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1 Introduction

Identifying the contribution of risk premia to long-term interest rates is crucial for monetary

policy, investment strategy, and interpreting historical episodes such as the unprecedented low

interest rates since 2008. Since the risk premium is just the difference between the current

long rate and the expected average value of future short rates, the core question for estimating

risk premia is how to construct short-rate expectations. Is it sufficient to consider the current

yield curve, or should estimates incorporate additional information such as macroeconomic

variables? This is the question we address in this paper.

A powerful theoretical argument suggests that the current yield curve itself should contain

most (if not all) information useful for forecasting future interest rates and bond returns.

Investors use information at time t—which we can summarize by a state vector zt—to forecast

future interest rates and risk premia. The price of a zero-coupon bond is thus a function of

zt and its maturity. The yield curve results from the prices of bonds with many different

maturities, each of which is a different function of zt. Under quite general assumptions the

yield curve therefore contains the same information as zt, since zt can be inferred from yields.

In other words, the yield curve spans all information relevant for forecasting future yields

and returns, and no variables other than the current yield curve are needed. While this

“spanning hypothesis” could be violated for various reasons, it is in fact implied by essentially

all macro-finance models.1 Therefore the spanning hypothesis is the natural benchmark when

investigating the empirical relevance of macroeconomic and other variables for predictions of

excess bond returns and estimation of bond risk premia, and a large literature has taken it

as the relevant null hypothesis. Recent literature reviews by Gürkaynak and Wright (2012)

and Duffee (2013a) identify the spanning hypothesis as a central issue in macro-finance. If it

holds true it would greatly simplify forecasting of interest rates and estimation of monetary

policy expectations and bond risk premia, as such forecasts and estimates would not require

any macroeconomic series, other asset prices or quantities, volatilities, or survey expectations,

but only the information in the current yield curve.2

Importantly, the spanning hypothesis does not imply that macroeconomic variables are

unimportant for interest rates and risk premia. Quite to the contrary, interest rates are of

course driven by macro variables in many ways, an obvious example being the importance of

inflation expectations for nominal yields.3 The yield curve reflects the information in current

1Examples of equilibrium models of the term structure that imply spanning include Wachter (2006), Piazzesi
and Schneider (2007), Bekaert et al. (2009), and Bansal and Shaliastovich (2013). Macro-finance models with
production economies (i.e., DSGE models) that imply spanning include Hördahl et al. (2006), Dewachter and
Lyrio (2006), Rudebusch and Wu (2008), and Rudebusch and Swanson (2012).

2We will discuss the spanning hypothesis and its theoretical underpinnings in more detail in Section 2.1.
3Much theoretical and empirical work has investigated the links between macroeconomic variables, interest
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and future macro variables, and the spanning hypothesis simply posits that it fully reflects and

spans this information. Macroeconomic variables are drivers of risk premia, but our question

here is what variables should be used for the estimation of these risk premia.

How should we summarize the information in the yield curve to empirically test the span-

ning hypothesis? It has long been recognized that the first three principal components (PCs)

of yields, commonly labeled level, slope, and curvature, provide an excellent empirical sum-

mary of the entire yield curve (Litterman and Scheinkman, 1991), as they explain almost all

of the cross-sectional variance of observed yields. This motivates a specific version of the

spanning hypothesis, a very practical and empirically focused interpretation of the question

posed above: Do level, slope and curvature completely capture all the information that is

useful for forecasting future yields and estimating bond risk premia? This is the question we

focus on in this paper.4

There is a growing consensus in the literature that the spanning hypothesis can be rejected

by the observed data. This evidence comes from predictive regressions for bond returns on

various predictors, controlling for information in the current yield curve. The variables that

have been found to contain additional predictive power in such regressions include measures

of economic growth and inflation (Joslin et al., 2014), factors inferred from a large set of

macro variables (Ludvigson and Ng, 2009, 2010), long-term trends in inflation or inflation

expectations (Cieslak and Povala, 2015), the output gap (Cooper and Priestley, 2008), and

measures of Treasury bond supply (Greenwood and Vayanos, 2014). These results suggest

that there might be unspanned or hidden information that is not captured by the current

yield curve but that is useful for forecasting. In addition, Cochrane and Piazzesi (2005) found

that higher-order (fourth and fifth) PCs of bond yields appear useful for predicting bond

returns, which suggests that the miniscule amount of yield variation not captured by the first

three PCs somehow contains relevant information about bond risk premia.

But these predictive regressions have a number of problematic features. The true predic-

tive variables under the null hypothesis are necessarily correlated with lagged forecast errors

because they summarize the information in the current yield curve. As a consequence they

violate the condition of strict econometric exogeneity. In addition, the predictive variables are

typically highly persistent. We show that this leads to substantial “standard error bias” in

samples of the size commonly studied, with the problem even more severe when the proposed

explanatory variables exhibit a trend over the observed sample. Because the estimated stan-

dard errors are too small, the result can often be spurious rejection of the spanning hypothesis

rates, and risk premia. Some prominent examples include Campbell and Cochrane (1999), Diebold et al.
(2006), Bikbov and Chernov (2010), Rudebusch and Swanson (2012), and Bansal and Shaliastovich (2013).

4While most of our analysis centers on this question, we also report results for alternative spanning hy-
potheses under which four or five PCs fully capture the information in the yield curve.
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even though it is true. This problem inherent in all tests of the spanning hypothesis has to

our knowledge not previously been recognized. Mankiw and Shapiro (1986) and Stambaugh

(1999) documented small-sample coefficient bias in predictive regressions with a persistent

regressor that is not strictly exogenous.5 By contrast, in our setting there is no coefficient bias

pertaining to the additional predictors, and instead a downward bias of the estimated stan-

dard errors distorts the results of conventional inference. An additional problem is that the

common predictive regressions are estimated in monthly data but with an annual excess bond

return as the dependent variable, and the presence of overlapping observations introduces

substantial serial correlation in the prediction errors. As a result, standard errors are even

less reliable, and regression R2 are harder to interpret. We demonstrate that the procedures

commonly used for inference about the spanning hypothesis do not adequately address these

issues and are subject to serious small-sample distortions.

We propose a novel approach that researchers can use to obtain more robust inference in

these predictive regressions: a parametric bootstrap that generates data samples under the

spanning hypothesis. We calculate the first three PCs of the observed set of yields and sum-

marize their dynamics with a VAR fit to the observed PCs. Then we use a residual bootstrap

to resample the PCs, and construct bootstrapped yields by multiplying the simulated PCs by

the historical loadings of yields on the PCs and adding a small Gaussian measurement error.

Thus by construction no variables other than the PCs are useful for predicting yields or returns

in our generated data. We then fit a separate VAR to the proposed additional explanatory

variables alone, and generate bootstrap samples for the predictors from this VAR. Using our

novel bootstrap procedure, we can calculate the properties of any regression statistic under

the spanning hypothesis.6 This calculation demonstrates that the conventional tests reject

the true null much too often. We show that the tests employed in published studies, which

are intended to have a nominal size of five percent, have a true size between 8 and 61%. We

then use our bootstrap to ask how likely it would be under the null to observe the patterns of

predictability that researchers have found in the data. We find that the proposed predictors

are always much less significant than appeared in conventional tests, and are often statistically

insignificant. These results provide a strong caution against using conventional tests for infer-

ence about bond risk premia, and we recommend that researchers instead use the bootstrap

procedure proposed in this paper.

An additional way to assess the robustness of the published results is to take advantage

5Cavanagh et al. (1995) and Campbell and Yogo (2006) considered this problem using local-to-unity asymp-
totic theory.

6Our procedure notably differs from the bootstrap approach commonly employed in this literature, which
generates artificial data under the expectations hypothesis, such as Bekaert et al. (1997), Cochrane and Piazzesi
(2005), Ludvigson and Ng (2009, 2010), and Greenwood and Vayanos (2014).
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of the data that have arrived since publication of these studies. In addition to re-estimating

the proposed predictive models over a common, more recent data sample, we use the newly

available data to evaluate whether they improve true out-of-sample forecasts, which gives us

a more reliable test than the often-reported pseudo-out-of-sample statistics. We find that the

proposed additional predictors are rarely helpful in the new data, reinforcing the case that the

apparent strength of the in-sample evidence may be an artifact of the small-sample problems

we highlight.

After revisiting the evidence in the six influential papers cited above we draw two main

conclusions: First, conventional methods of inference are extremely unreliable in these predic-

tive regressions, because they often suggest that variables are relevant for bond risk premia

which in truth are irrelevant. New approaches for robust inference are needed, and we propose

three in this paper. Second, when reconsidered with more robust methods for inference, the

evidence against the spanning hypothesis appears weaker and much less robust than would

appear from the published results, and in some cases appears to be spurious.

Our paper is related to other studies that critically assess return predictability in finance.

For stock returns, Goetzmann and Jorion (1993) and Nelson and Kim (1993) used simulation

studies to document that small-sample problems can lead to spurious findings of predictabil-

ity. Ferson et al. (2003) raised the possibility of finding spurious predictability if a persistent

component of stock returns is unobserved. Ang and Bekaert (2007) demonstrated that the

commonly employed Newey-West standard errors are not reliable for long-horizon predictions.

Welch and Goyal (2008) showed that predictability largely disappears in out-of-sample analy-

sis, and Lewellen et al. (2010) showed that estimating factor models for equity risk premia can

lead to spuriously high R2 for truly irrelevant risk factors. Our paper parallels these studies

by also documenting that published evidence on predictability and risk premia is fraught with

serious econometric problems and appears to be partially spurious. But our work is distinct

in that we describe a new, different econometric issue and focus on evidence on unspanned

risks in bond returns instead of predictability of stock returns. The literature on bond re-

turns and the expectations hypothesis goes back to Fama and Bliss (1987) and Campbell and

Shiller (1991), who established that the slope of the yield curve helps predict bond returns.

Bekaert et al. (1997) and Bekaert and Hodrick (2001) documented that rejections of the ex-

pectations hypothesis are robust to the Stambaugh bias that arises in predictive regressions

for bond returns. Our paper shows that a different kind of bias—standard error bias—arises

in the widely used tests of the spanning hypothesis, and that accounting for it can change the

empirical conclusions.
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2 Inference about the spanning hypothesis

In this section we first explain the economic underpinnings and common empirical tests of

the spanning hypothesis, and then document previously unrecognized econometric problems

with these tests. Then we propose a new way of inference about the spanning hypothesis that

solves these problems using an easy-to-implement parametric bootstrap.

2.1 The spanning hypothesis

A simple but powerful theoretical argument demonstrates that under certain assumptions

about financial markets the yield curve fully spans the information set that is relevant for

forecasting future interest rates and estimating risk premia.7 If the vector zt denotes the

information that investors use for pricing financial assets, then bond prices and yields are

functions of zt. Since bond yields are determined by investor’s expectations of future short-

term rates and future excess returns, zt contains the information required to construct these

forecasts. For example, zt would likely contain macroeconomic variables that matter for

interest rates, such as current and expected future inflation. Denoting by Yt a vector of N

yields of different maturities we have Yt = f(zt) where f(·) is a vector-valued function. The

spanning hypothesis assumes that f is invertible, in which case the information in zt can be

inferred as zt = f−1(Yt). A necessary condition for this invertibility condition is that N is at

least as large as the number of variables in zt, which is a plausible assumption given the large

number of yields that constitute the yield curve. Invertibility is guaranteed for example if f

is linear and its Jabobian has full column rank, but it will also hold under much more general

conditions. Most asset pricing and macro-finance models imply invertibility of model-implied

yields for state variables, hence the spanning hypothesis holds in these models.8 As mentioned

above, the spanning hypothesis of course does not imply that macro variables are unimportant

for interest rates, but simply states that the yield curve fully spans the relevant information

in macro (and other) variables.

While essentially all asset pricing models imply some version of spanning, there are a

number of reasons why the relevant information may not be spanned by the first three PCs

of observed yields, which is the null hypothesis we focus on in this paper. First, yields may of

course depend on more than three state variables. For example, in Bansal and Shaliastovich

(2013) yields are functions of four state variables. Second, even if three linear combinations of

model-implied yields span zt, this might be difficult to exploit in practice due to measurement

error. In particular, Duffee (2011b) demonstrated that if the effects of some elements of zt on

7This argument largely follows the one in Duffee (2013b, Section 2.3).
8See footnote 1 for relevant references on this point.
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yields nearly offset each other, those components will be very difficult to infer from current

observed yields alone. Cieslak and Povala (2015) and Bauer and Rudebusch (2017) noted

that in affine yield-curve models, even small measurement errors can make it impossible to

recover zt from observed yields. Third, statistical expectations may differ from subjective

expectations due to learning (as in, for example, Piazzesi et al., 2015). Fourth, there may

be singularities, non-linearities, or structural breaks that prevent invertibility. Our paper

does not address these theoretical possibilities, and instead focuses on the empirical question

whether the spanning hypothesis is a good description of the data.

Evidence against the spanning hypothesis typically comes from regressions of the form

yt+h = β′1x1t + β′2x2t + ut+h, (1)

where the dependent variable yt+h is the return or excess return on a long-term bond (or

portfolio of bonds), x1t and x2t are vectors containing K1 and K2 predictors, respectively, and

ut+h is a forecast error. The predictors x1t contain a constant and the information in the

yield curve, typically captured by the first three PCs of observed yields, i.e., level, slope, and

curvature. The null hypothesis of interest is

H0 : β2 = 0,

which says that the relevant predictive information is spanned by the information in the yield

curve and that x2t has no additional predictive power. A key feature of these regressions is that

because the regressors in x1t capture information in the current yield curve, they are necessarily

correlated with ut and hence not strictly exogenous. The predictors are also typically very

persistent. This gives rise to a previously unrecognized problem, “standard error bias,” that

causes tests to reject the null hypothesis much too often, with the problem even more severe

when the explanatory variables are trending over the sample. In addition, empirical work

typically tries to predict returns over h = 12 months, and such use of overlapping returns,

and the resulting serial correlation in ut+h, leads to additional econometric problems. In the

following subsections we describe these problems in detail.

The spanning hypothesis is of course different from the expectations hypothesis (EH)

which posits that expected excess bond returns (i.e., bond risk premia) are constant. A large

literature has tested the EH by asking whether any variables help predict excess bond returns.

The strongest predictor appears to be the slope of the yield curve, as documented by Fama

and Bliss (1987) and Campbell and Shiller (1991). These results are perfectly consistent with

the spanning hypothesis. While EH-regressions suffer from small-sample problems similar to

those that arise in tests of the spanning regressions, including Stambaugh bias and standard
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error bias, Bekaert et al. (1997) and Bekaert and Hodrick (2001) documented that rejections of

the EH are robust to accounting for these problems. By contrast, we will show that rejections

of the spanning hypothesis are not robust and can arise spuriously.

2.2 The source of standard error bias

Here we explain the intuition for standard error bias in the case when h = 1 and ut+1 is white

noise. According to the Frisch-Waugh Theorem, the OLS estimate of β2 in (1) can always be

viewed as having been obtained in two steps. First we regress x2t on x1t and calculate the

residuals x̃2t = x2t − ÂTx1t for ÂT =
(∑T

t=1 x2tx
′
1t

)(∑T
t=1 x1tx

′
1t

)−1
. Second we regress yt+1

on x̃2t. The coefficient on x̃2t in this regression will be numerically identical to the coefficient

on x2t in the original regression (1).9 The standard Wald statistic for a test about β2 can be

expressed as

WT =
(∑T

t=1
ut+1x̃

′
2t

)(
s2
∑T

t=1
x̃2tx̃

′
2t

)−1 (∑T

t=1
x̃2tut+1

)
(2)

for s2 = (T − K1 − K2)
−1∑T

t=1(yt+1 − b′1x1t − b′2x2t)
2 and b1 and b2 the OLS estimates

from (1). The validity of this test depends on whether WT is approximately χ2(K2). If

x1t and x2t are stationary and ergodic, the estimate ÂT will converge to the true value

A = E(x2tx
′
1t) [E(x1tx

′
1t)]
−1. In that case the sampling uncertainty from the first step is

asymptotically irrelevant and W would have the same asymptotic distribution as if we re-

placed x̃2t with x2t − Ax1t, which gives rise to the standard result for stationary regressors

that WT
d→ χ2(K2).

If, however, the regressors are highly persistent, a regression of x2t on x1t behaves like a

spurious regression. For example, if x1t and x2t are unit-root processes, the value of ÂT is

not tending to some constant but instead to a random variable Ã that is different in every

sample, even as the sample size T approaches infinity. If x1t was strictly exogenous, this would

not affect the asymptotic distribution of WT . But in tests of the spanning hypothesis x1t is

necessarily correlated with ut, and due to this lack of strict exogeneity
∑T

t=1 x̃2tut+1 has a

nonstandard limiting distribution with variance that is larger10 than that of
∑T

t=1 x2tut+1. By

contrast, OLS hypothesis tests act as if the variance of
∑T

t=1 x̃2tut+1 is smaller than that of∑T
t=1 x2tut+1, since

∑T
t=1 x̃2tx̃

′
2t is smaller by construction in every sample than

∑T
t=1 x2tx

′
2t.

