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ABSTRACT

Though over 90 percent of benefits from environmental quality improvements are attributed to 
long-term exposure, nearly all quasi-experimental evidence on the effects of pollution on health 
exploits changes in short-term exposure. Quantifying long-run exposure impacts requires a 
lasting, exogenous change in ambient pollution. Even if the initial change in pollution is 
exogenous, the long-run nature allows more time for economic agents to respond to changes in 
pollution, resulting in endogenous pollution exposure. We estimate the effects of long-run 
pollution exposure on mortality among adults by exploiting the United States Acid Rain Program 
(ARP) as a natural experiment. The ARP, which regulated emissions from coal power plants, 
created a permanent change in pollution across vast distances, enabling us to define broad 
treatment areas to subsume many potential confounding effects. We use a difference-
indifferences design, comparing changes in mortality over time in counties “near” regulated 
plants to changes in mortality in similar counties “far” from the plants. We find relative mortality 
in treatment counties decreased after the introduction of the ARP, with mortality improvements 
growing steadily over time in both economic and statistical significance. The ARP had no 
significant effect on residential sorting or employment, helping rule out selection or economic 
mechanisms. Analysis by cause of death supports the role of fine particulate matter as the 
relevant pollutant.
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1. Introduction 

Though over 90 percent of benefits from environmental quality improvements are 

attributed to long-term exposure (Dominici et al., 2014), nearly all quasi-experimental research 

on the effects of pollution exposure on health exploits changes in short-run exposure.1 

Quantifying the effects of long-run exposure presents unique challenges because it requires a 

long-lasting, exogenous change in ambient pollution. Temporary, unexpected changes in 

pollution, while powerful in short-run estimates, can affect timing of exposure without 

substantively affecting long-run exposure (Graff Zivin and Neidell 2012; Deschenes et al. 2012; 

Schlenker and Walker 2016; Deryugina et al. 2016). Furthermore, economic agents may respond 

to the changes in pollution, especially in the long run, resulting in changes in labor and housing 

markets, such as job loss and residential sorting (Walker, 2013; Banzhaf and Walsh, 2008). Even 

if an initial change in pollution is exogenous, pollution exposure is thus likely to be endogenous 

in the long-run. This lack of quasi-experimental evidence on the health effects from 

accumulated, long-run pollution exposure leaves an important gap in the literature. 

In this study, we estimate the effects of long-run pollution exposure on mortality among 

adults using the United States Acid Rain Program (ARP), a cap-and-trade program to control 

sulfur dioxide (SO2) emissions, as a natural experiment. Four factors make the ARP an ideal 

setting for our study. First, the ARP created a permanent change in pollution, necessary for 

identifying effects of long-run exposure. Once implemented, the ARP improved SO2 almost 

immediately, and improvements persist to date. SO2 is a precursor gas in the formation of 

particulate matter smaller than 2.5 micrometers (PM2.5),2 which has much more detrimental 

                                                
1 Two important exceptions are Chen et al. (2013) and Anderson (2015). We discuss these in detail below. 
2 See Hodan and Barnard (2004). 
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effects on human health than SO2 itself (see Environmental Protection Agency (2004) for a 

comprehensive review). 

Second, the ARP initially regulated only the 110 most SO2-intensive coal plants, leaving 

some areas affected by the regulation and others not. This lends to a difference-in-differences 

design comparing changes in mortality over time in counties “near” regulated plants to changes 

in mortality in counties “far” from the plants.3 This mitigates bias from national trends that 

change over time independent of proximity to coal-fired power plants, such as business cycles, 

health care access, and technological advances.  

Third, given the vast distance both SO2 and PM2.5 can travel once airborne, we define 

broad treatment areas up to 100 miles from the plant, subsuming many potential confounding 

general equilibrium effects.4 For example, households sorting in response to the economic effects 

of the ARP will not bias estimates if such sorting remains within a 100-mile radius of regulated 

power plants. Given existing evidence on the opening and closing of power plants finds changes 

in housing amenity values occur at distances of less than 2 miles, a 100-mile buffer seems 

adequate for capturing sorting.5 Even so, we directly test for sorting using various population 

characteristics, and find no evidence of sorting in response to the ARP.6  

                                                
3 Regulatory status, announced in 1990 and imposed in 1995, used emissions levels from 1985 to avoid concerns of 
regulatory gaming. 
4 We use flexible estimated effects at different distances to choose this treatment cutoff. 
5 Using detailed micro-census data, Davis (2011) finds that power plant openings affect housing values within 2 
miles of a power plant. Davis's (2011) results deal with natural gas power plants, though similar results may extend 
to coal plants. Focused on toxic plants, Currie et al. (2015) find that plant openings affect housing values within half 
a mile of the plant. An additional relevant finding in Currie et al. is the discord between the degree of sorting and the 
extent of the health effects: housing values change within half a mile of the plant, but health effects extend beyond 1 
mile. This suggests that sorting is imperfect, and likely to be more imperfect the broader the distance and more 
unknown the health effects. Walker (2013) and Greenstone (2002) show that employment effects of regulation exist 
at the county level, though in both cases the regulations they consider are county-level rather than plant-level as in 
the ARP. 
6 Although the ARP focused on SO2, where health effects are short-run and respiratory-related, the eventual 
conversion to PM2.5 is what likely drives mortality.  Both the conversion process and harmful effects of PM2.5 were 
largely unknown at the time, making it unlikely people sorted directly on PM2.5. To the extent the two pollutants are 
correlated, by sorting on SO2 people may indirectly sort on PM2.5. 
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Fourth, the potential impact of the environmental regulation on economic conditions is 

likely small in this context. Workers in regulated areas often experience job loss (Greenstone 

2002; Walker, 2013), which can have independent effects on health (Sullivan and von Wachter, 

2009). This issue is less relevant to the ARP as compliance costs and economic effects were low 

(Schmalensee and Stavins, 2015).
7 Moreover, our broad treatment areas subsume local economic 

effects, to the extent they exist, in the same way they deal with sorting. Indeed, we find the ARP 

had negligible effects on several labor market outcomes, suggesting that employment effects are 

unlikely to bias estimates of health effects. As a further test, since our broad treatment area 

includes multiple counties, we estimate models omitting counties containing regulated plants. 

Our research design compares across-time differences in adult mortality for counties 

within 100 miles of regulated power plants (our treatment group) to counties beyond 100 miles 

(our control group). Our core population of interest is adults ages 35-64, though we explore 

impacts on other age groups as well. We begin analysis in 1990, when the government 

announced the ARP; define post-treatment as beginning in 1995, the year the ARP began; and 

end in 2005, before changes to the SO2 permit market potentially shifted the relationship 

between regulation and ambient emissions. This allows us to test for pre-trends in mortality 

differences for the 5 years leading up to the ARP, and for changing mortality up to 10 years after 

the policy. Given regulated coal plants are largely located in the Midwest and Northeast, we 

restrict our sample to counties with similar geographic, economic, and demographic observables 

at baseline using a propensity-score matching algorithm. We also control for propensity-score 

based flexible time effects to better address differential trends that might correlate with 

treatment.  

                                                
7 Regulatory costs were lower than predicted due to rapid technological innovation in desulphurization and an 
unexpected increase in access to low-sulfur coal. 



