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1 Introduction

Discrete choice models generally assume that consumers are aware of all available options. This

prevents researchers from asking many questions of interest. What factors lead consumers to con-

sider more options? Will inertial consumers ‘wake up’ in response to a price increase but remain

unresponsive if rivals lower prices? Which products will respond well to advertising because they

have high market shares conditional on being noticed? Normatively, whether people eat the same

foods and go to the same stores year after year because they like those options or because they do

not know what else exists has first-order consequences for welfare. If one can measure preferences

conditional on consideration, we can assess the benefits of policies that help consumers make more

considered choices.

Consideration set models are a generalization of discrete choice models that relax the assumption

that individuals consider all goods. These models instead specify a probability that each subset of

options is considered. The framework has a long tradition in psychology and marketing (Hauser and

Wernerfelt 1990; Shocker, Ben-Akiva, Boccara, and Nedungadi 1991) and has become increasingly

popular in both theoretical and applied literatures in economics. Consideration sets might arise

due to inattention or bounded rationality (Treisman and Gelade 1980), from search costs (Caplin,

Dean, and Leahy 2016), or because consumers face (unobserved) constraints on what options can

be chosen (Gaynor, Propper, and Seiler 2016).1

Identification is an immediate concern in consideration set models – if changes in prices or

other characteristics perturb demand, can we tell whether this impact comes via consideration

or utility? Empirical models in this literature have previously relied either on auxiliary data or

exclusion restrictions to answer this question. For example, Conlon and Mortimer (2013) assume

that consideration sets are known in some periods, Honka (2014) and Honka, Hortaçsu, and Vitorino

(2015) assume consideration sets are partially observed from survey data,2 while Caplin and Dean

(2015) assume choice probabilities conditional on consideration can be measured. Numerous papers

assume that observables impact either attention or utility but not both.3,4 Manzini and Mariotti

(2014) derive revealed preference conditions under which utility and consideration probabilities can

be identified separately from choice data, but their approach requires a degree of choice set variation

1In this paper, we use “attentive” as synonymous with “a good is in the consumer’s consideration set”.
2Honka, Hortaçsu, and Vitorino (2015) further distinguish between “awareness” and consideration. The framework

used in this paper can be thought of as a reduced form version of their model in which “awareness” and “consideration”
jointly determine the set of goods from which consumers choose.

3Among others, Goeree (2008), Gaynor, Propper, and Seiler (2016), Heiss, McFadden, Winter, Wupperman, and
Zhou (2016) and Hortaçsu, Madanizadeh, and Puller (2015) take this approach.

4 Crawford, Griffith, and Iaria (2016) show that identification is possible without excluding any variables from
utility or consideration with panel data, but only if one restricts how consideration sets change over time.
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that is not observed outside of experimental settings, such as observing choices from every pairwise

set of options.5

In this paper, we prove that the restrictions on choice probabilities imposed by economic theory

are sufficient to separately identify preferences and consideration probabilities in many applied set-

tings of interest. Our method does not require panel data or auxiliary information on consideration

sets, and it allows all observables to impact both consideration and utility. We provide simple closed

form expressions for consideration set probabilities in terms of differences in cross-derivatives (the

discrete choice analogue of ‘Slutsky asymmetries’). Our framework subsumes many of the consid-

eration set models in the applied literature and does not rely on assuming a particular functional

form for random utility errors. We also show that ad hoc attempts to model consideration sets such

as fixed effects in utility for products on different shelves or interactions between prices and such

fixed effects still lead to misspecified models; the consideration set models we consider are equivalent

to full-consideration models where the utility of good j depends directly on characteristics of rival

goods j′ 6= j, a dependence which is typically ruled out.

Our identification result builds on the insight that imperfect consideration breaks the symmetry

between cross-price responses (or more generally, cross-characteristic responses). For example, in

a model with a default, symmetry would ordinarily require that switching decisions be equally

responsive to an increase in the price of the default good by $100 or a decrease in the price of all

rival goods by $100. Suppose instead that consumers will be inattentive and choose the default

option unless the default good becomes sufficiently unsuitable. Now, switching decisions will be

unresponsive to changes in the price of rival goods but more responsive to changes in the price of

the default to the degree that these changes perturb attention. While the link between imperfect

attention and Slutsky asymmetry has been discussed in the theoretical literature, notably in Gabaix

(2014), this link has not previously been utilized in applied work.6

Our results imply that, in many applications, one could estimate consideration set models rather

than the conventional discrete choice models that they nest.7 In cross-sectional data, our results can

be used to identify whether goods are demanded because they are high-utility or because they are

more likely to be considered. In panel data, one can evaluate whether inertia reflects switching costs

5Masatlioglu, Nakajima, and Ozbay (2012) derive revealed preference tests for imperfect consideration in a deter-
ministic model. However, their conditions are not sufficient for point identification of preferences nor attention.

6Chen, Levy, Ray, and Bergen (2008) also note a connection between inattention and asymmetries in theoretical
models. Davis and Schiraldi (2014) provide generalizations of multinomial logit models that permit asymmetries, but
they explicitly note that these models cannot be rationalized by an underlying random utility interpretation and do
not attempt to use these asymmetries to identify inattention.

7A Stata command which implements several special cases of our model is available for download as “alogit”; a
User’s Guide as well as sample datasets can be downloaded at https://sites.google.com/view/alogit/home.
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or inattention.8 More generally, one can perform behavioral welfare analyses with no additional

data beyond what is needed to estimate conventional logit, probit or random coefficients models.

Our identification proofs are constructive and so consistent nonparametric estimators can be readily

based on them. However, in most applications of interest, we advocate estimating parametric

generalizations of conventional models. Our model is generally over-identified, and if instruments

are available, one can use our results to test the validity of additional exclusion restrictions.

We illustrate the value of our identification results in several applications, showing empirically

that consideration set models imply different substitution patterns and normative conclusions from

the full consideration models that they nest. We consider two special cases of our model, although

our general identification proof subsumes hybrid models combining features of both alternatives. We

focus on these cases because they are well-motivated by theoretical microfoundations for inattention.

However, these special cases do not require a particular microfoundation and thus permit more

general forms of inattention as well.

First, we develop the “Alternative-Specific Consideration” (ASC) model, which assumes that the

probability that a good is considered depends on characteristics of that good only. This is a natural

framework in an online search setting, for example, where each item’s ranking in search depends to

first-order on its own attributes (Goeree 2008). We validate the ASC model in a lab experiment in

which participants made a series of choices from proper subsets of 10 possible goods. Using only

data on choices and ignoring information on what items were available, we use the ASC model to

accurately recover the probabilities that each good was available as well as recovering the preference

parameters that we would estimate conditional on knowing which items were available. Conventional

models with a comparable number of parameters misspecify own- and cross-price elasticities relative

to the “true” elasticities computed using data on which items were actually available. The average

absolute error in cross-elasticities in conventional models is 2.5 times larger than in the ASC model

or 45.5 percentage points larger as a fraction of the average absolute cross-elasticity.

We also apply the ASC model to hotel choice data from Expedia in which the order of hotels

in online search results was randomized. We show that the ASC model implies the randomized

ordering impacts attention but not utility. Further, when the model is estimated on hotels shown in

the 3rd-10th search positions, we can predict out-of-sample which hotels will experience the largest

increase in demand when they are put in the 1st and 2nd search positions. In so doing, we can

decompose whether current demand is due to high utility, and thus whether a hotel would be more

8In this case, we use the term “inertia” to refer to the empirical tendency to make the same choices today as in the
previous period. “Switching costs” refers to inertia which arises due to adjustment costs and persistent unobserved
heterogeneity (both of which would make you worse-off if forced to switch) as opposed to inattention.
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popular if more people noticed it, or high attention, suggesting that additional advertising is unlikely

to be effective.

Our second special case is the “Default-Specific Consideration” (DSC) model, in which consid-

eration probabilities depend only on the characteristics of a default good. This framework is often

applied in settings with a clear default that is chosen unless consumers believe it to be so unsatisfac-

tory that they actively seek out alternatives (Hortaçsu, Madanizadeh, and Puller 2015; Ho, Hogan,

and Scott Morton 2015). We apply the DSC model to health plan choice data from Medicare Part

D. We replicate the finding in Ho, Hogan, and Scott Morton (2015) that switching decisions are

far more sensitive to characteristics of the default plan than characteristics of rival plans, and we

show that this implies that the observed degree of inertia is largely due to inattention given the

cross-derivative asymmetries this generates. While we find that most inertia is due to inattention,

adjustment costs are sufficiently large that they offset the cost savings from assigning beneficiaries

to the lowest cost plans. In conventional models, we estimate switching costs of $1,000-$1,400; after

accounting for inattention, the DSC model implies adjustment costs of $0-$300. We also conduct

overidentification tests to demonstrate that the specific patterns of asymmetries we observe in the

data are consistent with our underlying model of inattention. The degree of inattention we estimate

is consistent with that in Heiss, McFadden, Winter, Wupperman, and Zhou (2016). We also directly

test their identifying assumption that changes in plan characteristics over time impact attention but

not utility conditional on the level of those characteristics, finding that it is vindicated.

The rest of this paper proceeds as follows. In Section 2, we work through a simple example to

illustrate our identification argument. Section 3 lays out our general model and identification proof.

Section 4 outlines the ASC model, validates it with a lab experiment, and applies it to Expedia

data. Section 5 develops the DSC model, describes overidentification tests that can be used for

model validation, and applies these to data from Medicare Part D. Section 6 concludes.

2 Motivating Example

To illustrate our identification argument, we first outline a stylized example to highlight the main

features of our approach. In this simple model, consumers pick a default option unless the default

becomes so unsuitable that they are shocked into paying attention to other products. Note that

many of the assumptions we make here are for expository purposes and will be relaxed in Section

3, where we consider a more general consideration set model.9

9In the existing literature, this model resembles those in Ho, Hogan, and Scott Morton (2015) and Heiss, McFadden,
Winter, Wupperman, and Zhou (2016) which we consider more generally below.
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Consider a consumer selecting from two possible products, j = {0, 1}, for example insurance

plans. Each plan has a price, xj . One product, plan 0, is a default good that is always considered.

The consumer may or may not pay attention to the other product depending on how expensive the

default good is. If the consumer does not pay attention, they pick the default. However, if the

consumer pays attention to the non-default good, then they pick the good that maximizes their

quasilinear utility function from the set of plans considered.10

Let µ(x0) give the probability that a consumer pays attention to both products as a function

of the price of plan 0. The probability that a consumer picks plan j, sj , in this model can then be

expressed as:

s0(x0, x1) = (1− µ) + µs?0(x0, x1)

s1(x0, x1) = µs?1(x0, x1)
(2.1)

where s?j gives choice probabilities conditional on paying attention.

We will show that µ, s?0 and s?1 can be separately identified in this model using data on how

the observed shares sj vary with product attributes. The key to our identification argument is that

maximizing behavior implies symmetry given full consideration. In the two good case, this symmetry

is very intuitive – with full attention, no income effects, and no outside option, consumers should

only care about price differences. Symmetry of demand responses is violated if changes in product

characteristics also impact consideration probabilities. Differentiating Equation 2.1 and using the

fact that the market shares conditional on paying attention satisfy symmetry, we obtain:

∂s1

∂x0
− ∂s0

∂x1
=

∂µ

∂x0
s?1 =

∂ log (µ)

∂x0
s1 (2.2)

where the second equality follows from the fact that s1 = µs∗1. Thus, changes in the probability of

considering both goods are directly identified from data on choice probabilities:

∂ log (µ)

∂x0
=

1

s1

[
∂s1

∂x0
− ∂s0

∂x1

]
(2.3)

If the price of the default plan perturbs attention by causing consumers to “wake up” (the left-hand

side), then the non-default plan will be more sensitive to the price of the default plan than is the

default plan to the price of the non-default plan. This is a behavioral pattern noted in the health

insurance literature (Ho, Hogan, and Scott Morton 2015).

Recovering the derivative of the attention probability identifies the level of attention up to a

constant. This constant is determined by the fact that cross-derivatives are symmetric at µ(x0) = 1,

10In Section 3.3 we also relax quasilinearity.

5



a point expanded upon in Section 3. Integrating Equation 2.3 over the support of x0 we obtain:

µ(x̄0) = exp

(
−
∫ ∞
x̄0

1

s1

[
∂s1

∂x0
− ∂s0

∂x1

]
dx0

)
(2.4)

With a large number of consumers and exogenous variation in x0 and x1, we could in princi-

ple estimate consideration probabilities directly by estimating the functions ∂s1/∂x0 and ∂s0/∂x1.

However, if the number of plans becomes large further parametric assumptions will be required, as

in any discrete choice setting. In the next section, we show that the techniques used in this example

generalize to a broader class of models before turning to estimation.

3 Model & Identification

In this section, we outline formally our analytic framework and nonparametric identification results.

We begin by defining a consideration set model and stating the assumptions that suffice for cross-

derivative symmetry given full consideration. We then give additional assumptions on consideration

probabilities that suffice for point identification of consideration probabilities from asymmetries in

demand.

We consider an individual i who makes a discrete choice among J+1 products, J = {0, 1, ..., J},
with J ≥ 1. Each product j is characterized as a bundle of K ≥ 1 characteristics, xij , with support

χ ⊆ RK . Let xi = [xi0, ..., xiJ ]. We allow for individuals to consider an (unobserved) subset of

available goods when making their choice. The set of goods that a consumer considers is called the

consideration set. At this point, we place no restrictions on consideration set formation except that

there exists a default option, good-0, that is always considered. The default may be the ‘outside’

good (without observed characteristics) or an ‘inside’ good (with observed characteristics). Let

P(J ) represent the power set of goods, with any given element of P(J ) indexed by c. The set of

consideration sets containing good j is then given as:

P(j) = {c : c ∈ P(J ) & j ∈ c & 0 ∈ c} (3.1)

We will develop identification results for a set of choice models that imply choice probabilities

of the following form:

sij(xi) =
∑
c∈P(j)

πic(xi)s
?
ij(xi|c) (3.2)

where sij is the observed probability of individual i selecting j (the market share of good j), πic

gives the probability that the set of goods c is considered, and s?ij(xi|c) gives the probability that i
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selects good j from the set c. For the most part, we suppress the dependence of these quantities on

x. As πic and s?ij(xi|c) represent proper probabilities, we have:

∑
c∈P(J )

πic = 1 ,
∑
j∈c

s?ij(c) = 1 (3.3)

The structural objects of interest are the consideration set probabilities, πic, and the unobserved

latent choice probabilities, s?ij(xi|c). We do not directly address the identification of preference

parameters given knowledge of s?ij(xi|c) nor the identification of, for example, search costs given

consideration probabilities. The parameters of any utility model that are identified from choice

behavior with full consideration, and the parameters of models that provide microfoundations for

consideration sets given consideration probabilities will follow from our identification results. Our

aim is to provide general identification results that can be tailored by applied researchers to special

cases of the framework considered here.

3.1 Key Assumptions

In this subsection, we state assumptions that suffice for cross-derivative symmetry with full consid-

eration and, thus, assumptions under which asymmetries imply imperfect consideration. Individuals

make choices from any given consideration set to maximize their utility. We take a random utility

approach, decomposing individual i’s utility from good j, uij , into a deterministic component that

depends on the characteristics of good j and a random error term:

uij = vij(xij) + εij (3.4)

Assumption 1. Additive Separability There exists a characteristic x1
ij that is additively separable

in the indirect utility function:

uij = vij(xij) + εij (3.5)

= gi(x
1
ij) + wij(x

2
ij) + εij (3.6)

= βix
1
ij + wij(x

2
ij) + εij (3.7)

where x2
ij ∈ RK−1, βi ∼ F (βi) where βi is independent of xj for all j = 0, ..., J .

The restriction that consumers value the separable characteristic equally across choices can be

substantive, although it is natural in many settings. While point identification of consideration
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probabilities requires only additive separability (Equation 3.6), in the proof in the main text we

will make the stronger assumption of quasilinearity (Equation 3.7) for expositional simplicity. We

discuss the restrictiveness of the separability assumption further in Section 3.3.

Assumption 2. Exogenous Characteristics: εij ⊥⊥ xij′ for ∀i. We focus on the question of identifica-

tion without the additional complications arising from endogeneity in this paper. This assumption

will be relaxed in future work.

Assumption 3. One Continuous Characteristic: x1
ij is continuously distributed and the distribu-

tion of x1
ij |x2

ij has a positive density everywhere on χ.

Assumption 4. F (εi0, ..., εiJ) is absolutely continuous with respect to the Lebesgue measure and

gives rise to a density function that is everywhere positive on R.

