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“There is much more to a bubble than a mere security price increase.

There is innovation, displacement of existing firms, creation of new ones,

and more generally a paradigm shift as entrepreneurs and investors rush

toward a new Eldorado.” –Greenwood, Shleifer, and You (2017)

1 Introduction

According to Schumpeter (1934), invention and entrepreneurship are two distinct

activities. And it is the entrepreneur who is tasked with bringing advancements to

market. Naturally, the incentive to innovate depends on the rents available for extrac-

tion and creative destruction is often associated with wealth transfer. Much of the

existing literature that has followed has further developed and tested Schumpeter’s

hypotheses, with a focus on competitive industry analysis (e.g., Williamson, 1965;

Reinganum, 1983; Aghion, Bloom, Blundell, Griffith, and Howitt, 2005)1 and quan-

tifying whether creative destruction indeed increases social welfare (e.g., Witt, 1996;

Aghion, Akcigit, Bergeaud, Blundell, and Hémous, 2015; Komlos, 2014).2

Yet, there is an unsung hero in this story, the financier, who has been largely ne-

glected, but plays an important role. The comparative advantage of the financier is to

assess risk and allocate scarce resources efficiently in the market. Within Schumpeter’s

framework, the financier’s responsibility would be to govern how much entrepreneur-

ship comes to market, based on the risk of new projects and the uncertainty that

creative destruction imposes on existing assets. This activity drives the evolution of

asset prices in the market and in turn the ability to bear risk. This is the focus of

this paper.

Creative destruction and entrepreneurship are different from simply adding new

assets to a well-diversified portfolio because innovation potentially makes the future of

existing assets more risky (Kung and Schmid, 2015) and may endogenously change the

variance-covariance matrix. Gârleanu, Kogan, and Panageas (2012) refer to this as

“displacement risk” and show that it can rationalize both the existence of the growth-

value factor in returns, as well as the equity premium. Because creative destruction

may divert scarce resources away from existing assets or alter their growth options and

1See also Swan (1970), Loury (1979), Reinganum (1985), Aghion and Howitt (1992), Boldrin and
Levine (2008), Aghion and Griffith (2008).

2See also Carree and Thurik (2005), Bampoky, Prieger, Blanco, and Liu (2016), Acemoglu and
Restrepo (2017), and Akcigit, Grigsby, and Nicholas (2017).
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capabilities, it is not surprising that there appears to be a risk premium associated

with it (Grammig and Jank, 2015).

Moreover, creative destruction involves learning by doing and has an observer

effect, which is quite different than what has been explored to date in the asset

pricing literature. When capital gets allocated to a new opportunity, learning occurs

via experimentation (e.g., Arrow, 1962; Grossman, Kihlstrom, and Mirman, 1977;

Aghion, Bolton, Harris, and Jullien, 1991; Rob, 1991), which affects expectations

about existing assets in the rest of the market. This “perturbs” the system of asset

prices and expectations, so learning has feedback effects to the rest of the market

and is costly through its effect on risk. Such learning by doing contrasts with the

standard learning processes that are typically analyzed, whereby agents update their

beliefs from a time-series of signals that they receive for free.3

In this paper, we characterize the equilibria and asset pricing implications that

arise with creative destruction. We study an exchange economy in which investment

in creative destruction has two effects on the consumption stream: it changes the

growth rate of consumption—hopefully for the better—and it amplifies the magni-

tude of the diffusion. The former captures the fact that new technologies have uncer-

tain benefits for economic growth; the latter captures the fact that new technologies

have unintended consequences and make the future of existing assets more uncertain.

We contrast a socially optimal benchmark with a setting in which non-cooperative

investors compete for a share of the rents created by the new technology. We model

the strategic interaction as an aggregative game (i.e., Cournot competition) in which

competitors make simultaneous choices about how much to experiment with the new

technology and the payoffs are a function of each investor’s claim to an endogenous

dividend stream.4

We find that when competitors fight for market share, this leads to overinvestment

compared to what is socially optimal, and that aggregate experimentation grows with

the number of investors. In turn, with socially excessive experimentation, both the

volatility of future consumption and the uncertainty about the expected growth rate

of the economy are magnified. In equilibrium, this results in a spike in the price-

3The incomplete information literature starts with Williams (1977), Detemple (1986), Dothan
and Feldman (1986), and Gennotte (1986). A comprehensive survey is provided in Ziegler (2003).

4In the aggregative game, the payoff to each player is a function of the sum of their own choice
and that of all competitors. This not only affects each player’s consumption share, but affects the
nature of the consumption stream they get to enjoy.
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dividend ratio because of Jensen’s inequality effects—loosely speaking, the asset has

a convex, option-like payoff and becomes more valuable with over-experimentation.

As uncertainty resolves over time, there is an aftermath in which prices reverse and

return to normal. Higher experimentation leads to faster learning and resolution of

uncertainty, which causes prices to fall quickly after the run up.

As such, competition among rent-seeking agents in markets for new technologies

generates price patterns that resemble a “bubble”. However, the price paths gen-

erated by creative destruction can be identified as a bubble only ex post. Ex ante,

agents do not expect prices to fall, but learning by doing decreases uncertainty over

time and stock prices adjust endogenously. Bayesian uncertainty (i.e., posterior vari-

ance) decays faster with over-experimentation, which accelerates the eventual decline

in asset prices. Therefore, our model predicts that markets characterized by fierce

competition for new technologies are not only prone to asset price inflation but also

to steeper subsequent declines through learning by doing and faster resolution of

uncertainty.

For decades, most researchers have defined a bubble to be a setting in which

the price of an asset exceeds its fundamental value. This has spawned an extensive

literature to characterize this distortion and its associated price process. With this

definition in mind, bubbles may arise when investors have heterogeneous beliefs and

traders have the option to resell the asset to more optimistic agents in the future

(Harrison and Kreps, 1978; Morris, 1996; Scheinkman and Xiong, 2003) or when

there are short-sale constraints that prevent pessimists in the market from countering

the demand from optimists (Miller, 1977; Ofek and Richardson, 2003). Bubbles may

also arise when some investors have overconfidence or excessive optimism, and may

grow when arbitrageurs are differentially informed about the presence of the bubble

and face financial constraints (Abreu and Brunnermeier, 2003). Brunnermeier and

Oehmke (2013) provide an excellent review.

More recently, however, Pastor and Veronesi (2009) have shown that the price

patterns associated with what we call bubbles do not require a (possibly irrational)

wedge between fundamentals and prices. In their model, if a new technology becomes

sufficiently promising, its expected cash flows rise, which initially pushes up the stock

price. However, because the risk of the technology gradually shifts from idiosyncratic

to systematic, the discount rate rises, ultimately leading to a drop in the valuation of

the asset. We share their view that irational behavior is not a prerequisite for bubbles.
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Our model is distinct, however, because over-valuation of the asset is generated by

increased competition and over-investment in new technologies, and risk is systematic

at all times. Moreover, it is the learning by doing feature of our model, coupled with

excessive experimentation, that leads to steep subsequent declines in asset prices as

uncertainty resolves over time.

DeMarzo, Kaniel, and Kremer (2007) also provide an explanation of bubbles that

does not require a wedge between prices and fundamentals. In their model with

multiple agents, a “keep up with the Joneses” concern endogenously arises as no agent

wants to be left behind. This leads to over-investment that is predictably unprofitable,

which they argue is consistent with a bubble. Such over-investment arises in our

paper as well. But the focus of our paper is on the asset pricing implications of

socially excessive experimentation. We show that competition magnifies uncertainty

in the market and leads to over-valuation of asset prices, followed by an aftermath

characterized by gradual resolution of uncertainty and price reversals. It is likely that

a “keep up with the Joneses” concern would magnify the competitive forces in our

model, and thus we see the two papers as complementary.

The pricing patterns that we generate arise from rational competitive behav-

ior, without requiring information asymmetry, behavioral biases (e.g., optimism or

overconfidence), or financial markets frictions. Marrying considerations from the in-

dustrial organization literature with those in asset pricing accomplishes this, and

seems natural given the level of competition that typically occurs during technolog-

ical change. Inded, many bubbles arise when investors race to market during eras

of technological change (e.g., the Tronics boom, 1959-1962; the Biotech bubble of

the 1980’s; the Dotcom era, 1995-2001).5 However, while we provide a rational ex-

planation for the evolution of bubbles, we do not take the position that irrational

exuberance does not contribute to price fluctuations. Quite the opposite. It would

be easy to envision how irrationality might exacerbate the boom-bust price patterns

that we demonstrate.

Our model generates a unique prediction on how financial innovation might be

used to detect bubbles. As Greenwood et al. (2017) document, sharp price increases

predict a substantially heightened probability of an ensuing crash and attributes of the

price run-up such as price volatility and asset turnover can help forecast the eventual

aftermath. In our model, high price-dividend ratios may arise not only as a result of

5See Section 1 of Xiong (2013) for a thorough review of historical bubbles.
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agents’ expectations about future growth, but also as a result of uncertainty. But, it

is not possible to infer from the price-dividend ratio alone both the expected growth

and the degree of uncertainty. However, in our analysis expected growth enters in the

price-dividend valuation as a linear function of the maturity of the dividend stream,

while parameter uncertainty enters as a quadratic function. This suggests that if a

market for dividend strips were to exist, as proposed by Brennan (1998b), bubbles

might be detectable by plotting log values for a horizon of dividends. As we show

in the paper, without competitive behavior, this plot is almost linear, whereas with

competition and over-experimentation, it is non-linear.

Last, a testable prediction of our model is that, in markets characterized by intense

creative destruction or by heightened uncertainty about the expected growth of new

technologies, investors demand a higher premium per quantity of risk. Consistent

with this prediction, recent empirical research by Grammig and Jank (2015) show

that indeed invention activity creates risk which has to be compensated, and that it

can account for the size and value premia observed in financial markets.

