
NBER WORKING PAPER SERIES

THE EMERGENCE OF MARKET STRUCTURE

Maryam Farboodi
Gregor Jarosch
Robert Shimer

Working Paper 23234
http://www.nber.org/papers/w23234

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2017

This paper was previously circulated under the title “Meeting Technologies in Decentralized 
Asset Markets”. We are grateful to Fernando Alvarez, Markus Brunnermeier, Xavier Gabaix, 
Ricardo Lagos, Pierre-Olivier Weill, Randall Wright, and audiences at various seminars and 
conferences for their thoughts and comments. The views expressed herein are those of the authors 
and do not necessarily reflect the views of the National Bureau of Economic Research.

At least one co-author has disclosed a financial relationship of potential relevance for this 
research. Further information is available online at http://www.nber.org/papers/w23234.ack

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2017 by Maryam Farboodi, Gregor Jarosch, and Robert Shimer. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



The Emergence of Market Structure
Maryam Farboodi, Gregor Jarosch, and Robert Shimer
NBER Working Paper No. 23234
March 2017
JEL No. E44,G12,G20

ABSTRACT

What market structure emerges when market participants can choose the rate at which they 
contact others? We show that traders who choose a higher contact rate emerge as intermediaries, 
earning profits by taking asset positions that are misaligned with their preferences. Some of them, 
middlemen, are in constant contact with other traders and so pass on their position immediately. 
As search costs vanish, traders still make dispersed investments and trade occurs in 
intermediation chains, so the economy does not converge to a centralized market. When search 
costs are a differentiable function of the contact rate, the endogenous distribution of contact rates 
has no mass points.  When the function is weakly convex, faster traders are misaligned more 
frequently than slower traders.  When the function is linear, the contact rate distribution has a 
Pareto tail with parameter 2 and middlemen emerge endogenously. These features arise not only 
in the (inefficient) equilibrium allocation, but also in the optimal allocation. Moreover, we  show 
that intermediation is key to the emergence of the rest of the properties of this market structure.

Maryam Farboodi
26 Prospect Ave
Bendheim Center for Finance
Princeton University
Princeton, NJ 08540
farboodi@princeton.edu

Gregor Jarosch
Department of Economics
Stanford University
579 Serra Mall
Palo Alto, CA 94305
and NBER
gregorjarosch@gmail.com

Robert Shimer
Department of Economics
University of Chicago
1126 East 59th Street
Chicago, IL 60637
and NBER
shimer@uchicago.edu



1 Introduction

This paper examines an over-the-counter market for assets where traders periodically meet

in pairs with the opportunity to trade (Rubinstein and Wolinsky, 1987). We are interested in

understanding the origins and implications of the observed heterogeneity in these markets,

whereby we mean that some individuals trade much more frequently and with many more

partners than others do. In particular, real world trading networks appear to have a core-

periphery structure. Traders at the core of the network act as financial intermediaries,

earning profits by taking either side of a trade, while traders in the periphery trade less

frequently and their trades are more geared towards obtaining an asset position aligned with

their portfolio needs.

We consider a model economy with a unit measure of traders each of whom seeks to

trade a single asset for an outside good (money). Following Duffie, Gârleanu and Pedersen

(2005) and a large subsequent literature, we assume traders have an intrinsic reason for trade,

differences in the flow utility they receive from holding the asset. Moreover, this idiosyncratic

valuation changes over time, creating a motive for continual trading and retrading. We add

to this a second source of heterogeneity, namely in contact rates. We allow for traders to

differ in terms of the frequency at which they meet others. In addition, we assume that the

likelihood of contacting any particular trader is proportional to her contact rate.

Under these assumptions, we show that intermediation arises naturally. When two traders

who have the same flow valuation for the asset meet, the trader who has a higher contact

rate acts as an intermediary, leaving the meeting with holdings that are further from the

intrinsically desired one. This occurs in equilibrium because traders with a faster contact rate

expect to have more future trading opportunities and so place less weight on their current

flow payoff. Intermediation thus moves misaligned asset holdings towards traders with higher

contact rates, which improves future trading opportunities. Thus the equilibrium displays

a core-periphery structure where the identity of the market participants at the core—fast

traders—remains stable over time.1

The full model recognizes that traders’ contact rates are endogenous. We consider an

initial, irreversible investment in this meeting technology. For example, traders may invest

1Recent empirical work documents that bilateral asset markets frequently exhibit a core-periphery network
structure where few central institutions account for most of the turnover while the majority of market
participants remains at the fringe. For the federal funds market, see Bech and Atalay (2010), Allen and
Saunders (1986), and Afonso, Kovner and Schoar (2013). For evidence on international interbank lending, see
Boss, Elsinger, Summer and Thurner (2004), Chang, Lima, Guerra and Tabak (2008), Craig and Von Peter
(2014), and in ’t Veld and van Lelyveld (2014). For credit default swaps Peltonen, Scheicher and Vuillemey
(2014) and Siriwardane (2015), for the corporate bond market Di Maggio, Kermani and Song (2015), for the
municipal bond market Li and Schürhoff (2014), and for asset-backed securities Hollifield, Neklyudov and
Spatt (2014).
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in having faster communication technologies, better visibility through location choices or

advertisement, or relationships with more counterparties. While we assume throughout that

traders are ex ante identical, we recognize that they may choose different contact rates, as

in a mixed strategy equilibrium. A higher contact rate gives more trading opportunities but

we assume it also incurs a higher sunk cost.

We prove that if the cost is a differentiable function of the contact rate, then any equi-

librium allocation must have a continuous distribution of contact rates. The force pushing

towards heterogeneity is the gains from intermediation. If everyone else chooses the same

contact rate, a trader who chooses a slightly faster contact rate acts as an intermediary for

everyone else, repeatedly buying and selling irrespective of her intrinsic valuation; while a

trader who chooses a slightly slower contact rate never trades once her asset position is alig-

ned with her preferences. The marginal returns to additional meetings thus jump discretely

at any mass point, inconsistent with equilibrium under a differentiable cost function. In

addition, we show that if the cost function is weakly convex, the equilibrium rate of misalig-

nment is strictly increasing in the contact rate. That is, a higher contact rate comes with an

inferior asset position (relative to fundamentals) and derives its benefits from trading profits.

In turn, traders on the fringe of the trading network have well-aligned asset positions but

pay for the intermediation services provided by the core through bid-ask spreads.

We then turn to the natural assumption that the cost is proportional to the contact rate.

We prove that the equilibrium distribution of contact rates has a positive lower bound and

is unbounded above, with many traders choosing a high contact rate: First, the right tail of

the contact rate distribution is Pareto with tail parameter 2, so the variance in contact rates

is infinite. To the best of our knowledge, we are the first to show that a power law is an

equilibrium outcome when homogeneous individuals choose their search technology under

linear cost. This result carries over to the distribution of trading frequencies and connects

our theory tightly with empirical evidence on frictional asset markets.2 Second, we show that

a zero measure of traders chooses an infinite contact rate, giving them continuous contact

with the market. These “middlemen” account for a positive fraction of all meetings, earning

zero profits in each meeting but making it up on volume. We stress that ex ante there

is no difference between middlemen (the core of the network) and the periphery; however,

they choose to make different investments and so ultimately play a very different role in the

2There is ample empirical evidence on concentration of trade among very few financial institutions. The
largest sixteen derivatives dealers intermediate more than 80 percent of the global total notional amount of
outstanding derivatives (Mengle, 2010; Heller and Vause, 2012). Bech and Atalay (2010) document that the
distribution of trading frequencies in the federal funds markets is well-approximated by a power law, while
Peltonen, Scheicher and Vuillemey (2014) find that the degree distribution of the aggregate credit default
swap network can be scale-free. For additional financial market variables that are—at least in the tail—well
approximated by power laws, see Gabaix, Gopikrishnan, Plerou and Stanley (2006).
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market.

We then demonstrate that these forces remain important even in an environment where

the cost per contact goes to zero, so search frictions vanish. In this frictionless limit, 27

percent of contacts are with middlemen. Moreover, middlemen account for 41 percent of

trading volume and intermediation chains are long: whenever a trader experiences a prefe-

rence shock, it gives rise to a sequence of trades that end only when two middlemen swap

the asset. As a consequence, trading volume far exceeds the minimal amount of reallocation

needed to offset preference shocks.

We complement these findings with some numerical results. First, we show that both

the distribution of contact rates as well the distribution of trading frequencies are globally

well-approximated by a Pareto distribution with tail parameter 2. Second, we develop a

numerical proof that the equilibrium exists and is unique.

We then consider optimal trading patterns and investments. We prove that the equili-

brium trading pattern—passing misalignment to traders with higher contact rates—is opti-

mal. We also show that all the qualitative features of the equilibrium allocation carry over

to the optimum: If costs are a differentiable function of the contact rate, there is optimally

no mass points in the distribution of contact rates. If the cost function is weakly convex, fas-

ter traders optimally have asset positions that are increasingly detached from their intrinsic

preferences. If costs are proportional to contact rates, the optimal contact rate distribution

has a Pareto tail with parameter 2 and a zero measure of middlemen account for a positive

fraction of all meetings. As costs converge to zero, middlemen optimally account for 37

percent of the meetings and 45 percent of trading volume, so trading volume still far exceeds

the minimal amount of reallocation needed to offset preference shocks.

The equilibrium is inefficient due to search externalities. Pigouvian taxes highlight the

inefficiencies: traders only capture half the surplus in each meeting, leading to underinvest-

ment in contacts; but they do not internalize a business stealing effect, which induces them

to overinvest in contacts. We numerically contrast the equilibrium with the optimum and

find systematic overinvestment: The equilibrium has too few slow types and too much inter-

mediation The Pigouvian transfer offsets this by altering equilibrium prices in favor of the

buyers of intermediation services, namely slower traders.

Finally, we emphasize the connection between intermediation and dispersion in contact

rates. We consider an economy in which traders with the same desired asset holdings never

meet, which eliminates the possibility of intermediation in our model economy. Under these

conditions, we show that if the cost is a weakly convex function of the contact rate, all

traders choose the same contact rate, both in equilibrium and optimally. Thus dispersion in

contact rates and intermediation are intimately connected: if there is dispersion in contact
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rates, faster traders act as intermediaries; and if intermediation is permitted, contact rates

are naturally disperse.

Related Work This paper is closely related to a growing body of work on trade and

intermediation in markets with search frictions. Rubinstein and Wolinsky (1987) were the

first to model middlemen in a frictional goods market. We share with them the notion

that intermediaries have access to a superior search technology.3 In two important papers

Duffie, Gârleanu and Pedersen (2005, 2007) study an over-the-counter asset market where

time-varying taste leads to trade. This is also the fundamental force giving rise to gains

from trade in our setup. Much of the more recent theoretical work extends their basic

framework to accommodate newly available empirical evidence on trade and intermediation

in over-the-counter markets.

The decentralized interdealer market in Neklyudov (2014) features dealers with hetero-

geneous contact rates. The same dimension of heterogeneity is present in Üslü (2016) who

also allows for heterogeneity in pricing and inventory holdings.4 As in our framework, fast

dealers in these setups are more willing to take on misaligned asset positions, thus endo-

genously emerging as intermediaries. The marketplace features intermediation chains and

a core-periphery trading network with fast traders at the core. We add to this literature

by first showing that heterogeneity in meeting technologies arises naturally to leverage the

gains from intermediation even with ex-ante homogeneous agents, and second by showing

how the endogenous choice of contact rates disciplines key features of the contact rate dis-

tribution. Additionally, our normative analysis shows that both technological heterogeneity

and intermediation by those with a high contact rate are socially desirable.

Hugonnier, Lester and Weill (2016) model a market with a continuum of flow valuations

which gives rise to intermediation chains; market participants with extreme flow value con-

stitute the periphery and those with moderate flow value constitute the core. Afonso and

Lagos (2015) similarly has endogenous intermediation because banks with heterogeneous as-

set positions buy and sell depending on their counterparties’ reserve holdings. In contrast to

these setups, ours offers a theory where the identity of the individuals at the center of the

intermediation chain remains stable over time, a key empirical feature of many decentralized

asset markets (see, for instance, Bech and Atalay (2010) for the federal funds market.)

The identity of the institutions at the core is also stable in Chang and Zhang (2016),

where agents differ in terms of the volatility of their taste for an asset and those with less

3Nosal, Wong and Wright (2016) extend Rubinstein and Wolinsky (1987) to allow for heterogeneous
bargaining power and storage cost but assume homogeneous contact rates.

4A related literature studies the positive and normative consequences of high-speed trading in centralized
financial markets; see, for instance, Pagnotta and Philippon (2015).
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volatile valuation act as intermediaries. The same is true in our framework but heterogeneity

in the volatility of an agent’s taste arises endogenously since a higher contact rate buffers

the impact of the flow value on the net valuation of asset ownership.

Farboodi, Jarosch and Menzio (2016) model an environment where some have superior

bargaining power and emerge as middlemen due to dynamic rent extraction motives which

are, at best, neutral for welfare. In contrast, intermediation in our setup improves upon the

allocation since misaligned asset positions are traded toward those who are more efficient at

offsetting them. They also study an initial investment stage that determines the distribution

of bargaining power in the population, but restrict the distribution to two points. We allow

for a continuous distribution of contact rates and prove that this is consistent with both

equilibrium and optimum.

Furthermore, some of the theoretical work on intermediation in over-the-counter markets

features exogenously given middlemen who facilitate trade and have access to a frictionless

interdealer market (Duffie, Gârleanu and Pedersen, 2005; Weill, 2008; Lagos and Rocheteau,

2009). We show that such middlemen who are in continuous contact with the market are a

natural equilibrium outcome when homogeneous agents invest into a search technology.

Other recent work studies the structure of financial markets using explicit network forma-

tion models, which also generate core-periphery network structures (Farboodi, 2015; Wang,

2017) or star networks (Babus and Hu, 2015). In this class of models, agents (traders, banks)

form explicit links, over which trade can be executed, at either an explicit cost—the cost

of maintaining a relationship as in Babus and Hu (2015) and Wang (2017)—or an implicit

cost—the counterparty risk in Farboodi (2015). The cost of acquiring a contact rate in our

random search setup is closely related to the price of links in this network formation literature

following Jackson (2010). In this body of work, multiplicity arises frequently whereas our

equilibrium is unique, at least in the case of a linear cost function. In addition, the network

models tend to generate a somewhat extreme core-periphery structure, where traders take

on one of two roles, the core or the periphery; and traders in the periphery only trade with

those in the core. Our model predicts a continuous distribution of trading frequencies and

predicts that trades occur both within the periphery and within the core, as well as between

core and periphery.

In summary, while the theoretical literature on frictional asset markets has offered a

variety of economic mechanisms that give rise to empirically observed intermediation chains

and core-periphery trading structures,our analysis offers novel insights along four distinct

dimensions: (i) time-invariant heterogeneity arises endogenously to leverage the gains from

trade; (ii) middlemen with continuous market contact arise endogenously; (iii) the tail of the

endogenous distribution of contact and trading rates is Pareto and our theory hence connects
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with the empirical regularities in a very tight way; (iv) our normative analysis shows that

both intermediation and heterogeneity in the search technology are closely interrelated and

socially desirable.

Finally, the finding that both the equilibrium and optimal allocations have a Pareto

tail relates the paper to a large literature in economics that explores theoretical mecha-

nisms which give rise to endogenous power law distributions (Gabaix, 1999; Eeckhout, 2004;

Geerolf, 2016). Many other economically important regularities, such as the distributi-

ons of city and firm size and the distributions of income and wealth, are empirically well-

approximated by power laws. To the best of our knowledge, the mechanism giving rise to

the Pareto tail in our environment is novel and unrelated to the ones that are established in

the literature (see Gabaix, 2009, 2016, for an overview).