With [] denoting exclusion, the probability that individual i chooses option j having considered

the set of options c, with j ∈ c, is given by:

s?ij(c) = Pr

(
vij + εij = max

j′∈c
vij′ + εij′

)
(3.8)

Given consideration of all alternatives, choice probabilities that result from maximizing a utility

function satisfying our assumptions will satisfy cross-derivative symmetry and lack nominal illusion.

Corollary 1. Symmetry of Cross Derivatives: with respect to the quasi-linear characteris-

tic:
∂s?ij
∂x1

ij′
=
∂s?ij′

∂x1
ij

(3.9)

Corollary 2. Absence of Nominal Illusion: level shifts in the separable characteristic do

not alter choice probabilities:

s?ij(x
1
i , x

2
i ) = s?ij(x

1
i + δ, x2

i ) (3.10)

where δ denotes a level shift which impacts all goods equally. Proof in Appendix A.
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Assumption 5. πic is continuously differentiable for all c ∈ P(J ) with, for πic < 1 and j = 1, ..., J :

∂πic
∂x1

ij

6= 0 (3.11)

This assumption is natural in most applied settings of interest unless there is some mechanical

reason why consideration is truly random. In many settings, the question of what drives changes in

attention is itself a question of interest.

Slutsky Asymmetries & Nominal Illusion In our baseline model, only one mechanism is

available to generate cross-derivative asymmetries: imperfect consideration.11 Later in this section

we describe overidentification tests and routes to determine whether the pattern of asymmetries is

consistent with our model of imperfect consideration as opposed to resulting from violations of our

underlying assumptions or other behavioral anomalies.

Lemma 1. Asymmetries & Nominal Illusion Imply Imperfect Consideration.

Given Assumptions 1-5, if

∂sij
∂x1

ij′
6= ∂sij′

∂x1
ij

(3.12)

sij(x
1
i , x

2
i ) 6= sij(x

1
i + δ, x2

i ) (3.13)

for δ 6= 0, then πi(J ) < 1, where πi(J ) is the probability that an individual considers all

goods J = {0, ..., J}. Proof in Appendix A.

3.2 Identification

To make progress towards point identification of the structural functions of interest, we must place

some additional restrictions on consideration set probabilities. If the πic are allowed to vary arbi-

trarily, then identification of the underlying structural functions is hopeless (Manzini and Mariotti

2014). As a simple illustration, consider a case with two choice sets, {0, 1} and {0, 1, 2} where:

si1 = πi({0, 1})s?i1({0, 1}) + πi({0, 1, 2})s?i1({0, 1, 2}) (3.14)

11Lemma 1 states that cross-derivative asymmetries and nominal illusion are sufficient but not necessary for imperfect
attention. Thus, some models of imperfect attention in certain scenarios do not predict these choice patterns. For
example, Matejka and McKay (2014) show that when actions are homogeneous a priori and exchangable in the decision
maker’s prior, a rational inattention model provides a foundation for the mulitnomial logit (which yields symmetric
cross-derivatives).
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If we substitute for πi({0, 1}) and πi({0, 1, 2}) with π̂i({0, 1}) = πi({0, 1, 2})s?i0({0, 1, 2})/s?i0({0, 1})
and π̂i({0, 1, 2}) = πi({0, 1})s?i0({0, 1})/s?i0({0, 1, 2}), then one obtains a model with the same ob-

served market shares and conditional choice probabilities, but different consideration set probabil-

ities. For point identification, restrictions must be imposed on how consideration probabilities can

vary with the underlying characteristics of available goods.

Consideration set models in the applied literature typically take one of two forms. The ‘Default-

Specific Consideration’ (DSC) model, assumes the existence of an inside default good and allows the

probability of considering all alternative options to vary only as a function of the characteristics of

that default. Under this approach, the market shares of the default (good 0) and non-default goods

take the form:

si0 = (1− µi0) + µi0s
?
i0(J )

sij = µi0s
?
ij(J ) for j > 0 (3.15)

where µi0(xi0) gives the probability of considering all available products. The models developed by

Ho, Hogan, and Scott Morton (2015) and Heiss, McFadden, Winter, Wupperman, and Zhou (2016)

provide microfoundations for this framework: consumers either consider just the default or the full

set of available products; only if the characteristics of the default get sufficiently bad do consumers

pay a cost to search among all available products.12

An alternative strand of the literature assumes that each good has an independent probability

of being considered that depends on characteristics of that good. This includes the models in

Goeree (2008), Gaynor, Propper, and Seiler (2016) and Manzini and Mariotti (2014). Under this

‘Alternative-Specific Consideration’ (ASC) approach, consideration set probabilities take the form:

πic =
∏
j∈c

φij
∏
j′ /∈c

(
1− φij′

)
(3.16)

where the probability of good j being considered, φij(xij), is a function of own characteristics only.

Many rational-inattention microfoundations lead to models where a good is considered if a good-

specific function exceeds a threshold value (Caplin, Dean, and Leahy 2016). The ASC model would

then be appropriate in cases when this threshold is insensitive to the characteristics of any single

good. In Appendix A.5 we give a wider discussion of when the characteristics of rival goods will only

have a second order impact on consideration thresholds, so that rank models are well-approximated

12 This model is also related to a more general class of Downwards Recursive sequential search models (Weitzman
1979). We develop this connection further in Appendix A.5, proving identification of the ex ante ranking of options
and the probability of product availability in a simple model of this class.
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by the ASC model.

In the remainder of this section we show that consideration probabilities are identified from

cross-derivative asymmetries in a hybrid model subsuming the ASC and DSC models. However,

if interest lies in scenarios that cannot be nested within our hybrid framework, in Appendix A we

show in a more general environment that features of consideration probabilities are identified up to

a monotonic transformation using the same methods.13 Let the market share of the inside default,

good-0, and non-default goods take the form:

si0 = (1− µi0) + µi0
∑

c∈P(0)

∏
l∈c φil

∏
l′ /∈c (1− φil′) s?i0(c)

sij = µi0
∑

c∈P(j)

∏
l∈c φil

∏
l′ /∈c (1− φil′) s?ij(c) for j > 0

(3.17)

where φi0(xi0) = 1 for all xi0 ∈ χ.

Restricting φij = 1 for all j > 0 gives the DSC model. Restricting µi0 = 1 gives the ASC

model. While discussion of our identification results will proceed assuming an inside default good,

our results hold with minimal changes if interest lies in the ASC model with an outside default

good (i.e. a default with unobserved characteristics, e.g. buy none of the options) or in the ASC

model where the probability of considering good j also depends directly on the characteristics of

the default. These variants are discussed in Appendix A.

Identifying Changes in Consideration Probabilities The central insight of our proof is that

changes in consideration probabilities can be expressed as a function of observable differences in

cross-derivatives and market shares. First imagine that consumer choice is observed in a market

where it is known that good j′ > 0 is not available. For example, in the beer market, a local craft

beer might not be available in all locations or, for health insurance, a plan introduced at time t is

not available at t − 1. With a slight abuse of notation, let the set of consideration sets containing

good j > 0 and not containing j′ > 0 be given as:

P(j/j′) = {c : c ∈ P(J ) & j ∈ c & j′ /∈ c & 0 ∈ c} (3.18)

13More precisely, when consideration probabilities can be written as a function of good-specific indices, so πc =
π(vi1, ..., viJ) with ∂v

∂x1
ij

constant across goods, we can recover the vij up to a monotonic transformation. This identifies

the relative impact of different characteristics on good-specific indices.

11



The probability that good j is chosen in a market in which j′ is not available is:

sij(J /j′) = µi0
∑

c∈P(j/j′)

∏
l∈c

φil
∏

l′ /∈{c,j′}

(1− φil′) s?ij(c) (3.19)

The change in the probability of choosing good j when j′ is removed from the choice set can be

decomposed into two terms: the probability that the consumer was paying attention to j′ times the

impact of j′ on purchasing good j within each consideration set including j:

sij(J )− sij(J /j′) =

Probability consider j′︷ ︸︸ ︷
µi0φij′

∑
c∈P(j/j′)

∏
l∈c

φil
∏

l′ /∈{c,j′}

(1− φil′)
(
s?ij(c ∪ j′)− s?ij(c)

)
︸ ︷︷ ︸

Impact of adding j′ to all consideration sets including j

(3.20)

The impact of removing j′ from the choice set is informative for the magnitude of cross derivative

differences. As the impact on choice probabilities within consideration sets cancel out (due to

symmetry conditional on consideration), the size of the cross derivative differences depends on the

degree to which consideration probabilities are altered times the difference that adding that good

to the choice set has on choice probabilities. Expressing cross derivative differences as a function of

‘leave-one-out’ market share differences for j, j′ 6= 0 gives:

∂sij
∂x1

ij′
− ∂sij′

∂x1
ij

=
∂ log(φij′)

∂x1
ij′

(
sij(J )− sij(J /j′)

)
− ∂ log(φij)

∂x1
ij

(
sij′(J )− sij′(J /j)

)
(3.21)

Cross derivatives with respect to characteristics of the default good take a slightly different form

as the default is present in all choice sets. Cross derivative differences with j′ = 0 are given by the

linear system:

∂sij
∂x1

i0

− ∂si0
∂x1

ij

=
∂ log(µi0)

∂x1
i0

sij(J )− ∂ log(φij)

∂x1
ij

(si0(J )− si0(J /j)) (3.22)

Equations 3.21 and 3.22 give closed form expressions for cross-derivative differences as a linear

function of ∂ log(φij)/∂x
1
ij . Let this system be expressed as:

ci = Diθi (3.23)

where ci is the vector of cross derivative differences, θi is the J + 1-vector of log consideration

probability derivatives, and Di is the coefficient matrix of leave-one-out differences.14.

As there are typically more than J + 1 cross-derivative differences, it is convenient to work with

14 See Appendix A for illustrations of the structure of these matrices.
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the system:15

D′ici = D′iDiθi (3.24)

If D′iDi is full rank, there is a unique solution to this system and changes in consideration prob-

abilities are uniquely identified from choice data.

Assumption 6. (Rank Condition) The matrix D′iDi is full rank.

Appendix A discusses the restrictions on structural functions required for Assumption 6 to hold.

A strength of our approach is that the rank condition is testable given market share data. If the

rank condition holds, then the derivatives of log consideration probabilities are given as:

θi =
(
D′iDi

)−1
D′ici (3.25)

While the above proof relies on “leave-one-out” variation, the amount of choice set variation

required is substantially less than earlier work (Manzini and Mariotti 2014). Further, this variation

can be replaced by a large support assumption on x1
ij for nonparametric identification of changes in

choice probabilities.

Assumption 7a. As x1
ij → −∞, sij → 0.

Assumption 7A imposes that at low values of x1
ij , either good j is not paid attention to (as

x1
ij → −∞, φij → 0) or it is not chosen because it generates low utility (as x1

ij → −∞, s?ij(c) → 0

for all c ∈ P(j)) even if it is available. Then, sij(J )→ sij(J /j′) as x1
ij → −∞.

In practice, parametric assumptions can also replace this type of variation in the data as we will

discuss in Section 4.

Identifying the Level of Consideration Probabilities Given identification of the derivatives

of log consideration probabilities by the argument above, φij is identified up to a scale factor C by

integrating over the support of x1
ij :

log(φij) =

∫
∂ log(φij)

∂x1
ij

dx1
ij + C (3.26)

15Alternative weighting matrix, Wi, can be used: D′iWiDi.
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Identifying the level of attention requires an additional assumption to pin down the constant of

integration, C. Assuming that consumers are prompted to pay attention to good j when x1
ij reaches

an extreme value enables the level of attention to be identified. This assumption is analogous to

those made in the literature on nonparametric identification of multinomial discrete choice models

(Berry and Haile (2009), Lewbel (2000)), treatment effects (Heckman and Vytlacil 2005; Lewbel

2007)), the identification of binary games and entry models (Tamer 2003), and the use of special

regressors more generally. Further, this assumption is testable in our setting by checking that cross

derivative differences are symmetric at that value of the covariate.16

Assumption 7b. As x1
ij →∞, φij → 1.

Identifying Full Consideration Market Shares Nominal illusion facilitates the identification

of the 2J independent latent choice probabilities, s?ij .
17 We will treat φij as known in this subsection

given the argument above. Imagine that N = 2J level shifts in the separable characteristic are

observed. These shifts alter consideration probabilities but do not alter latent choice probabilities

conditional on consideration. Let k = 1, ..., C index the consideration sets of which j is a member.

The probabilities of these consideration sets containing j are given as πj1, ..., πjC . For each good

j > 0,18 define the matrices:

Πj =


πj1(δ1) · · · πjC(δ1)

...
. . .

...

πj1(δN ) · · · πjC(δN )

 (3.27)

s?ij =
[
s?ij(cj1), ..., s?ij(cjC)

]
(3.28)

sδij =
[
sij(x

1
i + δ1, x

2
i ), ...., sij(x

1
i + δN , x

2
i )
]

(3.29)

where

πc(δ) = µi0(x1
i0 + δ)

∏
l∈c

φil(x
1
il + δ)

∏
l′ /∈c

(
1− φil′(x1

il′ + δ)
)

(3.30)

16 ‘Thin set identification’ will not be a problem in our intended applications so long as x1ij has a strictly positive
probability of attaining the value at which attention is paid with probability one, this problem is overcome.

17This identification problem is analogous to the problem of identifying the ‘long’ regression. While the functions
of interest are typically only partially identified without instruments (Henry, Kitamura, and Salanié 2014), we show
that optimizing behavior here results in point identification of the objects of interest.

18The latent market shares of the default good are given by adding up within each consideration set.
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with the dependence of φij on x2
ij suppressed for notational simplicity and φi0 = 1 for all xi0.

Unobserved latent choice probabilities are defined as the solution to the following linear system:

Πjs
?
ij = sij(δ) (3.31)

s?ij = Π−1
j sδij (3.32)

There is a unique solution to this system, and thus all s?ij are identified, when all Πj are full rank.

Assumption 8. (Rank Condition) Πj is full rank for j = 1, ..., J .

Appendix A discusses the restrictions on structural functions required for Assumption 8 to hold.

Again, given identification of φij , these assumptions are testable and thus their validity can be as-

sessed for the particular application on hand.

Theorem 1. (Identification of Hybrid Consideration Set Model) Given Assump-

tions 1-8, consideration probabilities, µi0(xi0) and φij(xij), and latent market shares condi-

tional on consideration set c, s?ij(c) are identified for all c ∈ P(J ) and j ∈ J .

Overidentification With J > 2, the derivative of the log of consideration probabilities (and thus

consideration set probabilities) are over-identified. With N > 2J , latent market shares are over-

identified. This provides the potential to test the validity of the consideration set model outlined

in this paper. From Equation 3.23, changes in consideration set probabilities, θi, are defined by the

linear system:

Diθi − ci = 0 (3.33)

where ci is the vector of cross derivative differences, θi is the J + 1-vector of log consideration

probability derivatives, and Di is the coefficient matrix of leave-one-out differences. There are

1

2
J(J + 1)︸ ︷︷ ︸

# Independent Cross Deriv. Diffs

−
# φij Derivatives︷ ︸︸ ︷

(J + 1) (3.34)

overidentifying restrictions. Similar reasoning shows that there areN−2J overidentifying restrictions

for latent market shares. In Section 5, we conduct overidentification tests based on this reasoning
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in a parametric model.

Estimation In principle, nonparametric estimation of consideration probabilities and latent mar-

ket shares is possible given market share data and application of the analogy principle. Our identi-

fication proofs are constructive and so consistent nonparametric estimators can be readily based on

them. However, in practice, as with most discrete choice models, parametric assumptions will be

necessary to deal with the dimensionality problem that arises with many goods and many charac-

teristics. Specifically, suppose that consideration probabilities and choice probabilities conditional

on consideration can be written as a function of parameters θ. Then, choice probabilities are given

by:

si0 = (1− µi0(θ)) + µi0(θ)
∑

c∈P(0)

∏
l∈c φil(θ)

∏
l′ /∈c (1− φil′(θ)) s?i0(c, (θ))

sij = µi0(θ)
∑

c∈P(j)

∏
l∈c φil(θ)

∏
l′ /∈c (1− φil′(θ)) s?ij(c, (θ)) for j > 0

(3.35)

And we can construct the resulting likelihood function given our assumptions about how choices

correlate across individuals and time. In the simplest case where these choices are uncorrelated, we

have:

logL =
∑
ij

dij log(sij) (3.36)

In sections 4 and 5, we provide additional details in various parametric models.