The rest of the paper proceeds as follows. Section 2 poses the model, character-

izes learning and optimal experimentation, and contrasts the equilibrium behavior of

competitive agents to what is socially optimal. Section 3 characterizes the asset pric-

ing implications of creative destruction. Section 4 returns to a one agent setting in

which the investor maximizes social welfare and characterizes an extension in which

the agent may exercise an option to expand or abandon experimentation at every

instant in time. Section 5 concludes. All proofs are relegated to the Appendix.

2 Experimentation and Learning

Consider an exchange economy defined over a continuous-time finite horizon [0, T ].

In the status quo, the aggregate output is

dδSt
δSt

= f̄dt+ σdWt, (1)

where the parameters f̄ and σ are known. The economy is populated by an active

investor who consumes a share θ of the output and a passive investor who consumes

fraction 1 − θ. For now, we fix θ exogenously so that the active investor cannot

modify her consumption share. Later, we endogenize θ, which will reflect rent seeking
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behavior and strategic considerations among competitive active investors.

At time t = 0, the active investor has the choice to re-allocate existing capi-

tal x0 ≥ 0 to an experimental asset in the market (e.g., a new technology). This new

technology is sufficiently important to affect the entire economy. It affects the aggre-

gate consumption stream in two ways. First, the new asset has an unknown effect

on the drift, which becomes (f̄ + βx0). The parameter β is unknown and captures

both the adverse effect that creative destruction imposes on other assets and a pos-

sible benefit in higher future consumption. Thus, innovation can both fuel economic

growth (Aghion and Howitt, 1992; Romer, 1990) and be destructive (e.g., Acemoglu

and Restrepo, 2017), and β is similar to a Schumpeter “creativity ratio” as defined

in Komlos (2014). We assume that the active investor has initial beliefs such that

β ∼ N(β̂0, ν0), (2)

where β̂0 > 0, so that the active investor starts with an initial prior that investing in

the experimental asset is a good idea.

Second, investment in the experimental asset amplifies the magnitude of the dif-

fusion term to (1 + kx0)σ, which captures the increased economic risk that creative

destruction introduces into the economy (Kung and Schmid, 2015). Taken together,

for any x0, the dynamics for the aggregate output stream in the new economy is

dδt
δt

= (f̄ + βx0)dt+ (1 + kx0)σdWt. (3)

In Appendix A.1.1, we provide a microfoundation for (3) in an economy with two

differentiated goods. Here, we take (3) as a starting point for our analysis.6

The agents have preferences over lifetime consumption

U(ci) = E

[∫ T

0

e−ρt
c1−γi,t

1− γ
dt

]
, (4)

where ca,t = θδt for the active investor and cp,t = (1 − θ)δt for the passive investor.

Both agents have the same coefficient of risk aversion, γ ≥ 1. This ensures that

6Johnson (2007) provides a discrete-time microfoundation in a production economy, which is
consistent with our choice of allowing experimentation to affect the drift. However, we depart in
that experimentation affects the uncertainty regarding the interaction between the new technology
and existing assets.

6



the agents’ expected utility is higher under complete information than under incom-

plete information.7 Furthermore, this is consistent with empirical evidence8, and is

frequently used in analyses like these (e.g., Pastor and Veronesi, 2009).

Only the active investor can choose x0. At t = 0, the active investor commits to an

experimentation level x0 that remains constant from time 0 to T . As such, the active

investor chooses how far to open Pandora’s box at t = 0 and then both investors live

with the consequences.9 Because θ is fixed and investors are otherwise identical, the

choice of the active investor is the socially optimal choice (it simultaneously maximizes

the lifetime utility of both investors—see Proposition 2).

If the active investor chooses x0 = 0, then the economy remains in the status quo.

Once the active investor chooses x0 > 0, both investors observe the total output δt

and learn over time how the new asset impacts future expected growth. But the

experiment comes at a cost: it disturbs the process by increasing the magnitude of

the diffusion. This implies that there is an observer effect, which is distinct from

what is typically modeled in the asset pricing literature with incomplete information.

Usually, agents update their beliefs by observing signals about the drift of the dividend

process for free. Instead, in our case learning occurs by doing, as in Arrow (1962),

Grossman et al. (1977), and Rob (1991). However, unlike these papers, the cost of

experimentation is the added disturbance introduced into the diffusion term through

the parameter k > 0 and the added uncertainty about the true expected growth of

the experimental asset.

Both investors observe the aggregate output stream δt, whose changes are infor-

mative about the unknown parameter β. Since the choice of x0 is common knowledge,

both investors form expectations under the same probability measure.

Proposition 1 (Learning) From investors’ viewpoint, this partially observed econ-

7More precisely, for any time-additive utility function which is increasing and concave in current
consumption, better information will increase expected utility whenever the second derivative of the
utility with respect to the natural logarithm of consumption is negative. In the case of power utility,
this condition is satisfied when γ > 1. See Chapter 2 in Ziegler (2003) for a discussion.

8Friend and Blume (1975) estimate an average coefficient of relative risk aversion well in excess
of one and perhaps in excess of two. Dreze (1981) finds even higher values using an analysis of
deductibles in insurance contracts. See also Mehra and Prescott (1985, p. 154).

9In Section 4, we consider a dynamic extension in which the active investor chooses the experi-
mentation level at every instant in time.
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omy is equivalent to a perfectly observed economy with consumption process

dδt
δt

= (f̄ + β̂tx0)dt+ σ(1 + kx0)dŴt, (5)

where

dβ̂t =
x0

σ(1 + kx0)
νtdŴt, (6)

dνt = − x20
σ2(1 + kx0)2

ν2t dt, (7)

and dŴt ≡ dWt + x0(β−β̂t)
σ(1+kx0)

dt represents the “surprise” component of the change in

total consumption.

Investors revise their estimate of β in the direction of the output surprises they

observe (Brennan, 1998a). We define νt as the Bayesian uncertainty about β at time t

(i.e., posterior variance). The expression in (7) together with the initial condition ν0

implies a deterministic path for νt:

νt =
1

x20
σ2(1+kx0)2

t+ 1
ν0

. (8)

The posterior variance starts at ν0 but then decays to zero as t goes to infinity. One

benefit of experimentation is that investors can learn about the new technology and

lower the future Bayesian uncertainty. Moreover, uncertainty decreases faster when x0

is high. However, when k > 0, experimentation also has a negative effect on learning

because it disturbs the economy. In fact, consider the limit of the speed of learning

(the term multiplying time t in the denominator of (8)) as x0 →∞:

1

k2σ2
. (9)

For any k > 0, the speed of learning cannot go above (9) in any finite time. Because

experimentation disturbs the economy, it indeed applies a brake to learning.
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2.1 Socially Optimal Experimentation

The active investor’s problem is to choose a level of experimentation that balances

between information gains coupled with the chance of a good experiment and higher

disturbance to future consumption coupled with the chance of a bad experiment. This

tradeoff affects the expected value of future dividends (i.e., E0 [δt]) and the future

volatility of dividends (i.e., Var0 [ln δt]), which we derive in Appendix A.1.3. There,

we show that both E0 [δt] and Var0 [ln δt], for any t > 0, unambiguously increase with

experimentation, consistent with the idea that creative destruction increases expected

growth but also makes the future more uncertain.

The above tradeoff affects the active investor’s lifetime expected utility of con-

sumption at time t, which is defined as

Ja(δt, β̂t, νt, t) = Et
[∫ T

t

e−ρs
(θδs)

1−γ

1− γ
ds

]
=

θ1−γ

1− γ

∫ T

t

e−ρsEt
[
δ1−γs

]
ds. (10)

In Appendix A.1.4, we show that

Ja(δt, β̂t, νt, t) =
e−ρt(θδt)

1−γ

1− γ
F (β̂t, νt, t), (11)

where F (β̂t, νt, t) is the price-dividend ratio in this economy (to be defined and fully

characterized in Proposition 5). We further show that the value function unambigu-

ously increases with E0[δt] and unambiguously decreases with Var0[ln δt], for any t > 0.

This tradeoff implies a socially optimal level of experimentation.

Proposition 2 (Socially Optimal Experimentation) At t = 0, the active in-

vestor chooses an optimal level of experimentation that maximizes social welfare. This

level is

x∗S =


(β̂0−γkσ2)D0

γk2σ2D0+(γ−1)ν0C0
, if β̂0 − γkσ2 > 0

0, otherwise,
(12)

where D0 is the equity duration (i.e., the weighted average maturity of discounted cash-

flows) and C0 is the equity convexity (i.e., the weighted average squared maturity of

discounted cash-flows).10

10These positive quantities, defined in Appendix A.1.5, are omitted here for ease of exposition.
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The optimal level of experimentation in (12) resembles a mean-variance portfolio.

The expression (12) is implicit in x∗0, however, because the duration and convex-

ity of the cash flows are functions of x∗0. Experimentation has more impact when the

duration of cash-flows is higher (both in terms of higher growth and higher future con-

sumption volatility) because the active investor’s choice has a longer-lasting impact

on the economy. When the margin between the expected benefit of experimentation

and the penalty from disturbing the economy is higher, the active investor’s incen-

tive to experiment increases further with the duration of cash flows. On the other

hand, uncertainty lowers the active investor’s incentive to experiment. This effect is

stronger when the convexity of future cash flows is high.

Going forward, we assume that the socially optimal level of experimentation x∗S
is strictly positive, i.e., the condition β̂0 − γkσ2 > 0 is satisfied.

2.2 Experimentation with Rent Seeking Behavior

Schumpeterian innovation is typically associated with a wealth transfer from the

owners of existing assets to people who innovate, and arises most commonly when

(potential) monopoly rents are high. Investors who engage in creative destruction

often tradeoff between the wealth gains they enjoy from new knowledge and the

losses they endure because the existing assets they own will be rendered obsolete.