Therefore OLS standard errors are necessarily too small, WT does not converge to a χ2(K2)

distribution, and conventional t- or F -tests about the value of β2 in (1) will reject more often

9We provide a proof of this and other statements in this section in Appendix A.1.
10More formally, the difference between the two matrices is a positive definite matrix.
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than they should.11

2.3 A canonical example

In this section we explore the size of these effects in a canonical example, using first local-to-

unity asymptotics and then small-sample simulations based on the model

yt+1 = β0 + β1x1t + β2x2t + ut+1 (3)

where x1t and x2t are scalar AR(1) processes

x1,t+1 = µ1 + ρ1x1t + ε1t (4)

x2,t+1 = µ2 + ρ2x2t + ε2t (5)

with εit martingale-difference sequences and xi0 = 0. Our interest is in what happens when

the persistence parameters ρi are close to unity. We first focus on the case without drift in

these processes (µ1 = µ2 = 0). We assume that innovations to x1t have correlation δ with ut,

whereas x2t is uncorrelated with both x1t and ut:

E

 ε1t

ε2t

ut

[ ε1s ε2s us

]
=

 σ2
1 0 δσ1σu

0 σ2
2 0

δσ1σu 0 σ2
u

 if t = s

= 0 otherwise.

Thus when β2 = 0, the variable x2t has nothing to do with either x1s or ys for any t or s.

One device for seeing how the results in a finite sample of some particular size T differ from

those predicted by conventional first-order asymptotics is to use a local-to-unity specification

as in Phillips (1988) and Cavanagh et al. (1995):

xi,t+1 = (1 + ci/T )xit + εi,t+1 i = 1, 2. (6)

For example, if our data come from a sample of size T = 100 when ρi = 0.99, the idea

is to approximate the small-sample distribution of regression statistics by the asymptotic

distribution obtained by taking ci = −1 in (6) and letting T → ∞.12 The local-to-unity

11In Appendix A.1 we go through this argument in more detail, and provide additional proofs. Note also
that we have focused on conventional OLS standard errors that assume conditional homoskedasticity, but very
similar reasoning applies when White’s heteroskedasticity-robust standard errors are used.

12It is well known that approximations from such local-to-unity asymptotics are substantially better than
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asymptotics turn out to be described by Ornstein-Uhlenbeck processes. For example

T−2
∑T

t=1(xit − x̄i)
2 ⇒ σ2

i

∫ 1

0

[Jµci(λ)]2dλ

where ⇒ denotes weak convergence as T →∞ and

Jµci(λ) = Jci(λ)−
∫ 1

0

Jci(s)ds Jci(λ) = ci

∫ λ

0

eci(λ−s)Wi(s)ds+Wi(λ) i = 1, 2

with W1(λ) and W2(λ) denoting independent standard Brownian motion.13

We show in Appendix A.2 that under local-to-unity asymptotics the coefficient from a

regression of x2t on x1t has the following limiting distribution:

AT =

∑
(x1t − x̄1)(x2t − x̄2)∑

(x1t − x̄1)2
⇒

σ2
∫ 1

0
Jµc1(λ)Jµc2(λ)dλ

σ1
∫ 1

0
[Jµc1(λ)]2dλ

= (σ2/σ1)A, (7)

where the last equality defines the random variable A. Under first-order asymptotics the

influence of AT would vanish as the sample size grows. But using local-to-unity asymptotics

we see that AT behaves similarly to the coefficient in a spurious regression and does not

converge to zero—the true correlation between x1t and x2t in this setting—but to a random

variable that differs across samples. The implication is that the t-statistic for b2 can have

a small-sample distribution that is very poorly approximated using first-order asymptotics.

Appendix A.2 demonstrates that this t-statistic has a local-to-unity asymptotic distribution

under the null hypothesis that is given by

b2 − β2
{s2/

∑
x̃22t}

1/2
⇒ δZ1 +

√
1− δ2Z0 (8)

Z1 =

∫ 1

0
Kc1,c2(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
Z0 =

∫ 1

0
Kc1,c2(λ)dW0(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
Kc1,c2(λ) = Jµc2(λ)− AJµc1(λ)

for s2 = (T − 3)−1
∑

(yt+1 − b0 − b1x1t − b2x2t)2 and Wi(λ) independent standard Brownian

processes for i = 0, 1, 2. Conditional on the realizations of W1(.) and W2(.), the term Z0 will

be recognized as a standard Normal variable, and therefore Z0 has an unconditional N(0, 1)

distribution as well.14 In other words, if x1t is strictly exogenous (δ = 0) then the OLS t-test

those based on conventional first-order asymptotics which take T →∞ and treat ρi = 0.99 as a constant; see
for example Chan (1988) and Nabeya and Sørensen (1994).

13When ci = 0, (6) becomes a random walk and the local-to-unity asymptotics simplify to the standard
unit-root asymptotics involving functionals of Brownian motion as a special case: J0(λ) = W (λ).

14The intuition is that for v0,t+1 ∼ i.i.d. N(0, 1) and K = {Kt}Tt=1 any sequence of random variables

9



of β2 = 0 will be valid in small samples even with highly persistent regressors. By contrast, if

δ 6= 0 the random variable Z1 comes into play, which has a nonstandard distribution because

the term dW1(λ) in the numerator is not independent of the denominator. In particular,

Appendix A.2 establishes that Var(Z1) > 1. Moreover Z1 and Z0 are uncorrelated with

each other.15 Therefore the t-statistic in (8) has a non-standard distribution with variance

δ2Var(Z1) + (1− δ2)1 > 1 which is monotonically increasing in |δ|. This shows that whenever

x1t is correlated with ut (δ 6= 0) and x1t and x2t are highly persistent, in small samples the

t-test of β2 = 0 will reject too often when H0 is true.16

We can quantify the magnitude of these effects in a simulation study. We generate values

for x1t and x2t by drawing ε1t and ε2t as i.i.d. Gaussian random variables with σ1 = σ2 = 1,

using µ1 = µ2 = 0 and different values of ρ1 = ρ2 = ρ, starting from x10 = x20 = 0.

We generate yt = ut = δε1t +
√

1− δ2vt where vt is a standard normal random variable.17

Hence, in our data-generating process (DGP) we have β0 = β1 = β2 = 0, σu = 1, and

Corr(ut, ε1t) = δ. We simulate 1,000,000 samples, estimate regression (3) in each sample, and

study the small-sample behavior of the t-statistic for the test of H0 : β2 = 0, using critical

values from the Student-t distribution with 97 degrees of freedom. In addition, we also draw

from the local-to-unity asymptotic distribution of the t-statistic given in equation (8) using

well-known Monte Carlo methods.18

The first panel of Table 1 shows the results of this exercise for different values of ρ and δ.

If the regressors are either strictly exogneous (δ = 0) or not serially correlated (ρ = 0), the

true size of the t-test of β2 = 0 is equal to the nominal size of five percent. If, however, both

ρ 6= 0 and δ 6= 0, the true size exceeds the nominal size, and this size distortion increases in ρ

that is independent of v0,
∑T
t=1Ktv0,t+1 has a distribution conditional on K that is N(0,

∑T
t=1K

2
t ) and∑T

t=1Ktv0,t+1/
√∑T

t=1K
2
t ∼ N(0, 1). Multiplying by the density of K and integrating over K gives the

identical unconditional distribution, namely N(0, 1). For a more formal discussion in the current setting, see
Hamilton (1994, pp. 602-607).

15The easiest way to see this is to note that conditional on W1(.) and W2(.) the product has expectation
zero, so the unconditional expected product is zero as well.

16Expression (8) can be viewed as a straightforward generalization of result (2.1) in Cavanagh et al. (1995)
and expression (11) in Campbell and Yogo (2006). In their case the explanatory variable is x1,t−1− x̄1 which
behaves asymptotically like Jµc1(λ). The component of ut that is correlated with ε1t leads to a contribution
to the t-statistic given by the expression that Cavanagh et al. (1995) refer to as τ1c, which is labeled as τc/κc
by Campbell and Yogo (2006). This variable is a local-to-unity version of the Dickey-Fuller distribution with
well-known negative bias. By contrast, in our case the explanatory variable is x̃2.t−1 = x2,t−1 − ATx1,t−1
which behaves asymptotically like Kc1,c2(λ). Here the component of ut that is correlated with ε1t leads to a
contribution to the t-statistic given by Z1 in our expression (8). Unlike the Dickey-Fuller distribution, Z1 has
mean zero, so that there is no bias in b2.

17We can focus on 0 ≤ δ ≤ 1, since only |δ| matters for the distribution of the t-statistic.
18We simulate samples of size T̃ from near-integrated processes with c1 = c2 = T (ρ − 1) and approximate

the integrals in (8) using Rieman sums—see, for example, Chan (1988), Stock (1991), and Stock (1994).
We use T̃ = 1000, since even moderate sample sizes generally yield accurate approximations to the limiting
distribution (Stock, 1991, uses T̃ = 500).
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and δ. In the presence of high persistence the true size of this t-test can be quite substantially

above the nominal size: For ρ = 0.99 and δ = 1, the true size is around 15 percent, meaning

that we would reject the true null hypothesis more than three times as often as we should.

The size calculations are, not surprisingly, very similar for the small-sample simulations and

the local-to-unity asymptotic approximations.

Figure 1 plots the size of the t-test for the case with δ = 1 for sample sizes from T = 50 to

1000, based on the local-to-unity approximation. When ρ < 1, the size distortion decreases

with the sample size. For example for ρ = 0.99 the size decreases from 15 percent to about 9

percent. In contrast, when ρ = 1 the size distortions are not affected by the sample size, as

indeed in this case the non-Normal distribution corresponding to (8) with ci = 0 governs the

distribution for arbitrarily large T .

The reason for the size distortions when testing β2 = 0 is not coefficient bias. The top panel

of Table 1 shows that b1 is downward biased but b2 is unbiased. However, the conventional OLS

standard errors underestimate the true sampling variability of the OLS estimates: they can

average up to 30% below the standard deviation of the coefficient estimates across simulations.

This standard error bias is the reason why the t-test rejects too often.

2.4 The role of trends

Up to now we have been considering the case when the true values of the constant terms µi

in equations (4)-(5) are zero. As seen in the second and third panels of Table 1, the size

distortions on tests about β2 can nearly double when µi 6= 0, and the bias in the estimate of

β1 increases as well.

We can understand what is going on most easily by considering the case when the roots ρi

are exactly unity.19 In that case, if µ1 is zero and µ2 is not, x2t will exhibit a deterministic time

trend and this ends up stochastically dominating the random walk component of x2t. The

regression (3) would then be asymptotically equivalent to a regression of yt+1 on (1, x1t, µ2t)
′.

When δ = 1 the asymptotic distribution of a t-test of a true null hypothesis about β1 in

regression (3) would be identical to that if we were to perform a Dickey-Fuller test of the true

null hypothesis η = 0 in the regression

∆x1,t+1 = µ1 + ηx1t + ξt+ ε1,t+1, (9)

which is the well-known Dickey-Fuller Case 4 distribution described in Hamilton (1994, eq.

[17.4.55]). We know that the coefficient bias and size distortions are bigger when a time trend

19The following results are proved formally in Appendix A.3.
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is included in regression (9) compared to the case when it is not.20 For the same reason we

would find that the Stambaugh bias of b1 in regression (3) becomes worse when a variable x2t

with a deterministic trend is added to the regression. The standard error bias for b2 is also

exacerbated when the true µ2 is nonzero.

In the case when ρ2 is close to but strictly less than unity, this problem would vanish

asymptotically but is still a factor in small samples. An apparent trend shows up in a finite

sample because when a stationary variable with mean µ2/(1− ρ2) is started from x20 = 0, it

will tend to rise toward its unconditional mean. As ρ2 approaches unity, this trend within a

finite sample becomes arbitrarily close to that seen in a true random walk with drift µ2. While

in the applications in this paper the trend in explanatory variables like inflation is typically

downward instead of upward, the issue is the same, because the distribution of b1 is identical

whether xt2 begins at x20 = 2µ2/(1−ρ2) and then drifts down to its mean or whether it begins

at x20 = 0 and drifts up. Note that the values we have used for simulation in Table 1 are

representative of those that may be encountered in practice.21

When both x1t and x2t have trends (see panel 3 of Table 1) we have the same issues just

discussed but with a reinterpretation of the variables. Consider for example the case when

both trends are the same (µ1 = µ2). Note that a regression of yt+1 on (1, x1t, x2t)
′ has the

identical fitted values as a regression of yt+1 on (1, x1t−x2t, x2t)′, which again is asymptotically

equivalent to a regression in which the second variable is a driftless unit-root process correlated

with the lagged residual and the third variable is dominated by a deterministic time trend.

Now the Stambaugh bias will show up in the coefficient on x1t − x2t. Translating back in

terms of the original regression of yt+1 on (1, x1t, x2t)
′ we would now find Stambaugh biases in

both b1 and b2 that are mirror images of each other. Note the implications of this example.

When µ1 and µ2 are both nonzero, if we were to regress yt+1 on x1t alone, there would be no

Stambaugh bias and no problem with t-tests about β1, because x1t is dominated by the time

trend. The same is true if we were to regress yt+1 on x2t alone. But when both x1t and x2t

are included in the regression, spurious conclusions about both coefficients would emerge.

The practical relevance of these results is that when the proposed additional predictors in

x2t are trending, this can substantially magnify the small-sample problems and lead to more

poorly sized tests and spurious rejections of the spanning hypothesis.

20See Case 2 versus Case 4 in Hamilton (1994, Tables B.5 and B.6).
21For example, an AR(1) process fit to the trend inflation variable used by Cieslak and Povala (2015) over

the sample 1985-2013 has ρ2 = 0.99 and µ2/σ2 = 1.5, an even stronger drift relative to innovation than the
value µ2/σ2 = 1.0 used in Table 1. And their variable has a value in 1985:1 that is 5 times the size of
µ2/(1− ρ2), implying a downward drift over 1985-2013 that is 4 times as fast as in the Table 1 simulation.
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2.5 Overlapping returns

A separate econometric problem arises in predictive regressions for bond returns with holding

periods that are longer than the sampling interval, i.e., h > 1. Most studies in this literature,

and all those that we revisit in this paper, focus on predictive regressions for annual excess

bond returns in monthly data, that is regression (1) with h = 12 and

yt+h = pn−h,t+h − pnt − hiht, (10)

for pnt the log of the price of a pure discount n-period bond purchased at date t and int =

−pnt/n the corresponding zero-coupon yield. In that case, E(utut−v) 6= 0 for v = 0, . . . , h− 1,

as the overlapping observations induce a MA(h − 1) structure for the error terms. This

raises additional problems in the presence of persistent regressors that can be seen even using

conventional first-order asymptotics, as we briefly note in this section.

If x1t and x2t are uncorrelated and the true value of β2 = 0, we show in Appendix A.4 that

under conventional first-order asymptotics

√
Tb2

d→ N(0, Q−1SQ−1), (11)

Q = E(x2tx
′
2t), S =

∑∞

v=−∞
E(ut+hut+h−vx2tx

′
2,t−v). (12)

Note that the product ut+hx2t will be serially correlated when x2t is persistent, since

E(ut+hut+h−vx2tx
′
2,t−v) = E(utut−v)E(x2tx

′
2,t−v) 6= 0. Overlapping observations, in combi-

nation with persistent regressors, substantially increase the sampling variability of the OLS

estimate b2, because the long-run covariance matrix S will exceed the value S0 = E(u2t+hx2tx
′
2t)

that would be appropriate for serially uncorrelated residuals.

The standard approach is to use heteroskedasticity- and autocorrelation-consistent (HAC)

standard errors to try to correct for this, for example, the estimators proposed by Newey and

West (1987) or Andrews (1991). However, long-run variance estimation is notoriously difficult,

particularly in small samples, and different HAC estimators of S can lead to substantially

different empirical conclusions (Müller, 2014). That Newey-West standard errors are unreliable

for inference with overlapping returns was demonstrated convincingly by Ang and Bekaert

(2007). Here we emphasize that the higher the persistence of the predictors, the less reliable

is HAC inference, since the effective sample size becomes very small. The reverse-regression

approach of Hodrick (1992) and Wei and Wright (2013) can alleviate but not overcome the

problem arising from overlapping returns, as we will show in Section 5.

There is another consequence of basing inference on overlapping observations that appears

not to be widely recognized: it substantially reduces the reliability of R2 as a measure of
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goodness of fit. Let R2
1 denote the coefficient of determination in a regression that includes

only x1t, compared to R2
2 for the regression that includes both x1t and x2t. We show in

Appendix A.4 that again for the case when x1t and x2t are uncorrelated and β2 = 0

T (R2
2 −R2

1)
d→ r′Q−1r/γ, γ = E[yt − E(yt)]

2, r ∼ N(0, S). (13)

The difference R2
2−R2

1 converges in probability to zero, but in a given finite sample it is positive

by construction. If x2tut+h is positively serially correlated, then S exceeds S0 by a positive-

definite matrix, and r exhibits more variability across samples. This means R2
2−R2

1, being a

quadratic form in a vector with a higher variance, would have both a higher expected value as

well as a higher variance when x2tut+h is serially correlated compared to situations when it is

not. This serial correlation in x2tut+h would contribute to larger values for R2
2−R2

1 on average

as well as to increased variability in R2
2 − R2

1 across samples. In other words, including x2t

could substantially increase the R2 even if H0 is true. We will use bootstrap approximations to

the small-sample distribution of R2
2−R2

1, and demonstrate that the dramatic values sometimes

reported in the literature are often entirely plausible under the spanning hypothesis.

