Figure IV for an illustration). This highlights

that “the Fed put”is important not only because of its direct effect on aggregate demand but also

because it stabilizes expected future outcomes and prevents a large decline in current asset prices.

In addition, our approach highlights that the interest rate policy affects aggregate demand

through its impact on financial markets and asset prices. From this perspective, our analysis

supports unconventional monetary policies– such as central bank asset purchases– that attempt

to stimulate aggregate demand through their impact on asset prices. More broadly, any policy that

reduces perceived market volatility and prevents sudden asset price drops should have a similar

effect, providing support for various policies implemented after the subprime and European crises.

In our model, we use a lower bound constraint as the interest rate friction, but our mechanisms

apply if the interest rate is constrained for other reasons. When the interest rate has both an upper

bound and a lower bound (such as in a currency union or fixed exchange rate regime), our results

often become stronger. In this setting, speculation causes damage not only by lowering asset prices

during the recession but also by raising asset prices during the boom, when aggregate demand

is stretched above its natural level, which exacerbates the ineffi ciency. Moreover, in this case

macroprudential policy during the boom is beneficial not only because it preserves high-valuation

investors’wealth for a future recession but also because it immediately contains the excessive rise

in asset prices.

Our results with belief disagreements do not depend on whether optimists or pessimists are

right about the transition probabilities. In fact, since the equilibrium is a function of investors’

subjective beliefs, the objective belief does not enter the equilibrium characterization.25 Moreover,

the objective belief is largely irrelevant for our policy analysis because we mainly focus on the

Pareto criterion and evaluate investors’welfare under their subjective beliefs. For example, we could

think of optimists as rational agents and pessimists as Knightian agents (see, e.g., Caballero and

Krishnamurthy (2008); Caballero and Simsek (2013)). Absent any direct mechanism for alleviating

Knightian behavior during severe recessions, the key point that reducing optimists’ risk taking

25The objective belief matters if one is interested in understanding the evolution of investors’wealth shares along
the objective path (that would be realized in practice). The market selection hypothesis, formulated by Friedman
(1953), posits that investors with incorrect beliefs should be driven out of the market as they consistently lose money.
Our model features a version of this hypothesis in the long run (see Footnote 11). However, recent research has
identified many reasons why this hypothesis is unlikely to apply in practice (see, e.g., Cao (2017); Borovička (2020)).
We view our model as capturing the short run given belief disagreements (or more broadly, heterogeneous valuations)
that result from various unmodeled factors.
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during the boom leads to Pareto improvements survives this alternative motivation. More generally,

our results are driven by persistent heterogeneous valuations, so similar results would also apply

if investors share the same beliefs but value risky assets heterogeneously for other reasons such as

differences in risk tolerance (see Remark 7).

Our model illustrates that wealth distribution matters for aggregate demand, not only because of

financial frictions or heterogeneous MPCs as emphasized in the previous macroeconomics literature

but also because of heterogeneous asset valuations. In the recession, a greater wealth share for high-

valuation investors improves asset prices and raises everyone’s spending. From this perspective,

our analysis supports not only ex-ante macroprudential policy but also a variety of ex-post policies

that transfer wealth to high-valuation investors in recessions. In recent work, Kekre and Lenel

(2019) show that heterogeneous asset valuations (which they refer to as a heterogeneous marginal

propensity to take risk) also strengthen the transmission of monetary policy.

As we noted in the introduction, we removed all financial frictions in order to isolate the aggre-

gate demand mechanism and its interactions with speculation. However, if we were to introduce

these realistic frictions in our setting, many of the themes in that literature would reemerge and

be exacerbated by aggregate demand feedbacks. For example, asset price declines would not only

depress aggregate demand directly, but also indirectly by tightening collateral constraints. This

mechanism would amplify the feedback loops between asset prices and aggregate demand. While

our analysis shares many similarities with the financial frictions literature, we have a different fo-

cus. Financial frictions highlight the importance of constrained firms or commercial banks that

lend to such firms, whereas our heterogeneous valuations approach highlights the importance of in-

stitutional investors or financial intermediaries that lend to such investors, e.g., hedge funds, active

mutual funds, investment banks, broker-dealers, and so on. Consistent with our main mechanism,

a growing empirical literature suggests that financial intermediaries’balance sheets have a large

impact on asset prices (see, e.g., Adrian et al. (2014); He et al. (2017)).

Related, we assumed complete markets so investors speculate only via contingent Arrow-Debreu

securities. When these securities are not available, investors engage in proxy-speculation with

leverage. In Caballero and Simsek (2019), we analyze this modified environment and show that our

main results still hold: that is, contingent securities do not play an important role beyond providing

analytical tractability. However, speculation via leverage breaks the separability property that we

derive in Section III.B : asset prices and the interest rate become relevant for the dynamics of

investors’wealth shares. Once the separability property breaks down, monetary policy can be an

effective prudential tool. In particular, raising interest rates during the low risk-premium state can

reduce speculation. We explore the role of prudential monetary policy in Caballero and Simsek

(2019).

While this is mostly an applied theory paper, we surveyed some of the extensive empirical evi-

dence supporting our analysis, and provided our own evidence by contrasting the local response to

risk premium shocks– captured by surprise house price changes– in constrained Euro/ERM coun-

tries with the local response in less constrained non-Euro/ERM countries. Our evidence suggests

51



that risk premium shocks lead to more severe recessions when the interest rate is constrained, as in

our model. The evidence also supports our model’s prediction that recessions reduce firms’earnings

and lead to a further reduction in asset prices. When we proxy speculation with the size of the

bank credit expansion before the shock, we also find some evidence that high speculation increases

the severity of recessions driven by risk premium shocks.
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This online appendix contains supplementary material for A Risk-centric Model of Demand
Recessions and Speculation. Sections A-E contain the omitted derivations and proofs as well as the
extensions related to our theoretical analysis in Sections II-VI. Section F has information about
our data sources and details for our empirical analysis in Section VII.

A. Omitted derivations for the two period model

This section presents the derivations and proofs omitted from the main text for the two period model
that we analyze in Section II. We start by presenting the details of the baseline case analyzed in the
main text. We then analyze an extension in which the elasticity of substitution (EIS) is different
than one and show that our conclusions remain qualitatively unchanged. Finally, we analyze the
extension with belief disagreements discussed in the main text. Throughout, recall that the market
portfolio is the claim to all output at date 1. Combining Eqs. (1) and (2), the return on the market
portfolio is also log normally distributed, that is,

(A.1) rm (z1) = log

(
Q1

z1

)
∼ N

(
g − logQ− σ2

2
, σ2

)
.

A.1. Baseline two period model

For this case, most of the analysis is provided in the main text. Here, we formally state the investor’s
problem and derive the optimality conditions. The investor takes the returns as given and solves
the following problem,

max
c0,a0,ωm

log c0 + e−ρ logU1

where U1 =
(
E
[
c1 (z1)1−γ

])1/(1−γ)

s.t. c0 + a0 = y0 +Q

and c1 (z1) = a0

(
ωm exp (rm (z1)) + (1− ωm) exp

(
rf
))
.

Here, c1 (z1) denotes total financial wealth, which equals consumption (since the economy ends at
date 1). Note that the investor has Epstein-Zin preferences with EIS coeffi cient equal to one and
the RRA coeffi cient equal to γ > 0. The case with γ = 1 is equivalent to time-separable log utility
as in the dynamic model.
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In view of the Epstein-Zin functional form, the investor’s problem naturally splits into two steps.
Conditional on savings, a0, she solves a portfolio optimization problem, that is, U1 = RCEa0, where

RCE = max
ωm

(
E
[
(Rp (z1))1−γ

])1/(1−γ)
(A.2)

and Rp (z1) =
(
ωm exp (rm (z1)) + (1− ωm) exp

(
rf
))
.

Here, we used the observation that the portfolio problem is linearly homogeneous. The variable,
Rp (z1), denotes the realized portfolio return per dollar, and RCE denotes the optimal certainty-
equivalent portfolio return. In turn, the investor chooses asset holdings, a0, that solve the intertem-
poral problem,

(A.3) max
a0

log (y0 +Q− a0) + e−ρ log
(
RCEa0

)
.

The first order condition for this problem implies Eq. (4) in the main text. That is, regardless
of her certainty-equivalent portfolio return, the investor consumes and saves a constant fraction of
her lifetime wealth.

It remains to characterize the optimal portfolio weight, ωm, as well as the certainty-equivalent
return, RCE . Even though the return on the market portfolio is log-normally distributed (see
Eq. (A.1)), the portfolio return, Rp (z1), is in general not log-normally distributed (since it is
the sum of a log-normal variable and a constant). Following Campbell and Viceira (2002), we
assume the investor solves an approximate version of the portfolio problem (A.2) in which the
log portfolio return is also normally distributed. To state the problem, let πp ≡ logE [Rp] − rf
and (σp)2 ≡ var (logRp) to denote respectively the risk premium and the variance of the market
portfolio (measured in log returns). Then, the approximate portfolio return satisfies,

πp = ωmπk(A.4)

where πk ≡ log (E [exp (rm (z1))])− rf = E [rm (z1)]− rf +
σ2

2
.

Hence, the risk premium on the portfolio return depends linearly on the risk premium on the market
portfolio (measured in log returns). We also have,

(A.5) σp = ωmσ.

Thus, the volatility of the portfolio also depends linearly on the volatility of the market portfolio
(measured in log returns). These identities hold exactly in continuous time. In the two period
model, they hold approximately when the period time-length is small. Moreover, they become
exact for the level the risk premium that ensures equilibrium, ωm = 1, since in this case the
portfolio return is actually log-normally distributed.

Taking the log of the objective function in problem (A.2), and using the log-normality assump-
tion, the problem can be equivalently rewritten as,

(A.6) logRCE − rf = max
ωm

πp − 1

2
γ (σp)2 ,

where πp and σp are defined in Eqs. (A.4) and (A.5). It follows that, up to an approximation
(that becomes exact in equilibrium), the investor’s problem turns into standard mean-variance
optimization. Taking the first order condition, we obtain Eq. (6) in the main text. Substituting
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ωm = 1 and E [rm (z1)] = g − logQ− σ2

2 [cf. Eq. (A.1)] into this expression, we further obtain Eq.
(7) in the main text.

For future reference, we also obtain a closed-form solution for the certainty-equivalent return,
RCE . Substituting Eqs. (A.4) and (A.5) together with ωm = 1 into (A.6), and using E [rm (z1)] =

g − logQ− σ2

2 , we obtain:

(A.7) logRCE = g − logQ− 1

2
γσ2.

As expected, RCE increases with expected growth, g, and decreases with the volatility, σ, and the
risk aversion, γ.

A.2. More general EIS

Now consider the same model with the difference that we allow the EIS, denoted by ε, to be different
than one. We first characterize the equilibrium. We then describe how a risk premium shock affects
the equilibrium and show that our conclusions from the main text remain qualitatively unchanged.

Equilibrium with more general EIS. In this case, the representative investor solves the fol-
lowing problem,

max
c0,a0,ωm,{c1(z1)}

U0 =
c

1−1/ε
0 − 1

1− 1/ε
+ e−ρ

U
1−1/ε
1 − 1

1− 1/ε

where U1 =
(
E
[
c1 (z1)1−γ

])1/(1−γ)

s.t. c0 + a0 = y0 +Q

and c1 (z1) = a0

(
ωm exp (rm (z1)) + (1− ωm) exp

(
rf
))
.

The case with ε = 1 is equivalent to the earlier problem.
Most of the analysis remains unchanged. As before, the investor’s problem splits into two parts.

The portfolio problem (A.2) as well as its solution remains unchanged. In particular, Eqs. (6) and
(7) from the main text apply. Moreover, the certainty equivalent return, RCE , is still given by Eq.
(A.7).

The main difference concerns the intertemporal problem (A.3), which is now given by,

max
a0

(y0 +Q− a0)1−1/ε + e−ρ
(
RCEa0

)1−1/ε
.

Taking the first order condition for the intertemporal problem and rearranging terms, we obtain
the consumption function,

c0 =
1

1 + e−ρε (RCE)(ε−1)
(y0 +Q) .

Combining this expression with the aggregate resource constraint, y0 = c0, we obtain the following
analogue of the output-asset price relation [cf. Eq. (5)],

(A.8) y0 = eρε
(
RCE

)1−ε
Q.

The expression shows that consumption is not only influenced by a wealth effect, as in the baseline
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analysis, but also by substitution and income effects. When ε > 1, the substitution effect dominates
the income effect. All else equal, a decline in the attractiveness of investment opportunities captured
by a reduction in RCE tends to reduce savings and increase consumption, which in turn increases
output. Conversely, when ε < 1, the income effect dominates the substitution effect. In this case,
a decline in RCE tends to increase savings and reduce consumption and output.

The equilibrium is found by jointly solving Eqs. (A.8) and (A.7) together with Eq. (7) and
the constrained policy interest rate. Collecting the equations together, the equilibrium tuple,(
y0, Q,R

CE , rf
)
, is the solution to the following system,

log y0 = ρε+ (1− ε) logRCE + logQ(A.9)

logRCE = g − logQ− 1

2
γσ2

σ =
1

γ

g − logQ− rf
σ

rf = max
(
rf∗, 0

)
where rf∗ ensures y0 = z0.

To characterize the solution further, consider the case in which the equilibrium is supply deter-
mined, y0 = z0 = 1. Substituting this into the first two equations, we solve for the first-best price
level of the market portfolio as,

(A.10) logQ∗ = −ρ+
(ε− 1)

ε

(
g − 1

2
γσ2

)
.

Substituting this into the last equation, we further obtain an expression for “rstar”,

rf∗ = ρ+ g − γσ2 − (ε− 1)

ε

(
g − 1

2
γσ2

)
(A.11)

= ρ+
g

ε
− 1

2
γ

(
1 +

1

ε

)
σ2.

Note that setting ε = 1 recovers Eq. (8) in the main text.
Now consider the case in which the interest rate is at its lower bound, rf = 0. Substituting this

into the equation system (A.9), we obtain,

logQ = g − γσ2(A.12)

and log y0 = ε

(
ρ+ logQ− (ε− 1)

ε

(
g − 1

2
γσ2

))
= ε

(
ρ+

g

ε
− 1

2
γ

(
1 +

1

ε

)
σ2

)
.

Note that setting ε = 1 recovers Eq. (9) in the main text.

Risk premium shocks with more general EIS. Now consider how a risk premium shock that
increases σ or γ (or lowers g) affects the equilibrium. Eq. (A.7) illustrates that this reduces RCE

for a given asset price level: as expected, an increase in the risk premium reduces the attractiveness
of investment opportunities. Combining this with the output-asset price relation in (A.8), we see
that the shock affects consumption and aggregate demand through two channels. As before, it
exerts a downward influence on asset prices, which reduces consumption through a wealth effect.
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Unlike before, the induced decline in RCE also affects consumption depending on the balance of
income and substitution effects. When ε > 1, the second channel works against the wealth effect
because investors substitute toward consumption. When ε < 1, the second channel reinforces the
wealth effect.

Eqs. (A.11) and (A.12) show that the net effect on aggregate demand is qualitatively the same
as in the baseline model regardless of the level of EIS. In particular, Eq. (A.11) illustrates that the
risk premium shock reduces rf∗.26 Eq. (A.12) illustrates that, when the interest rate is constrained,
rf = 0, the shock reduces the equilibrium level of output y0, as well as the asset price, Q. When
ε > 1, the substitution effect mitigates the magnitude of these declines but it does not overturn
them– that is, the wealth effect ultimately dominates. Since the purpose of our model is to obtain
qualitative insights, in the main text we assume ε = 1 and isolate the wealth effect.

Finally, consider also how the shock affects Q∗: the equilibrium asset price that obtains once
the interest rate declines suffi ciently to ensure output is equal to its supply determined level. In our
baseline model, Q∗ is constant. In general, Eq. (A.10) illustrates that Q∗ can decrease or increase
in response to the risk premium shock. When ε > 1, Q∗ declines, which means that rf∗ does
not need to fully accommodate the price impact of the risk premium shock. The reason is that
the substitution effect supports current consumption and reduces the burden on wealth to support
aggregate demand. The opposite happens when ε < 1, where the substitution effect is dominated
by the income effect. In this case Q∗ needs to rise to support aggregate demand, which is achieved
by a larger decline in rf∗ following the risk premium shock.

A.3. Belief disagreements and speculation

We next go back to the baseline setup with ε = 1 complete the analysis of the case with belief
disagreements discussed in the main text. Recall that there are two types of investors, optimists
and pessimists, denoted by superscript i ∈ {o, p}. With a slight abuse of notation, we also let
αo ≡ α and αp ≡ 1− α denote respectively optimists’and pessimists’wealth shares. Investors are
identical except possibly their beliefs about aggregate growth. Optimists perceive greater growth,
go > gp.

In this case, type i investors solve the following problem,

max
c0,a0,ωm,{c1(z1)}

log c0 + e−ρ logU1(A.13)

where U1 =
(
Ei
[
c1 (z1)1−γ

])1/(1−γ)

s.t. c0 + a0 = αi (y0 +Q)

and c1 (z1) = a0

(
ωm exp (rm (z1)) + (1− ωm) exp

(
rf
))
.