5 
 

Overall, we find evidence consistent with lasting reduced mortality effects from 

decreases in extended, long-run pollution exposure. We show that SO2 emissions in treatment 

counties drop immediately after the ARP begins, and the reductions persist in the following 

years. We then show mortality in treatment counties decreased (relative to control counties) after 

the introduction of the ARP, with relative mortality improvements growing steadily over time in 

both economic and statistical significance. By 2005, mortality rates among the age 35-64 

population are 5 percent lower in treated counties. Though the policy regulated SO2, we contend 

health effects operate through PM2.5 rather than SO2. Data limitations on PM2.5 for the years 

surrounding the ARP preclude a direct test of this hypothesis. Nonetheless, analyses by cause of 

death, showing large and statistically significant effects on cardiovascular deaths, suggest PM2.5 

is the responsible pollutant. As a test of endogenous sorting and changing economic conditions, 

we show no discernible differences between treatment and control counties in employment, 

personal income, migration, and population composition either before or after the ARP.  

Our study offers important innovations beyond recent quasi-experimental studies 

addressing potential long-run exposure (Chen et al., 2013; Anderson, 2015). First, prior research 

relies on cross-sectional designs, which may conflate the effects from short-run and long-run 

exposure. We provide a year-by-year event study of changes in adult mortality over time, 

allowing us to directly disentangle the short-run exposure effects from long-run exposure effects. 

Second, we focus on working age adults, a group considered a more health-robust segment of the 

population. The working age range is one where mortality represents a significant loss in life 

expectancy and economic productivity, so existing estimates of the value of statistical life (VSL) 

more readily apply.8 

                                                
8 Existing studies typically focus on compensating differentials for workers across industries. See Murphy and Topel 
(2006) for a discussion of VSL over the lifecycle. 
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Beyond helping to better understand the relationship between pollution and adult health, 

our reduced form estimates are of direct interest to policies centered on emissions from coal 

power plants.  Global coal consumption has nearly doubled since the turn of the century with 

rapid growth in developing nations such as China and India9. In the United States, the Clean 

Power Plan focuses heavily on reducing emissions from coal power plants, with potentially large 

regulatory costs. To properly assess the economic consequences from such changes, our 

estimates provide a benchmark for evaluating potential mortality benefits. 

 

2. Background 

2.1 The Acid Rain Program 

The ARP was a provision of the Environmental Protection Agency (EPA) Clean Air Act 

Amendments of 1990.10 The two-phase program regulates SO2-producing coal power plants, 

with the goal of reducing US SO2 levels to 50 percent of 1980 levels. Phase I, beginning in 1995, 

regulated the 110 power plants with the highest SO2 emissions as measured in 1985. Phase II, 

beginning in 2000, further limited emissions of Phase I plants and added all remaining coal 

plants to the program. Both Phase I and Phase II worked through an SO2-emission cap-and-trade 

system. Plants could bank permits across time and buy and sell permits with other plants. Phase I 

had a considerably larger impact on SO2 emissions than Phase II, as firms had the ability to 

smooth the Phase II regulations by banking permits in advance. As such, our quasi-experimental 

research design focuses on Phase I.  

                                                
9 "China and India drive recent changes in world coal trade," Today in Energy, U.S. Energy Information 
Administration, Nov. 20, 2015.  
10 The predecessor to the ARP was the Acid Deposition Act of 1980, a 10-year program that increased SO2 
monitoring, investigated precipitation acidity levels, and established a monitor network to study levels of dry 
deposition (sulfuric acid deposited in the absence of precipitation). 
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The EPA distributed SO2 allowances to 263 heating units at the 110 plants based on 

baseline (1985-1987) heat input (Stavins, 1998), calculated in British thermal units (BTUs).11 

Each year, plants report SO2 emissions to the EPA for verification. For plants polluting in excess 

of held permits, the EPA assigns an initial fee of $2,000 (adjusted for inflation) per ton of 

overage and requires accounting for overages by purchasing sufficient permits. As the program 

moved into Phase II, the EPA further restricted the total number of available annual pollution 

permits, with a final goal of 8.95 million permitted tons for electric utilities by 2010. The EPA 

reports the program achieved close to full program compliance, leading to substantial decline in 

SO2 emissions from regulated plants. 

 

2.2 Health effects of SO2 and PM2.5 

Though the primary aim of the ARP was SO2's role in formation of acid rain, which has 

no known direct impacts of human health, there are potential health gains from the regulation 

due to improvement in associated pollutants, including direct SO2 exposure.12 Effects are 

primarily short-run and respiratory-related, leading to increases in hospital admissions for 

outcomes such as asthma exacerbations.13  

Much of the anticipated lasting health effects from the ARP arise from other pollutants 

correlated with SO2 levels, namely fine particulate matter (PM2.5). Through an atmospheric 

conversion process, SO2 produces sulfate particles, a portion of small-scale PM2.5. PM2.5 

penetrates deep into the lungs and enters the bloodstream, where it can lead to negative 

                                                
11 Heat input is a measure of the amount of fossil fuel used to generate electricity.  
12 See https://www.epa.gov/acidrain/effects-acid-rain, accessed March 9, 2017. 
13 See Environmental Protection Agency (2009) for more information. 



8 
 

cardiovascular and respiratory effects.14 For a review of quasi-experimental evidence of the 

health effects of short-run exposure to pollutants such as SO2 and PM2.5, see Graff Zivin and 

Neidell (2013).  

Effects from long-run PM exposure may accrue after sustained, low-level exposure, 

similar in spirit to cigarette smoking;15 extended exposure to PM may cause pulmonary and 

systemic oxidative stress and inflammation, which can lead to vascular dysfunction, 

atherosclerosis, and altered cardiac autonomic function (Brook et al., 2010).16 Quantifying such 

long-run effects is challenging as residential sorting on environmental quality can bias estimates. 

Quasi-experimental studies based on transitory shocks cannot directly address such bias – an 

unexpected change in pollution may disrupt the housing market equilibrium in the short-run, but 

effects become muted or disappear in the long-run as people adjust to this change by, for 

example, moving in or out of the affected area. This complicates separating long-run exposure 

effects of pollution from characteristics of a changing population, shifts in economic growth, and 

other health-related adjustments that come with lasting changes to the local economy. Banzhaf 

and Walsh (2008) provide evidence supporting environmental Tiebout sorting, demonstrating 

that areas with exogenous changes in air quality then experience changes in both size and 

composition of the population. 

Two recent quasi-experimental papers attempt to address confounding from sorting using 

cross-sectional designs. Chen et al. (2013) exploit the government policy of free winter heating 

north of the Huai River in China, which led to persistent higher total suspended particle 
                                                
14 See Environmental Protection Agency (2004) for a comprehensive review. Given its diminutive size, PM2.5 also 
penetrates into buildings at a high rate, suggesting the ability to avoid it is quite limited (Thatcher and Layton, 1995; 
Ozkaynak et al., 1996; and Vette et al., 2001). 
15 Note the effects from long-run exposure are distinct from the long-term effects. For example, several studies 
estimate the effect from early childhood exposure on adult outcomes. While the outcomes are long-term, the 
exposure remains short-run. See Sanders (2012), Isen et al. (2017), and Bharadwaj et al. (2017).  
16 The biological pathways differ between cigarette smoking and PM2.5 exposure, however, given the different 
substances involved. 
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emissions to the north. Restricted migration enforced by the government strengthens the research 

design, as it precludes sorting across the river. The authors find life expectancy for those living 

north of the river is 5.5 years shorter than those south of the river. 

