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1 Introduction

The U.S. healthcare system is famously inefficient, but the causes are poorly understood

(Baicker and Chandra, 2011). One candidate explanation that has received considerable

attention from analysts and policy makers is inefficient contracting between payers and

providers, in particular the near total reliance on fee-for-service contracts. This paper pro-

poses a “common agency” model for explaining the puzzling prevalence of such inefficient

contracts in the U.S. healthcare system.

Our analysis focuses on the common agency problems that arise when multiple payers seek

to motivate a provider to invest in improved care coordination. The provider in this case acts

as a “common agent” to the various payers. Strategic interactions among payers introduce

two distortions that shape the equilibrium contracts offered to the agent. The first distortion,

which has been extensively analyzed in other contexts but only rarely in healthcare, is

free-riding.1 Free-riding causes payers to offer weak incentives to the provider because any

given payer reaps only a fraction of the marginal benefit of stronger incentives. The second

distortion is a coordination failure between payers. Unlike free-riding, coordination failures

lead to the emergence of what we refer to as “sticking points,” that is, Pareto-dominated

equilibria in which all payers offer contracts that may entirely omit incentives for making

efficient investments.

Previous analyses of common-agency problems have not emphasized the role of coor-

dination failures among payers and the resulting sticking-point equilibria. A central con-

tribution of this paper is to trace out the implications these equilibria have for the U.S.

healthcare system and healthcare policy. In brief, we find that sticking-point equilibria offer

a straightforward explanation for three long-observed but difficult-to to-explain features of

the U.S. healthcare system: the ubiquity of fee-for-service contracting arrangements outside

of Medicare;2 poor care coordination across providers;3 and the historic reliance on small,

1For an important exception see Glazer and McGuire (2002), which is, to the best of our knowledge, the
first application of common-agency models to the study of the US healthcare system.

2Outside of health maintenance organizations (HMOs), fee-for-service contracts are ubiquitous in com-
mercial insurance markets—so much so that Blue Cross Blue Shield of Massachusetts’s move away from
fee-for-service towards its Alternative Quality Contract attracted nationwide attention (Song et al., 2011).
This pattern is noteworthy because fee-for-service contracts provide weaker incentives to providers to control
costs than do other feasible contracting arrangements. Gaynor, Rebitzer and Taylor (2004), for example,
study shared savings incentives implemented by an HMO and estimate that medical expenditures were 5
percent lower than they would have been in the absence of incentives with no apparent decline in care quality.

3The Institute of Medicine’s assessment of care quality in the U.S. healthcare system found that care
delivery is often complex and poorly coordinated, leading to wasted resources, gaps in coverage, loss of
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single-specialty practices rather than larger multi-specialty group practices.4 The common-

agency model we propose also provides insights on the effects of policies such as Accountable

Care Organizations (ACOs) that aim to promote more efficient forms of contracting between

payers and providers.

To illustrate the logic of our model, imagine two private payers who would like to en-

courage a common provider to improve care coordination by, say, implementing an electronic

medical record system. Implementing such a system requires the provider to exert effort,

but many of the benefits of the effort spent introducing the electronic system accrue to the

payers not the provider.5 A natural way to motivate the provider to implement the new

system would be for payers to move away from traditional fee-for-service contracts and offer

the provider a share of the savings that the electronic medical records system generates for

the payer. In a common-agency setting, however, the shared savings incentives offered by

one payer will also accrue to the patients covered by the other payer. Not surprisingly, this

externality results in an equilibrium in which both payers offer weak incentives. As a result,

the provider devotes low levels of effort and attention toward implementing the electronic

medical records system.

If free-riding were the only common-agency induced market failure at work, we would

expect to see an equilibrium in which private payers offered weak incentives for improved

information, and reductions in the speed and safety with which care is delivered (IOM, 2001). Many of
the problems of poor coordination result either from mishandled referrals to specialists or from fragmented
care delivery. Both problems are exacerbated by relatively weak investments in technology and process
improvements that strengthen integration across providers and organizations. For a review of the problems
resulting from poorly handled referrals, see Mehrotra, Forrest, and Lin (2011). For a review and discussion
of the problem of care fragmentation, see Cebul, Rebitzer, Taylor, and Votruba (2008) and Rebitzer and
Votruba (2011). For estimates of the costs resulting from fragmented care delivery, see Frandsen et al. (2015),
Hussey et al. (2014), and Agha et al. (2016). For instances of investments in effective care coordination
that deliver cost and quality benefits, see Milstein and Gilbertson (2009).

4Historically, medical care in the U.S. was delivered by practitioners operating out of their own offices or
as attendings in hospitals. This arrangement granted physicians a great deal of professional autonomy which,
as a group, they were loathe to surrender to larger organizations (Starr,1984; Robinson, 1999). Bundorf and
Royalty (2014) estimate that as late as 1998, 29 percent of physicians worked in solo practices and 55 percent
in practices of 9 or fewer physicians. In contrast, only 19 percent of physicians were employed in practices
having 50 or more physicians. Since the beginning of this century, physicians have slowly migrated towards
larger practices so that, by 2010, 18 percent were solo practitioners and only 40 percent worked in practices
of 9 or fewer physicians. (Baker, Bundorf, and Royalty, 2014, Table 1). Despite this migration, a great deal
of care is still delivered via small practices. According to the 2010 National Ambulatory Care Survey, 31.5%
of office visits were to solo practices, and 67.5% were to offices with five or fewer physicians. Only 22.6% of
office visits were to multi-specialty groups (Centers for Disease Control 2010, Table 2).

5For example, the electronic record system could allow the payer to track and discourage duplicative
testing, treatments that are not cost-effective, excessive referrals to specialists or unwarranted emergency
room visits.
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care coordination. We would not, however, expect to find insurers and other private payers

relying almost entirely on fee-for-service contracts that do not share any of the payer’s gains

from improved care coordination with providers. Yet this is the pattern historically observed

in most of the US healthcare system.

To explain the anomalous reliance on fee-for-service contracts within a common-agency

framework, we consider coordination failures among payers. We introduce coordination

failures into our previous example by adding the reasonable assumption that the transition

to electronic medical records also requires providers to purchase a new health information

technology (HIT) system. The fixed, up-front costs of purchasing such a system subtly

alters the common-agency problem and makes it more severe.6 This is because the two

payers will only deviate from traditional fee-for-service arrangements if they each believe

that incentives jointly offered by both payers fully compensate the provider for these fixed

up-front costs. If, in contrast, each payer believes that the other payer’s contract includes

weak incentives, then neither payer will find it optimal to shoulder the entire burden of

motivating the provider to incur the fixed cost of the HIT system. In this case, the payers

will stay with the traditional fee-for-service contract—even though such contracts are Pareto

dominated by the relatively weak incentive contracts that common-agency supports. To the

extent that many organizational innovations that improve care coordination involve sizeable

fixed costs, sticking-point equilibria within a common-agency model offer a plausible account

for the persistence of both fee for service payments and unsatisfactory care coordination.7

In a sticking-point equilibrium, providers also face weakened incentives to form inte-

grated, multispecialty group practices and so to deliver care through small, single specialty

practices. To see why, return again to the decision to invest in an HIT system. These systems

enable superior coordination and information handoffs in referrals, but they typically do not

allow for interoperability, that is, the easy exchange of information across organizations. In

this setting, the gains from investing in HIT systems are greater when providers operate

within a multi-specialty group practice, and the gains from forming multi-specialty group

practices are similarly enhanced by investments in HIT systems. Put differently, because

6See Simon, et al., 2007 for evidence showing the most cited barrier to adopting HIT is up front costs
7A partial list of organizational innovations that improve the integration of care across providers includes:

investments in clinical decision-making support; investments in managerial and financial systems such as
payment methods, prospective budgets and resource planning, measures of provider performance, methods
of disbursing shared savings to providers and back-office assistance; investments to create new standards
of care and protocols that focus more on primary care physicians and non-physician providers as well as
patient wellness and prevention. Each of these innovations plausibly involves a combination of up front fixed
investments and ongoing expenditures of effort.
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HIT investments and multi-specialty group practices are complementary, the failure to write

incentive contracts that encourage efficient investments in HIT systems also depresses the

returns to forming integrated multi-specialty group practices.8

Many others have observed that fee-for-service pay structures suppress investments in

the technology and processes required for care coordination and integrated care delivery.9

Our key contribution is to provide an explanation for the causes of these pay practices. By

rooting the persistence of inefficient fee-for-service contracts in a specific market failure, our

common-agency model also provides insights on the effects of public policies that aim to

promote more efficient forms of contracting between payers and providers.