Note that we set the EIS equal to one as in the baseline setting. Note also that the asset market
clearing condition requires,

(A.14) ωm,oao0 + ωm,pap0 = Q,

26The effect of this risk premium shock on Q∗ is more subtle (see Eq. (A.10)). When ε > 1, Q∗ declines, which
means that rf∗ does not need to fully accommodate the risk premium shock. The reason is that the substitution
effect supports current consumption and reduces the burden on wealth to support aggregate demand. The opposite
happens when ε < 1, where the substitution effect is dominated by the income effect. In this case Q∗ needs to rise
to support aggregate demand, which is achieved by a larger decline in rf∗ following the risk premium shock.
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that is, the total amount of wealth invested in the market portfolio equals the value of the market
portfolio. The rest of the model is the same as in the baseline setting.

To characterize the equilibrium, note that the investor’s portfolio problem (A.2) remains un-
changed. Applying the log-normal approximation that we described previously, we obtain Eq. (6)
as in the main text, that is,

ωm,iσ ' 1

γ

Ei [rm (z1)] + σ2

2 − r
f

σ
.

Substituting Ei [rm (z1)] = gi − logQ− σ2

2 [cf. Eq. (A.1)] into this expression, we further obtain,

(A.15) ωm,iσ ' 1

γ

gi − logQ− rf
σ

.

As before, investors choose their share of the market portfolio so that their optimal portfolio risk
is proportional to the Sharpe ratio. The difference is that the Sharpe ratio is calculated according
to investors’own beliefs (and it is greater for optimists since go > gp).

The intertemporal problem (A.3) also remains unchanged. Taking the first order condition, we
obtain,

(A.16) ci0 =
1

1 + e−ρ
αi (y0 +Q)

Aggregating this equation across investors, and using the aggregate resource constraint (3), shows
that the output-asset price relation (5) continues to apply in this setting. Belief heterogeneity does
not affect this equation since investors share the same discount rate, ρ.

Next note that combining (A.14) , (A.16) and (5), the asset market clearing condition can be
rewritten as,

(A.17) αωm,o + (1− α)ωm,p = 1.

Investors’wealth-weighted average portfolio weight on the market portfolio is equal to one. Com-
bining this with Eq. (A.15), we obtain the following analogue of Eq. (7),

(A.18) σ ' 1

γ

αogo + αpgp − logQ− rf
σ

.

Hence, the risk balance condition continues to apply with the difference that the expected growth
rate is determined according to a weighted average belief. Another difference is that the condition
is typically not exact because investors’shares of the market portfolio typically deviate from one
(and thus, their return is typically not log-normal). Specifically, the equilibrium portfolio shares
satisfy, ωo > 1 > ωp: optimists’make a leveraged investment in the market portfolio by issuing
some risk-free debt, whereas pessimists invest only a fraction of their wealth in the market portfolio
(and invest the rest of their wealth in the risk-free asset issued by optimists).

Next consider the supply-determined equilibrium in which output is equal to its potential,
y0 = z0 = 1. By Eq. (5), this requires the asset price to be at a particular level, Q∗ = e−ρ.
Combining this with Eq. (A.18) we obtain Eq. (10) in the main text that characterizes “rstar.”
The level of “rstar”is increasing in optimists’wealth share, α. This is because increasing optimists’
wealth share tends to increase asset prices, aggregate demand, and output. In a supply-determined
equilibrium, the monetary policy increases the interest rate to neutralize the impact of optimists
on aggregate demand and output.
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Finally, consider the case in which the interest rate is at its lower bound, rf = 0. Substituting
this into the risk balance condition (A.18), and using the output-asset price relation (5), we obtain
Eq. (11) in the main text that characterizes the equilibrium level of output in a demand recession.
In this case, increasing optimists’wealth share translates into an actual increase in asset prices,
aggregate demand, and output, because the monetary policy cannot neutralize these effects due to
the constraint on the interest rate.
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B. Omitted derivations for the dynamic model

This section presents the details of the dynamic model that we present and analyze in Sections
III-V. Sections B.1-B.3 describe derivations and proofs omitted from the main text for the dynamic
model. Section B.4 describes how we parameterize the model. The subsequent section C presents
the details of the welfare analysis for the same model.

B.1. Omitted derivations in Section III

B.1.1 Portfolio problem and its recursive formulation

A type i investor’s portfolio problem (at some time t and state s) can be written as,

V i
t,s

(
ait,s
)

= max[
c̃t̃,s̃,ω̃

m
t̃,s̃
,ω̃s̃
′
t̃,s̃

]
t̃≥t,s̃

Eit,s

[∫ ∞
t

e−ρt̃ log c̃i
t̃,s̃
dt̃

]

s.t.


dait,s =

(
ait,s

(
rft,s + ω̃mt,s

(
rmt,s − r

f
t,s

)
− ω̃s̃′

t̃,s̃

)
− c̃t,s

)
dt+ ω̃mt,sa

i
t,sσ

m
t,sdZt absent transition,

ait,s′ = ait,s

(
1 + ω̃mt,s

Qt,s′−Qt,s
Qt,s

+ ω̃s
′
t,s

1

ps
′
t,s

)
if there is a transition to state s′ 6= s.

(B.1)

Here, Eit,s [·] denotes the expectations operator that corresponds to the investor’s beliefs for state
transition probabilities.

The HJB equation corresponding to this problem is given by,

ρV i
t,s

(
ait,s
)

= max
ω̃m,ω̃s

′
,c̃

log c̃+
∂V i

t,s

∂a

(
ait,s

(
rft,s + ω̃m

(
rmt,s − r

f
t,s

)
− ω̃s′

)
− c̃
)

(B.2)

+
1

2

∂2V i
t,s

∂a2

(
ω̃mait,sσ

m
t,s

)2
+
∂V i

t,s

(
ait,s
)

∂t

+ λis

(
V i
t,s′

(
ait,s

(
1 + ω̃m

Qt,s′ −Qt,s
Qt,s

+
ω̃s
′

ps
′
t,s

))
− V i

t,s

(
ait,s
))
.

In view of the log utility, the solution has the functional form in (48), which we reproduce here,

V i
t,s

(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vit,s.

This functional form also implies,

∂V i
t,s

∂a
=

1

ρait,s
and

∂2V i
t,s

∂a2
=

−1

ρ
(
ait,s
)2 .

The first order condition for c̃ then implies Eq. (23) in the main text. The first order condition for
ω̃m implies,

∂V i
t,s

∂a
ait,s

(
rmt,s − r

f
t,s

)
+ λis

∂V i
t,s′

(
ait,s′

)
∂a

ait,s
Qt,s′ −Qt,s

Qt,s
= −

∂2V i
t,s

∂a2
ωmt,s

(
ait,sσ

m
t,s

)2
.
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After substituting for
∂V it,s
∂a ,

∂V i
t,s′
∂a ,

∂2V it,s
∂a2

and rearranging terms, this also implies Eq. (31) in the
main text. Finally, the first order condition for ω̃s

′
implies,

ps
′
t,s

λis
=

∂V i
t,s′

(
ai
t,s′

)
∂a

∂V it,s(ait,s)
∂a

=
1/ait,s′

1/ait,s
,

which is Eq. (32) in the main text. This completes the characterization of the optimality conditions.

B.1.2 Partial characterization of equilibrium

Proof of Lemma 1. Provided in the main text.

Proof of Lemmas 2 and 3. We prove the two lemmas together since they follow from similar
steps. To characterize positions on the market portfolio, note that Eqs. (32) and (31) imply,

(B.3) ωm,it,s σ
m
t,s =

1

σmt,s

(
rmt,s − r

f
t,s + ps

′
t,s

Qt,s′ −Qt,s
Qt,s

)
.

This implies ωm,it,s = ωmt,s. Combining this observation with Eq. (16), we obtain ωm,it,s = 1. This
proves Eq. (28).

To characterize the positions on the contingent security, first consider how type i investors’
wealth share changes after a state transition. By definition, we have

ait,s = αit,sQt,skt,s.

After plugging this into Eq. (32), and using kt,s = kt,s′ (since capital does not jump), we obtain
Eq. (33):

αit,s′ = αit,sλ
i
s

1

κt,s
where κt,s = ps

′
t,s

Qt,s′

Qt,s
.

Aggregating this expression across all investors, and using
∑

i α
i
t,s′ = 1, we obtain κt,s = λt,s, where

λt,s denotes the wealth-weighted average belief defined in (27). Substituting this back into Eq. (33),
we obtain

αit,s′ =
αit,sλ

i
s

λt,s
.

This proves the second line of Eq. (30).
Combining κt,s = λt,s with the definition of κt,s in Eq. (33), we obtain an expression for the

price of the contingent security,

ps
′
t,s = λt,s

1/Qt,s′

1/Qt,s
.

This proves Eq. (35). Combining this with Eq. (B.3), and substituting ωm,it,s = 1, we obtain the
risk balance condition (34). This completes the proof of Lemma 3.

Next consider the positions type i investors take in the contingent security to achieve the change
in their wealth share after transition. The evolution of investors’wealth in Eq. (B.1) together with
ωm.it,s = 1 implies

αit,s′

αit,s
= 1 + ωs

′
t,s

Qt,s
Qt,s′

1

ps
′
t,s

.
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Combining this with Eq. (35), we obtain
αi
t,s′

αit,s
= 1 +

ωs
′,i
t,s

λt,s
. Combining this with the second line of

Eq. (30), we solve for type i investors’equilibrium position in the contingent security

ωs
′,i
t,s = λis − λt,s.

This proves Eq. (29).
Next consider how type i investors’wealth share changes absent a state transition. The evolution

of investors’wealth in Eq. (B.1) together with ωm.it,s = 1 implies

dait,s
ait,s

=

(
rmt,s − ω

s′,i
t,s −

cit,s
ait,s

)
dt+ σmt,sdZt.

Substituting for ct,s from Eq. (23) and rmt,s, σ
m
t,s from Eqs. (22), we further obtain

dait,s
ait,s

=
(
g + µQt,s + σsσ

Q
t,s − ω

s′,i
t,s

)
dt+

(
σs + σQt,s

)
dZt.

Note also we also have [cf. (14)]

d (Qt,skt,s)

Qt,skt,s
=
(
g + µQt,s + σsσ

Q
t,s

)
dt+

(
σs + σQt,s

)
dZt.

Recall that αit,s = ait,s/ (Qt,skt,s). Thus, using the last two displayed equations together with Ito’s
formula for ratio, we further obtain,

dαit,s
αit,s

= −ωs
′,i
t,s dt = −

(
λis − λt,s

)
dt.

Here, the last equality substitutes (29). This establishes the first line of Eq. (30).
It remains to prove the last part of Lemma 3. To this end, consider the same economy with

the only difference that there is a single investor type (the representative investor) whose beliefs
about transition probabilities are allowed to be possibly time-varying and stochastic. Consider a
history in which the investor’s beliefs agree with the wealth-weighted average belief, λt,s. Then,
the representative investor’s portfolio optimality conditions imply that Eqs. (32) and (31) hold
after replacing λis with λt,s. The market clearing conditions (16) imply ωm,it,s = 1 and ait,s = Qt,s.
Substituting these expressions into the portfolio optimality conditions, we obtain Eqs. (34− 35).
This shows that asset prices are determined as if there is a representative investor with the wealth-
weighted average belief and completes the proof of the lemmas.

B.1.3 New Keynesian microfoundation for nominal rigidities

The supply side of our model features nominal rigidities similar to the standard New Keynesian
setting. There is a continuum of measure one of monopolistically competitive production firms
denoted by ν. These firms own the capital stock (in equal proportion) and produce differentiated
goods, yt,s (ν), subject to the technology,

(B.4) yt,s (ν) = Aηt,s (ν) kt,s.
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Here, ηt,s (ν) ∈ [0, 1] denotes the firm’s choice of capital utilization. We assume utilization is free
up to ηt,s (ν) = 1 and infinitely costly afterwards. The production firms sell their output to a
competitive sector that produces the final output according to the CES technology,

(B.5) yt,s =

(∫ 1

0
yt,s (ν)

ε−1
ε dν

)ε/(ε−1)

,

for some ε > 1. Thus, the demand for the firms’goods implies,

(B.6) yt,s (ν) ≤ pt,s (ν)−ε yt,s, where pt,s (ν) = Pt,s (ν) /P .

Here, pt,s (ν) denotes the firm’s relative price, which depends on its nominal price, Pt,s (ν), as well

as the ideal nominal price index, Pt,s =
(∫

Pt,s (ν)1−ε dν
)1/(1−ε)

. We write the demand constraint

as an inequality because an individual firm can in principle refuse to meet the demand for its goods.
Without price rigidities, the firm chooses ηt,s (ν) ∈ [0, 1] , yt,s (ν) , pt,s (ν) to maximize its earn-

ings, pt,s (ν) yt,s (ν), subject to the supply constraint in (B.4) and the demand constraint, (B.6).
In this case, the demand constraint holds as equality (because otherwise the firm can always raise
its price to keep its production unchanged and raise its earnings). By combining the constraints,
the firm’s problem can be written as,

max
pt,s(ν),ηt,s(ν)

pt,s (ν)1−ε yt,s s.t. 0 ≤ ηt,s (ν) =
pt,s (ν)−ε yt,s

Akt,s
≤ 1.

Inspecting this problem reveals that the solution features full factor utilization, ηt,s (ν) = 1. This
is because, when ηt,s (ν) < 1, the marginal cost of production is zero. Thus, the firm can always
lower its price and increase its demand and production, which in turn increases its earnings. Hence,
at the optimum, the firms set ηt,s (ν) = 1 and yt,s (ν) = Akt,s. To produce at this level, they set

the relative price level, pt,s (ν) =
(
yt,s
Akt,s

)−1/ε
. Since all firms are identical, we also have pt,s (ν) = 1

and yt,s = yt,s (ν) = Akt,s. In particular, output is determined by aggregate supply at full factor
utilization.

Now consider the alternative setting in which firms have a preset nominal price that is equal
for all firms, Pt,s (ν) = P . This also implies the relative price of a firm is fixed and equal to
one, pt,s (ν) = 1. The firm chooses the remaining variables, ηt,s (ν) ∈ [0, 1] , yt,s (ν), to maximize
its earnings, yt,s (ν), subject to the supply constraint in (B.4) and the demand constraint, (B.6).
Combining the constraints and using pt,s (ν) = 1, the firm’s problem can be written as,

max
ηt,s(ν)

Aηt,s (ν) kt,s s.t. 0 ≤ ηt,s (ν) ≤ 1 and Aηt,s (ν) kt,s ≤ yt,s.

The solution is given by, ηt,s (ν) = min
(

1,
yt,s
Akt,s

)
. Intuitively, when ηt,s (ν) < 1 and Aηt,s (ν) kt,s <

yt,s, the marginal cost of production is zero and there is some unmet demand for firms’goods. The
firm optimally increases its production until the supply or the demand constraints bind. Combining
this observation with the production technology for the final output, we also obtain, yt,s ≤ Akt,s.
This implies that the demand constraint holds as equality also in this case. In particular, we have
ηt,s (ν) =

yt,s
Akt,s

≤ 1.
In sum, when the firms’nominal prices are fixed, aggregate output is determined by aggregate

demand subject to the capacity constraint, which verifies Eq. (18) in the dynamic model (and Eq.
(3) in the two period model).
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Note also that, in equilibrium, firms’equilibrium earnings are equal to aggregate output, yt,s.
Since firms own the capital (and there is no rental market for capital), the division of these earnings
between return to capital and monopoly profits is indeterminate. This division does not play an
important role in our baseline model but it matters when we introduce investment. In Online
Appendix Section D with endogenous investment (that we present subsequently), we use slightly
different microfoundations that ensure earnings accrue to firms in the form of return to capital, i.e.,
there are no monopoly profits, which helps to simplify the exposition.

B.2. Omitted derivations in Section IV

Proof of Proposition 1. Provided in the main text. The predictions regarding the effect of risk
premium shocks on consumption and output follow from combining the characterization with Eqs.
(24) and (21).

B.3. Omitted derivations in Section V

Proof of Proposition 2. Eq. (44) follows from Lemma 2. To establish the remaining results, we
use Lemma 3 that establishes the risk balance condition.

First consider the equilibrium for the high-risk-premium state, s = 2. Applying Eq. (34) for
s = 2 and substituting rft,2 = 0 and σQt,2 = 0, we obtain Eq. (47) that describes the risk balance
condition for the high-risk-premium state. Combining this expression with Eq. (44), we obtain the
differential equation system,

q̇t,2 = −
(
ρ+ g + λ2 (αt,2)

(
1− exp (q2)

Q∗

)
− σ2

2

)
,(B.7)

α̇t,2 = − (λo2 − λ
p
2)αt,2 (1− αt,2) .

This system describes the joint dynamics of the price and optimists’ wealth share, (qt,2, αt,2),
conditional on there not being a transition. We next analyze the solution to this system using
the phase diagram over the range α ∈ [0, 1] and q2 ∈ [qp2 , q

o
2]. Here, recall that qi2 corresponds to

the equilibrium log price with common beliefs characterized in Section IV corresponding to type i
investors’belief.

First note that the system has two steady states given by, (αt,2 = 0, qt,2 = qp2), and
(αt,2 = 1, qt,2 = qo2). Next note that the system satisfies the Lipschitz condition over the relevant
range. Thus, the vector flows that describe the law of motion do not cross. Next consider the locus,
q̇2 = 0. By comparing Eqs. (47) and (38), this locus is exactly the same as the price that would
obtain if investors shared the same wealth-weighted average belief, denoted by q2 = qh2 (α). Using
our analysis in Section IV, we also find that qh2 (α) is strictly increasing in α. Moreover, q2 < qh2 (α)
implies q̇t,2 < 0 whereas q2 > qh2 (α) implies q̇t,2 > 0. Finally, note that α̇t,2 < 0 for each α ∈ (0, 1).