Outline The rest of the paper is organized as follows: Section 2 lays out the model. Section

3 defines and characterizes the equilibrium. Section 4 discusses the socially optimal allocation

and how it can be decentralized. Section 5 considers an economy where intermediation is

prohibited. Section 6 concludes.

2 Model

We study a marketplace where time is continuous and extends forever. A unit measure of

traders have preferences defined over their holdings of an indivisible asset and their consump-

tion or production of an outside good. Traders have rate of time preference r. The supply of

the asset is fixed at 1
2

and individual traders’ holdings are restricted to be m ∈ {0, 1}, so at

any point in time half the traders hold the asset and half do not. Traders have time-varying

taste i ∈ {h, l} for the asset and receive flow utility δi,m when they are in state (i,m). We

assume that ∆ ≡ 1
2

(
δh,1 +δl,0−δh,0−δl,1) > 0, which implies that traders in the high state are

the natural asset owners. Preferences over net consumption of the outside good are linear,

so that good effectively serves as transferable utility when trading the asset.

Traders’ taste switches between l and h independently at an identical rate γ > 0. This

implies that at any point in time in a stationary distribution, half the traders are in state h

and half are in state l. Thus, in a frictionless environment, the supply of assets is exactly

enough to satiate the traders in state h. Search frictions prevent this from happening.

Instead a typical trader meets another one according to a Poisson process with arrival rate

λ ≥ 0. Trade may occur only at those moments. We assume that traders irrevocably commit

to a time-invariant contact rate λ ∈ [0,∞] at time 0. A high contact rate is costly: a trader

who chooses a contact rate λ pays a cost c(λ) > 0 per meeting.
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We allow for the possibility that different traders choose different contact rates. Let

G(λ) denote the cumulative distribution function of contact rates in the population and let

Λ denote the average contact rate. Importantly, we allow for the presence of a zero measure

of traders who are middlemen, choosing λ =∞. Middlemen are in continuous contact with

the market and may account for a positive fraction of all meetings. That is, we require that

Λ ≥
∫∞

0
λdG(λ) and allow the inequality to be strict, in which case there are middlemen.

Search is random, so whom the trader meets is independent of her current taste and asset

holding, but is proportional to the other trader’s contact rate. More precisely, conditional

on meeting a counterparty, the counterparty’s contact rate falls into some interval [λ1, λ2]

with probability
∫ λ2

λ1

λ
Λ
dG(λ). In addition, the probability of meeting a middleman is 1 −∫∞

0
λ
Λ
dG(λ). For any function f : [0,∞] → R, it will be convenient to define the expected

value of f in a meeting:

E(f(λ′)) ≡
∫ ∞

0

λ′

Λ
f(λ′)dG(λ′) +

(
1−

∫ ∞
0

λ′

Λ
dG(λ′)

)
f(∞)

This explicitly accounts for the possibility both of meeting a regular trader and of meeting

a middleman. When Λ = 0, so (almost) everyone chooses a zero contact rate, we assume

that a trader who chooses a positive contact rate is equally likely to meet any of the other

traders and let E(f(λ′)) = f(0), the average value of f in the population.

When two traders meet, their asset holdings, preferences, and contact rates are observed

by each. If only one trader holds the asset, as will be the case in half of all meetings, the

traders may swap the asset for the outside good. Whether trade occurs and what the terms

of trade are is determined according to the (symmetric) Nash bargaining solution.

3 Equilibrium

Our analysis of equilibrium is broken into nine subsections. We start by characterizing the

value functions and flow of workers between different states. We then turn our focus to a

symmetric equilibria, where a trader’s behavior only depends on her contact rate and whether

her asset holdings are well-aligned with her preferences. We next explain how we make the

distribution of contact rates endogenous and define an equilibrium. The remainder of the

section develops seven propositions which characterize the equilibrium. Proposition 1 focuses

on which trades occur given a contact rate distribution, while Propositions 2–7 characterize

the contact rate distribution under different restrictions on the cost function c. The last

section characterizes the equilibrium numerically when the cost function is linear.
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3.1 Value Functions and Flows

In equilibrium, we need to find two objects.5 First, let 1λ
′,i′,m′

λ,i,m denote the probability that

a trader with contact rate λ ∈ [0,∞] in preference state i ∈ {h, l} with asset holdings

m ∈ {0, 1} trades when she contacts a trader with contact rate λ′ ∈ [0,∞] in preference

state i′ ∈ {l, h} with asset holdings m′ ∈ {0, 1}. Second, let pλ
′,i′,m′

λ,i,m denote the transfer

of the outside good from {λ, i,m} to {λ′, i′,m′} when such a trade takes place. Feasibility

requires that 1λ
′,i′,m′

λ,i,m = 1λ,i,mλ′,i′,m′ and pλ
′,i′,m′

λ,i,m + pλ,i,mλ′,i′,m′ ≥ 0, where the latter condition ensures

that there are no outside resources available to the trading pair. The trading probability

and price are determined by Nash bargaining.

Let vλ,i,m denote the present value of the profits of a trader {λ, i,m}. This is defined

recursively by

rvλ,i,m = δi,m + γ
(
vλ,∼i,m − vλ,i,m

)
+ λ

∑
i′∈{h,l}

∑
m′∈{0,1}

E
(
1λ
′,i′,m′

λ,i,m µλ′,i′,m′
(
vλ,i,m′ − vλ,i,m − pλ

′,i′,m′

λ,i,m

))
− λc(λ). (1)

The left hand side of equation (1) is the flow value of the trader. This comes from four

sources, listed sequentially on the right hand side. First, she receives a flow payoff δi,m

that depends on her preferences and asset holdings. Second, her preferences shift from i

to ∼ i at rate γ, in which case the trader has a capital gain vλ,∼i,m − vλ,i,m. Third, she

meets another trader at rate λ, in which case they may swap asset holdings in return for

a payment. Here µλ′,i′,m′ denotes the endogenous fraction of traders with contact rate λ′

who are in preference state i′ and have asset holding m′. If the two agree to trade, with

probability 1λ
′,i′,m′

λ,i,m , the trader has a capital gain from swapping assets and transferring the

outside good, vλ,i,m′ − vλ,i,m − pλ
′,i′,m′

λ,i,m . Finally, the trader pays a cost c(λ) in each meeting.

The fraction of type λ traders in different states, µλ,i,m, also depends on the trading

probabilities through balanced inflows and outflows:γ + λ
∑

i′∈{h,l}

E
(
1λ
′,i′,1−m
λ,i,m µλ′,i′,1−m

)µλ,i,m

= γµλ,∼i,m + λ
∑

i′,∈{h,l}

E
(
1λ
′,i′,m
λ,i,1−mµλ′,i′,m

)
µλ,i,1−m. (2)

A trader exits the state {λ, i,m} either when she has a preference shock, at rate γ, or when

she meets and succeeds in trading with another trader with the opposite asset holding. A

5We focus throughout on steady states.
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trader enters this state when she is in the opposite preference state and has a preference

shock or she is in the opposite asset holding state and trades.

Nash bargaining imposes that trade occurs whenever it makes both parties better off, and

that that trading prices equate the gains from trade without throwing away any resources.

That is, if there are prices pλ
′,i′,m′

λ,i,m + pλ,i,mλ′,i′,m′ = 0 such that vλ,i,m′ − vλ,i,m ≥ pλ
′,i′,m′

λ,i,m and

vλ′,i′,m − vλ′,i′,m′ ≥ pλ,i,mλ′,i′,m′ , trade occurs at a prices such that vλ,i,m′ − vλ,i,m − pλ
′,i′,m′

λ,i,m =

vλ′,i′,m − vλ′,i′,m′ − pλ,i,mλ′,i′,m′ . Otherwise there is no trade. It follows immediately that

1λ
′,i′,m′

λ,i,m =

1

0
if vλ,i,m′ + vλ′,i′,m ≷ vλ,i,m + vλ′,i′,m′ ; (3)

and that the trading prices satisfy

pλ
′,i′,m′

λ,i,m =
1

2
(vλ,i,m′ + vλ′,i′,m′ − vλ,i,m − vλ′,i′,m)

Of course, if m = m′, there is no possibility for gains from trade. In the remainder of our

analysis, we ignore such meetings.

3.2 Symmetry

We call traders’ asset holding positions misaligned both when they hold the asset and are

in preference state l and when they do not hold the asset and are in preference state h. We

call traders’ asset holding positions well-aligned both when they hold the asset and are in

preference state h and when they do not hold the asset and are in preference state l. We

focus on allocations in which the two misaligned states and the two well-aligned states are

treated symmetrically. That is, we look only at equilibria where 1λ
′,i′,m′

λ,i,m = 1λ
′,∼i′,1−m′
λ,∼i,1−m .6 That

such trading patterns may be consistent with equilibrium is a consequence of our symmetric

market structure, where half the traders are in each preference state and half of the traders

hold the asset.

In a symmetric equilibrium, equation (2) implies µλ,i,m = µλ,∼i,1−m for all {λ, i,m}. That

is, the fraction of traders with contact rate λ in the high state, i = h, who hold the asset,

m = 1, is equal to the fraction of traders with the same contact rate who are in the low

state, i = l, and do not hold the asset m = 0. That is, the fraction of type-λ traders in either

well-aligned state are symmetric. The remaining traders are misaligned, and again there are

6To be specific, this implies the following requirement: If a type λ trader sells the asset to a type λ′ trader
when both are in state h then it must be that they trade in the opposite direction when both are in state l.
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equal shares of the two misaligned states for each λ.7

It is mathematically convenient to refer to traders only by their alignment status, where

a = 0 indicates misaligned and a = 1 indicates well-aligned. Let 1λ
′,a′

λ,a indicate the trading

probability between traders (λ, a) and (λ′, a′) conditional on them having the opposite asset

holdings. Let mλ ≡ µλ,l,1 + µλ,h,0 denote the fraction of traders with contact rate λ who are

misaligned. Equation (2) reduces to(
γ +

λ

2
E
(
1λ
′,0
λ,0 mλ′ + 1λ

′,1
λ,0 (1−mλ′)

))
mλ

=

(
γ +

λ

2
E
(
1λ
′,0
λ,1 mλ′ + 1λ

′,1
λ,1 (1−mλ′)

))
(1−mλ). (4)

The left hand side is the outflow rate from the misaligned states. This occurs either following

a preference shock or a meeting with a trader who has the opposite asset holdings where

trade occurs. The right hand side is the inflow rate, again following the same events.

Let the average value of a misaligned and well-aligned trader be denoted by vλ,0 ≡
1
2
(vλ,l,1 + vλ,h,0) and vλ,1 ≡ 1

2
(vλ,l,0 + vλ,h,1), respectively. Also define sλ ≡ vλ,1 − vλ,0, the

surplus from being well-aligned rather than misaligned. Knowing the surplus function is

sufficient to tell whether trade occurs. To see this, note that the net value of alignment

when in state h, vλ,h,1− vλ,h,0 equals the net value of alignment when in state l, vλ,l,0− vλ,l,1
up to a constant common to all types λ. It then follows from condition (3) that the surplus

function sλ governs the patterns of trade since we have that

vλ,h,1 − vλ,h,0 + vλ′,l,0 − vλ′,l,1 = sλ + sλ′

vλ,l,1 − vλ,l,0 + vλ′,l,0 − vλ′,l,1 = −sλ + sλ′

vλ,h,1 − vλ,h,0 + vλ′,h,0 − vλ′,h,1 = sλ − sλ′

vλ,l,1 − vλ,l,0 + vλ′,h,0 − vλ′,h,1 = −sλ − sλ′ .

Taking advantage of symmetry in the misalignment rates and the Nash bargaining solution,

equation (1) reduces to

rvλ,0 = δ0 + γsλ +
λ

4
E
(
(sλ + sλ′)

+mλ′ + (sλ − sλ′)+(1−mλ′)
)
− λc(λ) (5)

and rvλ,1 = δ1 − γsλ +
λ

4
E
(
(−sλ + sλ′)

+mλ′ + (−sλ − sλ′)+(1−mλ′)
)
− λc(λ), (6)

7We assume that if a positive measure of traders choose to live in autarky, λ = 0, half of them are initially
endowed with the asset and half are not. Thus they do not affect the share of traders with λ > 0 who hold
the asset.
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where δ0 ≡ 1
2
(δl,1 + δh,0) and δ1 ≡ 1

2
(δl,0 + δh,1) = ∆ + δ0. Again, both equations reflect the

sum of four terms. The first is the average flow payoff of a misaligned or well-aligned trader.

The second is the gain or loss from a preference shock that switches the alignment status.

The third is the gain from meetings, reflecting that only half of all meetings are with traders

who hold the opposite asset; and in these events each trader walks away with half of the

joint surplus, if there is any. The +-superscript is shorthand notation for the max{·, 0} and

reflects that meetings result in trade if and only if doing so is bilaterally efficient. The final

term is the search cost.

Finally, we can simplify equation (4) using the Nash bargaining solution as well, since

trades occur if and only if doing so is bilaterally efficient:(
γ +

λ

2
E
(
Isλ+sλ′>0mλ′ + Isλ>sλ′ (1−mλ′)

))
mλ

=

(
γ +

λ

2
E
(
Isλ<sλ′mλ′ + Isλ+sλ′<0(1−mλ′)

))
(1−mλ). (7)

Here the indicator function I is equal to 1 if the inequality in the subscript holds and is zero

otherwise.

3.3 Endogenizing the Distribution of Contact Rates

At an initial date 0, all traders choose their contact rate λ in order to maximize their value.

If traders are impatient, that means that their choice will depend on their alignment status

at date 0. This would make it necessary to solve for transitional dynamics from this initial

condition. We circumvent this issue by focusing on the no-discounting limit of this economy,

r → 0. The surplus sλ = vλ,1 − vλ,0 is finite in this limit, while the present value of the

gain from switching alignment status, r(vλ,1 − vλ,0) converges to zero. It follows that the

trader’s initial asset holdings does not affect their incentive to invest and we may ignore the

transitional dynamics.

The focus on the no-discounting limit reflects our expectation that the short-run desire to

trade is not an important determinant of the irreversible investment in meeting technologies.

We think of the preference shifts as occurring at a much higher frequency than discounting,

while trading opportunities may occur at a higher frequency still. This implies that the

importance of holding the asset at the correct time, ∆, is likely to be a much more important

determinant of this investment.
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3.4 Definition of Equilibrium

We define a steady state equilibrium in the limiting economy with r → 0. The definition

relies only on objects that are well-behaved in this limit.

Definition 1 A steady state equilibrium is a distribution of contact rates G(λ), an average

contact rate Λ, an allocation of misalignment mλ, and undiscounted surplus function sλ,

satisfying the following conditions:

1. Balanced inflows and outflows into misalignment as given by equation (7);

2. Consistency of sλ with the value functions (5) and (6),

∆ = 2γsλ +
λ

4
E
((

(sλ + sλ′)
+ − (sλ′ − sλ)+

)
mλ′

+
(
(sλ − sλ′)+ − (−sλ − sλ′)+

)
(1−mλ′)

)
; (8)

3. Optimality of the ex-ante investment decision:

(a) dG(λ) > 0 only if it maximizes

δ1 − γsλ +
λ

4
E
((
− sλ + sλ′

)+
mλ′ +

(
− sλ − sλ′

)+
(1−mλ′)

)
− λc(λ);

(b) Middlemen make finite profits: Λ ≥
∫∞

0
λdG(λ) and

lim
λ→∞

(1

4
E
(
(−sλ + sλ′)

+mλ′ + (−sλ − sλ′)+(1−mλ′)
)
− c(λ)

)
≤ 0,

with complementary slackness.

