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1 Introduction

Identifying the contribution of risk premia to long-term interest rates is crucial for monetary
policy, investment strategy, and interpreting historical episodes such as the unprecedented low
interest rates since 2008. Since the risk premium is just the difference between the current
long rate and the expected average value of future short rates, the core question for estimating
risk premia is how to construct short-rate expectations. Is it sufficient to consider the current
yield curve, or should estimates incorporate additional information such as macroeconomic
variables? This is the question we address in this paper.

A powerful theoretical argument suggests that the current yield curve itself should contain
most (if not all) information useful for forecasting future interest rates and bond returns.
Investors use information at time t—which we can summarize by a state vector z;—to forecast
future interest rates and risk premia. The price of a zero-coupon bond is thus a function of
2z and its maturity. The yield curve results from the prices of bonds with many different
maturities, each of which is a different function of z;. Under quite general assumptions the
yield curve therefore contains the same information as z;, since z; can be inferred from yields.
In other words, the yield curve spans all information relevant for forecasting future yields
and returns, and no variables other than the current yield curve are needed. While this
“spanning hypothesis” could be violated for various reasons, it is in fact implied by essentially
all macro-finance models." Therefore the spanning hypothesis is the natural benchmark when
investigating the empirical relevance of macroeconomic and other variables for predictions of
excess bond returns and estimation of bond risk premia, and a large literature has taken it
as the relevant null hypothesis. Recent literature reviews by Giirkaynak and Wright (2012)
and Duffee (2013a) identify the spanning hypothesis as a central issue in macro-finance. If it
holds true it would greatly simplify forecasting of interest rates and estimation of monetary
policy expectations and bond risk premia, as such forecasts and estimates would not require
any macroeconomic series, other asset prices or quantities, volatilities, or survey expectations,
but only the information in the current yield curve.?

Importantly, the spanning hypothesis does not imply that macroeconomic variables are
unimportant for interest rates and risk premia. Quite to the contrary, interest rates are of
course driven by macro variables in many ways, an obvious example being the importance of

inflation expectations for nominal yields.® The yield curve reflects the information in current

'Examples of equilibrium models of the term structure that imply spanning include Wachter (2006), Piazzesi
and Schneider (2007), Bekaert et al. (2009), and Bansal and Shaliastovich (2013). Macro-finance models with
production economies (i.e., DSGE models) that imply spanning include Hordahl et al. (2006), Dewachter and
Lyrio (2006), Rudebusch and Wu (2008), and Rudebusch and Swanson (2012).

2We will discuss the spanning hypothesis and its theoretical underpinnings in more detail in Section 2.1.

3Much theoretical and empirical work has investigated the links between macroeconomic variables, interest



and future macro variables, and the spanning hypothesis simply posits that it fully reflects and
spans this information. Macroeconomic variables are drivers of risk premia, but our question
here is what variables should be used for the estimation of these risk premia.

How should we summarize the information in the yield curve to empirically test the span-
ning hypothesis? It has long been recognized that the first three principal components (PCs)
of yields, commonly labeled level, slope, and curvature, provide an excellent empirical sum-
mary of the entire yield curve (Litterman and Scheinkman, 1991), as they explain almost all
of the cross-sectional variance of observed yields. This motivates a specific version of the
spanning hypothesis, a very practical and empirically focused interpretation of the question
posed above: Do level, slope and curvature completely capture all the information that is
useful for forecasting future yields and estimating bond risk premia? This is the question we
focus on in this paper.*

There is a growing consensus in the literature that the spanning hypothesis can be rejected
by the observed data. This evidence comes from predictive regressions for bond returns on
various predictors, controlling for information in the current yield curve. The variables that
have been found to contain additional predictive power in such regressions include measures
of economic growth and inflation (Joslin et al., 2014), factors inferred from a large set of
macro variables (Ludvigson and Ng, 2009, 2010), long-term trends in inflation or inflation
expectations (Cieslak and Povala, 2015), the output gap (Cooper and Priestley, 2008), and
measures of Treasury bond supply (Greenwood and Vayanos, 2014). These results suggest
that there might be unspanned or hidden information that is not captured by the current
yield curve but that is useful for forecasting. In addition, Cochrane and Piazzesi (2005) found
that higher-order (fourth and fifth) PCs of bond yields appear useful for predicting bond
returns, which suggests that the miniscule amount of yield variation not captured by the first
three PCs somehow contains relevant information about bond risk premia.

But these predictive regressions have a number of problematic features. The true predic-
tive variables under the null hypothesis are necessarily correlated with lagged forecast errors
because they summarize the information in the current yield curve. As a consequence they
violate the condition of strict econometric exogeneity. In addition, the predictive variables are
typically highly persistent. We show that this leads to substantial “standard error bias” in
samples of the size commonly studied, with the problem even more severe when the proposed
explanatory variables exhibit a trend over the observed sample. Because the estimated stan-

dard errors are too small, the result can often be spurious rejection of the spanning hypothesis

rates, and risk premia. Some prominent examples include Campbell and Cochrane (1999), Diebold et al.
(2006), Bikbov and Chernov (2010), Rudebusch and Swanson (2012), and Bansal and Shaliastovich (2013).

4While most of our analysis centers on this question, we also report results for alternative spanning hy-
potheses under which four or five PCs fully capture the information in the yield curve.



even though it is true. This problem inherent in all tests of the spanning hypothesis has to
our knowledge not previously been recognized. Mankiw and Shapiro (1986) and Stambaugh
(1999) documented small-sample coefficient bias in predictive regressions with a persistent
regressor that is not strictly exogenous.” By contrast, in our setting there is no coefficient bias
pertaining to the additional predictors, and instead a downward bias of the estimated stan-
dard errors distorts the results of conventional inference. An additional problem is that the
common predictive regressions are estimated in monthly data but with an annual excess bond
return as the dependent variable, and the presence of overlapping observations introduces
substantial serial correlation in the prediction errors. As a result, standard errors are even
less reliable, and regression R? are harder to interpret. We demonstrate that the procedures
commonly used for inference about the spanning hypothesis do not adequately address these
issues and are subject to serious small-sample distortions.

We propose a novel approach that researchers can use to obtain more robust inference in
these predictive regressions: a parametric bootstrap that generates data samples under the
spanning hypothesis. We calculate the first three PCs of the observed set of yields and sum-
marize their dynamics with a VAR fit to the observed PCs. Then we use a residual bootstrap
to resample the PCs, and construct bootstrapped yields by multiplying the simulated PCs by
the historical loadings of yields on the PCs and adding a small Gaussian measurement error.
Thus by construction no variables other than the PCs are useful for predicting yields or returns
in our generated data. We then fit a separate VAR to the proposed additional explanatory
variables alone, and generate bootstrap samples for the predictors from this VAR. Using our
novel bootstrap procedure, we can calculate the properties of any regression statistic under
the spanning hypothesis. This calculation demonstrates that the conventional tests reject
the true null much too often. We show that the tests employed in published studies, which
are intended to have a nominal size of five percent, have a true size between 8 and 61%. We
then use our bootstrap to ask how likely it would be under the null to observe the patterns of
predictability that researchers have found in the data. We find that the proposed predictors
are always much less significant than appeared in conventional tests, and are often statistically
insignificant. These results provide a strong caution against using conventional tests for infer-
ence about bond risk premia, and we recommend that researchers instead use the bootstrap
procedure proposed in this paper.

An additional way to assess the robustness of the published results is to take advantage

5Cavanagh et al. (1995) and Campbell and Yogo (2006) considered this problem using local-to-unity asymp-
totic theory.

60ur procedure notably differs from the bootstrap approach commonly employed in this literature, which
generates artificial data under the expectations hypothesis, such as Bekaert et al. (1997), Cochrane and Piazzesi
(2005), Ludvigson and Ng (2009, 2010), and Greenwood and Vayanos (2014).



of the data that have arrived since publication of these studies. In addition to re-estimating
the proposed predictive models over a common, more recent data sample, we use the newly
available data to evaluate whether they improve true out-of-sample forecasts, which gives us
a more reliable test than the often-reported pseudo-out-of-sample statistics. We find that the
proposed additional predictors are rarely helpful in the new data, reinforcing the case that the
apparent strength of the in-sample evidence may be an artifact of the small-sample problems
we highlight.

After revisiting the evidence in the six influential papers cited above we draw two main
conclusions: First, conventional methods of inference are extremely unreliable in these predic-
tive regressions, because they often suggest that variables are relevant for bond risk premia
which in truth are irrelevant. New approaches for robust inference are needed, and we propose
three in this paper. Second, when reconsidered with more robust methods for inference, the
evidence against the spanning hypothesis appears weaker and much less robust than would
appear from the published results, and in some cases appears to be spurious.

Our paper is related to other studies that critically assess return predictability in finance.
For stock returns, Goetzmann and Jorion (1993) and Nelson and Kim (1993) used simulation
studies to document that small-sample problems can lead to spurious findings of predictabil-
ity. Ferson et al. (2003) raised the possibility of finding spurious predictability if a persistent
component of stock returns is unobserved. Ang and Bekaert (2007) demonstrated that the
commonly employed Newey-West standard errors are not reliable for long-horizon predictions.
Welch and Goyal (2008) showed that predictability largely disappears in out-of-sample analy-
sis, and Lewellen et al. (2010) showed that estimating factor models for equity risk premia can
lead to spuriously high R? for truly irrelevant risk factors. Our paper parallels these studies
by also documenting that published evidence on predictability and risk premia is fraught with
serious econometric problems and appears to be partially spurious. But our work is distinct
in that we describe a new, different econometric issue and focus on evidence on unspanned
risks in bond returns instead of predictability of stock returns. The literature on bond re-
turns and the expectations hypothesis goes back to Fama and Bliss (1987) and Campbell and
Shiller (1991), who established that the slope of the yield curve helps predict bond returns.
Bekaert et al. (1997) and Bekaert and Hodrick (2001) documented that rejections of the ex-
pectations hypothesis are robust to the Stambaugh bias that arises in predictive regressions
for bond returns. Our paper shows that a different kind of bias—standard error bias—arises
in the widely used tests of the spanning hypothesis, and that accounting for it can change the

empirical conclusions.



2 Inference about the spanning hypothesis

In this section we first explain the economic underpinnings and common empirical tests of
the spanning hypothesis, and then document previously unrecognized econometric problems
with these tests. Then we propose a new way of inference about the spanning hypothesis that

solves these problems using an easy-to-implement parametric bootstrap.

2.1 The spanning hypothesis

A simple but powerful theoretical argument demonstrates that under certain assumptions
about financial markets the yield curve fully spans the information set that is relevant for
forecasting future interest rates and estimating risk premia.” If the vector z denotes the
information that investors use for pricing financial assets, then bond prices and yields are
functions of z;. Since bond yields are determined by investor’s expectations of future short-
term rates and future excess returns, z; contains the information required to construct these
forecasts. For example, z; would likely contain macroeconomic variables that matter for
interest rates, such as current and expected future inflation. Denoting by Y; a vector of N
yields of different maturities we have Y; = f(z;) where f(-) is a vector-valued function. The
spanning hypothesis assumes that f is invertible, in which case the information in z; can be
inferred as z; = f~(Y;). A necessary condition for this invertibility condition is that N is at
least as large as the number of variables in z;, which is a plausible assumption given the large
number of yields that constitute the yield curve. Invertibility is guaranteed for example if f
is linear and its Jabobian has full column rank, but it will also hold under much more general
conditions. Most asset pricing and macro-finance models imply invertibility of model-implied
yields for state variables, hence the spanning hypothesis holds in these models.® As mentioned
above, the spanning hypothesis of course does not imply that macro variables are unimportant
for interest rates, but simply states that the yield curve fully spans the relevant information
in macro (and other) variables.

While essentially all asset pricing models imply some version of spanning, there are a
number of reasons why the relevant information may not be spanned by the first three PCs
of observed yields, which is the null hypothesis we focus on in this paper. First, yields may of
course depend on more than three state variables. For example, in Bansal and Shaliastovich
(2013) yields are functions of four state variables. Second, even if three linear combinations of
model-implied yields span z;, this might be difficult to exploit in practice due to measurement

error. In particular, Duffee (2011b) demonstrated that if the effects of some elements of z; on

"This argument largely follows the one in Duffee (2013b, Section 2.3).
8See footnote 1 for relevant references on this point.



yields nearly offset each other, those components will be very difficult to infer from current
observed yields alone. Cieslak and Povala (2015) and Bauer and Rudebusch (2017) noted
that in affine yield-curve models, even small measurement errors can make it impossible to
recover z; from observed yields. Third, statistical expectations may differ from subjective
expectations due to learning (as in, for example, Piazzesi et al., 2015). Fourth, there may
be singularities, non-linearities, or structural breaks that prevent invertibility. Our paper
does not address these theoretical possibilities, and instead focuses on the empirical question
whether the spanning hypothesis is a good description of the data.

Evidence against the spanning hypothesis typically comes from regressions of the form

Yern = PBrawe + Boxar + Urin, (1)

where the dependent variable y;,j is the return or excess return on a long-term bond (or
portfolio of bonds), x1; and o, are vectors containing K; and K, predictors, respectively, and
usrp i a forecast error. The predictors zy; contain a constant and the information in the
yield curve, typically captured by the first three PCs of observed yields, i.e., level, slope, and

curvature. The null hypothesis of interest is
Hy: (=0,

which says that the relevant predictive information is spanned by the information in the yield
curve and that x9; has no additional predictive power. A key feature of these regressions is that
because the regressors in x1; capture information in the current yield curve, they are necessarily
correlated with u; and hence not strictly exogenous. The predictors are also typically very
persistent. This gives rise to a previously unrecognized problem, “standard error bias,” that
causes tests to reject the null hypothesis much too often, with the problem even more severe
when the explanatory variables are trending over the sample. In addition, empirical work
typically tries to predict returns over h = 12 months, and such use of overlapping returns,
and the resulting serial correlation in wu;p, leads to additional econometric problems. In the
following subsections we describe these problems in detail.

The spanning hypothesis is of course different from the expectations hypothesis (EH)
which posits that expected excess bond returns (i.e., bond risk premia) are constant. A large
literature has tested the EH by asking whether any variables help predict excess bond returns.
The strongest predictor appears to be the slope of the yield curve, as documented by Fama
and Bliss (1987) and Campbell and Shiller (1991). These results are perfectly consistent with
the spanning hypothesis. While EH-regressions suffer from small-sample problems similar to

those that arise in tests of the spanning regressions, including Stambaugh bias and standard



error bias, Bekaert et al. (1997) and Bekaert and Hodrick (2001) documented that rejections of
the EH are robust to accounting for these problems. By contrast, we will show that rejections

of the spanning hypothesis are not robust and can arise spuriously.

2.2 The source of standard error bias

Here we explain the intuition for standard error bias in the case when h = 1 and u;,; is white
noise. According to the Frisch-Waugh Theorem, the OLS estimate of 35 in (1) can always be
viewed as having been obtained in two steps. First we regress x9; on x1; and calculate the
residuals oy = X9 — AT.I'U for AT = (Zthl $2t$/1t> (Zthl :Ultx’lt> B . Second we regress ;.1
on ZTo. The coefficient on Zo; in this regression will be numerically identical to the coefficient
on Ty in the original regression (1).” The standard Wald statistic for a test about £, can be

expressed as

T T T
= (S ert) (45 2t (o)

for s> = (T — K| — Kg)_lth:l(ytH — Dy — bywoy)? and by and by the OLS estimates
from (1). The validity of this test depends on whether Wy is approximately y*(Ks). If
x1; and xo are stationary and ergodic, the estimate Ar will converge to the true value
A = E(xyua!,) [E(xya),)]”". In that case the sampling uncertainty from the first step is
asymptotically irrelevant and W would have the same asymptotic distribution as if we re-
placed To; with x9; — Axys, which gives rise to the standard result for stationary regressors
that W -5 y2(IK>).

