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1. Introduction 

The effects of peers on educational outcomes have been studied widely, and a broad consensus 

exists that peers have non-trivial effects on students’ learning (see Epple and Romano [2011] and 

Sacerdote [2011] for recent reviews). How peers influence learning, however, has proven much more 

difficult to answer. One key channel for the observed peer effects is that students teach each other in and 

out of a classroom. Indeed, first among the possible means of peer influence listed in Sacerdote [2011] is 

direct learning from classmates—what we refer to as peer-to-peer teaching. Despite the self-evident 

preeminence of peer-to-peer teaching, there appear to have been no studies of this mechanism in 

economics.1  

If peer-to-peer teaching is important for learning, then the composition of a classroom may 

determine its effectiveness. Ability tracking—grouping students of similar abilities in classrooms—is 

one such policy that affects classroom composition. While ability tracking is widely employed, it is 

contentious practice in education (see Betts [2011] for a review). An important unresolved question is 

how ability tracking affects peer-to-peer teaching and hence learning, and whether these effects on peer-

to-peer teaching depend on a student’s place in the ability distribution. On the one hand, ability tracking 

may hurt low-ability students if these students benefit from interactions with high-ability peers that no 

longer occur under tracking, thereby exacerbating existing inequalities between high-ability and low-

ability students (Epple et al. [2002]). On the other hand, tracking may encourage learning at all ability 

levels because students of more similar ability may be more effective in teaching one another (Schunk 

[1991]). 

Unfortunately, the effects of ability tracking, peer-to-peer teaching, and their interaction on 

learning are difficult to identify in schools for at least three reasons. First, ability tracking is typically 

implemented alongside changes to other aspects of the classroom environment such as the curriculum. 

Second, ability tracking likewise may influence teacher behavior if reducing the heterogeneity in student 

ability in a classroom enables teachers to better tailor the pace and content of instruction. Finally, peer-

to-peer teaching is rarely—if ever—observed in field data. 

To fill the gap, we conduct a laboratory experiment in which subjects learn to solve logic 

problems—in our case Sudoku problems—and examine how ability tracking affects learning in 

environments with and without peer-to-peer teaching. A laboratory experiment is ideal for investigating 
                                                   

 
1 Other mechanisms listed include motivational effects, effects on the behaviors of teachers, classroom 
disruptions, and preference formation among others. 
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the effects of peer-to-peer teaching and tracking because we can exogenously vary subjects’ ability to 

interact with each other—which is impossible in the real world—and peer group composition.2 In 

addition, because there is no “real” teacher in our experiment, we can isolate the effects of ability 

tracking on peer-to-peer teaching and learning from the effects of teachers who may adapt their behavior 

and instruction to the classroom composition. Furthermore, we can directly measure the frequency of 

peer-to-peer teaching in the lab. 

Our experiments proceeded as follows. Subjects first completed as many Sudoku problems as they 

could in a 10 minute “Ability” block (T=0), and we use this performance as a proxy for initial ability 

just as test scores proxy for the same in the education literature. Subjects were then split into two groups 

based on their measured ability. Half of subjects were assortatively matched into groups of subjects with 

similar ability (the “tracked” treatment), while the other half of subjects were assigned to groups in 

which subjects of different abilities were evenly distributed (the “untracked” treatment). Once placed 

into groups, subjects participated in a 10-minute “Practice” block in which they had a single Sudoku to 

solve. In the “teaching” treatment, subjects in a given group were allowed to chat with each other 

concerning this practice Sudoku problem. In the “no-teaching” treatment, subjects worked on the 

practice Sudoku by themselves and could not chat with other subjects. Following the Practice block, 

subjects solved (on their own) as many Sudoku as they could in a 15-minute “Evaluation” block (T=1). 

Our measure of learning is the change in the average time taken to correctly solve a Sudoku puzzle from 

the baseline “Ability” block (T=0) to the “Evaluation” block (T=1). 

Our objective in comparing the teaching and no-teaching treatments is to identify the impact of 

peer-to-peer teaching on learning. Prior studies of peer effects have been unable to identify the 

importance of this channel because the presence of peer-to-peer teaching is typically endogenous and—

more problematically—unobserved. The tracked and untracked treatments allow us to further identify 

the importance of peer group composition to the effects of peer-to-peer teaching.3  

We present three main findings. First, we find that subjects do indeed teach each other when 

teaching is possible, and this peer-to-peer teaching leads to substantial increases in learning. Allowing 

                                                   

 
2 Many field studies such as those from the U.S. service academies (e.g., Lyle [2007], Carrell et al. [2009]) are 
able to exploit exogenous variation in peer group composition to identify the effects of peers, but we know of no 
field studies in which the possibility for student interaction varies exogenously. 
3 As we discuss below, we also varied the compensation scheme in the Evaluation block from piece-rate 
payments to tournament-style payments. Our incentive structure in the tournament treatment, however, may have 
been too linear to induce treatment effects relative to the piece-rate treatment, and this treatment manipulation 
failed to influence observed behavior. Therefore, our analysis of this treatment is relegated to Appendix A. 
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subjects to teach each other improves learning by 0.119 standard deviations (SD) of the average solving 

time in the Ability block (or a reduction in the raw average solving time by 11.6 seconds) relative to the 

no-teaching treatment. This represents a 42 percent increase in learning compared to the mean of 27.6 

seconds in the no-teaching treatment. Low-ability subjects (as identified in the Ability block) drive 

nearly all of the gain—likely because they have more room for improvement. Given that there are no 

incentives for subjects to teach each other (as we did not explicitly force them to chat and the payment is 

at the individual and not the group level), it is remarkable that only 10 minutes of working together on a 

single puzzle, as opposed to working it alone, improves learning by as much as 0.119 SD. We are not 

aware of any studies in the economics of education that directly show the importance of peer-to-peer 

teaching to learning. 

Second, we find that tracking in the no-teaching treatment has little detrimental impact on learning 

compared to the untracked treatment, suggesting there are no direct effects of ability tracking. More 

importantly, tracking has a large detrimental effect on learning in the teaching treatment—very nearly 

eliminating the positive effects of teaching. This negative effect of tracking in the teaching treatment is 

primarily experienced by low-ability subjects, who again benefitted most from the peer-to-peer teaching 

in the first place.  

Finally, we unpack this result by examining the number of instances of peer-to-peer teaching in the 

audio recordings of subjects’ chats during the teaching treatment. We find that ability tracking directly 

reduces the frequency of peer-to-peer teaching, shining light on the mechanism through which ability 

tracking adversely affects low-ability subjects. That is, ability tracking negatively affects low-ability 

subjects because peer-to-peer teaching is less common in the absence of higher-ability peers who can 

teach these subjects.  

Our study fills a major gap in the education production function literature by establishing a 

potentially outsized contribution of peer-to-peer teaching to learning. While the significance of peers for 

educational outcomes has been well understood for some time, how peers influence learning has proven 

a more challenging question. The importance of peer-to-peer teaching, however, has long been 

understood by educators (Johnson and Johnson [1975], Slavin [1983]). Earlier experimental studies of 

peer-to-peer teaching have shown that peers make excellent teachers (see Webb [1989] and Rohrbeck et 

al. [2003] for meta-analyses). These studies, however, typically compared students in pedagogical 

treatments in which students were either tasked with group work or offered guidance on how to help 

other students to students in control groups without these interventions. Significantly, we know of no 

study in which students in the control treatments were expressly forbidden from communicating with 
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other students. As such, these studies estimate the marginal contribution of the pedagogical intervention 

relative to a control group in which peer-to-peer teaching may also have taken place. We believe ours to 

be the first study to identify the total effect of peer-to-peer teaching relative to an environment in which 

peer-to-peer teaching is impossible. 

Our findings concerning the importance of peer-to-peer teaching also help to reconcile seemingly 

conflicting findings in the tracking literature. Specifically, Duflo et al. [2011]—among others—find that 

tracking has positive effects on students of all ability levels in a randomized control trial in Kenya, while 

Garlick [2016] shows that low-ability South African university students perform substantially worse 

when grouped in dormitories with students of similar ability than when they are randomly assigned to 

dormitories.4 Notably, the key institutional difference between two studies is that the tracking in Garlick 

[2016] did not involve modifications to the curriculum or other changes to the learning environment, 

whereas the tracking program studied by Duflo et al. [2011] did involve modifications to the curricula 

and resulted (as they show) in increased teacher effort in tracking schools. Because the treatment effects 

we identify are driven by changes in students’ behaviors alone and not contaminated by either adaptive 

teacher behaviors or by changes in the curriculum, our findings suggest that the non-instructional 

(residential) tracking in Garlick [2016] harms low-ability students because they no longer benefit from 

interactions with high-ability peers.5 On the other hand, our findings suggest that the benefits of ability 

tracking to low-ability students observed by Duflo et al. [2011] may stem from the positive effects of 

changes in instruction and curriculum associated with tracking that overcome any negative effects on 

low-ability students of losing out on interactions with higher-ability peers. 

Our findings have important implications for policy decisions made in every school and classroom 

regarding the amount of peer-to-peer teaching to encourage and the composition of student groups.6 

Specifically, the findings suggest that grouping students by prior achievement disadvantages low-ability 

students to the extent that these students benefit from being taught by higher-ability peers. Unless ability 

tracking is accompanied by curricular customization and/or incentives for teachers to adapt their 

                                                   

 
4 Most studies of tracking join Duflo et al. [2011] in finding positive or no effects of tracking on student 
achievement (e.g., Betts and Shkolnik [2000], Figlio and Page [2002], Zimmer [2003], Lefgren [2004], and Betts 
and Shkolnik [2010]). Cummins [2017] finds a negative effect of tracking on “high-ability” students assigned to a 
low-ability track when assigned to civil service teachers in Kenya. 
5 Studies focusing on tracking outside of the classroom (e.g., Carrell et al. [2009], Carrell et al. [2013], Lyle 
[2007], Sacerdote [2001], and Zimmerman [2003]) also identify tracking effects unexplained by changes in 
curriculum and teacher behavior, but none focus on the importance of peer-to-peer teaching as in our study. 
6 There is a small literature on optimal design of group composition (e.g., Bhattacharya [2009], Carrell et al. 
[2013], Booij et al. [2016]). 
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instruction to the student group composition, ability tracking alone may harm those students who stand 

to gain the most from peer-to-peer teaching. 

In addition to the literature on tracking, this paper belongs to the broader literature on peer effects 

in the classroom. Due to the well-documented econometric challenges in estimating peer effects (notably 

Manski [1993], Sacerdote [2001], Zimmerman [2003]), many studies exploit plausibly exogenous 

variation in peer group composition to account for the non-random sorting of students at the classroom 

level.7 Even in a randomized control setting, however, classrooms may differ on multiple dimensions in 

addition to peer group composition if teachers and schools respond to changes in group composition by 

changing their effort or allocation of other resources. Thus, isolating a causal effect of peers on student 

outcomes via peer group composition net of these other factors requires strong assumptions. In this 

paper, we argue that because only peer-to-peer interactions are present (and exogenously varied) in our 

setting, we can directly examine how ability tracking and hence group composition affect learning 

through peer-to-peer interactions. 

This study is also related to a small but recently growing literature in economics using laboratory 

experiments to understand classroom dynamics and education in general by answering questions that 

may be hard to study effectively in a field setting or using observational data. For example, Calsamiglia 

et al. [2013] study the effects of affirmative action on subject performance (also using Sudoku puzzles), 

while Andreoni and Brownback [2017] use all-pay auctions to understand the effects of grading on a 

curve and group size on student performance.8  

Finally, our findings are directly relevant for the optimal design of so-called Massive Online Open 

Courses (MOOCs). As technological improvements have made such courses more viable amid a push by 

universities (and students) to reduce costs over the last decade, enrollment in MOOCs has grown 

tremendously (Deming et al. [2015]). Students in MOOCs interact in virtual environments very similar 

to that in our experiment. While our study is designed to answer fundamental questions about the way 

classmates affect learning, the findings also shed light on how to best structure student interaction in 

virtual classroom environments when instruction is not being customized for particular students. In 

particular, our findings suggest that learning in MOOCs could be enhanced if these courses encouraged 

student interaction through assignments completed by groups that include students of varied ability. 

