
NBER WORKING PAPER SERIES

LIFE INSURANCE AND LIFE SETTLEMENT MARKETS WITH OVERCONFIDENT 
POLICYHOLDERS

Hanming Fang
Zenan Wu

Working Paper 23286
http://www.nber.org/papers/w23286

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2017

We would like to thank Douglas Bernheim, Yongmin Chen, Jiong Gong, Daniel Gottlieb, 
Michael Grubb, Glenn Harrison, Daniel Houser, Botond K szegi, Jianpei Li, Sherry Li, Jaimie 
Lien, Andrew Postlewaite and John Quah, as well as participants at Tsinghua Conference on 
Theoretical and Behavioral Economics (2015), UIBE IO and Competition Policy Workshop 
(2016), UNSW Superannuation Symposium (2016) for useful comments and discussions. Fang 
would also like to gratefully acknowledge the generous financial support from the National 
Science Foundation through Grant SES-0844845. Wu thanks School of Economics, Peking 
University for research support. All remaining errors are our own. The views expressed herein are 
those of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2017 by Hanming Fang and Zenan Wu. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Life Insurance and Life Settlement Markets with Overconfident Policyholders
Hanming Fang and Zenan Wu
NBER Working Paper No. 23286
March 2017
JEL No. D03,D86,G22,L11

ABSTRACT

We analyze how the life settlement market – the secondary market for life insurance – may affect 
consumer welfare in a dynamic equilibrium model of life insurance with one-sided commitment 
and overconfident policyholders. As in Daily et al. (2008) and Fang and Kung (2010), 
policyholders may lapse their life insurance policies when they lose their bequest motives; but in 
our model the policyholders may underestimate their probability of losing their bequest motive, 
or be overconfident about their future mortality risks. For the case of overconfidence with respect 
to bequest motives, we show that in the absence of life settlement overconfident consumers may 
buy “too much” reclassification risk insurance for later periods in the competitive equilibrium. In 
contrast, when consumers are overconfident about their future mortality rates in the sense that 
they put too high a subjective probability on the low-mortality state, the competitive equilibrium 
contract in the absence of life settlement exploits the consumer bias by offering them very high 
face amounts only in the low-mortality state. In both cases, life settlement market can impose a 
discipline on the extent to which overconfident consumers can be exploited by the primary 
insurers. We show that life settlement may increase the equilibrium consumer welfare of 
overconfident consumers when they are sufficiently vulnerable in the sense that they have a 
sufficiently large intertemporal elasticity of substitution of consumption.
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1 Introduction

Life insurance is a prevalent long-term contract for people to keep their dependents from eco-

nomic disaster when the policyholders die. Life insurance is a large and growing industry. According

to Life Insurance Marketing and Research Association International (LIMRA international), 70%

of U.S. households owned some type of life insurance in 2010. U.S. families purchased $2.8 trillion

of insurance coverage in 2013 and the total life insurance coverage in the US was $19.7 trillion

by the end of 2013. The average face amount of the individual life insurance policies purchased

increased from $81 thousand in 1993 to $165 thousand in 2013 at an average annual growth rate

of 3.56%.1

An important feature of the life insurance market is that policyholders lapse their policies

before the period of coverage and receive the cash surrender value (CSV) that is a substantially

small fraction (typically 3-5%) of the policy’s face value.2 Policyholders may lapse the contract if

they no longer need life insurance (e.g., loss of their bequest motives) or if they are pressed for

liquidity (e.g., due to a negative income shock, or a large unexpected medical expenditure shock).

Recently, the secondary market for life insurance – life settlement market – emerges and offers the

policyholders the option of selling their unwanted policy for more than the CSV. Fang and Kung

(2012) show that income shocks are relatively more important than bequest motive in explaining

lapsation when policyholders are young. As policyholders age, bequest motive shocks become more

important. Since the candidates for life settlements are “typically 65 or older” (see the reference

in Footnote 2), we will assume in this paper that the driver of the lapsation is the loss of bequest

motives.

Although the life settlement market is in its infancy, it draws attentions from the life insur-

ance firms who put intensive effort into lobbying to prohibit the securitization of life settlement

contracts.3 They argue that the life insurance contract is designed to take into consideration of

the fact that a fraction of policyholders lapse the contract without receiving the death benefit.

The existence of the settlement market forces the insurance firms to pay death benefits on more

policies than expected, which will lead to higher premiums for policyholders in the long run and

hurt consumers eventually. The life settlement industry has been working hard to justify its exis-

tence, emphasizing its role of enhancing liquidity to policyholders.4 It is interesting to note that

the life settlement industry has gained some success recently. For instance, in 2010, the General

Assembly in Kentucky passed a bill requiring insurers to inform policyholders who are considering

surrendering their policy that the settlement is a potential alternative.5

Should the life settlement industry be banned? To resolve this theoretically and empirically

1See American Council of Life Insurers (2014).
2See http://www.lisa.org/content/13/What-is-a-Life-Settlement.aspx/
3See Martin (2010) for detailed discussions of life insurance and life settlement market.
4As mentioned in Martin (2010): “In 2008, the executive of the life settlement industry’s national trade organiza-

tion testifies to the Florida Office of Insurance Regulation that the ‘secondary market for life insurance has brought
great benefits to consumers, unlocking the value of life insurance policies.’”

5Similar requirements exist in Maine, Oregon, Washington (See Martin, 2010) and U.K (See Januário and Naik,
2014).
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important question, it would be useful to understand the role of the life settlement market and its

impact on policyholders’ welfare. In this paper we extend the models of Daily et al. (2008) and Fang

and Kung (2010) to study the welfare implication of the life settlement market by assuming that

consumers are biased. Specifically, consumers may be overconfident about either the probability of

losing their bequest motives at the time they purchase the contract, or about their future mortality

risks.6 Daily et al. (2008) are aware of the importance of the investigation of the consequences

of consumer’s behavioral bias in life insurance market, as they stated: “In our model, all agents

are forward-looking and standard-expected-utility maximizers. We thus abstract from potential

violations of ‘rational’ behavior. Our view is that considerations such as regret or misperceptions

of probabilities may very well be relevant in this [life insurance] market.”

We show that, when life insurance policyholders exhibit overconfidence either of their bequest

motives or mortality risks, the presence of the settlement market provides them a channel to

correct their earlier mistakes and mitigate the loss due to their misperception. This new role of

the settlement market generates a potential welfare gain which is absent when consumers are fully

rational; and indeed we show that life settlement can potentially increase consumer welfare in

equilibrium. In contrast, Daily et al. (2008) and Fang and Kung (2010) show that, when consumers

have rational beliefs and when lapsation is due to loss of bequest motive, introducing life settlement

market always reduces consumer welfare in equilibrium. Thus our results contribute to the debate

over the potential welfare consequences of life settlement market.

This paper is related to the growing life insurance literature. In a seminal paper, Hendel and

Lizzeri (2003) use a two-period model to analyze the role of commitment on long-term life insurance

contract. In their model, risk-neutral life insurance firms compete to offer contracts to risk averse

consumers who are subject to mortality risk. Consumers’ health status may change over time

and thus face reclassification risk. Insurance firms are able to commit to contractual terms while

consumers can lapse the contract in the second period, lacking commitment power (i.e., one-sided

commitment). They prove that the equilibrium contract is front-loaded : consumers are offered a

contract with first period premium that is higher than actuarially fair in exchange for reclassification

risk in the second period. Daily et al. (2008) and Fang and Kung (2010) investigate this problem

further by introducing a settlement market and analyze its effect on the equilibrium contract and

consumer welfare. In their models, policyholders may lose bequest motive in the second period,

facilitating lapsation and the demand for the settlement market. Using a model similar to Hendel

and Lizzeri (2003), Fang and Kung (2010) show that the shape of the equilibrium contract is

fundamentally changed in the presence of the settlement market. Instead of flat premiums, a

contract with premium discounts is offered in the second period. They conclude that consumer

welfare is reduced in the presence of the settlement market. In recent independent research, Gottlieb

6Many studies document that people are unrealistically optimistic about future life events. For instance, Wein-
stein (1980) finds strong evidence of over-optimism in a lab experiment setting with 258 college students. Subjects
overwhelmingly predict themselves to be better than a median individual regarding positive events and below average
regarding negative events. Robb et al. (2004) also detects underestimation of risk among patients who participated in
cancer examination. They find that the self perceived risk is lower than the actual risk of colorectal cancer determined
by flexible sigmoidoscopy screening.
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and Smetters (2014) investigate the equilibrium life insurance contracts where lapsation is motivated

by a negative income shock. Similar to our paper, consumers are overconfident in the sense that

they place zero probability on the event of experiencing the liquidity shock. Unlike Hendel and

Lizzeri (2003), the equilibrium contract is front-loaded because front-loading makes the policy more

attractive to policyholders with misperception of the probability of lapsing the contract. They show

that the presence of the settlement market would increase consumer welfare if lapsation is due to

liquidity shock.

This paper also belongs to the strand of literature on behavioral contract theory.7 Most papers

assume consumers exhibit some type of behavioral bias and investigate how firms design contracts

accordingly. For instance, de la Rosa (2011) and Santos-Pinto (2008) study the incentive contract

in a principal-agent model of moral hazard when agent is overconfident. Fang and Moscarini (2005)

show that firms will have incentives to compress wages so as not to reveal its private information

about workers’ productivity in an environment where workers are overconfident about their ability

and ability and effort are complements in the production function. Grubb (2009) proposes a model

of contracting overconfident consumers in US cellular phone services market, and confirms evidence

of overconfidence. In the context of insurance market, Sandroni and Squintani (2007) modify the

textbook Rothschild-Stiglitz model to study the equilibrium contract by assuming that part of the

insurees are overconfident about their risk types. They find that when a significant fraction of in-

dividuals are overconfident, compulsory insurance serves as a transfer of income between different

types of agents. Their results have much different implications than Rothschild and Stiglitz (1976)

on government intervention in insurance market. Spinnewijn (2015) studies the optimal unemploy-

ment insurance contract under perfect competition where the insuree has misperception on the

probability of finding a job. Gottlieb (2008) considers the impact of non-exclusivity in a compet-

itive market when firms offer contracts to compete for the business of present-biased consumers.

He shows that non-exclusive contracts would invalidate the type of profit-maximizing contracts

proposed in Dellavigna and Malmendier (2006) for leisure goods — goods with immediate rewards

and deferred costs, e.g. tobacco, alcohol, and unhealthy food — where present-biased consumers

would receive a lump-sum transfer and pay a usage price higher than the marginal cost. In some

sense, the non-exclusivity of the contracts in Gottlieb (2008) plays a role similar to the secondary

market in our setting. Our paper contributes to this strand of literature by pointing out the role of

a secondary market in alleviating the negative consequences caused by consumers’ behavioral bias.

The remainder of the paper is organized as follows. In Section 2, we present the baseline model

of dynamic life insurance without the life settlement market when policyholders underestimate the

probability of losing their bequest motive, and characterize the set of equilibrium contracts. In

Section 3, we incorporate the settlement market into the baseline model. In Section 4, we study

the welfare consequences of introducing the settlement market, and state one of our main results

(Proposition 7). In Section 5, we consider the situation where policyholders exhibit overconfidence

of future mortality risk, and show that our results derived in Section 4 are robust (Proposition 8).

7See Kőszegi (2014) for a comprehensive survey on this topic, and also Grubb (2015) for a survey of the literature
on overconfident consumers in the marketplace.
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In Section 6, we summarize our main findings and suggest directions for future research. All proofs

are presented in the Appendix.

2 The Baseline Model without the Settlement Market

In this section, we propose a model of dynamic life insurance slightly modified from Hendel and

Lizzeri (2003), Daily et al. (2008) and Fang and Kung (2010), and introduce consumer bias on the

prediction of the probability of losing their bequest motives. We will discuss overconfidence of the

future mortality risks in Section 5.

2.1 The Model

Consider an environment with a continuum of consumers (potential policyholders) who may

live up to two periods. The life insurance market is perfectly competitive.

Income, health and preference. The policyholder receives an income of y − g in the first

period and y + g in the second period, where g ∈ [0, y) is a measure of income growth. In the

first period, the policyholder has a death probability of p1 ∈ (0, 1), which is common knowledge

between policyholders and insurance firms. The death probability is interpreted as the health

status of the policyholder. In the second period, the mortality risk p2 ∈ [0, 1] is randomly drawn

from a distribution with continuous density φ(·) and corresponding CDF Φ(·). Health status p2 is

not known in the first period when the policyholder purchases the insurance and is symmetrically

learned by the insurance firms and the policyholder at the beginning of the second period.

A policyholder has two potential sources of utility. If the policyholder is alive and consumes

c ≥ 0, he receives utility u (c) from his own consumption; if the policyholder dies, then he receives

utility v(c) from his dependent’s consumption c, provided that the policyholder retains his bequest

motive at the time of his death. We assume that both u(·) and v(·) are strictly increasing, twice

differentiable and strictly concave. Furthermore, we assume that u(·) and v(·) satisfy the Inada

conditions: limc→0 u
′(c) =∞, limc→0 v

′(c) =∞ and limc→∞ v
′(c) = 0.

Bequest motives and overconfidence. A policyholder does not lose his bequest motive in the

first period. However, the policyholder may lose his bequest motive with probability q ∈ (0, 1) at

the beginning of period 2. If the policyholder loses his bequest motive, then he no longer derives

utility from his dependent’s consumption, in which case he receives some constant utility normalized

to zero if he dies.

The policyholder believes his probability of losing bequest motive is q̃ ∈ [0, q]. When q̃ = q, the

policyholder is rational and the model degenerates to Fang and Kung (2010). When q̃ < q, the

policyholder exhibits overconfidence in the sense that he underestimates the probability of losing

his bequest motive. Both q̃ and q are assumed to be common knowledge.
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For the ease of our exposition, we will denote

∆ ≡ q − q̃
q

(1)

as the degree of the consumer’s overconfidence. In particular, when ∆ = 0, policyholder is fully

rational and forms correct belief about q. When ∆ = 1, a policyholder is extremely overconfident

and never expects himself to lose bequest motive in the second period. When there is a continuum

of consumers, the variable ∆ ∈ [0, 1] also indicates the fraction of policyholders that lose bequest

motives unexpectedly in period 2.

Timing, commitment and contracts. At the beginning of the first period, the consumer learns

his period-1 health status p1 and then chooses to purchase a long-term life insurance contract. As

in Hendel and Lizzeri (2003), a long-term insurance contract is in the form of:8

〈(Q1, F1), (Q2(p2), F2(p2)) : p2 ∈ [0, 1]〉, (2)

where 〈Q1, F1〉 specifies a premium and face value for the first period, and 〈Q2(p2), F2(p2)〉 specifies

the corresponding premium and face value for each health status p2 ∈ [0, 1] in the second period.

Note that the second period premium and face value are state dependent.

At the end of the first period, with probability p1, the policyholder dies and his dependents

receives the face value F1. With the remaining probability, the policyholder continues to period 2

and observes, as does the insurance company, his period-2 health status p2. We assume one-sided

commitment by the insurance firm, that is the insurance firm can commit to future premiums and

face values specified in the long-term contract. However, the policyholder can choose to continue

with the long-term contract purchased in the first period, but he is also free to terminate the long-

term contract purchased in period 1 and purchase a spot contract from the perfectly competitive

spot market if he desires. When we later introduce life settlement market, he can also sell the

long-term contract in the secondary market.

2.2 Equilibrium Contracts

We first characterize the equilibrium contract without the settlement market. The key here is

to characterize how the competitive insurers will design their dynamic long-term contracts so as to

most appeal to the overconfident consumers. The equilibrium long-term contract 〈(Q1, F1), (Q2(p2),

8The contract terms should all be indexed by (q, q̃) or (q,∆). We ignore this for expositional ease.
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F2(p2)) : p2 ∈ [0, 1]〉 solves:9

max
[
u(y − g −Q1) + p1v(F1)

]
(3)

+ (1− p1)

∫ 1

0

{
(1− q̃)

[
u(y + g −Q2(p2)) + p2v(F2(p2))

]
+q̃u(y + g)

}
dΦ(p2)

s.t. (Q1 − p1F1) + (1− p1)(1− q)
∫ 1

0

[
Q2(p2)− p2F2 (p2)

]
dΦ(p2) = 0, (4)

Q2(p2)− p2F2(p2) ≤ 0, for all p2 ∈ [0, 1] , (5)

Q2(p2) ≥ 0, for all p2 ∈ [0, 1] . (6)

Note that the objective function (3) in the above maximization problem is the policyholders’ ex-

pected perceived utility using the subjective belief q̃ about losing bequest motive, instead of the

utility based on the objective probability q of losing bequest motive.10 Constraint (4) is the zero-

profit condition that captures the competition in the primary market. It is important to note that

in (4), the insurance company uses the objective probability q of the policyholder losing bequest

motives in evaluating the second-period expected profit. Constraint (5) is the no-lapsation condi-

tion for policyholders whose bequest motives remain in period 2. The constraint (5) is important

because the consumer is not committed to continue with the long-term contract, and he will not

terminate the contract only if staying with the long-term contract is preferred to purchasing a

spot contract. The intuition for why (5) ensures no lapsation for those with bequest motives is as

follows.11 For any long-term contract as specified by (2), p2F2(p2) −Q2(p2) is the actuarial value

of the second-period contract in health state p2. Due to one-sided commitment, the policyholder

can opt for a spot contract in the second period. Since the spot market is perfectly competitive,

the actuarial value of the spot contract must be zero. Thus in order to prevent the policyholder

from lapsing the long-term contract and substituting it with a spot contract, the actuarial value

of the second-period contract must be non-negative for all p2, i.e., p2F2(p2) − Q2(p2) ≥ 0. Fi-

nally, constraint (6) simply states that the second period premium for any health status can not

be negative.