If, however, the regressors are highly persistent, a regression of x5, on x1; behaves like a
spurious regression. For example, if x1; and 9, are unit-root processes, the value of Ar is
not tending to some constant but instead to a random variable A that is different in every
sample, even as the sample size T approaches infinity. If xy;, was strictly exogenous, this would
not affect the asymptotic distribution of Wr. But in tests of the spanning hypothesis xy; is
necessarily correlated with u;, and due to this lack of strict exogeneity Z; Tosuy1 has a
nonstandard limiting distribution with variance that is larger'® than that of Zle Torlpy1. By
contrast, OLS hypothesis tests act as if the variance of Zthl Toupyq is smaller than that of
ST Togupg, since Y1 Fg,h, is smaller by construction in every sample than 37, o,
Therefore OLS standard errors are necessarily too small, Wy does not converge to a x?(K)

distribution, and conventional ¢- or F-tests about the value of 5 in (1) will reject more often

9We provide a proof of this and other statements in this section in Appendix A.1.
10More formally, the difference between the two matrices is a positive definite matrix.



than they should.!

2.3 A canonical example

In this section we explore the size of these effects in a canonical example, using first local-to-

unity asymptotics and then small-sample simulations based on the model

Yir1 = Bo + Brxy + Poxor + Ui (3)

where z1; and 9 are scalar AR(1) processes
Ti+1 = M1+ P17 + €1t (4)

Top41 = Mo + P2Tat + Eot (5)

with ¢; martingale-difference sequences and x;,y = 0. Our interest is in what happens when
the persistence parameters p; are close to unity. We first focus on the case without drift in
these processes (11 = p = 0). We assume that innovations to x1; have correlation § with u,

whereas xo; is uncorrelated with both xq; and wuy:

1t o 0 do0y
E | ey [ €1s €25 Us | = 0 o3 0 ift=s
Uy doyo, 0 o2
=0 otherwise.

Thus when S5 = 0, the variable x5, has nothing to do with either x4 or y, for any t or s.

One device for seeing how the results in a finite sample of some particular size T differ from
those predicted by conventional first-order asymptotics is to use a local-to-unity specification
as in Phillips (1988) and Cavanagh et al. (1995):

Tit41 — (1 + Ci/T)ZL’z’t + €it+1 1= 1, 2. (6)

For example, if our data come from a sample of size T" = 100 when p; = 0.99, the idea

is to approximate the small-sample distribution of regression statistics by the asymptotic

distribution obtained by taking ¢; = —1 in (6) and letting T — o00.' The local-to-unity

UTn Appendix A.1 we go through this argument in more detail, and provide additional proofs. Note also
that we have focused on conventional OLS standard errors that assume conditional homoskedasticity, but very
similar reasoning applies when White’s heteroskedasticity-robust standard errors are used.

121t is well known that approximations from such local-to-unity asymptotics are substantially better than



asymptotics turn out to be described by Ornstein-Uhlenbeck processes. For example

1
TS (- ) = o [ ROy
0
where = denotes weak convergence as T — oo and

A
JEN) = / J..(s J..(\) = ¢ / M IWi(s)ds + Wi(\)  i=1,2
0
with Wi (\) and Wy(\) denoting independent standard Brownian motion."?
We show in Appendix A.2 that under local-to-unity asymptotics the coefficient from a

regression of x9; on xq; has the following limiting distribution:

A — (w1 — Ty) (w2 — Ta) 02 fo JE (N)JE (A)dA
T — — 2 :>
> (w1 — 1) a1 [} T8 (A 2d>\

= (02/01) 4, (7)

where the last equality defines the random variable A. Under first-order asymptotics the
influence of Ar would vanish as the sample size grows. But using local-to-unity asymptotics
we see that Ar behaves similarly to the coefficient in a spurious regression and does not
converge to zero—the true correlation between x1; and 9 in this setting—but to a random
variable that differs across samples. The implication is that the ¢-statistic for by can have
a small-sample distribution that is very poorly approximated using first-order asymptotics.
Appendix A.2 demonstrates that this ¢-statistic has a local-to-unity asymptotic distribution
under the null hypothesis that is given by

Wwﬁzm2>521+vl—5220 (8)
2t

1 1
. Iy Koy ea(NAWL(N) 7 — Jo Keper(N)dWo(N) S K (\) = JE() — AJE(N)

TN L (o

for s = (T — 3)™" > (yss1 — bo — b1 — baxey)? and W;()\) independent standard Brownian
processes for i = 0,1, 2. Conditional on the realizations of Wi(.) and Ws(.), the term Z, will
be recognized as a standard Normal variable, and therefore Z; has an unconditional N (0, 1)

distribution as well.'* In other words, if zy; is strictly exogenous (6 = 0) then the OLS t-test

those based on conventional first-order asymptotics which take T'— oo and treat p; = 0.99 as a constant; see
for example Chan (1988) and Nabeya and Segrensen (1994).

13When ¢; = 0, (6) becomes a random walk and the local-to-unity asymptotics simplify to the standard
unit-root asymptotics involving functionals of Brownian motion as a special case: Jo(A) = W ().

4 The intuition is that for vy 1 ~ iid. N(0,1) and K = {K;}{, any sequence of random variables



of By = 0 will be valid in small samples even with highly persistent regressors. By contrast, if
0 # 0 the random variable Z; comes into play, which has a nonstandard distribution because
the term dW;(A) in the numerator is not independent of the denominator. In particular,
Appendix A.2 establishes that Var(Z;) > 1. Moreover Z; and Z, are uncorrelated with
each other.'” Therefore the ¢-statistic in (8) has a non-standard distribution with variance
§?Var(Z;) + (1 — 6%)1 > 1 which is monotonically increasing in |§|. This shows that whenever
x1; is correlated with u; (0 # 0) and xy; and x9 are highly persistent, in small samples the
t-test of By = 0 will reject too often when Hy is true.'6

We can quantify the magnitude of these effects in a simulation study. We generate values
for x1; and x9; by drawing £1; and &9, as i.i.d. Gaussian random variables with o; = 09 = 1,
using iy = pe = 0 and different values of p; = py = p, starting from zp = 299 = 0.
We generate y; = u; = deqy + V1 = 62v; where v, is a standard normal random variable.”
Hence, in our data-generating process (DGP) we have fy = 8, = f» = 0, 0, = 1, and
Corr(ug, e1;) = 6. We simulate 1,000,000 samples, estimate regression (3) in each sample, and
study the small-sample behavior of the t-statistic for the test of Hy : S = 0, using critical
values from the Student-t distribution with 97 degrees of freedom. In addition, we also draw
from the local-to-unity asymptotic distribution of the t-statistic given in equation (8) using
well-known Monte Carlo methods.!®

The first panel of Table 1 shows the results of this exercise for different values of p and §.
If the regressors are either strictly exogneous (0 = 0) or not serially correlated (p = 0), the
true size of the t-test of 83 = 0 is equal to the nominal size of five percent. If, however, both

p # 0 and 0 # 0, the true size exceeds the nominal size, and this size distortion increases in p

that is independent of vy, Zththvo,tH has a distribution conditional on K that is N(O,Zthle) and

E;";thvO)tH/ ZtT:le ~ N(0,1). Multiplying by the density of K and integrating over K gives the
identical unconditional distribution, namely N(0,1). For a more formal discussion in the current setting, see
Hamilton (1994, pp. 602-607).

15The easiest way to see this is to note that conditional on Wi(.) and W(.) the product has expectation
zero, so the unconditional expected product is zero as well.

6 Expression (8) can be viewed as a straightforward generalization of result (2.1) in Cavanagh et al. (1995)
and expression (11) in Campbell and Yogo (2006). In their case the explanatory variable is z1 ;1 — 1 which
behaves asymptotically like J£ (A). The component of u; that is correlated with €14 leads to a contribution
to the t-statistic given by the expression that Cavanagh et al. (1995) refer to as 7., which is labeled as 7./k.
by Campbell and Yogo (2006). This variable is a local-to-unity version of the Dickey-Fuller distribution with
well-known negative bias. By contrast, in our case the explanatory variable is 3+—1 = %21 — ArT1+1
which behaves asymptotically like K., .,(A). Here the component of u; that is correlated with ey, leads to a
contribution to the t-statistic given by Z; in our expression (8). Unlike the Dickey-Fuller distribution, Z; has
mean zero, so that there is no bias in bs.

1T"We can focus on 0 < § < 1, since only |6] matters for the distribution of the t-statistic.

18We simulate samples of size T from near-integrated processes with ¢; = co = T'(p — 1) and approximate
the integrals in (8) using Rieman sums—see, for example, Chan (1988), Stock (1991), and Stock (1994).
We use T = 1000, since even moderate sample sizes generally yield accurate approximations to the limiting
distribution (Stock, 1991, uses T = 500).
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and §. In the presence of high persistence the true size of this ¢t-test can be quite substantially
above the nominal size: For p = 0.99 and 6 = 1, the true size is around 15 percent, meaning
that we would reject the true null hypothesis more than three times as often as we should.
The size calculations are, not surprisingly, very similar for the small-sample simulations and
the local-to-unity asymptotic approximations.

Figure 1 plots the size of the t-test for the case with 6 = 1 for sample sizes from 7" = 50 to
1000, based on the local-to-unity approximation. When p < 1, the size distortion decreases
with the sample size. For example for p = 0.99 the size decreases from 15 percent to about 9
percent. In contrast, when p = 1 the size distortions are not affected by the sample size, as
indeed in this case the non-Normal distribution corresponding to (8) with ¢; = 0 governs the
distribution for arbitrarily large T

The reason for the size distortions when testing 2 = 0 is not coefficient bias. The top panel
of Table 1 shows that b; is downward biased but by is unbiased. However, the conventional OLS
standard errors underestimate the true sampling variability of the OLS estimates: they can
average up to 30% below the standard deviation of the coefficient estimates across simulations.

This standard error bias is the reason why the t-test rejects too often.

2.4 The role of trends

Up to now we have been considering the case when the true values of the constant terms p;
in equations (4)-(5) are zero. As seen in the second and third panels of Table 1, the size
distortions on tests about 3, can nearly double when p; # 0, and the bias in the estimate of
(1 increases as well.

We can understand what is going on most easily by considering the case when the roots p;
are exactly unity.' In that case, if j; is zero and juy is not, z9, will exhibit a deterministic time
trend and this ends up stochastically dominating the random walk component of z9,. The
regression (3) would then be asymptotically equivalent to a regression of y,11 on (1, xy, uot)’.
When 0 = 1 the asymptotic distribution of a t-test of a true null hypothesis about (; in
regression (3) would be identical to that if we were to perform a Dickey-Fuller test of the true

null hypothesis 7 = 0 in the regression
Ay = py + 0wy +EE+ 1y, 9)

which is the well-known Dickey-Fuller Case 4 distribution described in Hamilton (1994, eq.
[17.4.55]). We know that the coefficient bias and size distortions are bigger when a time trend

9The following results are proved formally in Appendix A.3.
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t.2Y For the same reason we

is included in regression (9) compared to the case when it is no
would find that the Stambaugh bias of b; in regression (3) becomes worse when a variable xq;
with a deterministic trend is added to the regression. The standard error bias for by is also
exacerbated when the true py is nonzero.

In the case when ps is close to but strictly less than unity, this problem would vanish
asymptotically but is still a factor in small samples. An apparent trend shows up in a finite
sample because when a stationary variable with mean ps/(1 — po) is started from x9 = 0, it
will tend to rise toward its unconditional mean. As p, approaches unity, this trend within a
finite sample becomes arbitrarily close to that seen in a true random walk with drift ps. While
in the applications in this paper the trend in explanatory variables like inflation is typically
downward instead of upward, the issue is the same, because the distribution of b; is identical
whether x5 begins at x99 = 2p2/(1— po) and then drifts down to its mean or whether it begins
at o9 = 0 and drifts up. Note that the values we have used for simulation in Table 1 are
representative of those that may be encountered in practice.?!

When both zy; and z9; have trends (see panel 3 of Table 1) we have the same issues just
discussed but with a reinterpretation of the variables. Consider for example the case when
both trends are the same (u; = p2). Note that a regression of y;.1 on (1,1, x9) has the
identical fitted values as a regression of y,.1 on (1, 21, — xa;, 9¢)’, which again is asymptotically
equivalent to a regression in which the second variable is a driftless unit-root process correlated
with the lagged residual and the third variable is dominated by a deterministic time trend.
Now the Stambaugh bias will show up in the coefficient on x1; — x9;. Translating back in
terms of the original regression of 3,1 on (1,21, x9;)" we would now find Stambaugh biases in
both b; and by that are mirror images of each other. Note the implications of this example.
When g and po are both nonzero, if we were to regress 4,41 on x1; alone, there would be no
Stambaugh bias and no problem with t-tests about i, because x1; is dominated by the time
trend. The same is true if we were to regress y,.1 on w9 alone. But when both xy; and xo
are included in the regression, spurious conclusions about both coefficients would emerge.

The practical relevance of these results is that when the proposed additional predictors in
x9; are trending, this can substantially magnify the small-sample problems and lead to more

poorly sized tests and spurious rejections of the spanning hypothesis.

20See Case 2 versus Case 4 in Hamilton (1994, Tables B.5 and B.6).

2For example, an AR(1) process fit to the trend inflation variable used by Cieslak and Povala (2015) over
the sample 1985-2013 has py = 0.99 and ps/09 = 1.5, an even stronger drift relative to innovation than the
value po/og = 1.0 used in Table 1. And their variable has a value in 1985:1 that is 5 times the size of
w2/ (1 — p2), implying a downward drift over 1985-2013 that is 4 times as fast as in the Table 1 simulation.
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2.5 Overlapping returns

A separate econometric problem arises in predictive regressions for bond returns with holding
periods that are longer than the sampling interval, i.e., h > 1. Most studies in this literature,
and all those that we revisit in this paper, focus on predictive regressions for annual excess

bond returns in monthly data, that is regression (1) with h = 12 and

Yt+h = Pn—h,t+h — Pnt — Nint, (10)

for p,; the log of the price of a pure discount n-period bond purchased at date ¢ and i,; =
—pnt/n the corresponding zero-coupon yield. In that case, E(wu;,,) # 0 forv=20,...,h—1,
as the overlapping observations induce a MA(h — 1) structure for the error terms. This
raises additional problems in the presence of persistent regressors that can be seen even using
conventional first-order asymptotics, as we briefly note in this section.