                                                   

 
7 See, for example, Hoxby [2000], Zimmerman [2003], Angrist and Lang [2004], Ammermueller and Pischke 
[2009], Imberman et al. [2012], Lavy, Paserman, and Schlosser [2012], Burke and Sass [2013], Booij et al. 
[2016], and Feld and Zölitz [2017] to name a few. 
8 See also Koch et al. [2015] for a survey relating findings from lab experiments to issues in education. 
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The rest of the paper is organized as follows. Section 2 describes the experimental design and our 

hypotheses. Section 3 describes the data and summary statistics. Section 4 reports the findings. Section 5 

discusses a replication exercise, and Section 6 concludes. 

 

2. Experimental Design 

2.1 Details of the Experimental Design 

To model a classroom setting while obtaining data on individual performance under our various 

treatments, each session followed a fixed time sequence with six distinct stages (see Table 1-A). In stage 

1, subjects provided demographic information. In stage 2, they completed self-paced instructions about 

the tasks, and in stage 3 they were shown a common video “lecture” explaining some techniques to 

improve performance in the tasks. In stage 4, we collected an incentivized measure of subjects’ 

performance individually to establish a baseline estimate of ability. In stage 5, we allowed them an 

opportunity to practice in an unpaid setting, and finally in stage 6, we collected a second incentivized 

measure of performance to quantify individual learning. By varying aspects of this environment holding 

constant stages 1–4, our design identifies the impact(s) of peer-to-peer teaching and ability tracking on 

learning. 

In order to study learning and peer-to-peer teaching in a controlled setting, the experimental task 

must satisfy a few criteria: 1) performance must be objectively measurable; 2) participants must be able 

to learn (and teach) a few basic principles that will improve performance; and 3) there must be ex ante 

reason to expect substantial performance/ability differences across individuals in order to facilitate 

teaching.  

Therefore we chose 6 6 Sudoku, logic puzzles in which the goal is to fill in numbers on a 6 6 

grid such that each row, column and (pre-defined) 2 3 sub-grid contains exactly one of each integer 

between 1 and 6. The grid is initially partially filled as in Figure 1, and a Sudoku is correctly filled only 

if all the constraints are satisfied. Moreover, online searches turned up a substantial variety of Sudoku 

puzzle solving “strategies” that are straightforward to teach and learn, and existing experimental 

evidence on 9 9 Sudoku puzzles suggests sizable variation in performance across individuals 

(Calsamiglia et al. [2013]). Next we describe the stages of the experiment in more detail. 

1. Elicitations: Each session contained 8 subjects and began with collecting some basic 

demographic information as well as incentivized measures of risk attitudes and prosociality, which we 

include as controls in some of our analyses (see Appendix C for detailed instructions and Appendix D 
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for screenshots).  Risk attitudes were elicited using a multiple price list design based on Holt and Laury 

[2002]. Subjects made nine binary choices between option A (a fixed lottery with an equal chance of 

paying $1 and $3) and option B (a lottery between $0 and $3, where the probability of the higher payoff 

is increasing over the choice sequence from 0.1 to 0.9). Subjects were paid based on their decision in 

one-randomly selected choice problem from the set of nine. Our risk measure is the number of times that 

a subject chose the risky option such that higher scores (ranging from 0 to 9) indicate more risk-loving 

subjects. Prosociality was measured using a $5 dictator game in which all subjects chose as if they were 

dictators and then were randomly paired, with one randomly selected subject’s choice in each pair 

determining final payments. Our prosociality measure is the dollar amount subjects indicated they would 

give to their partners out of the $5, such that higher values suggest more prosociality. Payoffs for these 

incentivized tasks were not revealed until the end of the experiment to avoid any potential influence on 

behavior in the main experiment.  

2–3. Sudoku Instructions and Video: The simulated classroom began with basic instructions 

explaining the rules of Sudoku and a common “lecture” seen by all subjects in all treatments. For the 

lecture, we selected an online video explaining some of the aforementioned puzzle solving strategies and 

required all subjects to watch the video prior to the start of the experiment.9 This ensured that each 

“student” received the same “lecture” and thereby controlled for the influence of the instructor. This is 

an important feature of our design because it has often been difficult to disentangle the exogenous effect 

of tracking from the endogenous response of the teacher in a tracked classroom (see, for example, Duflo 

et al. [2011] and Booij et al. [2016] for discussions of this issue). We chose the particular video lecture 

because it highlights learnable strategies of varying difficulty that subjects might also teach to (or 

reinforce in) one another if allowed the opportunity. 

4. Ability Block (T=0): After watching the video, subjects in all treatments were told that they 

would have 10 minutes to work on Sudoku puzzles on their own being paid $0.50 for each puzzle that 

they completed correctly in that time. We refer to this as the “Ability Block,” and it provides us with a 

measure of individual performance (ability) that is free from any influence by peers and measured under 

an incentive scheme that ensures non-satiation in performance. Prior to the Ability Block, subjects only 

know that there will be more parts to the experiment, but they have no further information about those 

                                                   

 
9 A link to the video is available here: 
https://www.dropbox.com/s/hmynir2fhva43z4/VideoInstructions.mp4?dl=0. 

https://www.dropbox.com/s/hmynir2fhva43z4/VideoInstructions.mp4?dl=0
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parts or about how the Ability Block might influence those parts. For example, subjects do not know that 

Ability Block performance will be used to assign them to groups. 

After the Ability Block, subjects are told that they have been placed in a group of 4 subjects. An 

individual’s performance (ability) is measured by the number of Sudoku puzzles solved during the 

Ability Block (T=0).10 In half of the sessions, subjects were placed into groups in which subjects of 

different abilities were evenly distributed (untracked), and in the other half were placed into groups with 

subjects of similar ability (tracked). This means that in tracked sessions the bottom half of performers 

are all in one group, while in the untracked sessions they are divided across both groups. See Figure 2 

for details. Subjects were told the rules governing the formation of groups in their treatment in the 

instructions. Importantly, assignment to either group in the tracked treatment provides subjects with 

information about the ability of others in the group. As such, we displayed information about the 

performance of all group members in both the untracked and tracked treatments to guarantee that 

subjects in both treatments had the same information about their peer group.  

Next, subjects read instructions explaining that first they would have a chance to practice Sudoku 

for 10 minutes and then they would have 15 minutes to work on another block of puzzles in which they 

would again be paid based on their performance. Half of the sessions were told that they would be paid 

based on the same piece-rate as in the Ability Block, and half of the sessions were told that they would 

be paid based on their relative performance in their group (where performance equalled the number of 

correctly solved puzzles with ties broken by average time spent on each correctly solved puzzle). 

Specifically, in the tournament sessions, subjects were told that 1st place would earn $20, 2nd place 

would earn $10, 3rd place $5 and 4th place $0; these payments were chosen to roughly equalize expected 

earnings across the treatments based on pilot data measuring Sudoku performance.  

Thus subjects were informed about both the matching scheme and the incentive system that they 

would face in the “Evaluation Block” prior to their participation in the “Practice Block.” This allowed 

for the possibility that knowledge of the matching and incentive schemes would influence the decision to 

practice, teach and/or learn from others when doing so was possible (i.e. the teaching treatments). 

 5. Practice Block: In the Practice Block, subjects had 10 minutes to work on a single Sudoku 

puzzle (for which they were not compensated). In the no-teaching sessions, this was time for individual 

practice, which allowed subjects to test out various strategies or refine their skills. The no-teaching 

                                                   

 
10 The average solving time on correctly solved puzzles was the tiebreaker when ranking subjects but was not 
shown to subjects. 
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sessions allowed us to measure both the learning that naturally takes place through individual practice 

and the effects of the tracking and tournament treatments in the absence of peer-to-peer teaching. 

In the teaching sessions, the Practice Block still consisted of 10 minutes working on a single 

puzzle, but here all four group members worked simultaneously on the same shared puzzle, which could 

be edited by each member of the group and updated in real time on each group member’s screen (see 

Figure 1). The subjects were connected via audio chat, and they were each represented on the screen by 

a numbered mouse cursor (from 1–4). All were told that the numbers corresponded to that subject’s 

within-group performance rank in the Ability Block. At the start of the Practice Block they were asked 

by the proctor to introduce themselves to one another using their number.11 The purpose of the Practice 

Block was described in the instructions for the teaching treatment as follows (See Appendix C for 

details): 

You can complete this puzzle working with the people in your group. During this 

period, your microphone will be enabled and a voice chat room will be available in 

which you can discuss the puzzle you are working on. You may discuss any aspects of 

the experiment in the chat room, but you may not reveal your identity, make threats, or 

use inappropriate language (including shorthand like WTF). Other participants will be 

identified by a number next to their mouse cursor. This is their rank within the group. 

Please only speak English.  

 Thus, the teaching sessions introduced the possibility of peer-to-peer teaching and allowed us to 

measure its presence (or absence) and its effect on performance in the Evaluation Block. The 

instructions make it clear that this is an opportunity for group work—which we intended to encourage 

peer-to-peer teaching—but subjects in the teaching sessions were not provided with any additional 

incentives (or disincentives) to teach each other (i.e., payment is at the individual level rather than the 

group level). In this sense, observed teaching likely results from some combination of intrinsic 

motivation and an experimenter demand effect. We adopted this approach because actual classrooms are 

also usually devoid of explicit incentives for students to teach each other. Audio chats were conducted 

via the open-source software OpenTokRTC, which allowed us to record a complete audio record for 

each group. 

                                                   

 
11 To limit possible contamination from verbal communication outside of the group audio chat, in all treatments 
subjects were seated at desks that maximized their physical distance from one another in the lab.  
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6. Evaluation Block (T=1): The final portion of the experiment was a 15-minute Evaluation 

Block in which subjects in all sessions again worked independently to solve Sudoku puzzles. Prior to the 

start of this Block, subjects were reminded briefly of the incentive scheme (piece-rate or tournament 

treatments) and also that they would learn their within-group rank at the end of the experiment (to hold 

information constant across incentive schemes). The difference in performance in the Ability and 

Evaluation Blocks provides our main data on the extent of learning in our virtual classroom. After the 

Evaluation Block ended, subjects were informed about their earnings from the Elicitations as well as 

from the Ability and Evaluation Blocks and then were called one-by-one to be paid in cash. In addition 

to their salient earnings from the elicitations and performance pay in the Sudoku tasks, subjects received 

a $7 payment for arriving to the experiment on time. Average earnings including this show-up payment 

were approximately $22 for a 70-minute session. 

As noted above, we have three binary treatment variables: teaching (no-teaching/teaching), 

tracking (tracked/untracked), and incentives (piece-rate/tournament). Together these generate a 2 2 2 

factorial experimental design, which we applied between subjects. Table 1-B summarizes the design. In 

total we report data from 448 subjects in our Sudoku experiments (56 experimental sessions).12 We 

collected data from 6 sessions for each combination of tracking   incentives in the no-teaching 

treatment (24 sessions) and from 8 sessions for each combination of tracking   incentives in the 

teaching treatment (32 sessions).13 Below we highlight the main hypotheses our design is intended to 

test. 

 

2.2 Hypotheses 

As we show in Appendix A, our tournament incentive scheme turned out to have a negligible 

effect on behaviour—we find neither main effects of the treatment nor interactions with the other 

                                                   

 
12 We also conducted but do not report data from one pilot session with slightly different parameters, our first 
three teaching sessions in which some subjects’ microphones were not working correctly for the audio chat, and 
one session which was lost when a subject’s computer reset during the middle of the experiment. 
13 We ran more teaching sessions (32 sessions) than no-teaching sessions (24 sessions) due to our interest in the 
interaction between teaching and tracking.  
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treatments.14 As a result, our primary analysis pools data across incentive schemes and focuses on the 

effects of teaching, tracking, and their interaction—essentially reducing the study to a 2 2 factorial 

experimental design. Thus, although we had hypotheses about the tournament and piece-rate treatments, 

in this section we focus on the three remaining hypotheses of interest, ignoring the negligible effects of 

the incentive treatments. 