Combining these observations, the phase diagram has the shape in Figure B.1. This in turn
implies that the system is saddle path stable. Given any αt,2 ∈ [0, 1), there exists a unique solution,
qt,2, which ensures that limt→∞ qt,2 = qp2 . We define the price function (the saddle path) as q2 (α).
Note that the price function satisfies q2 (α) < qh2 (α) for each α ∈ (0, 1), since the saddle path
cannot cross the locus, q̇t,2 = 0. Note also that q2 (1) = qo2, since the saddle path crosses the other
steady-state, (αt,2 = 1, qt,2 = qo2). Finally, recall that q2 < qh2 (α) implies q̇t,2 < 0. Combining this
with α̇t,2 < 0, we further obtain dq2(α)

dα > 0 for each α ∈ (0, 1).
Next note that, after substituting q̇t,2 = q′2 (α) α̇t,2, Eq. (B.7) implies the differential equation

(45) in α-domain. Thus, the above analysis shows there exists a solution to the differential equation
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Figure B.1: The phase diagram for the equilibrium with heterogeneous beliefs.

with q2 (0) = qp2 and q2 (1) = qo2. Moreover, the solution is strictly increasing in α, and it satisfies
q2 (α) < qh2 (α) for each α ∈ (0, 1). Note also that this solution is unique since the saddle path
is unique. This completes the characterization of the equilibrium for the high-risk-premium state
s = 2. The claims for ct,2/kt,2 and yt,2/kt,2 follow from Eqs. (24) and (21).

Finally consider the equilibrium in the low-risk-premium state, s = 1. In the conjectured
equilibrium, we have Qt,1 = Q∗, which also implies µQt,1 = σQt,1 = 0. Substituting these expressions
into Eq. (34) for s = 1, we obtain the risk balance condition for the low-risk-premium state,

σ1 =
1

σ1

(
g + ρ− rft,1 + λt,1

(
1− Q∗

Qt,2

))
.

Writing the equilibrium variables as a function of optimists’wealth share, we obtain rft,1 = rf1 (α)

and λt,1 = λ1 (α) and Qt,2 = exp (q2 (α′)), where α′ = αλo1/λ1 (α) denotes optimists’wealth share
after a transition [cf. Eq. (44)]. Substituting these expressions into the risk balance condition and
rearranging terms, we obtain Eq. (46) in the main text that, which we replicate here,

rf1 (α) = ρ+ g − λ1 (α)

(
Q∗

exp (q2 (α′))
− 1

)
− σ2

1.

Note also that dr
f
1 (α)
dα > 0 because λ1 (α) is decreasing in α (in view of Assumption 4), and q2 (α′) is

strictly increasing in α. The latter observation follows since α′ = αλo1
αλo1+(1−α)λp1

is increasing in α (in

view of Assumption 4) and q2 (·) is a strictly increasing function. Note also that rf1 (α) > rf1 (0) > 0,
where the latter inequality follows since Assumptions 1-3 holds for the pessimistic belief. Thus, the
interest rate in state 1 is always positive, which verifies our conjecture and completes the proof of
the second part of the proposition.
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B.4. Details of the parameterization

This section describes the details of the parameterization of the dynamic model that we use to
numerically illustrate our findings. This parameterization is only meant to be reasonable, as its
purpose is to give a sense of potential magnitudes. Throughout, we measure time in years so that
the continuous-time rates we choose correspond to (approximate) yearly rates.

Since we do not explicitly model steady-state inflation (for simplicity), we interpret the growth
rate in our model as g = g̃+ π where g̃ can be thought of as the real growth rate and π ≥ 0 can be
thought of as the steady-state inflation. With this adjustment, we can interpret the returns in our
model as capturing the corresponding nominal returns in the data. In particular, the zero lower
bound constraint in the model (19) becomes a restriction on the nominal risk-free rate (as in the
data). We set π = 2% based on the Fed’s inflation target in recent decades; and g̃ = 3% based on
pre-recession estimates for the U.S. trend output growth, which leads to:

g = 5%.

For the discount rate, we set,
ρ = 4%,

based on the yearly discount rates typically assumed in the literature. This implies a first-best
(nominal) return to capital given by rm,∗ = ρ + g = 9%, which is consistent with the historical
estimates for the weighted-average return on stocks and housing in Jordà et al. (2019).

We set the variance in the low-risk-premium state to target the first-best nominal risk-free
interest rate in the boom given by, rf,∗1 = 7% (equivalently, a real risk-free rate given by 5%). We
target a relatively high rf,∗1 because this is the highest level of interest rate that can be observed
in our environment– the actual interest rate in the boom will be lower. Using (36), this leads to:

σ2
1 = 2%.

We set the variance in the high-risk-premium state to target a first-best interest rate is only slightly
negative, rf,∗2 = −1%, which leads to:

σ2
2 = 10%.

These choices (together with the choices of ρ and g) ensure that Assumption 1 holds. For the
productivity level, we set A = 1. This does not play a role as it scales all variables.

It remains to set investors’beliefs for transition probabilities,
(
λis
)
s∈{1,2},i∈{o,p}. We set:

λo1 = 1/25 and λo2 = 1/5,

λp1 = 1/5 and λp2 = 1/25.

Hence, optimists think a low-risk-premium episode lasts on average 25 years whereas pessimists
think it lasts for only 5 years (and vice versa for the high-risk-premium episode).
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C. Omitted derivations for the welfare analysis

This section presents the omitted derivations and proofs for the welfare analysis of the dynamic
model that we present in Section VI. Section C.1 establishes the properties of the equilibrium value
functions that are used in the main text. Section C.2 describes the details of the equilibrium with
macroprudential policy, presents the analyses omitted from the main text (e.g., macroprudential
policy in the high-risk-premium state), and presents omitted proofs. Throughout, we focus on
the equilibrium characterized in Proposition 2. In particular, the price per unit of capital follows
deterministic dynamics absent state transitions, σQt,s = 0.

C.1. Value functions in equilibrium

We first derive the HJB equation that describes the normalized value function in equilibrium and
derive Eqs. (49) and (51). We then derive the differential equations in α-domain that characterize
the value function and its components. In particular, we derive Eq. (52). We then prove Lemmas
4 and 5 that are used in the analysis.

Characterizing the normalized value function in equilibrium. Recall that the value func-
tion has the functional form in Eq. (48). Our goal is to characterize the value function per unit of
capital, vit,s (corresponding to a

i
t,s = Qt,s). To facilitate the analysis, we define,

(C.1) ξit,s = vit,s −
logQt,s

ρ
.

Note that ξit,s is the value function per unit wealth (corresponding to a
i
t,s = 1), and that the value

function also satisfies V i
t,s

(
ait,s
)

=
log(ait,s)

ρ + ξit,s. We first characterize ξ
i
t,s. We then combine this

with Eq. (C.1) to characterize our main object of interest, vit,s.
Consider the recursive version of the portfolio problem in (B.2). We substitute the optimal

consumption rule from Eq. (23), the contingent allocation rule from Eq. (32), and ait,s = 1 (to
characterize the value per unit wealth) to obtain,

ρξit,s = log ρ+
1

ρ

(
rft,s + ωm,it,s

(
rmt,s − r

f
t,s

)
− 1

2

(
ωm,it,s

)2
σ2
s − ρ− ω

s′,i
t,s

)
(C.2)

+
∂ξit,s
∂t

+ λis

(
1

ρ
log

(
λis
ps
′
t,s

)
+ ξit,s′ − ξit,s

)
.

From Lemma 2, the optimal investment in the market portfolio and contingent securities satisfies,

ωm,it,s = 1 and ωs
′,i
t,s = λis−λt,s, and the price of the contingent security is given by, ps

′
t,s = λt,s

1/Qt,s′
1/Qt,s

.

Here, λt,s denotes the weighted average belief defined in (43). Using these conditions, the HJB
equation becomes,

ρξit,s = log ρ+
1

ρ

(
rmt,s − ρ− 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) )(C.3)

+
∂ξit,s
∂t

+ λis

(
1

ρ
log

(
Qt,s′

Qt,s

)
+ ξit,s′ − ξit,s

)
.
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After substituting the return to the market portfolio from (22), and using σQt,s = 0, the HJB
equation can be further simplified as,

(C.4) ρξit,s =
log ρ+ 1

ρ

(
g + µQt,s − 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) )
+
∂ξit,s
∂t + λis

(
1
ρ log

(
Qt,s′
Qt,s

)
+ ξit,s′ − ξit,s

) .

Here, the term inside the summation on the second line, −
(
λis − λt,s

)
+ λis log

(
λis
λt,s

)
, is zero when

there are no disagreements, and it is strictly positive when there are disagreements. This illustrates
that speculation increases the expected value for optimists as well as pessimists.

We finally substitute vit,s = ξit,s +
logQt,s

ρ (cf. (C.1)) into the HJB equation to obtain the
differential equation,

ρvit,s =
log ρ+ log (Qt,s) + 1

ρ

(
g − 1

2σ
2
s

−
(
λis − λt,s

)
+ λis log

(
λis
λt,s

) )
+
∂vit,s
∂t + λis

(
vt,s′ − vt,s

) .

Here, we have canceled terms by using the observation that

∂ξit,s
∂t

=
∂vit,s
∂t
− 1

ρ

∂ logQt,s
∂t

=
∂vit,s
∂t
− 1

ρ
µQt,s.

The last step also uses σQt,s = 0.

We have thus obtained Eq. (49) in the main text. Note also that vi,∗t,s solves the same differential
equation after substituting Qt,s = Q∗. Taking the difference of these differential equations, and
using wt,s = vit,s − v

i,∗
t,s , we obtain Eq. (51).

Differential equations for the value functions in α-domain. We next write the

value function and its components,
{
vit,s, v

i,∗
t,s , wt,s

}
s,i
, as functions of optimists’ wealth share,{

vis (α) , vi,∗s (α) , ws (α)
}
s,i
. We will characterize these functions as solutions to appropriate dif-

ferential equations in the α-domain.
Recall that the price level in each state can be written as a function of optimists’wealth shares,

qt,s = qs (α) (where we also have, q1 (α) = q∗). Plugging in these price functions, and using the
dynamics of αt,s from Eq. (44), the HJB equation (49) can be written as,

ρvis (α) =
log ρ+ qs (α) + 1

ρ

(
g − 1

2σ
2
s

−
(
λis − λs (α)

)
+ λis log

(
λis

λs(α)

) )
−∂vis
∂α (λos − λps)α (1− α) + λis

(
vis′
(
α λos
λs(α)

)
− vis (α)

) .

For each i ∈ {o, p}, the value functions,
(
vis (α)

)
s∈{1,2}, are found by solving this system of ODEs.

For i = o, the boundary conditions are that the values, {vos (1)}s, are the same as the values in
the common belief benchmark characterized in Section IV when all investors have the optimistic
beliefs. For i = p, the boundary conditions are that the values, {vps (0)}s, are the same as the values
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in the common belief benchmark when all investors have the pessimistic beliefs.

Likewise, the first-best value functions,
(
vi,∗s (α)

)
s∈{1,2}

, are found by solving the analogous

system after replacing qs (α) with q∗ (and changing the boundary conditions appropriately). Finally,
substituting the price functions into Eq. (51), the gap-value functions,

(
wis (α)

)
s,i
, are found by

solving the system in (52).

For the proofs in this section (as well as in some subsequent sections), we find it useful to work
with the transformed state variable,

(C.5) bt,s ≡ log

(
αt,s

1− αt,s

)
, which implies αt,s =

1

1 + exp (−bt,s)
.

The variable, bt,s, varies between (−∞,∞) and provides a different measure of optimism, which
we refer to as “bullishness.” Note that there is a one-to-one relation between optimists’wealth
share, αt,s ∈ (0, 1), and the bullishness, bt,s ∈ R = (−∞,+∞). Optimists’wealth dynamics in (44)
become particularly simple when expressed in terms of bullishness,

(C.6)

{
ḃt,s = − (λos − λps) , if there is no state change,

bt,s′ = bt,s + log λos − log λps, if there is a state change.

With a slight abuse of notation, we also let q2 (b) , wis (b), and so on, denote the equilibrium functions
in terms of bullishness. Note also that, since db

dα = 1
α(1−α) , we have the identities,

(C.7)
∂q2 (b)

∂b
= α (1− α)

∂q2 (α)

∂b
and

∂wis (b)

∂b
= α (1− α)

∂wis (α)

∂α
.

Using this observation, the differential equation for the price function, Eq. (45), can be written in
terms of bullishness as,

(C.8)
∂q2 (b)

∂b
(λo2 − λ

p
2) = ρ+ g + λ2 (α)

(
1− Q2

Q∗

)
− σ2

2.

Likewise, the differential equation for the gap value function, Eq. (52), can be written in terms of
bullishness as,

(C.9) ρwis (b) = qs (b)− q∗ − (λos − λps)
∂wis (b)

∂b
+ λis

(
wis′
(
b′
)
− wis (b)

)
.

Proof of Lemma 4. To show that the gap value function is increasing, consider its representation
in terms of bullishness, wis (b) [cf. (C.5)], which solves the system in (C.9). We will first describe
this function as a fixed point of a contraction mapping. We will then use this contraction mapping
to establish the properties of the function.

Recall that, in the time domain, the gap value function solves the HJB equation (51). Integrating
this equation forward, we obtain,

(C.10) wis (b0,s) =

∫ ∞
0

e−(ρ+λis)t
(
qs (bt,s)− q∗ + λisw

i
s′
(
bt,s′
))
dt,
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for each s ∈ {1, 2} and b0,s ∈ R. Here, bt,s denotes bullishness conditional on there not being
a transition before time t, whereas bt,s′ denotes the bullishness if there is a transition at time t.
Solving Eq. (C.6) (given beliefs, λi) we further obtain,

bt,s = b0,s − t (λos − λps) ,(C.11)

bt,s′ = b0,s − t (λos − λps) + log λos − log λps.

Hence, Eq. (C.10) describes the value function as a solution to an integral equation given the closed
form solution for bullishness in (C.11).

Implicitly differentiating the integral equation (C.10) with respect to b0,s, and using Eq. (C.11),
we also obtain,

(C.12)
∂wis (b0,s)

∂b
=

∫ ∞
0

e−(ρ+λis)t

(
∂qs (bt,s)

∂b
+ λis

∂wis′
(
bt,s′
)

∂b

)
dt.

We next let B
(
R2
)
denote the set of bounded value functions over R2. Given some continuation

value function,
(
∂w̃is(b)
∂b

)
s
∈ B

(
R2
)
, we define the function,

(
T ∂w̃is(b)

∂b

)
s
∈ B

(
R2
)
, so that

T
∂w̃is (b0,s)

∂b
=

∫ ∞
0

e−(ρ+λis)t

(
∂qs (bt,s)

∂b
+ λis

∂w̃is′
(
bt,s′
)

∂b

)
dt,

for each s and b0,s ∈ R. Note also that the resulting value functions are bounded since the derivative
of the price functions,

(
∂qs(bt,s)

∂b

)
s
, are bounded (see Eq. (C.8)). Thus, Eq. (C.12) describes the

derivative functions,
(
∂wis(b0,s)

∂b

)
s
, as a fixed point of a corresponding operator T over bounded

functions. It can be checked that this operator is a contraction mapping with respect to the sup
norm. Thus, it has a unique fixed point that corresponds to the derivative functions. Moreover,
since ∂qs(bt,s)

∂b > 0 for each b, and λis > 0 for each s, it can further be seen that the fixed point

satisfies, ∂w
i
s(b0,s)
∂b > 0 for each b and s ∈ {1, 2}. Using Eq. (C.7), we also obtain ∂wis(α)

∂α > 0 for each
α ∈ (0, 1) and s ∈ {1, 2}, completing the proof.

Proof of Lemma 5. Consider the analysis in Lemma 4 for the special case, λo1 = λp1. Applying
Eq. (C.12) for s = 1, we obtain [since q1 (bt,s) = q∗ is constant],

∂wi1 (b0,1)

∂b
=

∫ ∞
0

e−(ρ+λi1)tλi1
∂wi2 (bt,2)

∂b
dt.

Note also that λo1 = λp1 and Eq. (C.11) imply bt,2 = b0,1 (since there is no speculation). Substituting

this into the displayed equation, we obtain ∂wi1(b0,1)
∂b =

λi1
ρ+λi1

∂wi2(b0,1)
∂b <

∂wi2(b0,1)
∂b . Combining this

with Eq. (C.7) completes the proof.

C.2. Equilibrium with macroprudential policy

Recall that macroprudential policy induces optimists to choose allocations as if they have more

pessimistic beliefs, λo,pl ≡
(
λo,pl1 , λo,pl2

)
, that satisfy, λo,pl1 ≥ λo1 and λ

o,pl
2 ≤ λo2. We next show

that this allocation can be implemented with portfolio restrictions on optimists. We then show
that the planner’s Pareto problem reduces to solving problem (55) in the main text. We also
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derive the equilibrium value functions that result from macroprudential policy. We then analyze
macroprudential policy in the recession state, which complements the analysis in the main text
(that focuses on the boom state), and present Proposition 4. Finally, we present the proofs of
Propositions 3 and 4.

Implementing the policy with risk limits. Consider the equilibrium that would obtain if
optimists had the planner-induced beliefs, λo,pls . Using Lemma 2, optimists’equilibrium portfolios
are given by

(C.13) ωm,o,plt,s = 1 and ωs
′,o,pl
t,s =

(
λo,pls − λps

)
(1− αt,s) .