2.6 A bootstrap design to test the spanning hypothesis

Obviously the main question is whether the above considerations make a material difference

for tests of the spanning hypothesis. We propose a parametric bootstrap that generates

data under the spanning hypothesis to assess how serious these econometric problems are in

practice.22 With this bootstrap approach we can calculate the size of conventional tests to

assess their robustness. In addition, we can use it to test the spanning hypothesis with better

size and power than for conventional tests.23

Our bootstrap design is as follows: First, we calculate the first three PCs of observed yields

which we denote

x1t = (PC1t, PC2t, PC3t)
′,

along with the weighting vector ŵn for the bond yield with maturity n:

int = ŵ′nx1t + v̂nt.

22An alternative approach would be a nonparametric bootstrap under the null hypothesis, using for example a
moving-block bootstrap to re-sample x1t and x2t. However, Berkowitz and Kilian (2000) found that parametric
bootstrap methods such as ours typically perform better than nonparametric methods.

23Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009, 2010) also used the bootstrap to test β2 = 0.
They did so with bootstrap confidence intervals generated under the alternative hypothesis. But it is well
known that bootstrapping under the null hypothesis generally leads to better numerical accuracy and more
powerful tests (Hall and Wilson, 1991; Horowitz, 2001), and of course this is the only way to obtain bootstrap
estimates of the size of conventional tests.
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That is, x1t = Ŵ it, where it = (in1t, . . . , inJ t)
′ is a J-vector with observed yields at t, and

Ŵ = (ŵn1 , . . . , ŵnJ
)′ is the 3× J matrix with rows equal to the first three eigenvectors of the

variance matrix of it. We use normalized eigenvectors so that ŴŴ ′ = I3. Fitted yields are

obtained as ı̂t = Ŵ ′x1t. Three factors generally fit the cross section of yields very well, with

fitting errors v̂nt (pooled across maturities) that have a standard deviation of only a few basis

points.24 Then we estimate by OLS a VAR(1) for x1t:

x1t = φ̂0 + φ̂1x1,t−1 + e1t t = 1, . . . , T. (14)

This time-series specification for x1t completes our simple factor model for the yield curve.

Though this model does not impose absence of arbitrage, it captures both the dynamic evolu-

tion and the cross-sectional dependence of yields. A no-arbitrage model is a special case of this

structure with additional restrictions on Ŵ , but these restrictions typically do not improve

forecasts of yields; see for example Duffee (2011a) and Hamilton and Wu (2014). Next we

generate 5000 artificial yield data samples from this model, each with length T equal to the

original sample length. We first iterate on

x∗1τ = φ̂0 + φ̂1x
∗
1,τ−1 + e∗1τ

where e∗1τ denotes bootstrap residuals. We start every bootstrap sample at x∗10 = x10, the

starting value for the observed sample, to allow for a possible contribution of trends resulting

from initial conditions as discussed in Section 2.4. Then we obtain the bootstrap yields using

i∗nτ = ŵ′nx
∗
1τ + v∗nτ (15)

for v∗nτ
iid∼ N(0, σ2

v). The standard deviation of the measurement errors, σv, is set to the sample

standard deviation of the fitting errors v̂nt.
25 We thus have generated an artificial sample of

yields i∗nτ which by construction only the three factors in x∗1τ have any power to predict, but

whose covariance and dynamics are similar to those of the observed data int.

We likewise fit a VAR(1) to the observed data for the proposed predictors x2t,

x2t = α̂0 + α̂1x2,t−1 + e2t, (16)

from which we then bootstrap 5000 artificial samples x∗2τ in a similar fashion as for x∗1τ . The

24For example, in the data of Joslin et al. (2014) this standard deviation is 6.5 basis points.
25Some evidence in the literature suggests that yield fitting errors are serially correlated (Adrian et al., 2013;

Hamilton and Wu, 2014). We have also investigated a setting with serial correlation in v∗nτ and found that
this does not change any of our findings.
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bootstrap residuals (e′∗1τ , e
′∗
2τ ) are drawn from the joint empirical distribution of (e′1t, e

′
2t).

Using the bootstrapped samples of predictors and yields, we can then investigate the

properties of any proposed test statistic involving y∗τ+h, x
∗
1τ , and x∗2τ in a sample in which the

serial correlation of these variables is similar to the actual data, but in which by construction

the null hypothesis is true that x∗2τ has no incremental predictive power.26 Consider for

example a t-test for significance of a parameter in β2. Denote the t-statistic in the data by t

and the corresponding t-statistic in bootstrap sample i as t∗i . To obtain a bootstrap estimate

of the size of this test we calculate the fraction of samples in which |t∗i | exceeds the usual

asymptotic critical value. And to use the bootstrap to carry out the hypothesis test, we

calculate the bootstrap p-value as the fraction of samples in which |t∗i | > |t|, and reject the

null if this is less than, say, five percent. Equivalently, we can calculate the bootstrap critical

value as the 95th percentile of |t∗i | and reject the null if |t| exceeds it.

Note that this bootstrap procedure does not generate a test with an exact size of 5%.

First, under local-to-unity asymptotics the bootstrap is not a consistent test because the test

statistics are not asymptotically pivotal—their distribution depends on the nuisance param-

eters c1 and c2, which cannot be consistently estimated.27 Second, least squares typically

underestimates the autocorrelation of highly persistent processes due to small-sample bias

(Kendall, 1954; Pope, 1990), so that the VAR underlying our bootstrap would typically be

less persistent than the true DGP. We can address the second issue by using bias-corrected

VAR parameter estimates for generating bootstrap samples. We will use the bias correction

proposed by Kilian (1998) and refer to this as the “bias-corrected bootstrap.”28 We have found

that even the bias-corrected bootstrap tends to be slightly oversized. This means that if our

bootstrap test fails to reject the spanning hypothesis, the reason is not that the test is too

conservative, but that there simply is not sufficient evidence for rejecting the null.

We can use the Monte Carlo simulations in Section 2.3 to calculate the size of our bootstrap

test. In each sample i simulated from a known parametric model, we can: (i) calculate the t-

statistic (denoted t̃i) for testing the null hypothesis that β2 = 0; (ii) estimate the autoregressive

models for the predictors by using OLS on that sample; (iii) generate a single bootstrap sample

using these estimated autoregressive coefficients; (iv) estimate the predictive regression on

26For example, if yt+h is an h-period excess return as in equation (10) then in our bootstrap

y∗τ+h = ni∗nτ − hi∗hτ − (n− h)i∗n−h,τ+h

= n(ŵ′nx
∗
1τ + v∗nτ )− h(ŵ′hx

∗
1τ + v∗hτ )− (n− h)(ŵ′n−hx

∗
1,τ+h + v∗n−h,τ+h)

which replicates the predictable component and the MA(h−1) serial correlation structure of the excess returns
that is both seen in the data and predicted under the spanning hypothesis.

27This result goes back to Basawa et al. (1991). See also Horowitz (2001) and the references therein.
28We have found in Monte Carlo experiments that the size of the bias-corrected bootstrap is closer to five

percent than for the simple bootstrap.
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the bootstrap sample;29 and (v) calculate the t-statistic in this regression, denoted t∗i . We

generate many samples from the maintained model, repeating steps (i)-(v), and then calculate

the value c such that |t∗i | > c in 5% of the samples. Our bootstrap procedure amounts to the

recommendation of rejecting H0 if |t̃i| > c, and we can calculate from the above simulation

the fraction of samples in which this occurs. This number tells us the true size if we were to

apply our bootstrap procedure to the chosen parametric model. This number is reported in

the last column of Table 1. We find in these settings that our bootstrap has a size above but

fairly close to five percent.

We will repeat the above procedure to estimate the size of our bootstrap test in each of our

empirical applications, taking a model whose true coefficients are those of the VAR estimated

in the sample as if it were the known parametric model, and estimating VAR’s from data

generated using those coefficients. To foreshadow those results, we will find that the size

is typically quite close to or slightly above five percent, and that our bootstrap procedure

has excellent power. The implication is that if our bootstrap procedure fails to reject the

spanning hypothesis, we should conclude that the evidence against the spanning hypothesis

in the original data is not persuasive.

2.7 New data: subsample stability and out-of-sample forecasting

We also reassess reported claims of violations of the spanning hypothesis by confronting them

with new data released after publication of the original studies. To circumvent econometric

problems of predictability regressions a common practice is to perform pseudo out-of-sample

(OOS) analysis, splitting the sample into an initial estimation and an OOS period. We are

skeptical of this approach because the researcher has access to the full sample when formulating

the model, and the sample-split is arbitrary. However, for each of the studies that we revisit

a significant amount of new data have come in since the original research. This gives us an

opportunity both to reestimate the models over a sample period that includes new data, and

further to evaluate the true out-of-sample forecasting performance of each proposed model.

29In this simple Monte Carlo setting, we bootstrap the dependent variable as y∗τ = φ̂1x
∗
1,τ−1 +u∗τ where u∗τ is

resampled from the residuals in a regression of yt on x1,t−1, and is jointly drawn with ε∗1τ and ε∗2τ to maintain
the same correlation as in the data. By contrast, in our empirical analysis the bootstrapped dependent
variable is calculated from the bootstrapped bond yields, obtained using (15), and the definition of yt+h (for
example, as an annual excess return).
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3 Economic growth and inflation

In this section we examine the evidence reported by Joslin et al. (2014) (henceforth JPS) that

macro variables may help predict bond returns. We will follow JPS and focus on predictive

regressions as in equation (1) where yt+h is an excess bond return for a one-year holding period

(h = 12), x1t is a vector consisting of a constant and the first three PCs of yields, and x2t

consists of a measure of economic growth (the three-month moving average of the Chicago

Fed National Activity Index, GRO) and of inflation (one-year CPI inflation expectations from

the Blue Chip Financial Forecasts, INF ). While JPS also presented model-based evidence in

favor of unspanned macro risks, those results stem from the substantial in-sample predictive

power of x2t in the excess return regressions. The sample contains monthly observations over

the period 1985:1-2008:12.30

3.1 Predictive power according to R̄2

JPS found that for the ten-year bond, the (adjusted) R̄2 of regression (1) increased from 0.20

to 0.37 when x2t is included. For the two-year bond, the change is even more striking, with

R̄2 increasing from 0.14 to 0.48. JPS interpreted this as strong evidence that macroeconomic

variables have predictive power for excess bond returns beyond the information in the yield

curve, and concluded that “macroeconomic risks are unspanned by bond yields” (p. 1203).

We report the R̄2 for an average excess return on 2- to 10-year bonds in the first row of Table

2, where the first three entries are based on the same data set that was used by JPS.31 The

entry R̄2
1 gives the R̄2 for the regression with only x1t as predictors, and R̄2

2 corresponds to

the case when x2t is added to the regression. For this specification, R̄2 also increases quite

substantially, by 19 percentage points.

However, there are some warning flags for these predictive regressions. First, the predictors

are very persistent; the first-order sample autocorrelations of PC1 and PC2 are 0.98 and

0.97, respectively, while that of INF is 0.99. Second, the sample is relatively small, with 276

observations. Third, the dependent variable is an annual overlapping return, i.e., h = 12. The

arguments in Section 2.5 therefore suggest that even large increases in R̄2 may be plausible

30We recreated the data set using unsmoothed Fama-Bliss yields from Anh Le (Le and Singleton, 2013)
and data from the Chicago Fed and Blue Chip to reconstruct GRO and INF. Note that the last observation
corresponds to excess returns over the holding period from 2007:12 to 2008:12.

31In Table 2 we have attempted to summarize results for R2 or R̄2 across different studies on a comparable
basis that is as close as possible to that in the original study. In the case of JPS, they reported results for
only the 2-year and 10-year bonds and not an average. In Table C.1 in Appendix C we present analogous
results for each individual bond from two through ten years maturity. The increase in R̄2 when adding macro
variables is particularly pronounced for short-term bonds, but most of our conclusions apply to these short
maturities as well.
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under the null hypothesis.

The second row of Table 2 reports the mean R̄2 across 5000 replications of the bootstrap

described in Section 2.6, that is, the average value we would expect to see for these statistics

in a sample of the size used by JPS in which x2t in fact has no true ability to predict yt+h

but whose serial correlation properties are similar to those of the observed data. The third

row gives 95% bootstrap intervals, that is, the 2.5th and 97.5th percentiles of the bootstrap

distributions which impose the null hypothesis. The variability of the R̄2 is very high. Values

for R̄2
2 as high as 60% would not be uncommon, as indicated by the bootstrap intervals. Most

notably, adding the regressors x2t often substantially increases the R̄2—even increases of 20

percentage points are not uncommon—although x2t has no predictive power in population by

construction. According to the bootstrap small-sample distribution of R̄2, the increase in the

data of 19 percentage points is not inconsistent with the spanning hypothesis.

Since the persistence of x2t is high, it may be important to adjust for small-sample bias in

the VAR estimates, so we also carried out the bias-corrected (BC) bootstrap. The expected

values and 95% bootstrap intervals are reported in the bottom two rows of the top panel in

Table 2. As expected, more serial correlation in the generated data (due to the bias correction)

increases the mean and the variability of the R̄2 and of their difference. Hence R̄2
2− R̄2

1 is even

more comfortably within the bootstrap interval.

3.2 Testing the spanning hypothesis

While JPS only reported R̄2 for their excess return regression, one is naturally interested in

formal tests of the spanning hypothesis. We report coefficient estimates and test statistics

in Table 3. The common approach to address the serial correlation in the residuals due to

overlapping observations is to use the standard errors and test statistics proposed by Newey

and West (1987), and in regressions for annual returns with monthly data researchers typically

use 18 lags (see among many others Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009).

In the second row of Table 3 we report the resulting t-statistic for each coefficient along with

the Wald test of the hypothesis β2 = 0. The third row reports the p-values for these statistics

if they were interpreted using the conventional asymptotic approximation. According to this

popular test, GRO and INF appear strongly significant, both individually and jointly. In

particular, the Wald test gives a p-value below 0.1%.

However, the small-sample problems described in Section 2 likely distort these test results.

The canonical correlation between innovations in one-month excess returns and innovations

in the three yield PCs (the generalization of the parameter δ in Section 2.3) is 0.99. This

correlation is always high in tests of the spanning hypothesis, because the yield PCs in x1t
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explain current yields very well, and so innovations to x1t are highly correlated with returns

realized at t. Furthermore, as noted above, the autocorrelations of the predictors are high

and the sample size is relatively small. Our theory predicts that standard error bias will be

severe in this application. In addition, the well-known small-sample problems of Newey-West

standard errors are likely to be particularly pronounced in this setting.

We therefore employ our bootstrap to carry out tests of the spanning hypothesis that

account for these small-sample issues. Again, we use both simple (OLS) and BC bootstrap.

For each, we report five-percent critical values for the t- and Wald statistics, calculated as the

95th percentiles of the bootstrap distribution, as well as bootstrap p-values, i.e., the frequency

of bootstrap replications in which the bootstrapped test statistics are at least as large as in the

data. Using either the simple or BC bootstrap, the coefficient on GRO is insignificant even

at the 10% level, and the coefficient on INF is marginally significant at the 5% level. The

bootstrap p-value for the Wald test of the spanning hypothesis is slightly below 5% for the

simple bootstrap and slightly above 5% for the BC bootstrap. These tests give much weaker

evidence against the spanning hypothesis than one would have thought based on conventional

asymptotic interpretation of the test statistics.

Using the bootstrap we can calculate the true size of the conventional HAC and the boot-

strap tests, which both have a nominal size of five percent. These are reported in the Size

section of the top panel of Table 3. For the conventional HAC tests, this is calculated as the

frequency of bootstrap replications in which the test statistics exceed the usual asymptotic

critical values. The results reveal that the true size of these conventional tests is 19-36%

instead of the presumed five percent. These substantial size distortions are also reflected in

the bootstrap critical values, which far exceed the conventional ones.

We can also use our bootstrap to evaluate the power of our proposed tests. To do so, we

simply add β̂2x
∗
2τ to the value generated by our bootstrap for y∗τ+h, where β̂2 is the coefficient

on x2t in the original data sample. We now have a generated sample in which x2t in fact does

predict yt+h, and with a magnitude that is exactly that claimed in the original study. We

repeat this to obtain 5000 such samples and in each sample calculate all our tests. We find

that the bootstrap Wald test rejects the (false) spanning hypothesis in 89% of the samples.

In other words, these tests should reject the spanning hypothesis in the data if it were indeed

false, which suggests that the reason that they do not reject is not a lack of power, but the

fact that empirical spanning is a reasonable description of the observed sample.