For example, under the Affordable Care Act, Medicare was empowered to write shared

savings contracts with newly constituted Accountable Care Organizations (ACOs). Our

common-agency model suggests two distinct mechanisms through which this policy can in-

fluence the contracts that private-payers write with providers. If there were no coordination

failure so that contracts were shaped only by common-agency-induced free-riding among

payers, Medicare’s new incentive contracts will partially or fully crowd out already existing

shared savings contracts. Things are different if common-agency also leads to a coordination

failure among payers. In this case, introducing Medicare ACOs can “crowd-in” new, more

efficient, private-sector contracts. Our model also suggests, however, that this jump-start

effect will only manifest if Medicare’s intervention is sufficiently aggressive.

The common-agency approach we develop in this paper has two distinctive implications

that are not apparent in more familiar principal-agent models. First, in traditional principal-

agent models, one might observe persistent fee-for-service contracts, but such contracts would

persist only when they are efficient. As a result policies aimed at promoting shared saving

incentives would be counterproductive in the sense that they would simply crowd-out efficient

contracts. Secondly, common-agency problems become more severe as the number of payers

increases: increasing the competitiveness of insurance markets may therefore not lead to

more efficient contracting between insurers and providers.

Because common-agency models are less familiar than traditional principal-agent models,

we conclude this introduction by briefly situating our approach within the larger literature.

Common-agency models were first introduced by Bernheim and Whinston (1986b). Much

8Other sources of complementarity are also likely to be important, because multi-specialty groups typically
confine their referrals to specialists and hospitals who are also in the group. Simon, et al. (2007) show that
electronic health record adoption is significantly more common in larger, more integrated practices.

9See for example Crosson (2009), Burns and Pauly (2012) and Blumenthal (2011).
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of the subsequent literature on common-agency models focuses on problems of lobbying and

influence in political settings.10 Ours is a complete-information moral-hazard model with

risk-neutral parties and no negative transfers, so that the underlying source of agency costs

arises from a trade-off between incentive provision and rent extraction (Sappington, 1983;

Innes, 1990). Our set-up relies on public contracting variables, so that all payers’ contracts

depend on the same publicly observed variables, and the model is one of “delegated common

agency,” where the provider can reject any subset of the contracts she is offered.

Our model differs from the models commonly used in the literature in several ways.

Imposing limits on transfers requires us to depart from the standard tools used to analyze

the set of equilibria in common-agency models.11 Our objective is also different. We seek

to characterize the entire set of equilibrium action choices by the provider within a specific

class of games. This differs from the more common approach of describing the distributional

properties of a subset of equilibria in a general class of games. In contrast to existing common

agency models of public contracting, multiplicity of equilibrium actions is not ubiquitous

and does not result from parties’ flexibility in specifying off-path contractual payments.

(Bernheim and Whinston, 1986a; Kirchsteiger and Prat, 2001; Besley and Coate, 2001;

Martimort and Stole, 2009). In our model, whether there are multiple equilibrium actions

depends on features of the provider’s cost function, and we provide necessary and sufficient

conditions for there to be multiple equilibrium actions.

The remainder of the paper proceeds in five sections. In Section 2, we set up the model

and describe necessary and sufficient conditions for equilibrium. In Section 3, we describe

necessary and sufficient conditions under which our conclusions about sticking points hold.

Section 4 considers the effects of policies (such as ACOs ) aimed at promoting more efficient

contracts. Section 5 considers the effects of common-agency on the formation of integrated,

multi-specialty groups. Section 6 presents a set of testable hypotheses that derive from our

model and relates them to stylized facts emerging from the empirical literature. We conclude

by discussing limitations and directions for future research.

10See for example Dixit, Grossman, and Helpman (1997), Besley and Coate (2001), and Kirchsteiger and
Prat (2001). To our knowledge, the only other heathcare application is Glazer and McGuire, 2002.

11In the terminology of Martimort and Stole (2012), our contracting space is not bijective, meaning that
the payers cannot effectively “undo’ the contracts put in place by others.
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2 Theoretical Analysis

In this section, we develop a simple model that highlights both the “free-riding” and “co-

ordination failures” that emerge under common agency. The principals in our model are

the payers who wish to motivate a common agent (the provider) to invest in improved care

coordination. Because the cost of these investments accrue to providers and many of the

benefits accrue to payers, some sort of incentive contract is required. These contracts will

typically not provide first-best incentives, because incentive contracts entail some agency

costs.

In our set-up, introduced formally in Section 2.1, payers cannot reduce up-front payments

to capture all the rents that the contract generates. Higher powered incentives create more

surplus, but a limited-liability restriction causes some of the surplus to flow to the provider as

rent. Agency costs therefore emerge as the result of a trade-off between incentive provision

and rent extraction. In Section 2.2, we analyze equilibrium actions under our common-

agency model. In comparison to the simpler and better known case of a single principal and

agent, we find that the presence of multiple payers effectively amplifies agency costs. The

magnitude of this amplification depends on what contracts payers expect other payers to

offer.

To build intuition for our analysis, we use a running example in which payers seek to

motivate a shared provider to invest in an electronic medical records system. This system

reduces the cost of care delivery to payers by improving care coordination, but it imposes

two costs on the provider. The first of these is the fixed cost of the HIT system. The second

is the variable cost of the effort required to ensure successful implementation. Providers lack

the knowledge to directly purchase or monitor implementation efforts. They therefore offer

the provider a non-negative bonus if certain cost targets are met. This bonus is a vehicle for

sharing the cost savings generated by the HIT system with the provider.

Figure 1 depicts the familiar incentive design problem that a unitary principal would face.

The provider chooses the probability, a, that a binary contractible outcome is successful. The

provider’s choice of investment level is on the horizontal axis. In this context, since outcomes

are binary, any contract can be represented as a straight line from the origin. Given a

contract, the provider chooses an investment level to maximize the difference between his

expected rewards and his action costs. Consistent with our HIT system example, Figure 1

depicts both a fixed cost (the purchase of the system) and a variable cost representing the
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effort and attention required for successful implementation.

Figure 1: Unitary Principal Incentive Problem
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This figure illustrates the provider’s cost function (blue), the cost-minimizing contract for a particular invest-
ment level (purple) and its associated incentive rents, the set of incentive-feasible levels of invesment—levels
for which there is a contract that could get the provider to choose that level of investment—and the unitary
principal cost function (red) for what we will refer to as the health-IT (HIT) example.

Given the depicted contract, the provider would choose investment level a1 at cost c (a1) =

F + ca2
1/2 if a1 > 0 and c(0) = 0, and would receive expected rents R (a1) equal to the

difference between his expected benefits and costs. The effective cost to the payer of getting

the provider to choose investment level a1, denoted C (a1), is therefore equal to the provider’s

costs, c (a1), plus the rents required to get him to choose a1, R (a1). The need to give the

provider rents is the source of agency costs that leads the payer to offer a contract that does

not maximize total surplus.

When there are multiple payers, these agency costs are amplified by two additional sources

of contracting frictions. The first additional source of friction is a free-rider problem among

payers: at the margin, to get the provider to choose a higher level of investment, each payer

has to effectively top off all the contracts she believes all others are putting in place, which

means that she is effectively facing the entire marginal agency costs while receiving only a

fraction of the marginal benefits. The second friction results from a coordination failure. If

a payer believes no other payer will offer incentive contracts, then she has to shoulder the
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entire burden of getting the provider to choose any positive investment level, which can be

substantial when the costs of the provider’s actions are lumpy. However, if she believes the

other payers are offering high-powered incentive contracts, she only has to shoulder a small

part of the burden of getting the provider to choose a positive investment level. In this

example, and as we demonstrate much more generally below, these coordination problems

only emerge when there are fixed costs in addition to the standard variable costs.

2.1 The Model

There are N risk-neutral payers (denoted P1, . . . , PN) and a single risk-neutral provider.

There is a binary outcome, y ∈ {0, 1}, which can either be success at hitting a cost target,

or failure, and the probability of success is determined by the provider’s action choice a:

Pr [y = 1| a] = a ∈ A ⊆ [0, 1], where A is a compact set. We refer to a as the provider’s

care-coordination investment level. A successful outcome yields a total benefit B to all

the payers, and we assume this benefit is equally distributed among them, so that payer i

receives benefit Bi = B/N if y = 1 and 0 if y = 0. The action a is costly to the provider:

choosing a costs c (a), where c is lower semicontinuous and nonnegative.