We have already explained the first two conditions. Condition 3(a) ensures that if tra-

ders choose a contact rate λ, it maximizes their average payoff limr→0 rvλ,1 = limr→0 rvλ,0.

Condition 3(b) ensures that if there are middlemen, they earn zero profits in each meet-

ing. Middlemen earn profit by taking half the surplus from meetings where they change the

alignment status of their trading partners. If middlemen earned more profit in an average

meeting than the cost of a meeting, being a middleman would be arbitrarily profitable, in-

consistent with equilibrium. If they earned less, there would be no middlemen, which implies

Λ =
∫∞

0
λ′dG(λ′).

12



3.5 Equilibrium Trading Patterns

We now begin our characterization of the equilibrium, starting with trading patterns given

any distribution G(λ).

Proposition 1 In equilibrium, when two traders with opposite asset positions meet they

1. always trade the asset if both are misaligned;

2. never trade the asset if both are well-aligned;

3. trade the asset if one is misaligned and the other is well-aligned and the well-aligned

trader has the higher contact rate.

The Appendix contains proofs of all our propositions. The proof shows that the surplus

function sλ is non-negative and decreasing. The result then follows immediately.

The first two parts of the proposition reflect fundamentals. Trade between two misaligned

traders turns both into well-aligned traders, thus creating gains in a direct, static fashion.

Trade between two well-aligned traders turns both misaligned and never happens for the same

static reason. The third part of the proposition reflects option value considerations and is

the key feature of the endogenous trading pattern which arises in this environment, namely

intermediation. It states that a faster trader buys the asset from a slower trader if both are

in preference state l; and she sells the asset to the slower trader if both are in preference state

h. These trades do not immediately increase the number of well-aligned traders, but they

move misalignment towards traders who expect more future trading opportunities. These

trades occur in equilibrium because traders with low contact rates are able to compensate

traders with high contact rates for taking the misaligned positions.

The possibility of intermediation implies that a trader’s buying and selling decisions

become increasingly detached from her idiosyncratic preferences as her contact rate increases.

In other words, a high contact rate moderates the impact of the idiosyncratic taste component

on a trader’s valuation of the asset. It follows that those who become intermediaries, in

the center of the valuation chain, are traders with frequent meetings. Figure 1 shows the

intermediation chain which follows from Proposition 1. Slow traders are at the periphery

of the trading chain, not trading once their asset position is aligned with their preferences.

In turn, the fast traders constitute the endogenous core of the trading network, buying

and selling largely irrespective of their preference state. In doing so, they take on misaligned

asset positions from types with lower contact rates and are compensated through the bid-ask

spread. This also implies that faster traders not only meet other traders more frequently but

also trade more frequently conditional on a meeting because they take on the misalignment

from traders with lower search efficiency.
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direction of trade

(λ1, l) (λ2, l) (.., l) (λN , l) (λN , h) (.., h) (λ2, h) (λ1, h)

Figure 1: Direction of trade across traders with contact rate λ ∈ {λ1, .., λN} with λ1 < λ2 <
.. < λN and current taste i ∈ {l, h}.

3.6 Distribution of Contact and Misalignment Rates

We next show that a non-degenerate distribution G(λ), that is the coexistence of traders with

different λ, arises in equilibrium even when market participants are ex-ante homogeneous.

To do so, we first solve explicitly for the surplus function, taking advantage of the trading

patterns determined in Proposition 1. We prove in the Appendix that the surplus function

satisfies

sλ =
∆

2γ

(
1− e−

∫∞
λ φλ′dλ

′
)
. (9)

where

φλ ≡
8γ

λ
(

8γ + λ(H(λ) + 2L(λ))
) (10)

and H(λ) ≡ E(Iλ′>λ) denotes the fraction of meetings with a trader who has a higher contact

rate and L(λ) ≡ E(Iλ′<λmλ′) denotes the fraction of meetings with a misaligned trader who

has a lower contact rate. In addition, part 3(a) of the definition of equilibrium implies that

G(λ) is increasing at λ only if λ maximizes

δ1 − γsλ +
λ

4
E
(
Iλ′<λ

(
sλ′ − sλ

)
mλ′

)
− λc(λ). (11)

We use this to prove the following result:

Proposition 2 Assume c(λ) is continuously differentiable. Then the equilibrium distribu-

tion of search efficiency G(λ) has no mass points, except possibly at λ = 0.

This proposition implies that although all traders are ex-ante identical, there is no symmetric

equilibrium in which all traders choose identical actions. Even stronger, almost all traders

choose different types.8 The proof shows that gross flow profits have a convex kink at any

mass point. Given a differentiable cost function we hence conclude that mass points are

inconsistent with optimality of the ex-ante investment decision.

8The one caveat is that a positive fraction of traders may choose to live in autarky, setting λ = 0. If this
is optimal, all traders must get the same payoff, and so the value of participating in this market must be
zero. This is the case when the cost function c is too high.
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To develop an understanding for the result consider an environment where everyone has

contact rate λ̄. This turns out to create a convex kink in the value function at λ̄. To

understand why, consider the marginal impact of an increase in the contact rate for a trader

with a contact rate λ̄. This allows the trader to act as an intermediary for all the other

traders. Although the gains from intermediation are small, on the order of the difference

between the contact rates, the opportunities to intermediate are frequent, whenever she

meets a misaligned trader with the opposite asset holdings. Thus a higher contact rate

creates a first order gain. Conversely, consider the marginal impact of a decrease in the

contact rate for a trader with contact rate λ̄. This allows all other traders to intermediate

for her, dramatically reducing her misalignment probability. Of course, this doesn’t come

for free; she pays for these trades using the outside good. Nevertheless, the benefits from

the trades are again linear in the difference in contact rates. Thus a lower contact rate also

creates a first order gain. This creates a convex kink in the value function at the mass point

λ̄. This logic carries over to any mass point.9

A different way to see this is in terms of the number of trades. Setting the same contact

rate as everyone else, trades only occur with both traders are misaligned and holding the

opposite asset position. Choosing a slightly different contact rate allows for gains from a

host of other trades, where one party is misaligned and the other well-aligned. In other

words, the nature and frequency of trades depends starkly on the contact rate compared

with other market participants. One gets intermediated by faster traders and intermediates

slower traders. As soon as a positive measure of traders has the same contact rate, this

discretely changes the marginal returns to λ and is hence inconsistent with equilibrium

under a differentiable cost function.

The absence of a pure strategy equilibrium is a common feature of search models (Butters,

1977; Burdett and Judd, 1983; Burdett and Mortensen, 1998; Duffie, Dworczak and Zhu,

2016). These papers have in common that if all firms charge the same price (or offer the

same wage), firms that offering a slightly lower price (higher wage) earn discontinuously

higher profits. Our results concern a different object, the contact rate, and we find that the

profit function is continuous but not differentiable. We therefore believe that our finding is

distinct from those in the existing literature.

Whenever the contact rate distribution has no mass points, we can use the equilibrium

trading pattern to simplify the inflow-outflow equality (7):

(
γ + 1

2
λ(H(λ) + L(λ))

)
mλ =

(
γ + 1

2
λL(λ)

)
(1−mλ). (12)

9Section 5 studies an environment where the only admissible trades are between asset holders in state l and
non-holders in state h. We show that the equilibrium distribution of contact rates then collapses to a single
mass point. It follows that heterogeneity fundamentally arises to leverage the gains from intermediation.
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Misaligned traders become well-aligned when they experience a preference shock (rate γ),

meet a faster trader with the opposite asset position (rate 1
2
λH(λ)), or meet a slower misa-

ligned trader with the opposite asset position (rate 1
2
λL(λ)). Well-aligned traders become

misaligned following the first or third events.

Proposition 2 shows that there is dispersion in equilibrium contact rates under a relatively

weak condition. This naturally leads us to ask how much dispersion. If the cost function is

weakly convex, we find that dispersion is not too extreme, in the sense that the support of

the contact rate distribution is convex:

Proposition 3 Assume λc(λ) is weakly convex. Then the equilibrium distribution of search

efficiency G(λ) has a convex support. Moreover, if there are middlemen (Λ >
∫∞

0
λdG(λ)),

the support of G(λ) is unbounded above.

The proof shows that if there is a “hole” in the support of G(λ), traders’ value function

must be strictly concave on the hole. This is inconsistent with both extreme points of the

hole maximizing the traders’ value. The open tail in the presence of middlemen reflects the

same argument. If there were an upper bound in the support of G, any individual above the

bound would conduct the same types of trades as those at the upper bound. This would

just linearly scale her revenues from trade with a misalignment rate identical to those at the

upper bound. If, given the weakly convex cost function, no individual finds it optimal to do

so, then it cannot be optimal to acquire an infinite contact rate either.

Proposition 3 rules out the possibility that most traders choose a low contact rate, while

a few traders choose a very high contact rate acting as intermediaries. This would be the case

in a star network. This is a consequence of the complementarity in the matching technology.

If a trader chooses a very low contact rate, she only meets intermediaries infrequently, and

so cannot take advantage of their intermediation services.

We next turn to the connection between contact rates and misalignment rates. A higher

contact rate has two opposing effects on an individual’s misalignment rate. First, an indivi-

dual is more frequently able to offset a misaligned position. However, a trader with a higher

contact rate also intermediates more frequently, taking on misalignment from slower traders.

Proposition 4 states that the latter force dominates everywhere on the support of G(λ) if

the cost function is weakly convex:

Proposition 4 Assume λc(λ) is weakly convex and continuously differentiable. Then the

equilibrium misalignment rate mλ is strictly increasing on the support of G(λ).

We stress that Proposition 4 imposes that G(λ) is the equilibrium contact rate distribution.
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The result is not true for an arbitrary distribution of contact rates.10 A faster contact rate

deteriorates a trader’s allocation, because she is more likely to serve as an intermediary. The

reason some traders invest in a faster contact rate then must come from trading profits, the

returns to frequently buying and selling the asset with a favorable bid-ask spread.

A corollary of Proposition 4 considers an extension to our model where traders differ ex

ante in how much they care about having a well-aligned asset position, ∆. Proposition 4

suggests that faster traders at the core of the network will naturally be those with smaller

∆, while slower traders at the periphery will be those with larger ∆. This is the opposite of

what one would expect to see without intermediation.

Finally, we point to a related observation: The proof of Proposition 6 below shows that

the trading probability conditional on a meeting is strictly increasing in λ. This is likewise

a consequence of the fact that faster traders trade with slower traders whenever the slower

trader is misaligned. When the slowest trader in the economy is well aligned, she never

trades, but the fastest trader trades regardless of her alignment status.

3.7 Linear Cost Function: Analytical Results

In this section, we restrict the cost function to be linear, so the cost per meeting is constant,

c(λ) = c. We start by showing how to express the equilibrium conditions in a pair of

equations. Let λ denote the lowest contact rate in the support of G. Then following the

arguments in the proof of Proposition 4, we can reduce the model to a pair of first order

ordinary differential equations in H and L:

4γ(2H(λ) + λH ′(λ)) = λ2
(
H(λ)L′(λ)− L(λ)H ′(λ)

)
, (13a)(

4γ + λ(H(λ) + 2L(λ))
)
L′(λ) = −(2γ + λL(λ))H ′(λ), (13b)

with H(λ) = 1 and L(λ) = 0. The first equation represents the optimality condition that

all traders earn the same profit in equilibrium, derived in the appendix (equation 32 with

c(λ) = c), while the second represents the steady state misalignment rate condition (equa-

tion 12). In this section, we manipulate these equations to partially characterize the equili-

brium analytically. Our main result is the following:

Proposition 5 Assume c(λ) = c. If c < ∆/16γ, the equilibrium distribution of contact rates

G(λ) has a strictly positive lower bound λ, has a Pareto tail with tail parameter 2, and has a

10To see this, consider a distribution with a “hole” in the support. m(λ) would be strictly decreasing over
such an interval with a zero measure of traders for two reasons. First, the types of trades an individual
would engage in would be identical anywhere on the interval. Second, all individuals, except possibly the
fastest, trade more frequently into alignment then out of it, that is m(λ) < 1

2 . It follows that just scaling up
the contact rate without altering the types of trade reduces the misalignment rate.
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zero measure of middlemen who are in continuous contact with the market, accounting for a

strictly positive fraction of meetings, Λ >
∫∞

0
λdG(λ). If c ≥ ∆/16γ, Λ = 0 in equilibrium.

If meetings are too costly the market place collapses into autarky. In turn, if there is trade

then the equilibrium G(λ) has rich features which we describe in turn.

The strictly positive lower bound λ reflects that the value of a trader smoothly converges

towards its autarky level as λ → 0. If the cost are strictly below the minimum level which

leads to autarky traders, fare strictly better than under autarky, which allows us to rule out

contact rates close to zero.

To develop an understanding for the Pareto tail, note that we have already established

that the distribution has no mass points and an open right tail in the presence of middlemen.

It thus follows that gross flow values (ignoring the linear cost cλ) must be linear above the

lowest contact rate λ. A Pareto distribution with tail parameter 2 implies that increasing

a trader’s contact rate leaves the frequency at which she meets a faster trading partner

unchanged. That is, the reduction in the fraction of individuals who are faster is exactly

offset by the increase in the contact rate. Furthermore, the relative contact rate conditional

on meeting a faster individual is also independent of λ. On the other hand, increasing λ

linearly scales the frequency at which she meets a slower trader; while the partner’s expected

contact rate converges to a constant, namely just the average contact rate among the finitely

fast traders (once λ is in the tail). Finally, increasing λ linearly increases meetings with a

middleman. Thus, the Pareto tail parameter 2 guarantees that as λ increases in the tail, it

linearly increases the rate of contacting slower traders and middlemen while leaving trading

opportunities with faster traders unchanged; jointly, these features deliver linear gross flow

values in the tail. The endogenous Pareto tail seems unrelated to well-known mechanisms

that give rise to Pareto distributions in various contexts (Gabaix, 2016).

To understand the emergence of middlemen, we first note that an individual trader’s

value can be decomposed into pure trading profits and the returns from having a well-

aligned asset position. Furthermore, as λ becomes increasingly large, the types of trades

a trader conducts become increasingly independent of λ, since in most trades she acts as

an intermediary. This first implies that the misalignment rate converges to a constant, and

second that the total trading profits are linear in λ. It follows that, for fast traders with

different contact rates to be equally well off, the net trading profits have to converge to zero

as λ grows large. From this observation it also follows that whenever traders in equilibrium

are better off than under autarky it has to be that the misalignment rate of fast types falls

strictly below its autarky value of 1
2
. This is what middlemen guarantee since they allow

even very fast types to offload misaligned asset positions.In summary, an open right tail

requires net trading profits to converge to zero; middlemen then allow fast intermediaries to
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offload misalignment, restoring the incentives for intermediation.

A large body of empirical work documents that the degree distribution of various financial

markets is often well described by a power law (see footnote 2). However, what is mapped

out empirically is the distribution of trading rates, the product of the contact rate λ and

the probability of trading in a meeting, pλ. The next proposition then connects the results

describing the distribution of contact rates to the distribution of trading rates, allowing us

to directly relate to the empirical literature.

Proposition 6 Assume c(λ) = c < ∆/16γ. The equilibrium distribution of trading rates

inherits the tail properties of the contact rate distribution, i.e. it has a Pareto tail with tail

parameter 2 and a zero measure of middlemen account for a strictly positive fraction of

trades.

Intuitively, the trading rate inherits the Pareto tail of the contact rate distribution, since

the trading probability conditional on a meeting converges to a positive constant in the tail.

This also ensures that middlemen account for a positive fraction of trades.

Thus, with linear cost, our setup gives rise to a distribution of trading rates that looks like

its empirical counterpart. We highlight that the empirical literature frequently finds power

law coefficients close to 2. For instance, Gabaix, Gopikrishnan, Plerou and Stanley (2006)

report a tail parameter of 2.5 for the distribution of trading volume in the stock market.