In addition we also tested alternative versions of the spanning hypothesis where four or five

PCs of yields capture the information in the yield curve. The results, reported in Appendix

B, show that our conclusions are unchanged when we allow for a more general spanning

hypothesis.
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3.3 New data

What happens when we augment the sample with the eight years of new data that have arrived

since the original analysis by JPS? The last three columns of the top panel of Table 2 show

that the in-sample improvement in R̄2 when x2t is included in the regression is substantially

smaller over the 1985-2016 data set than was found on the original JPS data set, and the

improvement is far from statistically significant.32 And as seen in the second panel of Table

3, the values of the HAC test statistics are substantially smaller on the longer data set than

in the original data, and the t- and Wald statistics are no longer statistically significant even

if interpreted in the usual way.

Row 1 of Table 4 reports the pure OOS forecast comparison for yt+h the average 12-month

excess return across 2- to 10-year bonds. We used a recursive scheme where we re-estimate the

predictive regressions by extending the estimation window each month of the newly available

data. Whereas in the original JPS in-sample regression, the addition of x2t improved the

mean squared prediction error by 24%, the addition of x2t leads to a deterioration in the OOS

prediction error by 116%. Moreover, this deterioration is strongly statistically significant

according to the Diebold and Mariano (1995) (DM) test.33

Adding new observations to the JPS data set substantially weakens the evidence against

the spanning hypothesis. But if the null hypothesis were truly false, we would expect to find

the evidence against it become stronger, not weaker, when we use a bigger data set. We

conclude on the basis of the bootstrap and the evidence in newly available data that the JPS

evidence on unspanned macro risks is far from convincing.

4 Factors of large macro data sets

Ludvigson and Ng (2009, 2010) found that factors extracted from a large macroeconomic

data set are helpful in predicting excess bond returns, above and beyond the information

contained in the yield curve. Here we revisit this evidence, focusing on the results in Ludvigson

and Ng (2010) (henceforth LN). They started with a panel data set of 131 macro variables

observed over 1964:1-2007:12 and extracted eight macro factors using the method of principal

components. These factors, which we will denote by F1 through F8, were then related to

future one-year excess returns on two- through five-year Treasury bonds. They also included

32This also turns out to be the case for every individual bond maturity; see Table C.1 in Appendix C.
33In related work, Giacoletti et al. (2016) evaluated the real-time OOS forecasting performance of a model

similar to that used in JPS. They found that including macro variables only helps for predicting very short-term
yields and only over a specific subsample, but that overall “’macro rules’ add little to the forecast accuracy of
the basic yields-only rule” (p. 29). While this supports the spanning hypothesis, they find some incremental
predictive power when including survey forecast disagreement.
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the return-forecasting factor that was proposed by Cochrane and Piazzesi (2005), denoted CP ,

which is the linear combination of forward rates that best predicts the average excess return

across maturities. Based on comparisons of R̄2 of regressions with and without macro factors,

as well as inference using Newey-West standard errors, LN concluded that macro factors help

predict excess returns, even when controlling for information in the yield curve using the CP

factor.

We estimate regression (1) where now yt+h is the average one-year excess bond return

for maturities of two through five years, x1t contains a constant and three yield PCs, and x2t

contains eight macro PCs. The specification is very similar to that of LN, with two differences:

First, we capture the information in the yield curve using the first three PCs of yields, while LN

use the CP factor. Second, we do not carry out LN’s preliminary specification search—they

considered many different combinations of the factors along with squared and cubic terms—in

order to focus squarely on hypothesis testing for a given regression specification.34

Table 2 shows that in LN’s data set the R̄2 increases by 10 percentage points when the

macro factors are included, consistent with LN’s findings. The first three rows of Table 5 show

the coefficient estimates, HAC t- and Wald statistics (using Newey-West standard errors with

18 lags as in LN), and conventional p-values. There are five macro factors that appear to

be statistically significant at the ten-percent level, among which three are significant at the

five-percent level. The Wald statistic for H0 far exceeds the critical values for conventional

significant levels. Taken at face value, this evidence suggests that macro factors have strong

predictive power, above and beyond the information contained in the yield curve.

How robust are these econometric results? We first check the warning flags. As usual,

the first two yield PCs are very persistent, with autocorrelations of 0.98 and 0.94. The most

persistent macro variables have first-order autocorrelations of around 0.75, so the persistence of

x2t is lower than in the data of JPS but still considerable. As always, the yield PCs strongly

violate strict exogeneity by construction, for the reasons explained in the previous section.

Based on these indicators, it appears that small-sample problems may well distort the results

of conventional inference methods.

To address the potential small-sample problems we again bootstrapped 5000 data sets of

artificial yields and macro data in which H0 is true in population. The samples each contain

516 observations, which corresponds to the length of the original data sample. We report

results only for the simple bootstrap without bias correction, because the bias in the VAR

for x2t is estimated to be small. Note that LN also considered bootstrap inference, but their

main bootstrap design imposed the expectations hypothesis, in order to test whether excess

34We were able to closely replicate the results in LN’s tables 4 through 7, and have also applied our techniques
to those regressions, which led to qualitatively similar results.
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returns are predictable by macro factors and the CP factor. Using this setting, LN produced

convincing evidence that excess returns are predictable, which is fully consistent with our

results. Our null hypothesis of interest, however, is that excess returns are predictable only by

current yields. While LN also reported results for a bootstrap under the alternative hypothesis,

our bootstrap under the null provides more accurate tests of the spanning hypothesis and

allows us to estimate the size of conventional tests under the null (see also footnote 23).

Table 2 shows that the observed increase in predictive power from adding macro factors

to the regression, measured by R̄2, would not be implausible if the null hypothesis were true,

as the increase in R̄2 is within the 95% bootstrap interval. And as seen in Table 5, our

bootstrap finds that only three coefficients are significant at the ten-percent level (instead of

five using conventional critical values), and one at the five-percent level (instead of three).

While the Wald statistic is significant even compared to the critical value from the bootstrap

distribution, the evidence is weaker than when using the asymptotic distribution.

We again use the bootstrap to estimate the size and power of the different tests with a

nominal size of five percent. The results, reported in Table 5, reveal that the conventional t-

tests have modest size distortions, with true size of 8-14% instead of the nominal five percent.

But the Wald test is seriously distorted, with a true size of 32 percent. The Wald test

compounds the problems resulting from the non-standard small-sample distribution of each of

the eight coefficient estimates for x2t, and therefore ends up with a large size distortion. By

contrast, our proposed bootstrap test has close to correct size. They also have good power, in

particular the bootstrap Wald test.

Again there are several years of data that have arrived since the original LN analysis was

conducted.35 We repeated our analysis using the same 1985-2016 sample period that we used

to reassess the results of JPS. There it was a strictly larger sample than the original, but

here our new sample adds data at the end but leaves some out at the beginning. Reasons

for interest in this sample period include the significant break in monetary policy in the

early 1980s, the advantages of having a uniform sample period for comparison across all the

different studies considered in our paper, and investigating robustness of the original claims

in describing data since the papers were originally published. The results, shown in the right

panel of Table 2 and the bottom panel of Table 5, show that over the later sample period,

the evidence for the predictive power of macro factors is quite weak. The increases in R̄2 in

Table 2 are not statistically significant, being squarely within the bootstrap intervals under

the spanning hypothesis. The Wald test rejects H0 when using asymptotic critical values, but

35To construct the macro factors for the 1985-2016 sample period, we used the macro data set of McCracken
and Ng (2014) and transformed the data and extracted the PCs in the same way as LN did. Using the data
constructed in this way, we also obtained results similar to LN’s over their original sample period.
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is very far from significant when using bootstrap critical values. Duffee (2013b, Section 7)

has also noted problems with the stability of the results in Cochrane and Piazzesi (2005) and

Ludvigson and Ng (2010) across different sample periods.

We also repeated the pure OOS exercise and report the results in the second row of Table

4. In contrast to the results for JPS (in the first row), we find that the unrestricted model

which includes macro variables does better both in-sample and OOS than the model that only

includes yield PCs. Adding the eight macro factors reduces the MSE for predicted returns

over the 2009-2016 period by 22%. However, this improvement is not large enough to be

statistically significant based on the DM test.

Overall, these results again show that conventional measures of fit and hypothesis tests

are not reliable for assessing the spanning hypothesis. Furthermore, the evidence that macro

factors have predictive power beyond the information already contained in yields is weaker than

the results in LN would initially have suggested. Both small-sample econometric problems as

well as subsample stability raise concerns about the robustness of the results.36

5 Trend inflation

Cieslak and Povala (2015) (henceforth CPO) presented evidence that measures of the trend in

inflation can help to estimate risk premia in bond returns. They found this using a variety of

measures of trend inflation. Their strongest results (and the specification we investigate here)

calculates the trend in inflation using a very slowly adjusting weighted average of observed

inflation rates,

τt = (1− ν)
∑t−i

i=0ν
iπt−i, (17)

for πt the month t year-over-year inflation in the core CPI and ν = 0.987. CPO found

that although τt alone does not predict excess returns, when added to a regression that also

includes yields, the inflation trend becomes highly significant and the predictive power of

yields improves tremendously as well.

CPO calculated standard errors using the Wei and Wright (2013) reverse regression (RR)

approach as a way to mitigate the problems resulting form overlapping observations identified

in Section 2.5. The RR approach uses the insight of Hodrick (1992) that it is beneficial to

base inference in predictions for overlapping returns on estimates from regressions of one-

period (non-overlapping) returns on cumulated predictors, and extends Hodrick’s approach to

perform inference about other hypotheses than the absence of predictability. We also use the

RR approach throughout this section as we replicate and extend CPO’s results.

36Appendix D reports additional results for predictive regressions with return-forecasting factors, using an
empirical approach that was also advocated by LN. These results reinforce our conclusions.
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To reproduce CPO’s key results in a similar structure to those used in discussing the

previous two studies, let yt+h denote a weighted average of the annual excess returns on 2- to

15-year bonds, x1t a constant and the first three PCs of yields, and x2t = τt.
37 The first three

rows of Table 6 reproduce CPO’s conclusion that the ability of the PCs alone to predict excess

returns is modest and only the slope is a significant predictor of bond returns, consistent with

the long-standing results of Campbell and Shiller (1991). But when τt is added (rows 4-6),

the trend is highly significant, and the values and statistical significance of the coefficients on

PC1 and PC2 increase tremendously as well.

The value of τt is plotted in Figure 2 along with the yield on a 10-year bond. Both τt and

nominal interest rates exhibited an upward trend until the early 1980s and a distinct downward

trend since then. From the start to the end of CPO’s original sample, the value of τt fell by

more than 200 basis points and the 10-year yield by over 400 basis points. The variable τt

is also extremely persistent, with an autocorrelation of 0.9985. The analysis in Section 2.4

showed that in a setting like this, the problems from standard error bias can become much

worse due to the presence of trends, and both the predictive power of τt and its apparent

usefulness in refining the predictive power of the PCs could be spurious.

We again investigate these concerns using our bootstrap.38 In this case, because of the

very high persistence of τt we use the bias-corrected bootstrap. The key question is the

following: For data generated under the null hypothesis that x1t alone is useful in predicting

returns, how often do we reject this null hypothesis? This estimate of the true size of the

RR t-test is 42.5%, as reported in Table 6. The enormous size distortion results from the

simultaneous presence of multiple problems, namely standard error bias, trends in x1t and

x2t, and overlapping annual observations. We can use the bootstrap to investigate further the

specific features of the DGP that lead to this poor test size.

The main problem is the presence of trends in PC1 and τt. In our bootstrap DGP x1t and

x2t are highly persistent but stationary series, with the trend in the observed sample coming

from the fact that the initial values for PC1 and τ1 are the historical values in 1971, which

are significantly above the population means implied by the coefficients estimated from the

entire sample. When we instead initialize the bootstrap samples at the population means, so

that trends are absent by construction, the size of the RR t-test is only 16% instead of 45%.

37We use zero-coupon yields with one to fiften years maturity from Gürkaynak et al. (2007) and a one-month
T-bill rate from the Center for Research in Security Prices (CRSP). For the dependent variable we use the
same type of weighted average of excess returns as CPO, where returns are divided by the bond’s duration
before being averaged.

38Our bootstrap uses a VAR(1) for yield PCs and an AR(1) for the inflation trend. While more sophisticated
bootstrap designs for inflation and the inflation trend are possible—e.g., calculating the bootstrapped inflation
trend as a moving average of inflation simulated from an ARIMA model—we have found that our key results
remain essentially unaffected by this choice.
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This reveals that the size distortions in the CPO analysis arise primarily from the problems

with trending variables analyzed in Section 2.4.39

The interaction of the trends present in PC1 and τt renders the inference about the coeffi-

cients on both predictors highly unreliable, as the following exercise shows. If we regress yt+h

on x1t alone, RR t-test rejects the false null hypothesis that the coefficient on PC1 is zero in

only 17% of the bootstrap samples. Likewise, if we regress yt+h on a constant and τt alone,

we reject the null hypothesis that β2 = 0 in 14% of the bootstrap samples.40 However, when

both x1t and x2t are in the regression, we reject the hypothesis that the coefficient on PC1

(τt) is zero in 53% (45%) of the samples. The typical finding would thus be that although

both PC1 and τt individually have almost no predictive power for yt+h, when both are added

to the same regression they typically appear statistically significant. We have also found that

adding τt to the regression doubles the root-mean-square error for the coefficient estimate

on PC1 around its true value. This suggests that rather than helping refine the predictive

power of x1t, the addition of x2t in fact leads to a substantial deterioration of the forecasting

model. The reason for all of these problems is the simultaneous presence of trends in x1t and

τt which substantially distorts the inference about the spanning hypothesis, in line with the

econometric theory in Section 2.4.

Furthermore, the problems stemming from overlapping observations are only partially

alleviated by the RR test. If instead of RR standard errors we use Newey-West standard

errors with the usual 18 lags, the test of β2 = 0 has an even larger size of 56%, compared

to the 45% size of the RR test, so the RR approach helps some. However, in the absence of

overlapping observations, a t-test of the same hypothesis has a size of 34%. Since this is quite

a bit below 45% the RR test apparently does not completely solve the problem of overlapping

observations.41

Notwithstanding, we emphasize that these concerns cannot entirely explain the size of the

effects found by CPO. As seen in Table 2, it would not be surprising to see the estimated R̄2 go

39By contrast, in the JPS data we found that the biggest single source of the size distortions is the use
of overlapping returns and Newey-West standard errors. And in the LN data it is a combination of the
overlapping returns and the presence of a relatively large number of predictors in x2t, which magnifies the size
distortions.

40In our DGP, as in the data, bond risk premia are driven mainly by PC2; the population coefficient on
PC1 is nonzero but close to zero. And τt is correlated with x1t in the bootstrap DGP so τt by itself also has
some predictive power. But for both PC1 and τt the predictive power is usually not big enough for the RR
t-test to detect.

41To obtain this result we set h = 1 and calculate yt+1 as monthly excess returns, using the usual approxi-
mation in−1,t+1 ≈ in,t+1 and the one-month T-bill rate. The t-test in this case uses White’s heteroskedasticity
robust standard errors (as in, for example, Duffee, 2013b, Section 7). It is well-known that RR standard errors,
just like Hodrick’s standard errors, do not eliminate the problem of Stambaugh bias; note for example the
size distortions in Table 1 of Wei and Wright (2013). Therefore it is unsurprising that this approach does not
eliminate standard error bias.
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from 15% when only PCs are used to as high as 40% when τt is added. In the data, however,

we find an R̄2 of 46% when τt is added, too big to be attributed to the factors captured by

our bootstrap alone. We also see from Table 6 that while it would not be surprising to see

the RR t-statistic for β2 as high as 3.6; the value observed in the data of 6.2 is much too big

to be explained by these considerations alone.42

We also reestimated the predictive regressions over the 1985-2016 period that we have

used as a common comparison with the other studies. The increase in R̄2 is smaller and no

longer statistically significant on this dataset, as seen in the last three columns of Table 2.

Compared to the bootstrap small-sample critical values, the RR t-statistic is only marginally

statistically significant at the 5% level, as seen in the second panel of Table 6. Note that

in the post-1985 sample the downward drift in the level of yields and the inflation trend is

even more pronounced, adding to the econometric problems caused by trends in explanatory

variables.

We also evaluated the true OOS usefulness of τt using new data after the end of CPO’s

sample period, which we report in line 3 of Table 4. Whereas within CPO’s original sample the

trend reduces the MSE by 40%, for the data that have arrived since 2011 including the inflation

trend actually increases the MSE by 221%, and based on the DM statistic this deterioration

is strongly statistically significant.

In sum, there are two possibly complementary explanations for the strong in-sample pre-

dictive power of the inflation trend τt documented by CPO. First, the addition of τt may truly

help improve forecasts of bond returns, for example because accounting for the common, slow-

moving trend in yields and τt might uncover additional predictive power. This interpretation

is supported by the fact that CPO’s finding survives our bootstrap correction for small-sample

problems, at least in their original data set. But a second explanation, suggested by the the-

oretical arguments in Section 2.4, is that a substantial portion of the apparent incremental

predictive power of τt arises spuriously from the presence of trends. This second explanation

is supported by our bootstrap analysis of the the role of trends, by the results in the 1985-2016

sample, and by the poor out-of sample performance of the model that includes τt vis-a-vis a

model that imposes the spanning hypothesis. Clearly one needs to exercise particularly great

care in interpreting evidence against the spanning hypothesis in a situation with trending

predictors.