Remark 1 The non-negativity constraint for Q1 and F1 are ignored. The non-negativity of F1

never binds due to the Inada condition on v (·); Q1 will be strictly positive because constraints (5)

and (4) require that Q1 − p1F1 must be non-negative.

Remark 2 The non-negativity constraints of the period-2 face values F2(p2) are ignored because

they will never bind due to the Inada condition on v(·).
9The maximization problem (3) is similar to that of Fang and Kung (2010, p. 6) with two main differences: first,

the perceived probability q̃ of losing bequest motives is used in the objective function of the consumers; second, the
non-negative constraints for second-period premiums (6) may be binding in this environment in contrast to the case
when q̃ = q, as we will show below in Lemma 4.

10Thus, the perceived expected utility in (3) is the decision utility in the terminology of Kahneman et al. (1997).
As we will explain later, policyholders’ expected utility according to the correct, or objective, probability of losing
bequest motive q, is used when we evaluate the consumer welfare, corresponding to the notion of experienced utility
in Kahneman et al. (1997).

11For a formal argument of constraint (5), see Hendel and Lizzeri (2003).
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Remark 3 The set of feasible contracts defined by the constraints (4)-(6) does not depend on

consumer’s subject belief q̃.

The first order conditions for problem (3) with respect to Q1, F1, Q2(p2) F2(p2) yield:

u′(y − g −Q1) = µ, (7a)

v′(F1) = µ, (7b)

(1− q̃)u′(y + g −Q2(p2)) = (1− q)µ+
λ(p2) + γ(p2)

(1− p1)φ(p2)
, for all p2 ∈ [0, 1] , (7c)

(1− q̃)v′(F2(p2)) = (1− q)µ+
λ(p2)

(1− p1)φ(p2)
, for all p2 ∈ [0, 1] , (7d)

where µ, λ(p2) and γ(p2) are the Lagrange multipliers for constraint (4), (5) and (6); moreover,

µ > 0, λ(p2) ≤ 0 and γ(p2) ≥ 0 all need to satisfy the complementary slackness conditions:

λ(p2)[Q2(p2)− p2F2(p2)] = 0, for all p2 ∈ [0, 1] , (8a)

γ(p2)Q2(p2) = 0, for all p2 ∈ [0, 1] . (8b)

The first order conditions (7a) and (7b) imply that:

u′ (y − g −Q1) = v′ (F1) . (9)

In equilibrium in period 1, the marginal utility of policyholder’s consumption is equal to the

marginal utility of his dependent’s consumption; this is referred to as the full-event first period

insurance in Hendel and Lizzeri (2003) and Fang and Kung (2010). Analogously, it would also be

useful to define the fair premium and face amount for the full-event second period insurance in

health state p2 ∈ [0, 1], which we denote by QFI2 (p2) and FFI2 (p2) respectively, as the solution to

the following pair of equations:

u′(y + g −QFI2 (p2)) = v′(FFI2 (p2)), (10a)

QFI2 (p2)− p2F
FI
2 (p2) = 0. (10b)

This is indeed the equilibrium spot contract with health state p2 in period 2.12 However, it should

be clear, from the first order conditions (7c)-(7d), that whether analogous full-event insurance will

be achieved in equilibrium in period 2 will depend on whether constraint (6) is binding in health

state p2: if constraint (6) is non-binding, then we know that γ (p2) = 0 and then (7c)-(7d) imply

(11) below that defines full-event insurance.

To characterize the equilibrium contracts, we follow Fang and Kung (2010) and divide the

support of the second period health states p2 into two subsets B and NB: for p2 ∈ B, the no-

12The second period spot contract 〈Q2(p2), F2(p2)〉 solves maxu(y+ g−Q2(p2)) + p2v(F2(p2)) subject to Q2(p2)−
p2F2(p2) = 0, which leads to the same conditions as in (10).
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lapsation constraint (5) binds; for p2 ∈ NB, the no-lapsation constraint (5) does not bind.

Lemma 1 If p2 ∈ B and p′2 ∈ NB, then p2 < p′2, Q2(p2) ≤ Q2(p′2) and F2(p2) ≥ F2(p′2).

The proof is similar to that of Lemma 1 in Fang and Kung (2010). Lemma 1 indicates that

there exists a threshold p∗2 such that p2 ∈ B if p2 < p∗2 and p2 ∈ NB if p2 > p∗2.

Lemma 2 If there exists a health state p̃2 6= 0 such that constraint (6) is binding, i.e., Q2(p̃2) = 0,

then it must be the case that (6) is binding, namely, Q2(p2) = 0, for all p2 ∈ [0, 1].

Lemma 2 narrows down the set of period-2 equilibrium premiums to one of two possibilities:

(i) Q2(p2) > 0 for all p2 ∈ (0, 1]; or, (ii) Q2(p2) = 0 for all p2 ∈ (0, 1].

Under case (i), the constraint (6) is not binding, thus γ(p2) = 0 for all p2 ∈ (0, 1]. Hence, the

first order conditions (7c) and (7d) yield that, for all p2 ∈ (0, 1],

u′
(
y + g −Q2(p2)

)
= v′(F2(p2)); (11)

therefore, the policyholder obtains full-event insurance in period 2 for all health states p2.

Under case (ii), Q2(p2) = 0 implies that the constraint (5) is not binding, thus λ(p2) = 0 for all

p2 ∈ (0, 1]. Combining the first order conditions (7b) and (7d), we must have:

(1− q̃)v′(F2(p2)) = (1− q)v′(F1) for all p2 ∈ (0, 1], (12)

which implies that under case (ii), F2 (p2) must be a constant for all p2 ∈ (0, 1].

Now we consider the implications of Lemmas 1-2. As we mentioned, Lemma 1 implies that

there exists a threshold death probability p∗2 in period 2 that divides the set B from NB. There

are three possibilities: (i) p∗2 = 1; (ii) p∗2 = 0; (iii) p∗2 ∈ (0, 1) .

First, consider the case of p∗2 = 1. This implies that the no-lapsation condition (5) binds for all

period-2 health states, i.e., Q2(p2)− p2F2(p2) = 0 for all p2 ∈ (0, 1]. Since the Inada condition on

v(·) implies that, in equilibrium, F2(p2) > 0 for all p2 ∈ (0, 1]. Therefore Q2(p2) = p2F2(p2) > 0

for all p2 ∈ (0, 1], which in turn implies that condition (11) also holds for all p2 ∈ (0, 1]. Thus, in

this case, the equilibrium period-2 contract must correspond to the fair premium and face amount

full-event spot insurance contracts defined by (10a)-(10b).

Second, consider the case of p∗2 = 0. We first argue that p∗2 = 0 implies that:

Q2(p2) = 0 for all p2 ∈ (0, 1]. (13)

To see this, suppose to the contrary that Q2 (p2) > 0 for some p2 ∈ (0, 1]; then by Lemma 2, it

must be that Q2(p2) > 0 for all p2 ∈ (0, 1]. Hence (11) holds. Moreover, by Lemma 1, p∗2 = 0

implies that p2 ∈ NB for all p2 ∈ (0, 1], hence λ (p2) = 0 for all p2 ∈ (0, 1]. Thus, the first order

conditions (7) imply that

u′(y + g −Q2(p2)) = v′
(
F2(p2)

)
=

1− q
1− q̃

u′ (y − g −Q1) for all p2 ∈ (0, 1].
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Thus, F2(p2) and Q2(p2) must be constant for all p2 ∈ (0, 1]. However, when p2 is sufficiently

small, Q2(p2)− p2F2(p2) must be strictly positive, contradicting (5). Therefore, if p∗2 = 0, then the

equilibrium contracts is fully characterized by (4), (9), (12) and (13).

Third, consider the case of p∗2 ∈ (0, 1) . If p2 < p∗2, the no-lapsation constraint (5) binds,

which implies that constraint (6) is not binding, and hence γ(p2) = 0.13 Thus, (7c) and (7d)

implies u′(y + g − Q2(p2)) = v′(F2(p2)) for p2 < p∗2. This, together with the binding constraint

(5), implies that 〈Q2(p2), F2(p2)〉 = 〈QFI2 (p2), FFI2 (p2)〉 for all p2 < p∗2 where 〈QFI2 (p2), FFI2 (p2)〉 is

characterized by (10). If p2 > p∗2, then p2 ∈ NB, hence λ(p2) = 0. Thus, the first order condition

(7d) implies that F2(p2) must be a constant. Moreover, from the discussion above for the case

when p2 < p∗2, we know that Q2(p2) > 0 if p2 < p∗2, hence Lemma 2 implies that γ(p2) = 0

for all p2 ∈ (0, 1]. This implies that u′(y + g − Q2(p2)) = v′(F2(p2)) for all p2 ∈ (0, 1]. Since

F2 (p2) is a constant for p2 > p∗2, it must be that Q2 (p2) is a constant for p2 > p∗2 as well and

moreover, the premiums are front-loaded in the sense that Q2(p2) < QFI2 (p2) if p2 > p∗2. That is,

the insurance firms charge the policyholders a level period 2 premium for health states p2 > p∗2
below the corresponding fair premium, so as to insure the policyholders against reclassification risk.

Next, we characterize the equilibrium contract at p2 = p∗2:

Lemma 3 Suppose p∗2 ∈ (0, 1), then the equilibrium contract must satisfy the following at p2 = p∗2:

Q2(p∗2) = QFI2 (p∗2) (14)

(1− q̃)u′(y + g −QFI2 (p∗2)) = (1− q)u′(y − g −Q1). (15)

The proof of Lemma 3 replicates that of Lemma 2 in Fang and Kung (2010) and is omitted. To

summarize, when p∗2 ∈ (0, 1) the equilibrium period-2 premiums Q2(p2) must satisfy

Q2(p2) =

{
QFI2 (p2) if p2 ≤ p∗2
QFI2 (p∗2) if p2 > p∗2,

(16)

where QFI2 (p2) is uniquely determined by (10). The equilibrium long-term contract in this case is

fully characterized by (4), (9), (11) and (16).

Equation (15) also provides an explicit unique characterization for p∗2 provided that p∗2 lies

strictly in (0, 1) since QFI2 (·) as defined by (10) is monotonically increasing. From Equation (15),

it is clear that when q is sufficiently close to 1 and q̃ is sufficiently close to 0, the left hand side of

Equation (15) will be higher than the right hand side even if QFI2 (p∗2) is 0. When this occurs, p∗2
will be 0. The following lemma formalizes this result:

Lemma 4 There exists a threshold q ∈ (0, 1) such that, for each q ≥ q there exists a threshold

∆̄(q) ∈ (0, 1) such that p∗2 = 0 if and only if q ≥ q and ∆ > ∆̄(q).

13Because F2(p2) > 0 by the Inada condition on v(·), it follows immediately that Q2(p2) = p2F2(p2) > 0 for
p2 ∈ (0, p∗2).
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The intuition for Lemma 4 is as follows. Since the insurance company only needs to pay out

death benefit in period 2 if the policyholder retains his bequest motives, which occurs with prob-

ability 1 − q, the higher the q is, the lower the cost for the insurance company to provide the

policyholder reclassification risk insurance in period 2. Indeed the competitive market ensures that

in equilibrium firms will be pushing p∗2 lower so that more states have the level premiums. Impor-

tantly, if consumers are overconfident, then they subjectively value the period-2 reclassification risk

insurance more than the objective cost for the firms to offer such insurance, thus creating a “wedge.”

Competitive pressure among the insurance firms to attract the consumers in the first period will

force the insurance firms to exploit this wedge, thus pushing firms to offer more reclassification

insurance in period 2, i.e., further pushing p∗2 lower; of course, in order to break even, the firms will

raise the period-1 premium. When these two effects are strong enough (i.e. for sufficiently high q

and ∆), contracts with zero period-2 premiums can emerge in equilibrium.

The above discussions are summarized below:

Proposition 1 (Equilibrium Contracts without Life Settlement.) The equilibrium contracts

in the absence of the life settlement market satisfy the following properties:

1. All policyholders receive full-event insurance in period 1.

2. There is a period-2 threshold health state p∗2 ∈ [0, 1] such that p2 ∈ B if p2 < p∗2 and p2 ∈ NB
if p2 > p∗2.

3. (a) If p∗2 = 0, all policyholders lose full-event insurance in period 2. The set of equilibrium

contracts solves (4), (9), (12) and (13).

(b) If 0 < p∗2 < 1, all policyholders receive full-event insurance in period 2. The set of

equilibrium contracts solves (4), (9), (11) and (16).

(c) If p∗2 = 1, the equilibrium contract coincides with spot contracts.

4. When q and ∆ are sufficiently large, p∗2 = 0. Policyholders are fully insured against reclassi-

fication risk, receiving zero premiums in period 2 for all health states.

The wedge between the policyholder’s subjective value of the period 2 reclassification risk in-

surance and the objective cost for the firms of offering such insurance is the key for the wel-

fare effects of life settlement we will describe in Section 4. Note that this wedge is amplified as

the consumers become more overconfident. The next result illustrates how the equilibrium con-

tracts are affected by consumers’ increasing overconfidence. Let us fix the objective probability

of losing bequest motive q ∈ (0, 1) . Consider two levels of subjective beliefs q̃ and ̂̃q such that

∆̂ ≡
(̂̃q − q) /q < ∆ ≡ (q̃ − q) /q. Let 〈Q̂1, F̂1, Q̂2 (p2) , F̂2 (p2)〉 and 〈Q1, F1, Q2 (p2) , F2 (p2)〉 be

the equilibrium long-term contracts under ∆̂ and ∆ respectively, and let p̂∗2 and p∗2 be the threshold

probabilities characterized in Lemma 1 respectively under ∆̂ and ∆. We have the following result:

Proposition 2 (Higher Overconfidence Exacerbates Front-Loading.) Fix q ∈ (0, 1) . Sup-

pose ∆̂ < ∆. If 0 < p̂∗2 < 1, then F̂1 > F1, Q̂1 < Q1 and p̂∗2 > p∗2.

10
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Figure 1: Equilibrium Period-2 Premium Profiles without the Settlement Market under Different
Levels of Consumer Overconfidence: ∆ > ∆̂.

Proposition 2 shows that, when the level of policyholders’ overconfidence increases from ∆̂ to

∆, a higher degree of reclassification risk insurance (i.e., p∗2 < p̂∗2) is offered in the second period

as Figure 1 depicts. The intuition is as follows. As policyholders become more overconfident, they

place more weight on the expected utility from the set of period-2 contracts and prefer a more

actuarially favorable period-2 contract terms. To maximize the perceived expected utility of the

policyholders, the life insurance firms respond by lowering the period-2 premiums and providing

a higher degree of reclassification risk in the second period, which implies the insurance firms will

suffer a greater loss in period 2. This loss is compensated by a more front-loading contract in

the first period in equilibrium: first period premium is higher, and first period death benefit is

lower, under ∆ than under ∆̂, namely, F1 < F̂1 and Q1 > Q̂1. This argument is reminiscent of

Gottlieb and Smetters (2014): higher overconfidence leads to more front-loading in the equilibrium

life insurance contract.

The issue, however, is that the policyholders’ experienced utility from the equilibrium contract

is not the same as the perceived expected utility when they make their life insurance purchase

decisions. Following the literature, we use the consumer’s experienced utility with the objective

probability of losing bequest motives to evaluate the consumer welfare; that is, if a consumer, who

has an objective probability of q of losing bequest motives in the second period, purchases a generic

long-term contract C ≡ 〈(Q1, F1), (Q2(p2), F2(p2)) : p2 ∈ [0, 1]〉, then his welfare from the contract

is:

W : =
[
u(y − g −Q1) + p1v(F1)

]
(17)

+(1− p1)

∫ 1

0

{
(1− q)

[
u(y + g −Q2(p2))) + p2v(F2(p2))

]
+qu(y + g)

}
dΦ(p2).
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Note that in expression (17), the objective probability q enters the calculation, while in the objective

function (3) in the optimization problem of the competitive insurers, it is q̃ that enters the calcula-

tions. Now we can define the consumer’s equilibrium welfare from market environment (q,∆) simply

as W evaluated at the equilibrium contract 〈(Q1 (q,∆) , F1 (q,∆)), (Q2(p2; q,∆), F2(p2; q,∆)) : p2 ∈
[0, 1]〉 that solves Problem (3):14

Definition 1 The consumer equilibrium welfare in the absence of settlement market, W (q,∆), is

defined by:

W (q,∆) := [u(y − g −Q1 (q,∆)) + p1v(F1 (q,∆))] (18)

+ (1− p1)

∫ 1

0

{
(1− q)

[
u(y + g −Q2(p2; q,∆))) + p2v(F2(p2; q,∆))

]
+qu(y + g)

}
dΦ(p2).

Since expression (17) coincides with the objective function (3) in the optimization problem of

the competitive insurers, and the feasible set does not depend on ∆ as pointed out in Remark

3, when consumers are unbiased, i.e. when ∆ = 0, it immediately follows that the contract that

maximizes (17) and the equilibrium contracts proposed by the life insurance firms coincide. More

generally, the following result shows that higher overconfidence leads to lower equilibrium consumer

welfare.