This mirrors Schumpeter’s idea that creative destruction, “incessantly revolutionizes

the economic structure from within, incessantly destroying the old one, incessantly

creating a new one” (Schumpeter, 1942, p. 83).11 In what follows, we analyze the

amount of entrepreneurship that arises based on these considerations.

Suppose that N ≥ 1 active investors compete for market share and simultaneously

choose experimentation levels xi ≥ 0, for i ∈ {1, ..., N} at t = 0 to maximize (4).

Each active investor i’s consumption share depends not only on her experimentation

decision but also on the aggregate level of experimentation in the economy

θi(xi, x̃C) =
1

N
e−ϕ+xi(w−x̃C), (13)

where ϕ > 0 and x̃C ≡
∑N

i=1 xi is the total level of experimentation in the economy.

The passive investor receives cp,t = (1− θC)δt, where θC ≡
∑N

i=1 θi(xi, x̃C).

11See also Aghion and Howitt (1992), where this tradeoff is made explicit by showing that more
future research discourages current research by threatening to make it obsolete.
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By construction, the fraction of the dividend stream claimed by agent i is increas-

ing in wxi, which is meant to capture the increase in the share of aggregate wealth

that agent i can claim (monopoly rents) from the new technology.12 Going forward,

we assume that

w >
2(β̂0 − kσ2)

k2σ2
> 0, (14)

so that this incentive is sufficiently large. Indeed, we are interested in the eras with

technology booms, in which investors do in fact race to the “new El Dorado.” How-

ever, the wealth share is also decreasing in the product xix̃C , which captures how

much wealth is lost to competition and also because agent i’s existing assets are

cannibalized or rendered obsolete (Reinganum, 1983; Aghion and Howitt, 1992). As

such, this is an aggregative game that resembles Cournot competition: the market

share for each investor is growing in their own experimentation, but is decreasing in

the sum.

Based on this, the dynamics of consumption are driven by the aggregate level of

experimentation:

dδt
δt

= (f̄ + β̂tx̃C)dt+ σ(1 + kx̃C)dŴt. (15)

Each agent experiments less when their competitors experiment and disturb the econ-

omy, which increases the output volatility that everyone faces. Competition also

lowers the share of consumption that each agent earns by experimenting. Last, ex-

perimentation by competitors increases the overall uncertainty in the economy. Given

this, each agent chooses an optimal level of experimentation, taking into account the

simultaneous choices of the other players.

Proposition 3 (Cournot Experimentation) There exists a unique Nash equi-

librium in which the aggregate level of experimentation under competition among N

12Innovation and top income inequality in the US and other developed countries tend to follow a
parallel evolution. According to Aghion et al. (2015), 11 out of the 50 wealthiest individuals across
US states in 2015 “are listed as inventors in a US patent and many more manage or own firms that
patent.”
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active investors is

x̃∗C =
β̂0D0 − γkσ2D0 + w

γk2σ2D0 + (γ − 1)ν0C0 + N+1
N

, (16)

where each active agent experiments at a symmetric level x∗i = x̃∗C/N . The quantity x̃∗C
is strictly increasing in N and x̃∗C > x∗S ∀N .

Proposition 3 also shows that rent seeking increases experimentation in the econ-

omy, and that competition exacerbates this. As competition intensifies, the aggregate

level of experimentation moves further away from the socially optimal level x∗S , reach-

ing a maximum when N →∞.

Such creative destruction and competition for rents causes the lifetime utility from

the future consumption stream to deteriorate and lowers the welfare for the passive

investor,

U(ci) =
(1− θC)1−γ

1− γ
E
[∫ T

0

e−ρt
δ1−γt

1− γ
dt

]
. (17)

This is because rent seeking by active investors not only reduces the passive investors’

consumption share, it exposes them to too much risk and lowers the expected utility

which they derive from the future consumption stream. Further, higher competition

exacerbates this because experimentation rises and hurts residual claimants in the

economy.

We illustrate the effect of rent seeking behavior and creative destruction on the

aggregate level of experimentation in Figure 1. The parameters that we choose for

this numerical example (provided in the caption of the Figure) are economically plau-

sible and will be the same when we explore the implications for asset prices. The plot

depicts three equilibria (Monopoly, Duopoly, and Perfect Competition). These equi-

libria are the fixed-point solutions of Eq. (16) for three different values of N . We add

the socially optimal level of experimentation (point S) for comparison. Confirming

the results of Proposition 3, there is higher experimentation as competition rises in

the market.
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Figure 1: Experimentation with Rent Seeking Behavior. The fixed point
solution for Eq. (16), for three different values of N : N = 1 (monopoly, M), N = 2
(duopoly, D), and N → ∞ (perfect competition, PC). The point S represents the
socially optimal level of experimentation (Proposition 2). The calibration used is:

γ = 2, f̄ = 0.03, β̂0 = 0.03, ν0 = 0.032, σ = 0.05, k = 2, ρ = 0.03, T = 100, δ0 = 1,
k = 3, e−ϕ = 0.1%, and w = 2.

3 Implications for Asset Prices

We begin by characterizing the dynamics of the stochastic discount factor, the risk-

free rate, and the market price of risk for a generic level of experimentation x0.

Proposition 4 (Stochastic Discount Factor) The stochastic discount factor, de-

fined as ξt ≡ e−ρt(δt/δ0)
−γ, follows

dξt
ξt

= −
[
ρ+ γ(f̄ + β̂tx0)−

1

2
γ(γ + 1)σ2(1 + kx0)

2

]
dt− γσ(1 + kx0)dŴt. (18)

The equilibrium risk-free rate and the market price of risk are given by

rft = ρ+ γ(f̄ + β̂tx0)−
1

2
γ(γ + 1)σ2(1 + kx0)

2 (19)

θt = γσ(1 + kx0). (20)

The equilibrium risk-free rate increases with the expected growth rate of con-

sumption and decreases with the volatility of aggregate consumption. The level of

experimentation amplifies both of these well-known asset pricing effects. Further-

more, experimentation increases the market price of risk. This arises because the
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process of creative destruction disturbs the economy.

Proposition 5 (Asset Prices) For any experimentation level x0, the equilibrium

price-dividend ratio at time t, F (β̂t, νt, t;x0), is

P (β̂t, νt, t;x0)

δt
=

∫ T

t

exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
ds, (21)

where the function κ(x0, β̂t) is defined as

κ(x0, β̂t) ≡ −ρ− (γ − 1)(f̄ + x0β̂t) +
γ(γ − 1)

2
σ2(1 + kx0)

2. (22)

The equilibrium stock market volatility is given by

|σP,t| = σ(1 + kx0)

∣∣∣∣1 + (1− γ)
x20νt

σ2(1 + kx0)2
Dt

∣∣∣∣ , (23)

and the equilibrium risk premium in the economy is

RPt = γσ2(1 + kx0)
2 + γ(1− γ)x20νtDt. (24)

A key result of Proposition 5 is that the equilibrium price-dividend ratio increases

with the uncertainty about β. This effect arises because, as uncertainty about the

true expected growth of the new technology increases, the expected value of future

income streams rises. To see this, suppose that β were known. Then, an application

of Leibniz’ integral rule confirms that the price-dividend ratio is convex in β:

∂2F (β, t;x0)

∂β2
=

∫ T

t

x20(γ − 1)2(s− t)2eκ(x0,β)(s−t)ds > 0. (25)

Since β is a random variable, Jensen’s inequality implies that that the price-dividend

ratio under incomplete information must be greater than the one under complete

information in the presence of uncertainty about growth rates (and not about levels).13

More important, in our setup experimentation amplifies this over-valuation effect

in two ways. First, higher experimentation brings more uncertainty to the economy.

Second, experimentation amplifies the convexity of the price-dividend ratio (as shown

in Eq. 25), which causes over-valuation of the risky asset.

13See also Pástor and Veronesi (2003) and Pástor and Veronesi (2006).
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Experimentation has two effects on the volatility of stock returns. First, it in-

creases volatility by disturbing the economy and amplifying macroeconomic fluctu-

ations. Second, experimentation decreases the volatility of stock returns as long as

there is uncertainty about the expected growth of the new technology. This arises

from investors’ learning and can be understood as follows. Consider a positive out-

put surprise. Through learning, this generates a higher expected output growth. The

stock price increases because it pays off more consumption into the future. However,

the hedging properties of the stock deteriorate, because it generates high consumption

when needed less. This second effect dominates when investors are more risk averse

than log-utility, lowering the volatility of asset returns.

The risk premium admits a similar interpretation. It increases due to the distur-

bance effect of experimentation, but decreases due to the uncertainty about the new

technology.

Figure 2 provides an example that illustrates the effect of experimentation on the

price-dividend ratio, the risk premium, and the volatility of stock returns. Panel (a)

shows that the price-dividend ratio reaches a minimum at the socially optimal level

of experimentation of Proposition 2 (the dot labeled S on the graph). To understand

why this is the case, re-write Eq. (11) under the following form:

F (β̂0, ν0, 0) = (1− γ)(θδ0)
γ−1Ja(δ0, β̂0, ν0, 0), (26)

This shows that the price-dividend ratio is directly related to the value function of the

active investor, with a negative sign when the coefficient of risk aversion is higher than

one. Because the active investor chooses an experimentation level that maximizes the

value function, it follows that the equilibrium price-dividend ratio reaches a minimum

when experimentation is socially optimal.

The direct implication of this inverse relationship is that any level of experimen-

tation that deviates from the optimum always increases the price-dividend ratio.

Panel (a) shows that the price-dividend ratio increases under monopoly (Proposi-

tion 3, N = 1, dot labeled M), further increases under duopoly (N = 2, dot labeled

D), and reaches a maximum under perfect competition (N →∞, dot labeled PC).