We first show that the planner can implement the policy by requiring optimists to hold exactly
these portfolio weights. We will then relax these portfolio constraints into inequality restrictions
(see Eq. (C.15)).

Formally, an optimist solves the HJB problem (B.2) with the additional constraint (C.13). In
view of log utility, we conjecture that the value function has the same functional form (48) with
potentially different normalized values, ξot,s, v

o
t,s, that reflect the constraints. Using this functional

form, the optimality condition for consumption remains unchanged, ct,s = ρaot,s [cf. Eq. (23)].
Plugging this equation and the portfolio holdings in (C.13) into the objective function in (B.2)
verifies that the value function has the conjectured functional form. For later reference, we also
obtain that the optimists’unit-wealth value function satisfies [cf. Eq. (C.1)],

ξot,s = log ρ+
1

ρ

(
rft,s + ωm,o,plt,s

(
rmt,s − r

f
t,s

)
− ρ− ωs

′,o,pl
t,s

)
(C.14)

− 1

2ρ

(
ωm,o,plt,s σs

)2
+
∂ξot,s
∂t

+ λos

(
1

ρ
log

(
aot,s′

aot,s

)
+ ξot,s′ − ξot,s

)
.

Here,
ao
t,s′
aot,s

= 1 +ωm,o,plt,s
Qt,s′−Qt,s

Qt,s
+

ωs
′,o,pl
t,s

ps
′
t,s

in view of the budget constraints (B.1). Hence, the value

function has a similar characterization as before [cf. Eq. (C.2)] with the difference that optimists’
portfolio holdings reflect the portfolio constraints.

Since pessimists are unconstrained, their optimality conditions are unchanged. It follows that
the equilibrium takes the form in Section V with the difference that investors’beliefs are replaced by
their as-if beliefs, λi,pls . This verifies that the planner can implement the policy using the portfolio
restrictions in (C.13). We next show that these restrictions can be relaxed to the following inequality
constraints,

ωm,o,plt,s ≤ 1 for each s,(C.15)

ω2,o,pl
t,1 ≥ ω2,o

t,1 ≡ λ
o,pl
1 − λplt,1 and ω

1,o,pl
t,2 ≤ ω1,o

t,2 ≡ λ
o,pl
2 − λplt,2.

In particular, we will establish that all inequality constraints bind, which implies that optimists
optimally choose the portfolio weights in Eq. (C.13). Thus, our earlier analysis continues to apply
when optimists are subject to the more relaxed restrictions in (C.15).

The result follows from the assumption that the planner-induced beliefs are more pessimistic
than optimists’ actual beliefs, λo,pl1 ≥ λo1 and λo,pl2 ≤ λo2. To see this formally, note that the
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optimality condition for the market portfolio is given by the following generalization of Eq. (31),

(C.16) ωm,o,plt,s σmt,s ≤
1

σmt,s

(
rmt,s − r

f
t,s + λos

aot,s
aot,s′

Qt,s′ −Qt,s
Qt,s

)
and ωm,o,plt,s ≤ 1,

with complementary slackness. We claim that this holds with ωm,o,plt,s = 1.
To see this, first note that,

λos
aot,s
aot,s′

Qt,s′ −Qt,s
Qt,s

= λos
λ
pl
t,s

λo,pls

Qt,s′ −Qt,s
Qt,s′

≥ λplt,s
Qt,s′ −Qt,s

Qt,s′
.

Here, the equality follows because optimists’wealth share dynamics are determined by as-if beliefs,

that is,
ao
t,s′
aot,s

= λo,pls

λ
pl
t,s

Qt,s′
Qt,s

[cf. Eq. (44)]. The inequality follows by considering separately the two

cases, s ∈ {1, 2}. For s = 2, the inequality holds since Qt,s′ − Qt,s > 0 and the beliefs satisfy,
λos ≥ λo,pls . For s = 1, the inequality holds since Qt,s′ −Qt,s < 0 and the beliefs satisfy, λo,pls ≥ λos.
Note also that in equilibrium the return to the market portfolio satisfies the risk balance condition
(34) with as-if beliefs,

σmt,s =
1

σmt,s

(
rmt,s − r

f
t,s + λ

pl
t,s

(
1− Qt,s

Qt,s′

))
.

Combining these expressions implies, σmt,s ≤ 1
σmt,s

(
rmt,s − r

f
t,s + λos

aot,s
ao
t,s′

Qt,s′−Qt,s
Qt,s

)
. This in turn implies

the optimality condition (C.16) is satisfied with ωm,o,plt,s = 1, proving the claim.
A similar analysis shows that optimists also choose the corner allocations in contingent securities,

ω2,o,pl
t,1 = ω2,o

t,1 and ω
1,o,pl
t,2 = ω1,o

t,2 , verifying that the portfolio constraints (C.13) can be relaxed to
the inequality constraints in (C.15).

Simplifying the planner’s problem. Recall that, to trace the Pareto frontier, we allow the

planner to do a one-time wealth transfer among the investors at time 0. Let V i
t,s

(
ait,s|

{
λo,plt

})
denote type i investors’ expected value in equilibrium when she starts with wealth ait,s and the

planner commits to implement the policy,
{
λo,plt

}
. Then, the planner’s Pareto problem can be

written as,

(C.17) max
λ̃
o,pl

,α̃0,s

γoV o
0,s

(
α̃0,sQ0,sk0,s|λ̃

o,pl
)

+ γpV p
0,s

(
(1− α̃0,s)Q0,sk0,s|λ̃

o,pl
)
.

Here, γo, γp ≥ 0 (with at least one strict inequality) denote the Pareto weights, and Q0,s denotes
the endogenous equilibrium price that obtains under the planner’s policy.

Next recall that the investors’value function with macroprudential policy has the same func-
tional form in (48) (with potentially different ξot,s, v

o
t,s for optimists that reflect the constraints).

After substituting ait,s = αit,skt,sQt,s, the functional form implies,

V i
t,s = vit,s +

log
(
αit,s
)

+ log (kt,s)

ρ
.
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Using this expression, the planner’s problem (C.17) can be rewritten as,

max
λ̃
o,pl

,α̃0,s

(
γovo0,s + γpvp0,s

)
+
γo log

(
α̃o0,s

)
+ γp log

(
1− α̃o0,s

)
ρ

+
(γo + γp) log (k0,s)

ρ
.

Here, the last term (that features capital) is a constant that doesn’t affect optimization. The second
term links the planner’s choice of wealth redistribution, αo0,s, α

p
0,s, to her Pareto weights, γ

o, γp.

Specifically, the first order condition with respect to optimists’wealth share implies γo

γp =
α0,s

1−α0,s .
Thus, the planner effectively maximizes the first term after substituting γo and γp respectively with
the optimal choice of α0,s and 1− α0,s. This leads to the simplified problem (55) in the main text.

Characterizing the value functions with macroprudential policy. We first show that
the normalized value functions, vit,s, are characterized as the solution to the following differential
equation system,

(C.18) ρvit,s −
∂vit,s
∂t

= log ρ+ qt,s +
1

ρ

 g − 1
2σ

2
s

−
(
λi,pls − λplt,s

)
+ λis log

(
λi,pls

λ
pl
t,s

) + λis
(
vit,s′ − vit,s

)
.

This is a generalization of Eq. (49) in which investors’positions are calculated according to their
as-if beliefs, λi,pls , but the transition probabilities are calculated according to their actual beliefs,
λis.

First consider the pessimists. Since they are unconstrained, their value function is characterized
by solving the earlier equation system (C.14). In this case, equation (C.18) also holds since it is
the same as the earlier equation.

Next consider the optimists. In this case, optimists’wealth share dynamics are determined by
as-if beliefs. In particular, we have [cf. Eq. (44)]

aot,s′

aot,s
=
λo,pls

λ
pl
t,s

Qt,s′

Qt,s
.

Plugging this expression as well as Eq. (C.13) into Eq. (C.14), optimists’unit-wealth value function
satisfies,

ξot,s = log ρ+
1

ρ

 rmt,s − ρ− 1
2σ

2
s

−
(
λo,pls − λplt,s

)
+ λos log

(
λo,plt,s

λ
pl
t,s

) 
+
∂ξot,s
∂t

+ λos

(
1

ρ
log

(
Qt,s′

Qt,s

)
+ ξot,s′ − ξot,s

)
,

This is the same as Eq. (C.14) with the difference that the as-if beliefs, λo,pls , are used to calculate
their positions on (and the payoffs from) the contingent securities, whereas the actual beliefs, λos,
are used to calculate the transition probabilities. Using the same steps after Eq. (C.14), we also
obtain (C.18) with i = o.

We next characterize the first-best and the gap value functions, vi,∗t,s and w
i
t,s, that we use in the

main text. By definition, the first-best value function solves the same differential equation (C.18)
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after substituting qt,s = q∗. It follows that the gap value function wit,s = vit,s − v
i,∗
t,s , solves,

ρwit,s −
∂wit,s
∂t

= qt,s − q∗ + λis
(
wit,s′ − wit,s

)
,

which is the same as the differential equation (51) without macroprudential policy. The latter affects
the path of prices, qt,s, but it does not affect how these prices translate into gap values.

Note also that, as before, the value functions can be written as functions of optimists’

wealth share,
{
vis (α) , vi,∗s (α) , ws (α)

}
s,i
. For completeness, we also characterize the differen-

tial equations that these functions satisfy in equilibrium with macroprudential policy. Com-
bining Eq. (C.18) with the dynamics of optimists’ wealth share conditional on no transition,
α̇t,s = −

(
λo,pls − λps

)
αt,s (1− αt,s), the value functions,

(
vis (α)

)
s,i
, are found by solving,

ρvis (α) =


log ρ+ qpls (α) + 1

ρ

 g − 1
2σ

2
s

−
(
λi,pls − λplt,s

)
+ λis log

(
λi,pls

λ
pl
t,s

) 
−∂vis
∂α

(
λo,pls − λps

)
α (1− α) + λis

(
vis′

(
αλ

o,pl
s

λ
pl
t,s

)
− vis (α)

)
 ,

with appropriate boundary conditions. As in the main text, we denote the price functions with
qpls (α) to emphasize that they are determined by as-if beliefs. Likewise, the first-best value func-

tions,
(
vi,∗s (α)

)
s∈{1,2}

, are found by solving the analogous system after replacing qs (α) with q∗.

Finally, combining Eq. (51) with the dynamics of optimists’wealth share, the gap-value functions,(
wis (α)

)
s,i
, are found by solving Eq. (54) in the main text

Macroprudential policy in the recession state. The analysis in the main text concerns
macroprudential policy in the boom state and maintains the assumption that λo,pl2 = λo2. We next
consider the polar opposite case in which the economy is currently in the recession state s = 2, and
the planner can apply macroprudential policy in this state, λo,pl2 ≤ λo2 (she can induce optimists to
act as if the recovery is less likely), but not in the other state, λo,pl1 = λo1. We obtain a sharp result
for the special case in which optimists’wealth share is suffi ciently large.

Proposition 4. Consider the equilibrium with two belief types characterized in Proposition 2.
Consider the macroprudential policy in the recession state, λo,pl2 ≤ λo2 (and suppose λ

o,pl
1 = λo1).

There exists a threshold, α < 1, such that if α ∈ (α, 1], then the policy reduces the gap value
according to each belief, that is,

∂wi2 (α)

∂
(
−λo,pl2

)
∣∣∣∣∣∣
λo,pl2 =λo2

< 0 for each i ∈ {o, p} .

Thus, for α ∈ (α, 1], the policy also reduces the planner’s value, ∂vpls (α)

∂
(
−λo,pl2

)
∣∣∣∣∣
λo2

= ∂wpls (α)

∂
(
−λo,pl2

)
∣∣∣∣∣
λo2

< 0.

Thus, in contrast to Proposition 3, macroprudential policy in the recession state can actually
reduce the gap value (and therefore also the social welfare). The intuition can be understood by
considering two counteracting forces. First, as before, macroprudential policy in the recession state
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Figure C.1: Welfare effect of macroprudential policy in either the boom or the recession state.
The left (resp. the right) panel illustrates the change in the planner’s total value function and its components
in response to a small change in macroprudential policy in the boom (resp. the recession) state.

is potentially valuable by reallocating optimists’wealth from the boom state s = 1 to the recession
state s = 2. Intuitively, optimists purchase too many upside contingent securities that pay if there
is a transition to the boom state but that impoverish them in case the recession persists. They do
not internalize that, if they keep their wealth, they will improve asset prices if the recession lasts
longer.

However, there is a second force that does not have a counterpart in the boom state: Macro-
prudential policy in the recession state also affects the current asset price level, with potential
implications for gap value. It can be seen that making optimists less optimistic in the recession

state shifts the price function downward, ∂qpl2 (α)

∂
(
−λo,pl2

) < 0 (as in the common-belief benchmark we

analyzed in Section IV). Hence, the price impact of macroprudential policy reduces the gap value.
Moreover, as optimists dominate the economy, α → 1, the price impact of the policy is still first
order, whereas the beneficial effect from reshuffl ing optimists’wealth is second order. Thus, when
optimists’wealth share is suffi ciently large, the net effect of macroprudential policy on the gap
value is negative.

This analysis also suggests that, even when the policy in the recession state exerts a net positive
effect, it would typically increase the gap value by a smaller amount than a comparable policy in
the boom state. Figure C.1 confirms this intuition. The left panel plots the change in the planner’s
gap value function in the boom state resulting from a small macroprudential policy change. Note
that the policy slightly reduces the planner’s first-best value function but increases the gap value
function. The right panel illustrates the effect of the macroprudential policy in the recession state
that would generate a similar distortion in the first-best equilibrium as the policy in the boom
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state.27 Note that a small macroprudential policy in the recession state has a smaller positive
impact on the gap value when optimists’wealth share is small, and it has a negative impact when
optimists’wealth share is suffi ciently large, illustrating Proposition 4.

Proof of Proposition 3. We will prove the stronger result that

(C.19)
∂wis (α)

∂λo,pl1

∣∣∣∣∣
λo,pl=λo

> 0 for each i, s and α ∈ (0, 1) .

That is, a marginal amount of macroprudential policy in the low-risk-premium state increases the
gap value in either state. Combining this with the definition of the planner’s gap value function in

(56) implies ∂wpls (α)

∂λo,pl1

∣∣∣∣
λo,pl=λo

> 0. Combining this with
∂vpl,∗0,s

∂λo,pl

∣∣∣∣
λo,pl=λo

= 0 (which follows from the

First Welfare Theorem) and vpl0,s = vpl,∗0,s + wpl0,s implies
∂wpls (α)

∂λo,pl1

∣∣∣∣
λo,pl=λo

= ∂vpls (α)

∂λo,pl1

∣∣∣∣
λo,pl=λo

for each s

and α ∈ (0, 1). Applying this result for state s = 1 proves the proposition.
It remains to prove the claim in (C.19). To this end, fix a belief type i and consider the

representation of the gap value function in terms of bullishness, wis (b) [cf. (C.5)]. Following similar
steps as in Lemma 4, we describe this as solution to the integral function,

(C.20) wis (b0,s) =

∫ ∞
0

e−(ρ+λis)t
(
qpls (bt,s)− q∗ + λisw

i
s′
(
bt,s′
))
dt,

for each s ∈ {1, 2} and b0,s ∈ R, where the bullishness has the closed form solution,

bt,s = b0,s − t
(
λo,pls − λps

)
,(C.21)

bt,s′ = b0,s − t
(
λo,pls − λps

)
+ log λo,pls − log λps.

The main difference from the analysis in Lemma 4 is that the dynamics of bullishness is influenced
by policy, as illustrated by the as-if beliefs in (C.11). In addition, we denote the price functions
with qpls (b) to emphasize they are in principle determined by as-if beliefs.

Next note that in this case the price functions qpls (b) are actually not affected by the as-if
belief, λo,pl1 . The price function in the low-risk-premium state is not affected because qpl1 (b) = q∗

(because the beliefs continue to satisfy Assumption 3 for small changes). The price function in the
high-risk-premium state is also not affected because λo,pl1 does not enter the differential equation
that characterizes qpl2 (b) [see. Eq. (45) or Eq. (C.8)].

Using this observation, we implicitly differentiate the integral equation (C.20) with respect to
λo,pl1 , and use Eq. (C.21), to obtain,

∂wi1 (b0,1)

∂λo,pl1

=

∫ ∞
0

e−(ρ+λi1)tλi1

(
∂wi2 (bt,2)

∂λo,pl1

+
∂wi2 (bt,2)

∂b

dbt,2

dλo,pl1

)
dt,

∂wi2 (b0,2)

∂λo,pl1

=

∫ ∞
0

e−(ρ+λi1)tλi2
∂wi1 (bt,1)

∂λo,pl1

dt.

27Specifically, we calibrate the policy-induced belief change in the recession state so that the maximum decline

in the planner’s first-best value function is the same in both cases plotted in Figure C.1, maxα

∣∣∣∆vpl,∗2 (α)
∣∣∣ =

maxα

∣∣∣∆vpl,∗1 (α)
∣∣∣.
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Note also that, using Eq. (C.21) implies, dbt,2

dλo,pl1

= −t+ 1

λo,pl1

. Plugging this into the previous system,

and evaluating the partial derivatives at λo,pl1 = λo1, we obtain,

∂wi1 (b0,1)

∂λo,pl1

= h (b0,1) +

∫ ∞
0

e−(ρ+λi1)tλi1
∂wi2 (bt,2)

∂λo,pl1

dt,(C.22)

∂wi2 (b0,2)

∂λo,pl1

=

∫ ∞
0

e−(ρ+λi1)tλi2
∂wi1 (bt,1)

∂λo,pl1

dt,

where h (b0,1) =

∫ ∞
0

e−(ρ+λi1)tλi1
∂wi2 (bt,2)

∂b

(
−t+

1

λo1

)
dt.