If x1; and x4, are uncorrelated and the true value of $5 = 0, we show in Appendix A.4 that

under conventional first-order asymptotics
VThy, % N(0,Q7'SQ™), (11)

Q = E(vyry), S= ZU:_OO E(Ut+hut+h—v$2t$lg,t—v>- (12)

Note that the product wu;ypxe; will be serially correlated when w9, is persistent, since
E(utyntyn—oT2u®y, ) = Elupus ) E(zory, ) # 0. Overlapping observations, in combi-
nation with persistent regressors, substantially increase the sampling variability of the OLS
estimate by, because the long-run covariance matrix S will exceed the value Sy = E(uj,zo:2%,)
that would be appropriate for serially uncorrelated residuals.

The standard approach is to use heteroskedasticity- and autocorrelation-consistent (HAC)
standard errors to try to correct for this, for example, the estimators proposed by Newey and
West (1987) or Andrews (1991). However, long-run variance estimation is notoriously difficult,
particularly in small samples, and different HAC estimators of S can lead to substantially
different empirical conclusions (Miiller, 2014). That Newey-West standard errors are unreliable
for inference with overlapping returns was demonstrated convincingly by Ang and Bekaert
(2007). Here we emphasize that the higher the persistence of the predictors, the less reliable
is HAC inference, since the effective sample size becomes very small. The reverse-regression
approach of Hodrick (1992) and Wei and Wright (2013) can alleviate but not overcome the
problem arising from overlapping returns, as we will show in Section 5.

There is another consequence of basing inference on overlapping observations that appears

not to be widely recognized: it substantially reduces the reliability of R? as a measure of
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goodness of fit. Let R? denote the coefficient of determination in a regression that includes
only xy;, compared to Rg for the regression that includes both xy; and z9,. We show in

Appendix A.4 that again for the case when x1; and z9; are uncorrelated and s = 0
T(R— B) 5 7'Q7'r/y, 7= Ely— E@)? r~N(©,S). (13)

The difference R2— R? converges in probability to zero, but in a given finite sample it is positive
by construction. If xo,usiy is positively serially correlated, then S exceeds Sy by a positive-
definite matrix, and r exhibits more variability across samples. This means R3 — R, being a
quadratic form in a vector with a higher variance, would have both a higher expected value as
well as a higher variance when w9 u;.p, is serially correlated compared to situations when it is
not. This serial correlation in xosusqp, would contribute to larger values for R2 — R? on average
as well as to increased variability in R — R? across samples. In other words, including
could substantially increase the R? even if Hy is true. We will use bootstrap approximations to
the small-sample distribution of B3 — R?, and demonstrate that the dramatic values sometimes

reported in the literature are often entirely plausible under the spanning hypothesis.

2.6 A bootstrap design to test the spanning hypothesis

Obviously the main question is whether the above considerations make a material difference
for tests of the spanning hypothesis. = We propose a parametric bootstrap that generates
data under the spanning hypothesis to assess how serious these econometric problems are in

22 With this bootstrap approach we can calculate the size of conventional tests to

practice.
assess their robustness. In addition, we can use it to test the spanning hypothesis with better
size and power than for conventional tests.?*

Our bootstrap design is as follows: First, we calculate the first three PCs of observed yields
which we denote

Tt = (PClt,PC2t,PC3t)/,

along with the weighting vector w,, for the bond yield with maturity n:

. ~/ A~
Int = W,T1; + Upt.

22 An alternative approach would be a nonparametric bootstrap under the null hypothesis, using for example a
moving-block bootstrap to re-sample z1; and z9;. However, Berkowitz and Kilian (2000) found that parametric
bootstrap methods such as ours typically perform better than nonparametric methods.

Z(Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009, 2010) also used the bootstrap to test 3 = 0.
They did so with bootstrap confidence intervals generated under the alternative hypothesis. But it is well
known that bootstrapping under the null hypothesis generally leads to better numerical accuracy and more
powerful tests (Hall and Wilson, 1991; Horowitz, 2001), and of course this is the only way to obtain bootstrap
estimates of the size of conventional tests.
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That is, z1, = Wi,, where i, = (Tnyty - -+, in,e) is a J-vector with observed yields at ¢, and
W = (i, ..., 10,,) is the 3 x J matrix with rows equal to the first three eigenvectors of the
variance matrix of ;. We use normalized eigenvectors so that WW' = I,. Fitted yields are
obtained as 3, = W'z1,. Three factors generally fit the cross section of yields very well, with
fitting errors 0, (pooled across maturities) that have a standard deviation of only a few basis

points.”* Then we estimate by OLS a VAR(1) for zy;:
T =@+ rr ey t=1,....T (14)

This time-series specification for xq; completes our simple factor model for the yield curve.
Though this model does not impose absence of arbitrage, it captures both the dynamic evolu-
tion and the cross-sectional dependence of yields. A no-arbitrage model is a special case of this
structure with additional restrictions on W, but these restrictions typically do not improve
forecasts of yields; see for example Duffee (2011a) and Hamilton and Wu (2014). Next we
generate 5000 artificial yield data samples from this model, each with length 7" equal to the

original sample length. We first iterate on
$>{T = Cb() + ¢1$>{7’T—1 + eTT

where e} denotes bootstrap residuals. We start every bootstrap sample at xj, = z9, the
starting value for the observed sample, to allow for a possible contribution of trends resulting

from initial conditions as discussed in Section 2.4. Then we obtain the bootstrap yields using

for vy YN (0,02). The standard deviation of the measurement errors, ,, is set to the sample
standard deviation of the fitting errors 9,,.>> We thus have generated an artificial sample of
yields 47 which by construction only the three factors in zj_ have any power to predict, but
whose covariance and dynamics are similar to those of the observed data i,,.

We likewise fit a VAR(1) to the observed data for the proposed predictors o,

Top = Qg + Q1 T2 -1 + €24, (16)

from which we then bootstrap 5000 artificial samples z5_ in a similar fashion as for zj_. The

24For example, in the data of Joslin et al. (2014) this standard deviation is 6.5 basis points.

25Some evidence in the literature suggests that yield fitting errors are serially correlated (Adrian et al., 2013;
Hamilton and Wu, 2014). We have also investigated a setting with serial correlation in v} _ and found that
this does not change any of our findings.
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bootstrap residuals (e, €5 ) are drawn from the joint empirical distribution of (e}, €5,).

Using the bootstrapped samples of predictors and yields, we can then investigate the
properties of any proposed test statistic involving v, 7., and 3 in a sample in which the
serial correlation of these variables is similar to the actual data, but in which by construction
the null hypothesis is true that x%_ has no incremental predictive power.?® Consider for
example a t-test for significance of a parameter in (5. Denote the t-statistic in the data by ¢
and the corresponding ¢-statistic in bootstrap sample 7 as ;. To obtain a bootstrap estimate
of the size of this test we calculate the fraction of samples in which |tf] exceeds the usual
asymptotic critical value. And to use the bootstrap to carry out the hypothesis test, we
calculate the bootstrap p-value as the fraction of samples in which |tf| > |¢|, and reject the
null if this is less than, say, five percent. Equivalently, we can calculate the bootstrap critical
value as the 95th percentile of |tf] and reject the null if |¢| exceeds it.

Note that this bootstrap procedure does not generate a test with an exact size of 5%.
First, under local-to-unity asymptotics the bootstrap is not a consistent test because the test
statistics are not asymptotically pivotal—their distribution depends on the nuisance param-
eters ¢; and ¢y, which cannot be consistently estimated.?” Second, least squares typically
underestimates the autocorrelation of highly persistent processes due to small-sample bias
(Kendall, 1954; Pope, 1990), so that the VAR underlying our bootstrap would typically be
less persistent than the true DGP. We can address the second issue by using bias-corrected
VAR parameter estimates for generating bootstrap samples. We will use the bias correction
proposed by Kilian (1998) and refer to this as the “bias-corrected bootstrap.”?® We have found
that even the bias-corrected bootstrap tends to be slightly oversized. This means that if our
bootstrap test fails to reject the spanning hypothesis, the reason is not that the test is too
conservative, but that there simply is not sufficient evidence for rejecting the null.

We can use the Monte Carlo simulations in Section 2.3 to calculate the size of our bootstrap
test. In each sample i simulated from a known parametric model, we can: (i) calculate the ¢-
statistic (denoted ;) for testing the null hypothesis that 3, = 0; (ii) estimate the autoregressive
models for the predictors by using OLS on that sample; (iii) generate a single bootstrap sample

using these estimated autoregressive coefficients; (iv) estimate the predictive regression on

26For example, if y;. 5 is an h-period excess return as in equation (10) then in our bootstrap

yT+h =Ny, — hzh‘r - (n - h)zn—h,r—&-h

= n(w'/nxylﬁr + U;kz‘r) - h(w;zx;' + UZT) - (n - h)(w'/n—h'rslﬁﬁ—i-h + ,U:L—h,T-'rh)

which replicates the predictable component and the MA (h—1) serial correlation structure of the excess returns
that is both seen in the data and predicted under the spanning hypothesis.

2TThis result goes back to Basawa et al. (1991). See also Horowitz (2001) and the references therein.

28We have found in Monte Carlo experiments that the size of the bias-corrected bootstrap is closer to five
percent than for the simple bootstrap.
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the bootstrap sample;* and (v) calculate the ¢-statistic in this regression, denoted tf. We
generate many samples from the maintained model, repeating steps (i)-(v), and then calculate
the value ¢ such that [tf| > ¢ in 5% of the samples. Our bootstrap procedure amounts to the
recommendation of rejecting Hy if |£;] > ¢, and we can calculate from the above simulation
the fraction of samples in which this occurs. This number tells us the true size if we were to
apply our bootstrap procedure to the chosen parametric model. This number is reported in
the last column of Table 1. We find in these settings that our bootstrap has a size above but
fairly close to five percent.

We will repeat the above procedure to estimate the size of our bootstrap test in each of our
empirical applications, taking a model whose true coefficients are those of the VAR estimated
in the sample as if it were the known parametric model, and estimating VAR’s from data
generated using those coefficients. To foreshadow those results, we will find that the size
is typically quite close to or slightly above five percent, and that our bootstrap procedure
has excellent power. The implication is that if our bootstrap procedure fails to reject the
spanning hypothesis, we should conclude that the evidence against the spanning hypothesis

in the original data is not persuasive.

2.7 New data: subsample stability and out-of-sample forecasting

We also reassess reported claims of violations of the spanning hypothesis by confronting them
with new data released after publication of the original studies. To circumvent econometric
problems of predictability regressions a common practice is to perform pseudo out-of-sample
(OOS) analysis, splitting the sample into an initial estimation and an OOS period. We are
skeptical of this approach because the researcher has access to the full sample when formulating
the model, and the sample-split is arbitrary. However, for each of the studies that we revisit
a significant amount of new data have come in since the original research. This gives us an
opportunity both to reestimate the models over a sample period that includes new data, and

further to evaluate the true out-of-sample forecasting performance of each proposed model.

29n this simple Monte Carlo setting, we bootstrap the dependent variable as y* = b1 x] ;1 tu; where uy is
resampled from the residuals in a regression of y; on x; ;—1, and is jointly drawn with €], and €5 to maintain
the same correlation as in the data. By contrast, in our empirical analysis the bootstrapped dependent
variable is calculated from the bootstrapped bond yields, obtained using (15), and the definition of y;4j (for
example, as an annual excess return).
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3 Economic growth and inflation

In this section we examine the evidence reported by Joslin et al. (2014) (henceforth JPS) that
macro variables may help predict bond returns. We will follow JPS and focus on predictive
regressions as in equation (1) where ;. is an excess bond return for a one-year holding period
(h = 12), xy; is a vector consisting of a constant and the first three PCs of yields, and xy
consists of a measure of economic growth (the three-month moving average of the Chicago
Fed National Activity Index, GRO) and of inflation (one-year CPI inflation expectations from
the Blue Chip Financial Forecasts, INF'). While JPS also presented model-based evidence in
favor of unspanned macro risks, those results stem from the substantial in-sample predictive
power of x9; in the excess return regressions. The sample contains monthly observations over
the period 1985:1-2008:12.3

3.1 Predictive power according to R’

JPS found that for the ten-year bond, the (adjusted) R? of regression (1) increased from 0.20
to 0.37 when z9; is included. For the two-year bond, the change is even more striking, with
R? increasing from 0.14 to 0.48. JPS interpreted this as strong evidence that macroeconomic
variables have predictive power for excess bond returns beyond the information in the yield
curve, and concluded that “macroeconomic risks are unspanned by bond yields” (p. 1203).
We report the R? for an average excess return on 2- to 10-year bonds in the first row of Table
2, where the first three entries are based on the same data set that was used by JPS.?! The
entry R? gives the R? for the regression with only x1; as predictors, and R2 corresponds to
the case when 4, is added to the regression. For this specification, R? also increases quite
substantially, by 19 percentage points.

However, there are some warning flags for these predictive regressions. First, the predictors
are very persistent; the first-order sample autocorrelations of PC1 and PC2 are 0.98 and
0.97, respectively, while that of INF is 0.99. Second, the sample is relatively small, with 276
observations. Third, the dependent variable is an annual overlapping return, i.e., h = 12. The

arguments in Section 2.5 therefore suggest that even large increases in R? may be plausible

30We recreated the data set using unsmoothed Fama-Bliss yields from Anh Le (Le and Singleton, 2013)
and data from the Chicago Fed and Blue Chip to reconstruct GRO and INF. Note that the last observation
corresponds to excess returns over the holding period from 2007:12 to 2008:12.

31In Table 2 we have attempted to summarize results for R? or R? across different studies on a comparable
basis that is as close as possible to that in the original study. In the case of JPS, they reported results for
only the 2-year and 10-year bonds and not an average. In Table C.1 in Appendix C we present analogous
results for each individual bond from two through ten years maturity. The increase in R? when adding macro
variables is particularly pronounced for short-term bonds, but most of our conclusions apply to these short
maturities as well.
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under the null hypothesis.

The second row of Table 2 reports the mean R? across 5000 replications of the bootstrap
described in Section 2.6, that is, the average value we would expect to see for these statistics
in a sample of the size used by JPS in which x5 in fact has no true ability to predict y;p
but whose serial correlation properties are similar to those of the observed data. The third
row gives 95% bootstrap intervals, that is, the 2.5th and 97.5th percentiles of the bootstrap
distributions which impose the null hypothesis. The variability of the R? is very high. Values
for R2 as high as 60% would not be uncommon, as indicated by the bootstrap intervals. Most
notably, adding the regressors zy, often substantially increases the R?—even increases of 20
percentage points are not uncommon—although x9; has no predictive power in population by
construction. According to the bootstrap small-sample distribution of R?, the increase in the
data of 19 percentage points is not inconsistent with the spanning hypothesis.

Since the persistence of x9; is high, it may be important to adjust for small-sample bias in
the VAR estimates, so we also carried out the bias-corrected (BC) bootstrap. The expected
values and 95% bootstrap intervals are reported in the bottom two rows of the top panel in
Table 2. As expected, more serial correlation in the generated data (due to the bias correction)
increases the mean and the variability of the R? and of their difference. Hence R2 — R? is even

more comfortably within the bootstrap interval.

3.2 Testing the spanning hypothesis

While JPS only reported R? for their excess return regression, one is naturally interested in
formal tests of the spanning hypothesis. We report coefficient estimates and test statistics
in Table 3. The common approach to address the serial correlation in the residuals due to
overlapping observations is to use the standard errors and test statistics proposed by Newey
and West (1987), and in regressions for annual returns with monthly data researchers typically
use 18 lags (see among many others Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009).
In the second row of Table 3 we report the resulting t-statistic for each coefficient along with
the Wald test of the hypothesis 8, = 0. The third row reports the p-values for these statistics
if they were interpreted using the conventional asymptotic approximation. According to this
popular test, GRO and INF appear strongly significant, both individually and jointly. In
particular, the Wald test gives a p-value below 0.1%.