Hypothesis 1 (Main Effect of Teaching): positive. Assuming that individuals are willing to 

engage in teaching (perhaps for prosocial reasons), the possibility of peer-to-peer teaching will have a 

positive effect on subject performance as subjects help each other learn to solve puzzles. Such an effect 

should be largest among those who perform the worst in the Ability Block because they have the most to 

gain. We test this hypothesis by comparing the rate of learning across the teaching and no-teaching 

treatments. 

Hypothesis 2 (Effect of Tracked under No-teaching): ambiguous. It is unclear how tracking will 

influence behavior without teaching given the evidence in the literature of psychological 

encouragement/discouragement effects from information about relative standing in performance (beyond 

those provided by incentives).15 Subjects in the top (bottom) group may be encouraged (discouraged) 

when learning their relative ranking. The potential for offsetting effects makes the overall effect of 

tracking ambiguous, but our design provides evidence that helps resolve this theoretical ambiguity. 

Hypothesis 3 (Effect of Tracked under Teaching): ambiguous. Under the teaching treatment, 

subjects in the tracked treatment may have less to teach one another, as the difference between the best 

and worst students in the group is smaller on average than the difference in the untracked treatment. 

Moreover, tracking may especially hurt subjects in the bottom half of performers since they lose access 

to the higher-ability peers who could have taught them. In this sense, tracking may attenuate the positive 

effects of teaching. On the other hand, students of more similar ability may be more effective in teaching 

one another if they find it easier to express their difficulties to one another or to target their suggestions 

to address those difficulties. As such, the potential for offsetting effects makes the effect of ability 

tracking ambiguous, but our design facilitates an empirical resolution. 

                                                   

 
14 The detailed analysis is summarized in Appendix A. The means of our measure of learning (described in 
Section 3.1 below) in the piece-rate and tournament treatments are very similar (0.306 vs. 0.331). Indeed, the 
distributions of our learning measure—not just the means—are nearly visually indistinguishable across the piece-
rate and tournament treatments (see Appendix Figure A1). We conclude that our incentive structure in the 
tournament treatment may have simply been too linear to induce treatment effects (i.e., changes in effort and 
teaching behavior) relative to the piece-rate treatment. 
15 See for example, Blanes i Vidal and Nossol [2011], Barankay [2012], and Gill et al. [2016]. 
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3. Data 

3.1.  Outcome Variable 

Our dependent variable capturing learning by subjects is the change in the average puzzle solving 

time per correctly solved Sudoku puzzle between the Ability Block (T=0) and the Evaluation Block 

(T=1). To ease interpretation, we standardize the average solving time in both periods by subtracting the 

mean and dividing by the standard deviation of average solving time at T=0 so that average solving time 

at T=0 has a mean of zero and a standard deviation of one. In this way, we can interpret the estimates in 

terms of standard deviations at T=0.16 Formally, our measure of learning for each individual i is written 

as 

                        –[1] 

where       and       are the standardized average solving time for the Ability Block (T=0) and 

Evaluation Block (T=1), respectively. Note that our measure of learning is calculated by subtracting the 

average solving time at T=1 from the average solving time at T=0, so that positive values indicate 

improvement in solving time. Because our learning measure is skewed to the right especially among 

subjects at the lower tail of the distribution as shown below, we also examine the change in logged 

learning as a robustness check in which we take the difference in the logs of (non-standardized) average 

solving time in the Ability Block (T=0) and the Evaluation Block (T=1). We can interpret estimates 

using the change in logged learning as our dependent variable in terms of percentage changes in average 

solving time.  

Another natural candidate for the outcome variable would be the change in the number of Sudoku 

puzzles solved from T=0 to T=1. Unfortunately, the change in the number of Sudoku puzzles solved has 

three limitations as a dependent variable. First, it is not a direct measure of ability because a high-ability 

subject who knows his/her place in the ability distribution might not have an incentive to work for the 

entire available time (especially under tournament incentives). If there is disutility from effort or fatigue, 

it may be optimal to solve a few puzzles quickly and then rest rather than working until the end of the 

experiment. Second, due to the limited length of our experiment, the observed variation in the change in 

the number of Sudoku puzzles solved is much smaller than that of changes in average solving time, 

                                                   

 
16 Using a standardized measure of learning also facilitates comparisons across environments in which there are 
differences in ex ante (baseline) proficiency. Indeed, we make such a comparison in a robustness check discussed 
in Section 5. 
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making it difficult to use changes in the number of Sudoku solved to meaningfully identify the effects of 

treatments. In fact, the coefficients of variation (COV), which divide a variable’s standard deviation by 

its mean, are 2.47 (=75.1/30.4) and 0.55 (=2.8/5.1) for changes in raw average solving time and changes 

in the number of Sudoku puzzles solved, respectively. Third, using the number of Sudoku puzzles 

correctly solved as an outcome measure makes no distinction between subjects who barely finish N 

puzzles and those who run out of time just before correctly completing the N+1th puzzle; using average 

solving time for correctly solved problems allows us to distinguish between these subjects.  

 

3.2.  Summary Statistics and Balance Checks 

Table 2 presents summary statistics and the results of balance tests examining whether our 

randomization of subjects to treatments was successful. Column (1) presents the means of our control 

variables and the outcome variable. In total, 68 percent of the subjects had some prior experience with 

Sudoku. Raw average solving time in the Ability Block (     ) is roughly two minutes (119 seconds) 

per puzzle solved, while in the Evaluation Block (     ) it is 88 seconds, yielding average raw “learning” 

of 31 seconds. To illustrate the learning by subjects, Figure 3 plots the relationship between standardized 

      and       for each subject. We confirm that most of the subjects indeed learn. The solid line 

indicates the 45-degree line, and thus subjects below the 45-degree line exhibit improvement in their 

average solving time. Out of 448 subjects, 371 subjects (84 percent) exhibit positive learning. In 

addition, only eight subjects (2 percent) could not solve any Sudoku at T=0.17 Finally, the mean of our 

main outcome—learning measured in standard deviations of      —is 0.32.  

Column (2) reports p-values for F-tests of the null hypothesis that the means across the eight 

treatments (2 2 2) are equal in order to check whether our random assignment of subjects to treatments 

was successful. Each cell reports the p-value for a separate test for each variable in the far-left column. 

                                                   

 
17 We impute the raw average solving time for the 8 subjects who could not solve any Sudoku puzzles in the 
Ability Block (T=0) to be 600 seconds (= 10 minutes), the length of Ability Block. Only one subject also could 
not solve any Sudoku puzzles in the Evaluation Block (T=1) as well. We cap the raw average solving time for this 
subject at 600 seconds, so that learning is equal to zero. We have also assigned this subject a value of 900 (= 15 
minutes) for his/her raw average solving time, the length of Evaluation Block, so that raw learning is –300, but the 
estimates are almost identical given that there is only one such subject. Also, as a robustness check, we exclude 
the 8 subjects who could not solve any Sudoku puzzles at T=0 from the sample and find quantitatively the same 
results (results available upon request).  
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For all variables, we fail to reject the null hypothesis of no differences across treatments.18 While this 

exercise is limited to these observable variables that we collect in the experiment, it is reassuring that the 

randomization seems to succeed on these dimensions. As mentioned earlier, we pool data across 

incentive schemes in our main analysis and focus on teaching (no-teaching/teaching) and tracking 

(tracked/untracked) and their interaction, which essentially reduces our design to four treatments (2 2). 

Therefore, Column (3) reports the p-value for null that the means across these four treatments are equal. 

While we still fail to reject the null hypothesis for each variable, some of the p-values are less than 0.20. 

Furthermore, the potential lack of balance in covariates becomes more relevant when we replicate our 

design using another game due to the small sample used in that robustness exercise (Section 5). As such, 

in much of the analysis to follow we control for these subject characteristics. 

As we are especially interested in the heterogeneity of learning by initial performance, Columns 

(4) and (5) report the means of the control and outcome variables for subjects in the top half and bottom 

half of their session’s ability distribution (as defined by performance in the Ability Block). Column (6) 

presents the differences between these two columns. As expected, subjects in the top half had more prior 

experience with Sudoku than subjects in the bottom half (88 percent vs. 48 percent). In addition, the 

subjects in the top half were slightly less prosocial insofar as they give less in the dictator game than 

subjects in bottom half. 

Importantly, the raw average solving time during the Ability Block (T=0) is much larger for 

subjects in the bottom half than those in the top half (168 seconds vs. 71 seconds), implying that there is 

more room for improvement among subjects in the bottom half. In fact, raw average learning (=    –

    ) is much larger for subjects in the bottom half than those in the top half (53 seconds vs. 9 seconds). 

Also, the minimal raw learning (9 seconds) by subjects in the top half suggests that high-ability subjects 

already achieve near-peak performance solving Sudoku puzzles even during the Ability Block (T=0), 

which may limit the scope for any treatment to affect their performance. We investigate this issue in 

Section 5 using a game less familiar to subjects than Sudoku called Nonograms. Interestingly, while 

subjects in the bottom half “learn” much more than subjects in the top half, the raw average solving time 

for the bottom half during the Evaluation Block (    ) is still larger than the raw average solving time 

                                                   

 
18 We also performed Kruskal-Wallis equality-of-populations tests as checks of our randomization and obtained 
similar results (results available upon request). We do not report them here because that test assumes that the 
variables are measured on an ordinal or continuous scale, an assumption which does not apply for our binary 
variables. 
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for the top half during the Ability Block (    ), suggesting that the subjects in the bottom half could 

only close about half of the initial performance gap.  

The bottom line is that we expect to see heterogeneous treatment effects across the ability 

distribution given that subjects in the top half are already performing at a very high level at T=0, while 

subjects in the bottom half have far more room for improvement. 
 

4. Main Results 

As noted above, our incentive treatments had no perceptible impact on behavior. Thus our main 

analysis pools the data over the incentive schemes and focuses on the impact of peer-to-peer teaching on 

learning, as well as the interaction of teaching with ability tracking. 
 

4.1. Effects of the Teaching Treatment on Learning 

To test whether the peer-to-peer teaching has any positive impact on learning, we first simply 

compare the treatment means while controlling for individual characteristics. Because the assignment of 

subjects to each treatment is random, the estimation equation is straightforward:  

                          
      –[2] 

where           is a dummy equal to one for subjects in the teaching treatment and zero otherwise.   

is our coefficient of interest.19 The inclusion of individual controls   
  is, in principle, not necessary for 

estimation given that random assignment to treatment appears to have been successful as shown above, 

but we nonetheless include them to gain efficiency. Specifically, our controls are a dummy for male, a 

dummy for prior experience, the number of risky choices made in the risk preference elicitation, the 

amount offered in the dictator game, and a dummy for each of the eight subjects who could not solve 

any Sudoku puzzles during the Ability Block (T=0). Standard errors are clustered at the group level, 

where each session consists of two groups, whether in the untracked or tracked treatment. 

Next, to evaluate whether learning is heterogeneous across the ability distribution, we estimate the 

following equation:  

                                                          
      –[3] 

where        is a dummy equal to one for subjects in bottom half of their session’s ability distribution. 

The bottom half consists of the subjects who ranked 5–8 out of eight subjects in the Ability Block (T=0), 
                                                   

 
19 Note that any measured effect of the teaching treatment on performance is actually an intent-to-treat effect 
because some groups may not (and in fact did not) do much teaching. 
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while the top half consists of the subjects ranked 1–4. Because our interest is in the heterogeneous 

treatment effects by initial ability (which parts of the ability distribution are affected by peer-to-peer 

teaching) instead of the difference in treatment effects by initial ability, we report the treatment effects 

separately for subjects in top half and the bottom half using the outputs of estimating equation [3]. 

Specifically,    captures the effect of peer-to-peer teaching on subjects in the top half, while the sum of 

   and    captures the effect of peer-to-peer teaching on subjects in the bottom half. 

Testing Hypothesis 1 (Main Effect of Teaching):  

According to Hypothesis 1, teaching should have a positive impact on learning as subjects help 

each other figure out how to solve Sudoku puzzles. This effect might be larger for subjects in the bottom 

half of the ability distribution because they have more scope for improvement.  

Finding 1: The peer-to-peer teaching treatment significantly increases learning. 