Proposition 3 (Higher Overconfidence Leads to Lower Equilibrium Consumer Welfare.)

Fix q ∈ (0, 1). W (q,∆) is weakly decreasing in ∆.

When consumers are more overconfident, they are more biased in their belief about the prob-

ability of losing bequest motive. As stated in Proposition 2, competitive insurers will cater to

the consumers’ more biased beliefs by offering more front-loading contracts (higher first period

premium, lower first period coverage) in exchange for the more risk reclassification insurance in

period 2 which is more subjectively valued if consumers have more biased beliefs. Such catering is

effective to attract the consumers in the first period, but the consumers will come to regret, albeit

too late, that the risk reclassification insurance offered in the long-term contract is not as valuable

as he initially thought, once he observes that his objective probability of losing bequest motive q

is higher than what he initially thought. A higher behavioral bias leads to more deviation from

the socially optimal contract. Thus, consumer welfare is decreasing in the level of policyholders’

overconfidence.

Notice that in the baseline model, when the consumers realize that they have purchased too

much reclassification insurance in the second period, it is too late! They realize that they have

paid too high a first period premium for the period-2 risk reclassification risk insurance they no

longer value as high, but they do not have any recourses. In the next section, we argue that the life

settlement market can precisely serve as a recourse for the consumers in the second period when

they realize the mistakes due to their overconfidence, and this very presence of the recourse will

provide a discipline on the competitive insurers in their equilibrium contract.

14Here we highlight the fact that the equilibrium contract depends on (q,∆) in our notation.
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3 Introducing the Life Settlement Market

We now introduce the life settlement market at the beginning of period 2 to the baseline model.

After the policyholder learns of his period-2 health status p2, and whether his bequest motive

remains, he has the option to sell the contracts to the settlement firms prior to the resolution of

his mortality risk. If the policyholder loses his bequest motive in period 2, he now has a better

option than just lapsing his contract: he can sell his contract to the settlement market, and receive

a fraction β ∈ [0, 1) of the actuarial value of the contract. The actuarial value of a life insurance

contract is the difference between the expected death benefit from the contract and the premium;

specifically, in health state p2, the actuarial value of the contract is simply p2F2 (p2)−Q2 (p2) . If a

policyholder decides to sell his insurance to the settlement firm, the settlement firm will continue

to pay the second period premiums Q2 (p2) for policyholders, and in return, the life settlement firm

becomes the beneficiary of the policy and collect its death benefits if the policyholder die at the

end of period 2.

3.1 Equilibrium Contracts with the Settlement Market

The presence of the settlement market introduces two main changes to the primary insurers’

problem. The first change is on the consumer’s expected utility function: the consumer now expects

to receive a fraction β of the actuarial value of the contract by selling it to the settlement firm

in the event he loses bequest motive. The second change is on the insurer’s zero-profit condition:

because a policyholder without bequest motive in the second period will always sell the policy to

the settlement firm instead of lapsing it, the life insurance firm will always have to pay the death

benefits. We will show below that these changes will fundamentally alter the way insurance firms

provide the long-term insurance contracts in equilibrium.

The equilibrium long-term contract in the presence of the life settlement market, which we

denote by 〈(Q1s, F1s), (Q2s(p2), F2s(p2)) : p2 ∈ [0, 1]〉, where we use subscript s to indicate “settle-

ment,” solves:

max
[
u(y − g −Q1s) + p1v(F1s)

]
(19)

+ (1− p1)

∫ 1

0

(1− q̃)

[
u(y + g −Q2s(p2))

+p2v(F2s(p2))

]
+q̃u(y + g + βV2s(p2))

 dΦ(p2)

s.t. (Q1s − p1F1s) + (1− p1)

∫ 1

0
[Q2s(p2)− p2F2s(p2)]dΦ(p2) = 0, (20)

Q2s(p2)− p2F2s(p2) ≤ 0 for all p2 ∈ [0, 1], (21)

Q2s(p2) ≥ 0 for all p2 ∈ [0, 1], (22)

where

V2s(p2) ≡ p2F2s(p2)−Q2s(p2) (23)

is the actuarial value of the period-2 contract with health status p2. Note that from the no-lapsation
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condition (21), V2s(p2) is always non-negative.

Remark 4 Note that in Problem (19), the objective probability of losing bequest motives, q, enters

into neither the zero-profit condition (20) nor the first order conditions (24). Hence, fixing q̃, the

set of equilibrium contracts is independent of q. This is because life insurance firms have to pay

the face amount when policyholders die in period 2 no matter they lose bequest motives or not.

Therefore the life insurance firms do not take into account the actual probability of losing bequest

motive when they maximize policyholders’ perceived utility.

Let µs, λs(p2) and γs(p2) denote the Lagrange multipliers for constraint (20), (21) and (22)

respectively, the first order conditions for Problem (19) with respect to Q1s, F1s, Q2s(p2) F2s(p2)

are:

u′(y − g −Q1s) = µs, (24a)

v′(F1s) = µs, (24b)

(1− q̃)u′(y + g −Q2s(p2)) + βq̃u′(y + g + βV2s(p2)) = µs +
λs(p2) + γs(p2)

(1− p1)φs(p2)
, (24c)

(1− q̃)v′(F2s(p2)) + βq̃u′(y + g + βV2s(p2)) = µs +
λs(p2)

(1− p1)φs(p2)
. (24d)

Note that the second term βq̃u′(y + g + βV2s(p2)) in the left hand sides of (24c) and (24d) results

from the cash payment the policyholder receives from the settlement firm.

Our first result shows that the presence of life settlement market has a potential disciplinary

effect on how much the life insurers may exploit policyholders’ overconfidence:

Lemma 5 For all (q,∆) ∈ [0, 1)× [0, 1], the solution to Problem (19) must satisfy that Q2s(p2) > 0

for all p2 ∈ (0, 1].

Lemma 5 states that the non-negativity condition of Q2s(p2) never binds. Recall from Lemma

4 that, when there is no settlement market, it is possible that the life insurers will offer contracts

with zero period-2 premiums in equilibrium to maximally exploit the wedge for the overconfident

consumers between their subjective value of period-2 reclassification insurance and the objective

cost to the insurers to offer such insurance, when q and ∆ are sufficiently large. However, such

a pricing strategy will not emerge in equilibrium in the presence of the settlement market. The

reason can be seen from (20): when there is a settlement market, the objective cost of providing

zero-premium period-2 contracts does not decrease in q; in fact, it is independent of q! Hence, the

wedge does not increase with q. The presence of the settlement market can be seen as providing a

disciplinary effect on the extent to which the life insurers can exploit overconfident consumers: if

they are too aggressive in offering risk reclassification insurance and charging highly front-loaded the

premiums, they will lose money in the second period in paying the death benefits to the settlement

firms.

Lemma 5 implies immediately that γ(p2) = 0 for all p2 ∈ (0, 1]. Thus the first order conditions

(24) imply that in equilibrium 〈(Q1s, F1s), (Q2s(p2), F2s(p2)) : p2 ∈ [0, 1]〉 must satisfy the following
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full-event insurance conditions:

u′(y − g −Q1s) = v′(F1s) (25)

u′(y + g −Q2s(p2)) = v′(F2s(p2)) for all p2 ∈ (0, 1]; (26)

that is, all policyholders will obtain full-event insurance in both period 1 and all health states in

period 2 when there is settlement market.

Lemma 5 also implies that the characterization of the equilibrium contracts in our setting is

identical to that in Fang and Kung (2010) once we replace the variable q in Fang and Kung (2010)

with q̃.15 We can partition the period-2 health states into two subsets Bs and NBs depending on

whether the no-lapsation constraint (21) binds. The following lemma is identical to Lemma 3 in

Fang and Kung (2010):

Lemma 6 If p2 ∈ Bs and p′2 ∈ NBs, then p2 < p′2 and Q2(p2) < Q2(p′2).

Lemma 6 implies that there is a threshold p∗2s such that p2 ∈ Bs if p2 < p∗2s and p2 ∈ NBs if

p2 > p∗2s. If p∗2s = 1, then it is obvious that the equilibrium period-2 contracts is the set of spot

contracts. The following lemma characterizes the period-2 premiums Q2s(p2) as a function of p∗2s
if p∗2s ∈ (0, 1).

Lemma 7 If p∗2s ∈ (0, 1), the equilibrium period 2 premiums Q2s(p2) satisfy:

1. for p2 ≤ p∗2s, Q2s(p2) = QFI2 (p2);

2. for p2 > p∗2s, Q2s(p2) solves:

(1− q̃)u′(y + g −Q2s(p2)) + βq̃u′(y + g + βV2s(p2))

= (1− q̃)u′(y + g −QFI2 (p∗2s)) + βq̃u′(y + g). (27)

By Lemma 7, the set of period-2 contracts is fully characterized by p∗2s alone. Moreover, it can

be proved from (27) that both Q2s(p2) and V2s(p2) are strictly increasing in p2.16 From the first

order conditions (24a), (24c) and Lemma 7, the period-1 premium Q1s is the solution to:

u′(y − g −Q1s) = (1− q̃)u′(y + g −QFI2 (p∗2s)) + βq̃u′(y + g). (28)

To characterize the equilibrium insurance contract, it remains to pin down p∗2s, which is determined

by the zero-profit condition (20). The following proposition summarizes the above discussions.

Proposition 4 (Equilibrium Contracts with Settlement Market) The set of equilibrium con-

tracts satisfies the following properties:

15Recall that Fang and Kung (2010) analyze the case in which consumers have rational beliefs regarding their
probability of losing bequest motives, i.e., q̃ = q.

16See the proof of Proposition 3 in Fang and Kung (2010).
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(a) Case I: p̂∗2s > p∗2s
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(b) Case II: p̂∗2s < p∗2s

Figure 2: Equilibrium Period-2 Premium Profiles with the Settlement Market under Different Levels
of Consumer Overconfidence: ∆ > ∆̂.

1. All policyholders receive full-event insurance in period 1 and 2 as defined by (25) and (26).

2. There exists a threshold p∗2s ∈ (0, 1] such that p2 ∈ Bs if p2 < p∗2s and p2 ∈ NBs if p2 > p∗2s.

3. (a) If p∗2s < 1, the set of equilibrium contracts is determined by (20), (25), (26) and Lemma

7. Moreover, Q2s(p2) and V2s(p2) are strictly increasing in p2 if β > 0;

(b) If p∗2s = 1, the equilibrium contract coincides with spot contracts.

In the presence of the settlement market, the life insurance firms no long provide flat premiums

in period 2. Instead, they provide partial insurance against reclassification risk in equilibrium.

The set of period-2 equilibrium contract is in the form of premium discounts relative to the spot

market contracts. Policyholders with higher mortality risk are charged higher premiums, but the

equilibrium contract is still in favor of higher p2 in the sense the that policyholders with higher p2

are offered contracts with higher actuarial values. These insights are identical to those in Fang and

Kung (2010).

Proposition 5 Suppose ∆̂ < ∆. Let (F̂1s, Q̂1s) and (F1s, Q1s) be the equilibrium contract in period

1 with ∆̂ and ∆ respectively. If p∗2s < 1, then F̂1s > F1s and Q̂1s < Q1s.

When consumers become more overconfident, the life insurance firms respond by offering a set

of contracts with a higher degree of front-loading (i.e. a higher premium and lower face value) in

the first period. The intuition is similar to that of Proposition 2. When policyholders become more

overconfident, they demand actuarially more favorable contracts in the second period. As a result,

the insurance firms suffer greater losses than before. Therefore, the first period premium increases

in equilibrium so as to satisfy the zero-profit condition.

Different from Proposition 2, we can no longer obtain clean comparative statics on the degree of

reclassification risk (i.e., p∗2s) with respect to the degree of consumer overconfidence. Figure 2 depicts
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two possibilities of the change of the second period premiums in equilibrium as the policyholders’

overconfidence increases from ∆̂ to ∆ where p̂∗2s > p∗2s holds in Figure 2(a) and p̂∗2s < p∗2s holds

in Figure 2(b).17 When the secondary life settlement market is present, insurance firms provide

contracts with premium discounts rather than flat premiums, whose shape depends on not only p∗2s
but also u(·) and v(·) [see Eq. (27)]. Intuitively, the possibility to cash out a positive fraction of

the actuarial value of the period-2 contract changes the marginal utility of the policyholders when

they lose bequest motives, and hence the shape of the equilibrium premiums changes accordingly.

Analogous to the experienced utility W we defined in (17) for the case when there is no

settlement market, we can define the consumer’s experienced utility with the objective probabil-

ity q of losing bequest motives in the second period from a generic long-term contract Cs ≡
〈(Q1s, F1s), (Q2s(p2), F2s(p2)) : p2 ∈ [0, 1]〉 as:

Ws : =
[
u(y − g −Q1s) + p1v(F1s)

]
(29)

+(1− p1)

∫ 1

0

{
(1− q)

[
u(y + g −Q2s(p2))) + p2v(F2s(p2s))

]
+qu(y + g + βV2s(p2))

}
dΦ(p2).

Note that the expression (29) is very similar to (17) except for the term βV2s (p2) – the cash amount

a policyholder obtains from the settlement firm. The consumer’s equilibrium welfare from market

environment (q,∆) with settlement market is simply Ws evaluated at the equilibrium contract

〈(Q1s (q,∆) , F1s (q,∆)), (Q2s(p2; q,∆), F2s(p2; q,∆)) : p2 ∈ [0, 1]〉 that solves Problem (19):18

Definition 2 The consumer equilibrium welfare in the presence of settlement market, Ws(q,∆), is

defined by:

Ws(q,∆) := [u(y − g −Q1s (q,∆)) + p1v(F1s (q,∆))] (30)

+ (1− p1)

∫ 1

0

{
(1− q)

[
u(y + g −Q2s(p2; q,∆))) + p2v(F2s(p2; q,∆))

]
+qu(y + g + βV2s(p2; q,∆))

}
dΦ(p2).

Proposition 6 (Welfare Implication of Overconfidence) Fix q ∈ (0, 1). Ws(q,∆) is weakly

decreasing in ∆.

Proposition 6 establishes a similar comparative statics of consumer welfare with respect to the

level of policyholders’ overconfidence. The intuition is similar to Proposition 3. Thus, overconfi-

dence reduces consumer welfare regardless of whether or not the settlement market is present.

17Assuming that u(c) = v(c) = c0.9, (y, g, q, p1) = (0.999, 0.001, 0.8, 0.01), and p2 ∼ U [0, 1], the shape of the
equilibrium period-2 premiums in Figure 2(a) can be obtained with ∆̂ = 0.05 and ∆ = 0.5; and the shape of the
equilibrium period-2 premiums in Figure 2(b) can be obtained with ∆̂ = 0.65 and ∆ = 0.9.

18Here we again highlight the fact that the equilibrium contract depends on (q,∆) in our notation.
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4 Welfare Comparison

In this section, we present our main result on the equilibrium effect of the settlement market

on consumer welfare when consumers are overconfident about their bequest motives. It is useful

for us to state a result for the case when consumers have correct beliefs regarding the probability

that they may lose bequest motive, i.e., when q̃ = q or ∆ = 0. Proposition 7 in Fang and Kung

(2010) considers this case and shows that when the policyholder holds correct belief about the

probability of losing his bequest motive, introducing the life settlement market weakly reduces

consumer welfare in equilibrium.19 Using the notation for equilibrium welfare W (·) and Ws (·) in

Definitions 1 and 2 [see Eq. (18) and (30)], Proposition 7 of Fang and Kung (2010) is:

W (q, 0) ≥Ws(q, 0). (31)

This result may be somewhat counter-intuitive. The intuition, as Fang and Kung (2010) ex-

plained, is as follows. On the one hand, the settlement market allows policyholders to access the

actuarial value in their policies, and thus may be interpreted as contributing to market complete-

ness. On the other hand, the settlement market weakens the consumer’s ability to commit to not

asking for a return of their front loaded premiums in the event that they lose their bequest motive.

This weakening of the consumers’ commitment power can be interpreted as contributing further to

market incompleteness.

As we emphasized in Section 3, when consumers are overconfident about their loss of bequest

motives, life settlement market has additional disciplinary effect on the extent to which the primary

life insurers can exploit consumers’ irrational beliefs in their contract design. Whether the unam-

biguous result stated in (31) for the case of consumers with rational beliefs will be overturned will

crucially depend on the strength of the additional disciplinary effect of the life settlement market.

Our main result, stated as Proposition 7 below, provides sufficient conditions under which life

settlement may improve consumer welfare in equilibrium. It is a limiting result and interestingly,

it depends on the curvature – captured by the intertemporal elasticity of substitution (IES), or the

inverse of the relative risk aversion – of the function v (·). For the ease of our exposition, we denote

the IES of v(·) at c by η(c) :20

η(c) = − v′(c)

cv′′(c)
. (32)

Proposition 7 Suppose η(c) ≥ α > 1 for all c > 0. There exists a threshold q such that for q ≥ q,

Ws(q,∆) > W (q,∆) if ∆ is sufficiently large.