However, the small-sample problems described in Section 2 likely distort these test results.
The canonical correlation between innovations in one-month excess returns and innovations
in the three yield PCs (the generalization of the parameter § in Section 2.3) is 0.99. This

correlation is always high in tests of the spanning hypothesis, because the yield PCs in zy,
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explain current yields very well, and so innovations to xy; are highly correlated with returns
realized at t. Furthermore, as noted above, the autocorrelations of the predictors are high
and the sample size is relatively small. Our theory predicts that standard error bias will be
severe in this application. In addition, the well-known small-sample problems of Newey-West
standard errors are likely to be particularly pronounced in this setting.

We therefore employ our bootstrap to carry out tests of the spanning hypothesis that
account for these small-sample issues. Again, we use both simple (OLS) and BC bootstrap.
For each, we report five-percent critical values for the ¢- and Wald statistics, calculated as the
95th percentiles of the bootstrap distribution, as well as bootstrap p-values, i.e., the frequency
of bootstrap replications in which the bootstrapped test statistics are at least as large as in the
data. Using either the simple or BC bootstrap, the coefficient on GRO is insignificant even
at the 10% level, and the coefficient on INF' is marginally significant at the 5% level. The
bootstrap p-value for the Wald test of the spanning hypothesis is slightly below 5% for the
simple bootstrap and slightly above 5% for the BC bootstrap. These tests give much weaker
evidence against the spanning hypothesis than one would have thought based on conventional
asymptotic interpretation of the test statistics.

Using the bootstrap we can calculate the true size of the conventional HAC and the boot-
strap tests, which both have a nominal size of five percent. These are reported in the Size
section of the top panel of Table 3. For the conventional HAC tests, this is calculated as the
frequency of bootstrap replications in which the test statistics exceed the usual asymptotic
critical values. The results reveal that the true size of these conventional tests is 19-36%
instead of the presumed five percent. These substantial size distortions are also reflected in
the bootstrap critical values, which far exceed the conventional ones.

We can also use our bootstrap to evaluate the power of our proposed tests. To do so, we
simply add nga to the value generated by our bootstrap for y;,, where Bg is the coeflicient
on x9 in the original data sample. We now have a generated sample in which x5, in fact does
predict y;4p, and with a magnitude that is exactly that claimed in the original study. We
repeat this to obtain 5000 such samples and in each sample calculate all our tests. We find
that the bootstrap Wald test rejects the (false) spanning hypothesis in 89% of the samples.
In other words, these tests should reject the spanning hypothesis in the data if it were indeed
false, which suggests that the reason that they do not reject is not a lack of power, but the
fact that empirical spanning is a reasonable description of the observed sample.

In addition we also tested alternative versions of the spanning hypothesis where four or five
PCs of yields capture the information in the yield curve. The results, reported in Appendix
B, show that our conclusions are unchanged when we allow for a more general spanning

hypothesis.
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3.3 New data

What happens when we augment the sample with the eight years of new data that have arrived
since the original analysis by JPS? The last three columns of the top panel of Table 2 show
that the in-sample improvement in R? when x,, is included in the regression is substantially
smaller over the 1985-2016 data set than was found on the original JPS data set, and the
improvement is far from statistically significant.®> And as seen in the second panel of Table
3, the values of the HAC test statistics are substantially smaller on the longer data set than
in the original data, and the ¢- and Wald statistics are no longer statistically significant even
if interpreted in the usual way.

Row 1 of Table 4 reports the pure OOS forecast comparison for ¥, the average 12-month
excess return across 2- to 10-year bonds. We used a recursive scheme where we re-estimate the
predictive regressions by extending the estimation window each month of the newly available
data. Whereas in the original JPS in-sample regression, the addition of x9; improved the
mean squared prediction error by 24%, the addition of x9; leads to a deterioration in the OOS
prediction error by 116%. Moreover, this deterioration is strongly statistically significant
according to the Diebold and Mariano (1995) (DM) test.*?

Adding new observations to the JPS data set substantially weakens the evidence against
the spanning hypothesis. But if the null hypothesis were truly false, we would expect to find
the evidence against it become stronger, not weaker, when we use a bigger data set. We
conclude on the basis of the bootstrap and the evidence in newly available data that the JPS

evidence on unspanned macro risks is far from convincing.

4 Factors of large macro data sets

Ludvigson and Ng (2009, 2010) found that factors extracted from a large macroeconomic
data set are helpful in predicting excess bond returns, above and beyond the information
contained in the yield curve. Here we revisit this evidence, focusing on the results in Ludvigson
and Ng (2010) (henceforth LN). They started with a panel data set of 131 macro variables
observed over 1964:1-2007:12 and extracted eight macro factors using the method of principal
components. These factors, which we will denote by F'1 through F'8, were then related to

future one-year excess returns on two- through five-year Treasury bonds. They also included

32This also turns out to be the case for every individual bond maturity; see Table C.1 in Appendix C.

331n related work, Giacoletti et al. (2016) evaluated the real-time OOS forecasting performance of a model
similar to that used in JPS. They found that including macro variables only helps for predicting very short-term
yields and only over a specific subsample, but that overall “’‘macro rules’ add little to the forecast accuracy of
the basic yields-only rule” (p. 29). While this supports the spanning hypothesis, they find some incremental
predictive power when including survey forecast disagreement.
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the return-forecasting factor that was proposed by Cochrane and Piazzesi (2005), denoted C'P,
which is the linear combination of forward rates that best predicts the average excess return
across maturities. Based on comparisons of R? of regressions with and without macro factors,
as well as inference using Newey-West standard errors, LN concluded that macro factors help
predict excess returns, even when controlling for information in the yield curve using the C'P
factor.

We estimate regression (1) where now ;. is the average one-year excess bond return
for maturities of two through five years, x1; contains a constant and three yield PCs, and z;
contains eight macro PCs. The specification is very similar to that of LN, with two differences:
First, we capture the information in the yield curve using the first three PCs of yields, while LN
use the C'P factor. Second, we do not carry out LN’s preliminary specification search—they
considered many different combinations of the factors along with squared and cubic terms—in
order to focus squarely on hypothesis testing for a given regression specification.**

Table 2 shows that in LN’s data set the R? increases by 10 percentage points when the
macro factors are included, consistent with LN’s findings. The first three rows of Table 5 show
the coefficient estimates, HAC ¢- and Wald statistics (using Newey-West standard errors with
18 lags as in LN), and conventional p-values. There are five macro factors that appear to
be statistically significant at the ten-percent level, among which three are significant at the
five-percent level. The Wald statistic for Hy far exceeds the critical values for conventional
significant levels. Taken at face value, this evidence suggests that macro factors have strong
predictive power, above and beyond the information contained in the yield curve.

How robust are these econometric results? We first check the warning flags. As usual,
the first two yield PCs are very persistent, with autocorrelations of 0.98 and 0.94. The most
persistent macro variables have first-order autocorrelations of around 0.75, so the persistence of
x9 is lower than in the data of JPS but still considerable. As always, the yield PCs strongly
violate strict exogeneity by construction, for the reasons explained in the previous section.
Based on these indicators, it appears that small-sample problems may well distort the results
of conventional inference methods.

To address the potential small-sample problems we again bootstrapped 5000 data sets of
artificial yields and macro data in which Hj is true in population. The samples each contain
516 observations, which corresponds to the length of the original data sample. We report
results only for the simple bootstrap without bias correction, because the bias in the VAR
for x9; is estimated to be small. Note that LN also considered bootstrap inference, but their

main bootstrap design imposed the expectations hypothesis, in order to test whether excess

34We were able to closely replicate the results in LN’s tables 4 through 7, and have also applied our techniques
to those regressions, which led to qualitatively similar results.
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returns are predictable by macro factors and the C'P factor. Using this setting, LN produced
convincing evidence that excess returns are predictable, which is fully consistent with our
results. Our null hypothesis of interest, however, is that excess returns are predictable only by
current yields. While LN also reported results for a bootstrap under the alternative hypothesis,
our bootstrap under the null provides more accurate tests of the spanning hypothesis and
allows us to estimate the size of conventional tests under the null (see also footnote 23).

Table 2 shows that the observed increase in predictive power from adding macro factors
to the regression, measured by k2, would not be implausible if the null hypothesis were true,
as the increase in R? is within the 95% bootstrap interval. And as seen in Table 5, our
bootstrap finds that only three coefficients are significant at the ten-percent level (instead of
five using conventional critical values), and one at the five-percent level (instead of three).
While the Wald statistic is significant even compared to the critical value from the bootstrap
distribution, the evidence is weaker than when using the asymptotic distribution.

We again use the bootstrap to estimate the size and power of the different tests with a
nominal size of five percent. The results, reported in Table 5, reveal that the conventional t-
tests have modest size distortions, with true size of 8-14% instead of the nominal five percent.
But the Wald test is seriously distorted, with a true size of 32 percent. The Wald test
compounds the problems resulting from the non-standard small-sample distribution of each of
the eight coefficient estimates for xy;, and therefore ends up with a large size distortion. By
contrast, our proposed bootstrap test has close to correct size. They also have good power, in
particular the bootstrap Wald test.

Again there are several years of data that have arrived since the original LN analysis was
conducted.?® We repeated our analysis using the same 1985-2016 sample period that we used
to reassess the results of JPS. There it was a strictly larger sample than the original, but
here our new sample adds data at the end but leaves some out at the beginning. Reasons
for interest in this sample period include the significant break in monetary policy in the
early 1980s, the advantages of having a uniform sample period for comparison across all the
different studies considered in our paper, and investigating robustness of the original claims
in describing data since the papers were originally published. The results, shown in the right
panel of Table 2 and the bottom panel of Table 5, show that over the later sample period,
the evidence for the predictive power of macro factors is quite weak. The increases in R? in
Table 2 are not statistically significant, being squarely within the bootstrap intervals under

the spanning hypothesis. The Wald test rejects Hy when using asymptotic critical values, but

35To construct the macro factors for the 1985-2016 sample period, we used the macro data set of McCracken
and Ng (2014) and transformed the data and extracted the PCs in the same way as LN did. Using the data
constructed in this way, we also obtained results similar to LN’s over their original sample period.
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is very far from significant when using bootstrap critical values. Duffee (2013b, Section 7)
has also noted problems with the stability of the results in Cochrane and Piazzesi (2005) and
Ludvigson and Ng (2010) across different sample periods.

We also repeated the pure OOS exercise and report the results in the second row of Table
4. In contrast to the results for JPS (in the first row), we find that the unrestricted model
which includes macro variables does better both in-sample and OOS than the model that only
includes yield PCs. Adding the eight macro factors reduces the MSE for predicted returns
over the 2009-2016 period by 22%. However, this improvement is not large enough to be
statistically significant based on the DM test.

Overall, these results again show that conventional measures of fit and hypothesis tests
are not reliable for assessing the spanning hypothesis. Furthermore, the evidence that macro
factors have predictive power beyond the information already contained in yields is weaker than
the results in LN would initially have suggested. Both small-sample econometric problems as

well as subsample stability raise concerns about the robustness of the results.*°

5 Trend inflation

Cieslak and Povala (2015) (henceforth CPO) presented evidence that measures of the trend in
inflation can help to estimate risk premia in bond returns. They found this using a variety of
measures of trend inflation. Their strongest results (and the specification we investigate here)
calculates the trend in inflation using a very slowly adjusting weighted average of observed

inflation rates,
7= (1= )YV T, (17)

for m; the month t year-over-year inflation in the core CPI and v = 0.987. CPO found
that although 7; alone does not predict excess returns, when added to a regression that also
includes yields, the inflation trend becomes highly significant and the predictive power of
yields improves tremendously as well.

CPO calculated standard errors using the Wei and Wright (2013) reverse regression (RR)
approach as a way to mitigate the problems resulting form overlapping observations identified
in Section 2.5. The RR approach uses the insight of Hodrick (1992) that it is beneficial to
base inference in predictions for overlapping returns on estimates from regressions of one-
period (non-overlapping) returns on cumulated predictors, and extends Hodrick’s approach to
perform inference about other hypotheses than the absence of predictability. We also use the

RR approach throughout this section as we replicate and extend CPO’s results.

36 Appendix D reports additional results for predictive regressions with return-forecasting factors, using an
empirical approach that was also advocated by LN. These results reinforce our conclusions.
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To reproduce CPO’s key results in a similar structure to those used in discussing the
previous two studies, let y;,, denote a weighted average of the annual excess returns on 2- to
15-year bonds, z1; a constant and the first three PCs of yields, and x9; = 7;.°" The first three
rows of Table 6 reproduce CPO’s conclusion that the ability of the PCs alone to predict excess
returns is modest and only the slope is a significant predictor of bond returns, consistent with
the long-standing results of Campbell and Shiller (1991). But when 7 is added (rows 4-6),
the trend is highly significant, and the values and statistical significance of the coefficients on
PC1 and PC?2 increase tremendously as well.

The value of 7 is plotted in Figure 2 along with the yield on a 10-year bond. Both 7; and
nominal interest rates exhibited an upward trend until the early 1980s and a distinct downward
trend since then. From the start to the end of CPO’s original sample, the value of 7; fell by
more than 200 basis points and the 10-year yield by over 400 basis points. The variable 7,
is also extremely persistent, with an autocorrelation of 0.9985. The analysis in Section 2.4
showed that in a setting like this, the problems from standard error bias can become much
worse due to the presence of trends, and both the predictive power of 7, and its apparent
usefulness in refining the predictive power of the PCs could be spurious.

We again investigate these concerns using our bootstrap.®® 1In this case, because of the
very high persistence of 7, we use the bias-corrected bootstrap. The key question is the
following: For data generated under the null hypothesis that z; alone is useful in predicting
returns, how often do we reject this null hypothesis? This estimate of the true size of the
RR t-test is 42.5%, as reported in Table 6. The enormous size distortion results from the
simultaneous presence of multiple problems, namely standard error bias, trends in xy; and
Zos, and overlapping annual observations. We can use the bootstrap to investigate further the
specific features of the DGP that lead to this poor test size.

The main problem is the presence of trends in PC'1 and 7;. In our bootstrap DGP z; and
Top are highly persistent but stationary series, with the trend in the observed sample coming
from the fact that the initial values for PC'1 and 7, are the historical values in 1971, which
are significantly above the population means implied by the coefficients estimated from the
entire sample. When we instead initialize the bootstrap samples at the population means, so
that trends are absent by construction, the size of the RR t-test is only 16% instead of 45%.

3TWe use zero-coupon yields with one to fiften years maturity from Giirkaynak et al. (2007) and a one-month
T-bill rate from the Center for Research in Security Prices (CRSP). For the dependent variable we use the
same type of weighted average of excess returns as CPO, where returns are divided by the bond’s duration
before being averaged.