Evidence: Table 3 summarizes the relevant statistics from the outputs of estimating equations [2] 

and [3]; the coefficient estimates themselves are reported in Appendix Table B1.20 Note that all of the 

regressions include a dummy for the eight subjects who could not solve any Sudoku puzzles in the 

Ability Block (T=0)—even those labeled as including “no” controls. Columns (1) and (2) in Table 3 are 

based on the outputs from estimating equation [2]. Column (1) shows that teaching improves learning by 

0.11 SD (p-value<0.05). The additional controls in Column (2) barely affect the estimate (0.12 SD), 

reconfirming that randomization was successful.21 This improvement by 0.12 SD corresponds to a 

reduction in raw average solving time of 11.6 seconds. Given that the mean learning in the no-teaching 

treatment is 27.6 seconds, this translates into a 42 percent increase in learning.  

It is important to reiterate that although we did not explicitly ask the subjects to teach other or give 

them incentives to do so, we did suggest that the Practice Block could be used to work together on a 

puzzle. Subjects simultaneously edited the same puzzle on the screen, were equipped with headphones, 

and were allowed to chat for 10 minutes, so the design directly encourages teaching by (and learning 

from) peers. Indeed, as we show later in the analysis of the audio recordings (Section 4.3), substantial 

                                                   

 
20 As expected, the coefficient of experience is negative—suggesting that subjects with experience solving 
Sudoku puzzles had little (or less) room for improvement. Gender, risk attitudes and prosociality have no impact 
on learning. Once we add the dummy indicating whether subjects were in the bottom half (equation [3]), the 
coefficient of experience is substantially reduced and no longer statistically significant due to the high negative 
correlation between the dummies for being experienced and being in the bottom half. Finally, the large estimate 
for the constant term indicates that subjects learn even without peer-to-peer teaching. 
21 Note that this is an average treatment effect pooling the untracked and tracked treatments given that both types 
of environments (tracked and untracked) exist in practice. The estimated treatment effects of teaching can be 
separately derived for the tracked and untracked treatments from the estimates in Appendix Table B2. 
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peer-to-peer teaching occurred during the Practice Block (with considerable variation across sessions). 

Further, it is remarkable that being given only 10 minutes to work together on a single Sudoku puzzle as 

opposed to working it alone (as in the no-teaching treatment) increases learning by 0.12 SD or 42 

percent. We are not aware of any past studies in the economics of education that directly document the 

importance of peer-to-peer teaching to facilitate learning.22 As such, we fill a significant gap in our 

knowledge of the education production function as our findings suggest that peer-to-peer teaching may 

be a critical component of successful learning environments.   

Importantly, the average effects reported in Columns (1) and (2) may not capture differences in the 

distributions of learning across treatments. Figure 4-A presents the kernel densities of learning for the 

no-teaching (solid line) and teaching (dashed line) treatments. The two-sample Kolmogorov-Smirnov 

test for equality of the distributions yields a p-value of 0.01, suggesting that the two distributions are 

quite different. This is further evidence that peer-to-peer teaching substantially reduces the average 

solving time.   

Finding 2: The positive effect of peer-to-peer teaching is primarily on those individuals in the 

bottom half of the ability distribution. 

Evidence: Columns (3) and (4) in Table 3 present the estimated treatment effects of peer-to-peer 

teaching for the subjects in top half and bottom half, respectively, based on the outputs from estimating 

equation [3]. Columns (3) and (4) show that the positive effect of teaching on learning is driven entirely 

by subjects in the bottom half. In Column (4), which also controls for individual characteristics, the 

estimated teaching effect for subjects in top half is very small (–0.02 SD) and far from statistically 

significant. On the other hand, the estimated teaching effect for subjects in the bottom half is 0.24 SD (p-

value<0.01).  

Figure 4-B presents kernel densities of the learning distribution for the no-teaching and teaching 

treatments in which we restrict the sample to subjects in the bottom half. The figure clearly shows that 

the distribution of learning is shifted to the right in the teaching treatment compared to the no-teaching 

                                                   

 
22 Li et al. (2014) find that low-performing students experience large gains between achievement tests when 
seated next to a high-performing peer who was being paid for improvements in the low-performing student’s test 
scores in Chinese middle schools. Significantly, the gains experienced by low-performing students were much 
larger than when seated next to a high-performing student who was not being paid for improvements in the low-
performing student’s score. Their experiment, however, does not identify how the high-performing students 
influence the low-performing students’ scores. Nonetheless, their findings suggest that even larger treatment 
effects may have emerged had we provided subjects with group incentives. 
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treatment. Appendix Figure B2 displays the empirical CDFs of learning by treatment among subjects in 

the bottom half and points to the same conclusion.  

Robustness Checks: Because our learning measure is skewed to the right especially among 

subjects in the bottom half, we estimate alternative models that allow us to assess the robustness of our 

estimates after attempting to mitigate the influence of skewness. Specifically, we estimate the same 

equations as [2] and [3] but replace the outcome by the difference in the logs of (non-standardized) 

average solving time in the Ability Block (T=0) and the Evaluation Block (T=1). Appendix Table B3 

shows that the general message is the same as our baseline estimates in Table 3: the large gain in 

learning in the peer-to-peer teaching treatment is concentrated among subjects in the bottom half of the 

ability distribution.  
 

4.2. Ability Tracking and Peer-to-peer Teaching 

In the previous subsection, we established that peer-to-peer teaching encourages learning in our 

experimental setting, though the effect of teaching is concentrated among subjects in the bottom half of 

the ability distribution who have more scope for improvement. In this section, we examine how ability 

tracking interacts with peer-to-peer teaching and hence learning.  

Testing Hypothesis 2 (Effect of Tracked under No-teaching) 

As a benchmark, it is important to understand the direct effect of tracking in the absence of 

teaching, which is theoretically ambiguous. Subjects in the top group may be encouraged when learning 

their relative ranking while subjects in the bottom group may be discouraged. In addition, learning about 

the ability of other subjects in their group may increase the pressure felt by subjects and affect their 

performance. The potential for these offsetting effects makes the effect of tracking ambiguous.23  

We estimate  

                                                            
     –[4] 

where the reference group is the untracked and no-teaching treatment.    is the effect of tracking in the 

no-teaching treatment (Hypothesis 2), while the sum of    and    captures the effect of tracking in the 

                                                   

 
23 In education, Murphy and Weinhardt [2014] and Elsner and Isphording [2017] find that primary and secondary 
school rank has large effects on subsequent academic outcomes even after controlling for ability. They attribute 
their findings to the development of confidence and to the formation of expectations and perceptions about ability, 
respectively. These long-term effects of rank information, however, are unlikely to be important in our short 
experiment. 
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teaching treatment (Hypothesis 3 as shown later). To examine heterogeneous effects by initial ability, 

we estimate 

                                                                   

                                                                       
  

   –[5] 

which adds to estimating equation [4] a dummy indicating subjects ranked in the bottom half of their 

session in the Ability Block and interactions between this dummy and the treatment indicators. In the 

no-teaching treatment,    captures the effect of tracking for subjects in the top half and the sum of    

and    captures the effect of tracking for subjects in the bottom half. The standard errors are derived by 

the lincom command in Stata. We report the coefficient estimates from equations [4] and [5] in the 

Appendix Table B2 for reference. 

Finding 3: We observe no significant impact of ability tracking in the absence of teaching. 

Evidence: Column (1) in Table 4 shows that tracking reduces learning by 0.04 SD on average in 

the absence of teaching, but the estimate is far from statistically significant and small in magnitude. 

Figure 5-A plots the kernel densities of learning in the no-teaching   untracked and no-teaching   

tracked treatments. The p-value of a two-sample Kolmogorov-Smirnov test between the untracked and 

tracked treatments is 0.56, and thus we cannot reject the null that the two distributions are the same.  

This overall null result, however, might mask heterogeneity among subjects. Column (2) of Table 

4 shows that ability tracking may reduce the improvement in average solving time by 0.095 SD among 

the subjects in the bottom half, which is sizable and consistent with a discouragement effect from 

learning their relative ranks but far from statistically significant at conventional levels. We conclude that 

we do not find a direct negative effect of tracking per se. 

 

Testing Hypothesis 3 (Effect of Tracked under Teaching) 

On the one hand, subjects in the teaching treatment who are tracked may have less to teach one 

another as the difference between the best and worst performer in a given group is smaller on average 

than in the untracked treatment. In fact, the standard deviations of raw average solving time in the 

Ability Block (    ) at the group level are 0.85 and 0.48 SD (82.6 and 46.1 seconds) in the untracked 

and tracked sessions, respectively.24 In addition, tracking may especially hurt subjects in the bottom half 

as they lose access to high-ability peers who could have taught them in the untracked sessions. In this 
                                                   

 
24 In the teaching treatment, there are 32 groups each in the untracked and tracked sessions.  
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sense, ability tracking may attenuate the positive effects of teaching. On the other hand, subjects of more 

similar ability may be more effective in teaching one another. The potential for offsetting effects makes 

the effect of ability tracking in the teaching treatment ambiguous. Columns (3) and (4) in Table 4 

present the estimated treatment effects of tracking in the teaching treatment from equations [4] and [5] 

(again, the coefficient estimates are reported in Appendix Table B2). 

Finding 4: Tracked groups exhibit less learning than untracked groups in the teaching treatment.  

Evidence: Figure 5-B plots the kernel densities of learning in the teaching   untracked and 

teaching   tracked treatments. The figure shows that distribution of learning in the tracked treatment is 

shifted to the left compared to the untracked treatment. A two-sample Kolmogorov-Smirnov test yields a 

p-value of 0.015. Another way to visualize this shift is presented in Figure 6, which displays the 

empirical CDFs of learning by treatment. When peer-to-peer teaching is allowed, Figure 6-B shows that 

learning in the tracked treatment is stochastically dominated by learning in the untracked treatment. 

Column (3) in Table 4 shows that tracking reduces learning by 0.145 SD (p-value<0.10) on 

average in the teaching treatment, substantially offsetting the positive effects of teaching (0.17 SD in the 

untracked treatment from Appendix Table B3). This offsetting effect of tracking is driven mainly by 

subjects in the bottom half—the subjects who benefitted most from teaching in the first place—while 

having little effect on subjects in the top half.25 For subjects in the bottom half, the estimates in Column 

(4) indicate that as tracking reduces learning by as much as 0.28 SD (p-value<0.10) relative to the 

estimated effect of teaching on learning among these subjects of 0.33 SD in the untracked treatment.26  

Robustness Checks: Table 5 presents estimated treatment effects analogous to those presented in 

Table 4 using log learning as the dependent variable. Our findings that tracking negatively impacts 

learning only in the teaching treatment and only for subjects in the bottom half remain robust. Column 

(4) shows that in the teaching treatment, tracking reduces learning among the subjects in the bottom half 

by 15.2 percent (p-value<0.05), while tracking has a negligible impact on the subjects in the top half.27  

In summary, while tracking does not have large negative effects on learning for subjects in the 

bottom half without teaching, it has large detrimental effects on them in the teaching treatment—

                                                   

 
25 The sum of    and    from equation [5] captures the effect of tracking on subjects in the top half in the 
teaching treatment, while the sum of   ,   ,   , and    captures the effect on the subjects in the bottom half. 
Again, the standard errors are derived using the lincom command in Stata. 
26 Appendix Figure B1 reproduces the empirical CDFs in Figure 6-B for subjects in the top and bottom halves 
separately, recognizing the risk of splitting the sample on too many dimensions. The figure indicates that only 
subjects in the bottom half are negatively affected by tracking in the teaching treatment. 
27 The coefficient estimates from equations [4] and [5] are reported in Appendix Table B4. 
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probably because they lose access to high-ability peers who could have taught them. In Section 4.3, we 

examine the frequency of teaching to test this conjecture. That low-ability students benefit from being in 

untracked groups is consistent with Lyle’s [2009] finding that West Point cadets benefit from greater 

heterogeneity in their peers and that this benefit—though present throughout the distribution—is largest 

for low-ability cadets. It is also consistent with Jain and Kapoor’s [2015] finding that low-ability MBA 

students benefit from greater heterogeneity in their roommates’ ability. Importantly, in these studies as 

in our own, the heterogeneity at the group level (West Point companies, roommates, and our 

experimental groupings) does not affect the instruction received.  