Panels (b) and (c) of Figure 2 show that the risk premium and the volatility are

hump-shaped in experimentation. The initial increase is driven by the first terms

in (23)-(24), whereas the subsequent decrease is driven by the second, uncertainty
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Figure 2: Experimentation and Asset Prices. The effect of experimentation on
the price-dividend ratio, the risk premium, and stock market volatility. The dot la-
beled S represents the socially optimal amount of experimentation, x∗S (Proposition 2).
The dot M represents the optimal amount of experimentation under monopoly, x∗M
(Proposition 3, N = 1). The dots D and PC represent the total amount of ex-
perimentation under Cournot competition, with N = 2 and N → ∞ respectively
(Proposition 3). All parameters are provided in Figure 1.

terms.

Based on our analysis, there appears to be a higher risk premium associated with

creative destruction, but this admittedly does depend on the parameters specified in

the model. For most reasonable specifications, however, this will indeed be the case.

To explore this further, we define the normalized risk premium (i.e., risk premium

per unit of variance) in the economy as14

RPt
σ2
P,t

=
γ

1− (γ − 1)
x20νt

σ2(1+kx0)2
Dt

. (27)

This expression conveniently isolates in the denominator the impact of experimenta-

tion x0 and uncertainty νt. Experimentation leads to an increase in the equilibrium

normalized risk premium above the value γ that would prevail in the market without

experimentation. Thus, comparing a market characterized by innovation and creative

destruction with a market without creative destruction yields a higher risk premium

per unit of risk for the former. This is consistent with the fact that agents with

risk-aversion γ > 1 require a risk premium when more uncertainty is present in the

economy (see Footnote 7). Furthermore, Eq. (27) suggests a testable prediction of

14The normalized risk premium, divided by the risk aversion, represents the tangency portfolio in
a portfolio choice problem with random investment opportunities (Merton, 1973; Brennan, 1998a).
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our model, in that sectors characterized by stronger invention activity are riskier.15

Experimentation has further implications for the term structure of risk. To see

this, in Corollary 5.1 we decompose the asset into dividend strips (i.e., assets that

pay the aggregate consumption only at time s > t).

Corollary 5.1 For any experimentation level x0, the price of a dividend strip with

maturity s > t is

Pt,s ≡
1

ξt
Et[ξsδs] = δt exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
. (28)

The risk premium and the volatility for each maturity s ≥ t are given by

RPt,s = γσ2(1 + kx0)
2 + γ(1− γ)x20νt(s− t) (29)

|σP,t,s| = σ(1 + kx0)

∣∣∣∣1 + (1− γ)
x20νt

σ2(1 + kx0)2
(s− t)

∣∣∣∣ . (30)

Experimentation has two effects on the term structure of risk premia and volatil-

ities. First, by increasing the disturbance associated with the introduction of new

technologies, experimentation increases the risk premia and volatilities at all matu-

rities. This can be seen from the first terms in (29)-(30). Second, experimentation

introduces uncertainty about the expected growth of the new technology. This damp-

ens the risk premia and volatilities (as elaborated above). Corollary 5.1 shows that

the dampening effect positively depends on maturity. The volatility of dividend strips

with longer maturities is lowered through learning, which also induces lower risk pre-

mia. As a result, the term structures of risk premia and volatilities become downward

sloping with experimentation.

The effect of experimentation on the term structure of risk is shown in Figure 3.

Without experimentation (solid lines), the term structure of risk premia and volatili-

ties is flat. Then, consistent with Corollary 5.1, experimentation generates downward

sloping term structures. First, by amplifying the volatility of the consumption out-

put, more experimentation produces a level increase in risk premia and volatilities

at all maturities. Second, uncertainty dampens this increase, more so in the far fu-

ture. Competition among active investors amplifies this steepening effect. The slopes

15This prediction has been tested empirically by Grammig and Jank (2015), who show that cross-
sectional differences across size and book-to-market sorted portfolios can be explained as premia for
bearing creative destruction risk.
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Figure 3: Experimentation and the Term Structure of Risk. The term struc-
ture of risk premia and volatilities in several cases. The solid lines depict the flat
term structure that arise in the “status-quo” economy with no experimentation. The
dashed lines depict the case of socially optimal experimentation (Proposition 2). The
remaining two lines (dotted and dash-dotted) depict term structures that arise with
monopoly or with perfect competition (Proposition 3). All parameters are provided
in Figure 1.

are steepest in the perfect competition case, when the total experimentation in the

economy equals x0 = x∗PC .

3.1 The Aftermath of Experimentation

We now consider the consequences on asset prices in the aftermath of the decision to

experiment. We illustrate how the rent seeking behavior of active investors engaged in

creative destruction amplifies the effect that competition has on stock price valuations

and generates patterns that ex post can be identified as booms and busts.

To this end, we consider an economy with perfect competition (N → ∞) and

assume a relatively high value for the rent seeking parameter, w = 5. The reason

for this choice is twofold. First, it implies an equilibrium price-dividend ratio well

above 30, which is often considered as a warning sign that stock markets are in a bub-

ble (Shiller, 2015). Second, it implies an aggregate consumption share of roughly 5%

for the mass of active investors, who initially start from a share of 0.1%. This large

increase in consumption share highlights the power of rent-seeking behavior for wealth

redistribution and is also in line with widely acknowledged facts about top income
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Figure 4: Booms and Busts in Asset Prices. Panel (a) shows the price-dividend
ratio as a function of the aggregate experimentation level in the economy, x0. The
solid line includes uncertainty about β. Uncertainty is set at zero for the dashed
line. The dot labeled ED (“El Dorado”) corresponds to the equilibrium aggregate
level of experimentation in perfect competition. The dot labeled S corresponds to the
socially optimal level of experimentation. Panel (b) depicts average price paths over
time starting from ED (solid and dotted lines) and from S (dashed line), starting

from β̂0 = β. The dotted line maintains the maturity of the asset constant at T = 100
years. With the exception of w = 5, all parameters are provided in Figure 1.

inequality worldwide (e.g., Aghion et al., 2015).

Panel (a) in Figure 4 depicts the price-dividend ratio in this economy as a function

of the aggregate experimentation (solid line). The dot labeled ED (“El Dorado”)

represents the equilibrium price-dividend ratio with perfect competition. In the same

plot, the dashed line depicts the price-dividend ratio when uncertainty about β is

fixed at ν0 = 0. The gap between the two lines provides a measure of the over-

valuation due to uncertainty (see Proposition 5 and its discussion). We also show

on the plot the point S, which corresponds to the socially optimal experimentation

level (Proposition 2). Rent seeking behavior and intense competition lead to over-

experimentation. In turn, this adds uncertainty to the economy and increases the

the gap between the two lines. This gap grows from being almost negligible at S to

roughly 100% at ED.

It is instructive to compare the dynamics of the price-dividend ratio once the

points ED and S have been reached. To do so, let us assume that the prior β̂0 is

exactly equal to the true value of β. That is, we are assuming that agents are initially
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right—but still uncertain—about the expected growth of the new technology, and thus

we are not imposing any optimistic/pessimistic bias in the future paths of prices. As it

turns out, this assumption is extremely convenient, because it ensures that simulations

of the economy over time will result in an average β̂t which is equal to the true

value of β.16 Furthermore, because the remaining state variable which enters in the

valuation of the price-dividend ratio, the uncertainty νt, decreases deterministically

over time, we can directly plot the average price-dividend ratio over time by simply

using Eq. (8) for the dynamics of νt, without resorting to simulations.

Panel (b) in Figure 4 depicts these dynamics. The solid line corresponds to the

average path of the price-dividend ratio starting from ED, whereas the dashed line

shows the average path of the price-dividend ratio starting from S. Because the re-

maining life of the asset diminishes, we also add to the plot the dotted line, which

isolates the effect of the decrease in uncertainty by holding the remaining asset life

constant at T = 100 years (this adjustment is unnecessary in the S case, where the

decrease in the price-dividend ratio is almost imperceptible). The panel shows that,

after reaching the point ED, asset prices have the tendency to decrease as uncer-

tainty about the new technology resolves. In contrast, after experimentation at the

socially optimal level (point S), the average decrease in asset price due to resolution

of uncertainty is negligible.

As such, competition among rent-seeking agents in markets for new technologies

generates price patterns that resemble a “bubble.” It is important to mention that

the situation depicted in panel (b) can be identified as a bubble only ex post; ex ante,

agents do not expect prices to fall. But, because learning by doing decreases the

uncertainty about β over time, stock prices adjust endogenously. The pace of this ad-

justment process depends on the rate at which uncertainty about the new technology

is resolved. More specifically, Eq. (8) shows that the posterior variance decays faster

with over-experimentation,17 which accelerates the eventual decline in asset prices.

Our model therefore predicts that markets characterized by fierce competition for new

technologies are not only prone to stronger asset price inflation but also to steeper

16This can be seen from Proposition 1. At time t = 0, dŴ0 = dWt (because β − β̂0 = 0).

Technically, at time t = 0 the filter β̂ is a martingale. This ensures that the average of its future
simulated values one step ahead, β̂0+dt, is exactly β. Then apply the same reasoning at time
t = 0 + dt.

17In Eq. (8), the coefficient multiplying time in the denominator can be interpreted as the speed of
learning. It is a matter of algebra to show that the speed of learning increases with experimentation.
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subsequent declines through learning by doing and faster resolution of uncertainty.

Finally, we highlight here the importance of learning for the evolution of bubbles.

The aftermath depicted in Panel (b) of Figure 4 can only take place through learning.

If no uncertainty (and thus learning) about the true expected growth of the new

technology were present, then prices would never fall and we would not observe an

aftermath.

3.2 A Possible Ex Ante Diagnosis of “Bubbles”

Bubble peaks are notoriously hard to identify (Fama, 2014; Greenwood et al., 2017).

In this section, we try to address this issue by proposing a plausible test for bubbles,

that depends on future financial innovation.