380ur bootstrap uses a VAR(1) for yield PCs and an AR(1) for the inflation trend. While more sophisticated
bootstrap designs for inflation and the inflation trend are possible—e.g., calculating the bootstrapped inflation
trend as a moving average of inflation simulated from an ARIMA model—we have found that our key results
remain essentially unaffected by this choice.
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This reveals that the size distortions in the CPO analysis arise primarily from the problems
with trending variables analyzed in Section 2.4.%

The interaction of the trends present in PC'1 and 7; renders the inference about the coeffi-
cients on both predictors highly unreliable, as the following exercise shows. If we regress y;p,
on xy; alone, RR t-test rejects the false null hypothesis that the coefficient on PC1 is zero in
only 17% of the bootstrap samples. Likewise, if we regress y;,, on a constant and 7; alone,

O However, when

we reject the null hypothesis that 3, = 0 in 14% of the bootstrap samples.*
both xy; and zo; are in the regression, we reject the hypothesis that the coefficient on PC'1
(1¢) is zero in 53% (45%) of the samples. The typical finding would thus be that although
both PC1 and 7; individually have almost no predictive power for ;. 5, when both are added
to the same regression they typically appear statistically significant. We have also found that
adding 7; to the regression doubles the root-mean-square error for the coefficient estimate
on PC1 around its true value. This suggests that rather than helping refine the predictive
power of x1;, the addition of x9; in fact leads to a substantial deterioration of the forecasting
model. The reason for all of these problems is the simultaneous presence of trends in x;; and
7; which substantially distorts the inference about the spanning hypothesis, in line with the
econometric theory in Section 2.4.

Furthermore, the problems stemming from overlapping observations are only partially
alleviated by the RR test. If instead of RR standard errors we use Newey-West standard
errors with the usual 18 lags, the test of S = 0 has an even larger size of 56%, compared
to the 45% size of the RR test, so the RR approach helps some. However, in the absence of
overlapping observations, a t-test of the same hypothesis has a size of 34%. Since this is quite
a bit below 45% the RR test apparently does not completely solve the problem of overlapping
observations.*!

Notwithstanding, we emphasize that these concerns cannot entirely explain the size of the

effects found by CPO. As seen in Table 2, it would not be surprising to see the estimated R? go

39By contrast, in the JPS data we found that the biggest single source of the size distortions is the use
of overlapping returns and Newey-West standard errors. And in the LN data it is a combination of the
overlapping returns and the presence of a relatively large number of predictors in x4, which magnifies the size
distortions.

4OIn our DGP, as in the data, bond risk premia are driven mainly by PC?2; the population coefficient on
PC1 is nonzero but close to zero. And 7; is correlated with x4 in the bootstrap DGP so 7; by itself also has
some predictive power. But for both PC1 and 7; the predictive power is usually not big enough for the RR
t-test to detect.

41To obtain this result we set h = 1 and calculate y;,1 as monthly excess returns, using the usual approxi-
mation ¢,_1,t41 R in¢+1 and the one-month T-bill rate. The ¢-test in this case uses White’s heteroskedasticity
robust standard errors (as in, for example, Duffee, 2013b, Section 7). It is well-known that RR standard errors,
just like Hodrick’s standard errors, do not eliminate the problem of Stambaugh bias; note for example the
size distortions in Table 1 of Wei and Wright (2013). Therefore it is unsurprising that this approach does not
eliminate standard error bias.
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from 15% when only PCs are used to as high as 40% when 7; is added. In the data, however,
we find an R? of 46% when 7, is added, too big to be attributed to the factors captured by
our bootstrap alone. We also see from Table 6 that while it would not be surprising to see
the RR t-statistic for By as high as 3.6; the value observed in the data of 6.2 is much too big
to be explained by these considerations alone.*?

We also reestimated the predictive regressions over the 1985-2016 period that we have
used as a common comparison with the other studies. The increase in R? is smaller and no
longer statistically significant on this dataset, as seen in the last three columns of Table 2.
Compared to the bootstrap small-sample critical values, the RR t-statistic is only marginally
statistically significant at the 5% level, as seen in the second panel of Table 6. Note that
in the post-1985 sample the downward drift in the level of yields and the inflation trend is
even more pronounced, adding to the econometric problems caused by trends in explanatory
variables.

We also evaluated the true OOS usefulness of 7; using new data after the end of CPO’s
sample period, which we report in line 3 of Table 4. Whereas within CPO’s original sample the
trend reduces the MSE by 40%, for the data that have arrived since 2011 including the inflation
trend actually increases the MSE by 221%, and based on the DM statistic this deterioration
is strongly statistically significant.

In sum, there are two possibly complementary explanations for the strong in-sample pre-
dictive power of the inflation trend 7, documented by CPO. First, the addition of 7; may truly
help improve forecasts of bond returns, for example because accounting for the common, slow-
moving trend in yields and 7 might uncover additional predictive power. This interpretation
is supported by the fact that CPO’s finding survives our bootstrap correction for small-sample
problems, at least in their original data set. But a second explanation, suggested by the the-
oretical arguments in Section 2.4, is that a substantial portion of the apparent incremental
predictive power of 7; arises spuriously from the presence of trends. This second explanation
is supported by our bootstrap analysis of the the role of trends, by the results in the 1985-2016
sample, and by the poor out-of sample performance of the model that includes 7; vis-a-vis a
model that imposes the spanning hypothesis. Clearly one needs to exercise particularly great
care in interpreting evidence against the spanning hypothesis in a situation with trending

predictors.

42We note from Figure 2 that 7; is even better characterized as exhibiting two different trends rather than a
single downward trend as captured in our bootstrap. We have found in simulations that such breaking trends
can substantially exacerbate the problems that arise from a single trend.
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6 Higher-order PCs of yields

Cochrane and Piazzesi (2005) (henceforth CP) documented several striking facts about excess
bond returns. They showed that a tent-shaped combination of forward rates predicts annual
excess returns on different long-term bonds with an R? of up to 37% (and even up to 44%
when lags are included). Importantly for our context, CP found that the first three PCs
of yields—Ilevel, slope, and curvature—did not fully capture this predictability, but that the
fourth and fifth PC were also very helpful. As usual, the first three PCs explain a large share
of the cross-section variation in yields (99.97% in their data), but CP found that the other
two PCs, which explain only 0.03% of the cross-section variation in yields, are statistically
important for predicting excess bond returns. In particular, the fourth PC appeared “very
important for explaining expected returns” (p. 147). Here we assess the robustness of this
finding, by revisiting the null hypothesis that only the first three PCs, but not higher-order
PCs, predict excess returns.

The last panel of Table 2 shows (unadjusted) R? for predictive regressions for the average
excess bond return using three and five PCs as predictors, and the first entries replicate the
results of CP. In Table 7 we report the results of HAC inference for the regressions with 5
PCs using Newey-West standard errors with 18 lags, and the Wald statistic is identical to that
reported by CP in their Table 4. The p-values indicate that PC4 is very strongly statistically
significant, and that the spanning hypothesis would be rejected.

We then use our bootstrap procedure to obtain robust inference about the relevance of the
predictors PC4 and PC5. We find that CP’s result is not due to small-sample size distortions.
The persistence of higher-order PCs is quite low, so that the size distortions of conventional
tests are small. And the Newey-West t-statistic on PC4 is far too large to be accounted for
by the kinds of factors identified in Section 2. Likewise the increase in R? reported by CP
would be quite implausible under the null hypothesis, as it falls far outside the 95% bootstrap
interval under the null.

In the last three columns of Table 2 and the bottom panel of Table 7 we report results for
the 1985-2016 sample period. In this case, the increase in R? due to inclusion of higher-order
PCs is comfortably inside the 95% bootstrap intervals, and the coefficients on PC4 and PC5
are not significant for any method of inference.**

CP’s sample period ended more than ten years prior to the time of this writing, giving us
the longest true OOS period among the studies considered. The last row of Table 4 shows
that in contrast to the in-sample estimates, where including PC4 and PC5 reduces the MSE

43Consistent with this finding, an influence analysis of the predictive power of PC4 in the full sample
indicates that the observations with the largest leverage and influence are almost all clustered in the early and
mid 1980s.
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by 11%, OOS predictions become less accurate, with the MSE increased by 21%, when the
null hypothesis is not imposed. While the DM test does not reject the hypothesis that both
models have equal predictive accuracy in population, restricting the predictive model to use
only the level, slope and curvature leads to more stable and more accurate return predictions
in post-publication data.

It is worth emphasizing the similarities and differences between CP’s results and ours.
Their central claim, with which we concur, is that the factor they have identified is a useful
and stable predictor of bond returns. CP conducted tests of the usefulness of their return-
forecasting factor for predicting returns across different subsamples, a result that we have been
able to reproduce and confirm. But their factor is a function of all 5 PC’s, and our results
suggest that it is mainly PC'1-PC3, and not the addition of PC'4 and PC5, that makes this
factor a robust predictor of bond returns. We have shown that these higher-order PCs are
insignificant in the 1985-2016 sample and in true out-of-sample forecasting. In additional,
unreported results we found the same results for most of the subsample periods that CP
considered, as well as for the 1952-2010 sample period considered by Duffee (2013b, Section
7). We conclude that the predictive power of higher-order factors is tenuous and sample-
dependent, and that there is no compelling evidence that the first three PCs of yields are

insufficient to estimate bond risk premia.**

7 Other studies

Several other studies have also reported evidence that might appear to be inconsistent with
the spanning hypothesis. Cooper and Priestley (2008) concluded that the output gap contains
useful information for forecasting interest rates, while Greenwood and Vayanos (2014) found
the same for measures of Treasury bond supply. We have repeated our analysis using the
datasets in these studies and found that evidence against the spanning hypothesis in these
two cases is even weaker than for any of the studies discussed in Sections 3 to 6. Details of

our investigations are reported in Appendices E and F.

8 Conclusion

Conventional tests of whether variables other than the level, slope and curvature can help

predict bond returns have significant size distortions, and the R? of the regression can in-

4 Cattaneo and Crump (2014) also investigated the robustness of the results of Cochrane and Piazzesi
(2005) and obtained even more negative results: Using a new HAC test proposed by Miiller (2014) they did
not reject the null hypothesis that the CP factor had no predictive power in a variety of in-sample and OOS
specifications.
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crease dramatically when other variables are added to the regression even if they have no true
explanatory power. We proposed a simple parametric bootstrap to carry out inference that is
robust to the resulting small-sample problems. We used this bootstrap approach to reexamine
the usefulness of proposed predictors in six widely cited studies, in both the original data and
in a common sample period that includes newly available data. In addition, we calculated true
out-of-sample forecasts. Our overall finding is that conventional tests are highly unreliable,
and that as a result the evidence that variables other than the current level, slope and cur-
vature predict excess bond returns is substantially less convincing than the original research

would have led us to believe.
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Table 1: Simulation study of standard error bias

p 5 Coefficient bias SE bias Size
51 Ba (%) simulated asymptotic bootstrap

p = p2 =0

0.99 0.0 0.000 0.000 -4.7 0.050 0.047 0.048
0.00 1.0 -0.010 0.000 -0.6 0.050 0.051 0.050
0.90 1.0 -0.052 0.000 -15.4 0.085 0.086 0.057
0.99 0.8 -0.055 0.000 -23.2 0.113 0.112 0.072
0.99 1.0 -0.068 0.000 -29.8 0.151 0.151 0.082
p =0, p0 =1

0.99 0.0 0.000 0.000 -5.1 0.050 0.049
0.00 1.0 -0.010 0.000 -0.5 0.050 0.050
0.90 1.0 -0.053 0.000 -17.1 0.089 0.057
0.99 0.8 -0.071 0.000 -42.4 0.183 0.077
0.99 1.0 -0.088 0.000 -50.8 0.268 0.085
=1, p0 =1

0.99 0.0 0.000 0.000 -4.0 0.050 0.047
0.00 1.0 -0.010 0.000 -0.5 0.050 0.050
090 1.0 -0.037 0.017 -12.0 0.081 0.054
0.99 0.8 -0.036 0.035 -12.1 0.168 0.056
099 1.0 -0.045 0.044 -16.0 0.241 0.058

Coefficient bias, standard error bias, and test size in simulation study for predictive regressions
Y41 = Bo + L1z + Bawar + ugyq in sample of size T' = 100 from data-generating process (DGP)
with z1; and x9; following AR(1) processes, Sy = 51 = B2 = 0, and different values of p; = ps = p
and 0. For details on the DGP refer to text. The coefficient bias is reported as F (Bl) — B;. The
standard error bias is reported as E[(65,) — 04,]/05,. The last three columns report the size (i.e.,
frequency of rejections) of tests of Hy : 2 = 0 with a nominal size of five percent, for a conventional
t-test—according to both regressions in simulated small samples and the local-to-unity asymptotic
distribution—and for the bootstrap test.
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Table 2: In-sample predictive power in excess-return regressions

R 7 B-R R R B-R
JPS Original sample: 1985-2008 Later sample: 1985-2016
Data 0.19 0.38 0.19 0.17 0.21 0.04
Bootstrap 0.32 0.38 0.06 0.28 0.32 0.05
(0.11, 0.55) (0.15, 0.60) (0.00, 0.20) (0.08, 0.49) (0.12, 0.53) (0.00, 0.17)
BC bootstrap 0.35 0.41 0.06 0.28 0.33 0.05
(0.08, 0.62) (0.13, 0.67) (0.00, 0.23) (0.06, 0.52) (0.11, 0.57) (0.00, 0.20)
Luduvigson-Ng Original sample: 19642007 Later sample: 19852016
Data 0.25 0.35 0.10 0.14 0.24 0.10
Bootstrap 0.21 0.24 0.03 0.29 0.34 0.05
(0.05, 0.38) (0.08, 0.42) (0.00, 0.11) (0.09, 0.51) (0.13, 0.55) (0.00, 0.16)
Cieslak-Povala Original sample: 1971-2011 Later sample: 19852016
Data 0.12 0.46 0.34 0.16 0.35 0.19
BC bootstrap 0.15 0.22 0.07 0.27 0.34 0.07
(0.02, 0.34) (0.06, 0.40) (0.00, 0.21) (0.05, 0.53) (0.10, 0.57) (0.00, 0.23)
Cochrane-Piazzesi Original sample: 19642003 Later sample: 1985-2016
Data 0.26 0.35 0.09 0.15 0.18 0.03
Bootstrap 0.21 0.22 0.01 0.30 0.31 0.01

(0.05, 0.39)  (0.06, 0.40) (0.00, 0.02) (0.10, 0.51) (0.11, 0.52) (0.00, 0.05)

Adjusted R? for regressions of annual excess bond returns on three PCs of the yield curve (R?) and
on three yield PCs together with the additional proposed predictors zo, well as the difference in
adjusted R?. The additional predictors, which are described in more detail in the text, are: for JPS,
measures of growth and inflation; for Ludvigson-Ng, eight PCs of a large set of macro variables; for
Cieslak-Povala, a moving-average estimate of the inflation trend; and for Cochrane-Piazzesi, the
fourth and fifth PC of yields. The results in the left half of the table are for the original sample
period in each paper; the right half of the table is for the 1985-2016 sample period. The excess
bond return is an average across bond maturities: for JPS, from two to ten years; for Ludvigson-Ng,
from two to five years; for Cieslak-Povala, from two to ten years (a weighted average); and for
Cochrane-Piazzesi, from two to five years. The first row of each panel reports the values of the
statistics in the original data. The following rows report bootstrap mean and 95%-quantiles (in
parentheses). The bootstrap, which is described in the text, imposes the null hypothesis that o,
has no incremental predictive power. For Cochrane-Piazzesi, the results are for the unadjusted R?.
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Table 3: Joslin-Priebsch-Singleton: statistical inference in excess-return regressions

pPC1 PC2 PC3 GRO INF Wald
Original sample: 1985-2008

Coefficient 1.090 1.793 2.874 -2.200 -6.052
HAC statistic 5.587 3.933 0.799 -2.475 -4.265 25.152
HAC p-value 0.000 0.000 0.425 0.014 0.000 0.000
Bootstrap 5% c.v. 3.177  3.870 22.705
Bootstrap p-value 0.109 0.034 0.038
BC bootstrap 5% c.v. 3.245  4.261 25.796
BC bootstrap p-value 0.123 0.050 0.053
Size