While the exact Pareto result holds only in the tail, our numerical results in Section 3.9 show

that the entire distribution closely resembles a Pareto with tail parameter 2.

3.8 Linear Cost Function: Frictionless Limit

For many real world markets, frictions are small and so a natural question is whether inter-

mediation retains its prominent role in the frictionless limit and whether we obtain additional

insights from studying frictions in markets where frictions are small. This section therefore

focuses on the model with a linear cost when the cost of a meeting is negligible, c → 0. In

this limit, the lower bound on contact rates converges to infinity, λ → ∞, so in some sense

everyone can trade instantaneously. Still, this hides important heterogeneity in contact rates

in the limiting economy. To emphasize this point, in an economy with 0 < c < ∆/16γ and

hence λ <∞, we define a trader’s relative contact rate as ρ ≡ λ/λ and call a trader “finite”

whenever ρ < ∞ and a middleman if ρ = ∞. We find that the distribution of ρ and the

fraction of meetings that are with middlemen have well-behaved limits as c → 0 and hence

λ→∞. This limit then also allows us to obtain a sharp characterization of volume, the rate
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at which assets are traded:11

Proposition 7 Assume c(λ) = c. In the limit of equilibrium allocations as c→ 0, a strictly

positive fraction of meetings are with middlemen and a strictly positive fraction are with

finite traders. Volume lies between 2γ and 2.5γ and can be decomposed as follows: finite

traders’ purchases from middlemen account for a volume of 1
2
γ; middlemens’ purchases from

middlemen account for a volume of 1
2
γ; middlemens’ purchases from finite traders account

for a volume of 1
2
γ; and finite traders’ purchases from finite traders account for the remaining

volume, which lies between 1
2
γ and γ.

The proof of Proposition 7 provides exact expressions for the fraction of meetings with midd-

lemen (approximately 26.9 percent), volume (approximately 2.46γ, of which 40.7 percent is

accounted for by middlemens’ purchases), and the ratio between the average contact rate Λ

and the lower bound on contact rates λ (both of which converge to infinity in the limit). It

also provides an implicit equation for the distribution of the relative contact rate ρ.

We contrast Proposition 7 with a näıve view of a market without frictions: all traders can

trade instantaneously upon receiving a preference shock and only trade with other traders

who receive the opposite preference shock at the same instant. That means that volume

equals the share of traders in the low preference state times the rate at which they are hit by

preference shocks, 1
2
γ. Note that this view leaves no role for intermediation or middlemen. In

contrast, we obtain more than four times as much trading volume. Furthermore, the propo-

sition highlights that a meaningful role for heterogeneity in contact rates and intermediation

by both finite traders and middlemen pertains to the limiting economy.

To understand this result note that we are looking at a frictionless limit where almost

no one is misaligned. Whenever a trader (who is almost surely a finite trader) suffers a

preference shock, she is very likely to be well-aligned and very unlikely to contact another

misaligned trader, i.e. limλ→∞ L(λ)→ 0. Instead, the market passes the asset towards faster

traders whenever possible. Since the faster trader is still very unlikely to be misaligned,

this trade does not reduce misalignment, but simply moves it towards the core traders. This

piece of the process stops once the misalignment is passed to a middleman. What the volume

decomposition shows is that, in the frictionless limit, the reallocation of the asset in response

to taste shocks runs through an intermediation chain that always involves middlemen. Every

time there is a preference shock, there is a trade between a middleman and a finite trader.

Half these trades are asset purchases and half are asset sales.

When middlemen take on the asset from a finite trader they, too, move into misalign-

ment. Afterwards, they quickly trade away from misalignment, but only by meeting another

11We make the natural assumption that two middlemen trade if and only if both are misaligned and have
opposite asset holdings.
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middleman. As a consequence trade from middlemen to middlemen accounts for a volume of
1
2
γ. The reason is that, when c is small, the misalignment rate of finite traders is proportio-

nal to the square of the misalignment rate of middlemen. Thus, as misalignment converges

to zero, traders are far more likely to contact misaligned middlemen than misaligned finite

traders. Taken together, whenever a trader experiences a taste shock the market rapidly re-

allocates her asset position to a misaligned finite type with opposite preferences. But instead

of doing so directly, the position gets traded through an intermediation chain. This chain

runs through faster finite types towards middlemen who then first reallocate the position

internally before passing it back to misaligned finite types with opposite preferences.

3.9 Linear Cost Function: Numerical Results

This section focuses on numerical results when the cost function is linear, c(λ) = c for all

λ. Throughout we normalize γ = 1. We first offer a numerical result that strongly suggest

existence and uniqueness of the equilibrium allocation. The sole parameter governing the

equilibrium allocation is the cost of contacts relative to the gains from alignment, c/∆. For

a given value of λ > 0, we solve equation (13) to find the functions H(λ) and L(λ), which

completely characterize the equilibrium. We then back out the implied ratio c/∆ from the

requirement that any value of λ in the support of the distribution G, and in particular

λ, is a profit maximizing choice. Inverting this gives us the set of equilibrium allocations

corresponding to each value of c/∆.

For c/∆ ≥ 1/16, Proposition 5 proves that autarky is the unique equilibrium. Other-

wise, the red line in the top panel in Figure 2 suggests that each value of c/∆ ∈ (0, 1/16)

corresponds to a unique value of λ.12 When costs are close to 1/16, the lower bound is

very small and it grows without bound as costs converge to 0. Since the rest of the equili-

brium allocation is determined from λ using equation (13), this implies that each value of

c/∆ ∈ (0, 1/16) corresponds to a unique equilibrium allocation. If this mapping is indeed

one-to-one, this would prove existence and uniqueness of equilibrium. An analytical proof

of this claim eludes us.

The middle panel in the figure plots the average contact rate Λ relative to the lower bound

λ as a function of the relative cost c/∆.13 The third panel in Figure 2 plots the fraction

of meetings that are with middlemen, 1 −
∫∞

0
λdG(λ)/Λ. This too is strictly decreasing in

the cost, converging to 0 when relative costs converge to 1/16 and approximately 0.27 when

costs converge to zero. Finally, the fourth panel in Figure 2 plots volume per unit of time.

This rises from 0 when relative costs converge to 1/16, exceeds 1
2

(the frictionless benchmark)

12The blue lines in Figures 2 and 3 refer to the optimal allocation, which we define and analyze in Section 4.
13Exact expressions for all limiting expressions in this paragraph are given in the proof of Proposition 7.
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when c/∆ < 0.02, and converges to 2.46 in the limit as costs converge to zero.

Figure 3 hones in on the equilibrium allocation for a particular value of the relative cost

c/∆. The top panel plots the distribution of contact rates. The survivor function 1−G(λ)

is nearly linear in log-log space and has slope −2. That is, it is close to an exact Pareto

distribution with tail parameter 2, although we can prove that it is not an exact Pareto

distribution. In line with proposition 6, the middle panel shows that the same holds for

the equilibrium distribution of trading rates, the subject of much attention in the empirical

literature as discussed above. That is, the figure suggests that the entire distribution of

trading rates is well-approximated by a power law. Moreover, most traders have a trading

rate that exceeds γ, which means that intermediation is important for understanding the vast

majority of trades in this marketplace. Finally, the bottom panel shows the gradual increase

in the misalignment rate experienced by traders with higher contact rates, a corollary of

Proposition 4.

4 Optimal Allocation

This section examines which trading patterns and contact rate distributions maximizes

average utility. We imagine a hypothetical social planner who can instruct traders both

on their choice of λ at the initial date and on whether to trade in each future meeting,

but who cannot directly alleviate the search frictions in the economy. Since all traders are

identical at time 0, the solution to the social planner’s problem gives us the Pareto optimal

allocation.

4.1 Planner Problem

We work directly with the undiscounted problem where the planner wishes to maximize

steady state average utility.14 We also impose that the planner must use a symmetric trading

pattern, as in the equilibrium. Thus we simply need to keep track of the number of misaligned

traders at each contact rate λ.

The planner’s objective is to maximize

δ0 + ∆

∫ ∞
0

(1−mλ)dG(λ)− ΛE(c(λ)) (14)

Each misaligned trader gets a flow payoff of δ0, while each well-aligned trader gets a flow

payoff of δ1 = ∆+δ0, expressed in the first two terms. In addition, the planner must pay the

14It is also possible to write down the discounted planner’s problem, take the limit as the discount rate
converges to zero, and focus on steady states. The results are the same.
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24



search costs, equal to the product of the average search intensity Λ and the cost per meeting

in the average meeting.

The planner has two instruments. The first is that she chooses the set of admissible

trades. When a trader with contact rate λ and alignment status a ∈ {0, 1} meets a trader

with contact rate λ′ and alignment status a′ ∈ {0, 1} and the opposite asset position, they

trade with probability 1λ
′,a′

λ,a = 1λ,aλ′,a′ . This implies that the steady state misalignment rate

satisfies(
γ +

λ

2
E
(
1λ
′,0
λ,0 mλ′ + 1λ

′,1
λ,0 (1−mλ′)

))
mλ

=

(
γ +

λ

2
E
(
1λ
′,0
λ,1 mλ′ + 1λ

′,1
λ,1 (1−mλ′)

))
(1−mλ). (15)

Second, the planner chooses the distribution of contact rates G(λ) and the average contact

rate Λ. We allow the planner to set Λ >
∫∞

0
λ′dG(λ′), i.e. to use middlemen.

The optimal allocation is a contact rate distribution G(λ) and Λ and trade indicator

functions 1λ
′,a′

λ,a ∈ [0, 1] that maximize (14) subject to (15). Our main result is that the

equilibrium and optimum allocations are qualitatively the same:

Proposition 8 Propositions 1–7 hold with the word “equilibrium” replaced by “optimum.”

The proof proceeds by solving the planner’s constrained optimization problem. The first

order conditions yield an expression for the social net value of asset ownership, Sλ, which

is the Lagrange multiplier on the misalignment constraint (15). We then show that the

planner requires trade whenever the joint social surplus of the transaction is positive. The

social surplus function Sλ is closely related to the private surplus sλ, and in particular is

decreasing and nonnegative:

Sλ =
∆

2γ

(
1− e−

∫∞
λ Φλ′dλ

′
)
, (16)

where

Φλ ≡
4γ

λ
(

4γ + λ(H(λ) + 2L(λ))
) . (17)

This is scarcely changed from equations (9) and (10) in the decentralized equilibrium. Mo-

reover, the planner sets dG(λ) > 0 only if λ maximizes

− γSλ +
λ

2
E
(
Iλ′<λ

(
Sλ′ − Sλ

)
mλ′
)
− λ

(
c(λ) +

γ

Λ

∫ ∞
0

Sλ′(1− 2mλ′)dG(λ′)

)
(18)
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and sets Λ ≥
∫∞

0
λdG(λ) and

lim
λ→∞

(1

2
E ((Sλ′ − Sλ)mλ′)− c(λ)

)
≤ γ

Λ

∫ ∞
0

Sλ′(1− 2mλ′)dG(λ′), (19)

with complementary slackness. This is analogous to part 3 of the definition of equilibrium.

When the cost of contacts is constant, c(λ) = c, the appendix also characterizes the plan-

ner’s problem as the first order differential equation in H and L, analogous to equation (13a)

governing equilibrium:

2γ (2H(λ) + λH ′(λ)) = λ2 (H(λ)L′(λ)− L(λ)H ′(λ)) . (20)

Equation (13b) is unchanged. We use this pair of equations for the planner’s analog of

Propositions 5, 6, and 7.

The proposition first implies that the equilibrium trading pattern is optimal. The in-

tuition for the result is straightforward. The planner’s objective function boils down to

minimizing the average rate of misalignment. The planner therefore demands trade if it

reduces static misalignment and rejects it if it raises static misalignment. In the case where

only one trader is misaligned, the planner moves the misalignment towards the trader with

more future trading opportunities. That is, the planner uses faster traders as intermediaries.

This does not affect the current misalignment rate, but improves future trading possibilities.

It follows that, given a non-degenerate distribution of contact rates G(λ), the intermediated

trading pattern governing equilibrium is optimal. This implies that the allocation would be

strictly inferior if traders could only engage in fundamental trades.

The atomless feature of the optimal distribution allows the planner to leverage the gains

from meetings through intermediation. That is, any meeting between two individuals with

identical contact rates λ is gainful solely in the double-coincidence case. In contrast, when

two individuals with different contact rates meet each other, the meeting is socially gainful

not only in the double-coincidence case but also when misalignment can be traded towards

the faster individual. An atomless distribution maximizes the fraction of meetings in which

there are gains from trade.

Furthermore, the proposition implies that the optimal distribution has a Pareto tail and

features middlemen, a zero measure of individuals with infinite contact rate. The Pareto tail

with parameter 2 arises from exactly the same logic discussed above for the equilibrium case.

Given the linear cost function it equates the marginal social returns to meetings created by

different types λ. The planner introduces middlemen for reasons that likewise mimic the

equilibrium case. A trader’s social value consists of the direct flow valuation she derives
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from her asset holdings and from the impact she has on the overall allocation net of the

cost of meetings. The latter component again becomes linearly scalable as λ becomes very

high; when a fast trader becomes even faster, she conducts the same types of trade, just

more frequently. It thus follows that the net social value that arises from trade by fast types

needs converges to zero when fast types coexist, as is the case with the Pareto tail. But in

the absence of middlemen fast traders have a misalignment rate converging to the autarky

level of 1
2
, implying that those traders have zero social value in excess of autarky. Clearly,

this cannot be part of the optimal solution where the marginal social returns to meetings

are equated across traders as long as the optimal solution dominates autarky—which is the

case whenever c < ∆/16γ.

In the frictionless limit, as the constant meeting cost c approaches zero, the optimal al-

location shares the same qualitative features as equilibrium. However, the exact magnitudes

are different. In the optimal allocation, the fraction of meetings that go to middlemen is

e−1, more than in equilibrium. Volume is (e− 1
2
)γ ≈ 2.22γ, which is smaller than the equili-

brium trading rate. As in equilibrium, middlemen buy from middlemen at rate 1
2
γ and from

finite traders at rate 1
2
γ while finite traders buy from middlemen at rate 1

2
γ. That is, just

like in equilibrium, the reallocation of the asset following a taste shock happens through an

intermediation chain which always involves two middlemen. The only difference from the

equilibrium allocation is that the optimal volume of purchases by one finite trader of the

asset held by another is slightly lower, namely (e− 2)γ.

We can also characterize the limiting behavior of the entire optimal search intensity

distribution in closed form. Let Ψ denote the distribution of ρ ≡ λ/λ, so Ψ(ρ) = G(ρλ) for all

ρ ≥ 1. When costs converge zero, λ grows without bound but Ψ(ρ) converges to (1−ρ−1)eρ
−1

.

Compared to the equilibrium meeting distribution provided in the appendix, one can see

that the equilibrium distribution is more concentrated than the optimal solution. These

discrepancies between the optimal and the equilibrium allocation in the frictionless limit are

consistent with the more general discussion of inefficiency offered in the next subsection.

4.2 Pigouvian Taxes

Although the qualitative features of the equilibrium and optimal allocations are identical,

the equilibrium distribution is still inefficient. There are two sources of inefficiency. The

first comes from bargaining. In the decentralized equilibrium, each trader keeps only half of

the surplus from every meeting, while the social planner recognizes the value of the entire

surplus. This force induces traders to underinvest in meetings in equilibrium. Formally, this

is readily observable by contrasting equations (11) and (18): The planner puts twice the
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weight on the option value of trade compared to the individual trader.