In our model, high stock valuations and price-dividend ratios may arise not only

because of agents’ expectations about future growth, but also because of uncertainty

coupled with rent seeking behavior and intensified competition. According to Propo-

sition 5, the price-dividend ratio in this economy depends on both β̂t and νt:

F (β̂t, νt, t;x0) =

∫ T

t

exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
ds. (31)

It is therefore not possible to infer both the expected growth and the degree of

uncertainty from the price-dividend ratio alone. However, notice that the expected

growth enters this valuation equation as a linear function of the maturity (s − t),

whereas parameter uncertainty enters as a quadratic function. This suggests that if

a market for dividend strips were established (Brennan, 1998b), defined as claims to

each year’s dividend on an index, this might help detect bubbles ex ante by identifying

when high stock price valuations are primarily driven by uncertainty and competition.

To illustrate this, consider Figure 5, where we use Corollary 5.1 to plot the log

values of dividend strips for the remaining life of the asset. We consider two situations.

The solid line shows the log values of dividend strips when the price-dividend ratio

is at the point ED (“El Dorado”). The dashed line pertains to the socially optimal

experimentation case (point S in Figure 4).

The solid line shows a clear non-linear pattern, which arises from the quadratic

term in Eq. (31). This effect is almost nil with the dashed line, which is indistinguish-

able from a straight line. If a market for dividend strips were present, a statistical

21



0 20 40 60 80 100

−6

−4

−2

0

Maturity (years)

Log Dividend Strips

ED (“El Dorado”)

S (Socially optimal)

Figure 5: An Ex Ante Diagnosis of “Bubbles.” Log prices of dividend strips
(Corollary 5.1) in two situations. The solid line corresponds to the dot ED (“El
Dorado”) on Figure 4. The dashed line corresponds to the dot S (Socially optimal
experimentation) on Figure 4. With the exception of w = 5, all parameters are
provided in Figure 1.

test could be devised to help reject the null hypothesis of linear dependence on ma-

turity. We emphasize that this test is different than a standard test of the no-bubble

condition (Giglio, Maggiori, and Stroebel, 2016). In our case, prices of strips at all

maturities offer a “term-structure” pattern whose shape becomes non-linear if asset

prices are overvalued due to uncertainty.

4 Dynamic Experimentation

So far, we have assumed that the decision to experiment is made only once, at t = 0.

In reality, however, innovation is not a one-time decision, but often occurs in waves

(Gort and Klepper, 1982). Now, we return to the socially optimal case of Section 2.1

and consider that the active agent can choose the experimentation level xt at any

time t, in order to maximize her expected lifetime utility. Thus, she can alter the

level of experimentation dynamically and retains the option to expand or abandon

her investment at every instant.18

The active agent’s expected lifetime utility of consumption Ja satisfies the follow-

18See also Rob (1991) for a sequential model of entry in which uncertainty gradually resolves over
time. In our case, the decision to alter the experimentation level is made by a single agent.
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ing partial differential equation at any time t:

0 = max
x

[
DJa(δt, β̂t, νt, t) + e−ρt

(θct)
1−γ

1− γ

]
, (32)

with boundary condition Ja(δT , β̂T , νT , T ) = 0 and subject to xt ≥ 0, ∀t. D represents

the differential operator. In equilibrium, the CRRA utility conjecture

Ja(δt, β̂t, νt, t) = e−ρt
(θδt)

1−γ

1− γ
F (β̂t, νt, t) (33)

results in a partial differential equation for the price-dividend ratio F (·), which we

relegate to Appendix A.3.2 for sake of brevity. The optimal level of experimentation

then follows from the first order condition on xt.

Proposition 6 (Optimal Dynamic Experimentation) If the problem (32) has

an interior maximum, then the optimal level of experimentation at time t solves

x∗t =
β̂t − γkσ2

γk2σ2
+

νt
γk2σ2

(
Fβ
F
− x∗tνt

(γ − 1)σ2(1 + kx∗t )
3

Fββ − Fν
F

)
. (34)

The solution (34) constitutes an implicit form since the control xt appears on the

right hand side of the equation. Nevertheless, it highlights two main components of

the optimal level of experimentation. The first is a “mean-variance” component which

increases when the active agent expects a higher growth for the new technology β̂t

and decreases with the risk aversion coefficient and the disturbance parameter k. The

second is a “hedging” component, which vanishes when there is no uncertainty about

the new technology. This term results from agent’s desire to hedge variations in the

filter β̂t but also from agent’s ability to exert control through her experimentation

choice on the evolution of both β̂t and νt.

4.1 Asset Prices with Dynamic Experimentation

Proposition 6 shows that in the dynamic case the optimal experimentation level fluc-

tuates as new information becomes available and affects the agent’s expectations.

This has further impact on asset prices in the economy, which we characterize below.
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Proposition 7 (Asset Prices with Dynamic Experimentation) In an econ-

omy with dynamic experimentation, the risk-free rate and the market price of risk are

given by

rft = ρ+ γ(f̄ + x∗t β̂t)−
1

2
γ(γ + 1)σ2(1 + kx∗t )

2 (35)

θt = γσ(1 + kx∗t ), (36)

whereas the aggregate risk premium and the volatility of stock returns are

µCS,t − r
f
t = γσ2(1 + kx∗t )

2 + γ(1− γ)(x∗t )
2νtD̃t (37)

|σP,t| = σ(1 + kx∗t )

∣∣∣∣1 + (1− γ)
(x∗t )

2νt
σ2(1 + kx∗t )

2
D̃t

∣∣∣∣ . (38)

Expressions (35)-(38) have a similar structure with the ones in the static case

(Section 3), with two main differences. First, the market price of risk now fluctuates

and increases with the level of experimentation. Second, in (37)-(38), the equity

duration from the static case has been adjusted to account for time variation in

xt. We define this adjusted duration in Appendix A.3.2 . The intuition from the

static case applies here as well: by increasing the volatility of aggregate consumption,

experimentation magnifies both the equity risk premium and the volatility of asset

returns; however, too much experimentation can lower risk premia and volatility

through the learning channel, which dampens asset price fluctuations. Therefore, in

the dynamic case as in the static case, both the risk premium and the volatility will

feature a hump-shaped pattern in experimentation.

We compare the optimal level of experimentation, the risk premium and the

volatility in the static versus the dynamic case in Figure 6, first as a function of

the filter β̂t in the upper panels, and then as a function of the uncertainty νt in

the lower panels.19 The static experimentation case is depicted with blue solid lines,

whereas the dynamic experimentation case is depicted with red dashed lines.

When the filter β̂0 is sufficiently low, neither the “static” or the “dynamic” agent

decide to experiment, as shown in panel (a). When experimentation is positive,

the “dynamic” experimenter allocates more capital to the new technology than the

“static” experimenter for any level of β̂t. This is because the dynamic experimenter

19We use a finite difference scheme to solve the partial differential equation associated with the
problem (32).
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Figure 6: Static Versus Dynamic Experimentation. The six panels depict the
optimal level of experimentation, the risk premium and the volatility of asset returns
with static experimentation (solid lines) versus dynamic experimentation (dashed

lines). The upper panels plot functions of the prior β̂0. The lower panels plot functions
of the square root of uncertainty,

√
ν0. All parameters are provided in Figure 1, except

for the maturity, which is fixed at T = 50 in order to improve numerical accuracy.

always has the option to stop or decrease later on. In contrast, the static experimenter

is more cautious when fixing an initial experimentation level.

Because of this, the risk premium and the volatility are generally higher with

dynamic experimentation than with static experimentation, as shown in panels (b)

and (c). Indeed, the option to abandon lowers risk for the dynamic experimenter. But,

internalizing this she experiments more, which raises the risk premium and volatility.

In the lower panels of Figure 6, the risk premium and the volatility are plotted

for different values of the uncertainty νt. In the static case, the risk premium and the

volatility decrease with uncertainty. The static experimenter always chooses a lower

level of experimentation if uncertainty is high, which decreases the risk premium and

the volatility. In the dynamic case, however, both the risk premium and the volatility
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remain more or less constant in νt (eventually, they decrease once the last terms in

(37)-(38) dominate). We can understand this by analyzing two extreme cases. First, if

uncertainty is negligible, then both the static and dynamic agent know the parameter

β and thus their choices over x0 are the same. Second, if uncertainty is unusually

high, both the “static” and “dynamic” agent give up experimenting. Consequently,

only intermediate values of ν0 are beneficial for the “dynamic experimenter”: because

she has the flexibility to stop experimenting later, she experiments more aggressively

initially and thus both the risk premium and the volatility remain high with dynamic

experimentation and for intermediate values of uncertainty.

5 Conclusion

This paper proposes a financial markets perspective on Schumpeter (1934)’s evolu-

tionary economics ideas, according to which introduction of new technologies disturbs

the flow of economic life and forces existing means of production to lose their position

within the economy. It is then the task of the financier to decide how much of the

new technology the economy should be willing to take.

From the financier’s viewpoint, an optimum exists. This optimum balances the

gains of economic development associated with new productive technologies against

the disturbance imposed on the status quo. The process of reaching such an optimum

involves learning by doing (i.e., experimentation), which has an observer effect and

creates uncertainty in financial markets. Rent-seeking behavior and intensified com-

petition for new markets leads to socially excessive experimentation, inflating asset

prices and generating high risk premia and high volatility. In hindsight, asset prices

exhibit familiar boom and bust patterns observed during technological revolutions.

Rent seeking behavior by active investors has welfare consequences. It reduces the

passive investors’ (those who are not involved in entrepreneurial activity) consump-

tion share, exposes them to too much risk and lowers the expected utility of their

consumption stream. Higher competition exacerbates this because experimentation

rises, which hurts the residual claimants in the economy.