Payers simultaneously and noncooperatively offer bonus contracts bi ≥ 0, which specify

a nonnegative payment to be made from Pi to the provider if y = 1 and zero if y = 0. If

bi = 0, we will say that Pi offers a fee-for-service contract, and if bi > 0, we will say that

Pi offers a shared savings contract. The provider can decide whether to accept a subset

of the contracts, and if he accepts no contracts, he receives 0. Since contracts must pay a

nonnegative amount to the provider, we can without loss of generality assume he accepts

all contracts. As a result, the provider cares about, and is motivated by, the aggregate

contract b = b1 + · · · + bN . If the provider is indifferent among several action choices, we

assume he chooses the highest action he is indifferent among.

The timing of the game is as follows. First, P1, . . . , PN simultaneously offer bi ≥ 0 to the

provider. The provider then chooses an action a ∈ A at cost c (a). The outcome y ∈ {0, 1}
is realized, and biy is paid from Pi to the provider.

A subgame-perfect equilibrium of this game is a set of nonnegative contracts b∗1, . . . , b
∗
N

and an action-choice function a∗ such that: (1) given b∗−i and the provider’s choice function,

Pi optimally offers b∗i , and (2) given b∗1, . . . , b
∗
N , the provider optimally chooses a∗. We will say

that b∗ = b∗1 + · · ·+ b∗N is an equilibrium aggregate contract, and a∗ is an equilibrium

action if they are part of an equilibrium. Denote A∗ ⊂ A to be the set of equilibrium
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actions. Our objective is to characterize this set and to describe how it depends on prop-

erties of the function c (·). In particular, our general specification of the cost function will

allow us to identify the precise properties of the cost function that are necessary for there

to be multiple equilibrium actions.

2.2 Computing Equilibrium Actions

In order to compute the set of equilibrium actions, it will first be useful to solve the problem

that a unitary principal would face if there were no other payers. The payer wants to choose

an action a she wants the provider to undertake, and the cheapest contract b that gets him

to take action a. Define the unitary principal cost function C : A → R+ to be the

solution the unitary principal’s cost-minimization problem

C (a) = min
b≥0

ba

subject to the provider’s incentive-compatibility constraint

a ∈ argmax
a′

ba′ − c (a′) .

Note that there may be some actions a for which no contract b could get the provider to

choose a. We will refer to the actions that the payer could in principle get the provider to

choose as incentive-feasible actions, and we will denote the set of such actions by Afeas.

Because the provider’s preferences are additively separable in money and costs, we can always

write the unitary principal’s cost function as the sum of the provider’s action costs and the

agency costs, C (a) = c (a) + R (a) for all a ∈ Afeas, where R (a) are the incentive rents

required to get the provider to choose action a. For any action that is not incentive-feasible,

the payer’s objective function is C (a) = +∞. We will say that a solution to this problem is a

cost-minimizing contract implementing action a and denote the resulting contract by

b∗a. We show in Lemma 6 in the appendix that cost-minimizing contracts satisfy b∗a = ∂−c (a),

where ∂−c (a) is the smallest subgradient of c at a.

We begin by laying out two conditions that will be used in some of the results. The first

condition allows us to generalize the first-order conditions to cases where the provider’s cost

function is not well behaved. We are specifically interested in cases where the providers cost

function entails fixed or “lumpy” costs as this is precisely when common-agency problems

generate coordination failures. Preliminary to stating this condition, we define the quantity

Z (a, a′) =
∂−c (a)− ∂−c (a′)

a− a′
.
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CONDITION CR (convex rents). For each a, a′ ∈ Afeas with a ≥ a′, Z (a, a′) is increasing

in a and a′.

In our setup, to motivate the provider to take an action a, the payer has to give the

provider incentive rents R (a). In models of this sort with limited-liability constraints,

inducing a higher action requires the principal to provide the agent with higher rents, imply-

ing that R (a) is increasing. Condition CR further implies that the incentive rents schedule

is not only increasing but is essentially a convex function.12 Condition CR is implied by

c′′′ (a) ≥ 0, which is a standard condition invoked in moral-hazard models with limited lia-

bility and binary outcomes. We will say that c is well behaved if it satisfies the following

condition.

CONDITION W (well-behaved). A = [0, 1], c is thrice-differentiable with c′, c′′ > 0, and

c′′′ ≥ 0.

When the provider’s cost function is well-behaved, there will be a unique equilibrium

action. When the provider’s cost function is not well-behaved, there may be multiple equi-

librium actions.

Figure 1 illustrates, for the HIT example, the provider’s cost function, the set of incentive-

feasible investment levels (actions), the cost-minimizing contract for investment level a1 and

its associated incentive rents R (a1), and the unitary principal’s cost function C (a). Because

the provider must cover his fixed costs in order to be willing to choose any positive level of

investment, there will be some set of investment levels (0, a) that he would not be willing to

choose for any contract he faces. For higher values of a, the gap between C (a) and c (a) is

increasing and convex, since the cost function in the HIT example satisfies Condition CR.

The following efficiency benchmarks will help us to interpret the common-agency equi-

librium actions derived below. A first-best action a social planner would choose is any

action satisfying

aFB ∈ argmax
a∈A

Ba− c (a) .

The first-best action is always incentive-feasible since it is an action the provider would

be willing to choose if the aggregate bonus were b = B. Because actions are not directly

contractible, the first-best action will typically not be an equilibrium action.

12More precisely, it ensures that R (a) is convex-extensible on [0, 1], where R : Afeas → R is convex-
extensible on [0, 1] if R is the restriction of a convex function R̃ : [0, 1] → R to the domain Afeas. (See
Kiselman and Samieinia (Forthcoming))
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A second-best action is any action a unitary principal would implement or

aSB ∈ argmax
a∈A

Ba− C (a) ,

where C (a) is the unitary principal’s cost function defined above. The second-best action

differs from the first-best because of agency costs. Function c(a) includes only the agent’s

cost of action while C(a) includes as well the cost to the principal of rents earned by the

provider. As we discuss below, actions under common agency (which may be termed “third-

best”) differ from the conventional principal-agent second-best action defined here because

agency costs are typically higher in common-agency settings.

We can define the second-best action using marginal conditions. Define MC (a) to be the

set of subgradients of C at a. If C is everywhere differentiable, this set will be a singleton for

all a. We refer to MC (a) as the unitary principal’s marginal-cost correspondence.

The second-best action aSB satisfies B ∈MC
(
aSB

)
if Condition CR is satisfied. In general,

the second-best action will be below the first-best action, because the incentive-rents sched-

ule, R (a), is an increasing function. Moreover, we will show below that the second-best

action in general represents an upper bound on equilibrium actions in the common-agency

game.

Figure 2 below illustrates, for the HIT example, the unitary principal’s marginal-cost

correspondence MC (a) as well as the agent’s marginal-cost correspondence, which we denote

by Mc (a) and the payer’s marginal benefit B. B intersects MC (a) at the second-best

investment level, and it intersects Mc (a) at the first-best investment level.

We are now in a position to describe the equilibrium conditions under common-agency;

i.e., when there are N ≥ 2 payers. We show in Corollary 1 in the appendix that when it

comes to characterizing the set of equilibrium actions, A∗, it is without loss of generality to

focus on symmetric equilibria in which all payers offer the same contract to the provider. We

will say that payer i supports action ā if she offers the provider the contract bi = b∗ā/N . An

action a∗ will therefore be an equilibrium action if and only if, whenever all payers other than

payer i support action a∗, payer i also wants to support action a∗. We refer to the function

CN (a, ā, N) as a payer’s effective cost function given others support ā. Theorem 1 below

provides necessary and sufficient conditions for an action a∗ to be an equilibrium action.

THEOREM 1. There is at least one equilibrium action, and there exists a function CN (a, ā, N)

such that action a∗ is an equilibrium action if and only if

a∗ ∈ argmax
a∈A

Ba− CN (a, a∗, N) .
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Figure 2: Marginal Conditions for Unitary Principal’s Problem
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This figure illustrates, for the HIT example, the agent’s marginal-cost correspondence (blue), the unitary
principal’s marginal-cost correspondence (red), and the unitary principal’s marginal benefit (purple). It also
illustrates the first-best and second-best investment levels, aFB and aSB , respectively.