Note that the function, h (b), is bounded since the derivative function, ∂wi2(b)
∂b , is bounded (see

(C.12)). Hence, Eq. (C.22) describes the partial derivative functions,
(
∂wis(b)

∂λo,pl1

|
λo,pl1 =λo1

)
s

, as a

fixed point of a corresponding operator T over bounded functions. Since h (b) is bounded, it can
be checked that the operator T is also a contraction mapping with respect to the sup norm. In
particular, it has a fixed point, which corresponds to the partial derivative functions.

The analysis so far applies generally. We next consider the special case, λo1 = λp1, and show that
it implies the partial derivatives are strictly positive. In this case, λi1 ≡ λ1 for each i ∈ {o, p}. In
addition, Eq. (C.11) implies bt,2 = b0,2. Using these observations, for each b0,1, we have,

h (b0,1) =
∂wi2 (b0,2)

∂b

∫ ∞
0

e−(ρ+λ1)tλ1

(
−t+

1

λ1

)
dt

=
∂wi2 (b0,2)

∂b

(
− λ1

ρ+ λ1

1

ρ+ λ1
+

1

ρ+ λ1

)
> 0.

Here, the inequality follows since ∂wi2(b0,2)
∂b > 0 [cf. Lemma 4]. Since h (b) > 0 for each b, and

λis > 0, it can further be seen that the fixed point that solves (C.22) satisfies ∂wis(b)

∂λo,pls
> 0 for each b

and s ∈ {1, 2}. Using Eq. (C.7), we also obtain∂w
i
s(α)

∂λo,pl1

> 0 for each s ∈ {1, 2} and α ∈ (0, 1). Since

the analysis applies for any fixed belief type i, this establishes the claim in (C.19) and completes
the proof.

Proof of Proposition 4. A similar analysis as in the proof of Proposition 3 implies that the
partial derivative function, ∂wis(b)

∂
(
−λo,pl2

) , is characterized as the fixed point of a contraction mapping
over bounded functions (the analogue of Eq. (C.22) for state 2). In particular, the partial derivative
exists and it is bounded. Moreover, since the corresponding contraction mapping takes continuous
functions into continuous functions, the partial derivative is also continuous over b ∈ R. Using Eq.
(C.7), we further obtain that the partial derivative, ∂wis(α)

∂
(
−λo,pl2

) , is continuous over α ∈ (0, 1).

Next note that wis (1) ≡ limα→1w
i
s (α) exists and is equal to the value function according to type

i beliefs when all investors are optimistic. In particular, the asset prices are given by qpl1 = q∗ and
qpl2 = qo, and the transition probabilities are evaluated according to type i beliefs. Then, following
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the same steps as in our analysis of value functions in Online Appendix Section C.1, we obtain,

ρwis (1) = βisq
o
s +

(
1− βis

)
qos′ − q∗,

where βis =
ρ+ λis′

ρ+ λis′ + λis
.

Here, βis can be thought of as the expected discount time the investor spends in state s according to

type i beliefs. We consider this equation for s = 2 and take the derivative with respect to
(
−λo,pl2

)
to obtain,

∂wi2 (1)

∂
(
−λo,pl2

) = βi2
dqo2

d
(
−λo,pl2

) < 0.

Here, the inequality follows since reducing optimists’optimism reduces the price level in the common
belief benchmark (see Section IV).

Note that the inequality, ∂wi2(1)

∂
(
−λo,pl2

) < 0, holds for each belief type i. Using the continuity of the

partial derivative function, ∂wi2(α)

∂
(
−λo,pl2

) , we conclude that there exists α such that ∂wi2(α)

∂
(
−λo,pl2

)
∣∣∣∣∣
λo,pl2 =λo2

< 0

for each i, s and α ∈ (α, 1), completing the proof.
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D. Extension with investment and endogenous growth

Our baseline setup in the main text assumes there is no investment and the expected growth
rate of capital is exogenous. In this section, we analyze a more general environment that relaxes
these assumptions. We first present the environment, define the equilibrium, and provide a partial
characterization. We then characterize this equilibrium when investors have common beliefs and
generalize Proposition 1 to this setting.

D.1. Environment and equilibrium with investment

We focus on the components that are different than the baseline setting described in Section III.

Potential output and endogenous growth. We modify the equation that describes the dy-
namics of capital (12) as follows,

(D.1)
dkt,s
kt,s

= gt,sdt+ σsdZt where gt,s ≡ ϕ (ιt,s)− δ.

Here, ιt,s =
it,s
kt,s

denotes the investment rate, ϕ (ιt,s) denotes a neoclassical production function for
capital (we will work with a special case that will be described below), and δ denotes the depreciation
rate. Hence, the growth of capital is no longer exogenous: it depends on the endogenous level of
investment as well as depreciation.

Investment firms. To endogenize investment, we introduce a new set of firms, which we refer to
as investment firms, that own and manage the aggregate capital stock. These firms rent capital to
production firms to earn the instantaneous rental rate, Rt,s. They also make investment decisions
to maximize the value of capital. Letting Q̃t,s denote the price of capital, the firm’s investment
problem can generally be written as,

(D.2) max
ιt,s

Q̃t,sϕ (ιt,s) kt,s − ιt,skt,s.

As before, we denote the price of the market portfolio per unit of capital with Qt,s. In this case,
the market portfolio represents a claim on investment firms as well as production firms. Hence, we
have the inequality Q̃t,s ≤ Qt,s, where the residual price, Qt,s − Q̃t,s, corresponds to the value of
production firms per unit of capital. We make assumptions (that we describe below) so that output
accrues to the investment firms in the form of return to capital, yt,s = Rt,skt,s, and there are no
monopoly profits. This in turn implies that the value of the market portfolio is equal to the value
of capital (and the value of production firms is zero), that is,

(D.3) Qt,s = Q̃t,s.

This simplifies the analysis by ensuring that we have only one price to characterize. Considering
a different division of output between return to capital and profits will have a quantitative effect
on investment, as illustrated by problem (D.2), but we conjecture that it would leave our qualita-
tive results on investment unchanged. We leave a systematic exploration of this issue for further
research.
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Return of the market portfolio. The price of the market portfolio per unit of capital follows
the same equation (13) as in the main text. The volatility of the market portfolio (absent state
transitions) is also unchanged and given by σmt,s = σs + σQt,s. However, the return on the market
portfolio conditional on no transition is slightly modified and given by,

(D.4) rmt,s =
yt,s − ιt,skt,s
Qt,skt,s

+ gt,s + µQt,s + σsσ
Q
t,s.

Hence, the dividend yield is now net of the investment expenditures the (investment) firms under-
take. In addition, the expected growth of the price of the market portfolio is now endogenous and
given by gt,s.

Nominal rigidities and equilibrium in goods markets. As before, the supply side of our
model features nominal rigidities similar to the standard New Keynesian model that ensure out-
put is determined by aggregate demand. In this case, demand comes from investment as well as
consumption so we modify Eq. (18) as,

(D.5) yt,s = ηt,sAkt,s =
∑
i

cit,s + kt,sιt,s, where ηt,s ∈ [0, 1] .

We also modify the microfoundations that we provide in Section B.1.3 so that all output accrues
to investment firms as return to capital and there are no monopoly profits, that is,

(D.6) Rt,s = Aηt,s and thus yt,s = Rt,skt,s.

We relegate a detailed description of these microfoundations to the end of this section. The rest of
the model is the same as in Section III. We formally define the equilibrium as follows.

Definition 2. The equilibrium with investment and endogenous growth is a collection of processes
for allocations, prices, and returns such that capital evolves according to (12), the price of market
portfolio per capital evolves according to (13), its instantaneous return (conditional on no transition)
is given by (D.4), investment firms maximize (cf. Eqs. (D.7), investors maximize (cf. Online
Appendix Section B.1.1), asset markets clear (cf. Eqs. (16) and (17)), production firms maximize
(cf. Online Appendix Section D.3), goods markets clear (cf. Eq. (18)), all output accrues to agents
in the form of return to capital (D.6), the price of the market portfolio per unit of capital is the
same as the price of capital (cf. Eq. (D.3)), and the interest rate policy follows the rule in (20).

We next provide a partial characterization of the equilibrium with investment. Investors’op-
timality conditions remain unchanged. Therefore, most of the analysis remains unchanged. The
main differences concern the goods market equilibrium analyzed in Section III.A, because aggre-
gate demand is now affected by investment as well as consumption. We next derive the optimal
level investment and characterize the goods market equilibrium. We then briefly consider the asset
market equilibrium and present the risk balance condition. We conclude the section by deriving
the first-best equilibrium without interest rate rigidities.

Investment firms’optimality conditions. Under standard regularity conditions for the capital
production function, ϕ (ι), the solution to problem (D.2) is determined by the optimality condition,

ϕ′ (ιt,s) = 1/Qt,s.
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We will work with the special and convenient case proposed by Brunnermeier and Sannikov (2016b):

ϕ (ι) = ψ log
(
ι
ψ + 1

)
. In this case, we obtain the closed form solution,

(D.7) ι (Qt,s) = ψ (Qt,s − 1) .

The parameter, ψ, captures the sensitivity of investment to asset prices.

Growth-asset price relation. Note also that the amount of capital produced is given by,

(D.8) ϕ (ι (Qt,s)) = ψqt,s, where qt,s ≡ log (Qt,s) .

The log price level, qt,s, will simplify some of the expressions. Combining Eq. (D.8) with Eq. (12),
we obtain Eq. (42) in the main text, which we replicate here for ease of exposition,

gt,s = ψqt,s − δ.

Hence, the expected growth rate of capital (and potential output) is now endogenous and depends
on asset prices. Lower asset prices reduce investment, which translates into lower growth and lower
potential output in future periods. As we will describe, this mechanism provides a new source of
amplification.

Goods market equilibrium. As in the main text, there is a tight relationship between output
and asset prices. Specifically, we have the following analogue of Lemma 1.

Lemma 6 (Output-asset price relation). The equilibrium level of output (per capital) satisfies Eq.
(41) in the main text:

yt,s/kt,s = Aηt,s = (ρ+ ψ)Qt,s − ψ.

The equilibrium return and the volatility of the market portfolio (absent state transition) is given
by

(D.9) rmt,s = ρ+ ψqt,s − δ + µQt,s + σsσ
Q
t,s and σ

m
t,s = σs + σQt,s.

To prove this lemma, note that Eq. (24) in the main text continues to apply and implies that
aggregate consumption is a constant fraction of aggregate wealth. Plugging this into Eq. (18) and
using the investment equation (D.7), we obtain yt,s = ρQt,skt,s+ψ (Qt,s − 1) kt,s. After rearranging
terms, we obtain Eq. (41). Combining this relation with Eq. (D.7), we obtain yt,s−ιt,skt,s

Qt,skt,s
= ρ.

Substituting this into Eq. (D.5) and using Eq. (42), we obtain Eq. (D.9).
Eq. (41) illustrates that a version of the output-asset price relation in the main text continues

to apply [cf. Eq. (21)]. In this case, output and factor utilization depend on the price of capital
not only because consumption depends on asset prices through a wealth effect but also because
investment depends on asset prices through a standard marginal-Q channel. Full factor utilization,
ηt,s = 1, obtains only if the price of capital is at a particular level

Q∗ ≡ A+ ψ

ρ+ ψ
.

This is the effi cient price level that ensures that the implied consumption and investment clear the
goods market. Likewise, the economy features a demand recession, ηt,s < 1, if and only if the price
of capital is strictly below Q∗.
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Eq. (D.9) is also similar to its counterpart from the baseline model [cf. Eq. (22)]. As before,
the equilibrium dividend yield on the market portfolio is equal to the consumption rate ρ. Unlike
before, the growth rate of dividends is endogenous and is determined by the growth-asset price
relation.

Combining the output-asset price relation with the interest rate policy in (20), we also sum-
marize the goods market side of the economy with (25) as in the main text. In particular, the
equilibrium at any time and state takes one of two forms. If the natural interest rate is nonnega-
tive, then the interest rate policy ensures that the price per unit of capital is at the effi cient level,
Qt,s = Q∗, capital is fully utilized, ηt,s = 1, and output is equal to its potential, yt,s = Akt,s.

Otherwise, the interest rate is constrained, rft,s = 0, the price is at a lower level, Qt,s < Q∗, and
output is determined by aggregate demand according to Eq. (21).

Asset market equilibrium. Since investors’optimality conditions remain unchanged, the analy-
sis in Section III.B remains unchanged. In particular, Lemma 2 that describes investors’portfolios
and wealth dynamics still apply. Lemma 3 also applies after appropriately adjusting the return on
the market portfolio absent transition. Specifically, the risk balance condition is given by

σmt,s =
1

σmt,s

(
rmt,s − r

f
t,s + λt,s

Qt,s′ −Qt,s
Qt,s′

)
,(D.10)

where rmt,s = ρ+ ψqt,s − δ + µQt,s + σsσ
Q
t,s and σ

m
t,s = σs + σQt,s [cf. Lemma 2]

The condition is essentially the same as in the baseline model [cf. Eq. (34)]. The only difference is
that rmt,s reflects the endogenous level of growth, gt,s = ψqt,s − δ, as opposed to exogenous growth,
g.

First-best equilibrium. As a benchmark, we characterize the first-best equilibrium without
interest rate rigidities. In this case, there is no lower bound constraint on the interest rate, so the
price of capital is at its effi cient level at all times and states, Qt,s = Q∗ and qt,s = q∗ ≡ logQ∗.
Combining this with Eq. (D.10), we solve for “rstar”as,

(D.11) rf∗s = ρ+ ψq∗ − δ − σ2
s for each s ∈ {1, 2} .

As before, in the first-best equilibrium the risk premium shocks are fully absorbed by the interest
rate.

D.2. Common beliefs benchmark with investment

We next characterize the equilibrium with interest rate rigidities for the case in which investors
have common beliefs. We generalize Proposition 1 to this setting and illustrate an additional
amplification mechanism.

Suppose there is a single investor type with belief denoted by λs ≡ λis. As in the case without
investment, we focus on equilibria in which the price per capital and the interest rate will remain
constant within states, Qt,s = Qs and r

f
t,s = rfs . In particular, there is no price drift or volatility

within a state, µQt,s = σQt,s = 0. The risk balance condition (D.10) can then be written as

(D.12) σs =
ρ+ ψqs − δ + λs

(
1− Qs

Qs′

)
− rfs

σs
for each s ∈ {1, 2} .
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To characterize the equilibrium, we make the following analogue of Assumption 1.

Assumption 1I. σ2
2 > ρ+ ψq∗ − δ > σ2

1.

With this assumption, we conjecture that the low-risk-premium state 1 features positive interest
rates, effi cient asset prices, and full factor utilization, rf1 > 0, q1 = q∗ and η1 = 1, whereas the high-
risk-premium state 2 features zero interest rates, lower asset prices, and imperfect factor utilization,
rf2 = 0, q2 < q∗ and η2 < 1.

Equilibrium in the high-risk-premium state and amplification from the growth-asset
price relation. Under our conjecture, the risk balance condition (D.12) for the high-risk state
s = 2 can be written as,

(D.13) σ2 =
ρ+ ψq2 − δ + λ2

(
1− Q2

Q∗

)
σ2

.

As before, this equation illustrates an amplification mechanism: Since the recession reduces firms’
earnings, a lower price level does not increase the dividend yield (captured by the constant dividend
yield, ρ = ρQ2

Q2
). Unlike before, Eq. (D.13) illustrates a second amplification mechanism captured

by the growth-asset price relation, g2 = ψq2−δ. In particular, a lower price level lowers investment,
which reduces the expected growth of potential output and profits, which in turn lowers the return
to capital. The strength of this second mechanism depends on the sensitivity of investment to asset
prices, captured by the term ψq2. Figure I in the introduction presents a graphical illustration of
the two amplification mechanisms.

The stabilizing force from price declines comes from the expected transition into the low-risk-

premium state captured by the term, λ2

(
1− Q2

Q∗

)
. As before, to ensure that there exists an

equilibrium with positive prices, we need a minimum degree of optimism, which we capture with
the following analogue of Assumption 2.

Assumption 2I. λ2 ≥ λmin
2 , where λmin

2 is the unique solution to the following equation over the
range λmin

2 ≥ ψ:
ρ+ ψq∗ − δ + λmin

2 − ψ + ψ log
(
ψ/λmin

2

)
= σ2

2.

This assumption ensures that there exists a unique Q2 ∈ (0, Q∗) that solves Eq. (D.13) (see the
proof at the end of this section).

Equilibrium in the low-risk-premium state. Under our conjecture, the risk balance condition
(D.12) can be written as,

(D.14) rf1 = ρ+ ψq∗ − δ − σ2
1 + λ1

(
1− Q∗

Q2

)
As before, the interest rate adjusts to ensure that the risk balance condition is satisfied with the
effi cient price level, Q1 = Q∗. For our conjectured equilibrium, we also assume an upper bound
on λ1 so that the implied interest rate is positive, r

f
1 > 0, which we capture with the following

analogue of Assumption 3.