42We note from Figure 2 that τt is even better characterized as exhibiting two different trends rather than a
single downward trend as captured in our bootstrap. We have found in simulations that such breaking trends
can substantially exacerbate the problems that arise from a single trend.
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6 Higher-order PCs of yields

Cochrane and Piazzesi (2005) (henceforth CP) documented several striking facts about excess

bond returns. They showed that a tent-shaped combination of forward rates predicts annual

excess returns on different long-term bonds with an R2 of up to 37% (and even up to 44%

when lags are included). Importantly for our context, CP found that the first three PCs

of yields—level, slope, and curvature—did not fully capture this predictability, but that the

fourth and fifth PC were also very helpful. As usual, the first three PCs explain a large share

of the cross-section variation in yields (99.97% in their data), but CP found that the other

two PCs, which explain only 0.03% of the cross-section variation in yields, are statistically

important for predicting excess bond returns. In particular, the fourth PC appeared “very

important for explaining expected returns” (p. 147). Here we assess the robustness of this

finding, by revisiting the null hypothesis that only the first three PCs, but not higher-order

PCs, predict excess returns.

The last panel of Table 2 shows (unadjusted) R2 for predictive regressions for the average

excess bond return using three and five PCs as predictors, and the first entries replicate the

results of CP. In Table 7 we report the results of HAC inference for the regressions with 5

PCs using Newey-West standard errors with 18 lags, and the Wald statistic is identical to that

reported by CP in their Table 4. The p-values indicate that PC4 is very strongly statistically

significant, and that the spanning hypothesis would be rejected.

We then use our bootstrap procedure to obtain robust inference about the relevance of the

predictors PC4 and PC5. We find that CP’s result is not due to small-sample size distortions.

The persistence of higher-order PCs is quite low, so that the size distortions of conventional

tests are small. And the Newey-West t-statistic on PC4 is far too large to be accounted for

by the kinds of factors identified in Section 2. Likewise the increase in R2 reported by CP

would be quite implausible under the null hypothesis, as it falls far outside the 95% bootstrap

interval under the null.

In the last three columns of Table 2 and the bottom panel of Table 7 we report results for

the 1985–2016 sample period. In this case, the increase in R2 due to inclusion of higher-order

PCs is comfortably inside the 95% bootstrap intervals, and the coefficients on PC4 and PC5

are not significant for any method of inference.43

CP’s sample period ended more than ten years prior to the time of this writing, giving us

the longest true OOS period among the studies considered. The last row of Table 4 shows

that in contrast to the in-sample estimates, where including PC4 and PC5 reduces the MSE

43Consistent with this finding, an influence analysis of the predictive power of PC4 in the full sample
indicates that the observations with the largest leverage and influence are almost all clustered in the early and
mid 1980s.
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by 11%, OOS predictions become less accurate, with the MSE increased by 21%, when the

null hypothesis is not imposed. While the DM test does not reject the hypothesis that both

models have equal predictive accuracy in population, restricting the predictive model to use

only the level, slope and curvature leads to more stable and more accurate return predictions

in post-publication data.

It is worth emphasizing the similarities and differences between CP’s results and ours.

Their central claim, with which we concur, is that the factor they have identified is a useful

and stable predictor of bond returns. CP conducted tests of the usefulness of their return-

forecasting factor for predicting returns across different subsamples, a result that we have been

able to reproduce and confirm. But their factor is a function of all 5 PC’s, and our results

suggest that it is mainly PC1-PC3, and not the addition of PC4 and PC5, that makes this

factor a robust predictor of bond returns. We have shown that these higher-order PCs are

insignificant in the 1985–2016 sample and in true out-of-sample forecasting. In additional,

unreported results we found the same results for most of the subsample periods that CP

considered, as well as for the 1952-2010 sample period considered by Duffee (2013b, Section

7). We conclude that the predictive power of higher-order factors is tenuous and sample-

dependent, and that there is no compelling evidence that the first three PCs of yields are

insufficient to estimate bond risk premia.44

7 Other studies

Several other studies have also reported evidence that might appear to be inconsistent with

the spanning hypothesis. Cooper and Priestley (2008) concluded that the output gap contains

useful information for forecasting interest rates, while Greenwood and Vayanos (2014) found

the same for measures of Treasury bond supply. We have repeated our analysis using the

datasets in these studies and found that evidence against the spanning hypothesis in these

two cases is even weaker than for any of the studies discussed in Sections 3 to 6. Details of

our investigations are reported in Appendices E and F.

8 Conclusion

Conventional tests of whether variables other than the level, slope and curvature can help

predict bond returns have significant size distortions, and the R2 of the regression can in-

44Cattaneo and Crump (2014) also investigated the robustness of the results of Cochrane and Piazzesi
(2005) and obtained even more negative results: Using a new HAC test proposed by Müller (2014) they did
not reject the null hypothesis that the CP factor had no predictive power in a variety of in-sample and OOS
specifications.
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crease dramatically when other variables are added to the regression even if they have no true

explanatory power. We proposed a simple parametric bootstrap to carry out inference that is

robust to the resulting small-sample problems. We used this bootstrap approach to reexamine

the usefulness of proposed predictors in six widely cited studies, in both the original data and

in a common sample period that includes newly available data. In addition, we calculated true

out-of-sample forecasts. Our overall finding is that conventional tests are highly unreliable,

and that as a result the evidence that variables other than the current level, slope and cur-

vature predict excess bond returns is substantially less convincing than the original research

would have led us to believe.

References

Adrian, Tobias, Richard K. Crump, and Emanuel Moench (2013) “Pricing the Term Structure

with Linear Regressions,” Journal of Financial Economics, Vol. 110, pp. 110–138.

Andrews, Donald W. K. (1991) “Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix Estimation,” Econometrica, Vol. 59, pp. 817–858.

Ang, Andrew and Geert Bekaert (2007) “Stock return predictability: Is it there?” Review of

Financial studies, Vol. 20, pp. 651–707.

Bansal, Ravi and Ivan Shaliastovich (2013) “A Long-Run Risks Explanation of Predictability

Puzzles in Bond and Currency Markets,” Review of Financial Studies, Vol. 26, pp. 1–33.

Basawa, Ishwar V, Asok K Mallik, William P McCormick, Jaxk H Reeves, and Robert L Taylor

(1991) “Bootstrapping unstable first-order autoregressive processes,” Annals of Statistics,

pp. 1098–1101.

Bauer, Michael D. and Glenn D. Rudebusch (2017) “Resolving the Spanning Puzzle in Macro-

Finance Term Structure Models,” Review of Finance, Vol. 21, pp. 511–553.

Bekaert, G., R.J. Hodrick, and D.A. Marshall (1997) “On biases in tests of the expectations

hypothesis of the term structure of interest rates,” Journal of Financial Economics, Vol.

44, pp. 309–348.

Bekaert, Geert, Eric Engstrom, and Yuhang Xing (2009) “Risk, Uncertainty, and Asset

Prices,” Journal of Financial Economics, Vol. 91, pp. 59–82.

Bekaert, Geert and Robert J Hodrick (2001) “Expectations hypotheses tests,” The journal of

finance, Vol. 56, pp. 1357–1394.

30



Berkowitz, Jeremy and Lutz Kilian (2000) “Recent developments in bootstrapping time series,”

Econometric Reviews, Vol. 19, pp. 1–48.

Bikbov, Ruslan and Mikhail Chernov (2010) “No-Arbitrage Macroeconomic Determinants of

the Yield Curve,” Journal of Econometrics, Vol. 159, pp. 166–182.

Campbell, John Y. and John H. Cochrane (1999) “By force of habit: A consumption-based

explanation of aggregate stock market behavior,” Journal of Political Economy, Vol. 107,

pp. 205–251.

Campbell, John Y. and Robert J. Shiller (1991) “Yield Spreads and Interest Rate Movements:

A Bird’s Eye View,” Review of Economic Studies, Vol. 58, pp. 495–514.

Campbell, John Y and Motohiro Yogo (2006) “Efficient tests of stock return predictability,”

Journal of financial economics, Vol. 81, pp. 27–60.

Cattaneo, Matias D. and Richard K. Crump (2014) “Comment,” Journal of Business & Eco-

nomic Statistics, Vol. 32, pp. 324–329.

Cavanagh, Christopher L, Graham Elliott, and James H Stock (1995) “Inference in Models

with Nearly Integrated Regressors,” Econometric theory, Vol. 11, pp. 1131–1147.

Chan, Ngai Hang (1988) “The parameter inference for nearly nonstationary time series,”

Journal of the American Statistical Association, Vol. 83, pp. 857–862.

Cieslak, Anna and Pavol Povala (2015) “Expected Returns in Treasury Bonds,” Review of

Financial Studies, Vol. 28, pp. 2859–2901.

Cochrane, John H. and Monika Piazzesi (2005) “Bond Risk Premia,” American Economic

Review, Vol. 95, pp. 138–160.

Cooper, Ilan and Richard Priestley (2008) “Time-Varying Risk Premiums and the Output

Gap,” Review of Financial Studies, Vol. 22, pp. 2801–2833.

Dewachter, Hans and Marco Lyrio (2006) “Macro Factors and the Term Structure of Interest

Rates,” Journal of Money, Credit and Banking, Vol. 38, pp. 119–140.

Diebold, Francis X. and Robert S. Mariano (1995) “Comparing Predictive Accuracy,” Journal

of Business & economic statistics, Vol. 13, pp. 253–263.

Diebold, Francis X., Glenn D. Rudebusch, and S. Boragan Aruoba (2006) “The Macroeconomy

and the Yield Curve: A Dynamic Latent Factor Approach,” Journal of Econometrics, Vol.

131, pp. 309–338.

31



Duffee, Gregory R. (2011a) “Forecasting with the Term Structure: the Role of No-Arbitrage,”

Working Paper January, Johns Hopkins University.

(2011b) “Information In (and Not In) the Term Structure,” Review of Financial

Studies, Vol. 24, pp. 2895–2934.

(2013a) “Bond Pricing and the Macroeconomy,” in Milton Harris George M. Con-

stantinides and Rene M. Stulz eds. Handbook of the Economics of Finance, Vol. 2, Part B:

Elsevier, pp. 907–967.

(2013b) “Forecasting Interest Rates,” in Graham Elliott and Allan Timmermann eds.

Handbook of Economic Forecasting, Vol. 2, Part A: Elsevier, pp. 385–426.

Fama, Eugene F. and Robert R. Bliss (1987) “The Information in Long-Maturity Forward

Rates,” The American Economic Review, Vol. 77, pp. 680–692.

Ferson, Wayne E, Sergei Sarkissian, and Timothy T Simin (2003) “Spurious Regressions in

Financial Economics?” Journal of Finance, Vol. 58, pp. 1393–1414.

Giacoletti, Marco, Kristoffer T. Laursen, and Kenneth J. Singleton (2016) “Learning, Disper-

sion of Beliefs, and Risk Premiums in an Arbitrage-free Term Structure Model,” unpublished

manuscript.

Goetzmann, William N and Philippe Jorion (1993) “Testing the predictive power of dividend

yields,” The Journal of Finance, Vol. 48, pp. 663–679.

Greenwood, Robin and Dimitri Vayanos (2014) “Bond Supply and Excess Bond Returns,”

Review of Financial Studies, Vol. 27, pp. 663–713.

Gürkaynak, Refet S., Brian Sack, and Jonathan H. Wright (2007) “The U.S. Treasury yield

curve: 1961 to the present,” Journal of Monetary Economics, Vol. 54, pp. 2291–2304.

Gürkaynak, Refet S. and Jonathan H. Wright (2012) “Macroeconomics and the Term Struc-

ture,” Journal of Economic Literature, Vol. 50, pp. 331–367.

Hall, Peter and Susan R. Wilson (1991) “Two Guidelines for Bootstrap Hypothesis Testing,”

Biometrics, Vol. 47, pp. 757–762.

Hamilton, James D. (1994) Time Series Analysis: Princeton University Press.

Hamilton, James D. and Jing Cynthia Wu (2012) “Identification and estimation of Gaussian

affine term structure models,” Journal of Econometrics, Vol. 168, pp. 315–331.

32



(2014) “Testable Implications of Affine Term Structure Models,” Journal of Econo-

metrics, Vol. 178, pp. 231–242.

Hodrick, Robert J (1992) “Dividend yields and expected stock returns: Alternative procedures

for inference and measurement,” Review of Financial studies, Vol. 5, pp. 357–386.
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Table 1: Simulation study of standard error bias

ρ δ
Coefficient bias SE bias Size

β1 β2 (%) simulated asymptotic bootstrap

µ1 = µ2 = 0
0.99 0.0 0.000 0.000 -4.7 0.050 0.047 0.048
0.00 1.0 -0.010 0.000 -0.6 0.050 0.051 0.050
0.90 1.0 -0.052 0.000 -15.4 0.085 0.086 0.057
0.99 0.8 -0.055 0.000 -23.2 0.113 0.112 0.072
0.99 1.0 -0.068 0.000 -29.8 0.151 0.151 0.082

µ1 = 0, µ2 = 1
0.99 0.0 0.000 0.000 -5.1 0.050 0.049
0.00 1.0 -0.010 0.000 -0.5 0.050 0.050
0.90 1.0 -0.053 0.000 -17.1 0.089 0.057
0.99 0.8 -0.071 0.000 -42.4 0.183 0.077
0.99 1.0 -0.088 0.000 -50.8 0.268 0.085

µ1 = 1, µ2 = 1
0.99 0.0 0.000 0.000 -4.0 0.050 0.047
0.00 1.0 -0.010 0.000 -0.5 0.050 0.050
0.90 1.0 -0.037 0.017 -12.0 0.081 0.054
0.99 0.8 -0.036 0.035 -12.1 0.168 0.056
0.99 1.0 -0.045 0.044 -16.0 0.241 0.058

Coefficient bias, standard error bias, and test size in simulation study for predictive regressions
yt+1 = β0 + β1x1t + β2x2t + ut+1 in sample of size T = 100 from data-generating process (DGP)
with x1t and x2t following AR(1) processes, β0 = β1 = β2 = 0, and different values of ρ1 = ρ2 = ρ
and δ. For details on the DGP refer to text. The coefficient bias is reported as E(β̂i)− βi. The
standard error bias is reported as E[(σ̂β̂2)− σβ̂2 ]/σβ̂2 . The last three columns report the size (i.e.,

frequency of rejections) of tests of H0 : β2 = 0 with a nominal size of five percent, for a conventional
t-test—according to both regressions in simulated small samples and the local-to-unity asymptotic
distribution—and for the bootstrap test.
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Table 2: In-sample predictive power in excess-return regressions

R̄2
1 R̄2

2 R̄2
2 − R̄2

1 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

JPS Original sample: 1985–2008 Later sample: 1985–2016

Data 0.19 0.38 0.19 0.17 0.21 0.04
Bootstrap 0.32 0.38 0.06 0.28 0.32 0.05

(0.11, 0.55) (0.15, 0.60) (0.00, 0.20) (0.08, 0.49) (0.12, 0.53) (0.00, 0.17)
BC bootstrap 0.35 0.41 0.06 0.28 0.33 0.05

(0.08, 0.62) (0.13, 0.67) (0.00, 0.23) (0.06, 0.52) (0.11, 0.57) (0.00, 0.20)

Ludvigson-Ng Original sample: 1964–2007 Later sample: 1985–2016

Data 0.25 0.35 0.10 0.14 0.24 0.10
Bootstrap 0.21 0.24 0.03 0.29 0.34 0.05

(0.05, 0.38) (0.08, 0.42) (0.00, 0.11) (0.09, 0.51) (0.13, 0.55) (0.00, 0.16)

Cieslak-Povala Original sample: 1971–2011 Later sample: 1985–2016

Data 0.12 0.46 0.34 0.16 0.35 0.19
BC bootstrap 0.15 0.22 0.07 0.27 0.34 0.07

(0.02, 0.34) (0.06, 0.40) (0.00, 0.21) (0.05, 0.53) (0.10, 0.57) (0.00, 0.23)

Cochrane-Piazzesi Original sample: 1964–2003 Later sample: 1985–2016

Data 0.26 0.35 0.09 0.15 0.18 0.03
Bootstrap 0.21 0.22 0.01 0.30 0.31 0.01

(0.05, 0.39) (0.06, 0.40) (0.00, 0.02) (0.10, 0.51) (0.11, 0.52) (0.00, 0.05)

Adjusted R̄2 for regressions of annual excess bond returns on three PCs of the yield curve (R̄2
1) and

on three yield PCs together with the additional proposed predictors x2t, well as the difference in

adjusted R̄2. The additional predictors, which are described in more detail in the text, are: for JPS,

measures of growth and inflation; for Ludvigson-Ng, eight PCs of a large set of macro variables; for

Cieslak-Povala, a moving-average estimate of the inflation trend; and for Cochrane-Piazzesi, the

fourth and fifth PC of yields. The results in the left half of the table are for the original sample

period in each paper; the right half of the table is for the 1985–2016 sample period. The excess

bond return is an average across bond maturities: for JPS, from two to ten years; for Ludvigson-Ng,

from two to five years; for Cieslak-Povala, from two to ten years (a weighted average); and for

Cochrane-Piazzesi, from two to five years. The first row of each panel reports the values of the

statistics in the original data. The following rows report bootstrap mean and 95%-quantiles (in

parentheses). The bootstrap, which is described in the text, imposes the null hypothesis that x2t
has no incremental predictive power. For Cochrane-Piazzesi, the results are for the unadjusted R2.