Anderson (2015) exploits wind patterns along major highways in Los Angeles as a source 

of differential variation in exposure to pollution. His analysis focuses on 3-year mortality rates 

for adults over age 75, comparing residents living upwind versus downwind from major 

highways, showing a doubling in downwind exposure leads to a 3.6 to 6.8 percent increase in 

mortality for this age group.  

We offer two primary innovations over these quasi-experimental studies exploring long-

run exposure effects. First, we explicitly estimate the dynamic relationship between pollution 

changes and mortality, allowing observation of differential mortality effects immediately and up 

to 10 years into the ARP. Prior studies using cross-sectional analyses provide estimates that 

represent a confluence of short-, medium-, and long-run effects, while we trace effects over time 

with graphical evidence. Our framework tests whether effects of the ARP's pollution reduction 

are rapid or take time to build, and whether effects are transient or lasting. We observe 

monotonically increasing and lasting improvements in mortality over time, supporting the 

hypothesis that long-run cumulative exposure is an important health input. 

Second, we focus our analysis explicitly on working-age adults, a group typically 

considered a more health-robust segment of the population. Much of the earlier work focused on 

more vulnerable groups, such as infant and the elderly, and we show results for these groups as 

well for completeness. The working-age range is one where mortality represents a significant 

loss in life expectancy and economic productivity. Commonly used estimates of the value of 
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statistical life (VSL), typically based on hedonic wage regressions for the working-age 

population, more readily apply to this segment of the population.  

 

3. Data and methods 

3.1 Data sources 

We use county-level cause of death-coded mortality data from the Centers for Disease 

Control (CDC) as our main outcome variable. These data represent the universe of US deaths 

with information on cause of death, classified by either ICD-9 (up to 1997) or ICD-10 (1998 and 

beyond) cause of death codes. Data include information on age at death and county of residence 

– we use the restricted data since county identifiers are not publicly available for counties with 

less than 100,000 people, which make up a large share of our sample.  

We specify the main dependent variable as the inverse hyperbolic sine (IHS) of deaths 

per 100,000 residents aged 35-64.17 For the denominator, we use 1990 population from the 

decennial census.  We favor a stable population denominator because between-census population 

estimates impose trending, which may confound dynamic effects given we are testing for both 

breaks in trend (short-run effects) and changes in trend (long-run effects). For these death 

estimates to be true indications of changes in health, we must assume county-level population 

changes do not correlate with the ARP; we show this assumption holds using county-specific 

migration data. To further test this concern, we also show results using annually adjusted 

                                                
17 IHS(x) = ln(x + sqrt(1 + x^2)). The use of the IHS function is approximate to the log in that, for small changes, 
one can interpret marginal effects as percentage changes. However, the IHS of zero is mathematically defined. See 
Card and DellaVigna (2017) for a recent application of the IHS. We favor the IHS model as some counties have 
zeros in mortality in some years, which becomes especially prevalent when we explore particular causes of death. 
We also test results using the more standard log for all internal deaths (where zeros are uncommon), and find 
comparable results. Were we to use the log function, using deaths per constant (1990) population would be 
equivalent to log of raw deaths. This is a result of including county fixed effects and the mathematical properties of 
log functions where ln(a/b) = ln(a) – ln(b). The IHS function does not have this property, so IHS(a/b) ≠ IHS(a) – 
IHS (b) and using death rates with a constant denominator yields slightly different results than raw deaths. Our 
results using IHS of raw deaths, however, are similar to our main results. 
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population data from the Surveillance, Epidemiology, and End Results (SEER) program, which 

generates between-census estimates of population sizes by various age groupings.  For 

population-adjusted estimates to be a true indication of health changes, county-level inter-census 

estimates must not correlate with the ARP. In practice, both sets of estimates are similar. 

We focus on the death rate for internal causes, and further estimate impacts on 

respiratory-related and cardiovascular-related deaths to explore the causal channel.18 We also 

perform a robustness check using external deaths (accidents, murders, etc.) as a falsification test; 

such deaths may change with potentially confounding factors such as selective migration and 

economic fluctuations, but not with pollution-related health improvements. In most regressions, 

we limit analysis to those between 35 and 64 years of age, but show internal death results for 

other age groups as well.  

Sparse data prevent us from showing a direct comparison between pre- and post-ARP 

levels of PM2.5.19 Instead, we demonstrate a link between the ARP and SO2 using monitor-level 

pollution data. Since SO2 can convert to PM2.5, evidence of a link between the ARP and SO2 

demonstrates proof of concept for an effect on PM2.5. The EPA reports daily SO2 averages in 

parts-per-billion (ppb). We convert daily monitor-level measures to annual county-level 

estimates by calculating the distance between each monitor and each county centroid. Using all 

monitors within a range of a maximum distance d of the county centroid, we collapse to the 

county-by-year level using weights equal to 1/d. We set d = 50, though results are robust to 

alternate distances. We used an unbalanced panel of sensors given the limited number that are 

active across the entire sample period, but focus our SO2 results on a balanced panel of counties. 

                                                
18 Since there was a major change in adult AIDS-related mortality in 1995 with the introduction of new drug 
technologies, we omit internal deaths from AIDS to improve precision. Results including AIDS are similar, which 
we expect given rollout of the new drug should not correlate with location of ARP-regulated power plants. 
19 PM2.5 was not officially regulated by the EPA until 1997, so monitoring before 1997 is insufficient in scope. 
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In the off chance adverse weather patterns differed by treatment status after 1995, we 

flexibly control for temperature and rainfall using data from the National Oceanic and 

Atmospheric Administration (NOAA). We aggregate the station-day variables up to the county-

year level using inverse distance squared weights. Given the smaller number of available weather 

stations across the time period, we expand the maximum distance to 100 miles between county 

centroid and weather stations. 

To test for ARP impacts on the local economy, we collect annual, county-level data from 

various sources. We use county-level wage employment and total income (including wages and 

government payments) from the Bureau of Economic Analysis (BEA) Regional Data to explore 

labor market effects. The relevant data are from the Local Area Personal Income files, which 

provide annual economic and demographic information at the county level. Our first measure, 

wage employment, describes total county-level employment. The BEA derives estimates using 

information from unemployment insurance, and then adds information from uncovered industries 

such as some non-profits, students, and famers. Personal income is income received from all 

sources, including wages and government transfers, for all county residents.20 In each case, we 

use the IHS of raw values rather than per-capita estimates, given the imposed trending of 

population between census estimates mentioned above.  

 We use county-level population migration data from the Internal Revenue Service (IRS) 

to explore possible shifts in population. The IRS data include the number of exemptions claimed 

on tax returns that both entered and exited each given county in a given year, which serves as a 

proxy for migration.21 We focus on net migration (the difference between inflows and outflows) 

divided by baseline population to align with our mortality estimates. 

                                                
20 This variable omits realized and unrealized capital gains and losses. 
21 See Molloy et al (2011). These data do not permit an analysis of net migration for specific age groups.  
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3.2 Treatment definitions 

To define treatment areas, we link the mortality and SO2 data with proximity to Phase I 

power plants. We obtain a list of all Phase I plants from the EPA Air Markets Program Data, 

which includes the GPS coordinates of the plant. As no Phase I plants exist further west than 

approximately -96 degrees in latitude, we limit counties to those with centroids east of -100 

degrees latitude. Our core treatment definition involves a binary classification of treatment. A 

county is "treated" if its geographic centroid falls within a given distance from any Phase I plant. 