The function CN (a, ā, N) exhibits increasing differences in (a,N) and decreasing differences

in (a, ā).

Proof of Theorem 1. See appendix.

Theorem 1 casts the common-agency game’s set of equilibrium actions—which is a poten-

tially complicated object involving the strategies of multiple principals—in terms of a decision

made by a single optimizing player. The intuition allowing this simplification is that a single

principal can be thought of as choosing not only her own contract, bi, but—since she takes

the other principals’ contracts as given—the aggregate contract b and therefore the action,

a. In particular, the theorem shows that we can characterize the set of equilibrium actions

by looking for the solutions to a problem of a unitary principal choosing an action given a

modified cost function, which in turn takes as a parameter a “proposed” equilibrium action.

If the solution to the problem coincides with the proposed equilibrium action a∗, then a∗ is

indeed an equilibrium action.

Characterizing the common-agency game in terms of a unitary principal’s decision allows

us to draw an analogy with the single-principal setting and highlight the additional sources

13



of inefficiency that arise from the common-agency problem. Analogous to the case with a

unitary principal, we can define MCN (ā) to be the set of subgradients of CN (a, ā, N) (with

respect to a) evaluated at ā. We refer to MCN (ā) as the multiple-principal’s marginal

cost correspondence. An action a∗ is an equilibrium action if and only if the marginal

cost correspondence MCN (a∗) contains the payers’ aggregate marginal benefit, B.

Figure 3 illustrates, for the HIT example, the multiple-principal’s marginal cost cor-

respondence MCN (ā) as well as the unitary principal’s marginal-cost correspondence and

the provider’s marginal-cost correspondence. The payers’ aggregate marginal benefit, B,

intersects the MCN (ā) curve twice, which implies that there are two equilibrium levels of

investment: the low equilibrium level, a∗L, and the high equilibrium level, a∗H .

Figure 3: Marginal Conditions for the Common-Agency Problem
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This figure illustrates, for the HIT example, the equilibria for three different games, which are each defined
by the intersection of the marginal benefit curve (horizontal purple line B) and the respective marginal cost
curves (blue, red, and green). The blue curve corresponds to the marginal cost of effort faced by a social
planner (i.e., the agent’s marginal cost), and the intersection with B corresponds to the first-best effort
level, aFB . The red curve includes marginal effort costs and agency costs and corresponds to the marginal
cost faced by a unitary principal. The intersection with B corresponds to the equilibrium of a conventional
principal-agent game. The green curve shows the marginal cost faced by a principal in a multiple-principal
setting, and the intersections with B correspond to equilibria of the common-agency game. Action a∗H is the
third best action under common agency and aSB is the second best action under traditional agency with a
single principal. Action a∗L is the action without any shared savings incentives.

As Figure 3 illustrates, both equilibrium levels of investment are below the second-best,

which in turn is below the first-best level of investment. The difference between the low
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and the high equilibrium levels of investment results from a coordination failure. If payer i

believes all other payers are supporting zero investment, then if payer i wants the provider to

choose a higher investment level, she has to shoulder the entire burden of getting him to do

so. However, if she believes all other payers are supporting action a∗H , then she only has to

shoulder a small part of the burden of getting him to choose a∗H . As a result, payers can get

stuck in a vicious cycle in which none of them offers high-powered shared savings contracts,

because they think the others will not offer high-powered shared savings contracts. We now

explore the implications of this result.

3 Equilibrium, Efficiency, and Coordination Failures

Common-agency problems amplify the agency costs that would arise in the interaction be-

tween a unitary principal and a provider. Our first result in this section is that the market

failures in common-agency games are generally more severe than in conventional principal-

agent models. Specifically, the highest equilibrium action in the common agency problem,

a∗H , is inefficient in that it results in actions that are no greater than second-best actions.

PROPOSITION 1. The highest equilibrium action a∗H is bounded from above by aSB.

Proof of Proposition 1. See appendix.

In general, the inefficiency in equilibrium actions arises from three sources. The difference

between the first-best action and the second-best action is the standard distortion that arises

because of agency costs resulting from the trade-off between incentive provision and rent

extraction in the unitary principal problem. The second potential source of inefficiency is

a free-rider problem among payers: at the margin, to get the provider to choose a higher

action, each payer has to effectively top off all the contracts she believes all others are putting

in place, which means that she is effectively facing the entire marginal cost while receiving

only a fraction of the marginal benefit.

The third potential source of inefficiency is due to possible coordination failures, which

arise when there are multiple equilibrium actions. Specifically, we will say a∗L = 0 is a

sticking-point equilibrium if a∗L = 0 is an equilibrium action, and a∗H > 0 is also an

equilibrium action. In a sticking-point equilibrium, all payers offer fee-for-service contracts

(i.e., b∗i = 0 for all payers), and the provider does not undertake any care-coordination

investment.
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Not all common-agency games result in coordination failures. An important implication

of our characterization of equilibrium actions is that if c is well behaved, there is a unique

equilibrium action. When Condition W is satisfied, MCN (ā) is a singleton and is equal to

c′ (ā)+R′ (ā), both of which are increasing in ā. We will say that there is a nondifferentia-

bility at a if ∂−c (a) < ∂+c (a), where ∂+c (a) is the largest subgradient of c at a. The next

proposition provides necessary and sufficient conditions for there to be multiple equilibrium

actions.

PROPOSITION 2. Suppose Condition CR holds. If there are multiple equilibrium actions

a∗L and a∗H > a∗L, then there is a nondifferentiability at a∗L. If there is a nondifferentiability

at â, then there exists a B for which a∗L = â and a∗H > â. If Condition W holds, then there

is a unique equilibrium action a∗.

Proof of Proposition 2. See appendix.

Proposition 2 implies that payers coordinating on an inefficient action when a more

efficient equilibrium action exists can only occur when there is a nondifferentiability in the

provider’s cost function. In particular, this result implies that a sticking-point equilibrium

can only arise if the provider’s cost function is nondifferentiable at 0.

This nondifferentiability at 0 condition appears to be a narrow and technical one, but it

has broad and important economic implications. For example, it is satisfied in the case of

discrete investments or, as in our HIT example, when investments have a discrete component

such as a fixed cost. In the healthcare context, innovations involving new care processes or in-

formation technologies appear likely to meet the nondifferentiability criterion. The criterion

will manifestly not be satisfied, however, in the case most studied by prior common-agency

models—when the provider’s cost function is well-behaved. Thus, under a conventional setup

with well-behaved cost functions, we should not observe private payers relying strictly on

fee-for-service compensation systems.

The next proposition shows that equilibrium actions are, in some sense, Pareto ranked.

PROPOSITION 3. Suppose Condition CR holds. If there are multiple equilibrium actions,

a∗L and a∗H > a∗L, then (i) there exists an equilibrium with a∗ = a∗H that Pareto dominates

an equilibrium with a∗ = a∗L, and (ii) there does not exist an equilibrium with a∗ = a∗L that

Pareto dominates any equilibrium with a∗ = a∗H .

Proof of Proposition 3. See appendix.

For the first part of the proposition, note that symmetric equilibria are Pareto ranked,
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because each payer receives a share (1/N) of the profits the unitary principal would receive,

and the unitary principal’s profits are increasing in the provider’s action (among his incentive-

feasible actions). Further, since incentive rents R (a) are increasing in a for a ∈ Afeas, the

provider’s profits are also increasing in the action he is induced to take. For the second part

of the claim, since R (a) is increasing in a for a ∈ Afeas, the provider is worse off for lower

actions, so it cannot be that any equilibrium with a∗ = a∗L Pareto dominates any equilibrium

with a∗ = a∗H .

The possibility of an inefficient equilibrium at zero investment depends crucially on the

common-agency concerns arising with multiple payers (N > 1). In a setting with a unitary

principal, nondifferentiabilities in the provider’s cost function at zero can certainly lead to

an equilibrium with zero investment and zero incentives, but only when zero investment is

efficient. To see this, note that if positive investment is efficient, there must be a level a′

where average benefit Ba′ exceeds the cost c (a′), which means there is some b′ < B for which

b′a′ also exceeds c (a′). The provider will strictly prefer investing at the level a′ to zero if

given incentive b′, and such a b′ also makes the payer strictly better off than setting b = 0.