HAC 0.189 0.274  0.356

Bootstrap 0.059 0.060 0.063
Power

Bootstrap 0.204 0.904 0.893
Later sample: 1985-2016
Coefficient 0.371 1.741 1.542 -0.429 -2.420
HAC statistic 2,302  3.324 0.611 -0.537 -1.798 3.350
HAC p-value 0.022 0.001 0.542 0.592 0.073 0.187
Simple bootstrap 5% c.v. 3.008 3.409 18.510
Simple bootstrap p-value 0.706 0.283 0.504
BC bootstrap 5% c.v. 3.075 3.794 21.337
BC bootstrap p-value 0.713 0.317  0.552

Predictive regressions for annual excess bond returns, averaged over two- through ten-year bond
maturities, using yield PCs and two macro variables that are described in the text. Results in the
top panel are for the same sample period used in Joslin et al. (2014); the data used for the bottom
panel is extended to December 2016. HAC statistics and p-values are calculated using Newey-West
standard errors with 18 lags. The column “Wald” reports results for the x? test that GRO and
INF have no predictive power; the other columns report results for individual ¢-tests. We obtain
bootstrap distributions of the test statistics under the null hypothesis that GRO and I N F have no
predictive power—the text describes the design of the simple and bias-corrected (BC) bootstraps.
Critical values (c.v.’s) are the 95th percentile of the bootstrap distribution of the test statistics, and
p-values are the frequency of bootstrap replications in which the test statistics are at least as large
as in the data. Under Size we report estimates of the size of the tests, based on simulations from
the simple bootstrap under the null hypothesis. Under Power we report power estimates using a
bootstrap under the alternative hypothesis, as described in the text. p-values below 5% are
emphasized with bold face.
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Table 4: In-sample vs. out-of-sample predictive power

In-sample Out-of-sample
R? R?  MSE-ratio Start N  MSE-ratio DM p-value
Joslin-Priebsch-Singleton 0.191 0.381 0.759 2008:1 96 2.156 0.005
Ludvigson-Ng 0.258 0.359 0.850 2007:1 108 0.778 0.314
Cieslak-Povala 0.165 0.496 0.603 2011:1 60 3.213 0.006
Cochrane-Piazzesi 0.267 0.344 0.891 2003:1 156 1.213 0.103

In-sample vs. out-of-sample (OOS) predictive power for excess bond returns (averaged across
maturities) of a restricted model with three PCs and an unrestricted model with additional
predictors as suggested in each of four published studies. The in-sample period is the original
sample period used in each study. The OOS period starts after the end of the in-sample period and
ends in December 2016. OOS forecasts are generated using a recursive estimation scheme. N
indicates the number of OOS observations. The columns also show in-sample R? for the restricted
and unrestricted model, the in-sample ratio of mean-squared-errors (MSE) for the unrestricted
relative to the restricted model, and the OOS MSE ratio, as well as the p-value of the
Diebold-Mariano (DM) test for equal forecast accuracy.
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Table 6: Cieslak-Povala: statistical inference in excess-return regressions

PC1 PC2 PC3 T

Original sample: 1971-2011
Only yield PCs

Coefficient 0.003 0.240 -0.127
RR t-statistic 0.448  2.497 -0.630
RR p-value 0.654 0.013 0.529
Yield PCs plus inflation trend
Coefficient 0.160 0.429 -0.059 -0.962
RR t-statistic 5.173  5.227 -0.322 -6.329
RR p-value 0.000 0.000 0.748 0.000
Bootstrap RR 5% c.v. 3.538
Bootstrap RR p-value 0.000
Size
RR 0.425
Bootstrap 0.075
Power
Bootstrap 0.978

Later sample: 1985-2016
Only yield PCs

Coefficient 0.019 0.180 -0.056

RR t-statistic 1.825 1.639 -0.027

RR p-value 0.069 0.102 0.978

Yield PCs plus inflation trend

Coefficient 0.106 0.297 0.061 -0.607
RR t-statistic 4.395 3.548 0.611 -3.708
RR p-value 0.000 0.000 0.541 0.000
Bootstrap RR 5% c.v. 3.580
Bootstrap RR p-value 0.039

Predictive regressions for annual excess bond returns (weighted average over two- through ten-year
bond maturities) using yield PCs and the moving-average estimate of inflation trend defined in
equation (17). The data used for the top panel covers the same sample period as in Cieslak and
Povala (2015); the data used for the bottom panel starts in 1985 and ends in 2016. Reverse
regression (RR) statistics and p-values are calculated using the reverse regression delta method of
Wei and Wright (2013). We obtain bootstrap distributions of the test statistics under the null
hypothesis that only PCs have predictive power, in order to calculate bootstrap critical values and
p-values, and to estimate the size of tests. Under Size we report estimates of the size of the tests
based on the bootstrap samples. Under Power we report power estimates using a bootstrap under
the alternative hypothesis, as described in the text. p-values below 5% are emphasized with bold
face.
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Table 7: Cochrane-Piazzesi: statistical inference in excess-return regressions

pPC1  PC2 PC3 PC4 PC5  Wald
Original sample: 1964—2003

Data 0.127  2.740 -6.307 -16.128 -2.038
HAC statistic 1.724 5205 2950 5.626  0.748 31.919
HAC p-value 0.085 0.000 0.003 0.000 0.455 0.000
Bootstrap 5% c.v. 2330  2.178  8.359
Bootstrap p-value 0.000 0.501 0.000
Size

HAC 0.091  0.077 0.112

Bootstrap 0.060  0.040  0.050
Power

Bootstrap 0.995 0.113 0.988
Later sample: 1985-2016
Coefficient 0.106 1.589 3.157 -9.585 -9.360
HAC statistic 1.982 2254 0.950 -1.460 -1.263 4.180
HAC p-value 0.048 0.025 0.343 0.145 0.207 0.124
Bootstrap 5% c.v. 2480  2.445  9.962
Bootstrap p-value 0.239 0.295 0.264

Predicting annual excess bond returns, averaged over two- through five-year bonds, using principal
components (PCs) of yields. The null hypothesis is that the first three PCs contain all the relevant
predictive information. The data used in the top panel is the same as in Cochrane and Piazzesi
(2005)—see in particular their table 4. HAC statistics and p-values are calculated using
Newey-West standard errors with 18 lags. Bootstrap distributions are obtained under the null
hypothesis, using the bootstrap procedure described in the text. Under Size we report estimates of
the size of the tests based on the bootstrap samples. Under Power we report power estimates using
a bootstrap under the alternative hypothesis, as described in the text. p-values below 5% are
emphasized with bold face.
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Figure 1: Size distortions and sample size in simulation study
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Figure 2: Cieslak-Povala: ten-year yield and inflation trend
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Appendix

A Derivations of theoretical results

A.1 Derivations for Section 2.2

Let v = (Y14h, Y2i+n, - Yren) and stack x), and z9, into (7" x K;) and (T x K,) matrices
denoted X; and X,. Note that the OLS estimates of equation (1) satisfy

X{Xl X{Xz b1 . X{y

Premultiply the first row by X3X;(X]X;)™! and subtract the result from the second,
(XoM X5)by = X5 My,
for My = Iy — X1(X|X;)7'X{. Using the fact that M, is symmetric and idempotent we have

XoM Xy = (M Xo) My Xy = Fylity, (18)

by = (Z 552@’2,:) - (Z v%QtytJrh) . (19)

Substituting equation (1) into (19) and using the facts that ) Zo,2}, = 0 (by the orthogonality
property of residuals) and that > Zozh, = > To,%), (again by idempotence of M;) gives

b= ot (S i) (3 e (20)

from which the Wald test is
(ba — Ba)'s 2> oy (ba — Ba)

(S wat) (¢35, ) (32,7
= U1 T S X JT) < Tl )
=1 t+1-L9o¢ =1 2tL ot =1 2t Ut41

as claimed in (2)

Note that if u|X;, Xy ~ N(0,0217), then K;' times expression (2) would have an ex-
act F'(Ky, T — Ky — K5) distribution for every sample size T' and any stationary or nonsta-
tionary process for zo,. Under the weaker assumption that F(us1|zs, 241, ...,21) = 0 but
E(ug|xy, w41, ...,x1) # 0, the Wald statistic (2) will still be asymptotically y*(K5) under stan-
dard first-order stationary asymptotics, as can be seen from equation (33) below for the special
case h = 1 and S = ¢2@Q). The problems arise when zy, is correlated with u; and furthermore z;
is highly persistent. In the case of unit-root processes these problems give (2) an asymptotic
distribution that is not y*(K3), and for near-unit-root processes they cause the small-sample
distribution to be quite different from a y*(K3).

The unit-root derivations this next paragraph assume a functional central limit theorem
T2z, 75 = B;()) for i = 1,2 with 0 < X < 1, [T\] the largest integer less than or equal to
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T\, B;(\) K;-dimensional Brownian motion, and = denoting weak convergence in probability
measure. From the FCLT and the Continuous Mapping Theorem,

1 1
Apr = {T‘l/ x2,[T>\]x/1,[TA]d>‘:| {T_l/ xl:[TklmlL[TA]d)‘]
0 0

= { /0 1 BQ(A)Bl(A)’dA] [ /0 1 Bl(A)Bl(A)’dA} h
A.

-1

Notice that

Torll = E Lol — g T1:U
i Tt i TatUes1 T g D1l
= ! ’ "z 21
= TotUt41 — Lot Xy LT ( )
t=1 t=1
1

for Zp = (Z;‘FZI xltx’lt) (Zle I1tut+1) If 2, is a unit-root process that is correlated with

the lag of u;y1, Zr will have a nonstandard distribution. For example, if zy; is a scalar
random walk with x1,41 = 21, + w41, then Zp has the same distribution as pr — 1 where
pr is the OLS coefficient from a regression of ;41 on x4, a distribution with a negative
bias that is well-known from unit root regressions.*” If x5 is uncorrelated with x;, then
unlike the Dicky-Fuller distribution, the second term in (21) is symmetric around zero and is
uncorrelated with the first term, so that the variance of Zthl TotUry 18 strictly greater than
that of Zthl Topllyl.

A.2 Derivations for Section 2.3

For our local-to-unity results we assume as in Stock (1994, eq (2.17)) that T~2z; 7y =
0iJe,(N). We first note from Phillips (1988, Lemma 3.1(d)) that

T2 (24, — 11)° = 02 { /0 O — [ /0 I[Jcl(A)]d/\] 2} = o} / [T

where in the sequel our notation suppresses the dependence on A and lets [ denote integration
over A from 0 to 1. The analogous operation applied to the numerator of (7) yields

T_2Z(I1t — 1_:1)($2t — .fg) - 0109 f JéLlJ(/;;
T2 (v, — 21)? ot [[J&]?

Ar =
as claimed in (7). Also

1 1
T_I/Qi‘g = T_g/ZZl‘Qt = / T_1/2£C27[T)\}d>\ = 0'2/ ch()\)d/\
0 0

45See for example Hamilton (1994, eq [17.4.7])
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Since [igt = Tt — To — AT(JZU — i’l),

150y = 03 {0 = [ (o)t [0 - [ o)
=0y {JE(N) — AT (N} = 02 Koy (V)

T332, = / (T 255 3 }2dN = oF / (K., e,(N)} d. (22)

Note we can write

E1t 01 0 0 V1t
Eot = 0 09 0 Vot

Uy oo, 0 V1—020, Vot

where (v, vog, vor) 18 a martingale-difference sequence with unit variance matrix.  From
Lemma 3.1(e) in Phillips (1988) we see

T_lzfztutﬂ = T_IZ[th — T — Ar(z11 — 71)](d0uv1 441 + V1 — 020,00 441)
= 6020u/KclchdW1 —+ v 1— 620'20'u / KCI,CQdWO' (23)

Recalling (2), the t-test of a true null hypothesis about 3, can be written as

Y Tolipia . T Eopupsa

= = 24)
{#X#3)7 AT (
where
25 o2, (25)
Substituting (25), (23), and (22) into (24) produces
920 {6 [ K., C2dW1 + V1 =02 [ K ey dWo}
{0'2 cl 02 }1/2
as claimed in (8).
Last we demonstrate that the variance of Z; exceeds unity. We can write
1
JE(N)dW7 (A A YdWi (A
BTN AR o)

{fo evea d)‘}l/Q {fo erea dk}lﬂ
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Consider the denominator in these expressions, and note that
1 1
[ oran = [ o) - Az + Az P
1 1
- / Koy s PN + / AT (AN
0 0
1
> [ Ko
0

where the cross-product term dropped out in the second equation by the definition of A in
(7). This means that the following inequality holds for all realizations:

Jo TENAWAQ) ||y )W)
{fol[K”"”(A)PdA}l/z {fol[Jé;u)PdA}l/Q

Adapting the argument made in footnote 14, the magnitude inside the absolute-value operator
on the right side of (27) can be seen to have a N(0,1) distribution. Inequality (27) thus
establishes that the first term in (26) has a variance that is greater than unity. The second
term in (26) turns out to be uncorrelated with the first, and hence contributes additional
variance to Zy, although we have found that the first term appears to be the most important
factor.’® Tn sum, these arguments show that Var(Z;) > 1.

(27)

A.3 Derivations for Section 2.4

First consider the case when p; = ps = 1, uy = 0, py # 0, and Corr(ey,u;) = 1. Then
T‘l/gxlg[m] = o Wi(\) for Wi()\) standard Brownian motion, T‘l/gthzlutH = oWy (1),
while xg; = st + 2221823 gives T‘lxg,[T,\] = peA as in Hamilton (1994, pp. 495-497). Let

-1
xy = (1,214, 9) SO b= [+ (ZtT:lxt:v;) ZtT:lxtutH. Define

T2 0 0
Ty = 0O T 0
0 0 7372

46These claims are based on moments of the respective functionals as estimated from discrete approximations
to the Ornstein-Uhlenbeck processes.
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Then very similar algebra to that in Hamilton (1994, pp. 498-500) gives

Yr(b—8) = [Y3' Swai Y] [ Y5 ]

-1

1 alfVVl(/\) ,u2/2 0'1W1(].)
= | o1 [Wi(A) o [N peoy [ AWL(N) (1/2)0?[(W3(1) — 1]
fh2/2 f201 [ AW1(A) 145/3 pao [Wi(1) — [Wi(N)] |
o1 0 0 1 Wi\ 12 177 Wi(1)
=10 1 0 JWi) [I(V]? AW () (1/2)[W3(1) — 1]

Observe that the middle element, T'(b; — 1) is the identical distribution as that of T'(p— 1) in
the Case 4 unit root distribution in Hamilton (1994, p. 499), and the t-statistic (by — 1)/,
is identical to the Case 4 Dickey-Fuller ¢ statistic (Hamilton (1994, eq [17.4.55])).