 

4.3. Mechanism for the Negative Impact of Tracking under Teaching  

So far, we have documented that the positive effect of teaching on learning is offset by a negative 

effect of tracking on subjects in the bottom half of the ability distribution. In this section, we investigate 

the mechanism underlying this finding by analyzing actual instances of peer-to-peer teaching behavior in 

our experiments.  

Specifically, our software recorded subjects’ verbal conversations with members of their group 

during the Practice Block. Two research assistants (who were unaware of both our research question and 

the particulars of our experimental design) transcribed these conversations and then independently 

counted the number of teaching related statements and the number of non-teaching related statements for 

each group. A teaching statement is defined to be any utterance in which subjects are engaged in trying 

to teach each other how to do Sudoku such as “You can’t have a five there; there is already one in that 

column.” After each research assistant counted instances of teaching in each group independently, the 

two research assistants met and cross-checked their counts, resolving the few disagreements.28  

Figure 7 plots the frequency of “teaching related statements” (hereafter just “teaching”) at the 

group level. The graph on the left plots the number of groups with given teaching frequencies in the 

untracked treatment (N=32) as well as the same distribution for groups composed of the bottom half of 

Ability Block performers in the tracked treatment (N=16). The graph on the right plots (again) the 

number of groups with given teaching frequencies in the untracked treatment (N=32) along with the 

                                                   

 
28 See Appendix E for a description of the scheme used by the research assistants to categorize statements as 
“teaching”. 



23 
 

same distribution for groups composed of the top half of Ability Block performers in the tracked 

treatment (N=16).  

Table 6 reports the results of several regression specifications in which the outcome is the number 

of teaching statements exchanged by a group. The hypothesis is that the number of teaching statements 

will be consistent with the results for learning in Columns (3) and (4) of Table 4: namely that subjects in 

the bottom half experienced less peer-to-peer teaching in the tracked treatment than in the untracked 

treatment. 

Finding 5: Ability tracking reduces the frequency of actual instances of peer-to-peer teaching. 

Evidence: Table 6 presents the results of our analysis of teaching frequency. The analysis is by 

construction limited to 32 teaching sessions with 16 sessions each in the untracked and tracked 

treatments. The unit of analysis here is a group, and for each session there are two groups each. Column 

(1) shows that on average we observe 4.8 instances of teaching per group in the untracked treatment. 

Columns (2) and (3) present the means for tracked groups containing the bottom half of performers in 

the Ability Block (ranks 5–8) and the top half (ranks 1–4), respectively.  

Columns (4)–(6) of Table 6 report the differences between Columns (1) and (2) estimated via 

different econometric models. Column (4) presents the estimates from OLS, Column (5) estimates from 

a Poisson model in order to account for the discrete nature of teaching frequencies, and Column (6) 

estimates from a zero-inflated Poisson model in order to further account for the fact that there are a 

number of groups without any teaching. Note that the Vuong test of the zero-inflated Poisson model 

versus the standard Poisson reported in the table indicates that the zero-inflated models are preferred in 

all specifications in Table 6. Columns (7)–(9) report corresponding estimates for the difference between 

Columns (1) and (3).  

This analysis provides evidence that ability tracking reduces the number of teaching statements in 

both the high- and low-ability groups, and all the estimates except for Column (4) are statistically 

significant at conventional levels. The reduction in teaching frequency due to ability tracking is much 

more substantial among subjects in the top half (Columns (7)–(9) of Table 6) than the reduction among 

subjects in the bottom half (Columns (4)–(6) of Table 6). We believe this is because high-ability subjects 

have no one to teach under ability tracking when they are surrounded by other high ability subjects who 

already know how to do Sudoku and do not need to be taught by others. The histograms of teaching 

frequency by treatment in Figure 7 provide further evidence to this effect.  
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One potential explanation for tracking’s effect on teaching frequencies is that tracking may reduce 

the variance of initial ability within a group. On the one hand, a more homogenous group may facilitate 

teaching if subjects of similar ability find it easier to express their difficulties to one another. On the 

other hand, it is also possible that some heterogeneity (ability difference) is necessary to generate a 

meaningful exchange of information in the form of questions and (correct) answers.  

To explore the mechanism behind the reduction in teaching frequency due to tracking, Appendix 

Table B4 correlates the number of teaching statements with the group mean and group standard 

deviation (SD) of standardized average solving time at T=0. Here, note that because group mean is the 

group average of standardized average solving time, the higher the group mean is the worse the group’s 

performance in the Ability Block. To account for the discrete nature of teaching frequencies, we report 

the results from a zero-inflated Poisson model in Columns (1)–(4).29  

Throughout Columns (2)–(4), the most robust result is that the estimate on group SD is positive 

and statistically significant. Notably, Column (3), including both group mean and group SD, indicates 

that greater group heterogeneity is associated with more peer-to-peer teaching even when comparing 

groups with subjects of similar ability on average. These results are again consistent with Lyle [2009] 

and Jain and Kapoor [2015], both of which show that larger group heterogeneity benefits students in 

settings where instruction was unlikely to be influenced by group heterogeneity.30  

Column (4) shows that, while imprecisely estimated, the coefficient of the interaction between 

group mean and group SD is negative—suggesting that the positive effect of group SD on peer-to-peer 

teaching is larger in groups with better performing subjects on average (i.e., a lower group mean) than in 

groups with worse performing subjects. This result seems plausible if the positive effect of ability 

heterogeneity on teaching frequency is mitigated when a group consists of lower ability subjects with 

less to teach each other. However, given that the standard deviation of group mean is 0.56, the estimate 

in Column (4) implies that even the group with the worst subjects in our data with group mean of 2.00 

would still benefit from larger group SD (= 0.40 – 0.18   0.5    2 >0).  

To summarize, the tracked treatment, which assortatively groups subjects based on ability, reduces 

the frequency of peer-to-peer teaching compared to the untracked treatment. While we observe a 

                                                   

 
29 The Vuong test of the zero-inflated Poisson model versus the standard Poisson reported in the table indicates 
that the zero-inflated model is preferred in all specifications in Appendix Table B4.  
30 Most studies of group heterogeneity in the classroom—wherein the instruction presumably responds to group 
heterogeneity—find that greater heterogeneity leads to worse academic outcomes (e.g., Booij et al. [2016]). One 
exception is Vigdor and Nechyba’s [2007] finding that greater classroom heterogeneity had positive effects on 
math and reading test scores for elementary and middle school students in North Carolina. 
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reduction in the instances of teaching among subjects in both the top and bottom halves of the ability 

distribution, the reduction is much larger among subjects in the top half. The reduction in teaching 

frequency among subjects in the top half may reflect the fact that high ability subjects have little to teach 

each other. Subjects in the bottom half, however, still try to teach each other, but their peer-to-peer 

teaching is evidently (based on our estimates) ineffective.31  
 

5. Replication Exercise Using a Different Game: Nonograms 

So far, we have documented that most of the learning in our experiment occurs among low-ability 

subjects, while high-ability subjects are hardly affected by any treatment combination. The positive 

effect of teaching on learning is concentrated among subjects in the bottom half of the ability 

distribution, and the negative effect of tracking in the teaching treatment is also concentrated on the 

subjects in the bottom half. One possible reason for the absence of treatment effects among subjects in 

the top half is a “ceiling effect.” That is, high-ability subjects may already achieve near-peak 

performance in solving Sudoku puzzles even during the baseline (T=0) and thus have no scope for 

improvement no matter what the treatment. Indeed, mean raw learning by subjects in the top half is only 

9 seconds per puzzle (as compared to 53 seconds per puzzle in the bottom half).  

To investigate this claim, we replicate our experiment substituting a less popular logical puzzle 

called a Nonogram. Nonograms are similar to Sudoku in the sense that subjects need to fill a   5 grid 

while satisfying a set of logical constraints as shown in Appendix Figure B2 (and detailed in the 

instructions in Appendix C). Moreover, there are a numerous puzzle solving “strategies” for Nonograms 

that are also straightforward to teach and learn, and an instructive video also exists as in the case of 

Sudoku.32 In fact, this game has been used in another study as an alternative to Sudoku (Charness et al. 

[2015]). The most important difference between Sudoku and Nonograms is that most of the subjects in 

our experiment have no prior experience solving Nonograms: unlike Sudoku with which 68 percent of 

subjects have some experience, only 2 percent of our subjects have some experience with Nonograms. 

Table 7 summarizes the design of Nonograms experiments. We conducted 4 sessions for each 

combination of tracking   incentives in the no-teaching treatment (16 sessions) and the teaching 

                                                   

 
31 That students in the bottom half of the ability distribution need higher ability students to teach them is 
consistent with Lavy, Silva, and Weinhardt’s [2012] finding that girls (although not boys) in the bottom half of 
the ability distribution benefit from the presence of very bright peers. 
32 A link to the video is available here: 
https://www.dropbox.com/s/vpsti0kpsepp0kh/NonogramTutorial.mp4?dl=0  

https://www.dropbox.com/s/vpsti0kpsepp0kh/NonogramTutorial.mp4?dl=0
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treatment (16 sessions) with a total of 256 subjects. As a result, we often lack the statistical power to 

precisely detect treatment effects, and thus we view the results reported below as only complementary to 

our main findings using Sudoku. In fact, none of the two-sample Kolmogorov-Smirnov tests for equality 

of the distributions shown below are statistically significant even though it is apparent that the 

distributions of learning visually look different. The procedures for the Nonogram experiments were 

identical to those for Sudoku as described in Table 1-A.  

Appendix Table B6 presents summary statistics from the Nonogram experiments. In total, only 2 

percent of subjects had prior experience with Nonograms. In addition, 20 percent of subjects could not 

solve any Nonograms at T=0. The mean of our main outcome—learning measured in standard 

deviations of     —is 0.48. Out of 256 subjects, 234 (91.4 percent) exhibited positive learning. Thus 

unlike in the Sudoku experiments, even subjects in the top half may have some scope for improvement. 

Also, Column (2) shows that for all variables, we fail to reject the null hypothesis of no difference across 

treatments, and thus randomization seems successful. Because we pool sessions from different incentive 

schemes again, however, we also report the p-values for tests of the null hypothesis that the covariates 

are balanced across four treatments (2 2).33 Here, the p-values for several variables are just above 

conventional significance levels suggesting that some variables are not perfectly balanced across 

treatments due to the small sample. Thus, we estimate equations [4] and [5] using the data from the 

Nonograms sessions controlling for subject characteristics as we did for the Sudoku sessions.  

We first examine whether teaching has a positive effect on learning in Nonograms as well. Figure 

8-A presents the cumulative distributions of learning for the no-teaching (solid line) and teaching 

(dashed line) treatments, while Figure 8-B focuses on the subjects in the bottom half. These figures 

clearly show that the learning among subjects in the teaching treatment stochastically dominates the 

learning among subjects in the no-teaching treatment—especially among subjects in the bottom half. 

Table 8, which corresponds to Table 3 for Sudoku, confirms this visual inspection.34 Column (2) 

shows that teaching increases subjects’ learning by 0.20 SD (p-value<0.01), which is larger than in 

Sudoku (0.12 SD). This estimate suggests that having subjects with a high degree of ex ante proficiency 

as in the Sudoku experiments is not a necessary condition for successful peer-to-peer teaching. This 

                                                   

 
33 Again, our tournament incentive scheme turned out to have a negligible effect on behavior (either through main 
effects of the treatment or interactions).  For example, the means of learning in the piece-rate and tournament 
treatments are very similar (0.479 vs. 0.484 SD), and the p-value for the test of the equality of means is 0.956 (See 
Appendix Tables A1). 
34 The original estimates from equation [5] are reported in Appendix Table B7.  
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average effect, however, may not capture differences in the distribution of learning among subjects. 

Column (4) shows that most of the gains from teaching are again concentrated among subjects in the 

bottom half of their session (0.36 SD with p-value<0.01). Teaching does not seem to have a positive 

impact on learning for subjects in the top half despite their lack of familiarity with Nonograms (0.02 

with p-value of 0.29). Given that students in the top half improve by almost 27 seconds on average as 

reported in Appendix Table B6 in the Nonogram experiments compared to 9 seconds for top half 

subjects in the Sudoku experiments, “ceiling effects” are less likely to be an issue in the Nonogram 

experiments. As such, we conjecture that subjects in the top half may not be exposed to sufficiently 

many higher ability subjects who have something to teach them.35  

Finally, we examine how ability tracking interacts with peer-to-peer teaching and hence learning. 