We focus our baseline analysis on 100 miles. We base this distance choice off flexible, reduced 

form distance estimates we explore in Section 4.6. Although this binary classification ignores the 

intensity and directionality of emissions, it allows simple graphical presentations of our results, 

and our use of propensity-score to better align treatment and control counties. Further, our 

measure of emissions is already a proxy for the true pollutant of interest, PM2.5, which makes us 

further favor a more general binary model. 

Figure 1 shows a map of treatment areas using the binary classification. Table 1 shows 

summary statistics for the treatment and control counties using the binary classification of 

treatment. Note both Figure 1 and Table 1 are net of propensity-score sample trimming, which 

we discuss below. 

  

3.3 Econometric model 

To identify the link between the ARP, SO2 levels, and mortality across time, we estimate 

the following equation: 

yct = βt + Σtβt*τ + Σtδt*pscc + θXct + αc + εct. 
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The variable y is either the IHS of the mortality rate for the population aged 35-64 or the SO2 

level in county c in year t. We use a fixed age group over time to focus specifically on the prime 

working age population.22 The variable pscc is a flexible use of a propensity-score estimate 

reflecting the probability of treatment, which we discuss in detail below. The vector Xct includes 

weather variables to address the possibility of differential weather patterns in treatment 

counties.23 The vector αc captures county fixed effects, while the error term (εct) includes an 

idiosyncratic component as well as a term clustered on the county to allow for arbitrary serial 

correlation within a county. We weight all regressions by 1990 age group-specific population.  

Our treatment variable, τ, is an indicator for whether county c is within 100 miles of a 

regulated Phase I power plant. The treatment effect varies separately by year (βt), omitting the 

year 1994. This amounts to an annual difference-in-differences estimator where we compare the 

difference in mortality between treatment and control areas in each year relative to the baseline 

difference in 1994.  

The dynamic pattern of the estimates is critical for testing the importance of long-run 

exposure. To illustrate this point, consider two individuals with identical mortality risk in the 

absence of any differences in short- and long-run pollution exposure. Assume there is a 

downward shift in the pollution level in year t for only one of the individuals such that pollution 

decreases by amount q at year t (1995 for our purposes), and remains lower by q in all future 

years. In year t+n, this “treated” individual experiences n*q less cumulative (or "long-run") 

pollution along with q less immediate (or "short-run") exposure, which would lower the 

mortality risk of this individual compared to the counterfactual “untreated” individual. With only 

                                                
22 This approach, which is similar in spirit to Case and Deaton (2015), assumes the age distribution within a county 
is uncorrelated with treatment status. Results using fixed cohorts rather than fixed age groups are similar to our main 
estimates. 
23 We control for precipitation and precipitation squared, as well as the fraction of each year in one of six 10-degree 
Fahrenheit bins (<30 F, 30-40, 40-50, 50-60, 70-80, and >80 F), leaving 60-70 as the omitted category. 
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mortality data in year (t+n), one cannot disentangle short-term exposure from long-run exposure. 

However, with data on mortality risk for years t through t+n, one can separately identify both 

effects based on the changes in mortality risk over time. Specifically, if only a short-run 

mortality effect from exposure exists (e.g., a "shock" effect), the differential in mortality would 

decline at year t only and remain level in the following years.24 If long-run (cumulative) 

exposure is an important health input, the relative mortality risk for the treated individual will 

continue to decrease in each subsequent year.25  

Applying this to our context, we can infer the ARP had no observable impact on health if 

all estimates of βt are zero. If estimates are non-zero and constant from 1995 onward, this 

represents a short-run effect where the level of pollution in year t only impacts mortality in year 

t. If estimates increase in years since the beginning of the ARP in 1995 (e.g., 

β1995<β1996<...<β2005), this presents evidence of an effect from cumulative, long-run exposure.  

A core identifying assumption of our model is that treatment and control counties would 

experience a similar mortality pattern over time absent the ARP’s implementation. As one test of 

this “parallel trends” assumption, we explore whether trends in mortality were similar before the 

ARP by obtaining estimates for each year leading up to implementation.  

To control for the possibility that demographic and economic trends correlate with 

proximity to regulated plants, we estimate a propensity-score (p-score) of treatment, using pre-

treatment county-level information from the 1990 County Data Book. We bin the p-score into 

                                                
24 If there are latent effects, there should be no short-run changes, with all improvements coming in some time t > 1; 
while we cannot rule this possibility out, these latent effects are more likely to arise during early childhood when 
critical development periods occur (see, e.g., Almond and Currie, 2011), whereas we focus largely on adults. 
25 Note that if relative pollution continued to decline after t, it would complicate separating the cumulative effects 
from the continued decrease in pollution using our framework. Our estimates suggest the majority of the SO2 
reductions from the ARP for the treatment group occurred in the years directly following 1995.  
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deciles and interact decile indicators with year fixed effects.26 In essence, this flexibly allows 

treatment and control counties of similar p-score (and thus similar 1990 traits) to have similar 

background changes in mortality outcomes over time. 

We estimate the p-score from a logit model with the treatment indicator as the outcome 

and the following economic and demographic variables as predictors of treatment (in linear, 

quadratic, and interacted forms): land area in square miles, total population, population share 

classified as black, population share classified as Hispanic, population share classified as male, 

population share by County Data Book age group range (5-17, 18-21, 21-24, 25-34, 35-44, 45-

54, 55-64,65-74, and > 75, with under 5 as the omitted group), income per capita, civilian 

unemployment, civilian employment in manufacturing, retail, public administration, health 

services, and employment by federal and state government.27 Appendix Figure A-1 shows the 

distribution of estimated p-scores in bins of 0.1 for both treatment and control groups. We trim 

extremes of treatments and controls by dropping counties with p-scores below 0.01 and above 

0.99 (removing 337 total counties), and test both more extreme and zero trimming as robustness 

checks.  

Three factors drive us to opt for this p-score method over directly controlling for county-

year demographic or economic covariates or county-specific time trends.28 First, the available 

county-year demographic data are interpolated between censuses, which results in noisily 

measured, trending variables that can hinder our analysis. Second, controlling for county-year 

                                                
26 The choice between the number of n-tiles for binning faces a trade-off between increased flexibility (more bins) 
and desire to have treatment and control counties in each bin (fewer bins). Using both a smaller and larger number 
of bins yields similar results.  
27 We follow the reasoning of Imbens (2015) for deciding which covariates to include; theory serves only as a basic 
guide as to what covariates are likely to be important, and the larger goal is an accurate approximation of the 
conditional expectation. Our choice of these particular covariates was driven by the aim to equate pre-trends in 
mortality across treatment and control groups. 
28 As a robustness check, we allow the effect of the initial demographic variables to vary over time by interacting 
them with year fixed effects as well. 
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variables can introduce over-controlling bias if treatment changes mortality by otherwise 

changing the composition of the relevant population (Angrist and Pischke, 2009). Third, 

controlling for county-specific time trends potentially biases estimates in the presence of a 

dynamic treatment effect (Wolfers, 2006). Trend controls may help identification by accounting 

for pre-existing differences, but may also remove the signal of the policy. The p-score bin-by-

year variables flexibly account for pre-trends without picking up the dynamic treatment effect 

and, as we show below, remove any concern of pre-existing trends. We also explore an 

alternative model specification that interacts 1990 covariate values individually with year fixed 

effects. This is more flexible in that it allows each covariate to have differential impacts by year, 

but less flexible in that it does not allow for higher order or interactive effects of these variables. 