3.3 Other Sources of Asymmetry

Given our assumptions, imperfect consideration is the only mechanism giving rise to an asymmetric

cross-derivative matrix. Relaxing our background assumptions might, however, give rise to alter-

native sources of asymmetry that our framework could incorrectly attribute to inattention. The

main substantive assumption required for symmetry in Section 3.1 is that there is at least one

characteristic for which utility is a common separable function of that characteristic across goods.

We first discuss neoclassical reasons why this assumption might fail. Next, we consider alternative

behavioral explanations for asymmetries and show that our identification result still holds in models

that accommodate these alternative behavioral anomalies.

Income Effects and Nonlinear Price Responses Our identification proof can allow for income

effects as usually estimated in empirical models provided we observe sufficient characteristic variation
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conditional on income. For example, if utility is given by:

uij = gi(yi, pij) + wij(xij) + εij (3.37)

where gi(·) is a smooth function, then cross-price effects are equal conditional on derivatives evalu-

ated at the same values of price and income:

∂s?ij
∂pij′

∣∣∣
yi=y,pij=pij′=p

=
∂s?ij′

∂pij

∣∣∣
yi=y,pij=pij′=p

(3.38)

Identification of consideration probabilities then follows analogously to Section 3.2, where we can

recover the derivative of consideration probabilities at a given point provided we observe choice

probabilities for different goods at the same income and prices. If income effects are large and

non-separable however, they might confound identification of asymmetries.

The restriction that gi(·) (or βi in our proof) is the same across goods is another substantive

restriction, although one that is theoretically well-motivated in many cases. This assumption may

fail in cases where consumers value the same amenity differently across goods, or when characteristics

that appear observationally equivalent to the econometrician may in fact differ (e.g. in-room dining

may generate different utility at different hotels). Fortunately, our model only requires a single

characteristic that is separable with a common coefficient – and this follows if there is at least one

characteristic which is separable in the direct utility function. For example, if income is separable

in direct utility, the coefficient on price will be common across goods and give the marginal utility

of wealth.

Behavioral Explanations for Asymmetries One might also ask whether there are alternative

‘behavioral’ stories other than imperfect consideration that might lead to cross-derivative asymme-

tries. We do not attempt the impossible task of enumerating every possible psychological anomaly

that can occur – instead, we focus on well-documented phenomenon that might lead to asymme-

tries.19

One robustly documented pattern is that consumers respond more to larger proportional changes

in prices. This is sometimes referred to as the “Weber-Fechner law of psychophysics”. This effect

could be captured by allowing indirect utility to be a nonlinear function of price and can be analyzed

in an analogous manner to our discussion of income effects; utility will be symmetric conditional

19We note a tendency among some economists to argue that if any behavioral phenomenon is permitted, all behav-
ioral phenomena must be allowed for. We believe that this critique is sometimes applied in an arbitrary and unfair
way. All models should consider behavioral factors when they are well-documented and empirically or normatively
first-order for the question asked, and this is what we attempt to do here.
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on two goods having the same price level. Additionally, this model predicts a different pattern of

asymmetries than our consideration set model. In our consideration set model, asymmetries scale

with latent utilities. In the Weber-Fechner model, cross-price asymmetries scale with the difference

in prices between two goods. In Section 5, we show in one application that cross-derivatives scale

in the manner predicted by our consideration set model.

Loss aversion is also associated with asymmetries. However, the asymmetry involved is somewhat

different to that which arises from consideration sets. Suppose that consumers respond asymmet-

rically to price changes relative to a reference point, so that in Equation 3.5, we replace βix
1
ij with

β+
i (x1

ij − x̄ij) for x1
ij − x̄ij > 0 and β−i (x1

ij − x̄ij) for x1
ij − x̄ij < 0. Loss aversion does not aways

break the fundamental symmetry in cross-derivatives. As long as β+
i and β−i are the same across

goods, price increases for good A will have the same impact on the demand for B as price increases

for B have on the demand for A. Thus, the fundamental insight underlying our identification result

still holds, and consideration probabilities can be separately identified in a model that allows for

loss aversion.

More generally, asymmetries might also arise from different forms of inattention from those mod-

eled here. We have assumed that attention occurs at the level of goods. An alternative possibility,

developed in Gabaix (2014), is that inattention occurs at the level of characteristics. While a com-

prehensive treatment of inattention to characteristics is beyond the scope of this paper, we here

show that the patterns of asymmetries implied by Gabaix (2014) are distinguishable from those in

our model of good-specific attention. Adapting Gabaix (2014) to a discrete choice setting gives an

indirect utility function of the form:

uij = β(pid +mp
j (pij − pid)) + wij(xid +mx

j (xij − xid)) + εij (3.39)

where mp represents the attention paid to the price of j relative to the price of a default good, d.

mx is a (K − 1)-vector of analogous attention parameters for the remaining characteristics.

Discussing consumer choice, Gabaix (2014) treats mp
j as structural parameters that are fixed

independently of the realized characteristics of each good. In this model, the ratio of cross-derivatives

is constant but not generally equal to 1 (implying asymmetric cross-derivatives):20

∂sCij
∂pij′

∂sC
ij′

∂pij

=
θpj′

θpj
6= 1 when θj′ 6= θj (3.40)

20We here focus on cross-derivative ratios rather than differences as they take a particuarly simple form in the
Gabaix (2014) model.
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where the C superscript denotes that we are considering cross-derivatives with inattention to char-

acteristics rather than goods. In our consideration set model, however,the ratio of cross-derivatives

is not constant but instead scales with ‘leave-one-out’ market shares.

A generalization of the Gabaix (2014) model, closer in spirit to our framework, would permit mj

to vary with xij . However, this model imposes few testable restrictions on the data since consumers

potentially attend differently to every characteristic of every good. There are a variety of ways

to discipline it to become more empirically relevant. One possibility is to assume that consumers

differentially attend to some characteristics, but that inattention does not vary across goods. Perhaps

attention to a particular characteristic varies with the variance of that characteristic across goods,

for example. However, cross-price effects are fully symmetric in such a model. Unless mp
j varies

across goods, inattention to characteristics will not generate asymmetries. Alternatively, one could

consider a model in which mx
j varied across goods but not characteristics (so that mx

j = mp
j for all

x 6= p). This pattern would be more naturally captured by our model of good-specific consideration.

Thus, while alternative behavioral stories can generate asymmetries, a response to proportional

changes in prices, loss aversion, or other forms of inattention are distinguishable from the models of

good-specific consideration we consider here.

4 Alternative-Specific Consideration

In the following sections we consider the two special cases that motivate our general model in more

detail. The proof in Section 3 shows that one can, if desired, combine the ASC and DSC models.21

In the Alternative-Specific Consideration (ASC) model, consideration probabilities for each good

are independent and depend on characteristics of that good. The ASC model is appropriate in many

settings where one observes cross-sectional data with no clear default good. In online applications,

the ranking of a product in search will depend on attributes of that product. In bricks and mortar

retail, the shelf or location in the store is likewise a function of observable attributes of that product.

The ASC model has been widely applied in the literature but has thus far relied on additional

exclusion restrictions for identification (Goeree 2008; Gaynor, Propper, and Seiler 2016).

In this section we give parametric assumptions that facilitate estimation, describe the misspec-

ification that arises in full-consideration models that ignore consideration sets, and discuss two

applications designed to validate the empirical usefulness of the model. We show in a lab experi-

ment that we can use the ASC model to recover consideration probabilities and preferences, and we

21We also have a Stata command that estimates the special cases laid out in Sections 4 and 5. Type “ssc install
alogit”. A User’s Guide and example datasets are available at: https://sites.google.com/view/alogit/home. Contact
us if you run into any problems.
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use the randomly assigned ordering of hotels in Expedia choice data to further validate our model.

4.1 Parametric Assumptions

The ASC model defines market shares as:

sij =
∑
c∈P(j)

∏
l∈c

φil(xil)
∏
l′ /∈c

(1− φil′(xil′)) s?ij(c) (4.1)

where φi0 = 1 and P(j) = {c : c ∈ P(J ) & j ∈ c & 0 ∈ c} and as in Section 3, φij denotes the

probability that consumer i considers option j and s?ij(c) denotes choice probabilities conditional

on consideration set c. This model is a special case of our general framework with the restriction

µi0 = 1. We assume that a default, good-0, is present in every consideration set.22

We restrict our empirical parametric analysis to a linear random utility model with errors, εij ,

distributed Type 1 Extreme Value:

uij = xijβi + εij (4.2)

Following Goeree (2008), let good j be considered if xijγ > ηij , where ηij is distributed logistic.

The probability that good j is considered is:

φij = Pr (xijγ − ηij > 0) (4.3)

=
exp(xijγ)

1 + exp(xijγ)
(4.4)

This model can be estimated by maximizing the likelihood given by:

P (Yij = 1|θ) = P (c = ∅|θ) · 1j=d +
∑
c∈C

∏
l∈c

φil(θ)
∏
k/∈c

(1− φik(θ))P (Yij = 1|c, θ) (4.5)

Goeree (2008) shows how computational issues in summing over 2J choice sets can be avoided using

a simulated likelihood approach. We provide details in Appendix C.

22We prove in Appendix A that the model is identified if one chooses as the default an outside good with utility
normalized to 0 or an ‘inside’ good with attention probability less than 1. We also show that a generalization of this
model in which consideration probabilities depend both on own characteristics and default characteristics (φij(xi0, xij)
for j > 0) is identified.
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4.2 Relationship to Full-Consideration Models

These assumptions allow us to express this consideration set model as a full consideration model

where the utility of each good depends directly on the characteristics of rival goods. This allows

us to show precisely how conventional models which attempt to deal with consideration sets in ad

hoc ways are misspecified. We show in Appendix B that the ASC model can be rewritten as a

full-consideration model where the utility of each option j is given by:

uij = xijβi + ψij + εij (4.6)

where:

ψij = ln

(
sij

1− sij

)
− ln

(
s?ij(j)

1− s?ij(j)

)

= ln

(
φij
∑

k 6=j exp(xikβi + ψik)

(1− φij) exp(xijβi) +
∑

k 6=j exp(xikβi + ψik)

)
(4.7)

sij is the probability that option j is chosen and s?ij(j) denotes the probability of choosing option j

conditional on always considering that option.23

In this representation, the utility of good j depends directly on the characteristics of rival goods

j′. With full consideration, if the price of good j increasing raises demand for rival goods, then the

price of rival goods increasing should raise the demand for good j. If this does not happen because

consumers are inattentive to j, we can model this as the prices of rival goods decreasing the utility

of good j. With full attention, φij = 1 and ψij = 0 and this additional effect is not present.

This representation shows that ad hoc specifications of random utility models designed to adjust

for consideration sets are generally misspecified. Suppose one observes a variety of products on

different shelves and wants to model consumers as more attentive to products on certain shelves

than on others. One might try adding shelf fixed effects to a conventional logit model, but this would

fail to capture the fact that, for example, demand will be less responsive to all characteristics of

products on out of the way shelves. Is it sufficient to interact shelf fixed effects with all other observed

characteristics? The above representation shows that this flexible model is still misspecified. To

permit the relevant asymmetries, one would need to allow characteristics of all goods j′ 6= j to

directly enter the utility of each good j.

23This representation links with the approach of Crawford, Griffith, and Iaria (2016), who show that the impact of
time invariant consideration sets can be ‘differenced out’, by treating them as fixed effect.
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4.3 Lab Experiment

Our proof gives conditions under which utility and consideration probabilities can in principle be

identified given observed choices. In practice, one might worry that this is placing ‘too much

structure’ on the observed data. Perhaps consideration set models are highly sensitive to a small

amount of misspecification or require an unreasonable amount of data to accurately recover the

structural functions of interest.

To investigate these issues, we conduct a lab experiment in which consumers make choices

from known subsets of a superset of 10 goods. We then ask, given these choices, can we recover the

consideration probabilities as well as preferences conditional on consideration using only information

on observed choices from the superset of 10 goods? We show that the attentive logit model does

recover preferences and attention probabilities, and additionally, it yields consistent estimates of own

and cross-price elasticities while flexible full-information models with an equal or greater number

of price parameters fail to do so. Some goods seem low utility in conventional models because

they are rarely considered – the attentive logit model correctly recovers that they have high utility

conditional on being considered.

Set-up We selected 10 goods sold at the Yale Bookstore with list prices ranging from $19.98-$24.98.

These goods and their list prices are shown in Table 7 in Appendix D. Each participant was endowed

with $25 and made 50 choices from randomly chosen subsets of the 10 goods with randomized prices

(one third of the list price plus a uniformly distributed amount between $0 and $16). After making

all 50 choices, one of these choices was randomly selected and they were given that item as well as

$25 minus the price of the item in cash. Prior to the experiment, participants were given several

examples to illustrate the incentive scheme and were quizzed on their understanding. 70% correctly

answered our test of understanding (and all participants were told why their answer was correct or

incorrect). Appendix Table 10 reports results using only this subset of users who passed this test

and shows that results are qualitatively unchanged.

The probability that each good appeared in a given choice set was fixed in advance – this

probability varied across goods and with prices so that goods were more likely to be considered if

they had a higher price. The probabilities were chosen so that most choice sets would range from

2-7 products. See Table 2 for the precise coefficients.24 To increase the likelihood that participants

considered all of the products, 2-7 products they were presented with, we required consumers to

spend at least 10 seconds before finalizing their choices. This allows us to take choices from the

24Consideration probabilities for each good are given by the function φj = Λ(ξj + 0.15pij) where ξj is the coefficient

reported in Table 2 (either -2.5 or 0 for all goods) and Λ(·) = exp(·)
1+exp(·) .
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generated choice set as representative of consumers’ true preferences. A sample product selection

screen is shown in Figure D.1 in Appendix D. Consumers are shown images of all the products in

their choice set along with the (randomly chosen) prices. They click the radio button for the product

they want, and can click “Next” after 10 seconds.

Estimation of the ASC model requires specifying a default good which is chosen if the consid-

eration set is empty. We specify this as good 10. At the estimated parameter values, an empty

consideration set has a 0.2% chance of occurring so the choice of default does not impact estima-

tion. To recover the preference parameters and consideration probabilities, we estimate the model

by maximum likelihood. We also compare our results to a variety of flexible full-consideration spec-

ifications with a similar or larger number of parameters. In total, we ran the experiment with 149

participants, resulting in 7,450 choices.25

Results Table 1 compares the average estimated consideration probabilities by good to the true

consideration probabilities which are known to the experimenter. Like in any real-world setting, the

underlying utility model could be a nested logit, a random coefficients model, a multinomial probit

or anything else – but our experiment shows that the attentive logit model without any random

coefficients nonetheless correctly recovers the underlying attention probabilities. The 2nd panel of

Table 2 reports the coefficients which give rise to the consideration probabilities and Figure 1 shows

this information graphically. Across products, the confidence intervals on the fixed effects in the

attention equation include the true values with the exception of product 1, which lies close to the

boundary of the confidence interval. We also correctly recover the impact of price on attention.

Price has a (known) coefficient of 0.15 – by construction, consumers are more likely to see a product

if the price is higher, as might arise in the real world if sellers advertise their premium products. In

the attentive logit model, we estimate 0.137 (.017).

Table 2 compares the estimated parameters from a conditional logit model (estimated as if all

10 goods are considered), our ‘attentive logit’ model, and the ‘true’ values. The ‘true’ preference

parameters are estimated given the actual choice sets that consumers faced. In contrast, the attentive

logit parameters are estimated using only information about the product consumers actually chose

and not information about the specific subset of 10 goods they could choose from in each instance.

Consider the preference parameters shown in the top panel of Table 2 (we consider the implied

25There were 150 in total, but one participant’s data was not recorded properly because they refreshed the browser
several times during the experiment – this participant is dropped from the final analysis. When a participant refreshed
the browser, the choice recorded in our data was whatever choice they made from the previous choice set. In 12 of
7,450 remaining choices, we observe the recorded choice was not available in the choice set likely because of refreshing.
We would not be able to observe cases where the browser was refreshed and last period’s choice was still available this
period, but since that occurs about half the time, the total number of affected choices was likely around 25, or less
than 0.35% of all choices. Dropping the cases we can identify has no impact on the results.
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Table 1: Consideration Probabilities: Actual vs. Estimated

Truth Attentive Logit

Consideration Probability

1 18.3% 10.7%

2 19.7% 13.5%

3 18.0% 12.3%

4 17.7% 12.2%

5 19.3% 14.4%

6 70.3% 68.1%

7 69.7% 67.4%

8 64.9% 65.2%

9 69.5% 67.1%

10 70.0% 64.9%

Notes: table compares the true average consideration
probability for each good to the probability estimated
in the attentive logit model.