The second source of inefficiency is a business stealing effect. When one trader invests

more in meetings, she diverts meetings towards herself. That is, investing more in meetings

does not affect the contact rate of the other market participants, but it changes the distri-

bution of whom they meet. The failure to internalize this effect causes traders to overinvest

in meetings in equilibrium. This business stealing effect is represented by the last (negative)

term in (18). Notice that no corresponding term exists in the equilibrium counterpart (11).

We can directly correct for each of these externalities. First, assume that whenever two

traders meet, an outside agent doubles the surplus from the meeting. Second, assume that

whenever a trader meets anyone, the outside agent charges her a tax which is independent

of her contact rate, τ̄ ≡ γ
Λ

∫∞
0
Sλ′(1− 2mλ′)dG(λ′). Then the equilibrium Bellman equations

for misaligned and well-aligned traders become

rvλ,0 = δ0 + γsλ +
λ

2
E
(
(sλ + sλ′)

+mλ′ + (sλ − sλ′)+(1−mλ′)
)
− λ(c(λ) + τ̄)

and rvλ,1 = δ1 − γsλ +
λ

2
E
(
(−sλ + sλ′)

+mλ′ + (−sλ − sλ′)+(1−mλ′)
)
− λ(c(λ) + τ̄).

Taking the difference between these equations, we confirm that this reduces to equation (53),

and hence the equilibrium and optimal surplus functions are equal, sλ = Sλ. Moreover, the

equilibrium choice of λ, which must maximize the right hand side of the Bellman equation

for the well-aligned trader, coincides with the optimal choice from conditions (18) and (19).

It follows that the optimal allocation is an equilibrium with these Pigouvian taxes.

In the case of a constant cost per meeting, the tax and subsidy scheme that decentralizes

these forces nets out to zero (in expectation) for all traders λ. That is, traders receive a

subsidy when they are misaligned and pay a tax when they are well-aligned, but the weighted

average of these transfers is zero:

Proposition 9 When c(λ) = c, the tax and subsidy system that decentralizes the optimal

allocation is such that τ̄ = c and the expected per worker subsidy in each meeting also equals

c for all types λ.

To understand this finding, first note that the social value of an average meeting equals in

an optimal allocation is the cost of the meeting, 2c for all traders λ. The subsidy we propose

doubles the joint surplus in each meeting, hence adds on average an additional 2c. Since

those are split symmetrically, the average expected subsidy per worker and meeting is c.

To understand the tax, it is easiest to think about the business stealing externality in the

following way: When increasing her contact rate, a trader effectively prevents others from

meeting each other. In particular, for each two additional meetings a trader “acquires,”
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she replaces one average meetings between two other traders. Under the optimal allocation,

that average meeting has value 2c. Thus, the tax τ̄ that internalizes the business stealing

externality equals c.

It may seem paradoxical that a tax and subsidy system which does not transfer resources

across risk-neutral traders could affect the equilibrium allocation. The reason it has a real

effect is that the taxes and transfers alter payoffs conditional on alignment status, hence

the threat points in bargaining and the equilibrium price of assets. This in turn affects

investment decisions. To see this, we consider an equivalent representation of the tax and

subsidy scheme, which transfers are independent of who a trader contacts. Under this

scheme, misaligned trader pays a per-meeting tax

τλ,0 =
γ

Λ

∫ ∞
0

Sλ′(1− 2mλ′)dG(λ′)− 1

4
E
(
(Sλ + Sλ′)mλ′ + Iλ′>λ(Sλ − Sλ′)(1−mλ′)

)
,

while a well aligned trader pays a tax

τλ,1 =
γ

Λ

∫ ∞
0

Sλ′(1− 2mλ′)dG(λ′)− 1

4
E
(
Iλ′<λ(Sλ′ − Sλ)mλ′

)
.

It is immediate that τλ,1 > τλ,0 for all λ and proposition 9 implies they average out to zero.

This means that the taxes affect the threat points in an intermediated trade. Intermediaries

take on misaligned asset positions from slower types. The taxes on the slower trader reduce

her gains from trade, which in turn reduces the profitability of intermediation under Nash

bargaining. Thus, while the direct payments net out to zero, their indirect effect on asset

prices offset the inefficiencies that lead to overinvestment in the equilibrium without taxes.

4.3 Equilibrium and Optimum: Numerical Illustration

This section numerically contrasts the equilibrium with its optimal counterpart along several

dimensions. First, the blue lines in Figure 2 summarize the optimal allocation with γ norma-

lized to 1. For any cost function, the top panel shows that the lower bound on the optimal

contact rate distribution is lower than under the equilibrium contact rate distribution.15 The

bottom panel shows that volume is also inefficiently high in equilibrium. We view this as

numerical proof that the equilibrium displays systematic overinvestment.

To develop an intuition for this finding, we note that the business stealing externality

is identical for all types λ. In turn, the positive externality that arises from bargaining is

larger for those traders with higher average surplus meetings which are those with lower λ.

15Furthermore, there appears to be a one-to-one mapping between contact rates c/∆ < 1/16 and lower
bounds λ. Just as in equilibrium, this suggests that the optimal allocation exists and is unique.

29



As a consequence, there are too few slow types and too many fast types and the undistorted

equilibrium displays excessive trading volume.

On the other hand, given the lower bound on the contact rate, the rest of the distribution

is more compressed in equilibrium than the optimum. The second panel in Figure 2 shows

that the optimal average contact rate relative to the lower bound is higher than the equili-

brium counterparts. Likewise, the third panel shows that the optimal share of middlemen is

higher than the equilibrium share.

The blue lines in Figure 3 illustrate more details of the optimal allocation when c/∆ =

0.001. The top panel shows that the optimal distribution of contact rates is “close” to a

Pareto with tail parameter 2, similar to the equilibrium, although we can again prove it is not

an exact Pareto. The middle panel shows that this carries over to the distribution of trading

rates, implying that the empirically documented scale-free nature of many financial networks

is also a feature of a market that optimally leverages the gains from intermediation when

the cost per meeting is constant. Once again most traders have an optimal trading rate that

exceeds γ, the natural benchmark for an economy without intermediation. Intermediation

is key to understanding the amount of trades in the optimal allocation.

Finally, the blue line in the bottom panel in Figure 3 plots the misalignment rate against

λ in both equilibrium and the optimal allocation. As expected from Propositions 4 and 8,

traders with a higher contact rate have a higher misalignment rate in both equilibrium and

optimum. The equilibrium distribution of contact rates first order stochastically dominates

the optimal one; as a consequence, all traders with finite λ are more likely to meet with a

faster individual when comparing equilibrium with the optimal case. The reason the misalig-

nment rate crosses is that the planner allocates a larger fraction of meetings to middlemen;

see the bottom panel of Figure 2. This disproportionately benefits fast traders since they

can offload misalignment.

5 Constrained Economy: The Role of Intermediation

To understand the role of intermediation and its connection with heterogeneity, consider an

economy in which intermediation is not allowed. To be concrete, suppose meetings between

two traders with the same preference state simply do not occur. It follows that whenever

a misaligned trader meets a well-aligned trader, they have opposite preference states and

hence the same asset holdings, and so there is no scope for trade. We show in this section

that without intermediation, the equilibrium and optimal distribution of contact rates are

degenerate as long as the cost function λc(λ) is weakly convex.
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Constrained Equilibrium We start by defining an equilibrium without intermediation

analogously to the definition of equilibrium with intermediation.

Definition 2 A steady state equilibrium is a distribution of contact rates G(λ), an average

contact rate Λ, an allocation of misalignment mλ, and undiscounted surplus function sλ,

satisfying the following conditions:

1. Balanced inflows and outflows into misalignment as given by(
γ +

λ

2
E
(
Isλ+sλ′>0mλ′

))
mλ =

(
γ +

λ

2
E
(
Isλ+sλ′<0(1−mλ′)

))
(1−mλ). (21)

2. Consistency of sλ with the value functions (5) and (6) adjusted for the no-intermediation

case,

∆ = 2γsλ +
λ

4
E
(

(sλ + sλ′)
+mλ′ − (−sλ − sλ′)+(1−mλ′)

)
(22)

3. Optimality of the ex-ante investment decision:

(a) dG(λ) > 0 only if it maximizes

δ1 − γsλ +
λ

4
E
((
− sλ − sλ′

)+
(1−mλ′)

)
− λc(λ)

(b) Middlemen make finite profits: Λ ≥
∫∞

0
λdG(λ) and

lim
λ→∞

(1

4
E
(
(−sλ − sλ′)+(1−mλ′)

)
− c(λ)

)
≤ 0,

with complementary slackness.

Note that there are two relevant types of meetings in this constrained economy, those

between two misaligned traders with the opposite asset holdings, and those between two

well-aligned traders with the opposite asset holdings. We can extend our earlier results to

prove that the first type of meeting results in trade while the second does not. That is, in

equilibrium, two well-aligned agents never find it optimal to jointly trade into misalignment.

Constrained Planner’s Problem We turn next to the planner’s problem. The planner

again chooses the distribution of contact rates along with the admissible set of trades; as in

equilibrium the planner is subject to the constraint that intermediation is not allowed.

The objective of the planner is unchanged, given by equation (14). Since we are inte-

rested in the case where intermediation is not allowed the planner is subject to an adjusted

constraint on the evolution of the misalignment rate,
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(
γ +

λ

2
E
(
1λ
′,0
λ,0 mλ′

))
mλ =

(
γ +

λ

2
E
(
1λ
′,1
λ,1 (1−mλ′)

))
(1−mλ). (23)

The following proposition then summarizes our key findings for the environment where

solely fundamental trades between traders with different preferences are allowed.

Proposition 10 Consider an economy with no intermediation and a weakly convex cost

λc(λ). In equilibrium all traders choose a common value λ = Λ. The same holds in the solu-

tion to the planner’s problem. With a continuously differentiable cost function and interior

solution, the equilibrium contact rate is inefficiently high.

The second part of the proposition highlights that the overinvestment result we nume-

rically document for the unconstrained case holds in the constrained case. Individuals do

not internalize that investing in additional meetings lowers misalignment in the marketplace

thereby reducing the marginal value of meetings acquired by others. This force leads to

overinvestment in the aggregate.

More importantly, the first part of the proposition highlights that the heterogeneity that

arises in the full economy is an immediate, and socially desirable, consequence of intermedi-

ation. When individuals are restricted to trades driven by static fundamentals, there is no

gains from heterogeneity in the contact rate.

This mass point result reflects that, without intermediation, there is effectively decreasing

returns to contacts at the individual level. The misalignment rate is strictly decreasing in

meetings; as an individual becomes increasingly well-aligned fewer meetings lead to gainful

trading opportunities. As a consequence, an unequal distribution of meetings comes with

first-order losses and the optimal distribution is degenerate. The same is true in equilibrium;

with a weakly convex cost function but decreasing returns on the individual level the only

distribution where ex-ante homogeneous traders have identical value is a degenerate one.

In summary, intermediation and heterogeneity are closely interconnected in a market

with search frictions. Without heterogeneity there is no intermediation, and without inter-

mediation there is no heterogeneity. Heterogeneity is useful because in meetings where both

sides have identical preferences misalignment can be traded towards the faster trader using

intermediation to facilitate the transmission of the asset to those with a desire for it.

6 Conclusions

We study a model of over-the-counter trading in which ex-ante identical traders invest in a

meeting technology and participate in bilateral trade. We show that when traders have he-

terogeneous search efficiencies, fast traders intermediate for slow traders: they trade against
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their desired position and take on misalignment from slower traders. Moreover, we cha-

racterize how, starting with ex ante homogeneous traders, the distribution of contact rates

is determined endogenously in equilibrium, and how it compares with the corresponding

socially optimal distribution. We argue that an economy with homogeneous contact rates

is neither an equilibrium nor socially desirable when the cost of meetings is differentiable.

Under a linear cost function the endogenous and optimal distribution of trading rates is

governed by a power law, an empirical hallmark of various financial markets. Moreover,

middlemen with an infinite contact rate account for a positive fraction of meetings. We

also characterize the transfer scheme which decentralizes the optimal allocation, offsetting

the forces that lead to overinvestment in the undistorted equilibrium. Finally, we argue

that when intermediation is prohibited, dispersion in contact rates disappears both in equi-

librium and in the optimal allocation, which illustrates the interplay between heterogeneity

and intermediation in a frictional marketplace.

We have kept our model as simple as possible in order to show how intermediation and

middlemen naturally arise in over-the-counter markets. It would be natural to extend our

model to a more complex environment, for example one in which the two misaligned states

are not symmetric, or one in which the binary restriction on asset holdings is relaxed. We

believe that the basic forces we highlight in this paper will be robust to such extensions.

Likewise, we believe that the random matching model with endogenous contact rates may

be useful for understanding other issues in financial markets, such as the percolation of

information (Duffie and Manso, 2007). We hypothesize that middlemen may serve a useful

role in this process as well.
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A Appendix

Proof of Proposition 1. We show that sλ is non-negative and strictly decreasing for all

λ > 0. The proposition immediately follows.

If sλ < 0, (−sλ+sλ′)
+ ≥ (sλ+sλ′)

+ and (−sλ−sλ′)+ ≥ (sλ−sλ′)+ for all λ′. Equation (8)

then implies sλ ≥ 2/γ, a contradiction. This proves s is non-negative. Likewise, equation (7)

implies m is non-negative. It follows immediately that for all λ and λ′, Isλ+sλ′>0mλ′ ≥
Isλ<sλ′mλ′ and Isλ>sλ′ (1 −mλ′) ≥ Isλ+sλ′<0(1 −mλ′). Equation (7) then implies mλ ≤ 1/2

for all λ.

Next, use s nonnegative to rewrite equation (8) as

2γsλ = ∆ +
λ

4
E
((

(−sλ + sλ′)
+ − (sλ + sλ′)

)
mλ′ − (sλ − sλ′)+(1−mλ′)

)
.

Use (−sλ + sλ′)
+ = sλ′ −min{sλ, sλ′} and (sλ− sλ′)+ = sλ)−min{sλ, sλ′} to rewrite this as

2γsλ = ∆ +
λ

4
E
((
−min{sλ, sλ′} − sλ

)
mλ′ −

(
sλ −min{sλ, sλ′}

)
(1−mλ′)

)
.

Grouping terms, this gives

sλ =
4∆ + λE

(
min{sλ, sλ′}(1− 2mλ′)

)
8γ + λ

. (24)

View this as a mapping s = T (s). We claim that for any cumulative distribution function

G and misalignment function m with range [0, 1/2], T is a contraction, mapping continuous

functions on [0,∆/2γ] into the same set of functions. Continuity is immediate. Similarly, if

s is nonnegative, T (s) is nonnegative. If s ≤ ∆/2γ,

T (s)λ ≤
(

8γ + λE(1− 2mλ′)

8γ + λ

)(
∆

2γ

)
.

Since the misalignment rate is nonnegative, the result follows.

Finally, we prove T is a contraction. If |s1
λ − s2

λ| ≤ ε for all λ,

|T (s1)λ − T (s2)λ| ≤
λεE(1− 2mλ′)

)
8γ + λ

≤ εE(1− 2mλ′).

Note that the second inequality uses the fact that the fraction is increasing in λ and hence

evaluates it at the limit as λ converges to infinity. Since E(1 − 2mλ′) < 1, this proves that

T is a contraction in the sup-norm, with modulus
∫∞

0
λ′

Λ
(1− 2mλ′)dGλ′ .