A worthwhile direction for future research would be to link a proxy for experi-

mentation (i.e., x∗t in our model) with dynamic patterns in asset prices. Greenwood

et al. (2017) find that, in conjunction with an sharp price increase, economies char-

acterized by high stock issuance have a heightened probability of a subsequent crash.
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Our model offers a justification for their finding and a theoretical argument in favor

of using more information in order to identify bubbles.

We have assumed throughout this paper that investors share the same beliefs

about the expected growth of a new technology. In reality, these markets might

very well be characterized by strong divergence of opinion about the promise of new

innovations. It might be an interesting exercise to study the interaction between

competition and difference of beliefs. Our guess is that active agents will decide to

experiment more in order to preempt entry of optimistic competitors, in this way

exacerbating the effect of over-experimentation on asset prices.

Finally, it is important to further explore the implications of dynamic experi-

mentation on asset prices. Because dynamic experimentation provides the agent an

additional option to abandon a new technology at any point in the future, it can have

adverse consequences for the valuation of firms involved in entrepreneurial activity.

Coupled with lack of perfect knowledge, dynamic experimentation might lead the

financier to conclude that a particular new technology is not productive and abandon

it prematurely. This “abandonment risk” has consequences for asset prices.
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A Appendix

A.1 Experimentation and Learning

A.1.1 Microfoundation

Consider two intermediate goods, a “status-quo” good and an “experimental” good:

dδSt
δSt

= f̄dt+ σdWt (39)

dδEt
δEt

=

(
Γ− k2σ2

2
x0

)
dt+ kσdWt. (40)

The parameter Γ, which enters in the expected growth of the experimental good, is an
unknown constant. The expected growth for the experimental good exhibits decreasing
returns to scale: a higher initial level of experimentation x0 decreases its expected growth
by a term proportional to the instantaneous variance of δEt , k2σ2. Define the consumption
basket in the economy as20

δt = δSt
(
δEt
)x0

. (41)

If x0 = 0, the economy remains in the status-quo and only the good δSt is consumed. When
x0 > 0, the experimental good becomes a new variety in the consumption basket, with a
weight given by x0/(1 + x0). Aplying Itô’s lemma on δt yields:

dδt
δt

=
(
f̄ + βx0

)
dt+ σ(1 + kx0)dWt, (42)

where β ≡ Γ + 1
2(2 − k)kσ2 is an unknown constant. This provides a microfoundation of

Eq. (3) in the text.

A.1.2 Proof of Proposition 1 (Learning)

The proof of Proposition 1 follows from direct application of this standard result in filtering
theory:

Theorem 8 (Liptser and Shiryayev, 1977) Consider an unobservable process ut and
an observable process st with dynamics

dut = [a0(t, st) + a1(t, st)ut] dt+ b1(t, st)dZ
u
t + b2(t, st)dZ

s
t (43)

dst = [A0(t, st) +A1(t, st)ut] dt+B1(t, st)dZ
u
t +B2(t, st)dZ

s
t . (44)

All the parameters can be functions of time and of the observable process. Then, the filter
evolves according to (we drop the dependence of coefficients on t and st for notational

20This specification is commonly adopted in the international finance literature. See Helpman and
Razin (2014), Cole and Obstfeld (1991), Zapatero (1995), and Pavlova and Rigobon (2007) among
others.
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convenience):

dût = (a0 + a1ût)dt+ [(b ◦B) + νtA
>
1 ](B ◦B)−1[dst − (A0 +A1ût)dt] (45)

dνt
dt

= a1νt + νta
>
1 + (b ◦ b)− [(b ◦B) + νtA

>
1 ](B ◦B)−1[(b ◦B) + νtA

>
1 ]>, (46)

where

b ◦ b = b1b
>
1 + b2b

>
2 (47)

B ◦B = B1B
>
1 +B2B

>
2 (48)

b ◦B = b1B
>
1 + b2B

>
2 . (49)

In the present setup, the unobservable variable is the constant β. Hence,

a0 = a1 = b1 = b2 = 0. (50)

Furthermore, the observable process is δt. Applying Itô’s lemma on ln δt yields

A0 = f̄ − 1

2
σ2(1 + kx0)

2, A1 = x0, B1 = 0, B2 = σ(1 + kx0). (51)

Direct application of Theorem 8 yields Proposition 1. �

A.1.3 Conditional moments of future output

We prove the following proposition using the theory of affine processes (Duffie, Filipović,
and Schachermayer, 2003):21

Proposition 9 For any s > t, the expected value of future dividends and the future volatility
of dividends are respectively given by

Et [δs] = δt exp

[(
f̄ + x0β̂t

)
(s− t) +

x20νt
2

(s− t)2
]

(52)

Vart [ln δs] = σ2(1 + kx0)
2(s− t) + x20νt(s− t)2. (53)

Both quantities are increasing in the level of experimentation x0.

Proof Apply first Itô’s lemma on ln δt, with the process of δt provided in (5). Using the
fact that β̂t is a martingale yields

Et [ln δs] = ln δt +

(
f̄ + x0β̂t −

σ2(1 + kx0)
2

2

)
(s− t). (54)

21An alternative approach would be to follow Ziegler (2003, Appendix A) and Bryson and Ho
(1975, Section 11.4) and compute Et[δs] and Var[ln δs] in one step. Both approaches are equally
tedious.
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Write the dynamics of the system of two state variables {ln δt, β̂t} under an affine form:[
d ln δt
dβ̂t

]
=

([
f̄ − 1

2σ
2(1 + kx0)

2

0

]
+

[
0 x0
0 0

] [
ln δt
β̂t

])
dt+

[
σ(1 + kx0)

A(t)

]
dŴt, (55)

where A(t) is a function of time (see Proposition 1):

A(t) ≡ ν0x0σ(1 + kx0)

ν0x20t+ σ2(1 + kx0)2
. (56)

The following Lemma results immediately from differentiation of A(t):

Lemma 10 The function A(t) satisfies

A′(t) = − x0
σ(1 + kx0)

A(t)2. (57)

Notice that (55) is a time-inhomogeneous multifactor affine process (Filipović, 2005). This
is because the diffusion of β̂ depends on time (but it does not depend on the two state
variables). Define:

K0 ≡
[
f̄ − 1

2σ
2(1 + kx0)

2

0

]
(58)

K1 ≡
[
0 x0
0 0

]
(59)

H0(t) ≡
[
σ(1 + kx0)

A(t)

] [
σ(1 + kx0)

A(t)

]′
=

[
σ2(1 + kx0)

2 σ(1 + kx0)A(t)
σ(1 + kx0)A(t) A(t)2

]
. (60)

In order to compute the expectation

Et [δs] = Et
[
eln δs

]
, (61)

we conjecture an exponential-affine solution of the form

Et [δs] = eα0(s−t)+α1(s−t) ln δt+α2(s−t)β̂t , (62)

for some coefficient functions αj(·), j = 0, 1, 2. Since the system (55) is a multifactor affine
diffusion, the coefficients αj(·), j = 0, 1, 2 satisfy a system of Riccati ODEs (Duffie et al.,
2003). Defining τ ≡ s− t, the system of ODE writes[

α′1(τ)
α′2(τ)

]
= K>1

[
α1(τ)
α2(τ)

]
(63)

α′0(τ) = K>0

[
α1(τ)
α2(τ)

]
+

1

2

[
α1(τ) α2(τ)

]
H0(t)

[
α1(τ)
α2(τ)

]
, (64)
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with boundary conditions α0(0) = 0, α1(0) = 1, and α2(0) = 0. The first Riccati Eq. (63)
has a straightforward solution:

α1(τ) = 1 (65)

α2(τ) = x0τ, (66)

which can be now inserted in the remaining Riccati Eq. (64):

α′0(τ) =
[
f̄ − 1

2σ
2(1 + kx0)

2 0
] [ 1
x0τ

]
+

1

2

[
1 x0τ

]
H0(s− τ)

[
1
x0τ

]
, (67)

which leads to

α′0(τ) = f̄ + σ(1 + kx0)x0A(s− τ)τ +
x20
2
A(s− τ)2τ2 (68)

= f̄ + σ(1 + kx0)x0

[
A(s− τ)τ +

1

2

x0
σ(1 + kx0)

A(s− τ)2τ2
]

(69)

and boundary condition α0(0) = 0. Using Lemma 10, we can write:

α′0(τ) = f̄ + σ(1 + kx0)x0

[
A(s− τ)τ +

1

2

∂A(s− τ)

∂τ
τ2
]

(70)

= f̄ + σ(1 + kx0)x0
∂
(
1
2A(s− τ)τ2

)
∂τ

, (71)

which we can now integrate to get

α0(s− t) = f̄(s− t) +
1

2
σ(1 + kx0)x0

x0
σ(1 + kx0)

νt(s− t)2 (72)

= f̄(s− t) +
1

2
x20νt(s− t)2 (73)

It then follows that

Et [δs] = eα0(s−t)+α1(s−t) ln δt+α2(s−t)β̂t (74)

= exp

[
ln δt +

(
f̄ + x0β̂t

)
(s− t) +

x20νt
2

(s− t)2
]

(75)

= δt exp

[(
f̄ + x0β̂t

)
(s− t) +

x20νt
2

(s− t)2
]
, (76)

which is increasing in the level of experimentation x0. Write now

Et [δs] = Et
[
eln δs

]
= exp

[
Et[ln δs] +

1

2
Vart[ln δs]

]
, (77)
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which, using (54) and (76) yields

exp

[
σ2(1 + kx0)

2

2
(s− t) +

x20νt
2

(s− t)2
]

= exp

[
1

2
Vart[ln δs]

]
, (78)

and thus

Vart [ln δs] = σ2(1 + kx0)
2(s− t) + x20νt(s− t)2, (79)

which is increasing in the level of experimentation x0. �

A.1.4 Value Function of the Active Investor

Proposition 11 The value function of the active investor unambiguously increases with ex-
pected future dividends Et[δs] and unambiguously decreases with the future variance Vart[ln δs],
for any s ≥ t. Furthermore, the value function can be written