Consider next the case when p; = py = 1, uy # 0, po # 0, Corr(ey,w;) = 1, and
Corr(ey, e25) = 0 for all s. Let’s evaluate first the characteristics of a transformed regression
of y;4+1 on &, = Hx, for

10 0
H=10 1 —m/m
00 1
b= (thf;)_lsztytﬂ = (H/)_lb
B=(H)"8.
Then
Ty = Ty — (Hl//@)ﬂ?zt
=t + 22:1515 — (p1/p2) (/~L2t + 22:1525)
=D iE1s — (11 p2) Yo s
and
T 25 irn = o1 Wi(A) = (p1/p2) o Wa ()
= k()
o 1 J (V) n/2 17 o Wi (1)
Telb- B = | [r0)  [IROE iz f A6 o1 [ RO,
paf2 i fARY) /3 o [Wi(X) = [ Wi ()]

The middle element, T(INJI — 1), has a distribution that approaches the Dickey-Fuller Case 4
as 03 — 0 and is a related unit-root distribution for general o > 0. )
Translating back in terms of the original regression, we have b = H'b, by = by,

by = by — (p1/p2)by = by — (p11/ pi2) by
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T(by — B2) = T(bg — B2) — (p1/p2)T (b1 — 1)
= 0 — (u1/p2)T(br — B1)
since T%/2(by— ) ~ O,(1). Thus by—f3; has the same asymptotic distribution as — (g /i) (b —
B1), with t-tests on either by or by having a distribution related to the Dickey-Fuller Case 4.
When z1; and xo; share the same trend (p; = p9), the distribution of by will simply be the
negative of that of b;.

By contrast, if we were to regress y;11 = 8o + f121: + usrq1 on xy alone, or y;1q1 = By +
Poas + U1 ON X9y alone, t-tests on [y or P would be asymptotically N(0, 1), from the same
algebra as in Hamilton (1994, pp. 495-497). Thus for example if the true 51 # 0 and 5y = 0,
when we do the regression on x1; alone we would have perfectly appropriate tests about i,

but if we add z9; to the regression, tests about both §; and 5 become distorted and xo; could
spuriously appear to be helpful in improving the estimate of ;.

A.4 Derivations for Section 2.5

Note from (18) that

D Ty = ) TorTy — (D TorTYy) (th‘m{tt)_l (D z14my,) -
If x; is covariance-stationary and ergodic for second moments,
e~ ~ _ _ _ 1 e
T3 Tuithy = T Y wortly, — (T lzx%x/lt) (T 1Zx1t$/1t) (T lletx/m)

5 E(@txét) - E(x%x,u) [E(xltmllt)]il E(xltx/%)
= E(zgry,) = Q (28)

with the last line following from the assumption that z1; and zo; are uncorrelated. From (20)

we also know .
Tl/Q(bz —f2) = <T_l Z fztilzt) (T_1/2 Z fz’2tut+h) (29)

where
T71/2Zj:2tut+h = Tﬁl/ZZthuHh — ATT71/2 (letut+h> :

But if F(zy!,) = 0, then plim(Ar) = 0, meaning

—1/2 = d p—1/2
T Zthut+h ST ZthUtJrh-

This will be recognized as v/T times the sample mean of a random vector with population
mean zero, for which the Central Limit Theorem would take the form

T~ Y dougan, 5 7~ N(0,5) (30)
for S given in (12). Combining results (28), (29) and (30) gives (11).

To derive (13), let b = (b7,b,)" denote the OLS coefficients when the regression includes
both z1; and z9; and b} the coefficients from an OLS regression that includes only ;. The
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sum of squared residuals from the latter regression can be written

SSRy = Z(yt+h - $,1tby1‘)2
= > (yern — b + 23b — 2, b})?
= 3 (Y — 21b)? + D (24b — 2,b7)?

where all summations are over t = 1,..., T and the last equality follows from the orthogonality
property of OLS. Thus the difference in SSR between the two regressions is

It’s also not hard to show that the fitted values for the full regression could be calculated as*’
xyb = a, by + T5,bo. (32)

Thus from (31) and (32),
SSRy — SSRy = > (¥4,b)*.

If the true value of B is zero, then (20) becomes by = (3 Zo@,) " (32 Fapttyyn) s0 that
SSRy — SSRy = by (N Eah,) by = (T2 upsnithy) (T~ N Faidth) (T2 Fpursn) -
Results (28) and (30) then establish
SSRy — SSRy % r'Q 'y, (33)

Recall that R? is defined as
SSR

S Yern — Tn)?

(SSR; — SSRy)
Zf:l(yt+h — Un)?

R =1

so the difference in R? is

R} — R} =

Thus from (A.4),
(SSRl — SSRQ) d T/Q_lT

S — /T~

TR~ ) -

as claimed in (13).

4TThe easiest way to confirm the claim is to show that the residuals implied by (32) satisfy the orthogonality
conditions required of the original full regression, namely, that they are orthogonal to x1; and zo;. That the
residual y4+p, — 1,0 — T5,b2 is orthogonal to x1; follows from the fact that y,4p — 7,0} is orthogonal to 1,
by the definition of b while Zo; is orthogonal to z1; by the construction of Zy;. Likewise yiipn — Zhba is
orthogonal to Z9; by (19), and since x1; is again orthogonal to Zo9; by the construction of Z, it follows that
Yirn — Th,0F — Topbs is orthgonal to Zop. Since ypyp — x),bF — h,bo is orthogonal to both 14 and o, it is also
orthogonal to xo; = Tot + Arz1s.

51



B Alternative spanning hypotheses

Our baseline version of the spanning hypothesis is that three PCs of bond yields fully capture
the information underlying expected bond returns and future interest rates, motivated by the
well-known fact that three PCs capture almost all variation in the cross section of yields across
maturities (Litterman and Scheinkman, 1991). But it is possible that higher-order PCs, while
explaining only a miniscule share of cross-sectional variation of current yields, still contain
information about expectations of future yields (see Section 6 for tests of this hypothesis). We
therefore investigate two alternative versions of the spanning hypothesis, in which four or five
PCs of yields span the information in the yield curve. Application of our bootstrap method
to test these hypotheses is straightforward, since the only change to the approach described
in Section 2.6 is that xy; now contains four or five PCs. We consider these additional null
hypotheses for the three empirical applications in Sections 3, 4 and 5, where macro variables
are proposed as the additional predictors.

In Table B.1 we report the increase in R? when the macro variables are added to a predictive
regression of annual bond returns with N € {3,4,5} PCs of yields. We report 95%-bootstrap
intervals to gauge how large of an increase in R? would be plausible under the null hypothesis.
We find that N does not affect the findings we reported in the paper: with only the exception
of the original CPO sample, the increases in R? are within the bootstrap intervals, suggesting
that these increases are perfectly consistent with the spanning hypothesis.

Table B.1: Increase in R? from addition of macro variables

Original sample period Later sample: 1985-2016
N=3 N =4 N=5 N=3 N =4 N=5
JPS 0.19 0.16 0.16 0.04 0.04 0.04
(0.00, 0.23) (0.00, 0.25) (0.00, 0.24) (0.00, 0.19) (0.00, 0.20) (0.00, 0.20)
LN 0.10 0.08 0.08 0.10 0.13 0.14
(0.00, 0.11) (0.00, 0.11) (0.00, 0.12) (0.00, 0.17) (0.00, 0.17) (0.00, 0.17)
CPO 0.34 0.34 0.30 0.19 0.19 0.19

(0.00, 0.21)  (0.00, 0.21) (0.00, 0.21) (0.0, 0.23) (0.00, 0.23) (0.00, 0.23)

Increase in R? for regressions of annual excess bond returns when macro variables are added to a
specification that includes N PCs of yields. In parentheses are 95%-bootstrap intervals, obtained
under the null hypothesis that the macro variables have no predictive power. The bootstrap
procedure is described in the text.

In Table B.2 we consider Wald tests (for JPS and LN, using HAC standard errors) and
t-tests (for CPO, using the RR approach) of the different spanning hypotheses. We report
p-values of these tests using the conventional asymptotic distributions, estimates of the size
of these tests based on the small-sample bootstrap distributions of the test statistics, and the
bootstrap (i.e., size-corrected) p-values. The true size of the conventional five-percent tests of
the spanning hypothesis is estimated to be between 32 and 52 percent. The bootstrap p-values,
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which account for these enormous size distortions, are therefore much higher then conventional
p-values, and often above five percent. Few noticeable differences in the bootstrap p-values
arise from raising the number of yield PCs to four or five—in the original JPS sample the
p-values increase and in the later LN sample they decrease. Overall, our conclusions about
the robustness of published rejections of the spanning hypothesis remain unchanged when we
consider versions of the spanning hypothesis with four or five PCs instead of our baseline
hypothesis where three PCs span the information in the yield curve.

Table B.2: Tests of alternative spanning hypotheses

Original sample period Later sample: 1985-2016
N=3 N=4 N=5 N=3 N=4 N=5

JPS  HAC p-value 0.000 0.002 0.000 0.187 0.166  0.154
HAC size 0.399 0439 0442 0357 0372  0.375
BC bootstrap p-value 0.053  0.201  0.164 0.548 0.534 0.531
LN HAC p-value 0.000  0.000 0.000 0.004 0.000  0.000
HAC size 0.323 0.326 0.334 0.504 0.502 0.519
Bootstrap p-value 0.008 0.002 0.0065 0.279  0.040 0.045
CPO RR p-value 0.000  0.000 0.000 0.000 0.000  0.000
RR size 0.448 0.451 0442 0403 0412 0436

BC bootstrap p-value 0.000 0.000 0.001 0.044 0.048 0.054

Conventional and bootstrap tests of different null hypotheses that adding macro variables to a
regression with NV PCs of bond yields does not increase the predictive power for annual excess bond
returns. The bootstrap procedure is described in the text.

C Additional results for Joslin-Priebsch-Singleton

In Table C.1 we show additional results for the R? in predictive regressions with three yield
PCs and the macro variables GRO and I N F proposed by Joslin et al. (2014). The dependent
variables are the annual excess returns for bonds with maturity from two to ten years. That
is, Table C.1 reports the same results for each individual bond which Table 2 reports in its
top panel for the average excess return across bond maturities. To economize on space we
only show the bootstrap results for the bias-corrected (BC) bootstrap.

The results in Table C.1 show that the increase in R? when macro variables are added
is often large although the spanning hypothesis is true in population. While for the two- to
four-year bonds, the increase in R? in the data is larger than the upper bound of the 95%-
bootstrap interval, for the remaining bonds this statistic is within this interval, meaning that
there is no statistical evidence against the spanning hypothesis.
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Table C.1:

Joslin-Priebsch-Singleton: R? for excess-return regressions

Original sample: 1985-2008

Later sample: 1985-2016

7 3 B-R 7 R B-R
Two-year Data 0.14 0.48 0.34 0.13 0.26 0.13
bond BC bootstrap 0.45 0.51 0.06 0.37 0.41 0.05
(0.10, 0.78)  (0.15, 0.80) (0.00, 0.20) (0.09, 0.65) (0.14, 0.68) (0.00, 0.17)
Three-year Data 0.12 0.41 0.29 0.10 0.22 0.12
bond BC bootstrap 0.39 0.45 0.06 0.31 0.36 0.05
(0.07,0.72) (0.13, 0.75) (0.00, 0.21) (0.07, 0.59) (0.11, 0.62) (0.00, 0.19)
Four-year  Data 0.14 0.40 0.26 0.12 0.20 0.08
bond BC bootstrap 0.38 0.44 0.06 0.30 0.36 0.05
(0.08, 0.69) (0.14, 0.72) (0.00, 0.22) (0.06, 0.57) (0.11, 0.60) (0.00, 0.19)
Five-year  Data 0.15 0.38 0.22 0.14 0.20 0.06
bond BC bootstrap 0.35 0.41 0.06 0.28 0.33 0.06
(0.08, 0.65) (0.14, 0.69) (0.00, 0.23) (0.06, 0.54) (0.10, 0.58) (0.00, 0.20)
Siz-year Data 0.18 0.39 0.21 0.16 0.21 0.05
bond BC bootstrap 0.37 0.43 0.06 0.28 0.34 0.05
(0.10, 0.65) (0.15, 0.69) (0.00, 0.21) (0.06, 0.52) (0.10, 0.57) (0.00, 0.19)
Seven-year Data 0.18 0.37 0.18 0.17 0.21 0.04
bond BC bootstrap 0.33 0.39 0.06 0.27 0.32 0.05
(0.07, 0.59) (0.13, 0.64) (0.00, 0.23) (0.05, 0.51) (0.09, 0.55) (0.00, 0.20)
Eight-year Data 0.20 0.37 0.17 0.18 0.22 0.04
bond BC bootstrap 0.33 0.39 0.06 0.26 0.32 0.05
(0.08, 0.58) (0.13, 0.63) (0.00, 0.22) (0.06, 0.50) (0.11, 0.55) (0.00, 0.20)
Nine-year  Data 0.22 0.39 0.16 0.19 0.23 0.03
bond BC bootstrap 0.34 0.40 0.06 0.27 0.32 0.05
(0.10, 0.58) (0.15, 0.64) (0.00, 0.22) (0.07, 0.49) (0.11, 0.54) (0.00, 0.20)
Ten-year Data 0.20 0.36 0.15 0.19 0.24 0.04
bond BC bootstrap 0.31 0.37 0.06 0.28 0.33 0.05
(0.07, 0.56) (0.12, 0.61) (0.00, 0.23) (0.07, 0.51) (0.11, 0.55) (0.00, 0.19)

R? for regressions of annual excess bond returns on three PCs of the yield curve (R?) and on three
yield PCs together with the macro variables GRO and INF (R3), as well as the increase in R2.

The macro data is described in the text. The results in the left half of the table are for the original
sample period of Joslin et al. (2014); the data used in the right half is extended to December 2016.

Each panel reports first the statistics in the data, and then the mean and the 95%-bootstrap
intervals (in parentheses) of the bootstrap small-sample distribution. The bootstrap, which is

explained in the text, imposes the null hypothesis that the macro variables have no predictive

power.
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D Additional results for Ludvigson-Ng

LN also constructed a single return-forecasting factor using a similar approach as Cochrane and
Piazzesi (2005). They regressed the excess bond returns, averaged across the two- through
five-year maturities, on the macro factors plus a cubed term of F'1 which they found to
be important. The fitted values of this regression produced their return-forecasting factor,
denoted by H8. Adding HS8 to a predictive regression that includes the Cochrane-Piazessi
factor C'P substantially increases the R?, and leads to a highly significant coefficient on H8.
LN emphasized this result and interpreted it as further evidence that macro variables have
predictive power beyond the information in the yield curve.

Tables D.1 and D.2 replicate LN’s results for these regressions on the macro- (H8) and
yield-based (CP) return-forecasting factors.” Table D.1 shows coefficient estimates and sta-
tistical significance, while Table D.2 reports R?. In LN’s data, both C'P and HS are strongly
significant with HAC p-values below 0.1%. Adding H8 to the regression increases the R? by
9-11 percentage points.