The proof of Proposition 7 is relegated to the Appendix. The intuition is as follows. First,

note that Proposition 7 requires that q and ∆ to be sufficiently large. When policyholders are

19See, also, Claim 3 of Proposition 2 in Daily et al. (2008).
20Bisin et al. (2015) considers the welfare consequence of banning illiquid assets in a political economy model of

public debt where voters have self-control problems and attempt to commit using illiquid assets. They show that in
equilibrium, government accumulates inefficiently high level of debt to respond to individuals’ desire to undo their
commitments using illiquid assets. Interestingly, they find that banning illiquid asset is welfare improving if the
coefficient of relative risk aversion is greater than 1.
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overconfident, the settlement market has a new role: it allows policyholders to take actions to

correct the mistaken contractual choices in period one resulting from their biased beliefs in the

second period. In particular, a fraction q∆ of policyholders no long remain bequest motives in the

second period as expected at the time of purchasing insurance policies. When there is no settlement

market, they can only lapse the contract and suffer the utility loss caused by their biased beliefs.

However, with the settlement market, policyholders can recover part of the actuarial value of

their contracts. Importantly, the threat of consumers, those who unexpectedly find themselves

without bequest motives, selling to life settlement firms in the second period provides a curb on

how aggressive the life insurers can exploit the consumers’ overconfidence in their contract design.

In order for the settlement market to be welfare increasing, it requires sufficiently large q and ∆,

so that the welfare gain from the disciplinary effect can outweigh the welfare loss due to the lower

degree of market completeness as highlighted by (31) for the case of consumers with rational beliefs.

Second, notice that Proposition 7 also requires that the IES of v(·) to be greater than one. This

turns out to be related to the general idea that the curvature of v (·) is related to how vulnerable

a consumer with biased beliefs can be exploited, in terms of welfare, by firms in the competitive

market.21 To explain the intuition most cleanly, let us consider a utility function with constant

IES ρ > 0, i.e. suppose that:

v(c) =


c
1− 1

ρ−1
1− 1

ρ

if ρ > 0 and ρ 6= 1

ln (c) if ρ = 1.
(33)

From Lemma 4, when q and ∆ are sufficiently large, Q2(p2) = 0 for all p2 in the case without

the settlement market. That is, the life insurance company will cater to the overconfidence of the

policyholders by offering zero-premiums contracts in the second period in exchange for a high first

period premium. Moreover, the first order conditions (7b) and (7d) imply that the face amounts

F2 (p2) and F1 must satisfy
v′
(
F2(p2)

)
v′(F1)

=
1− q
1− q̃

for all p2.

Exploiting the constant IES functional form of v (·) as described in (33), we obtain:

F2(p2)

F1
=

(
1− q̃
1− q

)ρ
=

(
1 +

q

1− q
∆

)ρ
. (34)

Eq. (34) shows that, when q and ∆ are sufficiently large, the life insurers will be offering long-term

life insurance policies with a higher face amount in the second period than in the first period. There

are two things to note. First, the value of the death benefits are enjoyed by the policyholder’s

dependents according to v (·) ; this explains why the curvature of v (·) plays an important role

in Proposition 7. Second, a higher death benefits in the second period is valuable only if the

policyholder retains the bequest motive. Since the policyholder is overconfident, a higher ratio of

21See Fang and Wu (2017) for a more general exploration of consumer vulnerability in behavioral economics.
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F2 (p2) /F1 is valuable to the consumer ex ante, but not so valuable ex post. Once the consumer

loses the bequest motive in the second period, the promised high death benefit F2 (p2) is actually

not costly to the insurer. Of course, the insurers will be charging a higher upfront premium payment

Q1. This is precisely how the insurer exploits the consumer’s biased belief!

Eq. (34) highlights that the distortion that results from consumer overconfidence is larger, the

higher is the IES parameter ρ. Specifically, when ρ > 1, the equilibrium consumption growth for

the dependent is sensitive to changes in the level of policyholders’ overconfidence ∆. In the absence

of the settlement market, policyholders will obtain an equilibrium contract which specifies a very

low face value and a high premium in the first period in exchange for period-2 contracts of high

actuarial values as they become sufficiently overconfident. Such a contract harms policyholders’

objective welfare as defined by (18) because the high actuarial values of the period-2 contracts are

not objectively valuable to the policyholder when q and ∆ are sufficiently large. In equilibrium, a

large portion (i.e. q∆) of the expected utility promised by the set of the equilibrium contracts in

the second period is not realized due to policyholder’s misperception of the probability of losing

bequest motives. To summarize, policyholders with a high value of IES are more vulnerable from

their overconfidence and can potentially benefit more from the presence of the settlement market

than those with a low value of IES.

Now, with the presence of the settlement market, the set of equilibrium contracts will not deviate

as much from the socially optimal one in terms of the degree of front-loading as policyholders

become more overconfident. In fact, we can establish a lower bound of the expected utility for

policyholders in the first period. To see this, recall from Lemma 5 that, in the presence of the

settlement market, contracts with zero period-2 premiums can not be sustained in equilibrium for

all (q,∆) ∈ [0, 1) × [0, 1].22 From the zero-profit condition (20), this in turn implies that there

is an upper bound of the amount of front-loading. Thus the presence of the settlement market

protects policyholders from obtaining contracts with too much front-loading in the first period as

they become more overconfident. Such protection is more valuable to the vulnerable policyholders

with high IES than those with a low value of IES and leads the consumer welfare with settlement

market to be greater than that without.

Finally, Proposition 7 depends only on the shape of v(·) but not u(·). This is because Proposition

7 is a limiting result. When consumers become sufficiently overconfident and q is sufficiently

large, they lose full-event insurance and obtain zero premiums in the second period by Lemma

4. Specifically, in the absence of the settlement market, consumers always consume y + g in the

second period if alive regardless of whether or not they lose bequest motives. Consequently, the

trade-off between the expected utility of the first period contract and that derived from period-2

contracts is mainly determined by the face amount rather than premium in the limit. In other

words, consumer welfare in the absence of the settlement market is mainly driven by v(·) rather

than u(·). More formally, the expected utility in the second period can be simplified as u(y + g) +

(1− q)
∫ 1

0 {p2v(F2(p2))}dΦ(p2), where the first component is constant over q and ∆.

22In addition, Lemma A5 in the Appendix states that p∗2s must be no less than p1.
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4.1 Role of IES of u(·) and v(·)

For moderate levels of q and ∆, the curvatures of both u(·) and v(·) should matter in whether

the life settlement market can improve consumer welfare in equilibrium. In this subsection, we

provide some numerical results. We assume that (y, g, β) = (1, 0, 0), p1 = 0.1, and p2 ∼ U [0, 1].23

Consumers are assumed to exhibit constant IES of ρ1 > 0 and ρ2 > 0 for u(·) and v(·) respectively:

u(c) =


c
1− 1

ρ1 −1
1− 1

ρ1

if ρ1 > 0 and ρ1 6= 1

ln (c) if ρ1 = 0;
v(c) =


c
1− 1

ρ2 −1
1− 1

ρ2

if ρ2 > 0 and ρ2 6= 1

ln (c) if ρ2 = 0.
(35)

Figure 3 graphically illustrates our numerical results. The dashed curve is the combination of

(ρ1, ρ2) for which the consumer welfare with the presence of the settlement market is equal to that

without for q = 0.4 and ∆ = 0.3.24 The region of (ρ1, ρ2) to the right (to the left, respectively) of

the dashed curve depicts the combination of (ρ1, ρ2) for which introducing the settlement is welfare

enhancing (welfare reducing, respectively) under equilibrium contract. Similarly, the solid curve

represents the contour plot for q = 0.4 and ∆ = 0.5; and the dotted curve represents the contour

plot for q = 0.9 and ∆ = 0.9.

The first pattern to notice is that the contour plot is downward sloping. In words, fixing ρ1

(ρ2, respectively), the presence of the settlement increases consumer welfare as ρ2 (ρ1, respectively)

becomes sufficiently large. Because policyholder’s expected utility in each period depends on both

u(·) and v(·), the IES of u(·) and v(·) each will have an impact on the IES of policyholder’s expected

utility. This result confirms the intuition that consumers with a higher IES of either u (·) or v (·)
are more vulnerable from their overconfidence, and hence can benefit more from the presence of

the settlement market. Second, the solid curve lies below the dashed curve. Therefore, fixing q,

consumer welfare is more likely to be greater with the presence of the settlement than that without

as ∆ increases. This is because the beneficial effect of the settlement increases as ∆ increases. Last,

the dotted curve is flatter than the dashed curve in the (ρ1, ρ2) space, suggesting that the welfare

comparison relies more on the IES of v(·) relative to that of u(·) as q and ∆ increase. This confirms

the results in Proposition 7.

5 Overconfidence of Future Mortality Risk

In this section, we investigate the influences of consumer’s health-related bias on the equilibrium

contract and consumer welfare, and demonstrate the robustness of the welfare comparison derived

in Proposition 7 for the case of biased belief regarding bequest motive.

In order to simplify the modeling for overconfidence regarding future mortality risks, we simplify

the assumption on the distribution of the period-2 mortality risks. In this section, we assume

23Assuming β = 0 implies instantly that consumers receive no actuarial value of the contract when they lose bequest
motive. Therefore, the existence of the settlement market solely serves as a threat to the primary insurance market.
Moreover, when β = 0, the equilibrium contract with the presence of the settlement market are flat.

24The contour plots are shown only for (ρ1, ρ2) ∈ [0.1, 5.1]× [0.1, 5.1].
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Figure 3: Comparison of Consumer Welfare with and without the Settlement.
Each curve represents combinations of (ρ1, ρ2) for which the consumer welfare with the presence of the settlement

market is equal to that without, for different combinations of q and ∆. To the right of the curve, consumer welfare is

higher with life settlement market than without. The dashed curve: q = 0.4 and ∆ = 0.3; the solid curve: q = 0.4
and ∆ = 0.5; the dotted curve: q = 0.9 and ∆ = 0.9.

that the second period mortality risk p2 follows a Bernoulli distribution, p2 ∈ {pL, pH}, with

pH > pL > p1, and that the objective distribution is such that

Pr(p2 = pL) = φL ∈ (0, 1)

Pr(p2 = pH) = φH ≡ 1− φL.

However, we assume that in period 1, policyholders are overconfident about their future mortality

risks, specifically, they believe that p2 is drawn from a “better” distribution with

φ̃L = φL + ∆m(1− φL)

φ̃H = 1− φ̃L = (1−∆m)(1− φL),

where ∆m ∈ [0, 1] can be interpreted as the degree of overconfidence of the second period mortality

risk.

Equilibrium in the absence of the settlement market. Without the settlement market, the

competitive equilibrium contract 〈(Q1, F1), (QH2 , F
H
2 ), (QL2 , F

L
2 )〉 solves the following maximization
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problem:

max[u(y − g −Q1) + p1v(F1)] (36)

+ (1− p1)
∑
i=L,H

φ̃i{(1− q)[u(y + g −Qi2) + piv(F i2)] + qu(y + g)}

s.t.(Q1 − p1F1) + (1− p1)(1− q)
∑
i=L,H

φi

(
Qi2 − piF i2

)
= 0, (37)

Qi2 − piF i2 ≤ 0 for i ∈ {H,L} , (38)

Qi2 ≥ 0 for i ∈ {H,L} . (39)

Consumers’ overconfidence of future mortality risk introduces an additional concern for the insurers

when designing the equilibrium contracts relative to an environment where the consumer bias is

with respect to bequest motives. Recall that from the objective function 3, when consumers un-

derestimate their probability of losing their bequest motives, such bias only distorts the allocation

of resources between period 1 and period 2. In contrast, from the objective function (36), over-

confidence of future mortality risk distorts the allocation of resources across states in the second

period. When policyholders believe that state pL is more likely to occur, the insurer has incentives

to decrease the premium in state pL and increase the premium in state pH . The following lemma

formalizes this intuition.

Lemma 8 There exists a threshold ∆̄m < 1 such that QH2 = QFI2 (pH) if ∆m > ∆̄m. In addition,

QL2 = 0 if φL ∈ (0, 1) is sufficiently small.

From Lemma 8, consumers receive a contract with zero premium in state pL as they become

sufficiently overconfident, whereas an actuarially fair full-event insurance is obtained in state pH .

This contrasts to the result in Lemma 4 where all types receive zero premiums in the second period.

The intuition is as follows. As we mentioned, when consumers are overconfident about their bequest

motives, this behavioral bias only changes the dynamic trade-off between consumption in the first

period and that in the second, and the allocation of consumption across different states in the

second period remains optimal. Therefore, insurer has an incentive to make the period-2 contracts

better in all states by decreasing the second period premiums. As a result, as in the rational

benchmark model of Hendel and Lizzeri (2003) and Fang and Kung (2012), consumers of a low

risk type receive a actuarially fair contract and consumers of a high risk type receive a actuarially

favorable contract. However, when consumers are overconfident about the future mortality risk,

they put more weight on the low risk state due to their bias. As a result, the insurer has incentives

to exploit this bias by making the contract in state pL better in terms of a lower premium, and

increasing premiums in state pH . Lemma 8 shows that, in the extreme case, the state-pL contract

will have zero premium and positive actuarial value, yet, the state-pH contract coincides with the

spot contract. Note that consumer bias on mortality risks reverse the predictions of the rational

benchmark model of Hendel and Lizzeri (2003) and Fang and Kung (2012): consumers of a high risk

type now receive a actuarially fair contract while consumers of a low risk type receive a contract
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with positive actuarial value. As will be discussed in details later, this new feature of the equilibrium

contract limits the impact of the settlement market on the shape of the life insurance contract in

equilibrium.

Equilibrium with the presence of the settlement market. With the settlement market,

the set of equilibrium contracts 〈(Q1s, F1s), (Q
H
2s, F

H
2s ), (QL2s, F

L
2s)〉 solves the following maximization

problem:

max[u(y − g −Q1s) + p1v(F1s)] (40)

+ (1− p1)
∑
i=H,L

φ̃i

(1− q)

[
u(y + g −Qi2s)

+piv(F i2s)

]
+qu(y + g + βV i

2s)


s.t. (Q1s − p1F1s) + (1− p1)

∑
i=H,L

φi[Q
i
2s − piF i2s] = 0, (41)

Qi2s − piF i2s ≤ 0 for i ∈ {H,L}, (42)

Qi2s ≥ 0 for i ∈ {H,L}. (43)

Again, V i
2s ≡ piF i2s −Qi2s is the actuarial value of the period-2 contract with health status pi.

Lemma 9 In the presence of the settlement market, QH2s = QFI2 (pH), QL2s = 0 if ∆m is sufficiently

large and φL ∈ (0, 1) is sufficiently small.

Lemma 9 states that, for the case of overconfidence with respect to future mortality rates, the

equilibrium pricing pattern for period-2 contracts with the settlement market is identical to that

without the settlement market (as in Lemma 8). This is in stark contrast to Lemma 5, which

predicts that, for the case of overconfidence with respect to bequest motives, zero premium period-

2 contracts do not emerge when there is a settlement market while they would in the absence of

the settlement market. When consumers exhibit overconfidence of bequest motives, the settlement

market protects consumers when they unexpectedly (due to overconfidence) lose bequest motives

independent of the second period health status; and the settlement market makes it too costly to

the insurer to offer a contract with zero premiums for some states. This force does not apply as

strongly when consumers’ overconfidence is about the distribution of second period mortality risks.

In fact, the equilibrium contract will feature zero premium in state pL as predicted in Lemma 8;

but the state pL is much less likely to actually realize than believed by the consumer. Thus the

actuarial value in the zero-premium contract for state pL in period 2 is somewhat immune from

being exploited and threatened by the settlement market. More explicitly, consider the case where

φL ∈ (0, 1) is sufficiently small and ∆m = 1. In words, consumers subjectively care a lot more about

the utility in state pL than they should in period 1, and in period 2, they almost always end up

with state pH . In the absence of life settlement market, the insurer commits to an actuarially fair

contract in state pH and a contract with high actuarial value in state pL. Different from the case of

overconfidence of bequest motive, the promised high actuarial value in state pL will only be cashed
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out by the settlement firm if the consumer actually ends with state pL and loses bequest motive,

which occurs with probability φLq, which is small! As a result, the positive effect of the settlement

market to allow biased consumers to correct their “prior mistakes” is not as strong in the case of

overconfidence with respect to future mortality risks. This in turn implies that life settlement is

limited in its potential to unlock the actuarial value of a contract, and allows for zero-premium

contract with large actuarial values in state pL to persist in equilibrium.

Welfare comparison. Lemma 8 and 9 show that the role of the settlement market in changing

the equilibrium contract and correcting consumers’ mistakes due to their wrong beliefs is limited

when consumer overconfidence is about future mortality risks. However, we will show that life

settlement still constrains the life insurers’ ability to exploit the consumers’ biased beliefs in a

different manner, and we provide an example in which the presence of the settlement market can

again be welfare improving.

As in Section 4, we define the consumers’ equilibrium expected welfare using the objective

mortality risks:

Wm(φL,∆m) := [u(y − g −Q1 (φL,∆m)) + p1v(F1 (φL,∆m))]

+ (1− p1)
∑
i=L,H

φi

{
(1− q)[u(y + g −Qi2 (φL,∆m)) + piv(F i2 (φL,∆m))] + qu(y + g)

}
;

(44)

Wm
s (φL,∆m) := [u(y − g −Q1s (φL,∆m)) + p1v(F1s (φL,∆m))]

+ (1− p1)
∑
i=L,H

φi

{
(1− q)[u(y + g −Qi2s (φL,∆m)) + piv(F i2s (φL,∆m))]

+qu(y + g + βV i
2s(φL,∆m))

}
. (45)

Following the discussions in Section 4, we assume that

u (c) = v(c) =


c
1− 1

ρ−1
1− 1

ρ

if ρ > 0 and ρ 6= 1

ln (c) if ρ = 1.