Ja(δt, β̂t, νt, t) =
e−ρt(θδt)

1−γ

1− γ
F (β̂t, νt, t), (80)

where

F (β̂t, νt, t) ≡
∫ T

t
exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
ds (81)

and

κ(x0, β̂t) ≡ (1− γ)

(
f̄ + x0β̂t − γ

σ2(1 + kx0)
2

2

)
− ρ. (82)

Proof In equilibrium, the active investor consumes a fraction θ of the entire output δt and
thus her lifetime expected utility of consumption can be computed as

Ja(δt, β̂t, νt, t) = Et
[∫ T

t
e−ρs

(θδs)
1−γ

1− γ
ds

]
=

θ1−γ

1− γ

∫ T

t
e−ρsEt

[
δ1−γs

]
ds, (83)

where the second equality results from application of Fubini’s theorem. The expectation
in Eq. (10) can be further expanded by using the property that for a normally distributed
random variable y = ln(x), E[xα] = exp(αE[y] + α2Var[y]/2):

Ja(δt, β̂t, νt, t) =
θ1−γ

1− γ

∫ T

t
e−ρs exp

[
(1− γ)Et[ln δs] +

(1− γ)2

2
Vart[ln(δs)]

]
ds. (84)

Replacing (54) and (79) yields

Ja(δt, β̂t, νt, t) =
e−ρt(θδt)

1−γ

1− γ

∫ T

t
exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
ds, (85)

with κ(x0, β̂t) defined in (82). In order to show that Ja(δt, β̂t, νt, t) increases in Et[δs] and
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decreases in Vart[ln δs], replace the relation

Et[ln δs] = ln(Et[δs])−
1

2
Vart[ln δs] (86)

in (84) to obtain

Ja(δt, β̂t, νt, t) =
θ1−γ

1− γ

∫ T

t
e−ρsEt[δs]1−γ exp

[
−γ(1− γ)

2
Vart[ln δs]

]
ds. (87)

From Eq. (87), it is a matter of algebra to show that J(δt, β̂t, t) increases in Et[δs] and
decreases in Vart[ln δs], for any value of the risk aversion parameter γ. �

A.1.5 Proof of Proposition 2 (Socially Optimal Experimentation)

The expected lifetime utility of the passive investor equals:

Jp(δt, β̂t, νt, t) =
e−ρt((1− θ)δt)1−γ

1− γ
F (β̂t, νt, t). (88)

Because the consumption share θ is constant, the choice of the active investor also maximizes
the expected lifetime utility of the passive investor and is therefore socially optimal (in
other words, different values of the parameter θ ∈ [0, 1] will always yield the same amount
of optimal experimentation). The first order condition for the active investor writes

0 =
∂Ja(δ0, β̂0, ν0, 0)

∂x0
=

(θδ0)
1−γ

1− γ

∫ T

0

[
(1− γ)

(
β̂0 − γkσ2(1 + kx0)

)
t+ (1− γ)2x0ν0t

2
]

× exp

[
κ(x0, β̂0)t+

(1− γ)2

2
x20ν0t

2

]
dt.

(89)

Define the functions G and H as

G(β̂t, νt, t) ≡
∫ T

t
(s− t) exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
ds (90)

H(β̂t, νt, t) ≡
∫ T

t
(s− t)2 exp

[
κ(x0, β̂t)(s− t) +

(1− γ)2

2
x20νt(s− t)2

]
ds. (91)

After replacing G and H and dividing by F , the first order condition becomes

β̂0D0 − γkσ2(1 + kx0)D0 + (1− γ)x0ν0C0 = 0, (92)
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where the two quantities Dt and Ct represent the equity duration and the equity convexity:

Dt ≡
G(β̂t, νt, t)

F (β̂t, νt, t)
(93)

Ct ≡
H(β̂t, νt, t)

F (β̂t, νt, t)
. (94)

The value Dt represents the weighted average maturity (i.e., the equity duration), whereas
the value Ct represents the weighted average squared maturity (i.e., the equity convexity).
Both Dt and Ct ar positive. Solving for x0 in (92) yields (12). �

A.1.6 Proof of Proposition 3 (Experimentation under Competition)

Agent i faces the following choice in terms of consumption share and output:

θi(xi, x̃C) =
1

N
e−ϕ+xi(w−x̃C) (95)

dδt
δt

= (f̄ + β̂tx̃C)dt+ σ(1 + kx̃C)dŴt. (96)

The expected lifetime utility of consumption for agent i at time t is

Ji(δt, β̂t, νt, t) = Et

[∫ T

t
e−ρs

(
1
N e
−ϕ+xi(w−x̃C)δs

)1−γ
1− γ

ds

]
(97)

=

(
1
N e
−ϕ+xi(w−x̃C)

)1−γ
1− γ

∫ T

t
e−ρsEt

[
δ1−γs

]
ds (98)

=
e−ρt

(
1
N e
−ϕ+xi(w−x̃C)δt

)1−γ
1− γ︸ ︷︷ ︸
≡f(xi)

F (β̂t, νt, t), (99)

where F (·) is defined as before, except that now it is a function of x̃C instead of x0. We
prove first the following result.

Proposition 12 At t = 0, the function Ji(δ0, β̂0, ν0, 0) admits a unique maximum in xi.

Proof Write the function Ji(δ0, β̂0, ν0, 0) as the product of a negative constant and another
function z(xi):

Ji(δt, β̂t, νt, t) =
e−ρt

(
1
N δt
)1−γ

e(1−γ)(−ϕ)

1− γ︸ ︷︷ ︸
<0

z(xi), (100)

where the function z(xi) is defined as

z(xi) ≡ e(1−γ)xi(w−x̃C)F (β̂0, ν0, 0). (101)
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The function z(xi) is a product of two strictly positive functions (an exponential function
and the price-dividend ratio).22 Consider a strictly monotonic transformation of z(xi):

ln z(xi) = (1− γ)xi(w − xi − x̃−C) + lnF (β̂0, ν0, 0) (102)

= (w − x̃−C)(1− γ)xi + (γ − 1)x2i︸ ︷︷ ︸
≡A(xi)

+ lnF (β̂0, ν0, 0)︸ ︷︷ ︸
≡B(xi)

, (103)

where x̃−C ≡ x̃C−xi. The term A(xi) in (103) is strictly convex when γ > 1. The term B(xi)
represents the log price-dividend ratio. Close inspection of (81)-(82) reveals that the price-
dividend ratio at time t = 0 has this particular form:

F (β̂0, ν0, 0) =

∫ T

0
y(x̃C , s)ds. (104)

It can be quickly verified that y(x̃C , s) is log-convex in xi. This implies that the price-
dividend ratio F (β̂0, ν0, 0) is log-convex in xi (Boyd and Vandenberghe, 2004, p. 105). It
then follows that the term B(xi) in (103) is convex. Thus, ln z(xi) is strictly convex and
therefore the function z(xi) admits a unique minimum. This implies that Ji(δt, β̂t, νt, t)
admits a unique maximum. �

Starting from (99), write the first order condition for agent i at time t = 0:

0 =
∂f(xi)

∂xi
F (β̂0, ν0, 0) + f(xi)

∂F (β̂0, ν0, 0)

∂xi
(105)

= (1− γ)(w − xi − x̃C)f(xi)F (β̂0, ν0, 0) + f(xi)
∂F (β̂0, ν0, 0)

∂xi
, (106)

and replace

∂F (β̂0, ν0, 0)

∂xi
=
∂x̃C
∂xi

∂F (β̂0, ν0, 0)

∂x̃C
(107)

= (1− γ)
[
β̂0 − γkσ2(1 + kx̃C)

]
G(β̂0, ν0, 0) + x̃C(1− γ)2ν0H(β̂0, ν0, 0).

(108)

After dividing by (1− γ)f(xi)F (β̂0, ν0, 0), the first order condition for agent i at time t = 0
becomes:

0 = (w − xi − x̃C) +
[
β̂0 − γkσ2(1 + kx̃C)

]
D0 + x̃C(1− γ)C0. (109)

The first term on the right hand side is the marginal benefit of experimentation arising from
an increased consumption share. In the case of a monopolist, this term becomes (w− 2xi).
Therefore, if w > 2x∗S , then we are guaranteed that a monpolist will invest more than
in the socially optimal case. Furthermore, it can be verified from Proposition 2 that the
highest level of socially optimal experimentation is obtained in the log-utility case and equals

22Although both functions are convex, this does not guarantee that their product is convex.
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(β̂0 − kσ2)/(k2σ2). Thus, a sufficient condition necessary to obtain more experimentation
in the monopolistic case is Eq. (14) in the text:

w >
2(β̂0 − kσ2)

k2σ2
. (110)

Solving for xi in Eq. (109) yields

xi =
[
β̂0 − γkσ2(1 + kx̃C)

]
D0 + (w − x̃C)− x̃C(γ − 1)ν0C0, ∀i = 1, ..., N. (111)

This shows that agents’ best response functions are symmetric. Aggregating across agents
and dividing by N yields an equation in the total experimentation in the economy, x̃C :

1

N
x̃C =

[
β̂0 − γkσ2(1 + kx̃C)

]
D0 + (w − x̃C)− x̃C(γ − 1)ν0C0, (112)

with solution

x̃∗C =
β̂0D0 − γkσ2D0 + w

γk2σ2D0 + (γ − 1)ν0C0 + N+1
N

. (113)

This is a fixed point problem (D0 and C0 depend on x̃∗C). The function on the right hand
side is continuous and starts from a strictly positive value at x̃C = 0. The solution is
obtained when this function crosses the 45-degree line. The fixed point is unique, since we
have proven in Proposition 12 that the function Ji(δt, β̂t, νt, t) admits a unique maximum
and xi is unique ∀i = 1, ..., N . To prove that x̃∗C is strictly increasing in N , consider two
consecutive cases, N and N + 1:

x̃∗C(N) =
β̂0D0 − γkσ2D0 + w

γk2σ2D0 + (γ − 1)ν0C0 + N+1
N

(114)

x̃∗C(N + 1) =
β̂0D0 − γkσ2D0 + w

γk2σ2D0 + (γ − 1)ν0C0 + N+1
N − 1

N(N+1)