 

4. Results 

 We begin our results with a visual demonstration of our event study, and then follow with 

tables showing regression coefficients and standard errors. 

 

4.1. SO2 results 

 Evidence indicates the decrease in SO2 after the ARP’s implementation was both 

immediate and persistent. Panel A of Figure 2 presents SO2 data by treatment status absent 

controls. Two features emerge: (1) SO2 levels trend down over time in both treatment and control 

areas, and (2) SO2 levels in control areas evolve continuously across the start of the ARP, while 

SO2 levels in treatment areas drop sharply and return to trend at new, lower levels. Panel B of 

Figure 2 presents the event study coefficient estimates, which show differential SO2 levels across 

treatment and control areas, adjusting for county and year fixed effects, weather factors, and p-
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score interactions. In all event-study graphs, dashed lines indicate 95 percent confidence 

intervals. Aligning with the raw data, prior to the ARP, there is no trending difference in SO2. 

Relative SO2 levels drop rapidly after the ARP, and largely stabilize by 1999 at a 1 ppb lower 

level relative to before. The reduction in short-run exposure is mostly constant in all years after 

the ARP so we can isolate the effects of short- and long-run exposure. This immediate and stable 

reduction in SO2 is our identifying variation to estimate the effects of long-run exposure; 

individuals in treated counties experienced lower cumulative exposure to pollution in the years 

after the ARP’s implementation, relative to the counterfactual control counties.  

 

4.2. Mortality results 

 We first focus our analysis on individuals age 35-64. Primary outcomes are IHS of death 

rates per 100,000 (of 1990 population) for the relevant age-group population at the county level. 

Panel A of Figure 3 shows the raw plot for internal deaths by treatment and control. Prior to the 

ARP, mortality in both areas is trending upward in a parallel fashion. Note the upward trending 

is due to the increase in age group population size and not from a worsening of health.29 After 

the ARP, internal mortality in treatment areas experiences a subtly diminished trend relative to 

control areas. That the effect presents as a change in trend rather than a discontinuous break 

suggests the ARP reduced mortality gradually over time rather than in a single shift.  

In Panel B of Figure 3, we present the event study using coefficients and standard errors 

from our main regression equation. Coefficients represent an approximate percentage change for 

the difference between treatment and control counties as compared to the 1994 difference. 

Consistent with the raw plots, we see no statistically or economically significant difference in 

trends before the ARP; no coefficients estimating the difference in internal mortality between 
                                                
29 Recall that we use the constant 1990 population in the denominator of our death rate.  
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treatment and control groups from 1990-1993 are statistically or economically different from the 

1994 difference (omitted year). After the ARP, the estimates imply a gradual and steady decrease 

in mortality in treatment areas relative to controls, with effects becoming statistically significant 

by 1997. In 1995, the first year of ARP implementation, the estimate is a decrease in mortality of 

1.3 percent, though not statistically significant at conventional levels. This estimate increases to a 

statistically significant 5.1 percent in 2005. Using 1994 mortality levels as a baseline, this 

translates to approximately 7,300 fewer deaths in 2005 for the relevant age group in treatment 

counties.30 A gradually increasing coefficient, rather than a single shift, implies cumulative 

exposure to the ARP is an important health input. 

 

4.3. Results by cause of death 

 As evidence supporting PM2.5 as the driving force behind observed mortality impacts, we 

explore effects by cause of death. SO2 primarily affects respiratory health, whereas PM2.5 affects 

mortality through changes in cardiovascular functioning as well as respiratory.  If we find 

evidence of an impact on cardiovascular deaths, this supports at least some role of PM2.5. Panels 

A and B of Figure 4 show changes in cardiovascular mortality and respiratory mortality 

(respectively) as primary cause of death, which largely mirror those for internal cause mortality. 

Results for respiratory deaths, while much larger in some years, are noisier and exhibit less of a 

reliable pattern, though there are large and statistically significant values in the later sample 

years. Overall, the pattern of differential effect by cause of death supports PM2.5 exposure as a 

causal mechanism. 

 

                                                
30 To calculate these values, we first estimate an average change in mortality rates for treatment counties for each 
year, which we take from our event-study results. We then multiply total deaths in 1994 by the estimated percentage 
change in deaths in 2005, as compared to 1994. 
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4.4. Effects by other age groups 

Although we focus our estimates on those aged 35-64, effects may also exist for other 

groups. In Figure 5, we present event study results for 4 additional age groups: infants (age 0), 

the very young (1-14), the young working population (15-34) and the above 65 population.31  

Existing evidence supports the presence of mortality effects for infants (see, e.g., Chay 

and Greenstone (2003) and Currie and Neidell (2005)). However, such effects would not 

increase with time; because infants only remain so for one year, there are no true "long-run" 

cumulative health effects where improvements build beyond year 1. Consistent with this, infant 

mortality follows a similar pattern to SO2 (see Figure 2), with a downward shift after the ARP. 

Although the estimates are noisy, the effect for this age group is not increasing with time.  

For both the very young and working young adult age groups, we see no statistically 

significant change or pattern in mortality rates across the ARP. This may suggest mortality 

among this generally healthy group is unaffected in the 10 years following the ARP, but 

estimates are noisy and confidence intervals contain potentially economically significant effects. 

We also cannot assess the potential for effects beyond 10 years. For the over 65 group, we 

observe similar effect sizes as for our core sample of 35-64 year olds, with estimates statistically 

significant across all years and an effect around 4 percent by 2005. Given the larger mortality 

rate for this age group, this translates to approximately 26,000 fewer deaths in 2005.   

 

4.5. Testing for sorting and economic effects  

 If the ARP affected local economic activity or population characteristics, this would 

present a potential threat to identifying the direct health impacts of pollution. As one 

                                                
31 Due to different baseline rates of mortality across age groups, the sizes of coefficients and confidence intervals 
vary considerably by age group. As a result, the y-axis is not constant across figures. 
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hypothetical example, workers may lose jobs, which might bias estimates towards finding the 

ARP-related pollution reductions worsened health. Alternatively, wealthier populations may 

relocate near clean plants given the improved air quality, biasing estimates towards finding the 

ARP improved health.  The broad treatment areas of our design are much larger than the range at 

which these economic effects generally take place (see, for example, Currie, Davis, Greenstone, 

and Walker 2015); our treatment area extends 100 miles from plants while evidence suggests 

housing market effects exist within 1-2 miles. We nonetheless probe this possibility given the 

importance of this assumption.  

We test effects on local economic activity by repeating our event studies using total wage 

employment and personal income as outcomes. For economic activity to fully explain observed 

mortality changes, not only would these outcomes need to be economically and statistically 

significant, but they must also follow the pattern observed for mortality: no trends prior to the 

ARP, and a building divergence after the ARP. Neither is apparent for either employment or 

income. Panel A of Figure 6 shows no trend in total wage employment differences prior to the 

ARP, and the pattern remains flat after the ARP. All estimates are small in magnitude and 

statistically insignificant. In Panel B, the ARP shows little correlation with personal income. We 

observe a small drop-off in income in the last year of our sample, but this estimate is not 

statistically significant. These results suggest changes in economic activity do not explain 

observed post-ARP changes in mortality, which is consistent with prior findings that the ARP’s 

economic effects were quite small (Schmalansee and Stavins 2015). 