Thus, both utility functions exhibit constant IES of ρ > 0. To simplify the analysis, we shut down

the channel of unlocking the actuarial value of a contract by assuming β = 0.25

Proposition 8 Suppose u(·) = v(·), and both utility functions exhibit constant IES of ρ > 0.

Moreover, β = 0. Then consumer’s welfare is higher (lower, respectively) with the presence of the

settlement market than without if ρ > 1 (ρ < 1, respectively) when ∆m ∈ (0, 1) is sufficiently large

and φL ∈ (0, 1) is sufficiently small.

We now provide the intuition for Proposition 8. When ∆m ∈ (0, 1) is sufficiently large and

φL ∈ (0, 1) is sufficiently small, the consumers’ welfare in the second period is mainly determined by

25The result is robust when β ∈ (0, 1) .
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the contract offered in state pH (since φL is small); because Lemmas 8 and 9 show that the state-pH

contract terms are identical with or without the settlement market, the comparison of consumer’s

welfare will mainly hinge on their utility obtained from the first period contract. Not surprisingly,

in the absence of life settlement market, the insurer will cater to the consumer overconfidence by

offering a favorable contract term in state-pL in period-2 in the form of a higher face amount FL2 .

Such promises of high death benefit FL2 is not costly for the insurer because φL is low, but will be

much valued by the consumer because ∆m is high. Indeed, it can be shown that, in the absence of

the life settlement market, the ratio between FL2 and F1 is given by:

FL2
F1

=

(
φ̃L
φL

)ρ
=

(
φL + ∆m(1− φL)

φL

)ρ
.

The term
(
φ̃L/φL

)ρ
> 1 measures the distortion of the contract in equilibrium due to consumer’s

biased belief. Intuitively, such distortion leads to more welfare loss when the magnitude of over-

confidence becomes large (i.e. large ∆m and small φL), and when consumers have weak propensity

towards consumption smoothing (i.e. ρ > 1).

In the presence of life settlement market, the ratio between FL2s and F1s will now be more

balanced because increasing the state-pL face amount in period 2 can actually be costly to the

insurance company (when the consumer loses bequest motive in state-pL); indeed, we can show

that:
FL2s
F1s

=

[
φ̃L
φL
× (1− q)

]ρ
.

The additional term (1− q)ρ captures the beneficial effect of the settlement market on disciplining

the primary life insurance market, which is decreasing in q because the life insurer needs to always

pay the face amount due to the presence of the settlement market. This disciplining effect becomes

stronger and more important as the welfare loss caused by consumer’s overconfidence in the absence

of the settlement market is large enough, that is, ρ > 1. Therefore, introducing a settlement market

can be welfare enhancing (reducing, respectively) when ρ > 1 (ρ < 1, respectively).

Note that in Proposition 8, in order for the life settlement to strictly affect the consumer welfare,

φL must be positive and small. In the limit when ∆m → 1 and φL → 0, it is clear that the contracts

with and the without the settlement market will exactly coincide. Thus life settlement does not

affect consumer welfare in the limit.

The role of IES of u(·) and v(·). Proposition 8 presents limiting result of φL and ∆m, assuming

u(·) = v(·). In this subsection we report numerical results to isolate the role of IES of u(·) and

v(·) for intermediate values of q and ∆m. To proceed, we assume that (y, g, β) = (1, 0, 0), q = 0.4,

(p1, p
L
2 , p

H
2 ) = (0.1, 0.2, 0.8), and (φL, φH) = (0.5, 0.5). Consumers are assumed to exhibit constant

IES of ρ1 and ρ2 for u(·) and v(·) respectively, as in (35).

Figure 4 graphically illustrates our numerical results. The dashed curve is the combination

of (ρ1, ρ2) for which the consumer welfare with the presence of the settlement market is equal to
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Figure 4: Comparison of Consumer Welfare with and without the Settlement.
Each curve represents combinations of (ρ1, ρ2) for which the consumer welfare with the presence of the settlement

market is equal to that without, for different combinations of q and ∆m. To the right (respectively, left) of the

curve, consumer welfare is higher (respectively, lower) with life settlement market than without. The dashed curve:

q = 0.4 and ∆m= 0.3;the solid curve: q = 0.4 and ∆m= 0.5.

that without for ∆m = 0.3.26 The region of (ρ1, ρ2) to the right (to the left, respectively) of the

dashed curve depicts the combination of (ρ1, ρ2) for which introducing the settlement is welfare

enhancing (welfare reducing, respectively) under equilibrium contract. Similarly, the solid curve

represents the contour plot for ∆m = 0.5. Similar to the result of overconfidence of bequest motive,

the contour line is downward sloping in the (ρ1, ρ2) space, and shifts downwards as the consumer

becomes more overconfident.

6 Conclusion

In this paper, we analyze how the life settlement market – the secondary market for life insurance

– may affect consumer welfare in a dynamic equilibrium model of life insurance with one-sided

commitment and overconfident policyholders who may lapse their policies when they lose their

bequest motives. We consider two forms of overconfidence: (1) the policyholders may underestimate

their probability of losing their bequest motive; (2) the policyholders may be overconfident about

their future mortality risks. For the case of overconfidence with respect to bequest motives, we show

that in the absence of life settlement overconfident consumers may buy “too much” reclassification

risk insurance for later periods in the competitive equilibrium. In contrast, when consumers are

overconfident about their future mortality rates in the sense that they put too high a subjective

probability on the low-mortality state, the competitive equilibrium contract in the absence of

26Again, the contour plots are shown only for (ρ1, ρ2) ∈ [0.1, 5.1]× [0.1, 5.1].
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life settlement exploits the consumer bias by offering them very high face amounts in the low-

mortality state. In both cases, life settlement market can impose a discipline on the extent to which

overconfident consumers can be exploited by the primary insurers. We show that life settlement

may increase the equilibrium consumer welfare of overconfident consumers when they are sufficiently

vulnerable in the sense that they have a sufficiently large intertemporal elasticity of substitution of

consumption.

There are several directions for future research. First, in this paper we studied the role of

consumer overconfidence in determining the shape of the equilibrium life insurance contract. It

would be interesting to empirically test the existence of policyholders’ overconfidence based on the

predictions in this paper. Second, we follow Daily et al. (2008) and Fang and Kung (2010), and

assume that policyholders may lapse the insurance contract when they lose their bequest motives

throughout the paper. It is important to analyze the welfare implications of the settlement market

in a unified framework where lapsation is driven by bequest motive shocks as well as negative

income shocks. Finally, in our paper we have identified the potential role of IES in the welfare

analysis of the life insurance market when policyholders are not fully rational. Another intriguing

research avenue would be to generalize the economic insight of IES and consumer vulnerability

to other markets (e.g., the credit market, and the labor market) and quasi-Bayesian models, and

investigate the welfare impact and efficacy of different government policies (see Fang and Wu (2017)

for some preliminary results).
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Appendix: Proofs

Proof of Lemma 1

Proof. First, we show that Q2(p2) ≤ Q2(p′2). From the complementary slackness condition (8a),

p′2 ∈ NB implies instantly that λ(p′2) = 0. Moreover, the Inada condition on v(·) implies that

F2(p2) > 0. Together with the postulated p2 ∈ B, we must have Q2(p2) = p2F2(p2) > 0, which in

turn implies that γ(p2) = 0 from the complementary slackness condition (8b). Therefore,

(1− q̃)u′(y + g −Q2(p2)) = (1− q)µ+
λ(p2) + γ(p2)

(1− p1)φ(p2)

≤ (1− q)µ+
λ(p′2) + γ(p′2)

(1− p1)φ(p′2)
= (1− q̃)u′(y + g −Q2(p′2)),

where the two equalities follow from the first order condition (7c); and the inequality follows from

λ(p2) + γ(p2) ≤ 0 ≤ λ(p′2) + γ(p′2). From the strict concavity of u(·) and q̃ < 1, we must have

Q2(p2) ≤ Q2(p′2). Similarly, it can be shown that F2(p2) ≥ F2(p′2).

Next, we show that p2 < p′2. Suppose to the contrary that p2 ≥ p′2. Then we must have

Q2(p2) ≤ Q2(p′2) < p′2F2(p′2) ≤ p2F2(p2),

where the second inequality follows from p′2 ∈ NB, and the last inequality follows from the pos-

tulated p2 ≥ p′2 and F2(p2) ≥ F2(p′2), a contradiction against p2 ∈ B. This completes the proof.

Proof of Lemma 2

Proof. Suppose to the contrary that there exist two health states p̃2 6= 0 and p̃′2 6= 0 such that

Q2(p̃′2) > 0 = Q2(p̃2), then γ(p̃2) ≥ 0 = γ(p̃′2) from the complementary slackness condition (8a).

Moreover, the Inada condition on v(·) implies that F2(p̃2) > 0. Therefore,

Q2(p̃2)− p̃2F2(p̃2) = 0− p̃2F2(p̃2) < 0.

Together with the complementary slackness condition (8b), we must have λ(p̃2) = 0 ≥ λ(p̃′2). Thus,

(1− q̃)u′(y + g −Q2(p̃′2)) = (1− q)µ+
λ(p̃′2) + γ(p̃′2)

(1− p1)φ(p̃′2)

≤ (1− q)µ+
λ(p̃2) + γ(p̃2)

(1− p1)φ(p̃2)
= (1− q̃)u′(y + g −Q2(p̃2)),

where the two equalities follow from the first order condition (7c); and the inequality follows from

λ(p̃′2) + γ(p̃′2) ≤ 0 ≤ λ(p̃2) + γ(p̃2). Thus, Q2(p̃′2) ≤ Q2(p̃2) from the strict concavity of u(·), which

is a contradiction to the postulated Q2(p̃′2) > 0 = Q2(p̃2). This completes the proof.

Proof of Lemma 4
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Proof. Before proving the lemma, it is useful to state several intermediary results.

Lemma A1 If ∆ = 0, Q2(p2) > 0 for all p2 ∈ (0, 1].

Proof. Suppose that there exists a health state p̂2 ∈ (0, 1] such that Q2(p̂2) = 0. Because

F2(p2) > 0 for all p2 > 0 from the Inada condition on v(·), we must have Q2(p̂2) − p̂2F2(p̂2) < 0,

implying λ(p̂2) = 0. Combining the first order conditions (7a) and (7c) yields

u′(y + g) = u′(y + g −Q2(p̂2)) =
1− q
1− q̃

µ+
1

1− q̃
λ(p̂2) + γ(p̂2)

(1− p1)φ(p̂2)
≥ 1− q

1− q̃
µ = u′(y − g −Q1),

where the inequality follow from λ(p̂2) = 0 and γ(p̂2) ≥ 0, and the last equality follows from

∆ = 0. From Remark 1, Q1 ≥ p1F1 > 0. Therefore, we must have y − g − Q1 < y + g and

u′(y + g) < u′(y − g −Q1), a contradiction.

Lemma A2 Fix q and p2 6= 0. Denote the equilibrium period-2 premium at health state p2 with

respect to overconfidence ∆ and ∆′ by Q2(p2) and Q′2(p2) respectively. If Q2(p2) > 0 = Q′2(p2),

then ∆ < ∆′.

Proof. For notational convenience, we use the prime symbol to refer to the variables when the

degree of consumer overconfidence is ∆′. Suppose to the contrary that ∆ ≥ ∆′, then it follows

immediately that q̃ ≤ q̃′. From Lemma 2, Q′2(p2) = 0 for all p2 ∈ (0, 1]. Therefore, γ′(p2) ≥ 0

and λ′(p2) = 0 for all p2 ∈ (0, 1], which in turn implies that u′(y + g −Q2(p2)) = v′(F2(p2)) for all

p2 ∈ (0, 1]. Similarly, Q2(p2) > 0 for all p2 ∈ (0, 1], implying that γ(p2) = 0 and λ(p2) ≤ 0 for all

p2 ∈ (0, 1].

We first show that the period-2 face value under ∆ is strictly greater than that under ∆′ for all

p2 ∈ (0, 1]. Combining the first order conditions (7c) and (7d), we have

v′(F ′2(p2)) = u′(y + g −Q′2(p2))− 1

(1− q̃′)
× γ′(p2)

(1− p1)φ(p2)

< u′(y + g −Q2(p2)) = v′(F2(p2)), for all p2 ∈ (0, 1],

where the inequality follows from that γ′(p2) ≥ 0 and Q2(p2) > 0 = Q′2(p2). Thus, F ′2(p2) > F2(p2)

for all p2 ∈ (0, 1] from the strict concavity of v(·).
Next, we show that the period-1 face value under ∆ is strictly greater than that under ∆. Fixing

p2 6= 0, combining conditions (7b) and (7c) yields

(1− q)v′(F1) = (1− q̃)u′(y + g −Q2(p2))− λ(p2) + γ(p2)

(1− p1)φ(p2)

≥ (1− q̃)u′(y + g −Q2(p2))

> (1− q̃′)u′(y + g −Q′2(p2))

≥ (1− q̃′)u′(y + g −Q′2(p2))− λ′(p2) + γ′(p2)

(1− p1)φ(p2)
= (1− q)v′(F ′1).
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The first inequality follows from γ(p2) = 0 and λ(p2) ≤ 0; the second inequality follows from

Q2(p2) > 0 = Q′2(p2); and the third inequality follows from γ′(p2) ≥ 0 and λ′(p2) = 0. The above

inequality implies instantly that F ′1 > F1 and Q′1 < Q1.

To complete the proof, notice that the expected profit under ∆′ can be bounded from above by,

(Q′1 − p1F
′
1) + (1− p1)(1− q)

∫ 1

0
[Q′2(p2)− p2F

′
2(p2)]dΦ(p2)

<(Q1 − p1F1) + (1− p1)(1− q)
∫ 1

0
[Q2(p2)− p2F2(p2)]dΦ(p2) = 0,

which is a contradiction to the zero-profit condition (4) when consumers’ overconfidence is ∆′.

Lemma A3 Fixing q̃ ∈ [0, 1), there exists q ∈ (q̃, 1) such that Q2(p2) = 0 for some p2 6= 0.

Proof. Suppose to the contrary that there exists q̃ such that Q2(p2) > 0 for all q ∈ (q̃, 1).

This implies instantly that λ(p2) ≤ 0 and γ(p2) = 0 for all p2 ∈ (0, 1]. Then we must have

v′(F2(p2)) = u′(y + g − Q2(p2)) > u′(y + g) for all p2 ∈ (0, 1]. Therefore, F2(p2) is bounded from

above by v′−1(u′(y + g)); and the period-1 expected profit is bounded from above by,

Q1 − p1F1 = −(1− p1)(1− q)
∫ 1

0
[Q2(p2)− p2F2(p2)]dΦ(p2)

< (1− p1)(1− q)p2v
′−1

(u′(y + g)),

where p2 :=
∫ 1

0 p2dΦ(p2) is the expected period-2 mortality risk. Moreover, from Remark 1, Q1 −
p1F1 ≥ 0. Therefore,

0 ≤ Q1 − p1F1 < (1− p1)(1− q)p2v
′−1

(u′(y + g)). (A1)

Taking limits on all sides of (A1) as q ↑ 1 yields,

0 ≤ lim
q↑1

(Q1 − p1F1) ≤ lim
q↑1

(1− p)(1− q)p2v
′−1

(u′(y + g)) = 0.

This implies instantly that limq↑1 F1 = FFI1 and limq↑1Q1 = QFI1 , where (QFI1 , FFI1 ) is the solution

to the following pair of equations:

u′(y − g −QFI1 ) = v′(FFI1 ),

p1F
FI
1 −QFI1 = 0.

To complete the proof, notice that

(1− q̃)u′(y + g) < (1− q̃)v′(F2(p2)) = (1− q)v′(F1) +
λ(p2)

(1− p1)φ(p2)
≤ (1− q)v′(F1),
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where the equality follows from (7b) and (7d). Therefore,

(1− q̃)u′(y + g) = lim
q↑1

(1− q̃)u′(y + g) ≤ lim
q↑1

(1− q)v′(F1) = 0× v′(FFI1 ) = 0,

a contradiction.

Lemma A4 Fixing q̃, there exists a threshold q0(q̃) ∈ (q̃, 1) such that Q2(p2) = 0 for all p2 ∈ (0, 1]

if q > q0(q̃), and Q2(p2) > 0 for all p2 ∈ (0, 1] if q < q0(q̃). Moreover, q0(q̃) is weakly increasing in

q̃.

Proof. From Lemma A1, Q2(p2) > 0 for all p2 ∈ (0, 1] if ∆ = 0, or equivalently q = q̃. Lemma A3

together with Lemma 2 indicates that there exists q ∈ (q̃, 1) such that Q2(p2) > 0 for all p2 ∈ (0, 1].

We first prove the existence of threshold q0(q̃). Suppose to the contrary that there exist q′ and q

with q′ > q such that Q2(p2) = 0 < Q′2(p2) for all p2 ∈ (0, 1]. It follows immediately that λ(p2) = 0,

λ′(p2) ≤ 0, γ(p2) ≥ 0, and γ′(p2) = 0 for all p2 ∈ (0, 1]. From the first order conditions (7c) and

(7d), we have,

v′(F2(p2)) = u′(y + g −Q2(p2))− 1

1− q̃
× γ(p2)

(1− p1)φ(p2)

< u′(y + g −Q′2(p2))

= v′(F ′2(p2)), for all p2 ∈ (0, 1].