Figure 1: Product Fixed Effects in Attention: Truth vs. ASC Model
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elasticities below). The claim that the model recovers the true preference parameters requires

assuming that the ‘truth’ is a conditional logit model estimated using realized choice sets. The

conditional logit model estimated based on choices from all 10 goods gives a price effect of -0.05, less

than a third of the value recovered from a logit model given actual choice sets. This is because the

conditional logit model wrongly infers from the fact that high priced products are more likely to be

considered (and thus chosen) that consumers do not really dislike high prices. The attentive logit
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model gives a value of -0.20 (0.03) – the confidence interval includes the true value of -0.17. The

conditional logit fixed effects are systematically biased because they conflate attention and utility.

Products that are rarely in the choice set are assumed to be low utility. In contrast, attentive logit

recovers the true fixed effects – the confidence interval on the attentive logit estimates includes the

true values estimated as if choice sets are observed for products 2-9 with product 1 lying on the

edge of the confidence interval. These intervals are relatively wide, but that is a feature, not a

bug relative to the conditional logit model: the attentive logit model correctly recognizes that rare

products are rare and that only limited information is available about how much consumers value

them. The attentive logit confidence intervals on the less rare products (products 6-9 in the table)

are reasonably precise.

An additional question of interest is whether the implied price elasticities differ from conventional

models. We can compute the ‘true’ price elasticities (using the known consideration set probabilities

as well as the preference parameters estimated given realized choice sets) and compare them to the

price elasticities implied by a variety of models. The comparison with the conditional logit model

is unfair in the sense that the attentive logit model is a strict generalization that includes more

parameters. Thus we also compare the attentive logit model to a logit model with quadratic price

parameters and a model with alternative-specific price parameters. The conditional logit model has

1 price parameter, the attentive logit model has 2 (β and γ), the quadratic model has 2, and the

alternative-specific model has 10 (one for each good).

Figure 2 shows the own-price elasticities by good in each model. For goods 1-4, true own-price

elasticities are positive because a higher price makes a good more likely to be considered. As noted

above, this is an intentional feature of the model designed to mimic the fact that in some real world

settings, consumers might be more likely to see higher priced items. Conditional on consideration,

Table 2 shows that price responses are negative as expected. The logit and quadratic model both

badly fail to characterize how elasticities vary across goods. With a separate price coefficient for

each good, the product-specific model is able to capture these patterns as is the ASC model. But the

product-specific model still performs badly in capturing cross-elasticities. The average magnitude of

the 90 “true” cross-elasticities in the data is 0.090. The logit model has an average absolute deviation

of 0.083, the quadratic model has an average deviation of 0.068, the product-specific model has an

average deviation of 0.080, and the ASC model has an average deviation of 0.027, less than half of

any of the alternative models. As a function of the original elasticities, the bias is 45.5 percentage

points smaller.

Of course, the game is rigged in that this setting is designed to perfectly match the underlying
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Table 2: Experimental Data Estimation Results

Conditional Logit Attentive Logit Truth

Utility:

Price (dollars) -0.054*** -0.196*** -0.173***

(0.003) (0.028) (0.004)

Product 1 -1.411*** 1.465*** 0.368***

(0.054) (0.539) (0.069)

Product 2 -1.955*** -0.065 -0.497***

(0.069) (0.478) (0.080)

Product 3 -1.627*** 0.625 0.093

(0.059) (0.476) (0.073)

Product 4 -1.640*** 0.629 0.088

(0.060) (0.466) (0.073)

Product 5 -1.447*** 0.707 0.306***

(0.056) (0.478) (0.070)

Product 6 -0.435*** -0.737*** -0.581***

(0.039) (0.121) (0.045)

Product 7 -0.855*** -1.280*** -1.075***

(0.045) (0.141) (0.051)

Product 8 -0.662*** -1.185*** -0.909***

(0.041) (0.137) (0.048)

Product 9 -0.316*** -0.561*** -0.405***

(0.038) (0.118) (0.044)

Attention:

Price (dollars) 0.137*** 0.15

(0.017)

Product 1 -2.872*** -2.5

(0.177)

Product 2 -2.674*** -2.5

(0.288)

Product 3 -2.695*** -2.5

(0.209)

Product 4 -2.704*** -2.5

(0.205)

Product 5 -2.592*** -2.5

(0.204)

Product 6 0.152 0

(0.192)

Product 7 0.123 0

(0.292)

Product 8 0.258 0

(0.230)

Product 9 0.103 0

(0.176)

Notes: Table reports coefficient estimates from conditional logit and attentive logit
models. Estimates are the coefficients in the utility and attention equations (not
marginal effects). The conditional logit coefficients are recovered from estimating a
model assuming all 10 possible goods are considered. The ”true” utility parameters
are estimated using a conditional logit model given the actual choice set consumers
faced. The true attention parameters are known in advance. The attentive model
also includes a constant. ∗∗∗ Denotes significance at the 1% level, ∗∗ significance at
the 5% level and ∗ significance at the 10% level.
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Figure 2: Experimental Data: Own-Price Elasticities by Good
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structural assumptions about consideration set probabilities. The subsequent exercises apply these

models to real-world data and conduct various validation and specification checks which show that

attentive logit models also perform well when consideration probabilities arise more organically.

4.4 Informative Advertising and Hotel Choice

We now apply the ASC model to data from online hotel choices made via Expedia.com. A subset

of the data randomizes the search position in which hotels are displayed to consumers. We use

this variation to test whether we are able to verify that search position impacts attention but not

utility using our model, as well as to validate our framework as a tool for generating out of sample

predictions of the efficacy of promotions that increase consumer awareness of products.

The ASC model fits well here because a product’s ranking in search results depends on the

observable attributes of that product. Before estimating the model, we demean the attributes at

the individual level. This means that the attention probabilities depend on the relative value of the

observed attributes compared to other options in each consumer’s choice set, as they should if these

probabilities arise from each product’s placement in search results.26

26This demeaning would make no difference in a conventional logit model, but it can make a difference in an attentive
logit model. Formally, the model with demeaned characteristics in attention violates the Goeree (2008) assumption
that the attention probability for a given good does not depend directly on the characteristics of rival goods. These
violations will disappear asymptotically as the number of goods becomes large.
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Data The full dataset contains results from 166,036 consumer queries, including the hotels con-

sumers were shown, attributes of those hotels, as well as whether they ultimately purchased the

hotel. The main attributes we consider are price, star rating, review score, a location desirability

score, whether there is an on-going promotion and the position of the hotel in the search results.

The data span 54,877 hotels in 788 destinations. Ursu (2015) contains a detailed discussion and

describes several sample selection restrictions designed primarily to clean the data (e.g. dropping

all hotels with prices of less than $10 per night or more than $1,000 per night). We impose the

exact same sample selection restrictions as Ursu (2015) with two exceptions: we restrict to the top

10 choices but we do not restrict to the 4 largest hotel destinations, which results in a much larger

sample.27

After restricting to the sample with a randomized hotel ordering in search results, we end up

with 2,441 total queries spanning 9,851 hotels for which we observe a final transaction.28 Summary

statistics from our data after all sample selection restrictions are imposed are reported in Table 8

in Appendix D. The average hotel costs about $160 a night, is rated 3.2 out of 5 stars, receives an

average review score of 3.9 out of 5 from Expedia users, has a 74% chance of being from a popular

brand and has a 20% chance of being currently undergoing a promotion (meaning that the sale price

was noted as being lower than is typical). We can see that hotels which were actually chosen tend

to be lower priced, more likely to be undergoing a promotion, and ranked higher in search.

Results Given that the order of the hotels was randomized, we might expect the position of the

hotels in the search results to impact only attention and not utility. This need not be the case –

Expedia did not inform consumers that the order was randomized so individuals may have believed

that higher ranked hotels were better in some unobservable respect.

The estimation results for a conditional logit model and the attentive logit model are shown in

Table 3. First, in both models all the coefficients have the expected sign – consumers dislike high

prices and like hotels with more stars, higher review scores, better locations and higher positions in

27Among consumers who record a choice, 78% of consumers choose one of the top 10 hotels. In Appendix F, we
estimate the model using the top 20 goods, which includes 94% of observed choices; the restriction to the top 10 goods
is made for computational reasons.

28Many users search for a hotel and do not make an active choice. These consumers may purchase no hotel, they
may search on another site, or they may search again on Expedia. Since the data is indexed by search impression and
not by user, we cannot tell how many times each user searched. This raises two issues for our analysis. First, the
sample of users who purchased a hotel may be selected. Formally, the logit IIA assumption implies that restricting
only to beneficiaries who chose one of the observed goods should not alter our results, but this assumption may fail – in
Appendix F, we rerun our main specification including search impressions for which we record no choice (recorded as
choosing the outside option). Second, we cannot characterize optimal behavior on the part of firms without knowing
whether consumers ultimately return and book a room. However, our goal is a more narrow one: we seek to show that
the ASC model’s decomposition of demand into utility and attention is consistent with our intuitive understanding of
attention and has predictive power in describing what will happen when attention is (randomly) perturbed.
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search. The conditional logit model implies that their responsiveness to a hotel moving from search

position 10 to search position 1 is about the same as an $80 – or 50% – decrease in the price per

day.

The attentive logit model shows that the impact of search position on choices comes entirely

through the impact on attention rather than utility.29 The model also implies that consumers are

much more likely to consider hotels that have a desirable location score. This makes intuitive sense

and is consistent with a world in which consumers make a query, find the hotels located nearby their

destination, and then compare prices and other attributes to come to their final choice.

Table 4 shows how choice probabilities and attentive probabilities vary with the ranking. The

model suggests that the attentive probability ranges from 21.7% for a hotel in the 10th position to

52.9% for the highest ranked hotel (the choice probability increases by a factor of 3 – which differs

from the ratio of average attention probabilities due to Jensen’s inequality). We also compare

the price elasticities estimated in the conditional logit model with the attentive logit model. The

logit model modestly attenuates own-price elasticities, with an average error of about 10%. This

arises because consumers are insensitive to price variation for goods to which they are inattentive.

More generally, the direction of the bias in own-price elasticities is ambiguous and depends on the

correlation between prices and attention probabilities (which is empirically close to zero in this case).

As an increase in the position of one product necessarily entails a decline in the position of

alternative products, it is not possible to perturb position for one product while holding everything

else fixed. Identification comes from the fact that we observe position changing for hotels of varying

popularity – if position increases from 4 to 3 for a given hotel at the expense of an extremely

unpopular hotel that was unlikely to be chosen in either case, this reveals the impact of perturbing

position holding everything else fixed.

Given the estimated coefficients, we compute the estimated cross-derivatives with respect to the

position variable. These can be thought of as the impact of increasing position for a given hotel and

then using the model to “undo” the impact on demand of the resulting position changes for rival

hotels. For each individual and each pair of hotels, we can compute the magnitude of the asymmetry

as a percentage of the average absolute cross-effect in the data. Figure D.2 in Appendix D graphs

the resulting asymmetries. The mean asymmetry is 68.7% of the average absolute cross-effect (and

in the model, it is never identically zero). A model which ignores these asymmetries would badly

misspecify substitution patterns.

29In our robustness checks in Appendix F with 20 goods per beneficiary or an outside option, we do find that search
position significantly enters utility, but the implied willingness to pay in all cases is at least 75% smaller in magnitude
than that implied by the conditional logit model.
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Table 3: Expedia Data: β and γ

Conditional Logit Attentive Logit

Utility:

Price (dollars) -0.015*** -0.025***

(0.001) (0.003)

Hotel Stars (1-5) 0.566*** 0.805***

(0.044) (0.138)

Hotel Review Score (1-5) 0.410*** 0.768***

(0.049) (0.183)

Popular Brand Indicator 0.075 0.344**

(0.058) (0.161)

Location Score (normalized) 0.695*** 0.249**

(0.047) (0.109)

Ongoing Promotion Indicator 0.191*** 0.065

(0.057) (0.156)

Position in Search -0.104*** -0.002

(0.008) (0.027)

Attention:

Price (dollars) -0.001

(0.001)

Hotel Stars (1-5) 0.092

(0.106)

Hotel Review Score (1-5) -0.004

(0.115)

Popular Brand Indicator -0.180

(0.179)

Location Score (normalized) 0.813***

(0.129)

Ongoing Promotion Indicator 0.195

(0.170)

Position in Search -0.154***

(0.022)

Constant 0.358

(0.532)

Notes: Table reports coefficient estimates from the Goeree (2008) model. Estimates
are the coefficients in the utility and attention equations (not marginal effects). Stan-
dard errors are in parentheses. ∗∗∗Denotes significance at the 1% level, ∗∗ denotes
significance at the 5% level and ∗ denotes significance at the 10% level. The model
is also includes a default which is a randomly chosen alternative for each consumer.
Given the estimated attention probabilities, this default is chosen less than 1% of the
time.

Out of Sample Validation Because we recover the probability of attention for each good, we

can ask – for which goods is it the case that demand is substantially higher if the probability goes

to 1? This exercise provides a bound on the potential effectiveness of informative advertising. The

random assignment in the Expedia data provides a natural experiment that we can use to test that

bound.

To do so, we estimate the model using only the hotels in search positions 3 through 10. We then

compute demand for each hotel if the constant in the attention equation becomes arbitrarily large

30



Table 4: Expedia Data: Choice Probabilities and Elasticities

Own-Price Elasticity

Market Share Attention Probability Conditional Logit Attentive Logit

Search Position

1 0.178 52.9% -2.1 -2.32

2 0.154 49.9% -2.11 -2.35

3 0.122 45.5% -2.18 -2.4

4 0.101 41.8% -2.17 -2.42

5 0.089 37.7% -2.24 -2.47

6 0.078 34.4% -2.23 -2.5

7 0.074 30.5% -2.23 -2.52

8 0.06 27.2% -2.3 -2.56

9 0.08 24.2% -2.28 -2.55

10 0.062 21.7% -2.33 -2.54

Notes: the market share variable gives the average market share of hotels in each position in the randomized
Expedia data. Attentive Probability gives the average attentive probability for hotels in that position
implied by estimation of the Goeree (2008) model. Conditional Logit Elasticity is the average own-price
elasticity of hotels in the first position in the conditional logit model and Attentive Logit Elasticity is the
corresponding elasticity in the attentive logit model (taking into account the impact of characteristics on
both utility and attention).

so that the attentive probability goes to 1 – this is our bound for that hotel. We then ask how well

the bound does in accounting for the observed behavior in positions 1 and 2. While we cannot know

ex ante how the attention probability will change if a hotel is placed in positions 1 or 2, we know

that demand in those positions should be less than the bound given by perfect attention. Thus, we

ask first whether the bound implied by the ASC model is indeed a bound on choice probabilities for

hotels in positions 1 and 2 and second, whether this bound has predictive power in accounting for

the choice probabilities conditional on observed demand.

In practice, we compute this bound separately for each hotel in the data, but we collapse down

to categories of hotels for expository purposes. The upper bound on the effectiveness of informative

advertising is given by transaction probabilities when the the probability of paying attention is one.

Figure D.3 in Appendix D shows how this bound compares to the observed demand for a variety of

different types of hotels in each search position. The thick horizontal line shows the bound, the 10

colored dots show demand in each search position (with higher dots corresponding to lower search

positions). The main takeaways from this figure are first that demand is always less than the bound

implied by perfect attention and second that the bound is non-trivial. For example, average demand

for hotels in positions 1-3 exceeds the bound placed on the demand for the maximum price hotels.

Finally, we ask whether the bound has predictive power – if we see two hotels with the same

level of demand in positions 3 - 10, will the hotel with the larger bound experience a larger increase

in demand if it is randomly assigned to search position 1 or 2? Table 5 shows that the answer is

yes. Specification (1) shows that across hotels, the bound constructed from the model estimated
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on positions (3)-(10) predicts demand in positions (1) and (2). Specifications (2)-(4) show that it

continues to have predictive power even after we condition on the observed choice probability for

that hotel in positions 3-10 as well as the choice probability implied by a logit model given the choice

set and the characteristics of the hotel in question. Thus, the attentive logit model can be used to

forecast which products will benefit from informative advertising given their current level of utility

according to a conditional logit model.