37



Table 3: Joslin-Priebsch-Singleton: statistical inference in excess-return regressions

PC1 PC2 PC3 GRO INF Wald
Original sample: 1985–2008
Coefficient 1.090 1.793 2.874 -2.200 -6.052
HAC statistic 5.587 3.933 0.799 -2.475 -4.265 25.152
HAC p-value 0.000 0.000 0.425 0.014 0.000 0.000
Bootstrap 5% c.v. 3.177 3.870 22.705
Bootstrap p-value 0.109 0.034 0.038
BC bootstrap 5% c.v. 3.245 4.261 25.796
BC bootstrap p-value 0.123 0.050 0.053
Size

HAC 0.189 0.274 0.356
Bootstrap 0.059 0.060 0.063

Power
Bootstrap 0.204 0.904 0.893

Later sample: 1985–2016
Coefficient 0.371 1.741 1.542 -0.429 -2.420
HAC statistic 2.302 3.324 0.611 -0.537 -1.798 3.350
HAC p-value 0.022 0.001 0.542 0.592 0.073 0.187
Simple bootstrap 5% c.v. 3.008 3.409 18.510
Simple bootstrap p-value 0.706 0.283 0.504
BC bootstrap 5% c.v. 3.075 3.794 21.337
BC bootstrap p-value 0.713 0.317 0.552

Predictive regressions for annual excess bond returns, averaged over two- through ten-year bond

maturities, using yield PCs and two macro variables that are described in the text. Results in the

top panel are for the same sample period used in Joslin et al. (2014); the data used for the bottom

panel is extended to December 2016. HAC statistics and p-values are calculated using Newey-West

standard errors with 18 lags. The column “Wald” reports results for the χ2 test that GRO and

INF have no predictive power; the other columns report results for individual t-tests. We obtain

bootstrap distributions of the test statistics under the null hypothesis that GRO and INF have no

predictive power—the text describes the design of the simple and bias-corrected (BC) bootstraps.

Critical values (c.v.’s) are the 95th percentile of the bootstrap distribution of the test statistics, and

p-values are the frequency of bootstrap replications in which the test statistics are at least as large

as in the data. Under Size we report estimates of the size of the tests, based on simulations from

the simple bootstrap under the null hypothesis. Under Power we report power estimates using a

bootstrap under the alternative hypothesis, as described in the text. p-values below 5% are

emphasized with bold face.
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Table 4: In-sample vs. out-of-sample predictive power

In-sample Out-of-sample

R2
1 R2

2 MSE-ratio Start N MSE-ratio DM p-value

Joslin-Priebsch-Singleton 0.191 0.381 0.759 2008:1 96 2.156 0.005
Ludvigson-Ng 0.258 0.359 0.850 2007:1 108 0.778 0.314
Cieslak-Povala 0.165 0.496 0.603 2011:1 60 3.213 0.006
Cochrane-Piazzesi 0.267 0.344 0.891 2003:1 156 1.213 0.103

In-sample vs. out-of-sample (OOS) predictive power for excess bond returns (averaged across
maturities) of a restricted model with three PCs and an unrestricted model with additional
predictors as suggested in each of four published studies. The in-sample period is the original
sample period used in each study. The OOS period starts after the end of the in-sample period and
ends in December 2016. OOS forecasts are generated using a recursive estimation scheme. N
indicates the number of OOS observations. The columns also show in-sample R2 for the restricted
and unrestricted model, the in-sample ratio of mean-squared-errors (MSE) for the unrestricted
relative to the restricted model, and the OOS MSE ratio, as well as the p-value of the
Diebold-Mariano (DM) test for equal forecast accuracy.
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Table 6: Cieslak-Povala: statistical inference in excess-return regressions

PC1 PC2 PC3 τ

Original sample: 1971–2011
Only yield PCs
Coefficient 0.003 0.240 -0.127
RR t-statistic 0.448 2.497 -0.630
RR p-value 0.654 0.013 0.529
Yield PCs plus inflation trend
Coefficient 0.160 0.429 -0.059 -0.962
RR t-statistic 5.173 5.227 -0.322 -6.329
RR p-value 0.000 0.000 0.748 0.000
Bootstrap RR 5% c.v. 3.538
Bootstrap RR p-value 0.000
Size

RR 0.425
Bootstrap 0.075

Power
Bootstrap 0.978

Later sample: 1985–2016
Only yield PCs
Coefficient 0.019 0.180 -0.056
RR t-statistic 1.825 1.639 -0.027
RR p-value 0.069 0.102 0.978
Yield PCs plus inflation trend
Coefficient 0.106 0.297 0.061 -0.607
RR t-statistic 4.395 3.548 0.611 -3.708
RR p-value 0.000 0.000 0.541 0.000
Bootstrap RR 5% c.v. 3.580
Bootstrap RR p-value 0.039

Predictive regressions for annual excess bond returns (weighted average over two- through ten-year

bond maturities) using yield PCs and the moving-average estimate of inflation trend defined in

equation (17). The data used for the top panel covers the same sample period as in Cieslak and

Povala (2015); the data used for the bottom panel starts in 1985 and ends in 2016. Reverse

regression (RR) statistics and p-values are calculated using the reverse regression delta method of

Wei and Wright (2013). We obtain bootstrap distributions of the test statistics under the null

hypothesis that only PCs have predictive power, in order to calculate bootstrap critical values and

p-values, and to estimate the size of tests. Under Size we report estimates of the size of the tests

based on the bootstrap samples. Under Power we report power estimates using a bootstrap under

the alternative hypothesis, as described in the text. p-values below 5% are emphasized with bold

face.
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Table 7: Cochrane-Piazzesi: statistical inference in excess-return regressions

PC1 PC2 PC3 PC4 PC5 Wald

Original sample: 1964–2003
Data 0.127 2.740 -6.307 -16.128 -2.038
HAC statistic 1.724 5.205 2.950 5.626 0.748 31.919
HAC p-value 0.085 0.000 0.003 0.000 0.455 0.000
Bootstrap 5% c.v. 2.330 2.178 8.359
Bootstrap p-value 0.000 0.501 0.000
Size

HAC 0.091 0.077 0.112
Bootstrap 0.060 0.040 0.050

Power
Bootstrap 0.995 0.113 0.988

Later sample: 1985–2016
Coefficient 0.106 1.589 3.157 -9.585 -9.360
HAC statistic 1.982 2.254 0.950 -1.460 -1.263 4.180
HAC p-value 0.048 0.025 0.343 0.145 0.207 0.124
Bootstrap 5% c.v. 2.480 2.445 9.962
Bootstrap p-value 0.239 0.295 0.264

Predicting annual excess bond returns, averaged over two- through five-year bonds, using principal
components (PCs) of yields. The null hypothesis is that the first three PCs contain all the relevant
predictive information. The data used in the top panel is the same as in Cochrane and Piazzesi
(2005)—see in particular their table 4. HAC statistics and p-values are calculated using
Newey-West standard errors with 18 lags. Bootstrap distributions are obtained under the null
hypothesis, using the bootstrap procedure described in the text. Under Size we report estimates of
the size of the tests based on the bootstrap samples. Under Power we report power estimates using
a bootstrap under the alternative hypothesis, as described in the text. p-values below 5% are
emphasized with bold face.
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Figure 1: Size distortions and sample size in simulation study
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asymptotic distribution, for different sample sizes. DGP parameters are δ = 1, c1 = c2 = 0,
β0 = β1 = β2 = 0, σ1 = σ2 = σu = 1, and ρ1 = ρ2 = ρ either equal to one or 0.99. For details on the
simulation study refer to text.
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Figure 2: Cieslak-Povala: ten-year yield and inflation trend
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Inflation trend is estimated by equation (17).

44



Appendix

A Derivations of theoretical results

A.1 Derivations for Section 2.2

Let y = (y1+h, y2+h, ..., yT+h)
′ and stack x′1t and x′2t into (T × K1) and (T × K2) matrices

denoted X1 and X2. Note that the OLS estimates of equation (1) satisfy[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

] [
b1
b2

]
=

[
X ′1y
X ′2y

]
.

Premultiply the first row by X ′2X1(X
′
1X1)

−1 and subtract the result from the second,

(X ′2M1X2)b2 = X ′2M1y,

for M1 = IT −X1(X
′
1X1)

−1X ′1. Using the fact that M1 is symmetric and idempotent we have

X ′2M1X2 = (M1X2)
′M1X2 =

∑
x̃2tx̃

′
2t (18)

b2 =
(∑

x̃2tx̃
′
2t

)−1 (∑
x̃2tyt+h

)
. (19)

Substituting equation (1) into (19) and using the facts that
∑
x̃2tx

′
1t = 0 (by the orthogonality

property of residuals) and that
∑
x̃2tx

′
2t =

∑
x̃2tx̃

′
2t (again by idempotence of M1) gives

b2 = β2 +
(∑

x̃2tx̃
′
2t

)−1 (∑
x̃2tut+h

)
(20)

from which the Wald test is

(b2 − β2)′s−2
∑T

t=1x̃2tx̃
′
2t(b2 − β2)

=
(∑T

t=1
ut+1x̃

′
2t

)(
s2
∑T

t=1
x̃2tx̃

′
2t

)−1 (∑T

t=1
x̃2tut+1

)
as claimed in (2)

Note that if u|X1, X2 ∼ N(0, σ2
uIT ), then K−12 times expression (2) would have an ex-

act F (K2, T − K1 − K2) distribution for every sample size T and any stationary or nonsta-
tionary process for x2t. Under the weaker assumption that E(ut+1|xt, xt−1, ..., x1) = 0 but
E(ut|xt, xt−1, ..., x1) 6= 0, the Wald statistic (2) will still be asymptotically χ2(K2) under stan-
dard first-order stationary asymptotics, as can be seen from equation (33) below for the special
case h = 1 and S = σ2

uQ. The problems arise when x1t is correlated with ut and furthermore xt
is highly persistent. In the case of unit-root processes these problems give (2) an asymptotic
distribution that is not χ2(K2), and for near-unit-root processes they cause the small-sample
distribution to be quite different from a χ2(K2).

The unit-root derivations this next paragraph assume a functional central limit theorem
T−1/2xi,[Tλ] ⇒ Bi(λ) for i = 1, 2 with 0 ≤ λ ≤ 1, [Tλ] the largest integer less than or equal to
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Tλ, Bi(λ) Ki-dimensional Brownian motion, and⇒ denoting weak convergence in probability
measure. From the FCLT and the Continuous Mapping Theorem,

ÂT =

[
T−1

∫ 1

0

x2,[Tλ]x
′
1,[Tλ]dλ

] [
T−1

∫ 1

0

x1,[Tλ]x
′
1,[Tλ]dλ

]−1
⇒
[∫ 1

0

B2(λ)B1(λ)′dλ

] [∫ 1

0

B1(λ)B1(λ)′dλ

]−1
≡ Ã.

Notice that ∑T

t=1
x̃2tut+1 =

∑T

t=1
x2tut+1 − ÂT

∑T

t=1
x1tut+1

=
∑T

t=1
x2tut+1 −

∑T

t=1
x2tx

′
1tZT (21)

for ZT =
(∑T

t=1 x1tx
′
1t

)−1 (∑T
t=1 x1tut+1

)
If x1t is a unit-root process that is correlated with

the lag of ut+1, ZT will have a nonstandard distribution. For example, if x1t is a scalar
random walk with x1,t+1 = x1t + ut+1, then ZT has the same distribution as ρ̂T − 1 where
ρ̂T is the OLS coefficient from a regression of x1,t+1 on x1t, a distribution with a negative
bias that is well-known from unit root regressions.45 If x2t is uncorrelated with x1t, then
unlike the Dicky-Fuller distribution, the second term in (21) is symmetric around zero and is
uncorrelated with the first term, so that the variance of

∑T
t=1 x̃2tut+1 is strictly greater than

that of
∑T

t=1 x2tut+1.

A.2 Derivations for Section 2.3

For our local-to-unity results we assume as in Stock (1994, eq (2.17)) that T−1/2xi,[Tλ] ⇒
σiJci(λ). We first note from Phillips (1988, Lemma 3.1(d)) that

T−2
∑

(x1t − x̄1)2 ⇒ σ2
1

{∫ 1

0

[Jc1(λ)]2dλ−
[∫ 1

0

[Jc1(λ)]dλ

]2}
= σ2

1

∫
[Jµc1 ]

2

where in the sequel our notation suppresses the dependence on λ and lets
∫

denote integration
over λ from 0 to 1. The analogous operation applied to the numerator of (7) yields

AT =
T−2

∑
(x1t − x̄1)(x2t − x̄2)

T−2
∑

(x1t − x̄1)2
⇒

σ1σ2
∫
Jµc1J

µ
c2

σ2
1

∫
[Jµc1 ]2

as claimed in (7). Also

T−1/2x̄2 = T−3/2
∑
x2t =

∫ 1

0

T−1/2x2,[Tλ]dλ⇒ σ2

∫ 1

0

Jc2(λ)dλ.

45See for example Hamilton (1994, eq [17.4.7])
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Since x̃2t = x2t − x̄2 − AT (x1t − x̄1),

T−1/2x̃2,[Tλ] ⇒ σ2

{
Jc2(λ)−

∫ 1

0

Jc2(s)ds− A
[
Jc1(λ)−

∫ 1

0

Jc1(s)ds

]}
= σ2

{
Jµc2(λ)− AJµc1(λ)

}
= σ2Kc1,c2(λ)

T−2
∑
x̃22t =

∫ 1

0

{T−1/2x̃2,[Tλ]}2dλ⇒ σ2
2

∫ 1

0

{Kc1,c2(λ)}2 dλ. (22)

Note we can write  ε1t
ε2t
ut

 =

 σ1 0 0
0 σ2 0

δσu 0
√

1− δ2σu

 v1t
v2t
v0t


where (v1t, v2t, v0t)

′ is a martingale-difference sequence with unit variance matrix. From
Lemma 3.1(e) in Phillips (1988) we see

T−1
∑
x̃2tut+1 = T−1

∑
[x2t − x̄2 − AT (x1t − x̄1)](δσuv1,t+1 +

√
1− δ2σuv0,t+1)

⇒ δσ2σu

∫
Kc1,c2dW1 +

√
1− δ2σ2σu

∫
Kc1,c2dW0. (23)

Recalling (2), the t-test of a true null hypothesis about β2 can be written as

τ =

∑
x̃2tut+1

{s2
∑
x̃22t}

1/2
=

T−1
∑
x̃2tut+1

{s2T−2
∑
x̃22t}

1/2
(24)

where
s2

p→ σ2
u. (25)

Substituting (25), (23), and (22) into (24) produces

τ ⇒
σ2σu

{
δ
∫
Kc1,c2dW1 +

√
1− δ2

∫
Kc1,c2dW0

}{
σ2
uσ

2
2

∫
(Kc1,c2)

2
}1/2

as claimed in (8).
Last we demonstrate that the variance of Z1 exceeds unity. We can write

Z1 =

∫ 1

0
Jµc2(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
−

A
∫ 1

0
Jµc1(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
(26)
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Consider the denominator in these expressions, and note that∫ 1

0

[Jµc2(λ)]2dλ =

∫ 1

0

[Jµc2(λ)− AJµc1(λ) + AJµc1(λ)]2dλ

=

∫ 1

0

[Kc1,c2(λ)]2dλ+

∫ 1

0

[AJµc1(λ)]2dλ

>

∫ 1

0

[Kc1,c2(λ)]2dλ

where the cross-product term dropped out in the second equation by the definition of A in
(7). This means that the following inequality holds for all realizations:∣∣∣∣∣∣∣

∫ 1

0
Jµc2(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2

∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣
∫ 1

0
Jµc2(λ)dW1(λ){∫ 1

0
[Jµc2(λ)]2dλ

}1/2

∣∣∣∣∣∣∣ . (27)

Adapting the argument made in footnote 14, the magnitude inside the absolute-value operator
on the right side of (27) can be seen to have a N(0, 1) distribution. Inequality (27) thus
establishes that the first term in (26) has a variance that is greater than unity. The second
term in (26) turns out to be uncorrelated with the first, and hence contributes additional
variance to Z1, although we have found that the first term appears to be the most important
factor.46 In sum, these arguments show that Var(Z1) > 1.