4 Common Agency and Public Policy to Improve Con-

tracting

We have demonstrated that common-agency problems lead to third-best incentive contracts

or, in the case of sticking-point equilibria, to incentive contracts that are Pareto dominated

by the third-best outcomes. In this section we consider whether and how public policy

interventions might be used to improve contracting. We will focus our discussion on a

particular policy intervention that has gained a great deal of recent attention: Accountable

Care Organizations (ACOs). Our findings, however, emerge from the fundamental logic of

common-agency market failures and are not limited to this particular policy.

ACOs are entities composed of hospitals and/or other providers that contract with the

Center for Medicate Services (CMS) to provide care to a large bloc of Medicare patients

(5,000 or more). Although the details vary and are complex, ACOs that come in under their

specified cost benchmarks keep a fraction of the savings conditional on meeting stringent

quality standards.13 As a public policy intervention, ACOs are essentially a commitment by

13ACOs can be formed by groups of tremendously varied size and integration, from integrated delivery
systems such as Kaiser Permanente and Geisinger Health Systems, to loosely affiliated networks of providers.
These latter ACOs typically lack a large, salaried multi-specialty group of physicians; they frequently lack a
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Medicare to reduce reliance on fee-for-service and to engage in a new form of contracting

with providers. By introducing shared savings contracts, ACOs seek to directly stimulate

provider investments in more efficient, integrated care delivery. As the common agency

problem makes clear, the efficacy of these incentives also depends on the contracts offered by

private sector payers. An important goal of ACOs, therefore, is to use Medicare’s contracts to

jump-start the introduction of similarly efficient shared savings contracts by private payers.

In this way ACOs offer the prospect of transforming incentives throughout the healthcare

system. Whether ACOs can, in fact, play such a transformative role depends on the specifics

of the market failures that inhibit efficient contracting. In the context of our common-

agency model, we find that ACOs can either crowd-out or crowd-in efficient private sector

contracting. As we detail below, the specific outcomes depend on the nature of the provider’s

cost function and the magnitude of the ACO intervention.

To model the effect of ACOs we return to our main model with a single provider and

multiple private payers. In this setting, ACO contracts with Medicare act as an additional

shared-savings payment, S, that is chosen exogenously via public policy. This payment is

common knowledge to all other payers. In this setting, the provider’s payoff is b+S if y = 1

and 0 if y = 0. To make clear that equilibrium actions depend on the ACO shared-savings

contract, denote the least equilibrium action by a∗L (S) and the greatest equilibrium action

by a∗H (S), and denote equilibrium aggregate contracts by b∗ (S).

As in the main model, there exists a function CN (a, ā, N, S) such that an action a∗ is an

equilibrium action if and only if

a∗ ∈ argmax
a∈A

Ba− CN (a, a∗, N, S) ,

and the function described in Theorem 1 is a special case of this function with S = 0. Im-

portantly, CN satisfies decreasing differences in a and S: a higher-powered ACO contract

decreases the payers’ costs of getting the provider to undertake a higher action. The conse-

quences of the ACO shared-savings payment S for equilibrium actions depends on what the

equilibrium actions would be in the absence of an intervention. First, in settings in which

hospital as part of the entity; and may often have little experience in managing contracts that deviate from
the fee-for-service norm. Allowing loosely affiliated networks to form ACOs greatly expands the potential
reach of the policy. Moses et al. report that there are more than 300 ACOs in the United States with 8%
of Medicare patients eligible to be served, with a goal to have one-third of the Medicare recipients enrolled
by 2018. The effects of the program are not limited to Medicare. ACOs are also expected to develop similar
contracts with private insurers – thereby spreading cost-effective, integrated care throughout the health care
system.
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there are no nondifferentiabilities in the provider’s cost function, the ACO shared-savings

contract has the perverse effect of reducing the incentives for payers to offer high-powered

contracts, as the following proposition establishes.

PROPOSITION 4. Suppose Condition W holds. Then for each S, there is a unique aggregate

equilibrium contract b∗ (S), which is decreasing in S.

Proof of Proposition 4. See Appendix.

When the provider’s cost function is well-behaved, there is a unique equilibrium action.

In this setting, the market failure responsible for inefficiently low-powered incentives for

care-coordination investments is free riding among the multiple payers. Proposition 4 shows

that ACO shared-savings payments will partially crowd out private shared savings incentive

contracts in this case.

When coordination failures drive the inefficiency, however, even small ACO shared-

savings contracts can increase private shared savings incentive contracts and improve social

welfare. To make this point precise, let WL (S) = Ba∗L (S) − c (a∗L (S)) denote aggregate

surplus in the least equilibrium under ACO shared-savings payment S. We show that even

small increases in S can substantially increase WL (S). Of course, this improvement comes

at the cost of the expected subsidy expenditure K (S) = S · a∗L (S). Since public funds may

be costly to raise, due to distortionary taxes or other considerations, whether or not the

ACO shared-savings contract improves social welfare depends on whether its social return,

defined as (WL (S)−WL (0)) /K (S) clears some hurdle rate κ, which corresponds to the cost

of raising public funds. Proposition 5 shows that when there are coordination failures, ACO

shared-savings contracts can increase the strength of private-payer contracts and increase

social welfare at a return greater than any given hurdle rate κ.

PROPOSITION 5. Suppose Condition CR holds, and there is a sticking-point equilibrium.

Then there exists a B and an ACO intervention S > 0 such that b∗L (S) > b∗L (0). Addition-

ally, for any value κ > 0, there exists a B for which the returns to an ACO intervention are

greater than κ in the least equilibrium.

Proof of Proposition 5. See Appendix.

In contrast to Proposition 4, Proposition 5 shows that when there are multiple equilibrium

actions in the absence of an ACO shared-savings contract, an ACO shared-savings contract

can in fact lead to an increase in the strength of the incentives in private-payer contracts.

Thus, in a setting where prior to the introduction of ACOs, payers had been in a sticking point
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equilibrium, the introduction of ACOs has the potential to jump-start incentive provision

by private payers. Moreover, the social returns of such a jump-start can potentially be very

large relative to the cost of the intervention itself. Note that Proposition 5 provides a lower

bound on the potential social returns to an ACO policy when the initial (pre-ACO policy)

equilibrium is at a “sticking point,” since the result bounds the social return corresponding

to the lowest equilibrium; the return would be even higher if payers happened to coordinate

on a different equilibrium following the introduction of the ACO contract.

The welfare-improving function of ACO contracts depends on two factors: nondifferentia-

bilities in the provider’s cost function and common agency. As discussed above, nondifferen-

tiabilities arise from fixed costs or lumpy investments of the sort often found in investments in

organizational processes and technologies that aim to promote improved health care coordi-

nation and integrated care. The presence of fixed costs or other sources of nondifferentiability

alone, however, is not sufficient for ACO-like subsidies to increase welfare. If there was only

one payer, then ACO subsidies that jump-start investment above zero reduce welfare. This

occurs because in the one-payer case with a nondifferentiability in the provider’s cost func-

tion at zero, equilibrium investment is only zero if that is efficient, as noted above—a policy

which increases investment above zero would in this case reduce welfare. Common-agency

concerns are therefore an essential part of the theoretical rationale for ACO and other policy

interventions aimed at improving contracting.

These two propositions highlight the different policy implications of the two different

types of distortions introduced by the common-agency market failure. When “free-riding”

prevails, Proposition 4 establishes that policy interventions aimed at subsidizing improved

contracting crowds out private sector investments. When coordination failures prevail as they

do in “sticking point” equilibria, Proposition 5 establishes that policies aimed at promoting

improved contracting can “crowd in” new investments and generate a positive social return.

5 Common Agency and the Formation of Integrated,

Multi-specialty Groups

This section of the paper considers the implications of the common-agency market fail-

ure for health care delivery organizations. Specifically, we argue that investments in care

coordination are complements to the formation of multi-specialty integrated care delivery

organizations. By discouraging the former, common-agency problems also discourages the
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latter. In this way, common-agency helps support a fragmented system of care delivery. The

analysis in this section is based on the firm-boundaries model of Hart and Holmstrom (2010)

and Legros and Newman (2013) and emphasizes the trade off between coordination under

integration and professional autonomy under non-integration.