Assumption 3I. λ1 <
ρ+ψq∗−δ−σ21
Q∗/Q2−1 , where Q2 ∈ (0, Q∗) solves Eq. (D.13).

As before, Eq. (D.14) implies that rf1 is decreasing in the transition probability, λ1, as well as in
the asset price drop conditional on transition, Q∗/Q2.
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The following result summarizes the characterization of equilibrium and generalizes Proposition
1.

Proposition 5. Consider the extended model with investment with two states, s ∈ {1, 2}, with
common beliefs and Assumptions 1I-3I. There is an equilibrium in which the price per capital and
the interest rate are constant within each state, Qt,s = Qs and r

f
t,s = rfs . The low-risk-premium state

1 features a positive interest rate, effi cient asset prices and full factor utilization, rf1 > 0, Q1 = Q∗

and η1 = 1. The high-risk state 2 features zero interest rate, lower asset prices, and a demand-driven
recession, rf2 = 0, Q2 < Q∗, and η2 < 1, as well as a lower level of consumption, ct,2/kt,2 = ρQ2,
investment, it,2/kt,2 = ψ (Q2 − 1) , output, yt,2/kt,2 = (ρ+ ψ)Q2 − ψ, and growth, g2 = ψq2 − δ.
The price of capital in state 2 is characterized as the unique solution to Eq. (D.13), and the risk-free
rate in state 1 is given by Eq. (D.14).

Proof. Most of the proof is provided in the discussion leading to the proposition. The predictions
regarding the effect of risk premium shocks on consumption, investment, output, and growth follow
from Eqs. (24) , (D.7) , (41) and (42).

The remaining step is to show that Assumptions 1I-2I ensure there exists a unique solution,
Q2 ∈ (0, Q∗) (equivalently, q2 < q∗) to Eq. (D.13).

To this end, we define the function,

f (q2, λ2) = ρ+ ψq2 − δ + λ2

(
1− exp (q2)

Q∗

)
− σ2

2.

The equilibrium price is the solution to, f (q2, λ2) = 0 (given λ2). Note that f (q2, λ2) is a concave
function of q2 with limq2→−∞ f (q2, λ2) = limq2→∞ f (q2, λ2) = −∞. Its derivative is,

∂f (q2, λ2)

∂q2
= ψ − λ2 exp (q2 − q∗) .

Thus, for fixed λ2, it is maximized at,

qmax
2 (λ2) = q∗ + log (ψ/λ2) .

Moreover, the maximum value is given by

f (qmax
2 (λ2) , λ2) = ρ− δ + ψ (q∗ + log (ψ/λ2)) + λ2 (1− exp (log (ψ/λ2)))− σ2

2

= ρ− δ + ψq∗ + ψ log (ψ/λ2) + λ2 − ψ − σ2
2.

Next note that, by Assumption 1I, the maximum value is strictly negative when λ2 = ψ, that

is, f (qmax
2 (ψ) , ψ) < 0. Note also that

df(qmax2 (λ2),λ2)
dλ2

= 1 − ψ
λ2
, which implies that the maximum

value is strictly increasing in the range λ2 ≥ ψ. Since limλ2→∞ f (qmax
2 (λ2) , λ2) = ∞, there exists

λmin
2 > ψ that ensures f

(
qmax

2

(
λmin

2

)
, λmin

2

)
= 0. By Assumption 2I, the transition probability

satisfies λ2 ≥ λmin
2 , which implies that f (qmax

2 (λ2) , λ2) ≥ 0. By Assumption 1I, we also have
that f (q∗, λ2) < 0. It follows that, under Assumptions 1I-2I, there exists a unique price level,
q2 ∈ [qmax

2 , q∗), that solves the equation, f (q2, λ2) = 0.
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D.3. New Keynesian microfoundations for nominal rigidities with invest-
ment

In the rest of this section, we present the microfoundations for nominal rigidities that lead to Eqs.
(D.5) and (D.6). The production structure is the same as in Online Appendix Section B.1.3.
Specifically, there is a continuum of monopolistically competitive production firms that produce
intermediate goods according to (B.4), and there is a competitive sector that produces the final
good according to (B.5). This also implies the demand for production firms is given by(B.6). One
difference is that production firms do not own the capital but they rent it from investment firms at
rate Rt,s. Hence, they choose how their capital input kt,s (ν), in addition to their factor utilization
rate, ηt,s (ν), as well as production and pricing decisions, yt,s (ν) , pt,s (ν).

These features ensure that the production firm’s output will be split between their capital
expenditures (that they pay to investment firms) and monopoly profits. To simplify the analysis,
we make assumptions so that there are no monopoly profits in equilibrium (and all output accrues
to investment firms as return to capital). Specifically, we assume the government taxes the firm’s
profits lump sum, and redistributes these profits to the firms in the form of a linear subsidy to
capital.

Formally, we let Πt,s (ν) denote the equilibrium pre-tax profits of firm ν (that will be charac-
terized below). We assume each firm is subject to the lump-sum tax determined by the average
profits of all firms,

(D.15) Tt,s =

∫
ν

Πt,s (ν) dν.

We also let Rt,s − τ t,s denote the after-subsidy cost of renting capital, where Rt,s denotes the
equilibrium rental rate paid to investment firms, and τ t,s denotes a linear subsidy paid by the
government. We assume the magnitude of the subsidy is determined by the government’s break-
even condition,

(D.16) τ t,s

∫
ν
kt,s (ν) dν = Tt,s.

Without price rigidities, the firm chooses pt,s (ν) , kt,s (ν) , ηt,s (ν) ∈ [0, 1] , yt,s (ν) , to maximize
its (pre-tax) profits,

(D.17) Πt,s (ν) ≡ pt,s (ν) yt,s (ν)− (Rt,s − τ t,s) kt,s (ν) ,

subject to the supply constraint in (B.4) and the demand constraint in (B.6). As in Online
Appendix Section B.1.3, the demand constraint holds as equality. Then, the optimality conditions
imply,

ηt,s (ν) = 1 and pt,s (ν) =
ε

ε− 1

Rt,s − τ t,s
A

.

That is, the firm utilizes its capital at full capacity (as before) and it increases its capital input and
production up to the point at which its price is a constant markup over its after-subsidy marginal
cost. In a symmetric-price equilibrium, we further have, pt,s (ν) = 1. Using Eqs. (B.4) and (D.16),
this further implies,

(D.18) yt,s (ν) = yt,s = Akt,s and Rt,s =
ε− 1

ε
A+ τ t,s = A.
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That is, output is equal to potential output, and capital earns its marginal contribution to potential
output (in view of the linear subsidies).

Now consider the alternative setting in which the firms have a preset nominal price that is
equal across firms, Pt,s (ν) = P . In particular, the relative price of a firm is fixed and equal to one,
pt,s (ν) = 1. The firm chooses the remaining variables, kt,s (ν) , ηt,s (ν) ∈ [0, 1] , yt,s (ν), to maximize
its (pre-tax) profits, Πt,s (ν), subject to the supply constraint in (B.4) and the demand constraint,
(B.6). Combining the constraints and using pt,s (ν) = 1, the firm’s problem can be written as,

max
ηt,s(ν),kt,s(ν)

Aηt,s (ν) kt,s (ν)− (Rt,s − τ t,s) kt,s (ν) s.t. 0 ≤ ηt,s (ν) ≤ 1 and Aηt,s (ν) kt,s (ν) ≤ yt,s.

We conjecture an equilibrium in which Rt,s = τ t,s and firms choose symmetric capital inputs,
kt,s (ν) = kt,s. Under this equilibrium, the marginal cost of renting capital is zero, Rt,s − τ t,s =
0. This verifies that it is optimal for firms to choose symmetric inputs, kt,s (ν) = kt,s. After
substituting these expressions, the firm’s problem becomes equivalent to its counterpart in Online
Appendix Section B.1.3. Following the same steps there, the optimal factor utilization is given by
ηt,s (ν) =

yt,s
Akt,s

≤ 1. Hence, output is determined by aggregate demand, yt,s, subject to the capacity
constraint, ηt,s (ν) ≤ 1.

In the conjectured equilibrium, the production firms choose the same level of inputs and factor
utilization rates and produce the same level of output as each other. Therefore, they also have the
same level of pre-tax profits. Using Eqs. (D.17) together with Rt,s = τ t,s = 0, we also calculate
the pre-tax profit level as Πt,s = yt,s. Substituting this into Eqs. (D.15) and (D.16), we obtain
τ t,s = yt,s/kt,s = ηt,sA. Substituting this into Eq. (D.17), we further obtain Rt,s = yt,s/kt,s = ηt,sA.
This verifies the conjecture, Rt,s = τ t,s.

In sum, when the firms’nominal prices are fixed, aggregate output is determined by aggregate
demand subject to the capacity constraint, which verifies Eq. (D.5). Moreover, thanks to lump-
sum costs to profits and linear subsidies to capital, all output accrues to the investment firms as
return to capital, which verifies Eq. (D.6).
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E. Extension with more general RRA

Our baseline dynamic model in the main text focuses on investors that have time-separable log
utility. In particular, we assume the relative risk aversion (RRA) as well as the elasticity of sub-
stitution (EIS) is equal to one. In this section, we analyze a model in which we allow for a more
general RRA but we still set the EIS equal to one. This helps to clarify the role of the assumption
on the RRA for our results (see Online Appendix Section A.2 for the role of the assumption on the
EIS).

Our analysis proceeds in two steps. First, we generalize the partial characterization of equi-
librium in Section III. We observe that a more general RRA introduces dynamic hedging motives.
These motives complicate the analysis with belief disagreements, because investors’wealth dynam-
ics are influenced by their relative dynamic hedging motives in addition to belief disagreements.
In particular, we illustrate that the separability property from Section III.B no longer applies.
Second, we focus on common beliefs (in which case the analysis is tractable) and investigate how
investors’dynamic hedging motive affects the severity of recessions driven by risk premium shocks.
Our analysis suggests that, in the empirically relevant case of RRA greater than one, dynamic
hedging motives are likely to amplify the effect of risk premium shocks on asset prices and output.

E.1. Environment and equilibrium with more general RRA

Consider the baseline dynamic model described in Section III with the only difference that investors
have Epstein-Zin preferences with the discount rate ρ, the RRA denoted by γ 6= 1, and the EIS
equal to 1. The limit case, γ → 1, corresponds to the baseline dynamic model. The rest of the
model is unchanged. We next define investors’preferences formally and derive the corresponding
HJB equation. We then derive the first order conditions and provide a partial characterization of
equilibrium. Finally, we fully characterize the equilibrium with common beliefs and investigate its
comparative statics.

E.1.1 Recursive preferences and the HJB equation

Following Duffi e and Epstein (1992), we define investor i’s utility recursively as the solution to:

(E.1) U it,s = Et,s

[∫ ∞
t

f
(
cu,s̃, U

i
u,s̃

)
du

]
,

where

(E.2) f (c, U) = ρ (1− γ)U

(
log (c)− 1

1− γ log ((1− γ)U)

)
.

Here, f (·) is called an aggregator function. As explained by Duffi e and Epstein (1992), the aggre-
gator function is not unique since monotone transformations of utility leave preferences unchanged
while affecting the aggregator function. The aggregator function in (E.2) corresponds to the so-
called “normalized utility”that simplifies the analysis with diffusion processes.

In particular, the aggregator in (E.2) (together with homothetic preferences) implies that the
utility of an investor with wealth ait,s can be written as (see Di Tella (2017)):

(E.3) U it,s
(
ait,s
)

=

(
ait,sζ

i
t,s/Qt,s

)1−γ
1− γ
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The process, ζit,s, captures forward-looking investment opportunities. We refer to it as the wealth
multiplier since a doubling of ζit,s has the same effect on the investor’s utility as a doubling of her
wealth. Note that we also normalize the wealth multiplier so that it provides a measure of utility
when the investor has one unit of capital (or wealth ait,s = Qt,s ).

The formulation in (E.1− E.3) is useful since it allows for a dynamic programming approach.
Specifically, suppose that as long as there is no transition the investor’s wealth ait,s follows the
process

dait,s
ait,s

= µat,sdt+ σat,sdZt.

Then, the HJB equation corresponding to the investor’s problem is suffi cient for optimality (see
Duffi e and Epstein (1992)):

0 = max
ω̃m,ω̃s

′
,c̃
f
(
c̃, U it,s

)
+
∂U it,s
∂a

ait,sµ
a
t,s +

∂U it,s
∂t

+
1

2

∂2U it,s
∂a2

(
ait,sσ

a
t,s

)2
+ λis

(
U it,s′ − U it,s

)
.

Note also that the evolution of investors’wealth is still given by Eq. (B.1). Using this equation
and substituting the aggregator function from (E.2), we obtain the following analogue of the HJB
equation for the baseline model [cf. (B.2)]:

0 = max
ω̃m,ω̃s

′
,c̃
ρ (1− γ)U it,s

(
log (c̃)− 1

1− γ log
(
(1− γ)U it,s

))
(E.4)

+
∂U it,s
∂a

(
ait,s

(
rft,s + ω̃m

(
rmt,s − r

f
t,s

)
− ω̃s′

)
− c̃
)

+
∂U it,s

(
ait,s
)

∂t

+
1

2

∂2U it,s
∂a2

(
ω̃mait,sσ

m
t,s

)2
+ λis

(
U it,s′

(
ait,s

(
1 + ω̃m

Qt,s′ −Qt,s
Qt,s

+
ω̃s
′

ps
′
t,s

))
− U it,s

(
ait,s
))
.

E.1.2 Optimality conditions

To derive the optimality conditions, first note that the functional form for U it,s in (E.3) implies

∂U it,s
∂a

=

(
ζit,s
Qt,s

)1−γ (
ait,s
)−γ

and
∂2U it,s
∂a2

= −γ
(
ζit,s
Qt,s

)1−γ (
ait,s
)−γ−1

.

The first order condition for c̃ in problem (E.4) then implies

(E.5) cit,s = ρ
(1− γ)U it,s
∂U it,s/∂a

= ρait,s.

The optimality condition for consumption is the same as before [cf. (23)]. As in the baseline model,
the assumption that EIS is equal to one ensures that investors spend a constant fraction of their
wealth.
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The first order condition for ω̃m in problem (E.4) implies,

∂U it,s
∂a

ait,s

(
rmt,s − r

f
t,s

)
+ λis

∂U it,s′
(
ait,s′

)
∂a

ait,s
Qt,s′ −Qt,s

Qt,s
= −

∂2U it,s
∂a2

ωm,it,s

(
ait,sσ

m
t,s

)2
.

After substituting for
∂U it,s
∂a ,

∂U i
t,s′
∂a ,

∂2U it,s
∂a2

and rearranging terms, we obtain:

(E.6) ωm,it,s σ
m
t,s =

1

γσmt,s

rmt,s − rft,s + λis

(
ζit,s′/Qt,s′

ζit,s/Qt,s

)1−γ (
ait,s′

ait,s

)−γ
Qt,s′ −Qt,s

Qt,s

 .
Finally, the first order condition for ω̃s

′
implies that investors choose ωs

′,i
t,s that ensures:

(E.7)
ps
′
t,s

λis
=

∂U i
t,s′

(
ai
t,s′

)
∂a

∂U it,s(ait,s)
∂a

=

(
ζit,s′/Qt,s′

ζit,s/Qt,s

)1−γ (
ait,s′

ait,s

)−γ
.

When γ 6= 1, conditions (E.6) and (E.7) feature two differences relative to their counterpart
in the baseline model [cf. (31) and (32)]. First, the investor’s desired risk taking also depends on
their relative risk aversion– captured by γ in the denominator of (E.6). Second, and more subtly,
the investor’s (relative) marginal utility per unit of wealth after a jump depends not only on her
(relative) wealth but also on the (relative) wealth multipliers– captured by ζit,s′ , ζ

i
t,s in (E.7). These

terms introduce a dynamic hedging motive into the portfolio choice. To understand these effects,
suppose ζit,s′ decreases so that the wealth multiplier for the transition state becomes lower while
keeping all else equal [cf. (E.3)]. This introduces substitution and income effects. The substitution
effect reduces the investor’s marginal utility per unit of wealth for this state– because investment
opportunities become less attractive. The income effect increases the investor’s marginal utility
per unit of wealth for this state– because the investor became effectively poorer. When γ > 1, the
income (resp. the substitution) effect dominates and the investor’s marginal utility increases (resp.
decreases).

E.1.3 Partial characterization of equilibrium

We next present a partial characterization of equilibrium that facilitates the subsequent analysis.

Goods market equilibrium. First consider the goods market equilibrium. The analysis in
Section III.A remains unchanged. In particular, since Eq. (23) still holds, Lemma 1 that captures
the output-asset price relation still applies. Therefore, we have Eq. (21) (that describes output in
terms of Qt,s) and Eq. (22) (that describes the return on the market portfolio absent transition).

Asset market equilibrium. Next consider the asset markets. As before, the equilibrium in
asset markets depend on investors’wealth shares [cf. (26)]

αit,s =
ait,s

kt,sQt,s
.
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We next generalize Lemmas 2 and 3 from Section III.B to this setting. To state the result, we
define type i investors’multiplier-adjusted belief for transition as

(E.8) Λit,s =

(
ζit,s′

ζit,s

)1−γ

λis.

We also define the wealth-weighted average multiplier-adjusted belief as

(E.9) Λt,s ≡
(∑

i

αit,s
(
Λit,s

)1/γ)γ
.