Table 5: Expedia Data: Regression of Choice Probability in Positions 1-2 on Hotel Characteristics

(1) (2) (3) (4)

Bound 0.576*** 0.588*** 0.225*** 0.261***

(0.035) (0.040) (0.074) (0.086)

Hotel Prob (pos < 2) 0.057 0.044

(0.030) (0.030)

Logit (pos < 2) 0.712*** 0.660***

(0.143) (0.166)

Number of Hotels 4882 3722 4882 3772

Notes: Table reports coefficients from a regression at the hotel level of the transaction
probability of that hotel in positions 1 and 2 on hotel-level covariates. 4,882 hotels
appeared in the data in positions 1 and 2 and 3,722 of these also appeared in positions
3-10 (the bound can be constructed for hotels based on their characteristics and the
estimated model coefficients even if they did not appear in positions 3-10). ”Bound”
indicates the alogit forecast of demand for a hotel with those characteristics with
attention probability 1. Hotel Prob (pos < 2) is the empirical choice probability
in positions 3-10 if available. Logit (pos < 2) is the logit choice probability given
the observed characteristics of the hotel and the coefficients estimated on hotels in
positions 3-10..

5 Default-Specific Consideration

Another popular specification in the applied literature assumes the existence of a default good among

‘inside’ goods (i.e. goods for which observable characteristics vary) and allows the probability of

considering all other options to vary only as a function of the characteristics of that default good.

Only if the default good becomes sufficiently unattractive will consumers incur the cost required to

observe all other options in the market. This model can be used to identify whether inertia, and

choice of defaults more generally, arises because consumers do not consider other options (and thus

might be better off if they switched) or because consumers are actively choosing not to switch due

to adjustment costs or persistent unobserved heterogeneity. The DSC model has been used to study

inertia in health insurance and residential electricity markets (Ho, Hogan, and Scott Morton 2015;

Heiss, McFadden, Winter, Wupperman, and Zhou 2016; Hortaçsu, Madanizadeh, and Puller 2015).

These earlier studies either assume that only one of adjustment costs or inattention are operative or

rely on additional exclusion restrictions, such as that attentive consumers respond only to the level
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of prices and not to changes over time.

We start by laying out parametric assumptions which facilitate estimation of DSC models. Next,

we discuss how DSC models relate to full-consideration models and use this representation to develop

an overidentification test. Finally, we estimate the DSC model in Medicare Part D data and conduct

two separate overidentification tests, testing the internal consistency of our model and the validity

of instruments used in the prior literature.

5.1 Parametric Assumptions

To nest the DSC model in our general framework, let φij = 1 for all j > 0. Consideration set

probabilities then take the following form:

πi (J ) = µi(xid) (5.1)

πi(d) = 1− µi(xid) (5.2)

πi(c) = 0 for c /∈ {J , d} (5.3)

The probability of selecting option j is expressed as:

sij = (1− µi) 1 (j = d) + µis
?
ij

(5.4)

where s?ij denotes the probability of choosing j conditional on considering all available goods. In

other words, consumers pay attention to all goods in the choice set with probability µ, which is

a function of default characteristics only. Conditional on paying attention, consumers make an

active choice which might include choosing the default if its characteristics compare favorably to

alternatives and/or switching costs are high.

Following the argument given in Section 3, the probability of considering all goods, µi, is con-

structively identified from cross derivative differences:

∂ log (µi)

∂x1
id

=
1

sij

[
∂sij
∂x1

id

− ∂sid
∂x1

ij

]
(5.5)

µi = exp

(
−
∫

1

sij

[
∂sij
∂x1

id

− ∂sid
∂x1

ij

]
dx1

id

)
(5.6)

These expressions are similar to those in the ASC model but do not involve leave-one-out market

share differences. While nonparametric identification in the ASC models requires that we observe

choice sets where some goods are unavailable or unlikely to be chosen, no such variation is required
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to identify changes in attention probabilities in the DSC model.

As in the ASC model, we make standard functional form assumptions to bring the framework

to data in a convenient form. Suppose, as in Ho, Hogan, and Scott Morton (2015), that consumers

are inattentive whenever:

xidβ + εid > f(zi) + vi (5.7)

where xid are characteristics of the default good and zi is a vector of other individual characteristics

and εid and vi are both type 1 extreme value. The probability of being inattentive is then:

1− µi =
exp(xidβ)

exp(f(zi)) + exp(xidβ)
(5.8)

Note first that we do not need to observe any additional individual characteristics in order to

estimate this model. We can assume that f(zi) = 0 and the model is still identified. Includ-

ing individual characteristics just produces a more flexible model of inattention and thus reduces

the likelihood that the error term is misspecified. With these functional form assumptions, it is

straightforward to estimate the model by maximum likelihood.

With the logit functional form assumption, the expression for cross-derivative differences in

Equation 5.5 takes the form:
∂sij
∂xid

− ∂sid
∂xij

= γ(1− µi)sij (5.9)

Conditional on the probability of paying attention, cross-derivatives are therefore predicted to scale

in a particular way with market shares. Whether cross-derivatives follow this pattern in the data

can thus be used as a test of the model.

As it is infeasible to nonparametrically estimate cross-derivatives for choice sets with a large

number of goods (in our application, consumers face a choice of up to 50 insurance plans), we

compare the predictions of the DSC model to an alternative discrete choice model that nests the

DSC model and which includes flexible interaction terms between the characteristics of every good

and the default good allowing us to flexibly model cross-elasticities. To estimate this generalization,

it will be convenient to first derive a random utility representation of the DSC model.

5.2 Relationship to Full-Consideration Models

Like the ASC model, the DSC model is equivalent to a standard logit model with an additional

inertial term through which the utility of good j depends directly on the characteristics of rival
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goods:

uij = xijβ + ξi,j=d + ψi,j=d + εij (5.10)

where ψi,j=d takes the value ψi for plan d and is 0 otherwise. We show in Appendix B that ψi is

given by:

ψj=d = ln

(
sid

1− sid

)
− ln

(
s?id

1− s?id

)
= ln

(
1 + (1− µi)

∑
k 6=d exp((xik − xid)β)

µi

)
(5.11)

where s?id is the probability of choosing the default conditional on paying attention. The term ξi,j=d

in this model represents all of the reasons why an attentive consumer might nonetheless prefer to

choose the same plan – for example, because there are switching costs or persistent unobserved

heterogeneity.30 This is the normatively relevant component of inertia. The ψi,j=d term by contrast

captures the possibility that the consumer chose the default plan not because it had higher utility, but

simply because they were inattentive to the available options. The first line of Equation 5.11 shows

that ψi,j=d can be written explicitly as a monotonic transformation of observed choice probabilities

minus what choice probabilities would be were consumers fully attentive.31

We can utilize this random utility representation of the DSC model to develop a parametric

overidentification test. The random utility representation shows that we can equivalently write the

DSC model as a model where uid = Aid+εid, uij = Aij+εij , with Aij = xijβ and Aid = xijβ+ξi+ψi.

To allow for a more flexible model, we first estimate the DSC model to recover β̂i, ξ̂i,j=d and ψ̂ij

(and thus Âid and Âij), then estimate:

uid = Âid + εid

uij = Âij +
∑
k

∑
k′

xidkxijk′αk,k′ + εij for j 6= d (5.12)

where Âid = xidβ̂ + ξ̂i,j=d + ψ̂i,j=d is the predicted component of utility from the DSC model which

30The distinction between switching costs and persistent unobserved heterogeneity is relevant for some counterfactu-
als but not others. Separately identifying these factors would be important to predicting how many consumers would
switch back to their original plan were they defaulted into an alternative plan, but these need not be separated if we
only want to predict whether consumers would switch were they fully informed about possible alternatives.

31Note that if we observed some subset of consumers that we knew were paying attention and we knew had exactly
the same preferences and choice set as inattentive consumers, then we could estimate s?ij and directly compute ψij . In
practice however, this condition is unlikely to be met. Consider the context of health insurance plan choice. One might
consider using the choices of new enrollees making a de novo choice to estimate s?id. This method would incorrectly
assume returning enrollees have no true adjustment costs or persistent unobserved preferences. The proof in section
3 shows that this model is identified without these restrictive assumptions.
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is now regarded as a known constant. If the model fit perfectly, we would observe αk,k′ = 0 for

all k, k′. We can test whether the cross derivative differences implied by the more flexible model

are statistically different from those implied by the ASC framework as a test of the model. In

Appendix E, we derive an analytical expression for
∂sij
∂xid
− ∂sid

∂xij
which we use to evaluate how the

cross-derivatives implied by the DSC model compare to the cross-derivatives implied by the more

flexible model in Section 5.3.

5.3 Adjustment Costs and Inattention in Medicare Part D

We apply the model to evaluate whether the observed inertia in Medicare Part D plans is due to

inattention, adjustment costs or both. Medicare Part D plans provide prescription drug insurance

to elderly beneficiaries in the United States. Beneficiaries in the median choice set have 48 Medicare

plans they can choose among, including both plans which provide only prescription drug coverage

and plans which provide broader medical insurance (“Medicare Advantage”). Our analysis focuses

on the stand-alone prescription drug insurance plans (PDP plans). 90% of beneficiaries choose to

remain enrolled in the same plan as last year (Abaluck and Gruber 2016). An important question is

whether this is because those beneficiaries would be worse off if they switched plans (because they

like the plan they chose or have high adjustment costs) or because they are not paying attention and

would switch if they understood that they could save money with rival plans. We estimate the DSC

model described in Section 5.1 to separately identify an inertial term ξj=d and an adjustment cost

term. In addition, we perform the overidentification test described in Section 5.2 to evaluate whether

the patterns of asymmetry in our data are consistent with the underlying model of inattention.

Heiss, McFadden, Winter, Wupperman, and Zhou (2016) perform a similar exercise but addi-

tionally rely on assumptions that some variables impact attention and not utility. We instead rely

only on the asymmetry between how the market share of the default plan responds to prices of alter-

native plans relative to how the market shares of alternative plans respond to prices of the default

plans. We also test one of the exclusion restrictions in Heiss, McFadden, Winter, Wupperman, and

Zhou (2016) – that characteristic levels impact utility while characteristic changes conditional on

levels impact only attention – and we find that this restriction is roughly satisfied in our data.

Data We use administrative data from a 20% sample of Part D beneficiaries. The full dataset

contains 7.2 million Medicare eligible beneficiaries (a 20% sample of all Part D beneficiaries from

2006-2009). We use the sample selection approach described in Abaluck and Gruber (2016) and

consider choices from 2007-2009. We impose a number of restrictions to isolate beneficiaries who

get no Part D coverage from their employer and no low income subsidies; we take a further random

36



2% sample of the remaining beneficiaries for computational reasons. In the end, we are left with

30,937 beneficiaries choosing from an average of 40 prescription drug insurance plans.

Some of the variables we include in our choice model, such as premiums or plan quality ratings,

are directly observable. Plans also differ on a variety of dimensions related to the amount of coverage

they provide – they have different lists of covered drugs (formularies) and different copays and

coinsurance rates for the drugs that are covered. Abaluck and Gruber (2016) summarize these

features by constructing a “calculator” that can be used to determine given the totality of each

plan’s coverage characteristics what out of pocket costs would be for that plan for a given set of

claims. Given this calculator, several alternative measures of expected out of pocket cost and the

variance of out of pocket costs are constructed. We use the “rational expectations” measure based

on a forecast of what costs will be in the coming year given other individuals who look similar at

the start of the year. Summary statistics from our data after all sample selection restrictions are

imposed are reported in Table 9 in Appendix D. We report the mean and standard deviation of a

variety of characteristics for all plans and also for chosen plans.

To address concerns about endogeneity, we observe and include in our model much of the publicly

available information that might be used by individuals to make their choices – including premiums,

deductibles, donut hole coverage, as well as various measures of formulary completeness and cost

sharing. This approach is standard in the recent literature on health plan choices (Handel and

Kolstad 2015; Heiss, Leive, McFadden, and Winter 2013; Abaluck and Gruber 2011; Abaluck and

Gruber 2016). In our baseline specification, we do not include brand fixed effects for computational

reasons. In Appendix F, we replicate our main specification restricting only to brands chosen by

at least 400 beneficiaries in our data and including brand fixed effects – we show that we estimate

similar adjustment costs and inattention.

Estimation Results Table 6 shows the results of estimating a conditional logit model and the

DSC model in the Part D data. The conditional logit results resemble those in Abaluck and Gruber

(2016). Consumers dislike premiums and out of pocket costs, and even conditional on the out of

pocket cost consequences they dislike deductibles. A few coefficients have unexpected signs relative

to prior work – for example, in 2007 and 2009 consumers appear to favor plans with less favorable

average cost-sharing features. Most notably for our purposes, they are willing to pay between $1,000

and $1,400 depending on the year to choose the same plan they chose in the previous year (obtained

by dividing the coefficient on the prior year plan dummy by the coefficient on premiums to express

the effect in dollar terms).

The attentive logit model coefficients have (mostly) the same sign as the conditional logit coef-
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ficients with a few exceptions where unexpected signs in the conditional logit model become right-

signed in the attentive logit model. We now see generally the characteristic pattern reported in

Abaluck and Gruber (2016): even conditional on out of pocket cost consequences, consumers prefer

plans with nominally desirable plan features like lower deductibles, donut hole coverage, and lower

cost sharing.32

The attentive logit coefficients are also typically larger in magnitude, reflecting the fact that

conditional on paying attention, observables in the attentive logit model explain a greater share of

choices relative to unobservables. The impacts of default characteristics on attention probabilities

have mostly the expected signs: consumers are more likely to pay attention if the default plan has

higher premiums or out of pocket costs, has a higher variance of costs (less risk-protection), has a

higher deductible or a lower quality rating. For a few other variables, the sign switches from year

to year.

The attentive logit model implies that most of the observed degree of inertia is due to inattention.

The average attentive probability in the data is 11.4%, which would imply an inertia rate of 88.6%

just from inattention. The actual inertial rate is 90.74%. This implies that of the 11.4% of consumers

making an active choice, almost 24% chose the default plan. Thus, the model continues to imply

non-trivial adjustment costs, at least in some years. In 2007, we estimate adjustment costs of $0

(the observed degree of inertia is almost fully explained by inattention),33 while in 2008 and 2009

we estimate adjustment costs of around $300 and $200 respectively. These are in the range of the

average cost savings estimated in Abaluck and Gruber (2016) from every beneficiary switching to

the lowest cost plan. This implies that if all beneficiaries were assigned to the lowest cost plan, the

adjustment costs would roughly offset the cost savings leaving consumers no better off.

The above results suggest that a model that permits asymmetries in demand responses fits

the data better than one that does not. However, do we see the specific pattern of asymmetries

which is characteristic of our particular model of inattention? To test this, we implement the

overidentification test outlined in Section 5.2. We estimate a model which flexibly parametrizes the

32 Abaluck and Gruber (2016) estimates a conditional logit specification that includes interactions between the prior
year plan dummy and default plan characteristics – in that study, those interactions were included as an ad hoc way
of controlling for the fact that the decision to switch might be driven by different factors than the choice of plans
conditional on switching (the conditional logit results conflate the two). The attentive logit specification deals with
this in a more principled way through an explicit model of inattention. For this reason, only the attentive logit results
show the characteristic oversensitivity to premiums relative to out of pocket costs that emerges in Abaluck and Gruber
(2016) when the coefficients are identified using the choices of active choosers. This difference also explains a handful
of coefficients with unexpected signs, such as the coefficient on donut hole coverage in 2007, which accord with the
pattern reported in Abaluck and Gruber (2016) in the attentive logit model.