We introduce the problem of integrated care delivery through our now-familiar example

of an HIT system investment. Specifically, we imagine a setting in which there are two

doctors in different specialties who operate independent practices. By virtue of their different

specialties, each has a preference for a different type of HIT system, but the benefits of care

coordination are greatest when both physicians invest in the same system. One way to

ensure that the doctors each choose the same system is for each doctor to join a multi-

specialty integrated practice and to give the decision about which IT system to purchase

to the integrated practice. By agreeing to unified control of the investment decision, the

doctors are trading off professional autonomy for enhanced integration and coordination.

To the extent that professional autonomy is valuable to physicians while many of the gains

from enhanced coordination accrue to payers, the payers will wish to promote integration by

offering such practices shared savings incentives contracts. The payoffs from these incentives

can then be used to compensate physicians for the loss of professional autonomy integration

entails.

To make this argument more formally, suppose there are two doctors, A and B, who must

make a pair of horizontal coordination decisions d1, d2 ∈ {0, 1} and choose an action

a ∈ A ⊆ [0, 1] at financial cost c (a). The action and the horizontal decisions determine

the probability that a public outcome y ∈ {0, 1} is equal to 1, with Pr [y = 1| a, d1, d2] =

a (1− |d1 − d2|). The public outcome, along with the aggregate bonus b offered by the

payers determines the monetary payoffs the doctors receive, π = by − c (a). Further, the

doctors receive private benefits associated with the horizontal coordination decisions that

are made. Doctor A receives uA = −d1 and therefore prefers d1 = 0, and doctor B receives

uB = −α (1− d2) and therefore prefers d2 = 1. The parameter α scales the relative value

the two doctors place on professional autonomy, and we assume without loss of generality

that α ≤ 1, so that doctor A incurs a larger cost if her preferred horizontal decision is not

made. The horizontal coordination decisions and the private benefits are non-contractible,

while the rights to make the horizontal coordination decisions, the right to choose the action,

and the monetary payoffs are alienable and ex ante contractible. Neither the decisions nor

the action is ex post contractible.
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We will consider two governance structures, which we denote by g ∈ {I,NI}, where g = I

denotes provider integration into a multi-specialty group practice, and g = NI denotes non-

integration (or two single-specialty practices). Under integration, doctor A receives the

monetary payoffs, makes both horizontal coordination decisions, and chooses the action.

Under non-integration, doctor A receives the monetary payoffs, makes horizontal decision

d1, and chooses the action. Doctor B makes horizontal decision d2.14

The timing of the game with provider organizational choice is as follows. First, P1, . . . , PN

simultaneously offer bi ≥ 0 to the doctors. The doctors then bargain over a governance

structure g ∈ {I,NI}. Whoever possesses control under g makes decisions and chooses the

action a ∈ A, and whoever possesses the monetary payoffs incurs the associated cost, c (a).

The outcome y ∈ {0, 1} is realized, biy is paid from Pi to whomever possesses the monetary

payoffs, and private costs are realized. A subgame-perfect equilibrium of this game is a set

of contracts, a governance structure choice, horizontal decisions, and an action such that

each player is choosing optimally given others’ choices. Define V (b) to be the maximized

monetary payoffs attainable by the two doctors given aggregate bonus b:

V (b) = max
a
ba− c (a) .

Note that by the envelope theorem V (b) is non-decreasing.

Under non-integration, doctor B will choose d2 = 1, so doctor A’s problem is:

max
a,d1

ba (1− |d1 − 1|)− d1 − c (a) .

Her problem is therefore to choose whether to minimize her private costs by choosing d1 = 0,

in which case she will also prefer to choose a = 0, or to coordinate with doctor B by choosing

d1 = 1, in which case she will choose a to maximize the monetary payoffs. She will opt for

the former if b is small and for the latter if b is large. We will denote total surplus for the

doctors under non-integration by WNI (b), and by Lemma 11 in the appendix, we have that

WNI (b) = max {V (b)− 1, 0}.
Under integration, doctor A will choose d1 = d2 = 1, and she will choose a to maximize

the monetary payoffs. Total surplus for the doctors under integration is denoted by W I (b),

and by Lemma 11 in the appendix, we have that W I (b) = V (b)−α. Given aggregate bonus

14Since there are four alienable items, there are sixteen possible governance structures (i.e., allocations of
control, decisions, and monetary payoffs). We show in Lemma 10 in the appendix that if any governance
structure is optimal, either integration or non-integration is optimal, so it is without loss of generality to
focus on these two governance structures.
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b, the optimal governance structure therefore solves maxg∈{I,NI}W
g (b). The solution to this

problem is depicted in Figure 4 below. Provider incentives to form multi-specialty group

Figure 4: Provider Integration Decision
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This figure illustrates the total benefits for the doctors under physician integration (green line) and under
non-integration (red line) as a function of the maximized monetary payoffs attainable given an aggregate
bonus level. To the left of α, these total benefits are higher under non-integration, and to the right of α,
they are higher under integration.

practices arise from the incentive contracts providers have with their payers: as Figure 4

illustrates, when incentive contracts with payers are low-powered (i.e., b, and therefore V (b)

is small), providers will not find it optimal to forego the private benefits of professional

autonomy. Moreover, integration increases the returns to coordinating horizontal decisions,

and coordination of horizontal decisions complement care-coordination investments.

The complementarity between integrated organizations and the strength of shared-savings

incentives also exacerbates the distortions resulting from common-agency problems. The

reason for this is that the rents from selecting an integrated organizational form increases

the magnitude of the non-differentiability in the provider’s cost function. We illustrate this

discontinuity in Figure 5 in the simple case of a unitary principal, but the same logic holds

in the common-agency setting. Intuitively, for any α > 0, the rents providers earn under an

integrated care delivery organization must be at least α. This result implies that the set of

incentive-feasible actions is smaller than it is in the main model (which in fact corresponds
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α = 0). This lacuna increases the scope for sticking-point equilibria.

Figure 5: Unitary Principal’s Incentive Problem with Provider Integration Decision
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This figure illustrates the unitary principal’s cost function when α > 0. Private costs of integration reduce
the set of incentive-feasible actions, since if the incentive rents from a contract are smaller than α, the
providers will opt for non-integration and will not invest.

We introduced our analysis of integrated multi-specialty groups through the example of

investments in HIT systems, but the formal model indicates that complementarity between

integrated care and investments in care coordination is far more general. If, for example, a

PCP and a specialist develop procedures for jointly tracking and treating their shared pa-

tients, the returns to these investments will be higher within multi-specialty groups because

the number of within-firm referrals and shared patients will be higher than if the PCP and

specialist were not working in the same organization.15

15Stark laws and anti-kickback laws prohibit contractual arrangements ensuring that PCPs refer repeat-
edly to a particular set of specialists. Within-firm referrals, however, can be supported by profit-sharing
arrangements that are allowed under the law: for example, a simple per capita division of profits is allowed
within multi-specialty groups. Since specialist visits are typically more profitable than primary care visits,
profit sharing would give PCPs incentives to refer patients to specialists within their firm. These financial
incentives may become diluted in large groups, but this dilution is offset by mutual monitoring and peer
pressure that is reinforced by the colocation of specialists and PCPs (Kandel and Lazear, 1992).
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6 Discussion of Empirical Implications

Our model of common agency and shared-savings contracts can account for a number of

otherwise hard to explain features of the US healthcare system. The model also has a number

of additional empirical predictions. This section describes several of these predictions and

shows—where possible—how they compare to stylized facts established by the empirical

literature.

The first prediction is that heightened competition between insurers is unlikely to lead

to more efficient contracting between insurers and payers. Intuitively, this results from

the fact that both “free-riding” and “coordination failures” are exacerbated as the number

of principals increases. More formally, this emerges from the result in Theorem 1 that

CN (a, a∗, N) exhibits increasing differences in a, the level of investment, and N , the number

of insurers. Thus as the number of insurers in a market increases, the marginal cost of

increasing a increases. Standard results imply that the lowest and highest equilibrium level

of incentives are decreasing in N .

The second prediction is that Medicare’s introduction of shared-savings contracts will in-

crease the overall incentives for physicians to invest in care coordination and these heightened

incentives will lead to more investment. If cost functions are well behaved, as in Proposition

4, we show in the appendix that b∗ (S) + S is increasing in S even though b∗ (S) is falling

in S. This means that Medicare’s ACO incentives will only be partially crowded out by the

private sector. If cost functions are not well-behaved and the common-agency game is at a

sticking-point equilibrium, the appearance of ACOs can jump-start additional shared-savings

contracts in the private sector. This result follows from Proposition 5 for a sufficiently large

ACO incentive, S.