We first examine the effect of tracking in the no-teaching environment to see if tracking per se has any 

discouragement or encouragement effects when subjects learn their ranks within the group. Figure 9-A 

plots the empirical CDFs of learning in the no-teaching   untracked and no-teaching   tracked 

treatments. The distributions are almost identical suggesting that tracking per se does not seem to have 

any impact on learning as in the Sudoku experiments. 

We now turn to the main effect of interest to us, the effect of tracking when peer-to-peer teaching 

is possible. Figure 9-B plots the empirical CDFs of learning in the teaching   untracked and teaching   

tracked treatments. The figure shows that learning in the tracked treatment is nearly stochastically 

dominated by learning in the untracked treatment, suggesting that tracking when teaching is possible 

diminishes learning. This result is consistent with that in the Sudoku experiments.  

Table 9 summarizes the estimates based on the outputs of equations [4] and [5] to formalize the 

inference from the visual inspection of Figure 9.36 Columns (1) and (2) show that ability tracking had no 

significant impact on learning in the no-teaching treatment regardless of whether we consider the full 

sample or subjects in the top and bottom halves of their sessions. Unlike in the Sudoku experiment, the 

                                                   

 
35 The only notable difference between Sudoku and Nonograms is that the estimate on “bottom half” for Sudoku 
in Column (4) of Appendix Table B1 is statistically significant and positive (0.26) while that for Nonograms in 
Column (4) of Appendix Table B7 is very small (–0.01). The Sudoku estimate suggests that subjects in the top 
half did not have room for improvement, and thus learning among these subjects is substantially less than the 
learning among subjects in the bottom half (ceiling effects). By contrast, the Nonogram estimate for subjects in 
the bottom half is close to zero, suggesting that subjects on the top and the bottom halves improve by a similar 
amount. Interestingly, peer-to-peer teaching does not additionally improve learning among subjects in the top half 
in Nonograms despite the fact that they have room for improvement. 
36 The coefficient estimates from equations [4] and [5] are reported in Appendix Table B8. 
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effect of tracking in the no-teaching treatment is positive in all of these samples, but the estimates are far 

from statistically significant.  

Column (3) in Table 9 shows that ability tracking reduces learning by 0.063 SD on average in the 

teaching treatment, but this estimated treatment effect is not statistically significant. Column (4), 

however, shows that ability tracking reduces the average solving time by 0.063 SD (p-value<0.05) 

among the subjects in top half. For subjects in the bottom half, the estimated treatment effect is similar 

in magnitude (–0.081) but imprecisely estimated. Thus we infer that tracking may reduce the learning of 

all subjects in the teaching treatment of the Nonogram experiment.  

To further investigate this possibility, Appendix Figure B3 reproduces Figure 9-B separately for 

subjects in the top half and subjects in the bottom half. Despite the small sample, the figure clearly 

shows that both groups of subjects are negatively affected by tracking in the teaching environment. 

These results are in contrast to the corresponding figures for Sudoku in Appendix Figure B2, which 

show that only subjects in the bottom half are negatively affected by tracking in the teaching treatment.  

That tracking has a negative effect on learning for subjects in the top half is consistent with 

evidence from the education literature that students who teach their peers learn more as a result (Bargh 

and Schul [1980]). Tracking groups subjects with similar levels of understanding; as a consequence 

there may be fewer opportunities to engage in mutually beneficial teaching.37 Our failure to observe a 

similar effect in the Sudoku treatment may have resulted from the high levels of Sudoku proficiency 

already evident in the Evaluation Block. Indeed, the potential for such “ceiling effects” is precisely why 

we ran the Nonogram experiments.38 

Exploring further this difference between the Sudoku and Nonogram experiments, Appendix Table 

B9 compares the number of “teaching related statements” in the tracked and untracked sessions. In 

contrast to the Sudoku experiment, we do not see meaningful differences in teaching intensity between 

the tracked and untracked treatments partly because of the small number of groups (we only have 32 

data points).39 Subjects in the bottom half—regardless of whether they were in the tracked or untracked 

                                                   

 
37 Song et al. [2017] similarly find that Chinese middle school students serving as tutors showed gains in 
achievement—even while the students being tutored enjoyed no achievement gains. 
38 An alternative analysis pooling the Sudoku and Nonogram estimates (facilitated by the use of a common, 
standardized outcome measure) yields estimates broadly similar to those in the Nonogram experiment (where 
ceiling effects are likely absent). The results of this meta-analysis are available from the authors upon request. 
39 For completeness, Columns (5)–(8) in Appendix Table B4 report the estimates from regressing teaching 
frequency on the group mean and SD of standardized average solving time at T=0. While group SD is always 
positive throughout the specifications as it was for Sudoku (except for Column (8)), the estimates are very 
imprecise given the small sample size (N=32). 
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sessions—may ask more questions about this unfamiliar game. As such, the increase in teaching in the 

tracking treatment in the bottom half group may simply reflect a compositional effect. Regardless of the 

explanation, the means of teaching frequency in Appendix Table B9 cannot rationalize the negative 

effects of tracking on all subjects in the Nonogram experiments. One possibility is that the frequency of 

teaching abstracts from the quality or nature of the exchanges. Top half students may benefit from 

having bottom half students asking basic questions (the answers to which benefit all subjects), while 

bottom half subjects may benefit from having better performing peers available with the answers to 

these questions.  

 

6. Conclusion  

Despite being an obvious and pre-eminent mechanism for peer effects in the classroom (Sacerdote 

[2011]), peer-to-peer teaching and its effect have gone completely unstudied by economists. The reason 

for this apparent oversight is not altogether surprising: peer-to-peer teaching is difficult to observe and 

measure in the field and even more difficult (if not impossible) to exogenously vary.  

Far more attention has been paid to the effects of ability tracking. Grouping students of similar 

abilities, however, undoubtedly has implications for the efficacy of peer-to-peer teaching insofar as it 

changes the distribution of potential peer teachers across classrooms. On the one hand, it has been 

suggested that ability tracking by prior achievement might disadvantage low-ability students to the 

extent that students benefit from having higher-ability peers to teach them (e.g. Epple et al. [2002]). On 

the other hand, ability tracking may encourage learning at all ability levels if students of more similar 

ability are more effective in teaching one another (Schunk [1991]).  

Given these ambiguities, understanding the importance of peer-to-peer teaching and how ability 

tracking affects this teaching is crucial to attempts to improve learning by altering the composition of 

classrooms and the degree of interaction among students—interventions which are by themselves 

costless to schools. Existing evidence from field experiments on tracking is mixed—perhaps due to the 

fact that distinguishing between the various (and possibly counteracting) mechanisms through which 

tracking affects learning has proven very difficult even in randomized field settings. 

To establish the importance of peer-to-peer teaching and identify the interaction between this 

teaching and ability tracking, we conduct a laboratory experiment to mimic a classroom environment. 

The virtue of the laboratory experiment is the extent of experimental control: our design allows us to 

exogenously vary both subjects’ ability to teach other and peer group composition while also shutting 
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down potential competing channels through which tracking may influence learning such as the responses 

of teachers to group composition. 

Our study provides the first estimates of the importance of peer-to-peer teaching: enabling this 

interaction for only 10 minutes leads to a 42 percent increase in our measure of learning—an increase 

predominantly driven by low-ability subjects. While this finding highlights the potentially sizable effect 

of peer-to-peer teaching among students, our study also suggests that the effects of these interactions are 

shaped by the composition of peer groups. Specifically, we show that the positive effect of peer-to-peer 

teaching on low-ability subjects is substantially offset when subjects are tracked by ability. This result 

implies that ability tracking based on prior achievement has the potential to disadvantage low-ability 

students who may miss out on interactions with high-ability peers who can teach them.  

Our findings have important implications for school policy concerning the optimal composition of 

classrooms by ability levels. Specifically, tracking without appropriately tailored instruction may harm 

lower-ability students. Unless teachers also tailor the curriculum and instruction for low-ability students 

in tracked classrooms, schools should be cautious about implementing ability tracking. 

Using a laboratory experiment allows us to estimate in a credible fashion the effect of peer-to-peer 

teaching—typically unmeasured in other settings. Establishing the potential for peer-to-peer teaching to 

enhance learning is a fundamentally important contribution to our knowledge of the education 

production function, but we acknowledge that our use of a laboratory has its limitations. Learning may 

not be best measured by our short-term measure of performance improvement, and the effects of peers 

may themselves depend on the context (e.g., math or language skills). These shortcomings, however, are 

shared in one way or another by most field studies.  

Nonetheless, we are confident that laboratory experiments such as ours have a role to play as 

“mechanism experiments” (Ludwig et al. [2011]) to investigate basic but fundamental issues such as the 

effects of peers. Given that lab experiments are smaller and less expensive than field experiments, such 

studies can be more easily replicated and the robustness of the findings to differences in context, 

measures, and experimental design tested. Indeed, effects of the magnitude we report are so large as to 

demand replication and interest from education researchers.  

Furthermore, we view laboratory experiments as a natural complement to more burdensome and 

potentially disruptive field experiments—perhaps as a precursor to guide and inform the design of such 

interventions. For example, anecdotally it has been suggested to the authors that tracking is as prevalent 

within classrooms as it is across classrooms with teachers matching students for group work. The 

laboratory could be used to investigate whether “nearest neighbor” matching rules assigning similar 
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students to work together lead to better outcomes than alternative assignment rules. Alternatively, Carrell 

et al. [2013] speculate that having middle-ability students in a classroom may be important for 

generating positive peer effects for low-ability students if middle-ability students serve as mediators or 

bridges between low and high-ability students. The laboratory could be used to investigate the 

importance for peer effects of having students who can serve as “bridges” between groups of students 

with different abilities. Experiments like these could additionally shed more light on whether peer ability 

is a complement or substitute in the education production function. We leave intriguing questions such 

as these for future research.  
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Figure 1: Screenshot from the Teaching Treatment  
during the Practice Block (Sudoku) 

 

 
 

Notes: Shown from the perspective of the subject ranked 1 out of 4 in his group. Subjects are able to 
simultaneously edit a common 6 6 Sudoku puzzle during the Practice Block. Each other mouse arrow is labeled 
with the within-group performance rank of the person in the Ability Block (T=0). Performance is measured by the 
number of Sudoku puzzles solved with the average solving time serving as a tie-breaker. In the no-teaching 
treatment, the three arrows of other subjects would not have been visible, as each subject worked independently. 

 

 
Figure 2: Group Assignment Rules in Untracked vs. Tracked Treatment  

 

 
 

Notes: This figure describes the procedure for assigning subjects to groups in the untracked and tracked 
treatments. Rank is based on performance in the Ability Block (T=0). Performance is measured by the number of 
Sudoku puzzles solved with the average solving time serving as a tie-breaker. We define subjects ranked 5–8 in 
the Ability Block to be the bottom half and those ranked 1–4 to be the top half.   
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Figure 3: Standardized Average Solving Time  
in the Ability and Evaluation Blocks (Sudoku) 

 

 
 

Notes: Scatter plots of the standardized average solving times (AST) in the Ability Block (T=0) and the 
Evaluation Block (T=1) are displayed. Raw average solving times (in seconds) for both blocks are standardized 
by the mean and standard deviation of average solving time at T=0 so that standardized AST at T=0 has a mean of 
zero and standard deviation of 1. The mean, median, and standard deviation of raw AST at T=0 are 119.14, 93.33, 
and 97.39 seconds, respectively. The solid line represents the 45-degree line. Subjects below the 45-degree line 
show improvement in their standardized average solving time for Sudoku puzzles. “Learning,” which is our main 
outcome, is calculated by subtracting the standardized AST at T=1 from standardized AST at T=0, so that higher 
values indicate improvement in average solving time. There are 448 subjects in total, and 371 subjects (84.4 
percent) exhibited positive learning. 
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Figure 4: Kernel Densities of Learning  
in the No-teaching and Teaching Treatments (Sudoku) 

 

A. Full Sample 

 
 

B. Among Subjects in the Bottom Half 

 
 

Notes: Kernel density plots of learning in the no-teaching and teaching treatments are displayed. Panel A is for the 
full sample while Panel B is restricted to subjects in the bottom half who ranked 5–8 in the Ability Block (T=0). 
Learning is calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) from 
that in the Ability Block (T=0), so that higher values indicate improvement in average solving time. For Panel A, 
the p-value for the two-sample Kolmogorov-Smirnov test for the equality of the distributions between the no-
teaching and teaching treatments is 0.014, while that for Panel B is 0.004. There are a total of 448 subjects in 
Panel A and 224 subjects in Panel B. 
  