33In the attentive logit model, this shows up as a large negative and imprecisely estimated adjustment costs term.
This is because, conditional on inattention fully explaining the observed degree of inertia, the model cannot distinguish
between adjustment costs of zero and adjustment costs of negative infinity, both of which would imply little or no
additional choice of the default plan beyond that which arises from inattention. If we bound true adjustment costs
from below at zero, then this estimate implies adjustment costs of zero.
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Table 6: Part D Data: Conditional Logit and Attentive Logit Estimates

2007 2008 2009

Clogit Alogit Clogit Alogit Clogit Alogit

Utility:

Annual Premium (hundreds) -0.415*** -0.909*** -0.596*** -1.074*** -0.599*** -1.245***

(0.012) (0.029) (0.013) (0.026) (0.015) (0.027)

Annual Out of Pocket Costs (hundreds) -0.418*** -0.661*** -0.691*** -0.923*** -0.433*** -0.484***

(0.020) (0.028) (0.029) (0.047) (0.034) (0.054)

Variance of Costs (millions) -2.131*** -3.359*** -1.809*** -2.351*** -2.056*** -0.702

(0.178) (0.248) (0.299) (0.448) (0.326) (0.526)

Deductible (hundreds) -0.208*** -0.355*** -0.737*** -0.792*** -0.231*** -0.590***

(0.024) (0.032) (0.027) (0.037) (0.030) (0.043)

Donut Hole Coverage -0.178*** 0.505*** -0.263*** -0.798*** 1.335*** 1.917***

(0.055) (0.074) (0.065) (0.120) (0.083) (0.142)

Average Consumer Cost Sharing % 0.704** -0.071 -2.002*** -4.274*** 0.798** -1.898***

(0.280) (0.376) (0.333) (0.450) (0.358) (0.541)

# of Top 100 Drugs in Formulary 0.641*** 1.078*** 0.749*** 0.826*** -0.060*** 0.022*

(0.040) (0.071) (0.046) (0.057) (0.008) (0.013)

Normalized Quality Rating 0.087*** 0.319*** 0.299*** 0.688*** 0.564*** 0.659***

(0.017) (0.025) (0.018) (0.028) (0.017) (0.026)

Prior Year Plan 5.930*** -15.619 6.380*** 3.370*** 6.525*** 2.410***

(0.025) (846.880) (0.034) (0.122) (0.038) (0.208)

Attention:

Annual Premium (dollars) 0.240*** 0.364*** 0.068**

(0.016) (0.023) (0.027)

Annual Out of Pocket Costs (dollars) 0.141*** 0.186*** -0.029

(0.038) (0.051) (0.064)

Variance of Costs (millions) 2.037*** -0.113 1.777***

(0.315) (0.455) (0.589)

Deductible (hundreds) 0.373*** 0.182*** 0.075

(0.046) (0.053) (0.065)

Donut Hole Coverage 0.829*** -1.364*** -0.268*

(0.082) (0.128) (0.142)

Average Consumer Cost Sharing % 1.321** -5.493*** 0.060

(0.538) (0.693) (0.733)

# of Top 100 Drugs in Formulary -0.211*** 0.429*** 0.099***

(0.065) (0.102) (0.021)

Normalized Quality Rating 0.002 0.034 -0.600***

(0.024) (0.036) (0.032)

Notes: “Clogit” refers to the conditional logit model; “alogit” refers to the attentive logit model. The table reports coefficient
estimates from the DSC model. Estimates are the coefficients in the utility and attention equations (not marginal effects). The
coeffic1ents in the attention equation are the coefficients on the listed characteristics of the default good (demeaned). Standard
errors are in parentheses. The attentive model also includes a constant. ∗∗∗ denotes significance at the 1% level, ∗∗ significance
at the 5% level, and ∗ significance at the 10% level. Standard errors in parentheses.

asymmetries in the data and compare the results to the more parsimonious attentive logit model.

Figure D.4 gives the predicted cross derivative difference between default and non-default goods

for included plan characteristics for four variables; the charts for all variables are in Appendix D.

We graph both the estimated cross derivatives from Equation 5.12 and the cross-derivatives implied

by the DSC model (γk(1−µi0)ŝij) against the predicted market share of plan j, ŝij . To capture the

uncertainty in the estimated cross-derivatives, we bootstrap estimation of Equation 5.12 and graph

the resulting confidence interval.

In all graphs, the green dots indicate the empirical cross-derivatives with respect to premiums –
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this is exactly the same data in all graphs, and is included for scale (the green dots are absent in the

premium graph itself since they would overlap perfectly with the red dots). For each variable, the red

dots indicate the predicted cross-derivative difference from the DSC model and the grey confidence

region indicates the “empirical” cross-derivative difference from the more flexible specification in

equation 5.12. We can see that in nearly all cases, the DSC model cross-derivatives match up

well with empirical cross-derivatives. There are a few exceptions – for example, there are some

nonlinearities in the cross-derivatives with respect to the quality rating which are not well-accounted

for by the underlying model of inattention. But overall, the patterns in the cross-derivatives are

extremely well-explained by the relatively parsimonious model of inattention.

Figure 3: Empirical vs. Model Predicted Cross-derivatives

6 Conclusion

Discrete choice models with consideration sets relax the strong assumption that beneficiaries consider

all of the options available to them before making a choice. In the literature to date, such models

have been identified either by bringing in auxiliary information on what options consumers consider
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or assuming that some characteristics impact attention or utility but not both. This paper shows

that these assumptions are unnecessary. We show that a broad class of such models are identified

from variation already available in the data. Consideration set probabilities are constructively

identified from asymmetries in the matrix of cross-derivatives of choice probabilities with respect to

characteristics of rival goods.

We illustrate a number of practical applications of the model. In a lab experiment, using only

data on observed choices, we recover consideration probabilities and obtain accurate estimates of

the elasticities that we would estimate if we observed consideration sets. In data from Expedia, we

show that the latent ‘attention probability’ corresponds to what we would intuitively call attention;

perturbing the order of items in search rankings impacts attention but not utility. The model can

also predict which items will experience larger demand increases if advertised conditional on current

demand. In data from Medicare Part D, we validate the model further by demonstrating that

the cross-derivative asymmetries follow the specific pattern predicted by our model of inattention.

Our model implies that, while most inertia is driven by inattention in this market, there remain

non-trivial adjustment costs.

Our results highlight that consideration set models are able to capture substitution patterns

that are present in the data which conventional models rule out. There may be large asymmetries

in cross-derivatives with respect to some characteristics. Failing to allow for these asymmetries may

lead other parameters, such as own-price elasticities, to be misspecified. Extensions to traditional

discrete choice models will still be unable to capture the substitution patterns permitted by consid-

eration set models unless the characteristics of all rival goods are allowed to enter utility directly

for each good. Consideration set models represent a more parsimonious extension to standard dis-

crete choice models, and they make systematic and testable restrictions on how asymmetries in the

cross-derivatives vary across characteristics for different goods.

It is important to note that consideration set models are not necessarily behavioral – search

costs or unobserved constraints can lead to a lack of full consideration, and inattention of any

kind can be rationalized by sufficiently large search or computational costs (Simon 1971). That

being said, consideration set models relax ‘full’ rationality in the sense that consumers are not

necessarily choosing the best option given their utility functions and the choices observable to the

econometrician. Unobserved constraints aside, this allows for a general measure of the quality of

consumers’ choices, measured as the welfare loss relative to what consumers would choose given full

consideration with the estimated utility function. While it is sometimes argued that relaxing full

rationality leads to a lack of discipline, we show that the consideration set models we develop are
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over-identified and their validity can thus be empirically determined.

Our results are sufficient but not necessary for identification of consideration probabilities – one

direction for future work is to characterize more generally when consideration probabilities can be

recovered from choice data. We hope that the sufficient conditions given here will make it possible to

adapt consideration set models to a wider range of settings than they have previously been applied.

With additional structure, such models can be used to identify parameters of interest such as search

costs, and they enable us to construct counterfactuals and explore normative questions that would

not be possible in conventional models. We can ask, for example, how might beneficiaries choose

if they considered all available options? What is the potential value of information? When choices

correlate with cognitive ability, is this because cognitive ability impacts preferences or because it

impacts consumers’ ability to consider all options? Do some demographic or choice set features

(such as the number of plans) increase the likelihood that consumers are attentive? How much

better off might consumers be if they were fully informed about the relevant choices? We hope that

future work will explore these questions in more detail.
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A Model & Identification Proof

A.1 Results to Complement Section 3

Corollary 1. Symmetry of Cross Derivatives:

∂s?ij
∂x1

ij′
=
∂s?ij′

∂x1
ij

(A.1)

Proof: Differentiating the market share of good j with respect to the quasilinear characteristic

of good j′ gives:
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Using the change of variables t = vij + e− vij′ , one obtains:
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Corollary 2. Absence of Nominal Illusion:
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= s?ij(x
1
ij + δ, x2

ij) (A.8)

Proof of Lemma 1. With a slight abuse of notation, let the set of consideration sets containing

good j and j′ be given as:

P(j, j′) = {c : c ∈ P(J ) & j ∈ c & j′ ∈ c & 0 ∈ c}, (A.9)
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Given symmetry of choice probabilities conditional on goods belonging to the same consideration

set, the magnitude of cross derivative asymmetries depends on how market shares change with the

variation in consideration set probabilities generated by variation in characteristics.

∂sij
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ij
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Thus, non-zero cross-derivative asymmetries imply:

∑
c∈P(j)
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ij′
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either
∑
c∈P(j)
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ij′
s?ij(c) 6= 0 and/or

∑
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∂πic′

∂x1
ij

s?ij′(c
′) 6= 0 (A.13)

Given Assumption 5, this is only possible when π(J ) < 1.

Similarly, while level shifts in the quasi-linear characteristic do not cause choice probabilities

conditional on a given consideration set to change, they do alter consideration set probabilities.

Thus, absence of nominal illusion is violated. For δ 6= 0,

sij(x
1
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If sij(x
1
i + δ, x2

i ) 6= sij(x
1
i + δ, x2

i ), this implies that for at least one consideration set c

πic(x
1
i + δ, x2

i ) 6= πic(x
1
i , x

2
i ), (A.15)

which given Assumption 5, is only possible with πic(x
1
i , x

2
i ) < 1 or πic(x

1
i , x

2
i ) 6= 0 and thus with

π(J ) < 1.

Assumption 6. (Rank Condition) The matrix D′iDi is full rank.

For the rank condition to hold, we must have that the number of independent cross-derivative
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differences is at least as large as the number of derivatives of the log of consideration probabilities:

1

2
J(J + 1) ≥ J + 1 (A.16)

J ≥ 2 (A.17)

Thus there must be at least two non-default goods plus the default. Further, all columns of Di must

be linearly independent. Sufficient conditions for this are:

sij(J ) 6= sij′(J ) (A.18)

sil(J )− sil(J /j)
sij′(J )− sij′(J /j)

6= sil(J )− sil(J /j′)
sij(J )− sij(J /j′)

(A.19)

sij(J )− sij(J /j′) 6= 0 (A.20)

for all j, j′, l ∈ J with j, j′ > 0. Equation A.20 will be met when good j′ is considered with strictly

positive probability and good j′ is purchased with strictly positive probability from some choice set

that includes j. Equation A.19 will be satisfied whenever goods are imperfect substitutes and/or

are considered to different degrees. A strength of our approach is that the rank condition is testable

given market share data.

To see the logic of these conditions, consider the just identified case where J = 2. In this

example, the linear system defining the derivative of log consideration probabilities takes the form:


−(si0(J )− si0(J /1)) 0 si1(J )

0 −(si0(J )− si0(J /2)) si2(J )

−(si2(J )− si2(J /1)) (si1(J )− si1(J /2)) 0




∂ log(φi1)
∂xi1

∂ log(φi2)
∂xi2

∂ log(µi0)
∂xi0

 =


∂si1
∂x1i0
− ∂si0

∂x1i1

∂si2
∂x1i0
− ∂si0

∂x1i2

∂si1
∂x1i2
− ∂si2

∂x1i1


(A.21)

The determinant of Di is:

det(Di) = si2(J ) (si0(J )− si0(J /1)) (si1(J )− si1(J /2))− si1(J ) (si0(J )− si0(J /2)) (si2(J )− si2(J /1))

(A.22)

When Di is singular:

1

si1(J )

(
si0(J )− si0(J /1)

si2(J )− si2(J /1)

)
=

1

si2(J )

(
si0(J )− si0(J /2)

si1(J )− si1(J /2)

)
(A.23)
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Assumption 8. (Rank Condition) Π(δ) is full rank.

Sufficient conditions for Π(δ) to be full rank are:

φij(x
1
ij + δi)

1− φij(x1
ij + δi)

6=
φij(x

1
ij + δi′)

1− φij(x1
ij + δi′)

(A.24)

φij(x
1
ij + δi) 6= φij′(x

1
ij′ + δi) at, at least one i = 1, ..., N (A.25)

for j, j′ > 0.

To see the logic of these conditions, consider the just identified case where J = 2 and N = 2.

The coefficient matrix then takes the form:

Π(δ) =



µi0(δ1)φi1(δ1)(1− φi2(δ1)) µi0(δ1)φi1(δ1)φi2(δ1) 0 0

µi0(δ2)φi1(δ2)(1− φi2(δ2)) µi0(δ2)φi1(δ2)φi2(δ2) 0 0

0 0 µi0(δ1)φi2(δ1)(1− φi1(δ1)) µi0(δ1)φi1(δ1)φi2(δ1)

0 0 µi0(δ2)φi2(δ2)(1− φi1(δ2)) µi0(δ2)φi1(δ2)φi2(δ2)


(A.26)

=

 Π1(δ) 0

0 Π2(δ)

 (A.27)

The determinant of Π(δ) takes the form:

det(Π(δ)) = det(Π1(δ))det(Π2(δ)) (A.28)

Simple arithmetic shows that Π1(δ) is singular when:

1− φi2(δ1)

φi2(δ1)
=

1− φi2(δ2)

φi2(δ2)
(A.29)

Similarly, Π2(δ) is singular when:

1− φi1(δ1)

φi1(δ1)
=

1− φi1(δ2)

φi1(δ2)
(A.30)

When J > 2, we require that φij(x
1
ij + δi) 6= φij′(x

1
ij′ + δi) at, at least one shift of the quasilinear

characteristic to prevent columns of Πj(δ) being perfectly collinear.
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A.2 ASC Identification with Dependence on Default Characteristics

A version of the ASC model in which the probability of considering non-default goods depends on

both own and default characteristics is also identified given our background assumptions. Let the

probability of considering the default be one, with market shares taking the form:

sij =
∑
c∈P(j)

∏
l∈c

φil(xi0, xil)
∏
l′ /∈c

(1− φil′(xi0, xil)) (A.31)

with φi0 = 1 and P(j) = {c : c ∈ P(J ) & j ∈ c & 0 ∈ c}.
Changes in the characteristics of the default good alter all consideration probabilities. Cross

derivative differences involving j = 0 are given by the linear system:

∂sij
∂x1

i0

− ∂si0
∂x1

ij

=
∂ log(φij)

∂x1
i0

sij(J ) +
∑

j′ 6={j,0}

∂ log(φij′)

∂x1
i0

(
sij(J )− sij(J /j′)

)
− ∂ log(φij)

∂x1
ij

(si0(J )− si0(J /j))

(A.32)

Thus there are now 2J derivatives of log consideration probabilities to identify: ∂ log(φij)/∂x
1
ij and

∂ log(φij)/∂x
1
i0 for j > 0.

The conditions for the rank condition for identification of the derivatives of log consideration

probabilities are now altered. We require a larger number of goods to attain sufficient cross deriva-

tives for the order condition to hold (Assumption 6):

1

2
J(J + 1) ≥ 2J (A.33)

J ≥ 3 (A.34)

In this model, we cannot allow φi0(xi0) ≤ 1 and the rank condition still hold. This is because

we will only ever have J independent cross derivatives involving the default good but there will be

J + 1 changes in consideration probabilities with respect to the default good to identify. Other than

this restriction, the rest of the proof in Section 3 goes through without modification.

A.3 ASC Identification with an ‘Outside’ Default Good

When interest is in the ASC model with an outside default that is always considered, one cannot

make use of cross derivatives which rely on variation in characteristics of the default good. In this

case, the order condition for the identification of the derivative of log consideration probabilities

49



changes (Assumption 6). We now require:

1

2
J(J − 1) ≥ J (A.35)

J ≥ 3 (A.36)

All cross derivative differences take the form given by Equation and the rest of the identification

proof continues as in Section 3.

A general version of the ASC model defines market shares as:

si0 =
∏
j∈J

(1− φij(xij)) +
∑
c∈P(0)

∏
l∈c

φil(xil)
∏
l′ /∈c

(1− φil′(xil′)) s?i0(c) (A.37)

sij =
∑
c∈P(j)

∏
l∈c

φil(xil)
∏
l′ /∈c

(1− φil′(xil′)) s?ij(c) (A.38)

where φi0 = 1 and P(j) = {c : c ∈ P(J ) & j ∈ c & 0 ∈ c}. This framework allows for a default

good, good-0, that is imperfectly considered but purchased if no goods are considered. For example,

if a consumer fails to consider any health insurance or pension plans, they may be auto-enrolled

onto a default option.

A.4 ASC Identification with an Inside Default Good with φi0 < 1

In some scenarios, it might be natural to allow for an inside good that is not always considered but

is defaulted to if the choice set is empty. For example, if a consumer doesn’t consider any health

insurance or pension plans, they may be auto-enrolled into some option.