. (115)

The two expressions on the right hand side in (114)-(115) are both functions of the experi-
mentation level x. Naming these functions g(x) and and h(x) respectively, it is clear that,
for any given experimentation level x ≥ 0:

g(x) < h(x). (116)

This inequality is easily verified, since for a given experimentation level x the duration D0

and the convexity C0 are the same in both functions. It then follows that the point at which
the function h(·) crosses the 45-degree line is strictly higher than the point at which the
function g(·) crosses the 45-degree line (see Figure 1). Since the equilibrium is unique, the
quantity x̃∗C is strictly increasing in N . This completes the proof of Proposition 3. �
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A.2 Implications for Asset Prices

A.2.1 Proof of Proposition 4 (Stochastic Discount Factor)

The proof follows standard results in asset pricing (Duffie, 2010). Assuming time-additive
expected utility, we can define a stochastic discount factor from the optimal consumption
plan of any individual as

ξt = e−ρt
u′(δt)

u′(δ0)
. (117)

Note that in our case agents consume fixed shares of the aggregate output and observe the
economy under the same probability measure. Given the CRRA assumption, the dynamics
of the stochastic discount factor can then be expressed as

dξt
ξt

= −
[
ρ+ γ(f̄ + x0β̂t)−

1

2
γ(γ + 1)σ2(1 + kx0)

2

]
dt− γσ(1 + kx0)dŴt. (118)

The continuously compounded risk-free rate is the negative of the drift of the stochastic
discount factor, whereas the market price of risk process is the negative of the diffusion of
the stochastic discount factor. This yields (19) and (20) in Proposition 4. �

A.2.2 Proof of Proposition 5 (Asset Prices)

Recall that the state variables in this economy evolve according to (5)-(7). The equilibrium
price of the risky asset is

Pt =
1

ξt
Et
[∫ T

t
ξsδsds

]
= δγt

∫ T

t
e−ρ(s−t)Et[δ1−γs ]ds. (119)

Using Proposition 11, we obtain

Pt =
1− γ
θ1−γ

eρtδγt Ja(δt, β̂t, νt, t) = δtF (β̂t, νt, t), (120)

which proves that indeed F (β̂t, νt, t) is the price-dividend ratio. We then obtain Ft, Fβ, Fν ,

and Fββ , where F (β̂t, νt, t) is defined in (81) and κ(x0, β̂t) is defined in (82):

Ft ≡
∂F (β̂t, νt, t)

∂t
= −1− κ(x0, β̂t)F (β̂t, νt, t)− (1− γ)2x20νtG(β̂t, νt, t) (121)

Fβ ≡
∂F (β̂t, νt, t)

∂β̂t
= (1− γ)x0G(β̂t, νt, t) (122)

Fββ ≡
∂2F (β̂t, νt, t)

∂β̂2t
= (1− γ)2x20H(β̂t, νt, t) (123)

Fν ≡
∂F (β̂t, νt, t)

∂νt
=

(1− γ)2

2
x20H(β̂t, νt, t), (124)
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where G(β̂t, νt, t) and H(β̂t, νt, t) are defined in (90)-(91). Apply Ito’s formula to Pt:

dPt = δtF
dδt
δt

+ δtFβdβ̂t + δtFνdνt + δtFtdt+
1

2

[
δtFββ(dβ̂t)

2 + 2Fβ(dδt)(dβ̂t)
]
, (125)

to obtain

dPt
Pt

= µP,tdt+ σP,tdŴt, (126)

with

µP,t ≡ f̄ + β̂tx0 − κ(x0, β̂t)−
1

F (β̂t, νt, t)
+ γ(1− γ)x20νt

G(β̂t, νt, t)

F (β̂t, νt, t)
(127)

σP,t ≡ σ(1 + kx0)

(
1 + (1− γ)

x20νt
σ2(1 + kx0)2

G(β̂t, νt, t)

F (β̂t, νt, t)

)
. (128)

To obtain the risk premium as in (24), multiply the market price of risk, θt = γσ(1 + kx0)
(Proposition 4, Eq. 20), with the diffusion of stock returns. �

A.3 Dynamic Experimentation

A.3.1 Proof of Proposition 6 (Optimal Dynamic Experimentation)

The dynamics of consumption with experimentation at time t now depend on xt:

dδt
δt

= (f̄ + β̂txt)dt+ σ(1 + kxt)dŴt, (129)

with

dβ̂t =
xt

σ(1 + kxt)
νtdŴt (130)

dνt = − x2t
σ2(1 + kxt)2

ν2t dt. (131)

Note that now the active agent can choose the experimentation level xt at any time t in
order to maximize her expected lifetime utility. Thus, the active agent’s expected lifetime
utility of consumption Ja satisfies the partial differential equation

0 = max
x

[
DJa(δt, β̂t, νt, t) + e−ρt

(θct)
1−γ

1− γ

]
, (132)

with boundary condition Ja(δT , β̂T , νT , T ) = 0 and subject to

xt ≥ 0, ∀t. (133)
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In equilibrium consumption equals total output and therefore

0 = max
x

e−ρtδ1−γt

1− γ
+ Ja,t + δt(f̄ + β̂tx)Ja,δ

+
x2ν2t

2σ2(1 + kx)2
(Ja,ββ − 2Ja,ν) +

1

2
δ2t σ

2(1 + kx)2Ja,δδ + δtνtxJa,δβ.

(134)

With CRRA utility, we make the customary assumption

Ja(δt, β̂t, νt, t) = e−ρt
(θδt)

1−γ

1− γ
F (β̂t, νt, t), (135)

and thus the PDE (134) becomes

0 = max
x

Ft + κ(x, β̂t)F +
x2ν2t

2σ2(1 + kx)2
(Fββ − 2Fν) + (1− γ)xνtFβ + 1, (136)

with boundary condition F (β̂T , νT , T ) = 0 and κ(x, β̂t) defined as (same as in Eq. 22):

κ(x, β̂t) ≡ −ρ− (γ − 1)(f̄ + xβ̂t) +
γ(γ − 1)

2
σ2(1 + kx)2. (137)

The first order condition for x is

0 = κ′F +
xν2t

σ2(1 + kx)3
(Fββ − 2Fν) + (1− γ)νtFβ (138)

= (γ − 1)
[
k(1 + kx)γσ2 − β̂t

]
F +

xν2t
σ2(1 + kx)3

(Fββ − 2Fν) + (1− γ)νtFβ. (139)

This is a quartic equation in x. Re-arranging yields Eq. (34) in Proposition 6. �

A.3.2 Proof of Proposition 7 (AP with Dynamic Experimentation)

The stochastic discount factor follows

dξt
ξt

= −
[
ρ+ γ(f̄ + x∗t β̂t)−

1

2
γ(γ + 1)σ2(1 + kx∗t )

2

]
dt− γσ(1 + kx∗t )dŴ

δ
t , (140)

and thus the risk-free rate and the market price of risk from (35)-(36) follow. The stock price
at time t is Pt = δtF (β̂t, νt, t). The main change in this case with respect to the static case
is that the dynamics of all state variables depend on the optimal level of experimentation
at time t, x∗t . The dynamics of the stock price can be written

dPt
Pt

=

[
f̄ + x∗t β̂t − κ(x∗t , β̂t)−

1

F
+ γx∗t νt

Fβ
F

]
dt+ σ(1 + kx∗t )

[
1 +

x∗t νt
σ2(1 + kx∗t )

2

Fβ
F

]
dŴt,

(141)
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which gives the volatility of stock returns. The risk premium is then given by

RPt = γσ2(1 + kx∗t )
2

[
1 +

x∗t νt
σ2(1 + kx∗t )

2

Fβ
F

]
. (142)

The volatility and the risk premium depend on Fβ/F . Using (135), at the optimal experi-
mentation level x∗t ,

F (β̂t, νt, t) = Et

[∫ T

t

e−ρ(s−t)δ
1−γ
s

δ1−γt

ds

]
=

∫ T

t

e−ρ(s−t)Et[δ
1−γ
s ]

δ1−γt

ds, (143)

and

Et
[
δ1−γs

]
= e(1−γ)Et[ln δs]+

(1−γ)2
2

Vart[ln δs]. (144)

Only Et [ln δs] depends on β̂t:

Et [ln δs] = ln δt + Et
[∫ s

t

(
f̄ + β̂τx

∗
τ −

1

2
σ2(1 + kx∗τ )2

)
dτ

]
, (145)

and

∂Et [ln δs]

∂β̂t
= Et

[∫ s

t
x∗τdτ

]
. (146)

Therefore

Fβ
F

=
(1− γ)

∫ T
t Et

[∫ s
t x
∗
τdτ
]
e
−ρ(s−t)Et[δ1−γs ]

δ1−γt

ds∫ T
t

e
−ρ(s−t)Et[δ1−γs ]

δ1−γt

ds

(147)

= (1− γ)x∗t

∫ T
t Et

[∫ s
t
x∗τ
x∗t
dτ
]
e
−ρ(s−t)Et[δ1−γs ]

δ1−γt

ds∫ T
t

e
−ρ(s−t)Et[δ1−γs ]

δ1−γt

ds

(148)

= (1− γ)x∗t D̃t, (149)

where D̃t is a weighted average of discounted cash-flows, which are adjusted at each matu-
rity τ by the term x∗τ/x

∗
t . D̃t can therefore be interpreted as an equity duration adjusted

for time-variation in xt. The stock return volatility (38) and the risk premium (37) follow
by replacing (149) in (141)-(142). �
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