A.3 Derivations for Section 2.4

First consider the case when ρ1 = ρ2 = 1, µ1 = 0, µ2 6= 0, and Corr(ε1t, ut) = 1. Then
T−1/2x1,[Tλ] ⇒ σ1W1(λ) for W1(λ) standard Brownian motion, T−1/2

∑T
t=1ut+1 ⇒ σ1W1(1),

while x2t = µ2t +
∑t

s=1ε2s gives T−1x2,[Tλ] ⇒ µ2λ as in Hamilton (1994, pp. 495-497). Let

xt = (1, x1t, x2t)
′ so b = β +

(∑T
t=1xtx

′
t

)−1∑T
t=1xtut+1. Define

ΥT =

 T 1/2 0 0
0 T 0
0 0 T 3/2

 .
46These claims are based on moments of the respective functionals as estimated from discrete approximations

to the Ornstein-Uhlenbeck processes.
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Then very similar algebra to that in Hamilton (1994, pp. 498-500) gives

ΥT (b− β) =
[
Υ−1T

∑
xtx
′
tΥ
−1
T

]−1 [
Υ−1T

∑
xtut+1

]
⇒

 1 σ1
∫
W1(λ) µ2/2

σ1
∫
W1(λ) σ2

1

∫
[W1(λ)]2 µ2σ1

∫
λW1(λ)

µ2/2 µ2σ1
∫
λW1(λ) µ2

2/3

−1  σ1W1(1)
(1/2)σ2

1[W 2(1)− 1]
µ2σ1[W1(1)−

∫
W1(λ)]


=

 σ1 0 0
0 1 0
0 0 σ1/µ2

 1
∫
W1(λ) 1/2∫

W1(λ)
∫

[W1(λ)]2
∫
λW1(λ)

1/2
∫
λW1(λ) 1/3

−1  W1(1)
(1/2)[W 2(1)− 1]
W1(1)−

∫
W1(λ)

 .
Observe that the middle element, T (b1−β1) is the identical distribution as that of T (ρ̂−1) in
the Case 4 unit root distribution in Hamilton (1994, p. 499), and the t-statistic (b1 − β1)/σ̂b1
is identical to the Case 4 Dickey-Fuller t statistic (Hamilton (1994, eq [17.4.55])).

Consider next the case when ρ1 = ρ2 = 1, µ1 6= 0, µ2 6= 0, Corr(ε1t, ut) = 1, and
Corr(ε1t, ε2s) = 0 for all s. Let’s evaluate first the characteristics of a transformed regression
of yt+1 on x̃t = Hxt for

H =

 1 0 0
0 1 −µ1/µ2

0 0 1


b̃ = (

∑
x̃tx̃
′
t)
−1∑x̃tyt+1 = (H ′)−1b

β̃ = (H ′)−1β.

Then

x̃1t = x1t − (µ1/µ2)x2t

= µ1t+
∑t

s=1ε1s − (µ1/µ2)
(
µ2t+

∑t
s=1ε2s

)
=
∑t

s=1ε1s − (µ1/µ2)
∑t

s=1ε2s

and

T−1/2x̃1,[Tλ] ⇒ σ1W1(λ)− (µ1/µ2)σ2W2(λ)

≡ κ(λ)

ΥT (b̃− β̃)⇒

 1
∫
κ(λ) µ2/2∫

κ(λ)
∫

[κ(λ)]2 µ2

∫
λκ(λ)

µ2/2 µ2

∫
λκ(λ) µ2

2/3

−1  σ1W1(1)
σ1
∫
κ(λ)dW1

µ2σ1[W1(λ)−
∫
W1(λ)]

 .
The middle element, T (b̃1 − β1), has a distribution that approaches the Dickey-Fuller Case 4
as σ2 → 0 and is a related unit-root distribution for general σ2 > 0.

Translating back in terms of the original regression, we have b = H ′b̃, b1 = b̃1,

b2 = b̃2 − (µ1/µ2)b̃1 = b̃2 − (µ1/µ2)b1
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T (b2 − β2) = T (b̃2 − β̃2)− (µ1/µ2)T (b1 − β1)
⇒ 0− (µ1/µ2)T (b1 − β1)

since T 3/2(b̃2−β̃2) ∼ Op(1). Thus b2−β2 has the same asymptotic distribution as−(µ1/µ2)(b1−
β1), with t-tests on either b1 or b2 having a distribution related to the Dickey-Fuller Case 4.
When x1t and x2t share the same trend (µ1 = µ2), the distribution of b2 will simply be the
negative of that of b1.

By contrast, if we were to regress yt+1 = β0 + β1x1t + ut+1 on x1t alone, or yt+1 = β0 +
β2x2t + ut+1 on x2t alone, t-tests on β1 or β2 would be asymptotically N(0, 1), from the same
algebra as in Hamilton (1994, pp. 495-497). Thus for example if the true β1 6= 0 and β2 = 0,
when we do the regression on x1t alone we would have perfectly appropriate tests about β1,
but if we add x2t to the regression, tests about both β1 and β2 become distorted and x2t could
spuriously appear to be helpful in improving the estimate of β1.

A.4 Derivations for Section 2.5

Note from (18) that∑
x̃2tx̃

′
2t =

∑
x2tx

′
2t − (

∑
x2tx

′
1t) (
∑
x1tx

′
1t)
−1

(
∑
x1tx

′
2t) .

If xt is covariance-stationary and ergodic for second moments,

T−1
∑
x̃2tx̃

′
2t = T−1

∑
x2tx

′
2t −

(
T−1

∑
x2tx

′
1t

) (
T−1

∑
x1tx

′
1t

)−1 (
T−1

∑
x1tx

′
2t

)
p→ E(x2tx

′
2t)− E(x2tx

′
1t) [E(x1tx

′
1t)]
−1
E(x1tx

′
2t)

= E(x2tx
′
2t) ≡ Q (28)

with the last line following from the assumption that x1t and x2t are uncorrelated. From (20)
we also know

T 1/2(b2 − β2) =
(
T−1

∑
x̃2tx̃

′
2t

)−1 (
T−1/2

∑
x̃2tut+h

)
(29)

where
T−1/2

∑
x̃2tut+h = T−1/2

∑
x2tut+h − ATT−1/2 (

∑
x1tut+h) .

But if E(x2tx
′
1t) = 0, then plim(AT ) = 0, meaning

T−1/2
∑
x̃2tut+h

d→ T−1/2
∑
x2tut+h.

This will be recognized as
√
T times the sample mean of a random vector with population

mean zero, for which the Central Limit Theorem would take the form

T−1/2
∑
x̃2tut+h

d→ r ∼ N(0, S) (30)

for S given in (12). Combining results (28), (29) and (30) gives (11).
To derive (13), let b = (b′1, b

′
2)
′ denote the OLS coefficients when the regression includes

both x1t and x2t and b∗1 the coefficients from an OLS regression that includes only x1t. The
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sum of squared residuals from the latter regression can be written

SSR1 =
∑

(yt+h − x′1tb∗1)2

=
∑

(yt+h − x′tb+ x′tb− x′1tb∗1)2

=
∑

(yt+h − x′tb)2 +
∑

(x′tb− x′1tb∗1)2

where all summations are over t = 1, ..., T and the last equality follows from the orthogonality
property of OLS. Thus the difference in SSR between the two regressions is

SSR1 − SSR2 =
∑

(x′tb− x′1tb∗1)2. (31)

It’s also not hard to show that the fitted values for the full regression could be calculated as47

x′tb = x′1tb
∗
1 + x̃′2tb2. (32)

Thus from (31) and (32),
SSR1 − SSR2 =

∑
(x̃′2tb2)

2.

If the true value of β2 is zero, then (20) becomes b2 = (
∑
x̃2tx̃

′
2t)
−1 (
∑
x̃2tut+h) so that

SSR1 − SSR2 = b′2 (
∑
x̃2tx̃

′
2t) b2 =

(
T−1/2

∑
ut+hx̃

′
2t

) (
T−1

∑
x̃2tx̃

′
2t

)−1 (
T−1/2

∑
x̃2tut+h

)
.

Results (28) and (30) then establish

SSR1 − SSR2
d→ r′Q−1r. (33)

Recall that R2 is defined as

R2 = 1− SSR∑T
t=1(yt+h − ȳh)2

so the difference in R2 is

R2
2 −R2

1 =
(SSR1 − SSR2)∑T
t=1(yt+h − ȳh)2

.

Thus from (A.4),

T (R2
2 −R2

1) =
(SSR1 − SSR2)∑

(yt+h − ȳh)2/T
d→ r′Q−1r

γ

as claimed in (13).

47The easiest way to confirm the claim is to show that the residuals implied by (32) satisfy the orthogonality
conditions required of the original full regression, namely, that they are orthogonal to x1t and x2t. That the
residual yt+h − x′1tb∗1 − x̃′2tb2 is orthogonal to x1t follows from the fact that yt+h − x′1tb∗1 is orthogonal to x1t
by the definition of b∗1 while x̃2t is orthogonal to x1t by the construction of x̃2t. Likewise yt+h − x̃′2tb2 is
orthogonal to x̃2t by (19), and since x1t is again orthogonal to x̃2t by the construction of x̃2t, it follows that
yt+h−x′1tb∗1− x̃2tb2 is orthgonal to x̃2t. Since yt+h−x′1tb∗1− x̃′2tb2 is orthogonal to both x1t and x̃2t, it is also
orthogonal to x2t = x̃2t +ATx1t.
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B Alternative spanning hypotheses

Our baseline version of the spanning hypothesis is that three PCs of bond yields fully capture
the information underlying expected bond returns and future interest rates, motivated by the
well-known fact that three PCs capture almost all variation in the cross section of yields across
maturities (Litterman and Scheinkman, 1991). But it is possible that higher-order PCs, while
explaining only a miniscule share of cross-sectional variation of current yields, still contain
information about expectations of future yields (see Section 6 for tests of this hypothesis). We
therefore investigate two alternative versions of the spanning hypothesis, in which four or five
PCs of yields span the information in the yield curve. Application of our bootstrap method
to test these hypotheses is straightforward, since the only change to the approach described
in Section 2.6 is that x1t now contains four or five PCs. We consider these additional null
hypotheses for the three empirical applications in Sections 3, 4 and 5, where macro variables
are proposed as the additional predictors.

In Table B.1 we report the increase in R̄2 when the macro variables are added to a predictive
regression of annual bond returns with N ∈ {3, 4, 5} PCs of yields. We report 95%-bootstrap
intervals to gauge how large of an increase in R̄2 would be plausible under the null hypothesis.
We find that N does not affect the findings we reported in the paper: with only the exception
of the original CPO sample, the increases in R̄2 are within the bootstrap intervals, suggesting
that these increases are perfectly consistent with the spanning hypothesis.

Table B.1: Increase in R̄2 from addition of macro variables

Original sample period Later sample: 1985–2016

N = 3 N = 4 N = 5 N = 3 N = 4 N = 5

JPS 0.19 0.16 0.16 0.04 0.04 0.04
(0.00, 0.23) (0.00, 0.25) (0.00, 0.24) (0.00, 0.19) (0.00, 0.20) (0.00, 0.20)

LN 0.10 0.08 0.08 0.10 0.13 0.14
(0.00, 0.11) (0.00, 0.11) (0.00, 0.12) (0.00, 0.17) (0.00, 0.17) (0.00, 0.17)

CPO 0.34 0.34 0.30 0.19 0.19 0.19
(0.00, 0.21) (0.00, 0.21) (0.00, 0.21) (0.00, 0.23) (0.00, 0.23) (0.00, 0.23)

Increase in R̄2 for regressions of annual excess bond returns when macro variables are added to a

specification that includes N PCs of yields. In parentheses are 95%-bootstrap intervals, obtained

under the null hypothesis that the macro variables have no predictive power. The bootstrap

procedure is described in the text.

In Table B.2 we consider Wald tests (for JPS and LN, using HAC standard errors) and
t-tests (for CPO, using the RR approach) of the different spanning hypotheses. We report
p-values of these tests using the conventional asymptotic distributions, estimates of the size
of these tests based on the small-sample bootstrap distributions of the test statistics, and the
bootstrap (i.e., size-corrected) p-values. The true size of the conventional five-percent tests of
the spanning hypothesis is estimated to be between 32 and 52 percent. The bootstrap p-values,
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which account for these enormous size distortions, are therefore much higher then conventional
p-values, and often above five percent. Few noticeable differences in the bootstrap p-values
arise from raising the number of yield PCs to four or five—in the original JPS sample the
p-values increase and in the later LN sample they decrease. Overall, our conclusions about
the robustness of published rejections of the spanning hypothesis remain unchanged when we
consider versions of the spanning hypothesis with four or five PCs instead of our baseline
hypothesis where three PCs span the information in the yield curve.

Table B.2: Tests of alternative spanning hypotheses

Original sample period Later sample: 1985–2016

N = 3 N = 4 N = 5 N = 3 N = 4 N = 5

JPS HAC p-value 0.000 0.002 0.000 0.187 0.166 0.154
HAC size 0.399 0.439 0.442 0.357 0.372 0.375
BC bootstrap p-value 0.053 0.201 0.164 0.548 0.534 0.531

LN HAC p-value 0.000 0.000 0.000 0.004 0.000 0.000
HAC size 0.323 0.326 0.334 0.504 0.502 0.519
Bootstrap p-value 0.008 0.002 0.005 0.279 0.040 0.045

CPO RR p-value 0.000 0.000 0.000 0.000 0.000 0.000
RR size 0.448 0.451 0.442 0.403 0.412 0.436
BC bootstrap p-value 0.000 0.000 0.001 0.044 0.048 0.054

Conventional and bootstrap tests of different null hypotheses that adding macro variables to a

regression with N PCs of bond yields does not increase the predictive power for annual excess bond

returns. The bootstrap procedure is described in the text.

C Additional results for Joslin-Priebsch-Singleton

In Table C.1 we show additional results for the R̄2 in predictive regressions with three yield
PCs and the macro variables GRO and INF proposed by Joslin et al. (2014). The dependent
variables are the annual excess returns for bonds with maturity from two to ten years. That
is, Table C.1 reports the same results for each individual bond which Table 2 reports in its
top panel for the average excess return across bond maturities. To economize on space we
only show the bootstrap results for the bias-corrected (BC) bootstrap.

The results in Table C.1 show that the increase in R̄2 when macro variables are added
is often large although the spanning hypothesis is true in population. While for the two- to
four-year bonds, the increase in R̄2 in the data is larger than the upper bound of the 95%-
bootstrap interval, for the remaining bonds this statistic is within this interval, meaning that
there is no statistical evidence against the spanning hypothesis.
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Table C.1: Joslin-Priebsch-Singleton: R̄2 for excess-return regressions

Original sample: 1985–2008 Later sample: 1985–2016

R̄2
1 R̄2

2 R̄2
2 − R̄2

1 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

Two-year Data 0.14 0.48 0.34 0.13 0.26 0.13
bond BC bootstrap 0.45 0.51 0.06 0.37 0.41 0.05

(0.10, 0.78) (0.15, 0.80) (0.00, 0.20) (0.09, 0.65) (0.14, 0.68) (0.00, 0.17)

Three-year Data 0.12 0.41 0.29 0.10 0.22 0.12
bond BC bootstrap 0.39 0.45 0.06 0.31 0.36 0.05

(0.07, 0.72) (0.13, 0.75) (0.00, 0.21) (0.07, 0.59) (0.11, 0.62) (0.00, 0.19)

Four-year Data 0.14 0.40 0.26 0.12 0.20 0.08
bond BC bootstrap 0.38 0.44 0.06 0.30 0.36 0.05

(0.08, 0.69) (0.14, 0.72) (0.00, 0.22) (0.06, 0.57) (0.11, 0.60) (0.00, 0.19)

Five-year Data 0.15 0.38 0.22 0.14 0.20 0.06
bond BC bootstrap 0.35 0.41 0.06 0.28 0.33 0.06

(0.08, 0.65) (0.14, 0.69) (0.00, 0.23) (0.06, 0.54) (0.10, 0.58) (0.00, 0.20)

Six-year Data 0.18 0.39 0.21 0.16 0.21 0.05
bond BC bootstrap 0.37 0.43 0.06 0.28 0.34 0.05

(0.10, 0.65) (0.15, 0.69) (0.00, 0.21) (0.06, 0.52) (0.10, 0.57) (0.00, 0.19)

Seven-year Data 0.18 0.37 0.18 0.17 0.21 0.04
bond BC bootstrap 0.33 0.39 0.06 0.27 0.32 0.05

(0.07, 0.59) (0.13, 0.64) (0.00, 0.23) (0.05, 0.51) (0.09, 0.55) (0.00, 0.20)

Eight-year Data 0.20 0.37 0.17 0.18 0.22 0.04
bond BC bootstrap 0.33 0.39 0.06 0.26 0.32 0.05

(0.08, 0.58) (0.13, 0.63) (0.00, 0.22) (0.06, 0.50) (0.11, 0.55) (0.00, 0.20)

Nine-year Data 0.22 0.39 0.16 0.19 0.23 0.03
bond BC bootstrap 0.34 0.40 0.06 0.27 0.32 0.05

(0.10, 0.58) (0.15, 0.64) (0.00, 0.22) (0.07, 0.49) (0.11, 0.54) (0.00, 0.20)

Ten-year Data 0.20 0.36 0.15 0.19 0.24 0.04
bond BC bootstrap 0.31 0.37 0.06 0.28 0.33 0.05

(0.07, 0.56) (0.12, 0.61) (0.00, 0.23) (0.07, 0.51) (0.11, 0.55) (0.00, 0.19)

R̄2 for regressions of annual excess bond returns on three PCs of the yield curve (R̄2
1) and on three

yield PCs together with the macro variables GRO and INF (R̄2
2), as well as the increase in R̄2.