In this case, choice probabilities take the following form:

si0 =
∏
j∈J

(1− φij) +
∑
c∈P(0)

∏
l∈c

φil
∏
l /∈c

(1− φil′)s?i0(c) (A.39)

sij =
∑
c∈P(j)

∏
l∈c

φil
∏
l /∈c

(1− φil′)s?ij(c) (A.40)

The structure of cross derivative differences is as the standard case for j, j′ > 0. However, for

cross-derivative differences involving the default:

∂si0
∂x1

ij

− ∂sij
∂x1

i0

=
∂ log(φij)

∂x1
ij

(si0(J )− si0(J /j))− ∂ log(φi0)

∂x1
i0

(sij(J )− sij(J /0)) (A.41)

This expression might seem somewhat odd given that ‘leave-zero-out’ variation is required. How

natural this assumption is might vary across contexts. If default goods are randomly assigned in
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the population, this variation (or permitting the market share of good-0 to go to zero) might be

plausible. If Assumption 7a holds, then the proof of identification follows as in Section 3 with the

above modification to cross derivative differences involving the default.

A.5 Relationship between ASC & DSC Models and Search Models

The DSC Model & Sequential Seach Models Ho, Hogan, and Scott Morton (2015) and

Heiss, McFadden, Winter, Wupperman, and Zhou (2016) provide microfoundations for the DSC

model. However, we here note that our identification results can be easily adapted to a wider

class of sequential search models. Rather than searching only if the default good is unattractive,

a consumer searches the next best option if their top ranked option is unavailable. For example,

the optimal policy of Weitzman (1979) involves searching options in order of their reservation value,

stopping when an option is available. We here develop identification results for this model and show

how these relate to those of the DSC model.

Using the notation of Chade and Smith (2006), order the J + 1 options according to their

(unobserved) expected utility or reservation value. The probability that an option j is available

is independent across options and given by αij(xij). Thus the probability of consumer i choosing

options ranked first through to J is:

si1 = αi1 (A.42)

si2 = αi2(1− αi1) (A.43)

... (A.44)

siJ = αiJ

J−1∏
j′=1

(1− αij′) (A.45)

Let the default be chosen only if all other options are unavailable, i.e. si0 =
∏J
j=1(1− αij).

The ranking of options is unobserved by the econometrician. The aim is to recover this latent

ranking and the probability of option availability. The cross-derivative of choice probabilities takes

the form:

∂sij
∂xij′

= −1
(
j′ > j

)∂αij′
∂xij′

αij
∏

l 6=j′<j
(1− αil)

 (A.46)

and 0 if j′ > j. The pattern of zero cross-derivative effects thus identifies the underlying ranking of
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options. For j′ < j, we have:

∂sij
∂xij′

= −∂αij′
∂xij′

αij
∏

l 6=j′<j
(1− αil) (A.47)

=
∂ log

(
1− αij′

)
∂xij′

sij (A.48)

Therefore, derivatives of the log of availability probabilities are identified in an analogous manner

to the DSC model:

∂ log
(
1− αij′

)
∂xij′

=
1

sij

[
∂sij
∂xij′

− ∂sij′

∂xij

]
(A.49)

Indeed, if many cross-derivatives are zero and there exist asymmetries with respect to cross-

derivative differences that do not involve the default good, this suggests that one should perhaps

consider whether this wider class of models better represents the choice problem to hand than the

DSC model.

The ASC Model & Search Models While the ASC model places strong restrictions on the

functional form of consideration set probabilities, it can nonetheless be a good approximation to a

class of optimising models of consumer search.

As described by Honka (2014), when there is first order stochastic dominance among the good-

specific distributions over which a consumer is searching, consideration sets are defined by a simple

cut-off rule (see Chade and Smith (2006)). Similarly, Caplin, Dean, and Leahy (2016) show that the

rational inattention model of Sims (2003) implies the formation of consideration sets defined by cut-

off strategies given restrictions on the correlation between the ex ante valuation of alternatives. The

precise cut-off point between the set of considered and unconsidered goods is endogenous and will

generally depend on the characteristics of all goods and search costs. For example, in Honka (2014),

assuming homogeneous constant search costs across goods, the cut-off rule defining a consideration

set c given a particular realisation of expected utility shocks is:

min
j∈c

ũij(xij , ε̃ij) ≥ t(xi, ε̃i) ≥ max
j′ /∈c

ũij′(xij′ , ε̃ij′) (A.50)

where ũij(xij , ε̃ij) gives the expected utility of good j given random shock ε̃ij and t(xi) gives the

endogenous cut-off rule. The probability that a good is considered once independent expected utility
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errors are taken into account can then be expressed as:

φij(xi) = Pr (ũij(xij , ε̃ij) ≥ t(xi, ε̃i)) (A.51)

This model deviates from the ASC model as the probability of considering good j depends on

the characteristics of all goods through the cut-off rule: ∂φij/∂xij′ 6= 0.34 However, the ASC model

will nonetheless be a good approximation to this model when:

∂t

∂xij′
≈ 0 as this implies

∂φij
∂xij′

≈ 0 (A.52)

for j′ 6= j and j 6= arg minj∈c ũij(xij , ε̃ij) and j 6= arg maxj /∈c ũij(xij , ε̃ij).

However, even in scenarios where this assumption is suspect (e.g. the overidentification tests in

Section 3 are violated), features of consideration set probabilities can still be identified from cross-

derivative asymmetries. This remains the case even with correlation between the unobservables

driving consideration probabilities, e.g. correlation in expected random utility errors, although, of

course, we still require independence of unobservables driving attention and utility. To illustrate,

let gij = xijγ and assume that the impact of characteristics on attention probabilities comes via the

indices gij . The general expression for cross-derivative differences in consideration set models then

takes the form:

∂sij
∂xij′k

− ∂sij′

∂xijk
=
∑
c∈P(j)

∂πic(gi0, ..., giJ)

∂xij′
s?ij(c)−

∑
c′∈P(j′)

∂πic′(gi0, ..., giJ)

∂xij
s?ij′(c

′) (A.53)

= γk
∑
c∈P(j)

∂πic(gi0, ..., giJ)

∂gij′
s?ij(c)−

∑
c′∈P(j′)

∂πic′(gi0, ..., giJ)

∂gij
s?ij′(c

′) (A.54)

Thus, γ is identified up to a scale by relative differences in cross-derivative asymmetries.

∂sij
∂xij′k

− ∂sij′
∂xijk

∂sij
∂xij′k

− ∂sij′
∂xijk

=
γk
γk′

(A.55)

While further structure is required to point identify all structural functions of interest, cross-

derivative differences nonetheless remain a source of identifying power in much more complicated

frameworks than those considered in the main text of this paper, for example, those that permit

dependence between the probability of considering good j and of considering good j′, or dependence

between the probability of considering good j and the characteristics of good j′.

34This being said we point the reader to Section A.2 for a generalisation of the ASC model that allows for dependence
of own-good consideration upon the default characteristics.
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B Proof of Utility Representations for Consideration Set Models

Consider first the ASC model. We start by assuming there is a default plan to which you are always

attentive (plan 0) and an alternative, plan 1, to which you might be inattentive. Let preferences be

given by:

uij = βx1
ij + wj(x

2
ij) + εij (B.1)

= vij + εij (B.2)

In this two-good ASC model, we can write the probability of choosing good 1 as:

si1 = φi1s
?
i1 (B.3)

where s?i1 is the probability of choosing good 1 conditional on paying attention and xij = [x1
ij , x

2
ij ].

With i.i.d. extreme value errors, this model is equivalent to a full-consideration model with

preferences specified as:

ũij = vij + ψi,j=1 + εij (B.4)

where ψi,j=1 = ψi1 for plan 1 and is 0 otherwise, where ψi1 is given by:

ψi1 = ln

(
φi1(xi1) exp(vi0)

(1− φi1(xi1)) exp(vi1) + exp(vi0)

)
(B.5)

This follows since:

si1 =
exp(vi1 + ψi,j=1)

exp(vi1 + ψi,j=1) + exp(vi0)
= φi1(xi1)

exp(vi1)

exp(vi1) + exp(vi0)
(B.6)

We prove that an analogous result holds in a J good model by the inductive hypothesis with

ψi,j=d = 0 for the default plan and ψi,j 6=d otherwise implicitly defined by the system of J − 1

equations:

ψi,j = ln

(
φij
∑

k 6=j exp(vik + ψik)

(1− φij) exp(vij) +
∑

k 6=j exp(vik + ψik)

)
(B.7)

We showed above that this holds for the case where J = 2. Let saij denote the probability of choosing

good j conditional on paying attention to good j, i.e. saij = sij(xi|φij = 1). In the two-good case,
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sai1 = s?i1 but more generally:

saij =
∑
c∈P(j)

∏
l∈c,l 6=j

φil
∏
l′ /∈c

(1− φil′) s?ij(c) (B.8)

Thus, consider adding a Jth plan to which you might be inattentive:

siJ = φiJs
a
iJ (B.9)

By the inductive hypothesis, we have:

saiJ =
exp(viJ)

exp(viJ) +
∑

k 6=J exp(vik + ψik)
(B.10)

Therefore,

siJ = φiJ
exp(viJ)

exp(viJ) +
∑

k 6=J exp(vik + ψik)
(B.11)

It is straightforward to confirm that these choice probabilities result from full-consideration

utility maximization given that the Jth good has utility given by:

uiJ = viJ + ψiJ + εiJ (B.12)

where:

ψij = ln

(
φij
∑

k 6=j exp(vik + ψik)

(1− φij) exp(vij) +
∑

k 6=j exp(vik + ψik)

)
(B.13)

Thus, if this representation holds for a choice set with J − 1 plans, it holds for a choice set with J

plans, and the proof is complete for the ASC model.

Next, consider the DSC model.

sid = (1− µi0) + µi0s
?
id

sij = µi0s
?
ij for j 6= d (B.14)

where s?ij = 1 are the choice probabilities which result from maximizing:

uij = vij + ξi,j=d + εij (B.15)

We want to show that this is equivalent to a full-consideration model where choice probabilities are
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given by:

uij = vij + ξi,j=d + ψi,j=d + εij (B.16)

Let ψi,j=d = ψi and zero when j 6= d and ξi,j=d = ξi and zero when j 6= d. The full-consideration

model will be equivalent to the DSC model with:

ψi = ln

(
1 + (1− µi0)

∑
k 6=d exp(vik − vid − ξi)
µi0

)
(B.17)

C Estimation

Goeree (2008) provides details of the estimation process for the ASC model. We sketch the main

ideas here. With a small number of available alternatives, estimation is straightforward. The

probability of choosing any specific alternative as a function of the parameters θ = (β, γ) is given

by:

sij(θ) =
∑
c∈P(j)

∏
l∈c

φil(θ)
∏
l′ /∈c

(1− φil′(θ))s?ij(c, θ) (C.1)

We can use this to construct the likelihood function and then estimate the parameters β and γ by

maximum likelihood.

In larger choice sets, a major computational issue arises - there are 2J possible consideration

sets to sum over. To deal with this problem, we follow Goeree (2008) in using a simulated likelihood

approach. The basic idea is to estimate the term
∑

c∈P(j)

∏
l∈c φil(θ)

∏
l′ /∈c(1 − φil′(θ))s?ij(c, θ) by

simulating R consideration sets per individual where, for each r = 1, ..., R, each option is added

to the consideration set with probability φij so that the probability a given consideration set is

simulated is given by:
∏
l∈c φil

∏
k/∈c(1− φik). We then compute:

ŝij =
1

R

∑
r

s?ij(cr, θ) (C.2)

Since each cr is chosen with probability
∏
l∈c φil

∏
l′ /∈c(1− φil′), we have that:

ŝij =
1

R

R∑
r=1

∏
l∈cr

φil(θ)
∏
li/∈cr

(1− φil′(θ))s?ij(c, θ)

→p

∑
c∈P(j)

∏
l∈c

φil(θ)
∏
l′ /∈c

(1− φil′(θ))s?ij(c, θ) (C.3)

However, this procedure is still computationally burdensome as it requires computing s?ij(cr, θ)
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for every simulation r for all individuals at each candidate set of parameter values (since as the

underlying parameters shift, the φ, and thus the choice sets would shift).

Following Goeree (2008), two additional tricks are used so that the choice probabilities need to

be evaluated only once per person for each simulation r. First, we use the same uniform draws to

simulate choice sets at each set of parameter values. Second, we use an importance sampler so that

the choice probabilities need only be evaluated at the consideration sets implied by the parameters

at their initial values. Specifically, we can compute Equation C.2 using:

ŝij =
1

R

∑
r

∏
l∈cr

φil
∏
l /∈cr

(1− φil′)
s?ij(c0, θ)

φ0
ir(θ0)

(C.4)

where φ0
ir(θ0) =

∏
l∈c0 φil

∏
k/∈c0(1 − φik) and each consideration set is sampled with probability

φ0
ir(θ0).35

D Additional Tables and Figures for Empirical Work

This Section provides additional tables and figures that illustrate the empirical results of Sections 4

and 5.

Lab Experiment Table 7 shows the products used in the experiment and their list prices. A

sample product selection screen is shown in Figure D.1.

Table 7: Product Names and Prices

Product Name List Price ($)

Yale Bulldogs Carolina Sewn Large Canvas Tote 22.98

10 Inch Custom Mascot 24.98

Alta Ceramic Tumbler 22.98

Yale Insulated Gemini Bottle 22.98

Yale Bulldogs Legacy Fitted Twill Hat 24.98

Moleskin Large Notebook with Debossed Wordmark, Unruled 25.00

Collegiate Pacific Banner (“Yale University Lux et Veritas”) 24.98

Embroidered Towel From Team Golf 19.98

Mug w/ Thumb Piece 24.98

LXG Power Bank (USB Stick) 24.98

Notes: Table shows items used in experiment & their list prices.

35An importance sampler estimates a density f(x) by drawing from a density g(x), labeling the resulting value as
x1 and then weighting each draw by f(x1)/g(x1). The resulting density is equivalent to drawing directly from f(x).
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Figure D.1: Lab Experiment: Sample Product Selection Screen

Expedia Analysis Table 8 gives summary statistics for the sample used in the Expedia analysis.

As explained in the main text, given the estimated coefficients, we compute the estimated cross-

derivatives with respect to the position variable. These can be thought of as the impact of increasing

position for a given hotel and then using the model to “undo” the impact on demand of the resulting

position changes for rival hotels. For each individual and each pair of hotels, we can compute the

magnitude of the asymmetry as a percentage of the average absolute cross-effect in the data. Figure

D.2 graphs the resulting asymmetries.

For our validation exercise we estimate the model using only the hotels in search positions 3

through 10. We then compute demand for each hotel as if the constant in the attention equation

becomes arbitrarily large so that the attentive probability goes to 1 – this is our bound for that

hotel. We then ask how well the bound does in accounting for the observed behavior in positions 1

and 2. While we cannot know ex ante how the attention probability will change if a hotel is placed

in positions 1 or 2, we know that demand in those positions should be less than the bound given

by perfect attention. Thus, we ask first whether the bound implied by the ASC model is indeed a
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Table 8: Expedia Data: Summary Statistics

All Hotels Chosen Hotels

Price ($) 156 136

(97.2) (67.9)

Hotel Stars (1-5) 3.21 3.28

(0.88) (0.80)

Hotel Review Score (1-5) 3.93 3.99

(0.72) (0.61)

Popular Brand Indicator 0.74 0.74

(0.44) (0.44)

Location Score (normalized) -0.12 -0.10

(0.87) (0.86)

Ongoing Promotion Indicator 0.20 0.27

(0.40) (0.45)

Position in Search 5.5 4.52

(2.87) (2.89)

Number of Observations 24,410 2,441

Notes: Table reports means and standard deviations (in parenthesis) for the sample
of consumers who received a randomized hotel ordering in search and recorded a final
transaction. Price is dollars per night, the popular brand indicates the hotel is part
of a ”major hotel chain” (as defined by Expedia), and the online promotion indicator
indicates that the hotel is highlighted because the listed price is lower than is typical
for that hotel.

Figure D.2: Estimated Asymmetries in Position Responses
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bound on choice probabilities for hotels in positions 1 and 2 and second, whether this bound has

predictive power in accounting for the choice probabilities conditional on observed demand.
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In practice, we compute this bound separately for each hotel in the data, but we collapse down

to categories of hotels for expository purposes. The upper bound on the effectiveness of informative

advertising is given by transaction probabilities when the the probability of paying attention is one.

Figure D.3 shows how this bound compares to the observed demand for a variety of different types

of hotels in each search position. The thick horizontal line shows the bound, the 10 colored dots

show demand in each search position (with higher dots corresponding to lower search positions).

The main takeaways from this figure are first that demand is always less than the bound implied by

perfect attention and second that the bound is non-trivial. For example, average demand for hotels

in positions 1-3 exceeds the bound placed on the demand for the maximum price hotels.