Finally, the complementarity between investments in care coordination and multi-specialty

group practices suggests that markets with higher ACO penetration should experience an

increase in these sorts of practices. This prediction follows from the results in Section 5.

Stylized facts emerging from the empirical health care literature provide indirect evidence

consistent with our model’s predictions. Consistent with the first prediction, Rosenthal, et

al. (2006) find evidence showing that payers (in their case, HMOs) with a higher market

share are more likely to enter into pay-for-performance contracts with providers. Consis-

tent with the second prediction, Hsiao and Hing (2014) document dramatic increases in

the adoption of electronic health records in the 2011-2013 period when ACOs were first in-
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troduced. It is, of course, hard to distinguish the effect of ACOs from direct subsidies to

these systems resulting from the HITECH Act, but there is other evidence that Medicare’s

use of incentive-based contracting stimulates similar contracts in the private sector. For

example Baker, Bundorf, Devlin and Kessler (2016) find that increases in the prevalence

of Medicare’s Prospective Payment System lead to greater use of prospective payments by

commercial insurers. Evidence supporting the complementarity between investments in care

coordination and integrated practices comes from Simon et al. (2007). They show that

measures of integration, namely practice size and hospital affiliation, significantly predict

adoption of electronic health records. They also find that among practices that have not

adopted electronic health records, the most-cited barrier was prohibitive start-up costs. This

is consistent with our assumption that up-front fixed costs play an important role in provider

cost functions.

7 Conclusion

In this paper we have developed a common-agency model for explaining inefficient contracting

in the U.S. healthcare system. In our setting, common agency problems arise when multiple

payers seek to motivate a shared provider to invest in improved care coordination. Our

approach differs from other common-agency models in that we analyze sticking points, that

is, equilibria in which payers coordinate around Pareto dominated contracts that do not

offer providers incentives to implement efficient investments. These sticking points offer

a straightforward explanation for three long-observed but hard to explain features of the

US healthcare system: the ubiquity of fee-for-service contracting arrangements outside of

Medicare; problematic care coordination; and the historic reliance on small single-specialty

practices rather than larger multi-specialty group practices to deliver care. The common-

agency model also provides insights on the effects of policies (such as Accountable Care

Organizations) that aim to promote more efficient forms of contracting between payers and

providers.

We have examined the common-agency market failure in the context of payers trying to

induce providers to make efficient investments in care coordination. We focused on incentives

for these investments because they have played an important role in recent health care reform

initiatives. The common-agency market failure is, however, much broader than this specific

application and is likely to play a role wherever multiple payers seek to influence the actions

of a shared provider.
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Given the number and diversity of payers, exploring more broadly the implications of

common-agency problems in the U.S. healthcare system is likely to be a fruitful avenue

for future research. For example, Cutler and Ly (2011) remarks that “insurers have little

incentive to coordinate their credentialing and billing requirements, because the costs of

imposing different rules are spread across insurers as a whole, not partitioned to any single

insurer,” leading to persistently high administrative expenses.

Our results also have implications for the applied theory literature on common-agency.

Most provocative is our finding that the outcome of common-agency market failures depend

critically on the sort of actions incentive contracts seek to elicit. When principals wish to

encourage more effort, attention or similarly continuous actions, equilibria involve third-best

incentive contracts. When agent actions involve fixed costs or lumpy investments, as is often

the case when agents are asked to implement new technology and management systems,

equilibria can also involve coordination failures. In this case outcomes can be much worse

than third-best. The implications of these coordination failures for management and for

public policy have not been fully worked out and this may be an important direction for

future theoretical research.
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Appendix

The first two subsections of this appendix develop the arguments to prove the results in
Section 2.2, including equilibrium existence and our characterization of the set of equilibrium
actions. The first subsection develops Theorem 1A, which characterizes the set of equilibrium
actions A∗ as the solution to a self-generating maximization program. In particular, we show
that a∗ ∈ A∗ if and only if

a∗ ∈ â (a∗) ≡ argmax
a∈Afeas

Λ̃ (a, a∗)

for some function Λ̃ (a, a∗). The second subsection shows that the operator â (·) is monotone,
so it always has at least one fixed point—and therefore an equilibrium action exists. In the
process of proving these two results, we establish Theorem 1. The remaining subsections
establish the results in Sections 3, 4, and 5.

Aggregate Representation

In this subsection, we develop necessary and sufficient conditions for an action a∗ to be
an equilibrium action. The results of this subsection hold for more general output spaces
and more general contracting spaces than we assume in our main model. The results in
the following subsections make use of our assumptions that the output space is binary and
contracts are nonnegative and nondecreasing.

Before we outline the argument, we define some notation and terms that will be con-
venient in the arguments. First, denote the provider’s optimal action given aggregate
contract b by a (b). Recall our tie-breaking assumption on the provider’s choice: if the
provider is indifferent among two or more actions, he chooses the highest action he is indif-
ferent among. The set of feasible contracts that support action a is the subdifferential
of c at a:

∂c (a) = {b ≥ 0 : ba− c (a) ≥ ba′ − c (a′) for all a′ ∈ A} .

A cost-minimizing contract for a is denoted by b∗a, and it solves

b∗a ∈ argmin
b≥0

{ba : b ∈ ∂c (a)} .

The set of feasible actions relative to b̄ is denoted by

Afeas

b̄
=
{
a ∈ Afeas : b ∈ ∂c (a) for some b ≥ (1− 1/N) b̄

}
.

A cost-minimizing contract for a ∈ Afeas

b̄
relative to b̄, denoted by b∗

a,b̄
, solves

b∗a,b̄ ∈ argmin
b≥(1−1/N)b̄

{ba : w ∈ ∂c (a)} .

Finally, if Pj, j 6= i each choose b∗ā/N , then we define the minimum action relative to ā,
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denoted amin (ā), is the action that the provider will choose if Pi chooses bi = 0.
Our analysis in this subsection proceeds in four steps. We first show that b∗ is an

equilibrium aggregate contract if and only if

b∗ ∈ b̂ (b∗) = argmax
b≥(1−1/N)b∗

1

N
Ba (b)−

(
b−

(
1− 1

N

)
b∗
)
a (b) .

An implication of this step is that b∗ is an equilibrium aggregate contract if and only if there
is a symmetric equilibrium in which b∗ is the resulting aggregate contract. We then show
that if b∗ ∈ b̂ (b∗), then b∗ is a cost-minimizing contract for some action a ∈ Afeas, and given
any aggregate contract b̄, any b ∈ b̂

(
b̄
)

will be a cost-minimizing contract for some action

relative to b̄. Finally, we show that b∗ ∈ b̂ (b∗) if and only if b∗ = b∗a∗ , where

a∗ ∈ â (a∗) = argmax
a∈Afeas

1

N
Ba− CN (a, a∗, N) .

In proceeding from the self-generating maximization program derived in Step 1 to the
simpler self-generating maximization program derived in Step 4, Step 2 restricts the domain
of the contracting space that needs to be searched over, and Step 3 restricts the range. In
particular, Steps 2 and 3 show that both the domain and the range can, without loss of
generality, be restricted to a set that is isomorphic to the set of incentive-feasible actions,
which is a compact subset of [0, 1].

Step 1 Given b−i, Pi chooses bi to solve

max
bi≥0

(
1

N
B − bi

)
a (b) = max

bi≥0
ui (bi, b)

We can instead think of Pi as choosing b = bi + b−i. Then bi ≥ 0 if and only if b ≥ b−i. Pi’s
problem is therefore

max
b≥b−i

ui (b− b−i, b) .

If b∗ is an equilibrium aggregate contract, then there exists b∗1, . . . , b
∗
N such that b∗j ≥ 0,∑N

j=1 b
∗
j = b∗ and, for each i,

b∗ ∈ argmax
b≥b∗−b∗i

ui

(
b−

∑
j 6=i

b∗j , b

)
.

Since b∗ solves this program for each i, it is therefore feasible for each i, and it also solves
these programs on average:

b∗ ∈ argmax
b≥b∗−minj b∗j

1

N

N∑
i=1

ui

(
b−

∑
j 6=i

b∗j , b

)
.
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Define the quantity

Λ
(
b, b̄
)

=
1

N

N∑
i=1

ui

(
b−

∑
j 6=i

b̄j, b

)
=

1

N

N∑
i=1

(
1

N
B −

(
b−

∑
j 6=i

b̄j

))
a (b) ,

or

Λ
(
b, b̄
)

=

(
1

N
B − b+

(
1− 1

N

)
b̄

)
a (b) .