One advantage of our bootstrap approach is that we can calculate the small-sample prop-
erties under the null hypothesis of complicated transformations of the original data such as
these. To this end, we simply add an additional step in the construction of our artificial data
by calculating C'P and HS8 in each bootstrap data set as the fitted values from preliminary
regressions in the exact same way that LN did in the actual data.

Table D.1 shows that the observed increases in R? when adding HS to the regression
are generally within the 95% bootstrap intervals. That is, although LN find large increases
in R? using these same regression specifications, this is not convincing evidence against the
spanning hypothesis, as such increases in goodness-of-fit are perfectly plausible under the null
hypothesis. And according to the bootstrap p-values for the coefficients on H8 in Table D.2,
the macro return-forecasting factor is no longer significant at the 1% level. Furthermore, the
size distortions for conventional t-tests are very substantial: a test with nominal size of five
percent based on asymptotic HAC p-values has a true size of 58-61 percent. This evidence
suggests that conventional HAC inference can be particularly problematic when the predictors
are return-forecasting factors. Table D.2 also shows that the bootstrap test has good size and
power.

We also examined the same regressions over the 1985-2016 sample period with results
shown in the right half of Table D.1 and in the bottom panel of Table D.2. The observed
increases in R? are squarely in line with what we would expect under the spanning hypothesis,
as indicated by the bootstrap intervals in Table D.1. The return-forecasting factors would
again appear to be highly significant based on HAC p-values, but the size distortions of these
tests are again very substantial and the coefficients on HS8 are in fact not statistically significant
when using the bootstrap p-values.

This evidence suggests that conventional HAC inference can be particularly problematic
when the predictors are return-forecasting factors. One reason for the substantially distorted
inference is their high persistence; H8 and C'P have autocorrelations that are around 0.8, and
decline only slowly with the lag length. Another reason is that the return-forecasting factors
are constructed in a preliminary estimation step, which introduces additional estimation un-

48These results correspond to those in column 9 in tables 4-7 in LN.
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Table D.1: Ludvigson-Ng: R? for regressions with return-forecasting factors

Original sample: 1964-2007 Later sample: 1985-2016
R R B-R R R B-R
Two-year bond
Data 0.31 0.42 0.11 0.16 0.22 0.06
Bootstrap 0.21 0.24 0.03 0.31 0.35 0.04

(0.06, 0.39) (0.09, 0.41) (0.00, 0.11) (0.09, 0.54) (0.14, 0.56) (0.00, 0.13)
Three-year bond
Data 0.33 0.43 0.10 0.16 0.22 0.07
Bootstrap 0.20 0.24 0.04 0.29 0.33 0.04
(0.06, 0.38) (0.09, 0.41) (0.00, 0.11) (0.08, 0.51) (0.14, 0.54) (0.00, 0.14)
Four-year bond
Data 0.36 0.45 0.09 0.19 0.26 0.07
Bootstrap 0.21 0.25 0.04 0.30 0.34 0.04
(0.07,0.39) (0.10, 0.42) (0.00, 0.11) (0.10, 0.52) (0.15, 0.54) (0.00, 0.13)
Five-year bond
Data 0.33 0.42 0.09 0.18 0.24 0.06
Bootstrap 0.21 0.24 0.04 0.29 0.32 0.04
(0.06, 0.39) (0.10, 0.41) (0.00, 0.11) (0.09, 0.50) (0.14, 0.53) (0.00, 0.14)

R? for regressions of annual excess bond returns on yield and macro factors, as in Ludvigson and
Ng (2010). R? is for regressions with only the return-forecasting factor based on yield-curve
information (C'P), R3 is for regressions that also include the return-forecasting factor based on
macro information (H8). The left side of the table shows results for the original data set used by
Ludvigson and Ng (2010), and the right side shows results for a data sample that starts in 1985 and
ends in 2016. We report the values of the statistics in the data, and the means and 95%-bootstrap
intervals (in parentheses) for the bootstrap small-sample distributions, obtained under the null
hypothesis that the macro variables have no predictive power. The bootstrap procedure is
described in the text.
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Table D.2: Ludvigson-Ng: statistical inference in regressions with return-forecasting factors

Two-year bond Three-year bond Four-year bond Five-year bond
cP HS cP H8 cpP HS cpr HS

Original sample: 1964-2007

Coefficient 0.335 0.331  0.645 0.588 0.955 0.776  1.115 0.937
HAC t-statistic 4.429  4.331  4.666 4.491 4.765 4472 4371 4.541
HAC p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o0.000
Bootstrap 5% c.v. 3.857 3.968 3.965 3.998
Bootstrap p-value 0.019 0.021 0.023 0.019
Size

HAC 0.579 0.612 0.610 0.594

Bootstrap 0.049 0.059 0.054 0.049
Power

Bootstrap 0.621 0.573 0.555 0.521
Later sample: 1985-2016
Coeflicient 0.363 0.333  0.678 0.663 1.101  0.934 1314 1.146
HAC statistic 2.746  2.768  2.556 3.073 2933 3.308 2.837 3.379
HAC p-value 0.006 0.006 0.011 0.002 0.004 0.001 0.005 0.001
Bootstrap 5% c.v. 4.182 4.172 4.158 4.160
Bootstrap p-value 0.271 0.199 0.153 0.134

Predictive regressions for annual excess bond returns, using return-forecasting factors based on
yield-curve information (C'P) and macro information (H8), as in Ludvigson and Ng (2010). The
first panel shows the results for their original data and sample period; the second panel uses a data
sample that starts in 1985 and ends in 2016. HAC t-statistics and p-values are calculated using
Newey-West standard errors with 18 lags. We obtain bootstrap small-sample distributions of the
t-statistics under the null hypothesis that macro factors and hence H8 have no predictive power,
and report the bootstrap critical values (c.v.’s) and p-values, as well as estimates of the true size of
conventional HAC ¢-tests and the bootstrap tests with 5% nominal coverage (see notes to Table 3).
We also report estimates of the power of the bootstrap tests. The bootstrap procedure is described
in the text. p-values below 5% are emphasized with bold face.
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certainty not accounted for by conventional inference. We recommend that researchers use
our bootstrap in such a setting to accurately carry out inference. Here we conclude that LN’s
macro return-forecasting factor exhibits only very tenuous predictive power, much weaker
than indicated by LN’s original analysis, which disappears completely over a different sample
period.

E Bond supply: Greenwood-Vayanos

A large literature studies the effects of the supply of bonds on prices and yields, including the
recent contributions of Hamilton and Wu (2012) and Greenwood and Vayanos (2014). Theo-
retical and empirical work has demonstrated that bond supply is related to bond yields and
returns. But do measures of Treasury bond supply contain predictive power for bond returns
that is not already reflected in the yield curve? The answer appears to be yes: Greenwood
and Vayanos (2014) (henceforth GV) found that variation in their measure of bond supply, a
maturity-weighted debt-to-GDP ratio, predicts yields and bond returns, and that this holds
true even controlling for yield curve information such as the term spread. Here we investigate
whether this result is robust and holds up to closer scrutiny. The sample period used in GV
is 1952 to 2008.

We are most interested in those regression specifications estimated by GV that control for
the information in the yield curve. We first reproduce, in the top panel of Table E.1, their
baseline specification in which the one-year return on a long-term bond is predicted using
the one-year yield and bond supply measure alone. The second panel includes the spread
between the long-term and one-year yield as an additional explanatory variable.*” Like GV
we use Newey-West standard errors with 36 lags. If we interpreted the HAC t-test using the
conventional asymptotic critical values, the coefficient on bond supply is significant in the
baseline regression in the top panel. When the yield spread is included in the regression, this
coefficient is marginally insignificant, with a p-value of 5.8%.

The bond return that GV used as the dependent variable in these regressions is for a hy-
pothetical long-term bond with a 20-year maturity. We cannot apply our bootstrap procedure
here because this bond return is not constructed from the observed yield curve.”

We consider two additional regression specifications that are relevant in this context. The
first specification controls for information in the yield curve by including, instead of a single
term spread, the first three PCs of observed yields.”’ It also subtracts the one-year yield
from the bond return in order to yield an excess return. Both of these changes make this
specification more closely comparable to those in the literature. The results are reported
in the third panel of Table E.1. Again, the coefficient on bond supply is only marginally
significant for the HAC t¢-test.

Finally, we consider a specification where the one-year excess return, averaged across two-
though five-year maturities, is regressed on yield PCs and the measure of bond supply. The
last panel of Table E.1 shows that in this case, the coefficient on bond supply is insignificant
according to the conventional Newey-West t-test. In this last regression, which includes PCs

49These estimates are in GV’s table 5, rows 1 and 6. Their baseline results are also in their table 2.
%0GYV obtained this series from Ibbotson Associates.
51These PCs are calculated from the observed Fama-Bliss yields with one- through five-year maturities.
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Table E.1: Greenwood-Vayanos: predictive power of Treasury bond supply

One-year  Term Bond
yield spread PC1 PC2 PC3 supply

Dependent variable: return on long-term bond

Coeflicient 1.212 0.026
HAC t-statistic 2.853 3.104
HAC p-value 0.004 0.002
Dependent variable: return on long-term bond

Coefficient 1.800 2.872 0.014
HAC t-statistic 5.208 4.596 1.898
HAC p-value 0.000 0.000 0.058
Dependent variable: excess return on long-term bond

Coefficient 0.168 5.842 -6.089 0.013
HAC t-statistic 1.457 4.853 1.303 1.862
HAC p-value 0.146 0.000 0.193 0.063
Dependent variable: avg. excess return for 2-5 year bonds

Coefficient 0.085 1.669 -4.632 0.004
HAC statistic 1.270 3.156 2.067 1.154
HAC p-value 0.204 0.002 0.039 0.249
Bootstrap 5% c.v. 3.199
Bootstrap p-value 0.468

Predictive regressions for annual bond returns using Treasury bond supply, as in Greenwood and
Vayanos (2014) (GV). The coefficients on bond supply in the first two panels are identical to those
reported in rows (1) and (6) of Table 5 in GV. HAC t¢-statistics and p-values are constructed using
Newey-West standard errors with 36 lags, as in GV. The last panel includes bootstrap critical
values and p-values using small-sample distributions generated under the null hypothesis that bond
supply does not contain additional predictive power—the bootstrap procedure is described in the
text. The last two rows in each panel report p-values for t-tests using the methodology of
Ibragimov and Miiller (2010), splitting the sample into either 8 or 16 blocks. The sample period is
1952 to 2008. p-values below 5% are emphasized with bold face.
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Table F.1: Cooper-Priestley: predictive power of the output gap

gap CP ~CP PCl1 PC2 PC3

Coefficient -0.126

OLS t-statistic 3.225

HAC t-statistic 1.077

HAC p-value 0.282

Coefficient -0.120  1.588

OLS t-statistic 3.479 13.541

HAC t-statistic 1.244  4.925

HAC p-value 0.214 0.000

Coefficient 0.113 1.612

OLS t-statistic 2.940 13.831

HAC t-statistic 1.099 5.059

HAC p-value 0.273 0.000

Coefficient 0.147 0.001  0.043 -0.067
OLS t-statistic 3.524 4.359 11.506  3.690
HAC t-statistic 1.306 1.332 4.363 2.508
HAC p-value 0.192 0.183 0.000 0.012

Bootstrap 5% c.v.  2.843
Bootstrap p-value  0.354

Predictive regressions for the one-year excess return on a five-year bond using the output gap, as in
Cooper and Priestley (2008) (CPR). C'P is the Cochrane-Piazzesi factor after orthogonalizing it
with respect to gap, whereas C'P is the usual Cochrane-Piazzesi factor. For the predictive
regression, gap is lagged one month, as in CPR. HAC standard errors are based on the Newey-West
estimator with 22 lags. The bootstrap procedure, which does not include bias correction, is
described in the main text. The sample period is 1952 to 2003. p-values below 5% are emphasized
with bold face.

and a conventional excess bond return, we can also use our bootstrap procedure. We find that
the bootstrap p-value is substantially higher than the conventional p-value. The bond supply
variable has a first-order autocorrelation is 0.998, which causes substantial size distortions for
the conventional ¢-test in this and in the other regression specifications.

Overall, we find that the results in GV do not constitute evidence against the spanning hy-
pothesis. While bond supply exhibits a strong empirical link with interest rates, its predictive
power for future yields and returns seems to be fully captured by the current yield curve.
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F  Output gap: Cooper-Priestley

Another widely cited study that appears to provide evidence of predictive power of macro
variables for asset prices is Cooper and Priestley (2008) (henceforth CPR). This paper focuses
on one particular macro variable as a predictor of stock and bond returns, namely the output
gap, which is a key indicator of the economic business cycle. The authors concluded that
“the output gap can predict next year’s excess returns on U.S. government bonds” (p. 2803).
Furthermore, they also claimed that some of this predictive power is independent of the
information in the yield curve, and implicitly rejected the spanning hypothesis (p. 2828).

Like CPR we use x9; = gap;_1, the output gap at date t — 1, measured as the deviation
of the Fed’s Industrial Production series from a quadratic time trend.”” CPR lagged their
measure by one month to account for the publication lag of the Fed’s Industrial Production
data. Table F.1 shows our results for predictions of the excess return on the five-year bond;
the results for other maturities closely parallel these. The top two panels correspond to the
regression specifications that CPR estimated.”® In the first specification, the only predictor
is gapi_1. The second specification also includes C'P,, which is the Cochrane-Piazzesi factor
CP, after it is orthogonalized with respect to gap;.”* We obtain coefficients and R? that
are close to those published in CPR. We calculate both OLS and HAC t-statistics, where in
the latter case we use Newey-West with 22 lags as described by CPR. Our OLS t-statistics
are very close to the published numbers, and according to these the coefficient on gap;_ 1 is
highly significant. It appears that CPR may have mistakenly reported the OLS instead of the
Newey-West t-statistics, which is about a third as large as the OLS t-statistics and implies
that the coefficient on gap is far from significant, with p-values above 20%.

Importantly, neither of the specifications in CPR can be used to test the spanning hy-
pothesis, because the CP factor is first orthogonalized with respect to the output gap. This
defeats the purpose of controlling for yield-curve information, since any predictive power that
is shared by the CP factor and gap will be exclusively attributed to the latter. In particular,
finding a significant coefficient on gap in a regression with C'P cannot justify the conclusion
that “gap is capturing risk that is independent of the financial market-based variable CP”
(p. 2828). One way to test the spanning hypothesis is to include C'P instead of CP, and we
report these results in the third panel of Table F.1. In this case, the coefficient on gap switches
to a positive sign, and its Newey-West ¢-statistic remains insignificant.

Our preferred specification includes the first three PCs of the yield curve—see the last
panel of Table F.1. The predictor gap is highly persistent, with a first-order autocorrelation
coefficient of 0.975, so there are likely small-sample inference problems. Hence we also include
results for robust inference using the bootstraptest. The gap variable has a positive coefficient
with a HAC p-value of 19%, which rises to 36% when using our bootstrap procedure. The
conventional HAC t-test is substantially oversized, as evident by the bootstrap critical value
that substantially exceeds the conventional critical value. Overall, we do not find any evidence
that the output gap predicts excess bond returns.

52We thank Richard Priestley for sending us this real-time measure of the output gap.
53The relevant results in CPR are in the top panel of their table 9.
> Note that the predictors CP; and gap;_1 are therefore not completely orthogonal.
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