0

.5

1

1.5

K
e

rn
e

l 
D

e
n
s
it
y

-1 0 1 2

No Teaching Teaching

Learning

0

.5

1

1.5

K
e

rn
e

l 
D

e
n
s
it
y

-1 0 1 2

No Teaching Teaching

Learning



38 
 

Figure 5: Kernel Densities of Learning  
in the Tracked and Untracked Treatments (Sudoku) 

 
 

A. In the No-teaching Treatment 

 
 

B. In the Teaching Treatment 

 
 

Notes: Kernel density plots of learning for the untracked and tracked treatments are displayed. Learning is 
calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) from that in the 
Ability Block (T=0), so that higher values indicate improvement in average solving time. Panel A plots the kernel 
densities in the no-teaching treatment where the p-value for a two-sample Kolmogorov-Smirnov test for equality 
of the distributions between the untracked and tracked treatments is 0.557. Panel B plots the kernel densities in 
the teaching treatment where the p-value for the Kolmogorov-Smirnov test is 0.015. There are 24 no-teaching 
sessions with 192 subjects, and 32 teaching sessions with 256 subjects.  
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Figure 6: Cumulative Distributions of Learning  
in the Tracked and Untracked Treatments (Sudoku) 

 

A. In the No-teaching Treatment 

 
 

B. In the Teaching Treatment 

 
 

Notes: Cumulative distributions of learning for the untracked and tracked treatments are displayed. Learning is 
calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) from that in the 
Ability Block (T=0), so that higher values indicate improvement in average solving time. Panel A plots the 
cumulative distributions in the no-teaching treatment where the p-value for a two-sample Kolmogorov-Smirnov 
test for equality of the distributions between the untracked and tracked treatments is 0.557. Panel B plots the 
cumulative distributions in the teaching treatment where the p-value for the Kolmogorov-Smirnov test between 
the untracked and tracked treatments is 0.015. There are 24 no-teaching sessions with 192 subjects, and 32 
teaching sessions with 256 subjects (8 subjects per each session).   
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Figure 7: Frequency of Teaching (Sudoku) 
 
 

 
 

Notes: The unit of observation is a group. The sample is limited to the 32 teaching treatment sessions with 16 
sessions each for the untracked and tracked treatments. In the untracked treatment, there are total of 32 groups 
(two groups for each session), while for the tracked treatment there are 16 groups each for subjects in the bottom 
half (Group 2 in the tracked treatment in Figure 2 consisting of subjects ranked 5–8 in the Ability Block (T=0)) 
and for subjects in the top half (Group 1 in the tracked treatment in Figure 2 consisting of subjects ranked 1-4 in 
the Ability Block (T=0)). The left graph plots the number of groups on the vertical axis exhibiting a given 
frequency of teaching on the horizontal axis for groups in the untracked treatment (N=32) and for groups 
consisting of subjects in the bottom half in the tracked treatment (N=16). The right graph similarly plots the 
number of groups by teaching frequency for groups in the untracked treatment (N=32) again and groups 
consisting of subjects in the top half in the tracked treatment (N=16). A teaching statements is defined to be any 
utterance in which subjects are engaged in trying to teach each other how to do Sudoku such as “You can’t have a 
five there; there is already one in that column. 
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Figure 8: Cumulative Distributions of Learning 
 in the No-teaching and Teaching Treatments (Nonograms) 

 

A. Full Sample 

 

B. Among Subjects in the Bottom Half 

 
 

Notes: Cumulative distributions of learning in the no-teaching and teaching treatments are displayed. Panel A is 
for the full sample while Panel B is restricted to subjects in the bottom half who ranked 5–8 in the Ability Block 
(T=0). Learning is calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) 
from that in the Ability Block (T=0), so that higher values indicate improvement in average solving time. For 
Panel A, the p-value for the two-sample Kolmogorov-Smirnov test for the equality of the distributions between 
the no-teaching and teaching treatments is 0.629, while that for Panel B is 0.303. 
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Figure 9: Cumulative Distributions of Learning  
in the Tracked and Untracked Treatments (Nonograms) 

 

A. In the No-teaching Treatment 

 
 

B. In the Teaching Treatment 

 
 

 

Notes: Cumulative distributions of learning in the untracked and tracked treatments are displayed. Learning is 
calculated by subtracting the standardized average solving time in the Evaluation Block (T=1) from that in the 
Ability Block (T=0), so that higher values indicate improvement in solving time. Panel A plots the cumulative 
distributions in the no-teaching treatment while Panel B plots the cumulative distributions in the teaching 
treatment. There are 16 sessions with 128 subjects (8 subjects per each session) in both the teaching and no-
teaching treatments. For Panel A, the p-value for the two-sample Kolmogorov-Smirnov test for the equality of the 
distributions between the untracked and tracked treatments is 0.704, while that for Panel B is 0.418.  
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Table 1: Structure of the Experiment 
 

A. Overview of an Experimental Session 
 

Elicitations Instructions Video Ability  
Block 
(T=0) 

Practice 
Block 

Evaluation 
Block 
(T=1) 

Elicit risk 
preferences via 
MPL and 
prosociality via 
a dictator game. 
Collect 
demographic 
data. 

Basic Sudoku 
instructions 
displayed on 
screen, self-
paced. 
 

Provides a 
common 
“lecture” 
including a set 
of puzzle 
solving 
strategies. (9 
min) 
 

10 minutes to 
solve 6 6 
Sudoku, paid at 
a piece-rate of 
$0.50 per 
correct puzzle. 
Performance 
used for 
tracking. 

10 minutes to 
work on a 
single 
Sudoku, w/ or 
w/out chat for 
peer-to-peer 
teaching.  
Sorted into 
groups. 
 

15 minutes to 
solve 6 6 
Sudoku with 
incentives 
varied. 
 

 

Notes: The table shows the time sequence for a single session. At the conclusion of each session, subjects are 
paid for their performance in both the Ability and Evaluation Blocks as well as for one of their choices in the 
risk elicitation task and, with equal probability, either their own or another person’s allocation in the dictator 
game. See Appendix C for the full instructions used in the experiment.  

 
 

B. 2 2 2 Factorial Experimental Design (Sudoku) 
 

  No-teaching  Teaching 

  Piece-rate Tournament  Piece-rate Tournament 

Untracked # Sessions 
# Subjects 

6 
48 

6 
48  8 

64 
8 
64 

Tracked # Sessions 
# Subjects 

6 
48 

6 
48  8 

64 
8 
64 

 

Notes: The total sample size is 448 subjects in 56 sessions, divided into 112 groups after the Ability Block. See 
Appendix C for the full instructions used in the experiment. As we show in Appendix A, our tournament 
incentive scheme (piece-rate vs. tournament) turned out to have a negligible effect on behavior (either through 
main effects of the treatment or interactions with the other treatments). As a result, our primary analysis pools 
data across incentive schemes and focuses on the effects of teaching, tracking, and their interaction—
essentially reducing the study to a 2×2 factorial experimental design (in boldface in the table). 

 

  



44 
 

Table 2: Summary Statistics and Balance Tests (Sudoku) 
 

 A. Overall  B. Heterogeneity 

 Mean 
p-value of 

equality test  
Bottom  

half 
Top  
half Dif 

  2 2 2 2 2  (rank5-8) (rank1-4) (5)-(6) 
Variable (1) (2) (3)  (4) (5) (6) 
Male 0.47 0.77 0.96   0.52 0.42 0.10** 
 [0.50]     [0.50] [0.49] (0.05) 
Experienced 0.68 0.65 0.70   0.48 0.88 -0.39*** 
 [0.47]     [0.50] [0.33] (0.04) 
Risk Attitude (0–9) 3.35 0.35 0.17   3.31 3.40 -0.09 
 [1.64]     [1.71] [1.58] (0.15) 
Prosociality (0–5) 1.58 0.39 0.27   1.70 1.47 0.23** 
 [1.03]     [0.99] [1.05] (0.09) 
Solved None at T=0 0.02 0.23 0.11   0.04 0.00 0.04*** 
 [0.13]     [0.19] [0.00] (0.01) 
Solved None at T=1 0.00 - -  0.00 0.00 0.00 
 [0.05]     [0.07] [0.00] 0.00 
Raw Average solve time at T=0 (sec) 119.14 0.31 0.15   167.60 70.69 96.91*** 
 [97.39]     [117.79] [20.54] (8.09) 
Raw Average solve time at T=1 (sec) 88.09 - -  114.49 61.70 52.79*** 
 [51.16]     [58.69] [20.08] (3.93) 
Raw Learning (=AST0-AST1) (sec) 31.05 - -  53.11 8.99 44.12*** 
 [73.49]     [98.48] [12.23] (6.45) 
Standardized average solve time at T=0 0.00 0.31 0.15   0.50 -0.50 1.00*** 
 [1.00]    [1.21] [0.21] (0.08) 
Standardized average solve time at T=1 -0.32 - -  -0.05 -0.59 0.54*** 
 [0.53]    [0.60] [0.21] (0.04) 
Learning 0.32 - -  0.55 0.09 0.45*** 
 [0.75]    [1.01] [0.13] (0.07) 
# of Sessions 56    56 56  
# of Groups 112    112 112  
# of Subjects 448    224 224  

 

Notes: Column (1) reports means for the full sample with standard deviations in brackets. Columns (2) and (3) 
report the p-values for each variable in the far-left column of the null hypotheses that the means are equal across 8 
treatment combinations (Column (2)) and 4 treatment combinations pooling across the incentive treatments 
(Column (3)). Columns (4) and (5) report the means by ranks in the Ability Block (T=0). The bottom half consists 
of those subjects ranked 5–8, and the top half consists of those subjects ranked 1–4. Column (6) reports the 
difference in means between subjects in the top half and subjects in the bottom half with standard errors clustered 
at the group level in parentheses. Experienced takes a value of one if a subject reports having prior experience 
with Sudoku. Risk attitudes take on the values from 0 to 9 with higher numbers indicating more risk-loving 
subjects. Prosociality takes on the values from 0 to 5 with higher numbers indicating higher prosociality. See 
Appendix C for details on the elicitation of risk attitudes and prosociality. Learning is calculated by subtracting 
the standardized AST in the Evaluation Block (T=1) from that in the Ability Block (T=0), so that higher values 
indicate improvement in solving time. Note that AST in both the Ability and Evaluation Blocks is standardized by 
the mean and standard deviation of raw AST at T=0 so that standardized AST at T=0 has a mean of zero and 
standard deviation of 1. There were 56 sessions with 448 subjects (8 subjects per session). Each session consisted 
of two groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10  
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Table 3: Effect of Teaching on Learning (Sudoku) 
 

Outcome: Learning 
 
 

  (1) (2)   (3) (4) 
A. Overall           
    Teaching 0.113** 0.119**       
  (0.052) (0.052)       
B. Heterogeneity           

    Teaching for Top half       -0.018 -0.016 
        (0.017) (0.020) 
    Teaching for Bottom half       0.240*** 0.240*** 
        (0.096) (0.096) 
            