The inequality follows from the fact that γ(p2) ≥ 0 and Q′2(p2) > 0 = Q2(p2); and the last equality

follows from γ′(p2) = 0. Therefore, F2(p2) > F ′2(p2) for all p2 ∈ (0, 1] from the strict concavity of

v(·). Combining the first order conditions (7b) and (7c) yields,

v′(F1) =
1− q̃
1− q

u′(y + g −Q2(p2))− λ(p2) + γ(p2)

(1− p1)(1− q)φ(p2)

<
1− q̃
1− q′

u′(y + g −Q′2(p2))− λ′(p2) + γ′(p2)

(1− p1)(1− q′)φ(p2)
= v′(F ′1),

where inequality follows from q < q′, Q2(p2) = 0 < Q′2(p2), and γ(p2) +γ(p2) ≥ 0 ≥ γ′(p2) +γ′(p2).

Therefore, F1 > F ′1 and Q1 < Q′1. Hence,

0 = (Q′1 − p1F
′
1) + (1− p1)(1− q′)

∫ 1

0
[Q′2(p2)− p2F

′
2(p2)]dΦ(p2)

> (Q1 − p1F1) + (1− p1)(1− q)
∫ 1

0
[Q2(p2)− p2F2(p2)]dΦ(p2) = 0,

which is a contradiction.

Next, we show that q0(q̃) is weakly increasing in q̃. Suppose to the contrary that there exist q̃1

and q̃2 such that q̃1 > q̃2 and q0(q̃1) < q0(q̃2), then q̃1 < q0(q̃1) follows directly from Lemma A4.
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Therefore, q̃2 < q̃1 < q0(q̃1) < q0(q̃2). Let

q́ :=
q0(q̃1) + q0(q̃2)

2
∈
(
q0(q̃1), q0(q̃2)

)
.

Fix q = q́. Because q́ < q0(q̃2), all period-2 premiums except health state p2 = 0 are positive if

q̃ = q̃2. By the same argument, the period-2 premiums are zero if q̃ = q̃1 because q́ > q0(q̃1).

Therefore, it follows instantly that q́−q̃1
q́ > q́−q̃2

q́ from Lemma A2, or equivalently q̃1 < q̃2, which is

a contradiction against the postulated q̃2 < q̃1. This completes the proof.

Now we can prove Lemma 4. Define q as q := q0(0). We consider two cases depending on q

relative to q.

Case I: q < q ≡ q0(0). It suffices to show that Q2(p2) > 0 for all p2 ∈ (0, 1] and ∆ ∈ [0, 1]. Suppose

to the contrary that there exists q̃ ∈ [0, 1] such that Q2(p2) = 0 for some p2 ∈ (0, 1]. Then

Q2(p2) = 0 for all p2 ∈ (0, 1] from Lemma 2. It follows immediately that q ≥ q0(q̃) ≥ q0(0) ≡ q
from Lemma A4, a contradiction.

Case II: q > q ≡ q0(0). For q̃ = 0 (i.e., ∆ = 1), it follows instantly that Q2(p2) = 0 for all

p2 ∈ (0, 1] from Lemma A4. Similarly, Lemma A1 implies that Q2(p2) > 0 for all p2 ∈ (0, 1]

if q̃ = q (i.e., ∆ = 0). Therefore, it follows from Lemma A2 that there exists a threshold

∆̄(q) ∈ (0, 1) such that Q2(p2) = 0 for all p2 ∈ (0, 1] if ∆ > ∆̄(q), and Q2(p2) > 0 for all

p2 ∈ (0, 1] if ∆ < ∆̄(q). This completes the proof.

Proof of Proposition 2

Proof. For notational convenience, we use the hat symbol to refer to the variables when the degree

of consumer overconfidence is ∆̂. We first show that it must be the case that Q̂1 < Q1. Suppose

to the contrary that ∆̂ < ∆ (i.e., ˆ̃q > q̃) and Q̂1 ≥ Q1. Equation (9) implies that F̂1 ≤ F1.

We first show that it must be the case that Q̂2(p2)− p2F̂2(p2) ≥ Q2(p2)− p2F2(p2) for all p2 ∈
(0, 1]. It is clear that if health state p2 ∈ B under ∆̂, then Q̂2(p2)−p2F̂2(p2) = 0 ≥ Q2(p2)−p2F2(p2);

and it remains to consider the case where p2 ∈ NB under ∆̂. By definition, λ̂(p2) = 0. In addition,

from the first order conditions (7b) and (7d) we must have

(1− q̃)v′(F2(p2)) = (1− q)v′(F1) +
λ(p2)

(1− p1)φ(p2)

≤ (1− q)v′(F̂1) +
λ̂(p2)

(1− p1)φ(p2)
= (1− ˆ̃q)v′(F̂2(p2)) < (1− q̃)v′(F̂2(p2)),

where the first inequality follows from F̂1 ≤ F1 and λ(p2) ≤ 0 = λ̂(p2); and the second inequality

follows from the postulated ˆ̃q > q̃. Therefore, F̂2(p2) < F2(p2) if p2 ∈ NB under ∆̂. Similarly,

we can show that Q̂2(p2) ≥ Q2(p2). To see this, notice that if γ(p2) > 0, then we have Q̂2(p2) ≥
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Q2(p2) = 0. If γ(p2) = 0, from the first order conditions (7b) and (7c), we must have

(1− q̃)u′(y + g −Q2(p2)) = (1− q)v′(F1) +
λ(p2) + γ(p2)

(1− p1)φ(p2)

≤ (1− q)v′(F̂1) +
λ̂(p2) + γ̂(p2)

(1− p1)φ(p2)

= (1− ˆ̃q)u′(y + g − Q̂2(p2)) < (1− q̃)u′(y + g − Q̂2(p2)),

where the first inequality follows from the postulated λ(p2) ≤ 0 = λ̂(p2) and γ(p2) = 0 ≤ γ̂(p2);

and the second equality follows instantly from ˆ̃q > q̃. Therefore, Q̂2(p2) ≥ Q2(p2) always holds. To

summarize, Q̂2(p2)− p2F̂2(p2) > Q2(p2)− p2F2(p2) if p2 ∈ NB under ∆̂.

Firm’s expected profit under ∆̂ is,

(Q̂1 − p1F̂1) + (1− p1)(1− q)
∫ 1

0
[Q̂2(p2)− p2F̂2(p2)]dΦ(p2)

>(Q1 − p1F1) + (1− p1)(1− q)
∫ 1

0
[Q2(p2)− p2F2(p2)]dΦ(p2) = 0.

where the strict inequality follows from the postulated p∗2 < 1, a contradiction to the zero-profit

condition (4).

Next, we prove that p̂∗2 > p∗2. Suppose instead p̂∗2 ≤ p∗2. It follows immediately that Q̂2(p̂∗2) ≤
Q2(p∗2) and F̂2(p̂∗2) ≥ F2(p∗2) from Lemma 3. Moreover, we have shown that Q̂1 < Q1 and F̂1 > F1.

Therefore, firm’s expected profit in equilibrium under ∆̂ can be bounded from above by,

(Q̂1 − p1F̂1) + (1− p1)(1− q)

{∫ p̂∗2

0
[Q̂2(p2)− p2F̂2(p2)]dΦ(p2) +

∫ 1

p̂∗2

[Q̂2(p2)− p2F̂2(p2)]dΦ(p2)

}

=(Q̂1 − p1F̂1) + (1− p1)(1− q)
∫ 1

p̂∗2

[Q̂2(p̂∗2)− p2F̂2(p̂∗2)]dΦ(p2)

=(Q̂1 − p1F̂1) + (1− p1)(1− q)

{∫ p∗2

p̂∗2

[Q̂2(p̂∗2)− p2F̂2(p̂∗2)]dΦ(p2) +

∫ 1

p∗2

[Q̂2(p̂∗2)− p2F̂2(p̂∗2)]dΦ(p2)

}

≤(Q̂1 − p1F̂1) + (1− p1)(1− q)

{
0 +

∫ 1

p∗2

[Q2(p∗2)− p2F2(p∗2)]dΦ(p2)

}

<(Q1 − p1F1) + (1− p1)(1− q)

{∫ p∗2

0
[Q2(p2)− p2F2(p2)]dΦ(p2) +

∫ 1

p∗2

[Q2(p2)− p2F2(p2)]dΦ(p2)

}
=0,

where the first inequality follows from Q̂2(p̂∗2) − p2F̂2(p̂∗2) ≤ Q̂2(p̂∗2) − p̂2F̂2(p̂∗2) = 0 for p2 ≥ p̂∗2,

and Q̂2(p̂∗2) − p2F̂2(p̂∗2) ≤ Q2(p∗2) − p2F2(p∗2); and the second inequality follows from Q̂1 < Q1 and

F̂1 > F1, a contradiction to the zero-profit condition (4) under ∆̂. This completes the proof.

Proof of Proposition 3
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Proof. Fixing q ∈ (0, 1) and ∆ ∈ (0, 1), we consider the following three cases depending on the

range of p∗2.

Case I: p∗2 = 1. From Proposition 1, the equilibrium contract coincides with the spot contracts.

Similar to the proof in Proposition 2, it can be shown that decreasing ∆ does not change the

shape of the equilibrium contracts, and hence consumer welfare remains unchanged.

Case II: p∗2 = 0. In this case, Q2(p2; q,∆) = 0 for all p2 ∈ [0, 1], and F2(p2; q,∆) is constant over

p2. Define F2(q,∆) as F2(q,∆) := F2(p2; q,∆). Then the set of the equilibrium contracts

is fully characterized by 〈Q1(q,∆), F1(q,∆), F2(q,∆)〉, which is the solution to the following

system of equations:

(1− q̃)v′(F2(q,∆)) = (1− q)v′(F1(q,∆)), (A2)

v′(F1(q,∆)) = u′(y − g −Q1(q,∆)), (A3)

Q1(q,∆)− p1F1(q,∆) = (1− p1)(1− q)p2F2(q,∆). (A4)

Taking the partial derivative of (A4) with respect to ∆ yields,

dQ1(q,∆)

d∆
− p1

dF1(q,∆)

d∆
= (1− p1)(1− q)p2

dF2(q,∆)

d∆
. (A5)

Therefore, the partial derivative of W (q,∆) with respect to ∆ can be simplified as,

∂W (q,∆)

∂∆
= −u′(y − g −Q1(q,∆))

dQ1(q,∆)

d∆
+ p1v

′(F1(q,∆))
dF1(q,∆)

d∆

+ (1− p1)(1− q)p2v
′(F2(q,∆))

dF2(q,∆)

d∆

= v′(F1(q,∆))

(
−dQ1(q,∆)

d∆
+ p1

dF1(q,∆)

d∆

)
+ (1− p1)(1− q)p2v

′(F2(q,∆))
dF2(q,∆)

d∆

= −
[
v′(F1(q,∆))− v′(F2(q,∆))

]
×
(
dQ1(q,∆)

d∆
− p1

dF1(q,∆)

d∆

)
,

where the second equality follows from (A3); and the third equality follows from (A5). It

follows from equation (A2) that

v′(F1)− v′(F2) =
q − q̃
1− q

v′(F2) ≥ 0.

Moreover, Proposition 2 implies instantly that

dF1(q,∆)

d∆
< 0, and

dQ1(q,∆)

d∆
> 0.

Therefore, we must have ∂W (q,∆)
∂∆ ≤ 0.
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Case III: 0 < p∗2 < 1. It follows from Proposition 2 that p∗2 is strictly decreasing in ∆. Thus,

there exists a one-to-one mapping between ∆ and p∗2. In addition, the set of equilibrium

contract is pinned down once p∗2 is determined. Therefore, to show W (q,∆) is decreasing in

∆ is equivalent to show that W p(p∗2) is increasing in p∗2, where W p(p∗2) is defined as

W p(p∗2) :=[u(y − g −Q1(p∗2)) + p1v(F1(p∗2))]

+ (1− p1)(1− q)
∫ p∗2

0
[u(y + g −QFI2 (p2)) + p2v(FFI2 (p2))]dΦ(p2)

+ (1− p1)(1− q)
∫ 1

p∗2

[u(y + g −QFI2 (p∗2)) + p2v(FFI2 (p∗2))]dΦ(p2).

In the above expression, 〈Q1(p∗2), F1(p∗2)〉 is the solution to the following pair of equations:

u′(y − g −Q1(p∗2)) = v′(F1(p∗2)), (A6)

Q1(p∗2)− p1F1(p∗2) = (1− p1)(1− q)
∫ 1

p∗2

[p2F
FI
2 (p∗2)−QFI2 (p∗2)]dΦ(p2). (A7)

Taking derivative of (A7) with respect to p∗2 yields,

(1− p1)(1− q)
∫ 1

p∗2

(
p2
dFFI2 (p∗2)

dp∗2
− dQFI2 (p∗2)

dp∗2

)
dΦ(p2) = −

(
p1
dF1(p∗2)

dp∗2
− dQ1(p∗2)

dp∗2

)
. (A8)

With slight abuse of notation, we drop p∗2 in Q1(·), F1(·), QFI2 (·), and FFI2 (·) in what follows.

Taking derivative of W p(p∗2) with respect to p∗2 yields,

dW p(p∗2)

dp∗2
=v′(F1)

(
p1
dF1

dp∗2
− dQ1

dp∗2

)
+ (1− p1)(1− q)

[
u(y + g −QFI2 ) + p2v(FFI2 )

]
+ (1− p1)(1− q)

∫ 1

p∗2

v′(F2)

(
p2
dFFI2

dp∗2
− dQFI2

dp∗2

)
dΦ(p2)

− (1− p1)(1− q)
[
u(y + g −QFI2 ) + p2v(FFI2 )

]
=v′(F1)

(
p1
dF1

dp∗2
− dQ1

dp∗2

)
+ (1− p1)(1− q)

∫ 1

p∗2

v′(F2)

(
p2
dFFI2

dp∗2
− dQFI2

dp∗2

)
dΦ(p2)

=
[
v′(F1)− v′(F2)

]
×

(
p1
dF1

dp∗2
− dQ1

dp∗2

)
,

where the third equality follows from (A8). By the same argument as in Case II, it can be

verified that v′(F1)− v′(F2) > 0. Moreover, it follows from Proposition 2 that p∗2 and F1 are

strictly decreasing in ∆, and Q1 is strictly increasing in ∆. Therefore,

dF1

dp∗2
=
dF1

d∆

/dp∗2
d∆

> 0, and
dQ1

dp∗2
=
dQ1

d∆

/dp∗2
d∆

< 0,
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which in turn implies that
dW p(p∗2)
dp∗2

> 0. This completes the proof.

Proof of Lemma 5

Proof. Suppose to the contrary that there exists a tuple (q,∆) such that Q2s(p2) = 0 for some

p2 ∈ (0, 1]. This implies that γs(p2) ≥ 0 and λs(p2) = 0. From the first order conditions (24a) and

(24c), we have

(1− q̃)u′(y + g) + βq̃u′(y + g + βV2s(p2))

=(1− q̃)u′(y + g −Q2s(p2)) + βq̃u′(y + g + βV2s(p2))

=u′(y − g −Q1s) +
λs(p2) + γs(p2)

(1− p1)φ(p2)

≥u′(y − g −Q1s),

which is a contradiction because the left hand side of the above inequality must be strictly less

than the right hand side. To see this more clearly, note that

(1− q̃)u′(y + g) + βq̃u′(y + g + βV2s(p2)) ≤ [1− (1− β)q̃]u′(y + g) < u′(y − g −Q1s).

This completes the proof.

Proof of Proposition 5

Proof. Suppose to the contrary that ∆̂ < ∆ (i.e., ˆ̃q > q̃) and F̂1s ≤ F1s. It follows directly that

Q̂1s ≥ Q1s from equation (25). Fixing a health state p2 ∈ (0, 1], we first compare firm’s expected

profits under ∆ and ∆̂ depending on whether p2 ∈ Bs under ∆̂.

Case I: p2 ∈ Bs under ∆̂. It is clear that Q̂2s(p2)− p2F̂2s(p2) = 0 ≥ Q2s(p2)− p2F2s(p2).