Next we prove that the mapping T takes nonincreasing functions s and maps them into
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decreasing functions. Take λ1 < λ2 and let E(λ) ≡ E
(

min{sλ, sλ′}(1− 2mλ′)
)
. Note that m

nonnegative and sλ ≤ ∆/2γ implies E(λ) ≤ ∆/2γ as well. Similarly, s nonincreasing implies

E is nonincreasing as well. Then

T (s)(λ1)− T (s)(λ2) =
4∆ + λ1E(λ1)

8γ + λ1

− 4∆ + λ2E(λ2)

8γ + λ2

≥ 4∆ + λ1E(λ1)

8γ + λ1

− 4∆ + λ2E(λ1)

8γ + λ2

=
4(λ2 − λ1)

(
∆− 2γE(λ1)

)
(8γ + λ1)(8γ + λ2)

> 0,

The first equality is the definition of T . The first inequality uses E(λ2) ≤ E(λ1). The second

equality groups the two fractions over a common denominator. And the second equality uses

E(λ) < ∆/2γ. This proves the result. It follows that the equilibrium surplus function is

decreasing.

Deriving Equation (9). Since the surplus function is nonnegative and nonincreasing, we

can rewrite equation (8) as

∆ = 2γsλ +
λ

4
E
(((

sλ + sλ′
)
− Iλ′<λ

(
sλ′ − sλ

))
mλ′ + Iλ′>λ

(
sλ − sλ′

)
(1−mλ′)

)
Regroup terms:

4∆ =
(
8γ + 2λEmλ′

)
sλ + λE

(
Iλ′≥λ

(
sλ − sλ′

)
(1− 2mλ′)

)
(25)

Differentiate with respect to λ:

0 =
(
8γ + λE(Iλ′>λ + 2λE(Iλ′<λmλ′)

)
s′λ + 2Emλ′sλ + E

(
Iλ′>λ

(
sλ − sλ′

)
(1− 2mλ′)

)
Replace the last two terms using equation (25) and simplify using the definitions of H and

L to get

s′λ =
8γsλ − 4∆

λ
(

8γ + λ(H(λ) + 2L(λ))
) = φλ

(
sλ −

∆

2γ

)
,

where φλ is defined in equation (10). The general solution to this differential equation is

sλ =
∆

2γ
− ke

∫ λ
λ φλ′dλ

′
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for fixed λ and some constant of integration k. Use the fact that limλ→∞ sλ = 0 to pin down

the constant of integration, yielding equation (9).

Proof of Proposition 2. We proceed by contradiction. Assume G(λ) has a mass point

at some λ̄ > 0. From equation (10), we have that φλ jumps up at λ̄ since 2mλ < 1 for all λ.

Differentiating equation (9), we have that

s′λ = −∆

2γ
φλe

−
∫∞
λ φλ′dλ

′
,

and so this jumps down at λ̄. It follows that sλ has a concave kink at λ̄.

Now consider part 3(a) of the definition of equilibrium. Using the monotonicity and

nonnegativity of sλ, the choice of λ must maximize

δ1 − γsλ +
λ

4
E
(
Iλ′<λ

(
sλ′ − sλ

)
mλ′
)
− λc(λ)

The first derivative with respect to λ is

−
(
γ +

λ

4
E(Iλ′<λmλ′)

)
s′λ +

1

4
E
(
Iλ′<λ

(
sλ′ − sλ

)
mλ′
)
− c(λ)− λc′(λ).

Note that s′λ jumps down at λ̄ and the other expressions are continuous in λ. Therefore the

slope of the objective function jumps up at λ̄. That is, λ̄ represents a local minimum in

traders’ objective function, contradicting the assumption that G(λ) has a mass point at λ̄.

Proof of Proposition 3. To find a contradiction, we suppose that there is a hole in

the distribution of contact rates. That is, there are contact rates λ < λ̄ < ∞ such that

dG(λ) = 0 for all λ ∈ (λ, λ̄). Moreover, for this to be a hole in the distribution, we require

that E(Iλ′≤λ) > 0 and E(Iλ′≥λ̄) > 0, so individuals choose contact rates on either side of

the hole. Finally, without loss of generality, we choose the thresholds λ and λ̄ such that

some individuals choose the extreme values of this set in equilibrium. Using part 3(a) of the

definition of equilibrium, this implies λ and λ̄ each maximize

vλ ≡ −γsλ +
λ

4
E(Iλ′<λ(sλ′ − sλ)mλ′)− λc(λ).

Note that vλ is continuous in λ, even if there are mass points in the contact rate distribution.

We prove that vλ is strictly concave for λ ∈ (λ, λ̄), which contradicts the requirement that

λ and λ̄ both maximize v.
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To prove concavity of v, first rewrite v in this interval, using the fact that no one has a

contact rate in the interval (λ, λ̄):

vλ ≡ −
(
γ +

λ

4
E(Iλ′≤λmλ′)

)
sλ +

λ

4
E(Iλ′≤λsλ′mλ′)− λc(λ).

The second term is linear in λ and the third is weakly concave, so the result follows if the

first term is strictly concave, i.e. if
(
γ + λ

4
E(Iλ′≤λmλ′)

)
sλ is strictly convex. To establish

this, we solve equation (9) for sλ:

sλ =
∆

2γ

1−
λ
(

8γ + λ̄
(
H(λ̄) + 2L(λ)

))
λ̄
(

8γ + λ
(
H(λ̄) + 2L(λ)

))e− ∫∞
λ̄ φλ′dλ

′

 .

The result immediately follows from twice differentiating with respect to λ.

Finally, by setting λ̄ =∞ and using part 3(b) of the definition of equilibrium, a similar

argument proves that Λ =
∫∞

0
λdG(λ) whenever the support of G(λ) is bounded above which

implies the second part of the proposition.

Proof of Proposition 4. Use equation (12) to get

mλ =
2γ + λL(λ)

4γ + 2λL(λ) + λH(λ)
. (26)

We are trying to prove that

m′λ =
−λ(2γ + λL(λ)H ′(λ) +H(λ)(λ2L′(λ)− 2γ)(

4γ + 2λL(λ) + λH(λ)
)2 ≥ 0 (27)

on the support of G.

To prove this, we exploit restrictions on H ′(λ) and L′(λ) implied by equilibrium. The

first restriction simply recognizes from the definitions of H and L that mλ = −L′(λ)/H ′(λ)

and so equation (26) implies

(
4γ + 2λL(λ) + λH(λ)

)
L′(λ) = −

(
2γ + λL(λ)

)
H ′(λ). (28)

The second equation uses our equilibrium conditions. By Proposition 3, we know that the

support of G is convex. For any value of λ in the support, part 3(a) of the definition of
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equilibrium states that the profit must be the same, some v̄:

v̄ = δ1 − γsλ +
λ

4
E
(
Iλ′<λ

(
sλ′ − sλ

)
mλ′
)
− λc(λ), (29)

where we simplify the expression slightly using the results from Proposition 1. This implies

the first order condition

0 = −
(
γ +

λ

4
L(λ)

)
s′λ +

1

4
E
(
Iλ′<λ(sλ′ − sλ)m′λ

)
− c(λ)− λc′(λ) (30)

= −
(
γ +

λ

4
L(λ)

)
s′λ +

v̄ − δ1 + γsλ
λ

− λc′(λ)

=
∆ (4γ + λL(λ)) e−

∫∞
λ φλ′dλ

′

λ
(

8γ + λ(H(λ) + 2L(λ))
) +

v̄ − δ1 + ∆
2

(
1− e−

∫∞
λ φλ′dλ

′)
λ

− λc′(λ)

=
−(δ1 − δ0)H(λ)e−

∫∞
λ φλ′dλ

′

2
(

8γ + λ(H(λ) + 2L(λ))
) +

v̄ − δ1+δ0
2
− λ2c′(λ)

λ

where the second line simplifies the using first equation (29), the third line replaces sλ and

its derivative using equation (9) and replaces φλ using equation (10), and the fourth line

groups terms and recognizes that ∆ = δ1 − δ0. Rewrite this as

λH(λ)e−
∫∞
λ φλ′dλ

′

8γ + λ(H(λ) + 2L(λ))
+

2λ2c′(λ)

δ1 − δ0

=
2v̄ − δ1 − δ0

δ1 − δ0

(31)

for all λ in the support of G(λ). Differentiating this expression and replacing φλ gives us a

second equation relating H ′(λ) and L′(λ):

2e−
∫∞
λ φλ′dλ

′(
λ(4γ + λL(λ))H ′(λ) +H(λ)(8γ − λ2L′(λ))

)(
8γ + λ(H(λ) + 2L(λ))

)2 +
2λ

∆
(2c′(λ) + λc′′(λ)) = 0. (32)

Solve equations (28) and (32) for H ′(λ) and L′(λ) and substitute into equation (27). The

resulting expression is cumbersome, but it is easy to verify that it is strictly positive if

2c′(λ) + λc′′(λ) ≥ 0, i.e. if λc(λ) is weakly convex.

Proof of Proposition 5. We start by proving that there is an equilibrium with Λ = 0

if and only if c ≥ ∆/16γ. To do this, we suppose that such an equilibrium exists. Equa-

tion (7) implies m0 = 1/2. Since the surplus function is nonnegative and nonincreasing
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(Proposition 1), equation (8) implies that for all λ > 0,

sλ =
4∆

8γ + λ
,

with s0 = ∆/2γ. Then part 3 of the definition of equilibrium implies that there is an

equilibrium with λ = 0 if and only if 0 maximizes

−γsλ +
λ

8
(s0 − sλ)− λc.

Substituting for sλ, this reduces to the necessary and sufficient condition

0 ∈ arg max
∆(λ− 8γ)

16γ
− λc.

The objective function is linear in λ, maximized at 0 if and only if c ≥ ∆/16γ, completing

this step of the proof.

We next suppose that c ≥ ∆/16γ and prove that there is no equilibrium with Λ > 0. To

find a contradiction, suppose that such an equilibrium exists and let λ̄ > 0, possibly infinite,

denote the fastest contact rate in the population. As in the first step of the proof, part 3

of the definition of equilibrium implies that λ̄ must deliver at least as high profits as setting

λ = 0:

−γsλ̄ +
λ̄

4
E
((
sλ′ − sλ̄

)
mλ′
)
− λ̄c ≥ −γs0

Now use the fact that s is nonincreasing and that mλ′ ≤ 1/2. This implies

1

2
(s0 − sλ̄) ≥ E

((
sλ′ − sλ̄

)
mλ′
)
.

Thus a necessary condition to have an equilibrium with Λ > 0 is

8γ + λ̄

8
(s0 − sλ̄)− λ̄c ≥ 0

Equations (9) and (10) imply

sλ̄ =
2∆

4γ + λ̄E(mλ′)
,

while s0 = ∆/2γ. Therefore the necessary condition to have an equilibrium with Λ > 0

reduces
(8γ + λ̄)λ̄∆E(mλ′)

16γ
(
4γ + λ̄E(mλ′)

) − λ̄c ≥ 0

Using the fact that E(mλ′) ∈ (0, 1/2), the left hand side is a strictly convex function of λ̄.
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Moreover, evaluate the first derivative of the left hand side in the limit as λ̄ converges to

infinity. It is negative if and only c ≥ ∆/16γ. Since the left hand side is nonincreasing for

large λ̄ and globally convex, it is strictly decreasing for all λ̄. Finally, since the left hand side

is 0 at λ̄ = 0, it is strictly negative at all positive values of λ̄, a contradiction. This proves

that if c ≥ ∆/16γ, there is a unique equilibrium and it has Λ = 0.

The remainder of the proof focuses on the case where c < ∆/16γ. We have already

proved that there is no equilibrium with Λ = 0 and now characterize an equilibrium with

Λ > 0. For all λ in the support of G, equation (31) with c(λ) = c reduces to

λH(λ)e−
∫∞
λ φλ′dλ

′

8γ + λ(H(λ) + 2L(λ))
=

2v̄ − δ1 − δ0

δ1 − δ0

. (33)

If 0 is in the support of G, this implies v̄ = δ1+δ0
2

, the value of autarky. That is, the right

hand side of this equation is 0. The left hand side is then also equal to 0 at all λ in the

support of G. This is a contradiction for all strictly positive λ that are smaller than the

highest value in the population, a contradiction. This proves that 0 is not in the support of

G, but instead the lower bound of the support of G is λ > 0.

Replicating the proof of Proposition 3, we can show that the value function vλ is strictly

concave at all λ < λ. Since it must also be weakly higher at λ than at any lower value of λ,

this implies it is strictly increasing on this interval. It follows that v̄ > v0 = δ1+δ0
2

.

Turn now to the upper bound λ̄ and, to find a contradiction, suppose λ̄ < ∞. That is,

H(λ̄) = 0. Then for all λ ≥ λ̄, equation (10) implies

φλ ≡
4γ

λ
(

4γ + λL(λ̄)
) .

Then equation (9) implies

sλ =
2∆

4γ + λL(λ̄)
∀λ ≥ λ̄. (34)

Since no one chooses these high values of λ, part 3(a) of the definition implies that for all

λ > λ̄, the profits must be lower than choosing λ̄:

−γsλ +
λ

4
E
((
sλ′ − sλ

)
mλ′
)
− λc ≤ −γsλ̄ +

λ̄

4
E
((
sλ′ − sλ̄

)
mλ′
)
− λ̄c.

Rearranging terms, replacing sλ using the previous expression, and using λ > λ̄, this reduces

to
1

4
E(sλ′mλ′) ≤ c. (35)
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Now compare the value of choosing λ̄ to the value of autarky, λ = 0. Using v̄ > v0, we have

−γsλ̄ +
λ̄

4
E
((
sλ′ − sλ̄

)
mλ′
)
− λ̄c > −γs0.

Use equation (8) to eliminate s0 and equation (34) to eliminate sλ̄:

λ̄

(
1

4
E(sλ′mλ′)− c

)
> 0.

This contradicts inequality (35), establishing the contradiction.

We next prove that middlemen account for a positive fraction of meetings in equilibrium.

Our starting point is equation (33). Take the limit as λ converges to ∞, noting that that

e−
∫∞
λ φλ′dλ

′ → 1 and 8γ/λ→ 0. The equation reduces to

lim
λ→∞

H(λ) =
2v̄ − δ1 − δ0

δ1 − v̄
lim
λ→∞

L(λ), (36)

where limλ→∞H(λ) is the fraction of meetings with middlemen and limλ→∞ L(λ) is the

fraction of misaligned traders. Since we have already proved that v̄ > δ1+δ0
2

and there are

misaligned traders in equilibrium, the result follows immediately.

To prove the Pareto tail, differentiate equation (33) with respect to λ and evaluate at

λ→∞ to get

lim
λ→∞

λ3dG(λ) =
24(2v̄ − δ1 − δ0)γΛ

∆− (2v̄ − δ1 − δ0)(1− 2 limλ→∞mλ)
.

Using the steady state expressions, we find that

lim
λ→∞

mλ =

∫∞
0

λ′

Λ
mλ′dG(λ′)

1−
∫∞

0
λ′

Λ
dG(λ′) + 2

∫∞
0

λ′

Λ
mλ′dG(λ′)

=
δ1 − v̄
δ1 − δ0

(37)

where the second equation simplifies the first using equation (36). Substituting this into the

tail parameter expression, we get

lim
λ→∞

λ3dG(λ) =
24γΛ

δ1−δ0
2v̄−δ1−δ0 −

2v̄−δ1−δ0
δ1−δ0

. (38)

Note that this is positive since traders’ value is less than the first best, v̄ < δ1. This implies

that in the right tail, the G distribution is well-approximated by the Pareto distribution

G(λ) = 1− 12γΛ
δ1−δ0

2v̄−δ1−δ0 −
2v̄−δ1−δ0
δ1−δ0

λ−2. (39)
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This completes the proof.

Proof of Proposition 6. Consider a λ-agent. When misaligned, which happens a fraction

mλ of the time, she trades with any faster trader with opposite asset holding, as well as slower

misaligned traders with opposite asset holding. So her trading probability conditional on a

meeting is 1
2
(H(λ) + L(λ)). When she is well aligned, a fraction (1−mλ) of the time, then

she takes on misalignment from slower traders with opposite asset holding, so she trades

with probability 1
2
L(λ). Combining this, the probability that a type λ trader actually trades

in a meeting is

pλ =
1

2
(mλH(λ) + L(λ)).