Controls No Yes   No Yes 
 

Notes: Each column reports the results from a different OLS regression. Columns (1) and (2) come from equation 
[2] with and without controls using the full sample. Columns (3) and (4) come from equation [3] with and without 
controls using full sample. Here, the control group is the no-teaching treatment. The estimated treatment effects 
and their standard errors reported in the table were computed using the lincom command in STATA. The 
coefficient estimates from equations [2] and [3] are reported in Appendix Table B1 for reference. Standard errors 
clustered at the group level are reported in parentheses. The outcome is learning, which is calculated by 
subtracting the average solving time (AST) in the Evaluation Block (T=1) from that in the Ability Block (T=0), so 
that higher values indicate improvement in solving time. Note that AST in the Evaluation Block (T=1) and in the 
Ability Block (T=0) is standardized by the mean and standard deviation of raw AST at T=0 before taking the 
difference so that standardized AST at T=0 has a mean of zero and standard deviation of 1. The bottom half 
consists of those subjects ranked 5–8 and the top half those subjects ranked 1–4 at T=0. All regressions—even 
those labeled as including “no” controls—include a dummy for the eight subjects who could not solve any 
Sudoku puzzles in T=0. The controls further include a dummy for being male, a dummy for being experienced 
with Sudoku, risk attitudes (0–9), and prosociality (0–5). See Table 2 for definitions of each control variable. See 
also Appendix Table B1 for coefficient estimates for all of the control variables. There were 56 sessions with 448 
subjects (8 subjects per session). Each session consisted of two groups (4 subjects per group), and thus there were 
112 groups. Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 4: Effects of Tracking on Learning 
in the No-teaching and Teaching Treatments (Sudoku) 

 

Outcome: Learning 
 

  
In the 

No-teaching  
Treatment  

In the 
Teaching 
Treatment 

 (1) (2)  (3) (4) 
A. Overall      

Tracked -0.039    -0.145*  
  (0.061)   (0.082)  

B. Heterogeneity      
Tracked for Top half  0.024    -0.032  

   (0.026)   (0.032) 

Tracked for Bottom half  -0.095    -0.283* 
   (0.108)   (0.154) 
       

Controls Yes Yes  Yes Yes 
 

Notes: The estimated treatment effects in Columns (1) and (3) come from equation [4], while the estimated 
treatment effects in Columns (2) and (4) come from equation [5]. The control treatment is the untracked treatment. 
The estimated treatment effects and their standard errors were computed using the lincom command in STATA. 
The coefficient estimates from equations [4] and [5] are reported in Appendix Table B3 for reference. Standard 
errors clustered at the group level are reported in parentheses. The outcome is learning, which is calculated by 
subtracting the average solving time (AST) in the Evaluation Block (T=1) from that in the Ability Block (T=0), so 
that higher values indicate improvement in solving time. Note that AST in the Evaluation Block (T=1) and in the 
Ability Block (T=0) is standardized by the mean and standard deviation of raw AST at T=0 before taking the 
difference so that standardized AST at T=0 has a mean of zero and standard deviation of 1. The bottom half 
consists of those subjects ranked 5–8 in the Ability Block (T=0). See Figure 2 for details of the procedure used to 
assign subjects to groups in the untracked and tracked treatments. The controls include a dummy for being male, a 
dummy for being experienced with Sudoku, risk attitudes (0–9), prosociality (0–5), and a dummy for the eight 
subjects who could not solve any Sudoku puzzles in the Ability Block (T=0). There were 24 no-teaching sessions 
with 192 subjects, and 32 teaching sessions with 256 subjects (8 subjects per session). Each session consisted of 
two groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 5: Effect of Tracking on Logged Learning, Robustness Checks (Sudoku) 
 

Outcome: Learning (logged) 
 

  
In the 

No-teaching  
Treatment  

In the 
Teaching 
Treatment 

 (1) (2)  (3) (4) 
A. Overall      

Tracked -0.025      -0.081**  
  (0.035)     (0.040)  

B. Heterogeneity      
Tracked for Top half  0.022      -0.021  

   (0.026)     (0.034) 

Tracked for Bottom half  -0.068      -0.152** 
   (0.060)     (0.068) 
       

Controls Yes Yes  Yes Yes 
 

Notes: The estimated treatment effects in Columns (1) and (3) come from equation [4], while the estimated 
treatment effects in Columns (2) and (4) come from equation [5]. The control treatment is the untracked treatment. 
The estimated treatment effects and their standard errors were computed using the lincom command in STATA. 
The coefficient estimates from equations [4] and [5] are reported in Appendix Table B4 for reference. Standard 
errors clustered at the group level are reported in parentheses. The outcome is logged learning, which is defined as 
the difference between logged average solving time (AST) in the Ability Block (T=0) and logged AST in the 
Evaluation Block (T=1). Note that learning is calculated by subtracting logged AST at T=1 from that at T=0, so 
that higher values indicate improvement in solving time. The controls include a dummy for being male, a dummy 
for being experienced with Sudoku, risk attitudes (0–9), prosociality (0–5), and a dummy for the eight subjects 
who could not solve any Sudoku puzzles in the Ability Block (T=0). The bottom half consists of those subjects 
ranked 5–8 in the Ability Block (T=0). There were 24 no-teaching sessions with 192 subjects, and 32 teaching 
sessions with 256 subjects. Each session consisted of two groups (4 subjects per group). Significance levels: *** 
p<0.01, ** p<0.05, * p<0.10  
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Table 6: Frequency of Teaching in the Tracked vs. Untracked Treatments (Sudoku) 
 

  

Untracked 

Tracked  Difference (2)–(1)  Difference (3)–(1) 

  Bottom 
Half 

Top  
Half  OLS Poisson 

Zero-
Inflated 
Poisson  OLS Poisson 

Zero-
Inflated 
Poisson 

  (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
Teaching 4.78 3.13 0.94  -1.66 -0.43*** -0.53***  -3.84** -1.63*** -1.00*** 
  [6.60] [4.76] [1.91]  (1.86) (0.16) (0.17)  (1.69) (0.27) (0.30) 
             
Vuong test of  
Zero-Inflated model 
vs. Standard Poisson 

     z-score = 1.94   z-score = 2.06 
     p-value = 0.0263   p-value = 0.0198 

# of Groups 32 16 16  48 48 48  48 48 48 
# of Sessions 16 16  32 32 32  32 32 32 
 

Notes: The unit of observation is a group. The sample is limited to the 32 teaching treatment sessions with 16 sessions each for the untracked and 
tracked treatments. In the untracked treatment, there are 32 groups (two groups per session), while in the tracked treatment there are 16 groups each 
for subjects in the bottom half (Group 2 in the tracked treatment in Figure 2) and for those in the top half (Group 1 in the tracked treatment in Figure 
2). Column (1) reports the mean number of teaching statements exhibited by groups in the untracked treatment, and Columns (2) and (3) report them 
for the tracked treatment for the bottom half group and the top half group, respectively. Standard deviations are reported in brackets. Columns (4)–(6) 
report the estimated difference between Columns (1) and (2) from OLS, Poisson and Zero-inflated Poisson (where the inflation equation includes just 
a dummy for tracked sessions) models, respectively, with standard errors in parentheses. Columns (7)–(9) report the corresponding estimated 
differences between Columns (1) and (3). A teaching statements is defined to be any utterance in which subjects are engaged in trying to teach each 
other how to do Sudoku such as “You can’t have a five there; there is already one in that column.” Reported below Columns (5)–(6) and (8)–(9) are 
z-scores and p-values for the Vuong test of the Zero-Inflated Poisson model against a standard Poisson; these tests support the use of the Zero-Inflated 
model.  Significance levels: *** p<0.01, ** p<0.05, * p<0.10 
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Table 7: Structure of the Experiment (Nonograms) 
2 2 2 Factorial Experimental Design 

 

  No-teaching  Teaching 

  Piece-rate Tournament  Piece-rate Tournament 

Untracked # Sessions 
# Subjects 

4 
32 

4 
32  4 

32 
4 
32 

Tracked # Sessions 
# Subjects 

4 
32 

4 
32  4 

32 
4 
32 

Notes: See Appendix C for the full instructions used in the experiment, which are identical to the instructions 
for Sudoku. As we show in Appendix A, our tournament incentive scheme (piece-rate vs. tournament) also 
turned out to have a negligible effect on behavior (either through main effects of the treatment or interactions 
with the other treatments) in the Nonogram experiment as well. As a result, our primary analysis pools data 
across incentive schemes and focuses on the effects of teaching, tracking, and their interaction—essentially 
reducing the study to a 2×2 factorial experimental design (in boldface in the table). 

 
Table 8: Effect of Teaching on Learning (Nonograms) 

 
 

Outcome: Learning 
 

  (1) (2)   (3) (4) 
A. Overall           
    Teaching 0.203*** 0.195***       
  (0.064) (0.064)       
B. Heterogeneity           

    Teaching for Top half       0.021 0.022 
        (0.022) (0.021) 
    Teaching for Bottom half       0.378*** 0.359*** 
        (0.121) (0.121) 
            

Controls No Yes   No Yes 
 

Notes: Each column reports the estimated treatment effects from a different OLS regression. Columns (1) and (2) 
come from equation [2] with and without controls using the full sample. Columns (3) and (4) come from equation 
[3] with and without controls using the full sample. The control treatment is the no-teaching treatment. The 
estimated treatment effects and their standard errors were computed using the lincom command in STATA. The 
coefficient estimates from equations [2] and [3] are reported in Appendix Table B7 for reference. Standard errors 
clustered at the group level are reported in parentheses. The outcome is learning, which is calculated by 
subtracting the average solving time (AST) in the Evaluation Block (T=1) from that in the Ability Block (T=0) so 
that higher values indicate improvement in solving time. Note that AST in the Evaluation Block (T=1) and in the 
Ability Block (T=0) is standardized by the mean and standard deviation of raw AST at T=0 before taking the 
difference so that standardized AST at T=0 has a mean of zero and standard deviation of 1. The bottom half 
consists of those subjects ranked 5–8 in T=0 and the top half consists of those subjects ranked 1–4. All 
regressions—including those labeled as including no controls—control for a dummy for the fifty subjects (19.4 
percent) who could not solve any Nonogram puzzles in T=0. The controls further include a dummy for being male, 
a dummy for being experienced with Nonograms, risk attitudes (0–9), and prosociality (0–5). See Table 2 for 
definitions of each control variable. There were 32 sessions with 256 subjects (8 subjects per session). Each 
session consisted of two groups (4 subjects per group). Significance levels: *** p<0.01, ** p<0.05, * p<0.10  
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Table 9: Effect of Tracking on Learning  
in the No-teaching vs. Teaching Treatment (Nonograms) 

 

Outcome: Learning 
 

  
In the 

No-teaching  
Treatment  

In the 
Teaching 
Treatment 

 (1) (2)  (3) (4) 
A. Overall      

Tracked 0.067     -0.063   
  (0.095)     (0.093)  

B. Heterogeneity      
Tracked for Top half  0.024     -0.063** 

   (0.044)     (0.031) 

Tracked for Bottom half  0.095      -0.081  
   (0.181)     (0.167) 
       

Controls Yes Yes  Yes Yes 
 

Notes: The estimated treatment effects in Columns (1) and (3) come from estimating equation [4] on the 
Nonograms sample, while the estimated treatment effects in Columns (2) and (4) come from equation [5]. The 
control treatment is the untracked treatment. The estimated treatment effects and their standard errors were 
computed using the lincom command in STATA. The coefficient estimates from equations [4] and [5] are reported 
in Appendix Table B8 for reference. Standard errors clustered at the group level are reported in parentheses. The 
outcome is learning, which is calculated by subtracting the average solving time (AST) in the Evaluation Block 
(T=1) from that in the Ability Block (T=0) so that higher values indicate improvement in solving time. Note that 
AST in the Evaluation Block (T=1) and in the Ability Block (T=0) is standardized by the mean and standard 
deviation of raw AST at T=0 before taking the difference so that standardized AST at T=0 has a mean of zero and 
standard deviation of 1. The bottom half consists of those subjects ranked 5–8 in the Ability Block (T=0). See 
Figure 2 for details of the procedure used to assign subjects to groups in the untracked and tracked treatments. 
The controls include a dummy for being male, a dummy for being experienced with Nonograms, risk attitudes (0–
9), prosociality (0–5), and a dummy for the fifty subjects (19.4 percent) who could not solve any Nonogram 
puzzles in the Ability Block (T=0). There were 16 sessions with 128 subjects for both the no-teaching and 
teaching treatments (8 subjects per session). Each session consisted of two groups (4 subjects per group). 
Significance levels: *** p<0.01, ** p<0.05, * p<0.10 