Case II: p2 ∈ NBs under ∆̂. It follows directly that λ̂s(p2) = 0. From (24b) and (24d), we have

(1− q̃)v′(F2s(p2)) + βq̃u′(y + g + βV2s(p2))

=v′(F1s) +
λs(p2)

(1− p1)φ(p2)

≤v′(F̂1s) +
λ̂s(p2)

(1− p1)φ(p2)

=(1− ˆ̃q)v′(F̂2s(p2)) + β ˆ̃qu′(y + g + βV̂2s(p2)), (A9)

where the inequality follows from the postulated F̂1s ≤ F1s and λs(p2) ≤ 0 = λ̂s(p2). Note

that condition (A9) implies that F̂2s(p2) < F2s(p2). To see this, suppose to the contrary that

F̂2s(p2) ≥ F2s(p2). Then it follows that Q̂2s(p2) ≤ Q2s(p2) from (26), and hence V̂2s(p2) ≥
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V2s(p2). Therefore,

(1− q̃)v′(F2s(p2)) + βq̃u′(y + g + βV2s(p2)) > (1− ˆ̃q)v′(F2s(p2)) + β ˆ̃qu′(y + g + βV2s(p2))

≥ (1− ˆ̃q)v′(F̂2s(p2)) + β ˆ̃qu′(y + g + βV̂2s(p2)),

where the first inequality follows from the postulated ˆ̃q > q̃ and v′(F2s(p2)) = u′(y + g −
Q2s(p2)) > u′(y + g + βV2s(p2)); and the second inequality follows from the postulated

F̂2s(p2) ≥ F2s(p2) and V̂2s(p2) ≥ V2s(p2), a contradiction against (A9). Thus, when p2 ∈ NBs
under ∆̂, it must be the case that F̂2s(p2) < F2s(p2) and Q̂2s(p2) > Q2s(p2), which in turn

implies that Q̂2s(p2)− p2F̂2s(p2) > Q2s(p2)− p2F2s(p2).

Next we consider firm’s expected profits under ∆̂, which can be bounded from below by,

(Q̂1s − p1F̂1s) + (1− p1)

∫ 1

0
[Q̂2s(p2)− p2F̂2s(p2)]dΦ(p2)

>(Q1s − p1F1s) + (1− p1)

∫ 1

0
[Q2s(p2)− p2F2s(p2)]dΦ(p2) = 0,

where the strict inequality comes from the observation that the set NBs under ∆̂ is non-empty

because p̂∗2s < 1, a contradiction to the zero-profit condition (20). This completes the proof.

Proof of Proposition 6

Proof. Before proving the proposition, it is useful to state two intermediate results.

Lemma A5 For all (q,∆) ∈ [0, 1)× [0, 1], p∗2s ≥ p1.

Proof. Suppose to the contrary that there exists a tuple (q,∆) such that p∗2s < p1, then from

Lemma 6 the no-lapsation condition (21) of the period-2 health state p2 = p1 does not bind (i.e.

λs(p1) = 0) and Q2s(p1)− p1F2s(p1) < 0. In addition, we have

v′(F2s(p1)) = u′(y + g −Q2s(p1)) > (1− q̃)u′(y + g −Q2s(p1)) + βq̃u′(y + g + βV2s(p1))

= u′(y − g −Q1s) = v′(F1s),

where the first and third equality follows from equation (25) and (26); the second equality follows

from the first order conditions (24a) and (24d); and the inequality follows from y + g −Q2s(p1) <

y + g + βV2s(p1) and β ∈ [0, 1). Therefore, we must have y + g − Q2s(p1) < y − g − Q1s from

the strict concavity of u(·), or equivalently, Q2s(p1) > Q1s + 2g; and F2s(p1) < F1s from the strict

concavity of v(·). Therefore, firm’s period-1 expected profits can be bounded from above by,

Q1s − p1F1s < (Q2s(p1)− 2g)− p1F2s(p1) ≤ −2g < 0,

a contradiction to (20).
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Lemma A6 Let p∗2s and p̂∗2s be the equilibrium threshold above which second period premiums are

actuarially favorable under ∆ and ∆̂ respectively. Fixing q ∈ [0, 1), if p∗2s < 1 and p̂∗2s = 1, then

∆ > ∆̂.

Proof. For notational convenience, we use the hat symbol to refer to the variables when the degree

of consumer overconfidence is ∆̂. To prove that ∆ > ∆̂, suppose to the contrary that ∆ ≤ ∆̂, or

equivalently q̃ ≥ ˆ̃q. First, notice that p̂∗2s = 1 implies that the period-2 contracts with ∆̂ are spot

contracts for all p2 ∈ [0, 1], and hence Q̂2s(p2) = QFI2 (p2) and Q̂1s = QFI1 , where QFI1 is defined

in the proof of Lemma A3. Next, consider period-2 health state p2 = p∗2s. From the first order

conditions (24a) and (24c), we have

(1− ˆ̃q)u′(y + g −QFI2 (p∗2s)) + β ˆ̃qu′(y + g) ≤ u′(y − g − Q̂1s). (A10)

From Lemma 7, we have

(1− q̃)u′(y + g −Q2s(p
∗
2s)) + βq̃u′(y + g + βV2s(p

∗
2s)) = u′(y − g −Q1s). (A11)

Because p∗2s < 1, we must have Q1s > QFI1 = Q̂1s from (20), which in turn implies that

u′(y − g −Q1s) > u′(y − g − Q̂1s). (A12)

Inequality (A12), together with (A10) an (A11), implies instantly that

(1− ˆ̃q)u′(y + g −QFI2 (p∗2s)) + β ˆ̃qu′(y + g) < (1− q̃)u′(y + g −Q2s(p
∗
2s)) + βq̃u′(y + g + βV2s(p

∗
2s)),

which is a contradiction because the left hand side of the above inequality must be no less than the

right hand side. To see this, note that

(1− ˆ̃q)u′(y + g −QFI2s (p∗2s)) + β ˆ̃qu′(y + g) ≥ (1− q̃)u′(y + g −QFI2s (p∗2s)) + βq̃u′(y + g)

= (1− q̃)u′(y + g −Q2s(p
∗
2s)) + βq̃u′(y + g + βV2s(p

∗
2s)),

where the inequality follows from β ∈ [0, 1) and the postulated q̃ ≥ ˆ̃q; and the equality follows from

Lemma 7. This completes the proof.

Now we can prove Proposition 6. Lemma A5 implies that p∗2s(q,∆) ≥ p1 > 0, and hence

rules out the possibility that p∗2s(q,∆) = 0. Lemma A6 indicates the existence of a threshold of

consumer overconfidence ∆̄ ∈ [0, 1] such that p∗2s(q,∆) < 1 for ∆ > ∆̄ and p∗2s(q,∆) = 1 for ∆ < ∆̄.

Therefore, it suffices to consider the following two cases.

Case I: ∆̄ = 1. Therefore, p∗2s = 1 for all ∆ ∈ [0, 1], implying that the period-2 equilibrium

contracts are spot contracts for all p2 ∈ [0, 1]. As a result, Ws(q,∆) is constant over ∆.

Case II: ∆̄ < 1. If ∆ < ∆̄, the argument in Case I applies. If ∆ > ∆̄, by the implicit

function theorem, p∗2s(q,∆) is continuous and differentiable in both arguments. Because

A11



〈Q2s(p2; q,∆), F2s(p2; q,∆)〉 = 〈QFI2 (p2), FFI2 (p2)〉 if p2 < p∗2s(q,∆) from Proposition 4, the

zero-profit condition (20) can be rewritten as,

[
Q1s(q,∆)− p1F1s(q,∆)

]
+ (1− p1)

∫ 1

p∗2s(q,∆)
[Q2s(p2; q,∆)− p2F2s(p2; q,∆)]dΦ(p2) = 0.

With slight abuse of notation, we drop q and ∆ in Q1s(·), F1s(·), Q2s(·), F2s(·), and p∗2s(·) in

what follows. Taking partial derivative of the above equality with respect to ∆ yields,(
∂Q1s

∂∆
− p1

∂F1s

∂∆

)
+ (1− p1)

∫ 1

p∗2s

(
∂Q2s(p2)

∂∆
− p2

∂F2s(p2)

∂∆

)
dΦ(p2) = 0. (A13)

Similarly, taking partial derivative of Ws(q,∆) with respect to ∆ yields,

∂Ws(q,∆)

∂∆
= v′(F1s)

(
p1
∂F1s

∂∆
− ∂Q1s

∂∆

)
+ (1− p1)

∫ 1

p∗2s

[
(1− q)v′(F2s)

+βqu′(y + g + βV2s)

](
p2
∂F2s

∂∆
− ∂Q2s

∂∆

)
dΦ(p2)

= (1− p1)

∫ 1

p∗2s

(
∂Q2s

∂∆
− p2

∂F2s

∂∆

)[
v′(F1s)− (1− q)v′(F2s)

−βqu′(y + g + βV2s)

]
dΦ(p2)

= (1− p1)(q − q̃)
∫ 1

p∗2s

(
∂Q2s

∂∆
− p2

∂F2s

∂∆

)[
u′(y + g −Q2s)

−βu′(y + g + βV2s)

]
dΦ(p2),

where the second equality follows from (A13) and the third equation follows from the fact

that (1− q̃)v′(F2s(p2)) +βq̃u′(y+ g+βV2s(p2)) = µs = v′(F1s) if p2 ≥ p∗2s. To proceed, define

x(p2) and y(p2) as follows:

x(p2) :=
∂Q2s(p2)

∂∆
− p2

∂F2s(p2)

∂∆
,

and

y(p2) := u′(y + g −Q2s(p2))− βu′(y + g + βV2s(p2)).

Because Q2s(p2) and V2s(p2) are both non-negative, we must have y(p2) ≥ (1−β)u′(y+g) > 0.

Next, we divide the set NBs into two subsets NB+
s and NB−s depending on the sign of x(p2).

Specifically, let

NB+
s := {p2|p2 ∈ NBs, x(p2) ≥ 0},

and

NB−s := {p2|p2 ∈ NBs, x(p2) < 0}.

Note that λs(p2) = γs(p2) = 0 for p2 ∈ NBs. Combing (24b) and (24c) yields,

(1− q̃)u′(y + g −Q2s(p2)) + βq̃u′(y + g + βV2s(p2)) = v′(F1s). (A14)
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Recall that q̃ = q(1−∆). Taking partial derivative of (A14) with respect to ∆ and rearranging

yields,

q
[
u′(y + g −Q2s(p2))− βu′(y + g + βV2s(p2))

]
=v′′(F1s)

∂F1s

∂∆
+ β2q̃u′′(y + g + βV2s(p2))

(
∂Q2s(p2)

∂∆
− p2

∂F2s(p2)

∂∆

)
+ (1− q̃)u′′(y + g −Q2s(p2))

∂Q2s(p2)

∂∆
. (A15)

Suppose that there exist two health states, denoted by pi and pj , such that pi ∈ NB+
s

and pj ∈ NB−s , then we must have x(pi) ≥ 0 > x(pj) by definition. Next, we show that

y(pi) < y(pj). To see this, first note that (26) implies that the partial derivative of Q2s(p2)

and F2s(p2) with respect to ∆ must be of different signs. Therefore, it follows immediately

from the postulated x(pi) ≥ 0 > x(pj) that

∂Q2s(pi)

∂∆
≥ 0 ≥ ∂F2s(pi)

∂∆
,

and
∂Q2s(pj)

∂∆
< 0 <

∂F2s(pj)

∂∆
.

The above two inequalities, together with equation (A15) and the fact that u′′(·) < 0, imply

that,

qy(pi) ≡ q
[
u′(y + g −Q2s(pi))− βu′(y + g + βV2s(pi))

]
= v′′(F1s)

∂F1s

∂∆
+ β2q̃u′′(y + g + βV2s(pi))x(pi)︸ ︷︷ ︸

≤0

+ (1− q̃)u′′(y + g −Q2s(pi))
∂Q2s(pi)

∂∆︸ ︷︷ ︸
≤0

< v′′(F1s)
∂F1s

∂∆
+ β2q̃u′′(y + g + βV2s(pj))x(pj)︸ ︷︷ ︸

>0

+ (1− q̃)u′′(y + g −Q2s(pj))
∂Q2s(pj)

∂∆︸ ︷︷ ︸
>0

≡ qy(pj),

indicating that y(pi) < y(pj). Next, define

y := sup
p2∈NB+s

y(p2), and y := inf
p2∈NB−s

y(p2).

It follows immediately that y ≥ y > 0. Therefore, the partial derivative of Ws(q,∆) with
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respect to ∆ can be further simplified as,

∂Ws(q,∆)

∂∆
= (1− p1)(q − q̃)

∫ 1

p∗2s

x(p2)y(p2)dΦ(p2)

= (1− p1)(q − q̃)

(∫
p2∈NB+s

x(p2)y(p2)dΦ(p2) +

∫
p2∈NB−s

x(p2)y(p2)dΦ(p2)

)

≤ (1− p1)(q − q̃)

(∫
p2∈NB+s

x(p2)ydΦ(p2) +

∫
p2∈NB−s

x(p2)ydΦ(p2)

)

≤ (1− p1)(q − q̃)y
∫ 1

p∗2s

x(p2)dΦ(p2)

= (q − q̃)y
(
p1
∂F1s

∂∆
− ∂Q1s

∂∆

)
,

where the last equality follows from (A13). From Proposition 5, we have that p1
∂F1s
∂∆ −

∂Q1s

∂∆ ≤
0; together with the fact that q ≥ q̃ and y > 0, we must have ∂Ws(q,∆)

∂∆ ≤ 0. This completes

the proof.

Proof of Proposition 7

Proof. Before proving the proposition, it is useful to state several intermediary results. With

slight abuse of notation, we add q into Q1(·), F1(·), Q2(·), and F2(·) in proof of Lemma A7, Lemma

A8, and Lemma A9, to emphasize the fact that the equilibrium contract depends on (q, q̃), or

equivalently, (q,∆).

Lemma A7 Fixing q̃ < 1, limq↑1(1− p1)(1− q)
∫ 1

0 [u(y + g −Q2(p2)) + p2v(F2(p2))]dΦ(p2) = 0.

Proof. It is clear that the result holds if limc→∞ v(·) < ∞. Thus, it suffices to consider the case

where limc→∞ v(c) = ∞. First, it follows from Lemma A4 that Q2(p2; q) = 0 for all p2 ∈ [0, 1] if

q > q0(q̃), where q0(q̃) is defined in Lemma A4. Therefore, we have that

lim
q↑1

Q2(p2; q) = 0, and lim
q↑1

u(y + g −Q2(p2; q)) = u(y + g).

Second, a strictly positive lower bound of F2(p2; q), denoted by κ, can be established. To see this,

note that the first order conditions (7c) and (7d) imply that

v′(F2(p2; q)) ≤ u′(y − g −Q2(p2; q)) ≤ u′(y − g −QFI2 (1)),

where the last inequality follows from the fact that Q2(p2; q) ≤ QFI2 (p2) ≤ QFI2 (1). Therefore, we

have that

F2(p2; q) ≥ v′−1(u′(y − g −QFI2 (1))) =: κ.
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The zero-profit condition (4), together with the fact that 0 ≤ Q1(q)− p1F1(q) ≤ y− g, implies that∫ 1

0
F2(p2; q)dΦ(p2) =

Q1(q)− p1F1(q)

(1− p1)(1− q)
≤ y − g

(1− p1)(1− q)
. (A16)

Therefore, we have that

p2v(κ) ≡
∫ 1

0
p2v(κ)Φ(p2) ≤

∫ 1

0
p2v(F2(p2; q))dΦ(p2)

≤
∫ 1

0

[
v
(
p2F2(p2; q) + (1− p2)κ

)
− (1− p2)v(κ)

]
dΦ(p2)

≤ v

(∫ 1

0
p2F2(p2; q)dΦ(p2) +

∫ 1

0
(1− p2)κdΦ(p2)

)
− (1− p2) v(κ)

≤ v
(

y − g
(1− p1)(1− q)

+ (1− p2)κ

)
− (1− p2) v(κ),

where the second and third inequalities follow from the concavity of v(·); and the last inequality

follows from (A16). Multiplying the above inequality by (1− p1)(1− q) and taking limits as q ↑ 1

on all sides yields,

0 = lim
q↑1

(1− p1)(1− q)p2v(κ)

≤ lim
q↑1

(1− p1)(1− q)
∫ 1

0
p2v(F2(p2))dΦ(p2)

≤ lim
q↑1

(1− p1)(1− q)v
(

y − g
(1− p1)(1− q)

+ (1− p2)κ

)
− lim

q↑1
(1− p1)(1− q)(1− p2)v(κ) = 0.

The last equality holds due to the assumption that limc→∞ v
′(c) = 0. Specifically,

lim
q↑1

(1− p1)(1− q)v
(

y − g
(1− p1)(1− q)

+ (1− p2)κ

)
= lim

x↓0

v
(
y−g
x + (1− p2)κ

)
1
x

= (y − g) lim
x↓0

v′
(
y − g
x

+ (1− p2)κ

)
= 0,

where the second equality follows from L’Hospital rule. Therefore, we have that

lim
q↑1

(1− p1)(1− q)
∫ 1

0
p2v(F2(p2))dΦ(p2) = 0,

which in turn implies that,

lim
q↑1

(1− p1)(1− q)
∫ 1

0
[u(y + g −Q2(p2)) + p2v(F2(p2))]dΦ(p2) = 0.

This completes the proof.
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Lemma A8 Denote the consumer equilibrium welfare in the absence of life settlement market

from environment (q, q̃) by W †(q, q̃). If η(c) ≥ α > 1 for all c > 0, then limq↑1W
†(q, q̃) =

[u(0) + p1v(0)] + (1− p1)u(y + g) for all q̃ ∈ [0, 1).

Proof. It is clear that W †(q, q̃) ≡W (q, q−q̃q ), where W (·) is defined in (18). Fix q̃. It follows from

Lemma A4 that Q2(p2; q) = 0 and λ(p2) = 0 for all p2 ∈ (0, 1] when q > q0(q̃). Combing (7b) and

(7d) yields,

(1− q̃)v′(F2(p2)) = (1− q)v′(F1(q)), (A17)

which implies that F2(p2; q) ≥ F1(q) for all p2 ∈ (0, 1] because q̃ ≤ q. Moreover, from the postulated

η(c) = − v′(c)
cv′′(c) ≥ α, we have that

dc
1
α v′(c)

dc
=

1

α
v′(c) + cv′′(c) ≥ 0.