Figure D.3: Expedia: Bound vs. Demand by Search Position
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Part D Analysis Summary statistics from our data after all sample selection restrictions are

imposed are reported in Table 9 in Appendix D. We report the mean and standard deviation of a

variety of characteristics for all plans and also for chosen plans.

Figure D.4 gives the predicted cross derivative difference between default and non-default goods

for included plan characteristics for four variables; the charts for all variables are in Appendix D.
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Table 9: Part D Data: Summary Statistics

All Plans Chosen Plans

Annual Premium ($) 493 423

(242) (199)

Annual Out of Pocket Costs ($) 874 881

(710) (700)

Variance of Costs (millions) 0.618 0.615

(0.525) (0.519)

Deductible 65.3 62.3

(113) (114)

Full Donut Hole Coverage 0.003 0.005

(0.055) (0.067)

Generic Donut Hole Coverage 0.230 0.126

(0.421) (0.332)

% of Costs Paid by Consumer 0.377 0.391

(0.101) (0.099)

# of Top 100 Drugs in Formulary 99.4 99.7

(1.61) (0.964)

Normalized Quality Rating 0.081 0.434

(0.952) (1.216)

Number of (year, beneficiary, plans) 1,363,761 68,469

Number of Beneficiaries 30,937 30,937

Notes: Table reports means and standard deviations (in parenthesis) of each variable
for the beneficiaries in our final sample. The sample consists of an observation for
each (year, beneficiary, plan).

We graph both the estimated cross derivatives from Equation 5.12 and the cross-derivatives implied

by the DSC model (γk(1−µi0)ŝij) against the predicted market share of plan j, ŝij . To capture the

uncertainty in the estimated cross-derivatives, we bootstrap estimation of Equation 5.12 and graph

the resulting confidence interval.

In all graphs, the green dots indicate the empirical cross-derivatives with respect to premiums –

this is exactly the same data in all graphs, and is included for scale (the green dots are absent in the

premium graph itself since they would overlap perfectly with the red dots). For each variable, the red

dots indicate the predicted cross-derivative difference from the DSC model and the grey confidence

region indicates the “empirical” cross-derivative difference from the more flexible specification in

Equation 5.12. We can see that in nearly all cases, the DSC model cross-derivatives match up

well with empirical cross-derivatives. There are a few exceptions – for example, there are some

nonlinearities in the cross-derivatives with respect to the quality rating which are not well-accounted

for by the underlying model of inattention. But overall, the patterns in the cross-derivatives are

extremely well-explained by the relatively parsimonious model of inattention.
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Figure D.4: Empirical vs. Model Predicted Cross-derivatives
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E Practical Overidentification Test in the DSC Model

The DSC model models choice probabilities as:

sid = (1− µi) + µis
∗
id

sij = µis
∗
ij (E.1)

In our empirical applications, we focus on linear logit specifications. Thus,

µi =
exp(xidγ)

1 + exp(xidγ)

s?ij =
exp(xijβ)∑J
j′=0 exp(xij′β)

(E.2)

As noted in Section 5, the DSC model with linear utility and logit errors can be written as a

random utility model where utility depends on the characteristics of rival goods:

uij = xijβ + ψi,j=d + εij (E.3)

= vij + εij (E.4)

where ψi,j=d is the a term that reflects the impact of imperfect consideration that varies as a function

of own and rival characteristics: where:

ψj=d = ln

(
1 + (1− µi)

∑
k 6=d exp((xik − xid)β)

µi

)
= ln

(
(1− µi) + µis

∗
id

µis∗id

)
(E.5)

The test we propose is to first estimate the DSC model to recover β̂ and γ̂, and thus ψ̂ij , to form:

v̂ij = xij β̂ + ψ̂i,j=d (E.6)

This ‘first stage’ yields predicted market shares ŝij and predicted latent shares, ŝ?ij (i.e. full consid-

eration predictions). Predicted cross-derivative differences then take the form;

̂∂sij
∂xidk

− ∂sid
∂xijk

= γ̂k(1− µ̂i)ŝij (E.7)

To determine whether the DSC model is sufficiently flexible to be able to capture the patterns
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in empirical cross-derivatives, we next estimate the following model with a rich set of interaction

terms:

ũij = xij β̂ +
∑
k

∑
k′

xidkxijk′αk,k′ + εij for j 6= d (E.8)

with predicted market shares s̃ij and predicted latent shares, s̃?ij .

Cross derivative differences with our more flexible specification take the form:

˜∂sij
∂xidk

− ∂sid
∂xijk

=
β̂k(ŝid − ŝ∗id)s̃id ((1− ŝid)s̃ij − (1− s̃id)ŝij) + γ̂k(1− µ̂i)(1− ŝid)s̃ids̃ij

ŝid(1− ŝid)

+s̃ij

[∑
k′

(xijk′ − x̃ik′)αk,k′ + s̃id
∑
k′

xidk′αk′k

]
(E.9)

where x̃ik =
∑

j 6=d s̃ijxijk. Note that when all αk,k′ = 0, we have: s̃ij = ŝij and there is no

difference in estimated cross-derivative differences at the first and second stages. Thus, if there are

no significant differences between these cross-derivative difference estimates, we conclude that the

DSC model fits the data well. In practise, we estimate the difference in Equations E.7 and E.9 by

quantile of s̃ij .

F Robustness

In this section, we report several robustness checks for the empirical specifications in Sections 4 and

5.

ASC Robustness Table 10 reports estimates of the ASC model for the subset of experimental

participants who correctly answered the question testing their understanding of the instructions.

The results are very comparable to Table 3 in the text.

Table 11 reports estimates of the ASC model on the Expedia data with 20 goods. The conditional

logit model estimated in the main text implies a willingness to pay of $7 per night for each one

position increase in search position on the site. The attentive logit model instead implies a willingness

to pay of $1.77 per night with 20 goods and $0.08 with 10 goods. In both cases, the predominant

impact of search position is on attention.

Table 12 reports estimates of the ASC model on the Expedia data with an outside option

included. In this specification, the conditional logit model implies a willingness to pay of $17.5 per

search position, while the attentive logit model implies a willingness to pay of $3.88 per night. Thus,

in all cases, we find that the attentive logit model reduces the apparent willingness to pay for search
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Table 10: Experimental Data Estimation Results

Conditional Logit Attentive Logit Truth

Utility:

Price (dollars) -0.052*** -0.16*** -0.17***

(0.004) (0.033) (0.005)

Product 1 -1.129*** 1.561** 0.751***

(0.084) (0.769) (0.109)

Product 2 -1.577*** 0.143 -0.026

(0.101) (0.661) (0.119)

Product 3 -1.331*** 0.287 0.329***

(0.091) (0.582) (0.111)

Product 4 -1.544*** 0.393 0.234*

(0.099) (0.701) (0.12)

Product 5 -1.162*** 1.429* 0.664***

(0.086) (0.832) (0.108)

Product 6 0.26*** 0.487*** 0.327***

(0.056) (0.136) (0.066)

Product 7 -0.675*** -0.996*** -0.898***

(0.073) (0.181) (0.081)

Product 8 -0.615*** -1.067*** -0.875***

(0.07) (0.2) (0.079)

Product 9 -0.215*** -0.168 -0.311***

(0.063) (0.157) (0.072)

Attention:

Price (dollars) 0.158*** 1.5

(0.029)

Product 1 -3.302*** -2.5

(0.399)

Product 2 -2.855*** -2.5

(0.484)

Product 3 -2.629*** -2.5

(0.392)

Product 4 -2.97*** -2.5

(0.439)

Product 5 -3.344*** -2.5

(0.395)

Product 6 -0.326 0

(0.317)

Product 7 0.638 0

(0.795)

Product 8 0.725 0

(0.578)

Product 9 -0.244 0

(0.325)

Notes: Table reports coefficient estimates from conditional logit and attentive logit
models. Estimates are the coefficients in the utility and attention equations (not
marginal effects). The conditional logit coefficients are recovered from estimating a
model assuming all 10 possible goods are considered. The ”true” utility parameters
are estimated using a conditional logit model given the actual choice set consumers
faced. The true attention parameters are known in advance. The attentive model
also includes a constant. ∗∗∗ Denotes significance at the 1% level, ∗∗ significance at
the 5% level and ∗ significance at the 10% level.
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Table 11: Expedia Estimation Results: 20 Goods

Conditional Logit Attentive Logit

Utility:

Price (dollars) -0.015 *** -0.019 ***

( 0.001 ) ( 0.001 )

Hotel Stars (1-5) 0.655 *** 0.688 ***

( 0.033 ) ( 0.078 )

Hotel Review Score (1-5) 0.406 *** 0.460 ***

( 0.036 ) ( 0.084 )

Popular Brand Indicator 0.146 *** 0.333 ***

( 0.045 ) ( 0.098 )

Location Score (normalized) 0.812 *** 0.149 **

( 0.035 ) ( 0.067 )

Ongoing Promotion Indicator 0.324 *** 0.005

( 0.042 ) ( 0.094 )

Position in Search -0.083 *** -0.034 ***

( 0.003 ) ( 0.008 )

New Default 0.284

( 0.207 )

Attention:

Price (dollars) 0.000

( 0.001 )

Hotel Stars (1-5) 0.162 *

( 0.097 )

Hotel Review Score (1-5) 0.053

( 0.095 )

Popular Brand Indicator -0.210

( 0.144 )

Location Score (normalized) 1.200 ***

( 0.092 )

Ongoing Promotion Indicator 0.573 ***

( 0.138 )

Position in Search -0.086 ***

( 0.009 )

New Default -0.543 **

( 0.242 )

Constant -0.354

( 0.464 )

Notes: Table reports coefficient estimates from the Goeree (2008) model. Estimates
are the coefficients in the utility and attention equations (not marginal effects). Stan-
dard errors are in parentheses. ∗∗∗Denotes significance at the 1% level, ∗∗ denotes
significance at the 5% level and ∗ denotes significance at the 10% level. The model
is also includes a default which is a randomly chosen alternative for each consumer.
Given the estimated attention probabilities, this default is chosen less than 1% of the
time.

position by at least 75%.

DSC Robustness Table 13 reports coefficient estimates from the DSC model with brand fixed

effects added. Table 14 reports coefficients on the changes on Part D characteristics over time from

the specification that allows these changes to impact both utility and attention.
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Table 12: Expedia Estimation Results: Outside Option

Conditional Logit Attentive Logit

Utility:

Price (dollars) -0.008 *** -0.018 ***

(0.000) (0.001)

Hotel Stars (1-5) 0.142 *** 0.271 ***

(0.024) (0.083)

Hotel Review Score (1-5) 0.359 *** 0.817 ***

(0.030) (0.107)

Popular Brand Indicator 0.241 *** 0.433 ***

(0.037) (0.096)

Location Score (normalized) 0.271 *** -0.007

(0.018) (0.065)

Ongoing Promotion Indicator 0.045 -0.094

(0.037) (0.099)

Position in Search -0.140 *** -0.072 ***

(0.006) (0.015)

Outside 5.215 *** 7.291 ***

(0.108) (0.474 )

Attention:

Price (dollars) -0.003 ***

(0.001)

Hotel Stars (1-5) 0.370 ***

(0.087)

Hotel Review Score (1-5) -0.122

(0.087)

Popular Brand Indicator -0.151

(0.124)

Location Score (normalized) 1.093 ***

(0.088)

Ongoing Promotion Indicator 0.454 ***

(0.135)

Position in Search -0.122 ***

(0.016)

Outside 3.046 ***

(0.404)

Constant -0.145

(0.396)

Notes: Table reports coefficient estimates from the Goeree (2008) model. Estimates
are the coefficients in the utility and attention equations (not marginal effects). Stan-
dard errors are in parentheses. ∗∗∗Denotes significance at the 1% level, ∗∗ denotes
significance at the 5% level and ∗ denotes significance at the 10% level. The model
is also includes a default which is a randomly chosen alternative for each consumer.
Given the estimated attention probabilities, this default is chosen less than 1% of the
time.
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Table 13: Part D Results w/ Brand Fixed Effects

2007 2008 2009

Clogit Alogit Clogit Alogit Clogit Alogit

Utility:

Annual Premium (hundreds) -0.415*** -0.909*** -0.596*** -1.074*** -0.599*** -1.245***

(0.012) (0.029) (0.013) (0.026) (0.015) (0.027)

Annual Out of Pocket Costs (hundreds) -0.418*** -0.661*** -0.691*** -0.923*** -0.433*** -0.484***

(0.020) (0.028) (0.029) (0.047) (0.034) (0.054)

Variance of Costs (millions) -2.131*** -3.359*** -1.809*** -2.351*** -2.056*** -0.702

(0.178) (0.248) (0.299) (0.448) (0.326) (0.526)

Deductible (hundreds) -0.208*** -0.355*** -0.737*** -0.792*** -0.231*** -0.590***

(0.024) (0.032) (0.027) (0.037) (0.030) (0.043)

Donut Hole Coverage -0.178*** 0.505*** -0.263*** -0.798*** 1.335*** 1.917***

(0.055) (0.074) (0.065) (0.120) (0.083) (0.142)

Average Consumer Cost Sharing % 0.704** -0.071 -2.002*** -4.274*** 0.798** -1.898***

(0.280) (0.376) (0.333) (0.450) (0.358) (0.541)

# of Top 100 Drugs in Formulary 0.641*** 1.078*** 0.749*** 0.826*** -0.060*** 0.022*

(0.040) (0.071) (0.046) (0.057) (0.008) (0.013)

Normalized Quality Rating 0.087*** 0.319*** 0.299*** 0.688*** 0.564*** 0.659***

(0.017) (0.025) (0.018) (0.028) (0.017) (0.026)

Prior Year Plan 5.930*** -15.619 6.380*** 3.370*** 6.525*** 2.410***

(0.025) (846.880) (0.034) (0.122) (0.038) (0.208)

Attention:

Annual Premium (dollars) 0.240*** 0.364*** 0.068**

(0.016) (0.023) (0.027)

Annual Out of Pocket Costs (dollars) 0.141*** 0.186*** -0.029

(0.038) (0.051) (0.064)

Variance of Costs (millions) 2.037*** -0.113 1.777***

(0.315) (0.455) (0.589)

Deductible (hundreds) 0.373*** 0.182*** 0.075

(0.046) (0.053) (0.065)

Donut Hole Coverage 0.829*** -1.364*** -0.268*

(0.082) (0.128) (0.142)

Average Consumer Cost Sharing % 1.321** -5.493*** 0.060

(0.538) (0.693) (0.733)

# of Top 100 Drugs in Formulary -0.211*** 0.429*** 0.099***

(0.065) (0.102) (0.021)

Normalized Quality Rating 0.002 0.034 -0.600***

(0.024) (0.036) (0.032)

Notes: “Clogit” refers to the conditional logit model; “alogit” refers to the attentive logit model. The table reports
coefficient estimates from the DSC model. Estimates are the coefficients in the utility and attention equations (not
marginal effects). The coeffic1ents in the attention equation are the coefficients on the listed characteristics of the
default good (demeaned). Standard errors are in parentheses. The attentive model also includes a constant. ∗∗∗

denotes significance at the 1% level, ∗∗ significance at the 5% level, and ∗ significance at the 10% level. Standard
errors in parentheses.
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Table 14: Health Plan Data: Validity of Exclusion Restriction on Changes

Coefficient on Changes: Utility Attention

Annual Premium (dollars) -0.106*** 0.055***

(0.040) (0.012)

Annual Out of Pocket Costs (dollars) 0.025 -0.003

(0.018) (0.006)

Variance of Costs (millions) -0.240 0.012

(0.241) (0.008)

Deductible (hundreds) -0.112 -0.011

(0.105) (0.026)

Donut Hole Coverage 0.176 -0.290***

(0.278) (0.080)

Average Consumer Cost Sharing % 1.596 0.589**

(1.578) (0.301)

# of Top 100 Drugs in Formulary -0.089 0.037***

(0.080) (0.007)

Normalized Quality Rating -0.090 0.038

(0.102) (0.025)

Notes: Table reports coefficient estimates from the DSC model. Estimates are the co-
efficients on the changes in the reported variables in the utility and attention equations
(not marginal effects). The coefficients in the attention equation are the coefficients
on the listed characteristics of the default good (demeaned). The levels are also in-
cluded in both equations and their coefficients are not shown (for reference, they are
quite similar to the specification which omits differences). Standard errors are in
parentheses. The attentive model also includes a constant. ∗∗∗ Denotes significance
at the 1% level, ∗∗ significance at the 5% level and ∗ significance at the 10% level.
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