We next test for migratory sorting using two additional outcome variables: net-migration 

and mortality from external causes. If the ARP led to selective migration, where less healthy 

people moved to control counties or more healthy people moved to treatment counties (or a 
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combination of both), this could cause a decline in mortality rates that correlates spuriously with 

changes in pollution. We test for this selection issue using migration data from the IRS as the 

dependent variable. Panel C of Figure 6 shows net migration (inflows minus outflows) of listed 

exemptions, expressed as a share of 1990 population.32 The estimates are statistically 

insignificant and do not follow a trend like that of observed mortality effects. 

  While net migration is informative about net changes in population, it cannot address 

issues with changes in population composition. For example, higher income individuals could 

displace lower income individuals with no net change in population. Unfortunately, data on 

population composition at the county-year level are not available except where such measures 

are interpolated between surveys. As an indirect test of this hypothesis, we examine if the ARP 

affected deaths from external causes. Such deaths are sensitive to demographic changes and local 

economic activity, but not pollution exposure. Panel D of Figure 6 illustrates that external 

mortality rates largely do not change after the ARP’s implementation. There is a single 

statistically significant difference in 2005, but the external mortality estimates do not display a 

monotonic change in mortality risk like we observe for internal causes of death, suggesting 

population composition does not explain our main results.  

 

4.6. Robustness checks 

We present a series of results in Table 2 from alternative specifications to assess the 

robustness of our results, focusing on the models using all internal deaths. Column 1 includes 

only county and year effects, column 2 adds controls for weather, and column 3 replaces general 

year effects with our interacted propensity-score year effects, which matches our event study 

graphs. Adding weather has a minimal impact on estimates. Adding propensity-score decile-by-
                                                
32 We do not use the IHS or log conversion here because net flows can be negative. 
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year controls reduces the size of our estimates, though they still fall within approximately a 

standard error of the estimates in column 1. Adjusting for propensity-score differences removes 

any evidence of pre-treatment differences in treatment and control groups. Appendix Table A-1 

shows estimates used in all other event studies (cause of death, age groups, and 

economic/population effects). 

Table 3 expands on robustness checks by considering alternate regression models. In 

column 1, we control for the log of age-specific population using the SEER between-census 

estimates. Estimates are statistically unchanged but slightly smaller in absolute magnitude, now 

reaching around 4.5 percent in 2005. Column 2 uses SEER data to control for the age distribution 

by year: percentage of the population of ages 35-44, 45-54, and 55-64 (rescaled for these three 

categories to sum to 1). Estimates are relatively stable to including the age distribution, which we 

take as evidence population and age makeup shifts are exogenous to treatment and/or our 

baseline population and age distribution variables in the propensity-score control for any 

consequential differences. In column 3, we use the log function rather than the IHS to transform 

changes in mortality. Coefficients are unchanged, though there is a small loss in the number of 

observations: a few county/year cells contain zero deaths for the 35-64 year-old age group.33 

In column 4, rather than include the p-score decile indicators interacted with year 

dummies, we interact the 1990 baseline covariates used to construct the p-score with year fixed 

effects. This is more flexible in that each variable can have differential effects by year, but less 

flexible in that all effects are linear (while the propensity-score allowed for quadratic and 

interacted terms). Results are again stable to these changes.  

                                                
33 We do not present results using the log function for all of our results because of a greater faction of zeros for 
certain dependent variables. For example, less than 1% of observations had zero internal deaths, whereas nearly 5% 
had zero external deaths. 
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In columns 5 and 6 we explore different assumptions regarding how we trim by the 

propensity-score. In column 5, we use all counties (no trimming), and in column 6 we trim 

further by cutting all counties with a p-score below 0.05 and above 0.95. Results are 

quantitatively similar. 

Finally, in column 7, we drop all counties that contain a treatment plant. This addresses 

the possibility that economic and behavioral effects are confined with the political boundaries of 

the county where the power plant resides. Estimates are virtually identical to the full sample of 

counties.  

 

4.7. Variations by treatment distance 

 Our primary results use a treatment distance of 100 miles as the cutoff. Given the absence 

of reliable PM2.5 data at the time, limited availability of balanced SO2 monitors, and a variable 

conversion rate between SO2 and PM2.5, we cannot directly observe the distance range of 

ground-level changes to our pollutant of interest or draw inference from SO2 dispersion. Instead, 

we arrived at the 100-mile distance cutoff by running our basic regression model for internal 

mortality using a variety of different distance ranges in defining treatment. Specifically, we 

estimate 8 regression models where we vary the treatment group (counties within 0-25 miles, 25-

50 miles, ... 175-200 miles) but keep the control group constant (counties beyond 200 miles), 

allowing us to assess the marginal contribution of each treatment group. We limit this regression 

model to a simple pre-test/post-test design rather than allow dynamic effects for ease of 

exposition, but otherwise follow the model of column 2 in Table 2.34  

                                                
34 We also produced the full event study results using various definitions of treatment and control (available upon 
request), which were consistent with these results. As use of a propensity-score requires a definition of treatment, 
which would result in 8 propensity-score models, we instead opt for the more simplistic model controlling for 
county and year fixed effects and weather variables. 
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The treatment effects, plotted in Figure 7, show a slightly non-monotonic relationship 

between treatment distance and mortality effects. The estimate for the 0-25 mile treatment group 

is roughly 4.6 percent, but increases to 12.5 percent for 25-50 miles. The estimate decreases to 

6.0 percent for 50-75 miles, 4.7 percent for 75-100 miles, and around 2.7 percent at 100-125 

miles. All estimates using treatment distances less than 75 miles are statistically significant, with 

the estimate using 75-100 miles for the treatment group reaching borderline significance.35  This 

figure supports our choice of 100 miles as the treatment boundary.  

 

4.8. Benefit valuation 

To gauge the magnitude of the estimated mortality effects, we calculate the avoided 

deaths per year in 10-year age bins for deaths occurring in people over age 35, the ages at which 

we consistently observe statistically and economically significant decreases in mortality.36 Table 

4 shows the results, indicating the number of avoided deaths increasing over time within each 

age group. The number of avoided deaths is higher in the older age groups (within any given 

year), which is consistent with the fact that mortality risk increases with age.   

Differential numbers of avoided deaths by age also suggest valuing mortality 

improvements using a constant VSL is inappropriate; the loss in life expectancy is considerably 

larger for younger ages. We instead value mortality improvements using age-specific VSL 

estimates from Aldy and Smyth (2014) and compare them to valuations using a constant VSL. 

Using age-specific VSLs, we calculate a mortality benefit of $134 billion in 2005 alone. If 

                                                
35 The possible effects for 100-125 and 125-150 miles suggest a potential treatment definition of 0-150 miles for our 
baseline specification (and beyond 150 miles as control). We estimated such models and found generally 
comparable results (available upon request). 
36 We produce the avoided deaths per age bin by re-estimating our model separately for each age bin.  
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instead we use a constant VSL of $4.9 million37, we estimate mortality benefits of $164 billion in 

2005, which is nearly 25 percent larger. Interestingly, when we compare benefits using age-

specific VSL estimates to previous model-based estimates of the mortality benefits from the 

ARP, the results are quite close in magnitude. Previous simulation-based studies estimate the 

benefits at over $100 billion per year using a constant VSL of roughly $6 million applied to all 

ages (Chestnut and Mills, 2005).38 The similarity between estimates is coincidental – we find 

larger decreases in mortality across all age groups but value them using a smaller, age-

appropriate VSL.  