Replace mλ = −L′(λ)/H ′(λ) and eliminate L′(λ) and H ′(λ) using equation (13):

pλ =
γ(H(λ) + 2L(λ)) + λL(λ)(H(λ) + L(λ)

4γ + λ(H(λ) + 2L(λ)
.

We are interested in the tail behavior of the trading rate λpλ.

First observe that λpλ is increasing. To show this, differentiate wtih respect to λ and

replace L′(λ) and H ′(λ) using equation (13). The result follows algebraically.

Now let F denote the cumulative distribution of trading rates. Since λpλ is increasing,

F (λpλ) = G(λ) for all λ. Differentiating this gives

dF (λpλ) =
dG(λ)

λp′λ + pλ
.

Equation (39) shows us the behavior of dG(λ) in the tail, a Pareto. To see the behavior

of the denominator, again differentiate λpλ with respect to λ and replace L′(λ) and H ′(λ)

using equation (13). This time take the limit as λ converges to infinity:

(λpλ)
3 lim
λ→∞

dF (λpλ) = λ3 lim
λ→∞

dG(λ)

(
limλ→∞ L(λ)(v̄ − δ0)

δ1 − δ0

)2

.

Since λ3 limλ→∞ dG(λ) > 0 by equation (38), this is positive and hence the tail of F is Pareto

with tail parameter 2.

Proof of Proposition 7. For a fixed value of c ∈ (0, 16∆/γ), equilibrium is characterized

by a lower bound λ and the differential equations (13) as well as the requirement that

equilibrium costs are in fact c. We get this last condition by evaluating equation (30) at
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λ = λ and evaluating s′λ using equations (9) and (10):

c

∆
=

4γ exp
(
−
∫∞
λ

8γ
λ(8γ+λH(λ)+2λL(λ))

dλ
)

λ(8γ + λ)
. (40)

We are interested in evaluating these equations when c → 0, but there are two difficulties

with that limit. First, we prove below that λ → ∞, which makes the limiting system of

equations problematic. Second, we find that L(λ) → 0 in the same limit. We propose

a change in variables to deal with both of these issues. Let ρ ≡ λ/λ denote a worker’s

contact rate relative to the lower bound. Let h(ρ) ≡ H(λ) and `(ρ) ≡ L(λ)λ/γ. Rewrite

equations (13) and (40) in terms of ` and h:

4(2h(ρ) + ρh′(ρ)) = ρ
(
h(ρ)`′(ρ)− `(ρ)h′(ρ)

)
− h(ρ)`(ρ),(

4γ + λρh(ρ) + 2γ`(ρ)
)
(ρ`′(ρ)− `(ρ)) = −λρ2(2 + `(ρ))h′(ρ),

c

∆
=

4γ exp
(
−
∫∞

1
8γ

ρ(8γ+ρλh(ρ)+2γ`(ρ))
dρ
)

λ(8γ + λ)
.

The first two equations, together with the terminal condition h(1) = 1 and `(1) = 0, deter-

mine h and ` for any λ. If λ <∞, they imply that the right hand side of the third equation is

positive and hence this is inconsistent with the third equation. On the other hand, we prove

below that the first two equations are well-behaved (and indeed solve them) when λ = ∞.

In this limit, the third equation holds when c = 0. Therefore this must describe the limiting

equilibrium with c = 0.

We now turn to the characterization of these equations when λ→∞. Solve the first two

equations for h′ and `′ in this limit:

`′(ρ) =
8 + 7`(ρ) + `(ρ)2

ρ(3 + `(ρ))
and

h′(ρ)

h(ρ)
=

−4

ρ(3 + `(ρ))
, (41)

with terminal conditions are `(1) = 0 and h(1) = 1. An equilibrium allocation in the limiting

economy is characterized by the solution to these to ordinary differential equations.

The differential equation for ` is autonomous and so we start with that one. To solve it,

define the inverse functions f(`(ρ)) = ρ and rewrite the differential equation as

f ′(`)

f(`)
=

(3 + `)

8 + 7`+ `2
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with terminal condition f(0) = 1. The solution is

f(`) =
√

1 + 7
8
`+ 1

8
`2

(
16 + (7−

√
17)`

16 + (7 +
√

17)`

) 1
2
√

17

= ρ. (42)

This is a continuous, increasing mapping from positive reals to positive reals. That implies

that the mapping is invertible, i.e. for any `(ρ) ≥ 0, there is a unique value of ρ ≥ 1 that is

consistent with the equation of interest. This implies `(ρ) is a well-behaved function.

Next turn to the equation for h(ρ). To solve it, define η(`) ≡ h(f(`)). Using the same

inverse function and its derivative, the solution is

η(`) = exp

(
−
∫ `

0

4f ′(x)

f(x)(3 + x)
dx

)
= exp

(
−
∫ `

0

4

8 + 7`′ + `′2
d`′
)

=

(
16 + (7−

√
17)`

16 + (7 +
√

17)`

)4/
√

17

, (43)

where the second equation replaces f using equation (42) and the third calculates the integral.

Now since `(ρ) increases without bound when ρ is large, we get

lim
ρ→∞

h(ρ) = lim
`→∞

η(`) =

(
7−
√

17

7 +
√

17

)4/
√

17

= 0.269.

This is the probability of contacting a middleman in the zero cost limit, the first result in

the Proposition.

We turn next to volume, which we measure as the rate that a trader buys the asset (and

hence also the rate that a trader sells the asset). In an economy with finite λ, we write this

as

V ≡
∫ ∞
λ

λ

4
(L(λ) +H(λ)mλ)dG(λ) +

ΛH(∞)L(∞)

4
+

ΛH(∞)2m2
∞

4
, (44)

where L(∞) ≡ limλ→∞ L(λ), H(∞) ≡ limλ→∞H(λ), and m∞ is the misalignment rate of

middlemen. The integrand in the first term is the rate that a finite trader with contact rate

λ purchases the asset. This happens when the trader does not hold the asset (probability
1
2
) and meets someone (at rate λ), and either (i) the other trader is slower, hold the asset,

but doesn’t want it (probability 1
2
L(λ)) or (ii) the other trader is faster (probability H(λ)

and the type-λ trader wants the asset (probability m∞). Integrating this over the contact

rate distribution gives the rate that finite traders buy the asset. The second term is the
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rate that middlemen buy the asset from finite traders. Middlemen make contacts at rate

ΛH(∞). With probability 1
2
L(∞), the contact is with a finite trader who wants to sell the

asst, and then with probability 1
2

the middleman is able to buy it. The final term is the

rate that middlemen buy the asset from other middlemen. Again, middlemen make contacts

at rate ΛH(∞), with probability 1
2
m∞, the middleman wants to buy the asset, and with

probability 1
2
H(∞)m∞, she meets another middleman who wants to sell the asset. Summing

these terms gives us trading volume.

We cannot directly evaluate this expression in the limiting economy because L, H, and

G are all poorly behaved. Instead, define ˆ̀(ρ) ≡ L(ρλ)λ, and let Ψ(ρ) ≡ G(ρλ) denote the

cumulative distribution of relative contact rates. Noting that mλ = −L′(λ)/H ′(λ), we can

rewrite volume as

V =
γ

4

∫ ∞
1

(
`(ρ)− ρ`′(ρ)− `(ρ)

ρh′(ρ)
h(ρ)

)
dΨ(ρ) +

Λh(∞)ˆ̀(∞)

4λ
+

Λh(∞)2m2
∞

4
, (45)

where the terms have the exact same interpretation as equation (44). We compute the value

of each term in turn.

Start with the integral. To measure this, we first need to characterize the contact rate

distribution G in the limiting economy. And as a preliminary step towards that goal, we find

the mean contact rate relative to the lower bound Λ/λ. For any finite λ, H ′(λ) = −λdG(λ)/Λ

and also H ′(λ) = h′(ρ)/λ. Combining these gives

λ

Λ
dΨ(ρ) = −h

′(ρ)

ρ
dρ, (46)

Since
∫∞

1
dΨ(ρ) = 1, we can integrate both sides of this to get

Λ

λ
= − 1∫∞

1
h′(ρ)
ρ
dρ

= − 1∫∞
0

η′(`)
f(`)

d`
=

1√
2

(
7 +
√

17

7−
√

17

) 7
2
√

17

≈ 2.23, (47)

where again the second equation is a transformation of variables and the third calculates the

integral using the functional forms for f and η in equations (42) and (43).

Turn next to the probability distribution over `, a monotonic transformation of the

probability distribution over ρ. Its density Γ′(`) satisfies

Γ′(`) = Ψ′(f(`))f ′(`) = −Λh′(f(`))f ′(`)

λf(`)
= −Λη′(`)

λf(`)
,

where the first equation is the definition of Γ, the second uses equation (46), and the third
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uses the definition of η. Again using the functional forms for f and η in equations (42)

and (43), we can integrate this to get

Γ(`) =
`√

8 + 7`+ `2

(
2`+ 7 +

√
17

2`+ 7−
√

17

) 7
2
√

17

. (48)

The fraction of traders with a contact rate less than ρ is then Γ(`(ρ)).

We return now to the first term in the trading rate (45), the rate that a finite trader

buys the asset from either another finite trader or a middleman:

γ

4

∫ ∞
1

(
`(ρ)− ρ`′(ρ)− `(ρ)

ρh′(ρ)
h(ρ)

)
dΨ(ρ) =

1

2

(
1 +

∫ ∞
1

`dΓ(`)

)
γ

=

√2

(
7 +
√

17

7−
√

17

) 7
2
√

17

− 3

 γ ≈ 1.46γ (49)

The first equation simplifies the expressions with the differential equations (41) and changes

variables to write everything in terms of `. The second equation solves the integral using

the known functional form for Γ in equation (48).

Next turn tot the rate that middlemen buy from finite traders. This uses the steady state

misalignment rate equation (13b), rewritten in terms of h and ˆ̀:

(
4γ + ρ

(
λh(ρ) + 2ˆ̀(ρ)

))
ˆ̀′(ρ) = −λ(2γ + ρˆ̀(ρ))h′(ρ),

with h(1) = 1 and ˆ̀(1) = 0. Take the limit as λ→∞ and solve the differential equation to

get
Λh(ρ)ˆ̀(ρ)

4λ
=
−γΛ

2λ

∫ ρ

1

h′(ρ′)

ρ′
dρ′ → γ

2
, (50)

where the limiting result follows immediately from equation (47). This proves, middlemen

buy from finite traders at rate 1
2
γ.

The same argument implies middlemen sell to finite traders at rate 1
2
γ and an immediate

corollary is that finite traders buy from middlemen at the same rate 1
2
γ. Subtracting this

from equation (49), we get that finite traders buy from finite traders at rate√2

(
7 +
√

17

7−
√

17

) 7
2
√

17

− 7

2

 γ ≈ 0.96γ,

indeed a number between 1
2
γ and γ.
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The last step of the proof is finding the rate that middlemen trade with other middlemen.

To find this, we need to compute the misalignment rate of middlemen. We start in the case

where λ is finite. Middlemen meet other traders at an infinite rate, and so the key is to

compute the fraction of those meetings that switch their alignment status in either direction.

First, if they are misaligned, they trade in meetings where the other trader is a misaligned,

finite speed trader (probability L(∞)) or in meetings where the other trader is a misaligned

middleman (probability H(∞)m∞). If they are well-aligned, they trade only in meetings

where the other trader is a misaligned, finite speed trader. Thus m∞ solves

(L(∞) +H(∞)m∞)m∞ = L(∞)(1−m∞).

Middlemen’s own preference shocks do not appear in this expression because middlemen have

infinitely more trading opportunities than preference shocks. Again rewrite this in terms of

h and l̂ to get (
ˆ̀(∞)

λ
+ h(∞)m∞

)
m∞ =

ˆ̀(∞)

λ
(1−m∞).

Multiplying both sides of the equation by Λh(∞)/4, the previous equation implies

Λh(∞)ˆ̀(∞)

4λ
− Λh(∞)2m2

∞
4

=
Λh(∞)ˆ̀(∞)

2λ
m∞.

Now in the limit as λ converges to infinity, equation (50) showed that Λh(ρ)ˆ̀(ρ)
2λ

→ γ, while

m∞ → 0. Thus the right hand side converges to 0 and so must the left hand side. Since

again Λh(∞)ˆ̀(∞)
4λ

→ 1
2
γ, this implies Λh(∞)2m2

∞
4

has the same limit. Thus middlemen buy from

middlemen at rate 1
2
γ. This completes the proof.

Proof of Proposition 8. We start by solving the problem of maximizing (14) subject

to the constraint (15) for all λ. We do this by writing the Lagrangian, placing a multiplier

SλdG(λ) on constraint (15), a multiplier θ0 on the constraint that
∫∞

0
dG(λ) = 1, and a

multiplier θ1 on the constraint that E(1) = 1. The Lagrangian is

L = ∆

∫ ∞
0

(1−mλ)dG(λ)− ΛE(c(λ)) + θ0

(
1−

∫ ∞
0

dG(λ)

)
+ θ1 (1− E(1))

+

∫ ∞
0

Sλ

((
γ +

λ

2
E
(
1λ
′,0
λ,0 mλ′ + 1λ

′,1
λ,0 (1−mλ′)

))
mλ

−
(
γ +

λ

2
E
(
1λ
′,0
λ,1 mλ′ + 1λ

′,1
λ,1 (1−mλ′)

))
(1−mλ)

)
dG(λ). (51)
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Take the first order condition with respect to mλ. Suppressing the multiplicative constant

dG(λ), this is

∆ = 2γSλ +
λ

2
E
((

1λ
′,0
λ,0 (Sλ + Sλ′) + 1λ

′,0
λ,1 (Sλ − Sλ′)

)
mλ′

+
(
1λ
′,1
λ,0 (Sλ − Sλ′) + 1λ

′,1
λ,1 (Sλ + Sλ′)

)
(1−mλ′)

)
(52)

Next take the first order conditions for the indicator functions 1λ
′,a′

λ,a . In doing this, we

implicitly use the unstated constraints 0 ≤ 1λ
′,a′

λ,a = 1λ,aλ′,a′ ≤ 1. We get

Sλ + Sλ′ ≷ 0⇒ 1λ
′,0
λ,0 =

1

0
, Sλ ≷ Sλ′ ⇒ 1λ

′,1
λ,0 =

1

0
,

Sλ + Sλ′ ≶ 0⇒ 1λ
′,1
λ,1 =

1

0
, Sλ′ ≷ Sλ ⇒ 1λ

′,0
λ,1 =

1

0
.

Using this, rewrite the first order condition (52) as

∆ = 2γSλ +
λ

2
E
(

(Sλ + Sλ′)
+ − (Sλ′ − Sλ)+

)
mλ′

+
(
(Sλ − Sλ′)+ − (−Sλ − Sλ′)+

)
(1−mλ′)

)
(53)

This is identical to equation (8) for the surplus in the decentralized economy, except that

the terms multiplying λ are twice as large for the planner. The proof of Proposition 1

implies the surplus function is uniquely defined by this equation and moreover is decreasing

and nonnegative. Optimal trading patterns (the planner’s version of Proposition 1) follow

immediately.