Note that Λ
i
t,s is a weighted average of multiplier-adjusted beliefs (although not necessarily a linear

average).

Lemma 7 (Wealth-share dynamics and the risk balance condition). Investors hold identical posi-
tions on the market portfolio

(E.10) ωm,it,s = 1 for each i.

They hold possibly heterogeneous positions on the contingent security given by

(E.11) ωs
′,i
t,s = Λ

1−1/γ
t,s

((
Λit,s

)1/γ − Λ
1/γ
t,s

)
.

Type i investors’wealth share evolves according to

(E.12)
α̇it,s/α

i
t,s = −ωs

′,i
t,s = Λ

1−1/γ
t,s

(
Λ

1/γ
t,s −

(
Λit,s

)1/γ) , if there is no state change,

αit,s′/α
i
t,s =

(
Λit,s/Λt,s

)1/γ
, if there is a state change to s′.

The equilibrium price of the market portfolio satisfies

σmt,s =
1

γσmt,s

(
rmt,s − r

f
t,s + Λt,s

(
1− Qt,s

Qt,s′

))
,(E.13)

where rmt,s = ρ+ g + µQt,s + σsσ
Q
t,s and σ

m
t,s = σs + σQt,s [cf. Lemma 1].

The equilibrium price of the contingent security satisfies

(E.14) ps
′
t,s = Λt,s

1/Qt,s′

1/Qt,s
.

The proof follows similar steps as in the main text and is relegated to the end of the section.
Eq. (E.10) is the same as its counterpart in the main text [cf. Eq. (28)]. As before, investors

express their differences in beliefs through their holdings of the contingent securities. Consequently,
they hold identical positions on the market portfolio. As in the main text, this feature allows
for equilibria with deterministic wealth share and asset price dynamics absent state transitions.
Specifically, we will focus on equilibria in which the price per capital can be written as a function
of investors’wealth shares. For these equilibria, Eq. (E.10) also implies σQt,s = 0 (see Remark 4).

Eqs. (E.11− E.12) are in general (unless γ = 1) different than their counterparts in the main
text [cf. Eqs. (29− 30)]. In this case, the wealth share dynamics are determined by the multiplier-
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adjusted belief, Λit,s =

(
ζi
t,s′

ζit,s

)1−γ
λis, as opposed to the unadjusted belief, λ

i
s. This illustrates that

wealth fluctuations depend not only on investors’belief differences but also on investors’relative
dynamic hedging motives. The latter depends on how the transition affects an investor’s wealth
multiplier, ζit,s′/ζ

i
t,s , relative to the other investor’s wealth multiplier, ζ

j
t,s′/ζ

j
t,s. When γ > 1, a

decrease in an investor’s relative multiplier increases the investor’s wealth share after transition.
Intuitively, since the income effect dominates, the investor brings more wealth to this state to hedge
the decline in investment opportunities.

Eqs. (E.13− E.14) are very similar to their counterparts in the main text [cf. Eqs. (34− 35)].
In particular, Eq. (E.13) shows that the risk balance condition generalizes to this setting with
two differences. First, investors’desired risk taking also depends on their relative risk aversion–
captured by γ in the denominator. Second, the wealth-weighted average transition belief, λ

i
s, is

replaced by the wealth-weighted average multiplier-adjusted belief, Λ
i
t,s. This reflects the dynamic

hedging motives.

Lemma 7 suggests that, unlike before, investors’wealth dynamics cannot be characterized sep-
arately from asset prices (cf. Remark 5). This is because the evolution of investors’wealth shares,{
αit,s
}
i
, depends on investors’ relative wealth multipliers,

{
ζit,s′/ζ

i
t,s

}
i
; and the latter (typically)

depends on asset prices.
To illustrate this and to facilitate the rest of the analysis, we present another lemma that

characterizes the wealth multiplier ζit,s. To state the result, we normalize the wealth multiplier.
Specifically, we define the normalized value, vit,s, so that the following holds at all times and states

(E.15) ζit,s = exp
(
ρvit,s

)
.

This normalization simplifies the analysis and ensures continuity with the baseline analysis. Specif-
ically, for the limit case γ → 1, Eq. (E.3) implies that the value function has the same form as

in the baseline model, U it,s
(
ait,s
)

= ρ

(
log(ait,s/Qt,s)

ρ + log vit,s

)
[cf. (48)]. Recall that qt,s = logQt,s

denotes the log asset price.
To simplify the expressions, we state the lemma under the assumption that the wealth multiplier

as well as the price per capital follow deterministic dynamics absent state transitions. This will
be the case in equilibrium because these variables can be written as a function of investors’wealth
shares, and the latter follows deterministic dynamics absent state transitions (see Remark 4).
Formally, note that ζit,s in general follows an endogenous diffusion process within each state,

dζt,s
ζt,s

= µζt,sdt+ σζt,sdZt for s ∈ {1, 2} .

We assume σζt,s = 0 as well as σQt,s = 0 [cf. (13)].

Lemma 8 (Wealth multiplier). Consider an equilibrium with σζt,s = σQt,s = 0. Then, the normal-
ized value, vit,s (where the wealth multiplier is ζ

i
t,s = exp

(
ρvit,s

)
) is the solution to the following
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differential equation

ρvit,s −
∂vit,s
∂t

= log ρ+ qt,s +
1

ρ

 g − 1
2γσ

2
s +

α̇it,s
αit,s

+λisV

{
αi
t,s′

αit,s
exp

(
ρ
(
vit,s′ − vit,s

))}
 ,(E.16)

where V {c} =
c1−γ − 1

1− γ

and
α̇it,s
αit,s

= Λ
1−1/γ
t,s

(
Λ

1/γ
t,s −

(
Λit,s

)1/γ)
,
αit,s′

αit,s
=

(
Λit,s

Λt,s

)1/γ

[cf. Lemma 7].

The proof follows from combining Eq. (E.4) with our characterization of equilibrium and is
relegated to the end of this section. Note also that, in the limit as γ → 1, we recover Eq. (49) that
characterizes vit,s in the baseline model. Hence, Eq. (E.16) provides a more general characterization
for the normalized value function that applies for arbitrary γ.

Eq. (E.16) shows that the normalized value (and therefore the wealth share multiplier) depends
on asset prices, qt,s. Intuitively, asset prices affect investors’welfare (per capital) because they
determine output and consumption [cf. Eqs. (24) and (21)]. Importantly, Eq. (E.16) also illustrates
that these effects depend on investors’belief types (in complex fashion). For example, consider an
equilibrium as in the baseline model in which the high-risk-premium state features relatively low
asset prices whereas the low-risk-premium state features effi cient asset prices, qt,2 < qt,1 = q∗.
Suppose also that the economy is currently in the high-risk-premium state s = 2. Then, Eq. (E.16)
suggests that (all else equal) pessimists that perceive a lower probability of transition to the low-
risk-premium state (lower λi2) will have lower v

i
t,2 than optimists– and more so when qt,2 is lower.

First-best equilibrium with common beliefs. For future reference, we conclude this section
by solving for the first-best equilibrium without interest rate rigidities. In this case, there is no
lower bound constraint on the interest rate, so the price of capital is at its effi cient level at all times
and states, Qt,s = Q∗ and qt,s = q∗ ≡ logQ∗. Combining this with Eq. (E.13), we solve for “rstar”
as,

(E.17) rf∗s = ρ+ g − γσ2
s for each s ∈ {1, 2} .

As before, in the first-best equilibrium the risk premium shocks are fully absorbed by the interest
rate.

E.2. Common beliefs benchmark with more general RRA

We next characterize the equilibrium with interest rate rigidities for the case in which investors
have common beliefs. We generalize Proposition 1 to this setting and discuss how the dynamic
hedging motives affect the severity of demand recessions driven by risk premium shocks.

Suppose there is a single investor type with belief denoted by λs ≡ λis. As before, we conjecture
that the price and the interest rate will remain constant within states, Qt,s = Qs and r

f
t,s = rfs .

This implies the wealth multiplier is also constant within states, ζt,s = ζs. Then, using Eq. (E.13),
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we obtain the following risk balance conditions,

(E.18) σs =
1

γσs

(
ρ+ g + exp (ρ (1− γ) (vs′ − vs))λs

(
1− Qs

Qs′

)
− rfs

)
for s ∈ {1, 2} .

Here, we substituted the wealth multiplier with normalized value, ζs = exp (ρvs) [cf. (E.15)]. Using
Eq. (E.16), we also characterize the normalized value as the solution to

ρvs = log ρ+ qs +
1

ρ

(
g − 1

2
γσ2

s + λsV {exp (ρ (vs′ − vs))}
)
for s ∈ {1, 2} ,(E.19)

where V {c} =
c1−γ − 1

1− γ .

The equilibrium tuple,
{
rfs , Qs, vs

}
s∈{1,2}

, is found by solving Eqs. (E.18− E.19) together with

the goods market equilibrium conditions (25).
To characterize the equilibrium further, we make the following analogue of Assumption 1

Assumption 1D. σ2
2 >

ρ+g
γ > σ2

1.

This assumption ensures that the first best equilibrium in (E.17) is not feasible. Therefore, we
conjecture that the interest rate constraint binds in the high-risk-premium state but not in the
low-risk-premium state, rf1 > 0, Q1 = Q∗ and rf2 = 0, Q2 < Q∗.

Equilibrium in the high-risk-premium state and dynamic hedging motives. Under our
conjecture, the risk balance condition (E.18) for the high-risk-premium state s = 2 can be written
as,

(E.20) γσ2
2 = ρ+ g + exp (ρ (1− γ) ∆v)λ2

(
1− Q2

Q∗

)
,

where we define ∆v = v1 − v2 as the difference in the normalized value between the low and
high-risk-premium states. Taking the difference of Eq. (E.19) across the two states, we further
obtain

(E.21) ρ2∆v = ρ (q∗ − q2) +
1

2
γ
(
σ2

2 − σ2
1

)
+ λ1V {exp (−ρ∆v)− λ2V {exp (ρ∆v)}} .

The pair, (q2,∆v), corresponds to the solution to the two equations (E.20) and (E.21). As before,
we need a lower bound on λ2 to ensure the existence of an equilibrium with positive asset price.
Under an appropriate parametric restriction, there exists a solution that satisfies q2 < q∗.

Given the equilibrium price level, Eq. (E.21) implies ∆v > 0. To see this, note that ρ (q∗ − q2)+
1
2γ
(
σ2

2 − σ2
1

)
> 0 Note also that the left-hand-side is an increasing function of ∆v whereas the

right-hand-side is a decreasing function. Hence, the equilibrium satisfies ∆v > 0. As expected,
the normalized value is higher in the low-risk-premium state (that features higher prices and lower
uncertainty) than in the high-risk-premium state.

To understand how the dynamic hedging motives affect the equilibrium in the high-risk-premium
state, it is instructive to consider a particular comparative statics exercise: specifically, suppose
σ2

1 declines. Eq. (E.21) illustrates that this increases the equilibrium level of ∆v. As expected, a
decline in σ2

1 makes the investment opportunities in state 1 relatively more attractive. Equivalently,
it makes the investment opportunities in state 2 relatively less attractive. Eq. (E.20) illustrates
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that this change affects the equilibrium asset price only through its impact on ∆v. Moreover, the
same equation illustrates that the change would not affect the equilibrium price in the baseline
model with γ = 1. Hence, this exercise is useful to understand how a decline in the relative
attractiveness of investment opportunities in the high-risk-premium state affects the equilibrium
price in this state.

Eq. (E.20) implies that the induced increase in ∆v decreases (resp. increases) q2 when γ > 1
(resp. γ < 1). Intuitively, a decline in the (relative) attractiveness investment opportunities in
the high-risk-premium state generates substitution and income effects that influence the investors’
marginal utility and discount factor across states [cf. (E.7)]. The substitution effect increases the
investor’s (relative) marginal utility in the low-risk-premium state– she would like to bring wealth to
the low-risk-premium state to take advantage of the more attractive investment opportunities. The
income effect increases the investor’s (relative) marginal utility in the high-risk-premium state–
she would like to bring more wealth to the high-risk-premium state to hedge the decline in the
attractiveness of investment opportunities. When γ > 1, the income effect (or the hedging motive)
dominates and an increase in ∆v increases the investor’s marginal utility and discount factor for
the high-risk-premium relative to the low-risk-premium state. Since q2 < q∗, this reweighting of
discount factors reduces current asset valuations. Since the interest rate is constrained, this also
leads to a decline in the equilibrium price, q2 [cf. (E.20)].

Equilibrium in the low-risk-premium state. Under our conjecture, the risk balance condition
(E.13) can be written as,

(E.22) rf1 = ρ+ g − γσ2
1 − exp (ρ (1− γ) (−∆v))λ1

(
Q∗

Q2
− 1

)
As before, the interest rate adjusts to ensure that the risk balance condition is satisfied with the
effi cient price level, Q1 = Q∗. As before, we need an appropriate parametric restriction (an upper
bound on λ1) to ensure that the implied interest rate is positive, r

f
1 > 0.

Eq. (E.22) illustrates that in this state the dynamic hedging motives affect the interest rate, rf1 ,
rather than the price level, Q1 = Q∗. In particular, all else equal, an increase in ∆v decreases (resp.
increases) rf1 when γ > 1 (resp. γ < 1). As before, when γ > 1, the income effect (or the hedging
motive) dominates and an increase in ∆v increases the investor’s marginal utility and discount
factor for the high-risk-premium relative to the low-risk-premium state. As before, this reweighting
of discount factors reduces current asset valuations. In this case, the interest rate declines to offset
the price impact of the shock. This ensures that asset prices and output are equal to their effi cient
levels but the interest rate is lower.

E.3. Omitted proofs

Proof of Lemma 7. Note that, substituting Eqs. (E.7) into (E.6), we find

(E.23) ωm,it,s σ
m
t,s =

1

γσmt,s

(
rmt,s − r

f
t,s + ps

′
t,s

Qt,s′ −Qt,s
Qt,s

)
.

This shows that investors allocate identical portfolio weights to the market portfolio, ωm,it,s = ωmt,s.
Combining this with the market clearing condition (16), we find that these identical portfolio
weights are equal to one,

ωm,it,s = 1.

99



This proves (E.10).
To characterize the positions on the contingent security, first consider how type i investors’

wealth share changes after a state transition. Using (26) to rewrite Eq. (E.7), we obtain the
following analogue of Eq. (33):

(E.24) αit,s′ = αit,s

(
Λit,s

1

κt,s

)1/γ

where κt,s = ps
′
t,s

Qt,s′

Qt,s
.

Recall that Λit,s =

(
ζi
t,s′

ζit,s

)1−γ
λis [cf. (E.8)]. Aggregating this expression across all investors, and

using
∑

i α
i
t,s′ = 1, we obtain

κt,s = Λ
i
t,s ≡

(∑
i

αit,sΛ
1/γ
t,s

)γ
.

Substituting this back into (33), we obtain

αit,s′

αit,s
=

(
Λit,s

Λt,s

)1/γ

.

This proves the second line of Eq. (E.12).
Combining κt,s = Λt,s = 1 with the definition of κt,s in Eq. (33), we obtain an expression for

the price of the contingent security,

ps
′
t,s = Λt,s

1/Qt,s′

1/Qt,s
.

This proves Eq. (E.14). Combining this with Eq. (E.23), and substituting ωm,it,s = 1, we obtain
the risk balance condition (E.13).

Next consider the positions type i investors take in the contingent security to achieve the change
in their wealth share after transition. Following the same steps as in the proof of Lemma 2, we

obtain
αi
t,s′

αit,s
= 1 +

ωs
′,i
t,s

Λt,s
. Combining this with the second line of Eq. (E.12), we solve for type i

investors’equilibrium position in the contingent security

ωs
′,i
t,s =

(
Λt,s

)(Λit,s

Λt,s

)1/γ

− 1

 .
Rearranging this expression proves Eq. (E.11).

Finally consider how type i investors’wealth share changes absent a state transition. Following

the same steps as in the proof of Lemma 2, we obtain
dαit,s
αit,s

= −ωs
′,i
t,s dt. Substituting Eq. (E.11)

proves the first line of Eq. (E.12) and completes the proof of the lemma.

Proof of Lemma 8. First consider the differential equation that characterizes the wealth
multiplier, ζit,s. Using Eqs. (E.3) and (E.4) along with the characterizations in Lemma 1 (which
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applies also in this context) and Lemma 7, as well as σQt,s = 0, we obtain

log ζit,s = log ρ+ qt,s +
1

ρ


g − 1

2γσ
2
s − ω

s′,i
t,s +

∂ζit,s/∂t

ζit,s

+λis
1

1−γ

((
αi
t,s′

αit,s

ζi
t,s′

ζit,s

)1−γ
− 1

)
 .

Next, we substitute ζit,s = exp
(
ρvit,s

)
and use σζt,s = 0 (which implies vit,s is also deterministic

absent state transitions) to obtain

ρvit,s −
∂vit,s
∂t

= log ρ+ qt,s +
1

ρ

g − 1

2
γσ2

s − ω
s′,i
t,s + λis

1

1− γ

(αit,s′
αit,s

ζit,s′

ζit,s

)1−γ

− 1

 .
Substituting ωs

′,i
t,s = − α̇it,s

αit,s
from Lemma 7 proves Eq. (E.16).
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F. Data details and omitted empirical results

This section presents the details of the data sources and variable construction used in Section VII,
and presents the empirical results (tables and figures) omitted from the main text.