 

5. Conclusion 

The Acid Rain Program caused lasting improvements in ambient air quality, with 

mortality benefits that accrued to adults gradually over time. We show internal mortality rates 

among the working-age population (ages 35-64) decreased in a manner consistent with extended, 

long-run pollution exposure being an important health input. While emissions reductions were 

rapid, mortality rates decreased only slightly in the initial years following the ARP. The 

reductions in mortality risk grew to 5 percent after 10 years, suggesting health effects accrued 

after a change in sustained exposure.  

Importantly, we document mortality effects for an age group not typically addressed --

previous work largely focuses on traditionally more susceptible groups, such as infants and the 

elderly. Our findings suggest long-run exposure to pollution may have detrimental effects on 

everyone, regardless of underlying health capital. Furthermore, they support appropriateness of 

valuing the mortality improvements using a VSL based on labor market studies. Regardless of 

                                                
37 This is the implied constant VSL from Aldy and Smyth (2014). 
38 The authors allow the VSL to vary over time, but it is constant across all age groups at a given point in time. 
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the method used to calculate the mortality benefits, the ARP stands out as one of the most cost-

effective environmental regulations to date. We estimate the value of benefits in terms of annual 

lives saved at $134 billion by 2005, compared to previously estimated program costs of around 

$3 billion per year (Chestnut and Mills, 2005). Although data limitations preclude us from 

obtaining estimates of the marginal effects of PM2.5, our results show that understanding the link 

between long-term pollution improvements and mortality plays an important role in evaluating 

efficiency of other programs that affect PM2.5 concentrations.  

We focus on the mortality effects from long-run exposure, but there remain the full range 

of health and human capital outcomes potentially affected by the improvement in air quality. 

Quasi-experimental research shows effects from short-run exposure on educational outcomes 

(Sanders 2012, Isen et al. 2017, Bharadwaj et al. 2017), worker productivity (Graff Zivin and 

Neidell 2012, Chang et al. 2016a, 2016b), and morbidity (Schlenker and Walker, 2016). As we 

find mortality benefits from long-run exposure are quite different from short-run exposure, the 

same may be true for these other, important outcomes. Further understanding the effect from 

long-run exposure on these outcomes represents a fruitful area for future research. 
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Figure 1
Treatment and Control Counties

Notes: Map shows all treatment (dark) and control (light) counties included in our analysis. White counties
indicate omission, either due to lack of data or trimming of highest and lowest percentile by propensity score.
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Figure 2
Sulfur Dioxide by Treatment Status, 1990-2005

Panel A: Raw data
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Notes: Outcome is SO2 in parts per billion. We include an unbalanced panel of SO2 data to expand the
number of available counties for analysis (but a balanced panel of counties). Panel A shows mean SO2 by
treatment and control counties, weighted by number of SO2 sensors in 1990. Panel B shows our event study,
where each coe�cient in event study represents an interaction between treatment (within 100 miles of a
regulated plant) and year, with 1994 as the omitted year range. Regressions span 1990-2005 and include
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We trim the sample on 1% p-scores. We cluster standard errors at the county level.
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Figure 3
Internal Mortality for Ages 35-64, 1990-2005

Panel A: Raw data
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Notes: Outcome is inverse hyperbolic sine (IHS) of internal mortality rate per 100,000 age-specific population,
using 1990 population as a constant denominator. Panel A shows IHS of mean mortality by treatment and
control counties, weighted by 1990 age-specific population. Panel B shows our event study, where each
coe�cient in event study represents an interaction between treatment (within 100 miles of a regulated plant)
and year, with 1994 as the omitted year range. Regressions span 1990-2005 and include county fixed e↵ects,
weather controls, and decile-binned p-score indicators interacted with year fixed e↵ects. We trim the sample
on 1% p-scores. We cluster standard errors at the county level.
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Figure 4
Event Study by Primary Cause of Death, 1990-2005

Panel A: Cardio
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Notes: Outcome is inverse hyperbolic sine (IHS) of cause-specific mortality rate per 100,000 age-specific pop-
ulation, using 1990 population as a constant denominator. Panel A shows deaths classified as cardiovascular.
Panel B shows deaths classified as respiratory. Both graphs show our event study, where each coe�cient in
event study represents an interaction between treatment (within 100 miles of a regulated plant) and year,
with 1994 as the omitted year range. Regressions span 1990-2005 and include county fixed e↵ects, weather
controls, and decile-binned p-score indicators interacted with year fixed e↵ects. We trim the sample on 1%
p-scores. We cluster standard errors at the county level.
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Figure 5
Event Study by Age Group, 1990-2005

Panel A: Infants (0-1)
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Panel D: Age 35-64
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Panel E: Age 65 and Up
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Notes: Outcome is inverse hyperbolic sine (IHS) of cause-specific mortality rate per 100,000 age-specific
population, using 1990 population as a constant denominator. Panels are split by indicated age ranges. All
graphs show our event study, where each coe�cient in event study represents an interaction between treat-
ment (within 100 miles of a regulated plant) and year, with 1994 as the omitted year range. Regressions span
1990-2005 and include county fixed e↵ects, weather controls, and decile-binned p-score indicators interacted
with year fixed e↵ects. We trim the sample on 1% p-scores. We cluster standard errors at the county level.
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Figure 6
Event Study of Potential Migration and Economic Measures, 1990-2005

Panel A: Total Wage Employment
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Panel C: Net Migration (all ages)
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Panel D: External Deaths
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Notes: Each panel shows a di↵erent regression outcome, used as tests of potential confounders to our private
estimates. Panels A and B show the IHS of total wage employment and total personal income, respectively.
Panel C shows net migration for all ages (inflows minus outflows, as measured by IRS data on exemptions)
divided by 1990 baseline population. Panel D shows IHS of the mortality rate for all deaths attributed to
external cases for the 35-64 age rage. All graphs show our event study, where each coe�cient in event study
represents an interaction between treatment (within 100 miles of a regulated plant) and year, with 1994
as the omitted year range. All regressions weight by 1990 age 35-64 population as in our main mortality
regressions. Regressions span 1990-2005 and include county fixed e↵ects, weather controls, and decile-binned
p-score indicators interacted with year fixed e↵ects. We trim the sample on 1% p-scores. We cluster standard
errors at the county level.
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Figure 7
Treatment E↵ects by Varied Distances
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Notes: Regressions span 1990-2005 and include county fixed e↵ects, year fixed e↵ects, and weather controls,
following column 2 of Table 2. We derive each coe�cient and 95% confidence interval from a separate
regression. The sample of included counties varies by indicated distance bin. In all cases, we include
counties beyond 200 miles from a treatment plant as controls. For treatment counties, we include only those
in the indicated distance ranges. For example, the coe�cient at point 25 uses all counties within 25 miles
of a Phase I plant as treatment counties, all counties beyond 200 miles as control counties, and omits all
counties between 25 and 200 miles. We cluster standard errors at the county level.
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Table 1
Means by Treatment and Control Counties in 1990

Control Treatment

Cause of Death

Deaths per 100,000 495.94 478.37

Cardio per 100,000 190.70 177.87

Respiratory per 100,000 29.89 28.83

External per 100,000 64.91 53.25

Wage Employment, Income, and Population (REIS & SEER)