The macro data is described in the text. The results in the left half of the table are for the original
sample period of Joslin et al. (2014); the data used in the right half is extended to December 2016.
Each panel reports first the statistics in the data, and then the mean and the 95%-bootstrap
intervals (in parentheses) of the bootstrap small-sample distribution. The bootstrap, which is
explained in the text, imposes the null hypothesis that the macro variables have no predictive
power.
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D Additional results for Ludvigson-Ng

LN also constructed a single return-forecasting factor using a similar approach as Cochrane and
Piazzesi (2005). They regressed the excess bond returns, averaged across the two- through
five-year maturities, on the macro factors plus a cubed term of F1 which they found to
be important. The fitted values of this regression produced their return-forecasting factor,
denoted by H8. Adding H8 to a predictive regression that includes the Cochrane-Piazessi
factor CP substantially increases the R̄2, and leads to a highly significant coefficient on H8.
LN emphasized this result and interpreted it as further evidence that macro variables have
predictive power beyond the information in the yield curve.

Tables D.1 and D.2 replicate LN’s results for these regressions on the macro- (H8) and
yield-based (CP ) return-forecasting factors.48 Table D.1 shows coefficient estimates and sta-
tistical significance, while Table D.2 reports R̄2. In LN’s data, both CP and H8 are strongly
significant with HAC p-values below 0.1%. Adding H8 to the regression increases the R̄2 by
9-11 percentage points.

One advantage of our bootstrap approach is that we can calculate the small-sample prop-
erties under the null hypothesis of complicated transformations of the original data such as
these. To this end, we simply add an additional step in the construction of our artificial data
by calculating CP and H8 in each bootstrap data set as the fitted values from preliminary
regressions in the exact same way that LN did in the actual data.

Table D.1 shows that the observed increases in R̄2 when adding H8 to the regression
are generally within the 95% bootstrap intervals. That is, although LN find large increases
in R̄2 using these same regression specifications, this is not convincing evidence against the
spanning hypothesis, as such increases in goodness-of-fit are perfectly plausible under the null
hypothesis. And according to the bootstrap p-values for the coefficients on H8 in Table D.2,
the macro return-forecasting factor is no longer significant at the 1% level. Furthermore, the
size distortions for conventional t-tests are very substantial: a test with nominal size of five
percent based on asymptotic HAC p-values has a true size of 58-61 percent. This evidence
suggests that conventional HAC inference can be particularly problematic when the predictors
are return-forecasting factors. Table D.2 also shows that the bootstrap test has good size and
power.

We also examined the same regressions over the 1985–2016 sample period with results
shown in the right half of Table D.1 and in the bottom panel of Table D.2. The observed
increases in R̄2 are squarely in line with what we would expect under the spanning hypothesis,
as indicated by the bootstrap intervals in Table D.1. The return-forecasting factors would
again appear to be highly significant based on HAC p-values, but the size distortions of these
tests are again very substantial and the coefficients onH8 are in fact not statistically significant
when using the bootstrap p-values.

This evidence suggests that conventional HAC inference can be particularly problematic
when the predictors are return-forecasting factors. One reason for the substantially distorted
inference is their high persistence; H8 and CP have autocorrelations that are around 0.8, and
decline only slowly with the lag length. Another reason is that the return-forecasting factors
are constructed in a preliminary estimation step, which introduces additional estimation un-

48These results correspond to those in column 9 in tables 4-7 in LN.
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Table D.1: Ludvigson-Ng: R̄2 for regressions with return-forecasting factors

Original sample: 1964–2007 Later sample: 1985–2016

R̄2
1 R̄2

2 R̄2
2 − R̄2

1 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

Two-year bond
Data 0.31 0.42 0.11 0.16 0.22 0.06
Bootstrap 0.21 0.24 0.03 0.31 0.35 0.04

(0.06, 0.39) (0.09, 0.41) (0.00, 0.11) (0.09, 0.54) (0.14, 0.56) (0.00, 0.13)
Three-year bond
Data 0.33 0.43 0.10 0.16 0.22 0.07
Bootstrap 0.20 0.24 0.04 0.29 0.33 0.04

(0.06, 0.38) (0.09, 0.41) (0.00, 0.11) (0.08, 0.51) (0.14, 0.54) (0.00, 0.14)
Four-year bond
Data 0.36 0.45 0.09 0.19 0.26 0.07
Bootstrap 0.21 0.25 0.04 0.30 0.34 0.04

(0.07, 0.39) (0.10, 0.42) (0.00, 0.11) (0.10, 0.52) (0.15, 0.54) (0.00, 0.13)
Five-year bond
Data 0.33 0.42 0.09 0.18 0.24 0.06
Bootstrap 0.21 0.24 0.04 0.29 0.32 0.04

(0.06, 0.39) (0.10, 0.41) (0.00, 0.11) (0.09, 0.50) (0.14, 0.53) (0.00, 0.14)

R̄2 for regressions of annual excess bond returns on yield and macro factors, as in Ludvigson and

Ng (2010). R̄2
1 is for regressions with only the return-forecasting factor based on yield-curve

information (CP ), R̄2
2 is for regressions that also include the return-forecasting factor based on

macro information (H8). The left side of the table shows results for the original data set used by

Ludvigson and Ng (2010), and the right side shows results for a data sample that starts in 1985 and

ends in 2016. We report the values of the statistics in the data, and the means and 95%-bootstrap

intervals (in parentheses) for the bootstrap small-sample distributions, obtained under the null

hypothesis that the macro variables have no predictive power. The bootstrap procedure is

described in the text.
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Table D.2: Ludvigson-Ng: statistical inference in regressions with return-forecasting factors

Two-year bond Three-year bond Four-year bond Five-year bond
CP H8 CP H8 CP H8 CP H8

Original sample: 1964–2007
Coefficient 0.335 0.331 0.645 0.588 0.955 0.776 1.115 0.937
HAC t-statistic 4.429 4.331 4.666 4.491 4.765 4.472 4.371 4.541
HAC p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bootstrap 5% c.v. 3.857 3.968 3.965 3.998
Bootstrap p-value 0.019 0.021 0.023 0.019
Size

HAC 0.579 0.612 0.610 0.594
Bootstrap 0.049 0.059 0.054 0.049

Power
Bootstrap 0.621 0.573 0.555 0.521

Later sample: 1985–2016
Coefficient 0.363 0.333 0.678 0.663 1.101 0.934 1.314 1.146
HAC statistic 2.746 2.768 2.556 3.073 2.933 3.308 2.837 3.379
HAC p-value 0.006 0.006 0.011 0.002 0.004 0.001 0.005 0.001
Bootstrap 5% c.v. 4.182 4.172 4.158 4.160
Bootstrap p-value 0.271 0.199 0.153 0.134

Predictive regressions for annual excess bond returns, using return-forecasting factors based on

yield-curve information (CP ) and macro information (H8), as in Ludvigson and Ng (2010). The

first panel shows the results for their original data and sample period; the second panel uses a data

sample that starts in 1985 and ends in 2016. HAC t-statistics and p-values are calculated using

Newey-West standard errors with 18 lags. We obtain bootstrap small-sample distributions of the

t-statistics under the null hypothesis that macro factors and hence H8 have no predictive power,

and report the bootstrap critical values (c.v.’s) and p-values, as well as estimates of the true size of

conventional HAC t-tests and the bootstrap tests with 5% nominal coverage (see notes to Table 3).

We also report estimates of the power of the bootstrap tests. The bootstrap procedure is described

in the text. p-values below 5% are emphasized with bold face.
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certainty not accounted for by conventional inference. We recommend that researchers use
our bootstrap in such a setting to accurately carry out inference. Here we conclude that LN’s
macro return-forecasting factor exhibits only very tenuous predictive power, much weaker
than indicated by LN’s original analysis, which disappears completely over a different sample
period.

E Bond supply: Greenwood-Vayanos

A large literature studies the effects of the supply of bonds on prices and yields, including the
recent contributions of Hamilton and Wu (2012) and Greenwood and Vayanos (2014). Theo-
retical and empirical work has demonstrated that bond supply is related to bond yields and
returns. But do measures of Treasury bond supply contain predictive power for bond returns
that is not already reflected in the yield curve? The answer appears to be yes: Greenwood
and Vayanos (2014) (henceforth GV) found that variation in their measure of bond supply, a
maturity-weighted debt-to-GDP ratio, predicts yields and bond returns, and that this holds
true even controlling for yield curve information such as the term spread. Here we investigate
whether this result is robust and holds up to closer scrutiny. The sample period used in GV
is 1952 to 2008.

We are most interested in those regression specifications estimated by GV that control for
the information in the yield curve. We first reproduce, in the top panel of Table E.1, their
baseline specification in which the one-year return on a long-term bond is predicted using
the one-year yield and bond supply measure alone. The second panel includes the spread
between the long-term and one-year yield as an additional explanatory variable.49 Like GV
we use Newey-West standard errors with 36 lags. If we interpreted the HAC t-test using the
conventional asymptotic critical values, the coefficient on bond supply is significant in the
baseline regression in the top panel. When the yield spread is included in the regression, this
coefficient is marginally insignificant, with a p-value of 5.8%.

The bond return that GV used as the dependent variable in these regressions is for a hy-
pothetical long-term bond with a 20-year maturity. We cannot apply our bootstrap procedure
here because this bond return is not constructed from the observed yield curve.50

We consider two additional regression specifications that are relevant in this context. The
first specification controls for information in the yield curve by including, instead of a single
term spread, the first three PCs of observed yields.51 It also subtracts the one-year yield
from the bond return in order to yield an excess return. Both of these changes make this
specification more closely comparable to those in the literature. The results are reported
in the third panel of Table E.1. Again, the coefficient on bond supply is only marginally
significant for the HAC t-test.

Finally, we consider a specification where the one-year excess return, averaged across two-
though five-year maturities, is regressed on yield PCs and the measure of bond supply. The
last panel of Table E.1 shows that in this case, the coefficient on bond supply is insignificant
according to the conventional Newey-West t-test. In this last regression, which includes PCs

49These estimates are in GV’s table 5, rows 1 and 6. Their baseline results are also in their table 2.
50GV obtained this series from Ibbotson Associates.
51These PCs are calculated from the observed Fama-Bliss yields with one- through five-year maturities.
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Table E.1: Greenwood-Vayanos: predictive power of Treasury bond supply

One-year Term Bond
yield spread PC1 PC2 PC3 supply

Dependent variable: return on long-term bond
Coefficient 1.212 0.026
HAC t-statistic 2.853 3.104
HAC p-value 0.004 0.002

Dependent variable: return on long-term bond
Coefficient 1.800 2.872 0.014
HAC t-statistic 5.208 4.596 1.898
HAC p-value 0.000 0.000 0.058

Dependent variable: excess return on long-term bond
Coefficient 0.168 5.842 -6.089 0.013
HAC t-statistic 1.457 4.853 1.303 1.862
HAC p-value 0.146 0.000 0.193 0.063

Dependent variable: avg. excess return for 2-5 year bonds
Coefficient 0.085 1.669 -4.632 0.004
HAC statistic 1.270 3.156 2.067 1.154
HAC p-value 0.204 0.002 0.039 0.249
Bootstrap 5% c.v. 3.199
Bootstrap p-value 0.468

Predictive regressions for annual bond returns using Treasury bond supply, as in Greenwood and
Vayanos (2014) (GV). The coefficients on bond supply in the first two panels are identical to those
reported in rows (1) and (6) of Table 5 in GV. HAC t-statistics and p-values are constructed using
Newey-West standard errors with 36 lags, as in GV. The last panel includes bootstrap critical
values and p-values using small-sample distributions generated under the null hypothesis that bond
supply does not contain additional predictive power—the bootstrap procedure is described in the
text. The last two rows in each panel report p-values for t-tests using the methodology of
Ibragimov and Müller (2010), splitting the sample into either 8 or 16 blocks. The sample period is
1952 to 2008. p-values below 5% are emphasized with bold face.
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Table F.1: Cooper-Priestley: predictive power of the output gap

gap C̃P CP PC1 PC2 PC3

Coefficient -0.126
OLS t-statistic 3.225
HAC t-statistic 1.077
HAC p-value 0.282

Coefficient -0.120 1.588
OLS t-statistic 3.479 13.541
HAC t-statistic 1.244 4.925
HAC p-value 0.214 0.000

Coefficient 0.113 1.612
OLS t-statistic 2.940 13.831
HAC t-statistic 1.099 5.059
HAC p-value 0.273 0.000

Coefficient 0.147 0.001 0.043 -0.067
OLS t-statistic 3.524 4.359 11.506 3.690
HAC t-statistic 1.306 1.332 4.363 2.508
HAC p-value 0.192 0.183 0.000 0.012
Bootstrap 5% c.v. 2.843
Bootstrap p-value 0.354

Predictive regressions for the one-year excess return on a five-year bond using the output gap, as in
Cooper and Priestley (2008) (CPR). C̃P is the Cochrane-Piazzesi factor after orthogonalizing it
with respect to gap, whereas CP is the usual Cochrane-Piazzesi factor. For the predictive
regression, gap is lagged one month, as in CPR. HAC standard errors are based on the Newey-West
estimator with 22 lags. The bootstrap procedure, which does not include bias correction, is
described in the main text. The sample period is 1952 to 2003. p-values below 5% are emphasized
with bold face.

and a conventional excess bond return, we can also use our bootstrap procedure. We find that
the bootstrap p-value is substantially higher than the conventional p-value. The bond supply
variable has a first-order autocorrelation is 0.998, which causes substantial size distortions for
the conventional t-test in this and in the other regression specifications.

Overall, we find that the results in GV do not constitute evidence against the spanning hy-
pothesis. While bond supply exhibits a strong empirical link with interest rates, its predictive
power for future yields and returns seems to be fully captured by the current yield curve.
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F Output gap: Cooper-Priestley

Another widely cited study that appears to provide evidence of predictive power of macro
variables for asset prices is Cooper and Priestley (2008) (henceforth CPR). This paper focuses
on one particular macro variable as a predictor of stock and bond returns, namely the output
gap, which is a key indicator of the economic business cycle. The authors concluded that
“the output gap can predict next year’s excess returns on U.S. government bonds” (p. 2803).
Furthermore, they also claimed that some of this predictive power is independent of the
information in the yield curve, and implicitly rejected the spanning hypothesis (p. 2828).

Like CPR we use x2t = gapt−1, the output gap at date t − 1, measured as the deviation
of the Fed’s Industrial Production series from a quadratic time trend.52 CPR lagged their
measure by one month to account for the publication lag of the Fed’s Industrial Production
data. Table F.1 shows our results for predictions of the excess return on the five-year bond;
the results for other maturities closely parallel these. The top two panels correspond to the
regression specifications that CPR estimated.53 In the first specification, the only predictor
is gapt−1. The second specification also includes C̃P t, which is the Cochrane-Piazzesi factor
CPt after it is orthogonalized with respect to gapt.

54 We obtain coefficients and R̄2 that
are close to those published in CPR. We calculate both OLS and HAC t-statistics, where in
the latter case we use Newey-West with 22 lags as described by CPR. Our OLS t-statistics
are very close to the published numbers, and according to these the coefficient on gapt−1 is
highly significant. It appears that CPR may have mistakenly reported the OLS instead of the
Newey-West t-statistics, which is about a third as large as the OLS t-statistics and implies
that the coefficient on gap is far from significant, with p-values above 20%.

Importantly, neither of the specifications in CPR can be used to test the spanning hy-
pothesis, because the CP factor is first orthogonalized with respect to the output gap. This
defeats the purpose of controlling for yield-curve information, since any predictive power that
is shared by the CP factor and gap will be exclusively attributed to the latter. In particular,
finding a significant coefficient on gap in a regression with C̃P cannot justify the conclusion
that “gap is capturing risk that is independent of the financial market-based variable CP”
(p. 2828). One way to test the spanning hypothesis is to include CP instead of C̃P , and we
report these results in the third panel of Table F.1. In this case, the coefficient on gap switches
to a positive sign, and its Newey-West t-statistic remains insignificant.

Our preferred specification includes the first three PCs of the yield curve—see the last
panel of Table F.1. The predictor gap is highly persistent, with a first-order autocorrelation
coefficient of 0.975, so there are likely small-sample inference problems. Hence we also include
results for robust inference using the bootstraptest. The gap variable has a positive coefficient
with a HAC p-value of 19%, which rises to 36% when using our bootstrap procedure. The
conventional HAC t-test is substantially oversized, as evident by the bootstrap critical value
that substantially exceeds the conventional critical value. Overall, we do not find any evidence
that the output gap predicts excess bond returns.

52We thank Richard Priestley for sending us this real-time measure of the output gap.
53The relevant results in CPR are in the top panel of their table 9.
54Note that the predictors C̃P t and gapt−1 are therefore not completely orthogonal.
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