House price index. We rely on the cross-country quarterly panel dataset described
in Mack et al. (2011). The dataset is regularly updated and publicly available at
https://www.dallasfed.org/institute/houseprice. We use the inflation-adjusted (real) house price
index measure to construct the shock variable in our regression analysis (see (58)). Our country
coverage is to a large extent determined by the availability of this measure. In particular, we ex-
clude a few developed countries such as Portugal, Austria, and Greece for which we do not have
data on house prices that we can consistently compare with house prices in other countries.

Euro or Exchange Rate Mechanism (Euro/ERM) status. We hand-collect this data from
various online sources. A country-quarter is included in the Euro/ERM sample if the country is
a member of the Euro or the European Exchange Rate mechanism in most of the corresponding
calendar year. Table F.1 describes the Euro/ERM status by year for all countries in our sample.

GDP, consumption, investment. We obtain this data from the OECD’s quarterly national
accounts dataset (available at https://stats.oecd.org). We use the variables calculated according
to the expenditure approach. The corresponding OECD subject codes are as follows:

• GDP: “B1_GE”(Gross domestic product —expenditure approach).

• Consumption: “P31S14_S15”(Private final consumption expenditure)

• Investment: “P51”(Gross fixed capital formation)

For each of these variables, we use the measures that are adjusted for inflation as well as seasonality.
The OECD measure code is: “LNBQRSA”(National currency, chained volume estimates, national
reference year, quarterly levels, seasonally adjusted).

Relative GDP (with PPP-adjusted prices in a common base year). We obtain
an alternative GDP measure from the OECD’s annual national accounts dataset (available at
https://stats.oecd.org). We use the variable calculated according to the expenditure approach
(with subject code “B1_GE”), measured with PPP-adjusted prices in a common base year. The
OECD measure code is: “VPVOB”(Current prices, constant PPPs, OECD base year). We use the
value of this measure in 1990 to weight all of our regressions (see (58)).

CPI. We obtain this data from the OECD’s prices and purchasing power parities dataset (available
at https://stats.oecd.org). We use the core CPI measure that excludes food and energy. The OECD
subject code is: “CPGRLE”(Consumer prices - all items non-food, non-energy). We use the annual
measure, which is less subject to seasonality, and we linearly interpolate this to obtain a quarterly
measure.

Unemployment rate. We obtain this data from the OECD’s key short-term economic indicators
database (available at https://stats.oecd.org). We use the harmonized unemployment rate measure
with seasonal adjustment and at quarterly frequency. The OECD subject code is “LRHUTTTT”
(Harmonized unemployment rate: all persons, s.a).
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The policy interest rate. Obtaining the policy interest rate is not as trivial as it might sound
since different central banks conduct monetary policy in terms of different target rates (and some-
times without specifying a target rate, or by monitoring multiple rates). On the other hand, the
selection does not substantially affect the results since short-term risk-free rates within a developed
country are often highly correlated. Following Romer and Romer (2018), we use announced policy
target rates when available, and otherwise we use collateralized short-term market rates (such as
Repo rates or Lombard rates). For Eurozone countries, we use the local collateralized rate until
the country joins the Euro, and we switch to the European Central Bank’s (ECB) main refinancing
operations (MRO) rate after the country joins the Euro.

For most of the countries, we construct our own measure of the policy interest rate according to
the above selection criteria by using data from the Global Financial Data’s GFDATABASE (GFD).
This is a proprietary database that contains a wealth of information on various asset prices (see
https://www.globalfinancialdata.com for details).

For a few countries (specified below), we instead rely on the Bank for International
Settlements’s (BIS) database on central bank policy interest rates (publicly available at
https://www.bis.org/statistics/cbpol.htm). We switch to the BIS measure when we cannot con-
struct an appropriate measure using the GFD; or when the BIS measure has greater coverage than
ours and the two measures are highly correlated. From either database, we obtain monthly data
and convert to quarterly data by averaging over the months within the quarter.

• United States: GFD ticker “IDUSAFFD”(USA Fed Funds Offi cial Target Rate).

• United Kingdom: GFD ticker “IDGBRD”(Bank of England Base Lending Rate).

• Australia: GFD ticker “IDAUSD”(Australia Reserve Bank Overnight Cash Rate).

• South Korea: GFD ticker “IDKORM”(Bank of Korea Discount Rate).

• Germany: GFD ticker “IDDEULD”(Germany Bundesbank Lombard Rate) until the country
joins the Euro. Afterwards, we use the ECB MRO rate. The corresponding GFD ticker is:
“IDEURMW”(Europe Marginal Rate on Refinancing Operations).

• New Zealand: GFD ticker “IDNZLD”(New Zealand Reserve Bank Offi cial Cash Rate).

• France: GFD ticker “IDFRARD” (Bank of France Repo Rate) until the country joins the
Euro.

• Denmark: We use the BIS measure (highly correlated with our measure and greater coverage).

• Finland: GFD ticker “IDFINRM”(Bank of Finland Repo Rate) until the country joins the
Euro.

• Sweden: GFD ticker “IDSWERD”(Sweden Riksbank Repo Rate).

• Israel: GFD ticker “IDISRD”(Bank of Israel Discount Rate).

• Italy: GFD ticker “IDITARM”(Bank of Italy Repo Rate) until the country joins the Euro.

• Spain: GFD ticker “IDESPRM”(Bank of Spain Repo Rate) until the country joins the Euro.

• Ireland: GFD ticker “IDIRLRD” (Bank of Ireland Repo Rate) until the country joins the
Euro.
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• Belgium: GFD ticker “IDBELRM” (Belgium National Bank Repo Rate) until the country
joins the Euro.

• Netherlands: GFD ticker “IDNLDRD”(Netherlands Bank Repo Rate) until the country joins
the Euro.

• Norway: GFD ticker “IDNORRD”(Bank of Norway Sight Deposit Rate).

• Japan: GFD ticker “IDJPNCM”(Japan Target Call Rate). GFD data is missing from March
2001 until July 2006. BIS data is also missing for most of this period. We use other sources
to hand-fill the interest rate over this period as being equal to 0% (see for instance, the data
from St. Louis Fed at https://fred.stlouisfed.org/series/IRSTCI01JPM156N).

• Switzerland: We use the BIS measure (cannot identify an appropriate rate from the GFD).

• Canada: We use the BIS measure (highly correlated with our measure and greater coverage).

Stock prices. We obtain this data from the GFD. For each country, we try to pick the most
popular stock price index (based on Internet searches). We obtain daily data and convert to
quarterly data by averaging over all (trading) days within the quarter. We then divide this with
our core CPI measure (see above) to obtain a real stock price series.

• United States: GFD ticker “_SPXD”(S&P500 Index)

• United Kingdom: GFD ticker “_FTSED”(UK FTSE100 Index).

• Australia: GFD ticker “_AXJOD”(Australia S&P/ASX 200 Index).

• South Korea: GFD ticker “_KS11D”(Korea SE Stock Price Index (KOSPI)).

• Germany: GFD ticker “_GDAXIPD”(Germany DAX Price Index).

• New Zealand: GFD ticker “_NZ15D”(NZSX-15 Index).

• France: GFD ticker “_FCHID”(Paris CAC-40 Index).

• Denmark: GFD ticker “_OMXC20D”(OMX Copenhagen-20 Index).

• Finland: GFD ticker “_OMXH25D”(OMX Helsinki-25 Index).

• Sweden: GFD ticker “_OMXS30D”(OMX Stockholm-30 Index).

• Israel: GFD ticker “_TA125D”(Tel Aviv SE 125 Broad Index).

• Italy: GFD ticker “_BCIJD”(Milan SE MIB-30 Index).

• Spain: GFD ticker “_IBEXD”(Madrid SE IBEX-35 Index).

• Ireland: GFD ticker “_ISEQD”(Ireland ISEQ Overall Price Index).

• Belgium: GFD ticker “_BFXD”(Belgium CBB Bel-20 Index).

• Netherlands: GFD ticker “_AEXD”(Amsterdam AEX Stock Index).

• Norway: GFD ticker “_OSEAXD”(Oslo SE All-Share Index).
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• Japan: GFD ticker “_N225D”(Nikkei 225 Stock Index).

• Switzerland: GFD ticker “_SSMID”(Swiss Market Index).

• Canada: GFD ticker “_GSPTSED”(Canada S&P/TSX 300 Index).

Earnings. We obtain monthly data on the price-earnings ratio of publicly traded firms from the
GFD (typically constructed for a broad sample of stocks chosen by the GFD). We then combine
this information with our nominal price index (using the price at the last trading day of the month)
to construct a monthly series for earnings. We convert this to a quarterly measure by averaging
over the months within the quarter. We then divide this by our core CPI measure to obtain a
quarterly real earnings series for publicly traded firms.

GFD ticker for the price earnings ratio typically has the form “SY-three digit country code-PM”
(e.g., the ticker for the United States is “SYUSAPM”). One exception is the United Kingdom for
which the corresponding GFD code is “_PFTASD”(UK FT-Actuaries PE Ratio).

Credit expansion. Our measure of bank credit is based on Baron and Xiong (2017), who construct
a variable, credit expansion, defined as the annualized past three-year change in bank credit to GDP
ratio. Mathematically, it is expressed as

(F.1) credit expansion =
∆
( bank credit

GDP

)
t
−∆

( bank credit
GDP

)
t−12

12
× 4,

where t denotes a quarter. Baron and Xiong (2017) construct this measure by merging data from
two sources. Their main source is the “bank credit”measure from the BIS, which covers a large
set of countries but is generally available only for postwar years. For this reason, Baron and Xiong
(2017) also supplement it with the “bank loans”measure from Schularick and Taylor (2012), which
covers fewer countries but more years. Since our panel starts in 1990, we ignore the second source
and rely entirely on the BIS measure.

Specifically, we use the quarterly BIS database on credit to the nonfinancial sector (publicly
available at https://www.bis.org/statistics/totcredit.htm). We obtain the measure “bank credit to
the private nonfinancial sector” expressed in units of percentage of GDP (the corresponding BIS
code is “Q:5A:P:B:M:770:A”), which enables us to construct the variable in (F.1). We verify that
our variable is highly correlated with the measure constructed by Baron and Xiong (2017) (who
generously shared their data with us)– the correlation coeffi cient for the available country-quarters
is 0.975.

Following Baron and Xiong (2017), we also construct a “credit expansion-std” variable by
standardizing the measure in (F.1) by its mean and standard deviation within each country. Since
Baron and Xiong (2017) focus on predicting stock prices, they calculate the mean and the standard
deviation using only past data so as to avoid any look-ahead bias. Since our focus is different, we
ignore this subtlety and calculate the sample statistics using the entire data for the corresponding
country (in the BIS database).
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Table F.1: Euro/ERM status by country and year

Country 1990 1991 1992 1993 1994 1995 1996 1997-2017

Belgium 1 1 1 1 1 1 1 1

Denmark 1 1 1 1 1 1 1 1

Finland 0 0 0 0 0 0 0 1

France 1 1 1 1 1 1 1 1

Germany 1 1 1 1 1 1 1 1

Ireland 1 1 1 1 1 1 1 1

Italy 1 1 1 0 0 0 0 1

Netherlands 1 1 1 1 1 1 1 1

Spain 1 1 1 1 1 1 1 1

Australia 0 0 0 0 0 0 0 0

Canada 0 0 0 0 0 0 0 0

Israel 0 0 0 0 0 0 0 0

Japan 0 0 0 0 0 0 0 0

Korea 0 0 0 0 0 0 0 0

NZL 0 0 0 0 0 0 0 0

Norway 0 0 0 0 0 0 0 0

Sweden 0 1 1 0 0 0 0 0

Switzerland 0 0 0 0 0 0 0 0

UK 0 1 1 0 0 0 0 0

USA 0 0 0 0 0 0 0 0

Euro status. Belgium, Finland, France, Germany, Ireland, Italy, Netherlands, Spain adopted the
Euro in 1999. Denmark hasn’t adopted the Euro but is a member of the ERM.
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Table F.2: Summary statistics by ERM for the baseline regression sample

ERM sample Non-ERM sample Difference

Mean Std.Deviation Mean Std.Deviation Mean Std.Error

∆ log house prices (real) 0.0047 0.0181 0.0054 0.0187 -0.0007 (0.0023)

∆ log GDP (real) 0.0047 0.0124 0.0065 0.0092 -0.0018 (0.0009)

policy interest rate (nominal) 0.0232 0.0196 0.0349 0.0289 -0.0117 (0.0038)

∆ log CPI (core) 0.0041 0.0027 0.0046 0.0039 -0.0004 (0.0005)

∆ unemployment rate -0.0002 0.0038 -0.0002 0.0030 0.0000 (0.0003)

∆ log investment (real) 0.0043 0.0502 0.0070 0.0295 -0.0027 (0.0018)

∆ log consumption (real) 0.0038 0.0091 0.0069 0.0095 -0.0031 (0.0008)

earnings to price ratio 0.0626 0.0245 0.0584 0.0227 0.0042 (0.0034)

∆ log stock prices (real) 0.0042 0.0911 0.0111 0.0818 -0.0069 (0.0044)

credit expansion 0.0148 0.0565 0.0136 0.0298 0.0012 (0.0083)

credit expansion-std 0.1047 1.2628 -0.0346 1.1128 0.1393 (0.2001)

Observations 760 1130 1890

∆ represents quarterly change. Standard errors are Newey-West standard errors with a bandwidth of 20 quarters.
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Table F.3: Private housing wealth in 2005 (% of GDP) by Euro/ERM status

Country (Euro/ERM) Housing wealth Country (Non-Euro/ERM) Housing wealth

Spain 414.33 Australia 301.32

Italy 271.25 USA 199.77

France 253.74 Korea 180.12

Netherlands 222.03 Japan 169.74

Germany 186.77 Canada 146.51

Denmark 168.45 Norway 139.48

Sweden 132.10

Average 252.40 Average 181.29

GDP-weighted average 255.14 GDP-weighted average 191.67

Table F.4: Stock market capitalization in 2005 (% of GDP) by Euro/ERM status

Country (Euro/ERM) Market cap Country (Non-Euro/ERM) Market cap

Finland 102.48 Switzerland 229.68

Netherlands 87.37 USA 129.84

Spain 82.95 Canada 126.75

France 80.07 UK 121.32

Belgium 74.47 Australia 116.08

Denmark 67.30 Sweden 103.83

Ireland 53.90 Korea 96.16

Italy 43.08 Israel 86.04

Germany 42.01 Norway 79.94

Japan 61.89

Average 69.22 Average 115.16

GDP-weighted average 61.84 GDP-weighted average 120.26

Data sources. We obtain housing wealth to GDP ratio from the World Inequality Database
(WID) which is publicly available at https://wid.world/. We construct the ratio by combining
yearly series on “private housing assets”(WID indicator, “mpwhou”) and “gross domestic product
(WID indicator, “mgdpro”).

We obtain stock market capitalization to GDP ratio as yearly series from the GFD. The corre-
sponding ticker has the form “CM.MKT.LCAP.GD.ZS three digit country code” (e.g., the ticker
for the United States is “CM.MKT.LCAP.GD.ZS USA”).

For both tables, we construct the GDP-weighted averages by using our relative GDP measure
(in 2005) described earlier in this section.
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Figure F.1: Impulse responses to one percent decrease in real house prices: Euro/ERM minus
non-Euro/ERM. The panels illustrate the differences in coeffi cients between the ERM and the non-ERM
samples corresponding to the baseline regression results in Figure VIII.
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Figure F.2: Additional impulse responses to one percent decrease in real house prices when
credit expansion has been one standard deviation above average: Euro/ERM minus non-
Euro/ERM. The panels illustrate the differences in coeffi cients between the ERM and the non-ERM samples
corresponding to the regression results with credit interaction in Figure IX.
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Figure F.3: Impulse responses to one percent decrease in real house prices: No time fixed
effects. The panels illustrate the analogues of the baseline regression results in Figure VIII with the
difference that time fixed effects are excluded from the regressions.
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Figure F.4: Impulse responses to one percent decrease in real house prices: 1980-2017. The
analogues of the results in Figure VIII with a sample that starts in 1980Q1 (as opposed to 1990Q1).
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Figure F.5: Additional impulse responses to one percent decrease in real house prices when
credit expansion has been one standard deviation above average: 1980-2017. The panels illustrate
the analogues of the results in Figure IX with a sample that starts in 1980Q1 (as opposed to 1990Q1).
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Figure F.6: Impulse responses to one percentage point increase in the policy interest rate (for
the full sample). The panels illustrate the analogues of the baseline regression results in Figure VIII,
where we consider shocks to the policy interest rate as opposed to house prices. Specifically, we run the
analogue of the specification in (58) (on the full sample) where the shock variable is the level of the policy
interest rate and the outcome variable is log house prices (left panel) or log stock prices (right panel). The
solid lines plot the coeffi cients corresponding to the the policy interest rate variable. All regressions include
time and country fixed effects; 12 lags of the level of the policy interest rate, contemporaneous value and
12 lags of the first difference of log GDP, 12 lags of the first difference of log house prices, and 12 lags of
the first difference of log stock prices. The dotted lines show 95% confidence intervals calculated according
to Newey-West standard errors with a bandwidth of 20 quarters. All regressions are weighted by countries’
PPP-adjusted GDP in 1990. Data is unbalanced quarterly panel that spans 1990Q1-2017Q4. All variables
except for the policy interest rate are adjusted for inflation. The sources and the definitions of variables are
described earlier in this appendix.
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