Total Personal Income ($1,000s) 16481.78 22183.06

Total Wage Employment 24382.53 31353.48

Population 54411.63 69551.64

Counties 796 1281

Notes: Overall internal deaths excludes deaths by AIDS due to changes in treatment technology introduced
in 1995. ICD9 (up to 1997) and ICD10 (1998 and beyond) codes used to assign cause of death. Wage em-
ployment and personal income data are from the Bureau of Economic Analysis Regional Economic Accounts.
Age-specific population is from SEER data.
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Table 2
Di↵erence in Adult Mortality Over Time

(1) (2) (3)

Treat X 1990 0.0212** 0.0014 -0.0023
(0.009) (0.009) (0.011)

Treat X 1991 0.0210*** 0.0166** 0.0013
(0.008) (0.008) (0.010)

Treat X 1992 0.0091 -0.011 0.0014
(0.007) (0.008) (0.009)

Treat X 1993 -0.0001 -0.0094 -0.0058
(0.007) (0.008) (0.010)

Treat X 1994 - - -
- - -

Treat X 1995 -0.0168** -0.0168** -0.0125
(0.008) (0.008) (0.010)

Treat X 1996 -0.0205** -0.0264** -0.0141
(0.008) (0.010) (0.010)

Treat X 1997 -0.0332*** -0.0446*** -0.0294***
(0.008) (0.010) (0.011)

Treat X 1998 -0.0326*** -0.0393*** -0.0217*
(0.010) (0.011) (0.012)

Treat X 1999 -0.0302*** -0.0403*** -0.0262**
(0.011) (0.014) (0.011)

Treat X 2000 -0.0478*** -0.0369*** -0.0286**
(0.012) (0.011) (0.013)

Treat X 2001 -0.0471*** -0.0502*** -0.0237*
(0.013) (0.014) (0.013)

Treat X 2002 -0.0513*** -0.0649*** -0.0420***
(0.015) (0.018) (0.015)

Treat X 2003 -0.0600*** -0.0559*** -0.0362**
(0.016) (0.017) (0.014)

Treat X 2004 -0.0716*** -0.0692*** -0.0377**
(0.017) (0.017) (0.016)

Treat X 2005 -0.0715*** -0.0781*** -0.0512***
(0.019) (0.022) (0.017)

Counties 2,077 2,077 2,077
Observations 33,232 33,232 33,232

County FEs X X X
Year Fes X X X
Weather X X
p-Score X Year X

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

Notes: We cluster standard errors at the county level. Overall internal deaths excludes deaths by AIDS due
to changes in treatment technology introduced in 1995. ICD9 (up to 1997) and ICD10 (1998 and beyond)
codes used to assign cause of death. Coe�cients show the regression-adjusted estimated di↵erence between
treatment and control counties, as compared to their estimated di↵erence in 1994, the year before the ARP
begins. p-score X Year indicates we include indicators for deciles of estimated propensity score interacted
with year fixed e↵ects.
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Table 3
Di↵erence in Adult Mortality Over Time: Variations

(1) (2) (3) (4) (5) (6) (7)

Age-Specific SEER Log of Interacted Do Not Trim Omit Plant
Pop. Age Share Deaths Covariates Trim More Counties

Treat X 1990 -0.0004 -0.0043 -0.0025 0.0023 0.0049 -0.0083 -0.0039
(0.010) (0.011) (0.011) (0.009) (0.011) (0.011) (0.011)

Treat X 1991 -0.0003 0.0005 0.0012 0.0047 0.0026 -0.0048 0.0019
(0.010) (0.010) (0.010) (0.008) (0.010) (0.011) (0.010)

Treat X 1992 0.0063 0.002 0.0012 -0.0041 0.0076 -0.0039 0.0014
(0.009) (0.009) (0.009) (0.008) (0.010) (0.010) (0.010)

Treat X 1993 -0.0051 -0.0052 -0.0058 -0.007 -0.0024 -0.0069 -0.0077
(0.010) (0.010) (0.010) (0.008) (0.010) (0.010) (0.010)

Treat X 1994 - - - - - - -
- - - - - - -

Treat X 1995 -0.0113 -0.0101 -0.0126 -0.0122 -0.0126 -0.0176* -0.0155
(0.010) (0.010) (0.010) (0.008) (0.010) (0.010) (0.010)

Treat X 1996 -0.0099 -0.0118 -0.0142 -0.013 -0.0116 -0.0189* -0.0162
(0.010) (0.010) (0.010) (0.008) (0.010) (0.010) (0.010)

Treat X 1997 -0.0248** -0.0262** -0.0295*** -0.0271*** -0.0317*** -0.0330*** -0.0316***
(0.011) (0.011) (0.011) (0.008) (0.012) (0.011) (0.012)

Treat X 1998 -0.0179* -0.0204* -0.0220* -0.0169** -0.0293** -0.0223* -0.0245**
(0.010) (0.011) (0.012) (0.008) (0.012) (0.012) (0.012)

Treat X 1999 -0.0182* -0.0223** -0.0272** -0.0205** -0.0287*** -0.0251** -0.0267**
(0.010) (0.011) (0.011) (0.009) (0.011) (0.011) (0.012)

Treat X 2000 -0.0272*** -0.0262** -0.0286** -0.0267*** -0.0357*** -0.0312** -0.0327***
(0.011) (0.012) (0.013) (0.009) (0.013) (0.013) (0.013)

Treat X 2001 -0.0183* -0.0188 -0.0237* -0.0257*** -0.0255** -0.0234* -0.0282**
(0.011) (0.012) (0.013) (0.008) (0.013) (0.013) (0.013)

Treat X 2002 -0.0342*** -0.0353*** -0.0427*** -0.0337*** -0.0468*** -0.0389*** -0.0455***
(0.012) (0.013) (0.015) (0.010) (0.015) (0.015) (0.015)

Treat X 2003 -0.0314*** -0.0316** -0.0367*** -0.0309*** -0.0402*** -0.0375*** -0.0419***
(0.012) (0.013) (0.014) (0.009) (0.014) (0.014) (0.014)

Treat X 2004 -0.0332*** -0.0326** -0.0376** -0.0378*** -0.0461*** -0.0389** -0.0429***
(0.013) (0.015) (0.016) (0.010) (0.016) (0.017) (0.016)

Treat X 2005 -0.0446*** -0.0430*** -0.0517*** -0.0407*** -0.0566*** -0.0478*** -0.0564***
(0.014) (0.015) (0.017) (0.010) (0.017) (0.016) (0.017)

Counties 2,077 2,077 2,077 2,077 2,414 1,632 1,989
Observations 33,232 33,232 33,212 33,232 38,624 26,112 31,824

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

Notes: We cluster standard errors at the county level. Overall internal deaths excludes deaths by AIDS due
to changes in treatment technology introduced in 1995. ICD9 (up to 1997) and ICD10 (1998 and beyond)
codes used to assign cause of death. Coe�cients show the regression-adjusted estimated di↵erence between
treatment and control counties, as compared to their estimated di↵erence in 1994, the year before the ARP
begins. Each column shows a di↵erent regression, based o↵ Column 3 of Table 2 — column headers indicate
regression model adjustments.
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Figure A-1
p-score Distribution
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Notes: Propensity scores by increments of 0.1. See Section 3.3 for details.
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