Next, using monotonicity of S, rewrite equation (53) as

(
4γ + λE

(
1− Iλ′≤λ(1− 2mλ′)

))
Sλ = 2∆ + λE

(
Iλ′>λSλ′(1− 2mλ′)

)
(54)

Differentiate with respect to λ to get(
4γ + λ(H(λ) + 2L(λ))

)
S ′λ + (H(λ) + 2L(λ))Sλ = E

(
Iλ′>λSλ′(1− 2mλ′)

)
(55)
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Replace the right hand side using equation (54) and simplify to get

S ′λ =
4γSλ − 2∆

λ
(

4γ + λ(H(λ) + 2L(λ))
) = Φλ

(
Sλ −

∆

2γ

)
,

where Φλ is given in equation (17). The general solution to this differential equation is

Sλ =
∆

2γ
−Ke

∫ λ
λ Φλ′dλ

′

for fixed λ and some constant of integration K. Use the fact that limλ→∞ Sλ = 0 to pin

down the constant of integration, equation (16).

Now return to the Lagrangian (51). The first order condition with respect to dG(λ)

implies dG(λ) > 0 only if λ maximizes

∆(1−mλ)− λc(λ)− θ0 − θ1
λ

Λ

+
λ

2
E
(
1λ
′,0
λ,0 mλ′Sλ′mλ + 1λ

′,0
λ,1 mλ′Sλ′(1−mλ)− 1λ

′,1
λ,0 Sλ′(1−mλ′)mλ − 1λ

′,1
λ,1 Sλ′(1−mλ′)(1−mλ)

)
.

Using the optimal trading patterns, this reduces to

∆(1−mλ)− λc(λ)− θ0 − θ1
λ

Λ

+
λ

2
mλE (mλ′Sλ′) +

λ

2
(1−mλ)E (Iλ′<λmλ′Sλ′)−

λ

2
mλE (Iλ′>λSλ′(1−mλ′)) .

Multiply equation (54) by 1
2
mλ and add to the previous expression. dG(λ) > 0 only if λ

maximizes

∆ +
λ

2
E (Iλ′<λmλ′Sλ′)−

(
2γ +

λ

2
E
(
1− Iλ′<λ(1− 2mλ′)

))
Sλmλ − λc(λ)− θ0 − θ1

λ

Λ
.

Using equation (15) under the optimal trading pattern and dropping irrelevant constants,

this simplifies to

dG(λ) > 0⇒ λ ∈ arg max

(
−γSλ +

λ

2
E
(
Iλ′<λmλ′(Sλ′ − Sλ)

)
− λc(λ)− θ1

λ

Λ

)
(56)

Next, consider the first order condition with respect to Λ, which appears implicitly inside
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each of the expectations operators. Using the efficient trading patterns, this gives

θ1 =

∫ ∞
0

Sλ

((
λ

2
E (mλ′ + Iλ′>λ(1−mλ′))

)
mλ −

(
λ

2
E (Iλ′<λmλ′)

)
(1−mλ)

)
dG(λ)

= γ

∫ ∞
0

Sλ(1− 2mλ)dG(λ) (57)

where the second line again uses equation (15) under the efficient trading pattern. Substitute

this into equation (56) to get that dG(λ) > 0 only if λ maximizes the expression in (18).

Finally, consider the behavior of (18) for large λ. If the inequality (19) is violated, the

planner would set λ unboundedly large for everyone. This incurs infinite costs and so cannot

be optimal. If the inequality (19) is slack, large values of λ would be inconsistent with

condition (18), which implies Λ =
∫∞

0
λdG(λ). To have middlemen, the inequality (19) must

be binding.

Once we have established the close link between the mathematical structures of the

equilibrium and optimal allocations and surplus functions, it is straightforward to replicate

the proofs of Propositions 2–6. Here we present one key piece of the result, the analog

to equation (13a), which is critical for characterizing the optimal allocation when the cost

function is linear.

For any value of λ in the support of G, equation (56) states that the planner marginal

values must be the same, some V̄ :

V̄ = −γSλ +
λ

2
E
(
Iλ′<λmλ′(Sλ′ − Sλ)

)
− λc(λ)− θ1

λ

Λ
, (58)

where we simplify the expression slightly using the results from the planner’s analog of to

Proposition 1. This implies the first order condition

0 = −
(
γ +

λ

2
L(λ)

)
S ′λ +

1

2
E
(
Iλ′<λ(Sλ′ − Sλ)m′λ

)
− c(λ)− λc′(λ)− θ1

Λ
(59)

= −
(
γ +

λ

2
L(λ)

)
S ′λ +

V̄ + γSλ
λ

− λc′(λ)

=
∆ (2γ + λL(λ)) e−

∫∞
λ Φλ′dλ

′

λ
(

4γ + λ(H(λ) + 2L(λ))
) +

V̄ + ∆
2

(
1− e−

∫∞
λ Φλ′dλ

′)
λ

− λc′(λ)

=
−(δ1 − δ0)H(λ)e−

∫∞
λ Φλ′dλ

′

2
(

4γ + λ(H(λ) + 2L(λ))
) +

V̄ + δ1−δ0
2
− λ2c′(λ)

λ

where the second line simplifies the first using equation (58), the third line replaces Sλ and
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its derivative using equation (16) and replaces Φλ using equation (17), and the fourth line

groups terms and recognizes that ∆ = δ1 − δ0. Rewrite this as

λH(λ)e−
∫∞
λ Φλ′dλ

′

4γ + λ(H(λ) + 2L(λ))
+

2λ2c′(λ)

δ1 − δ0

=
2V̄ + δ1 − δ0

δ1 − δ0

(60)

for all λ in the support of G(λ). Differentiating this expression and replacing Φλ gives us an

second equation relating H ′(λ) and L′(λ):

2e−
∫∞
λ Φλ′dλ

′(
λ(2γ + λL(λ))H ′(λ) +H(λ)(4γ − λ2L′(λ))

)(
4γ + λ(H(λ) + 2L(λ))

)2 +
2λ

∆
(2c′(λ) + λc′′(λ)) = 0. (61)

For the case of linear cost, this reduces to equation (20).

Next, we consider the limit of the optimal allocation as c→ 0, i.e. the planner’s analog to

Proposition 7. We start with some preliminaries. First, with a linear cost function, c(λ) = c,

the Lagrangian (51) can be simplified as

L = ∆

∫ ∞
0

(1−mλ)dG(λ)− cΛ + θ0

(
1−

∫ ∞
0

dG(λ)

)
+

∫ ∞
0

Sλ

((
γ +

λ

2
E
(
1λ
′,0
λ,0 mλ′ + 1λ

′,1
λ,0 (1−mλ′)

))
mλ

−
(
γ +

λ

2
E
(
1λ
′,0
λ,1 mλ′ + 1λ

′,1
λ,1 (1−mλ′)

))
(1−mλ)

)
dG(λ).

The first order condition with respect to Λ implies

c =
1

Λ

∫ ∞
0

Sλ

((
λ

2
E (mλ′ + Iλ′>λ(1−mλ′))

)
mλ −

(
λ

2
E (Iλ′<λmλ′)

)
(1−mλ)

)
dG(λ)

=
γ

Λ

∫ ∞
0

Sλ(1− 2mλ)dG(λ), (62)

where the second line uses equation (15) under the efficient trading pattern. Comparing this

with equation (57), we get

θ1 = Λc (63)

Second, evaluate equation (59) at λ = λ, eliminate S ′λ using equations (16) and (17), and θ1

using equation (63). This gives

c

∆
=
γ exp

(
−
∫∞
λ

4γ
λ(4γ+λH(λ)+2λL(λ))

dλ
)

λ(4γ + λ)
. (64)
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The functions H and L satisfy the differential equations (13b) and (20) with boundary

conditions H(λ) = 1 and L(λ) = 0.

As in equilibrium, we can prove that the optimal allocation must have λ→∞ as c→ 0.

To handle this, we do the same transformation of variables as in equilibrium, letting h(ρ) ≡
H(λ) and `(ρ) ≡ L(λ)λ/γ where ρ ≡ λ/λ. Rewrite equations (13b), (20) and (64) in terms

of ` and h:

(
4γ + λρh(ρ) + 2γ`(ρ)

)
(ρ`′(ρ)− `(ρ)) = −λρ2(2 + `(ρ))h′(ρ),

2(2h(ρ) + ρh′(ρ)) = ρ
(
h(ρ)`′(ρ)− `(ρ)h′(ρ)

)
− h(ρ)`(ρ),

c

∆
=
γ exp

(
−
∫∞

1
4γ

ρ(4γ+ρλh(ρ)+2γ`(ρ))
dρ
)

λ(4γ + λ)
.

with h(1) = 1 and `(1) = 0. Next, solve for `′(ρ) and h′(ρ) in the limit with λ→∞:

`′(ρ) =
2 + `(ρ)

ρ
and h′(ρ) =

−2h(ρ)

ρ(2 + `(ρ))
.

These differential equations can easily be solved in closed form:

`(ρ) = 2(ρ− 1) and h(ρ) = eρ
−1−1. (65)

Using this, we can calculate the fraction of middlemen as

lim
ρ→∞

h(ρ) = e−1 ≈ 0.368.

This is the optimal allocation analog of one of the key results in Proposition 7.

Next, let Ψ(ρ) ≡ G(ρλ) denote the cumulative distribution of relative contact rates.

Using equation (46) and
∫∞

1
dΨ(ρ) = 1, this implies

λ

Λ
= −

∫ ∞
1

h′(ρ)

ρ
dρ = e−1,

so Λ/λ = e ≈ 2.72 in the economy without search frictions. Then substitute this back into

equation (46) gives

Ψ′(ρ) = ρ−3eρ
−1 ⇒ Ψ(ρ) = (1− ρ−1)eρ

−1

, (66)

where the result follows by integrating the density function. This is an explicit solution for

the distribution of relative contact rates in the limiting economy.

Finally, we turn to volume. We start with the rate that finite traders buy, the first term
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in equation (45). We use the transformation in terms of h, `, and Ψ to get

γ

4

∫ ∞
1

(
`(ρ)− ρ`′(ρ)− `(ρ)

ρh′(ρ)
h(ρ)

)
dΨ(ρ) =

γ

2

∫ ∞
1

(2ρ− 1)ρ−3eρ
−1

dρ = (e− 3/2)γ ≈ 1.22γ.

This compares to equation (49) in equilibrium. Finally, the buying rate of middlemen is

unchanged. This proves that finite traders buy from finite traders at rate (e−2)γ ≈ 0.72γ ∈
(1

2
γ, γ), they buy from middlemen at rate 1

2
γ, and middlemen buy from finite traders at rate

1
2
γ, and sell to middlemen at rate 1

2
γ.

Proof of Proposition 9. First, the definition of τ̄ and equation (57) implies τ̄ = θ1/Λ.

Then equation (63) implies τ̄ = c.

We next show that the expected subsidy likewise equals c. Denote the expected subsidy

for an agent with contact rate λ by τ+(λ). This is given by

τ+(λ) =
1

4

(
(1−mλ)E

(
Iλ′<λ (Sλ′ − Sλ)mλ′

)
+mλE

(
Iλ′<λ (Sλ′ + Sλ)mλ′

)
+mλE

(
Iλ′>λ (Sλ − Sλ′) (1−mλ′)

)
+mλE

(
Iλ′>λ (Sλ + Sλ′)mλ′

))
.

Rearrange the second line to get

τ+(λ) =
1

4

(
(1−mλ)E

(
Iλ′<λ (Sλ′ − Sλ)mλ′

)
+mλE

(
Iλ′<λ (Sλ′ − Sλ)mλ′

)
+ 2mλSλL(λ) +mλSλH(λ)−mλE

(
Iλ′>λSλ′ (1− 2mλ′)

))
.

Differentiating the expression in (56) with respect to λ, we get that

E (Iλ′<λ (Sλ′ − Sλ)mλ′) = 2

(
c+

θ1

Λ
+

(
γ +

λ

2
L(λ)

)
S ′λ

)
It follows that

τ+(λ) =
1

4

(
2

(
c+

θ1

Λ

)
+ (2γ + λL(λ))S ′λ +mλSλ (2L(λ) +H(λ))

−mλ

(
4γ + λ(H(λ) + 2L(λ))

)
S ′λ −mλSλ(H(λ) + 2L(λ))

)
=

1

2

(
c+

θ1

Λ

)
+

1

4
S ′λ

(
(1− 2mλ) (2γ + λL(λ))− λmλH(λ)

)
=

1

2

(
c+

θ1

Λ

)
= c
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where the first equality uses the expression for E (Iλ′<λ (Sλ′ − Sλ)mλ′) and equation (55),

the second regroups terms, and the third uses the inflow-outflow equation (12). The final

equality follows from equating equations (57) and (62). This proves the result.

Proof of Proposition 10. We begin with equilibrium. Condition 3b in definition 2

immediately implies that there are no middlemen whenever their per-meeting cost is strictly

positive. Solve equation (22) to get

sλ =
4∆− λE

(
s′λm

′
λ

)
8γ + λE(m′λ)

, (67)

a decreasing and convex function. Condition 3a then implies that if λc(λ) is weakly concave,

all traders choose the same value of λ = Λ. That is, E
(
s′λm

′
λ

)
= sΛmΛ and E(m′λ) = mΛ.

To find the equilibrium contact rate, we solve explicitly for sλ. First, simplify (67) when

λ = Λ:

sΛ =
2∆

4γ + ΛmΛ

.

Then rewrite the expression for a general value of λ:

sλ =
∆
(
16γ + 4ΛmΛ − 2λmΛ

)
(4γ + ΛmΛ)(8γ + λmΛ)

. (68)

Finally, using condition 3a, it follows that if λc(λ) is weakly convex, the equilibrium choice

of Λ solves
4γ∆mΛ

(4γ + ΛmΛ)(8γ + ΛmΛ)
= c(Λ) + Λc′(Λ). (69)

We next turn to the planner’s problem. As in equilibrium, it is straightforward to show

that only meetings between two misaligned traders result in trade. Replicating the proof of

Proposition 8, we get that the optimal surplus function satisfies

∆ = 2γSλ +
λ

2
E
(
(Sλ + Sλ′)mλ′

)
⇒ Sλ =

2∆− λE
(
Sλ′mλ′

)
4γ + λE(mλ′)

,

decreasing and convex. We also obtain that the planner has dG(λ) > 0 only if λ maximizes

−γSλ − λ
(
c(λ) +

γ

Λ

∫ ∞
0

Sλ′(1− 2mλ′)dG(λ′)

)
,

analogous to condition (18). Convexity of S implies that if the cost function is convex, the

planner places all weight on a single value of λ:
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Replicating the arguments for the equilibrium, we then use this to prove that

Sλ =
∆
(
4γ + 2ΛmΛ − λmΛ

)
(4γ + λmΛ)(2γ + ΛmΛ)

. (70)

It follows that the optimal choice of Λ satisfies the first order condition

γ∆mΛ

(2γ + ΛmΛ)(4γ + ΛmΛ)
= c(Λ) + Λc′(Λ), (71)

where we simplify the expression slightly using the steady state relationship (23).

To prove that the equilibrium contact rate is inefficiently high, use the steady state

misalignment rate to eliminate Λ from the left hand side of equations (69) and (71). This

gives, respectively,

∆m3
Λ

γ(1 + 2mΛ)
= c(Λ) + Λc′(Λ)

∆m3
Λ

4γ(1−mΛ)
= c(Λ) + Λc′(Λ)

For any Λ > 0, 0 ≤ mΛ < 1/2 and therefore 1+2mΛ < 4(1−mλ) It follows that the left hand

side of equation (69) is always bigger than the left hand side of equation (71) at a fixed value

of Λ > 0. Since both left hand sides are increasing in mΛ, it follows that the equilibrium

misalignment rate must be weakly lower than the optimum, strictly so if the equilibrium rate

is less than 1/2 and the cost function is continuously differentiable. Again using the steady

state misalignment equation, the same condition ensures that the equilibrium contact rate

weakly exceeds the optimum whenever the rate is positive.
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