Therefore, c
1
α v′(c) is weakly increasing in c. Together with F2(p2; q) ≥ F1(q), it follows that

[
F2(p2; q)

] 1
α × v′(F2(p2; q)) ≥

[
F1(q)

] 1
α × v′(F1(q)). (A18)

Equation (A17), together with (A18), implies that,

1− q
1− q̃

=
v′(F2(p2; q))

v′(F1(q))
≥
(

F1

F2(p2; q)

) 1
α

.

Rearranging the above inequality yields,

F2(p2; q) ≥ F1(q)

(
1− q̃
1− q

)α
.

The above inequality, together with the zero-profit condition (4), implies that

p1F1(q) + (1− p1)(1− q)p2F1(q)

(
1− q̃
1− q

)α
≤ p1F1(q) + (1− p1)(1− q)

∫ 1

0
p2F2(p2; q)dΦ(p2)

= Q1(q) ≤ y − g,

where p2 ≡
∫ 1

0 p2dΦ(p2). Rearranging the above inequality yields,

0 < F1(q) ≤ y − g

p1 + (1− p1)(1− q)p2

(
1−q̃
1−q

)α ,
where F1(q) > 0 follows directly from the Inada condition on v(·). Taking limits as q ↑ 1 on all

sides of the above inequality yields,

0 ≤ lim
q↑1

F1(q) ≤ lim
q↑1

y − g

p1 + (1− p1)(1− q)p2

(
1−q̃
1−q

)α = 0,

A16



which indicates that limq↑1 F1(q) = 0, and hence limq↑1Q1(q) = y − g from (9). Therefore, the

consumer equilibrium welfare in the limit as q ↑ 1 is,

lim
q↑1

W †(q, q̃) := lim
q↑1

[
u(y − g −Q1(q)) + p1v(F1(q))

]
+ (1− p1) lim

q↑1

∫ 1

0

{
(1− q)

[
u(y + g −Q2(p2; q)) + p2v(F2(p2; q))

]
+qu(y + g)

}
dΦ(p2)

= [u(0) + p1v(0)] + (1− p1)u(y + g).

This completes the proof.

Lemma A9 Denote the consumer equilibrium welfare in the presence of settlement market from

environment (q, q̃) by W †s (q, q̃). Fix q̃ ∈ [0, 1). Suppose η(c) ≥ α > 1 for all c > 0, then there exists

a threshold q(q̃) such that W †s (q, q̃) > W †(q, q̃) for q ≥ q(q̃).

Proof. It is clear that W †s (q, q̃) ≡ Ws(q,
q−q̃
q ), where W (·) is defined in (30). Fixing q̃, note that

the equilibrium contract in the presence of settlement market does not depend on q; and we drop

q in F1s(·), Q2s(·), and V2s(·) in what follows. It follows directly from equation (30) that

lim
q↑1

W †s (q, q̃) = [u(y − g −Q1s) + p1v(F1s)] + (1− p1)

∫ 1

0
u(y + g + βV2s(p2))dΦ(p2).

Because F1s > 0 and Q1s < y − g, we must have that

u(y − g −Q1s) + p1v(F1s) > u(0) + p1v(0).

The above inequality, together with the fact that u(y + g) ≤ u(y + g + βV2s(p2)), imply that

lim
q↑1

W †(q, q̃) = [u(0) + p1v(0)] + (1− p1)u(y + g)

< [u(y − g −Q1s) + p1v(F1s)] + (1− p1)

∫ 1

0
u(y + g + βV2s(p2))dΦ(p2) = lim

q↑1
W †s (q, q̃),

where the first equality follows from Lemma A8.

To complete the proof, note that fixing q̃ ∈ [0, 1), we have that W †(q̃, q̃) ≥ W †s (q̃, q̃) from (31);

together with the fact that limq↑1W
†(q, q̃) < limq↑1W

†
s (q, q̃), and the continuity of W †(·, ·) and

W †s (·, ·), there exists a threshold q(q̃) ∈ (q̃, 1) such that W †s (q, q̃) > W †(q, q̃) for q ≥ q(q̃).

Now we can prove Proposition 7. Let q := q(0). It follows from Lemma A9 that

Ws(q, 1) ≡W †s (q, 0) > W †(q, 0) ≡W (q, 1) for q ≥ q(0) ≡ q.

Moreover, we have that Ws(q, 0) ≤ W (q, 0) from (31). Fix q ≥ q. Because W (q,∆) and Ws(q,∆)

are both continuous in ∆, we must have Ws(q,∆) > W (q,∆) if ∆ is sufficiently large. This

completes the proof.
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Proof of Lemma 8

Proof. The first order conditions for problem (36) with respect to Q1, F1, Qi2 F
i
2 yield,

u′(y − g −Q1) = µ, (A19a)

v′(F1) = µ, (A19b)

u′(y + g −Qi2) =
φi

φ̃i
µ+

λi + γi

(1− p1)(1− q)φ̃i
, (A19c)

v′(F i2) =
φi

φ̃i
µ+

λi

(1− p1)(1− q)φ̃i
, (A19d)

where µ, λi and γi are the Lagrange multipliers for constraint (37), (38) and (39), with µ > 0,

λi ≤ 0 and γi ≥ 0 satisfying complementary slackness conditions:

λi[Q
i
2 − piF i2] = 0, (A20a)

γiQ
i
2 = 0. (A20b)

For the first part of the lemma, notice that FH2 ≥ FFI2 (pH). Therefore, v′(FH2 ) ≤ v′(FFI2 (pH)).

Similarly, we must have F1 ≤ FFI1 , where FFI1 is defined in the proof of Lemma A3. Therefore,

v′(F1) ≥ v′(FFI1 ). Let

∆̄m := max{1− v′(FFI1 )/v′(FFI2 (pH)), 0}.

Then for ∆m > ∆̄m, we must have

λH

(1− p1)(1− q)φ̃H
= v′(FH2 )− φH

φ̃H
µ = v′(FH2 )− 1

1−∆m
v′(F1)

≤ v′(FFI2 (pH))− 1

1−∆m
v′(FFI1 ) < 0,

where the first equality follows from (A19d); the second equality follows from (A19b) and the defi-

nition of φH and φ̃H ; and the last inequality follows directly from the definition of ∆̄m. Therefore,

we must have that λH < 0, implying QH2 = pHF
H
2 > 0 and hence QH2 = QFI2 (pH).

For the second part of the lemma, denote the solution to u′(y−g−Q1) = v′(F1) and Q1−p1F1 =

(y − g)/2 by (Q̌1, F̌1), and let

φ̄L := min

{
1,

y − g
2pL(1− p1)(1− q)v′−1(v′(y + g))

,
∆̄mu

′(y + g)

u′(y − g − Q̌1)− (1− ∆̄m)u′(y + g)

}
.

Next, we show that QL2 = 0 if ∆m > ∆̄m and φL < φ̄L. Suppose to the contrary that QL2 > 0,

then γL = 0 and full-event insurance is obtained for state pL, which in turn implies that FL2 =
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v′−1(u′(y + g −QL2 )) < v′−1(u′(y + g)). From the zero-profit condition (37), we must have

Q1 − p1F1 = −(1− p1)(1− q)
∑
i=L,H

φi[Q
i
2 − piF i2]

= −(1− p1)(1− q)φL[QL2 − pLFL2 ]

< −(1− p1)(1− q)φL[0− pLv′−1(u′(y + g))] <
y − g

2
,

where the second equality follows from the fact that QH2 = QFI2 (pH) and FH2 = FFI2 (pH) for

∆m > ∆̄m; the first inequality follows from QL2 > 0 and FL2 < v′−1(u′(y + g)); and the last

inequality follows from φL < φ̄L. This implies instantly that Q1 < Q̌1; together with the first order

condition (A19c), we must have

λL + γL

(1− p1)(1− q)φ̃L
= u′(y + g −QL2 )− φL

φ̃L
µ

= u′(y + g −QL2 )− φL
φL + ∆m(1− φL)

u′(y − g −Q1)

≥ u′(y + g)− φL
φL + ∆̄m(1− φL)

u′(y − g − Q̌1) > 0,

where the first inequality follows from ∆m > ∆̄m, QL2 > 0 and Q1 < Q̌1; and the second inequality

follows from φL < φ̄L. Because λL ≤ 0, we must have γL > 0. This implies instantly that QL2 = 0,

a contradiction to the postulated QL2 > 0. This completes the proof.

Proof of Lemma 9

Proof. The proof is similar to that in Lemma 8. The first order conditions with respect to Q1s,

F1s, Q
i
2s F

i
2s yield,

u′(y − g −Q1s) = µs, (A21a)

v′(F1s) = µs, (A21b)

(1− q)u′(y + g −Qi2s) + βqu′(y + g + βV i
2s) =

φi

φ̃i
µs +

λis + γis

(1− p1)φ̃i
for i ∈ {H,L} (A21c)

(1− q)v′(F i2s) + βqu′(y + g + βV i
2s) =

φi

φ̃i
µs +

λis

(1− p1)φ̃i
for i ∈ {H,L}. (A21d)

where µs, λis and γis are the Lagrange multipliers for constraint (41), (42) and (43), with µs > 0,

λis ≤ 0 and γis ≥ 0 satisfying complementary slackness conditions:

λis[Q
i
2s − piF i2s] = 0 for i ∈ {H,L} (A22a)

γisQ
i
2s = 0 for i ∈ {H,L}. (A22b)

By the same argument as in the proof of Lemma 8, we have that FH2s ≥ FFI2 (pH), and F1s ≤ FFI1 ,
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which in turn implies that v′(FH2s ) ≤ v′(FFI2 (pH)) and v′(F1s) ≥ v′(FFI1 ). Let

¯̄∆m := max

{
1− v′(FFI1 )

(1− q)v′(FFI2 (pH)) + βqu′(y + g)
, 0

}
.

For ∆m > ¯̄∆m, we have that

λHs

(1− p1)(1− q)φ̃H
= (1− q)v′(FH2s ) + βqu′(y + g + βV H

2s )− φH

φ̃H
v′(F1s)

≤ (1− q)v′(FFI2 (pH)) + βqu′(y + g)− 1

1−∆m
v′(FFI1 ) < 0,

where the equality follows from (A21b), (A21c), and (A21d); the first inequality follows from

V H
2s ≥ 0; and the second inequality follows instantly from the definition of ¯̄∆m. Therefore, λHs < 0,

implying that QH2s = pHF
H
2s > 0 and hence QH2s = QFI2 (pH). The proof for QL2s = 0 is similar to the

counterpart in Lemma 8 and is omitted for brevity.

Proof of Proposition 8

Proof. Lemma 8 and Lemma 9 state that QL2 = QL2s = 0, QH2 = QH2s = QFI2 (pH), and FH2 = FH2s =

FFI2 (pH) if ∆m is sufficiently large and φL is sufficiently small. Therefore, in order to calculate

consumer equilibrium welfare, it remains to pin down 〈Q1, F1, F
L
2 〉 and 〈Q1s, F1s, F

L
2s〉.

In the absence of life settlement market, 〈Q1, F1, F
L
2 〉 is fully characterized by the following

three equations:

u′(y − g −Q1) = v′(F1),

Q1 − p1F1 = (1− p1)(1− q)φLpLFL2 ,

v′(FL2 ) =
φL

φ̃L
v′(F1).

Exploiting the constant IES functional form of u (·) and v (·), it follows immediately that Q1 =

y − g − F1. Moreover, 〈F1, F
L
2 〉 can be solved as follows:

FL2 =
y − g

(1 + p1)

(
φL
φ̃L

)ρ
+ (1− p1)(1− q)φLpL

, and F1 =

(
φL

φ̃L

)ρ
FL2 .

Therefore, consumer equilibrium welfare in the absence of life settlement market can be derived as,

Wm(φL,∆m) = [u(y − g −Q1) + p1v(F1)]

+ (1− p1)
∑
i=L,H

φi{(1− q)[u(y + g −Qi2) + piv(F i2)] + qu(y + g)}

= (1 + p1)v(F1) + (1− p1)φL(1− q)pLv(FL2 ) +M,
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where

M := (1− p1)φLu(y + g)

+ (1− p1)φH

{
(1− q)

[
u(y + g −QFI2 (pH)) + pHv(FFI2 (pH))

]
+ qu(y + g)

}
.

Similarly, in the presence of life settlement market, 〈Q1s, F1s, F
L
2s〉 is fully characterized by the

following three equations:

u′(y − g −Q1s) = v′(F1s),

Q1s − p1F1s = (1− p1)φLpLF
L
2s,

(1− q)v′(FL2s) + βqu′(y + g + βV L
2s) =

φL

φ̃L
v′(F1s).

Exploiting the constant IES functional form of u (·) and v (·), it follows immediately that Q1s =

y − g − F1s. Moreover, 〈F1s, F
L
2s〉 can be solved as follows:

FL2s =
y − g

(1 + p1)

(
φL
φ̃L
× 1

1−q

)ρ
+ (1− p1)(1− q)φLpL

, and F1s =

(
φL

φ̃L
× 1

1− q

)ρ
FL2s.

Therefore, consumer equilibrium welfare in the presence of life settlement market can be derived

as,

Wm
s (φL,∆m) = [u(y − g −Q1s) + p1v(F1s)]

+ (1− p1)
∑
i=L,H

φi{(1− q)[u(y + g −Qi2s) + piv(F i2s)] + qu(y + g)}

= (1 + p1)v(F1s) + (1− p1)φL(1− q)pLv(FL2s) +M.

Carrying out the algebra, we see that

Wm(φL,∆m)−Wm
s (φL,∆m)

=
[
(1 + p1)v(F1s) + (1− p1)φL(1− q)pLv(FL2s)

]
−
[
(1 + p1)v(F1) + (1− p1)φL(1− q)pLv(FL2 )

]
=v(FL2s)

(1 + p1)

(
φL

φ̃L
× 1

1− q

)ρ−1

+ (1− p1)φL(1− q)pL


− v(FL2 )

(1 + p1)

(
φL

φ̃L

)ρ−1

+ (1− p1)φL(1− q)pL

 .
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It can be verified that Wm
s (φL,∆m) > Wm(φL,∆m) is equivalent to


(1 + p1)

(
φL
φ̃L
× 1

1−q

)ρ
+ (1− p1)(1− q)φLpL

(1 + p1)

(
φL
φ̃L

)ρ
+ (1− p1)(1− q)φLpL


1− 1

ρ

<

(1 + p1)

(
φL
φ̃L
× 1

1−q

)ρ−1

+ (1− p1)φL(1− q)pL

(1 + p1)

(
φL
φ̃L

)ρ−1

+ (1− p1)φL(1− q)pL
.

Therefore, it remains to show that the above inequality holds when φL is sufficiently small and ∆m

is sufficiently large. By continuity, it suffices to show that the above inequality holds when φL is

sufficiently small and ∆m = 1 (i.e., φ̃L = 1), which is equivalent to,

(1 + p1)
(
φL × 1

1−q

)ρ
+ (1− p1)(1− q)φLpL

(1 + p1) (φL)ρ + (1− p1)(1− q)φLpL


1− 1

ρ

<
(1 + p1)

(
φL × 1

1−q

)ρ−1
+ (1− p1)φL(1− q)pL

(1 + p1) (φL)ρ−1 + (1− p1)φL(1− q)pL
.

(A23)

Case I: 1 < ρ ≤ 2. From L’Hospital rule, the left hand side of (A23) is approaching 1 as φL ↓ 0.

Similarly, as φL ↓ 0, the right hand side of (A23) is approaching(
1

1− q

)ρ−1

> 1

if 1 < ρ < 2; and is equal to

1+p1
1−q + (1− p1)(1− q)pL

(1 + p1) + (1− p1)(1− q)pL
> 1

if ρ = 2 for all φL ∈ (0, 1). Hence, (A23) holds if φL is sufficiently small.

Case II: ρ > 2. Denote 1−p1
1+p1

(1− q)pL by τ . Then (A23) is equivalent to

g(φL) := log

[
(φL)ρ−2

(1− q)ρ−1
+ τ

]
− log

[
(φL)ρ−2 + τ

]

− ρ− 1

ρ

log

[
(φL)ρ−1

(1− q)ρ
+ τ

]
− log

[
(φL)ρ−1 + τ

] > 0.

Carrying out the algebra, g′(φL) > 0 is equivalent to

φL <
p(p− 2)

(p− 1)2

 1
(1−q)ρ−1

φρ−2
L

(1−q)ρ−1 + τ
− 1

φρ−2
L + τ

/
 1

(1−q)ρ

φρ−1
L

(1−q)ρ + τ
− 1

φρ−1
L + τ

 . (A24)
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Note that as φL ↓ 0, the right hand side of the above inequality is approaching

p(p− 2)

(p− 1)2

[
1

(1− q)ρ−1
− 1

]/[ 1

(1− q)ρ
− 1

]
> 0,

and the left hand side is approaching 0. Therefore, (A24) holds, or equivalently, g(φ) is

strictly increasing in φL, if φL is small enough; together with the fact that g(0) = 0, there

exists a threshold of φL below which g(φ) > 0.

Case III: ρ < 1. The proof is similar to that of Case II and is omitted.
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