Therefore, if b∗ ≥ 0 is an aggregate equilibrium contract, then

b∗ ∈ argmax
b≥b∗−minj b∗j

Λ (b, b∗)

for some b∗1, . . . , b
∗
N such that

∑N
i=1 b

∗
i = b∗. This leads to the following Lemma.

LEMMA 1. If b∗ is an equilibrium aggregate contract, then for some b∗1, . . . , b
∗
N ≥ 0 such

that
∑N

i=1 b
∗
i = b∗,

b∗ ∈ argmax
b≥b∗−minj b∗j

Λ (b, b∗) .

The next lemma shows that we can replace the set of feasible contracts in this maximiza-
tion problem by b ≥ (1− 1/N) b∗.

LEMMA 2. If b∗ is an equilibrium aggregate contract, then

b∗ ∈ argmax
b≥(1−1/N)b∗

Λ (b, b∗) .

Proof of Lemma 2. Lemma 2 is not directly implied by Lemma 1, because the objective in
Lemma 2 involves a larger domain. Nevertheless, in order to get a contradiction, suppose b∗

is an equilibrium aggregate contract, and suppose there is some b′ such that (1− 1/N) b∗ ≤
b′ ≤ b∗ −minj b

∗
j and Λ (b′, b∗) > Λ (b∗, b∗). Then there must be some Pk such that(

1

N
B − b′

)
a (b′) + b∗−ja (b′) >

(
1

N
B − b∗

)
a (b∗) + b∗−ja (b∗) ,

but since Pk was optimizing, for Pk not to have chosen b′, it must be the case that b∗j = 0,
and therefore,

b∗ ∈ argmax
b≥b∗

(
1

N
B − b

)
a (b) + b∗a (b) . (1)

Since b∗j = 0, there must be some ` for which b∗−` ≤ (1− 1/N) b∗ and for which

b∗ ∈ argmax
b≥b∗−`

(
1

N
B − b

)
a (b) + b∗−`a (b) . (2)
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Since a (b) is weakly increasing in b, (1) and (2) imply that

b∗ ∈ argmax
b≥b∗−`

Λ (b, b∗) ,

and if b∗ maximizes Λ (b, b∗) over all b ≥ b∗−`, it also maximizes Λ (b, b∗) over all b ≥
(1− 1/N) b∗, which contradicts the assumption that Λ (b′, b∗) > Λ (b∗, b∗).�

The following Lemma establishes the converse of Lemma 2.

LEMMA 3. b∗ ≥ 0 is an equilibrium aggregate contract if and only if

b∗ ∈ argmax
b≥(1−1/N)b∗

Λ (b, b∗) .

Proof of Lemma 3. Necessity follows from Lemma 2. Now, suppose b∗ solves this program.
Let b∗i = 1

N
b∗ for i = 1, . . . , N . Pi’s program is therefore

max
b≥(1−1/N)b∗

(
1

N
B −

(
b− b∗−i

))
a (b) = max

b≥(1−1/N)b∗

(
1

N
B −

(
b−

(
1− 1

N

)
b∗
))

a (b) ,

which is the aggregate problem described in Lemma 2. Since b∗ solves the aggregate problem,
it therefore also solves each payer’s problem.�

Lemma 3 completes the first step of the analysis. One immediate Corollary of Lemma 3
is that if b∗ is an equilibrium aggregate contract, there is a symmetric equilibrium in which
b∗ is the associated equilibrium aggregate contract.

COROLLARY 1. If b∗ is an equilibrium aggregate contract, there is a symmetric equilibrium
in which each Principal chooses b∗i = 1

N
b∗.

Step 2 We now turn to the second step, showing that any equilibrium aggregate contract
must be a cost-minimizing contract for some action. This result is captured in Lemma 4.

LEMMA 4. Suppose
b∗ ∈ argmax

b≥(1−1/N)b∗
Λ (b, b∗) .

Then b∗ = b∗a for some a ∈ Afeas.

Proof of Lemma 4. Suppose

b∗ ∈ argmax
b≥(1−1/N)b∗

(
1

N
B − b+

(
1− 1

N

)
b∗
)
a (b∗) .

Then b∗ implements some action a∗ = a (b∗). In order to get a contradiction, suppose
there is some contract b̃ ≥ 0 that also implements a∗ but b̃a∗ < b∗a∗. First, note that if

a (b∗) = a
(
b̃
)

= a∗, then for any λ ∈ [0, 1], a
(

(1− λ) b̃+ λb∗
)

= a. That is, if two contracts
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implement the same action, then so does any convex combination. This is because the agent
is risk-neutral.

There are then two cases. First, if b̂ ≥ (1− 1/N) b∗, then b̂ is feasible and does better
than b∗ in the aggregate program, so b∗ 6∈ b̂ (b∗). Next, suppose b̂ < (1− 1/N) b∗. Then, the
contract (1− 1/N) b∗ implements the same action and does better in the aggregate program,
so b∗ 6∈ b̂ (b∗).�

Lemma 4 effectively restricts the domain over which we have to search when looking
for fixed points of the b̂ (·) operator. In particular, we only have to look for b∗a such that
b∗a ∈ b̂ (b∗a).

Step 3 We will now proceed to the third step, which shows that any contract in b̂
(
b̄
)

is
cost-minimizing relative to b̄. This result is described in the following Lemma.

LEMMA 5. Suppose b ∈ b̂
(
b̄
)
. Then b is cost-minimizing for some a relative to b̄.

Proof of Lemma 5. To get a contradiction, suppose b is not cost-minimizing for any action
relative to b̄. Let a = a (b). Since b∗

a,b̄
is a cost-minimizing contract for a relative to b̄, it is

feasible, and we have b∗
a,b̄
a < ba, which implies that(

1

N
B − b∗a,b̄ +

(
1− 1

N

)
b̄

)
a >

(
1

N
B − b+

(
1− 1

N

)
b̄

)
a,

which contradicts the claim that b ∈ b̂
(
b̄
)
.�

The main implication of Lemma 5 is that in solving for b̂
(
b̄
)
, it is without loss of generality

to consider cost-minimizing contracts relative to b̄. That is,

argmax
b≥(1−1/N)b̄

Λ
(
b, b̄
)

= argmax
b∗
a,b̄
≥(1−1/N)b̄

Λ
(
b, b̄
)

.

Lemma 4 restricts the domain over which we have to search when looking for fixed points of
the b̂ (·) operator. Lemma 5 shows that, given a cost-minimizing contract b∗ā, we can restrict
attention to looking for cost-minimizing contracts relative to b∗ā. Denote a cost-minimizing
contract for action a relative to b∗ā by b∗a,ā, and denote the set of feasible actions relative to

b∗ā by Afeas
ā . Without loss of generality, we can therefore restrict attention to a domain and

a range that are each isomorophic to Afeas.

Step 4 Before we can state and prove Theorem 1A, define the function

C̄N (a, ā, N) = Nb∗a,āa− (N − 1) b∗āa.

Our main characterization theorem follows.
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THEOREM 1A. a∗ is an equilibrium action if and only if

a∗ ∈ â (a∗) = argmax
a∈Afeas

a∗

Ba− C̄N (a, a∗, N) . (1)

Proof of Theorem 1A. Suppose a∗ is an equilibrium action. Then b∗a∗ is an equilibrium
aggregate contract (Lemma 4), which in turn implies that b∗a∗ ∈ b̂ (b∗a∗) (Lemma 1). Since
all b ∈ b̂ (b∗a∗) are cost-minimizing relative to b∗a∗ (Lemma 5), b∗a∗ ∈ b̂ (b∗a∗) implies that
a∗ ∈ â (a∗). Conversely, suppose a∗ ∈ â (a∗). Then b∗a∗ is the best cost-minimizing contract
relative to b∗a∗ , which implies that b∗a∗ ∈ b̂ (b∗a∗) (Lemma 5).�

Theorem 1A shows that instead of solving for fixed points of b̂ (·), an equivalent problem
is the simpler problem of solving for fixed points of â (·). This problem is simpler, because
the action space is simpler than the contracting space.

Monotonicity

In this subsection, we show that the operator â (·) is increasing, which in turn allows us
to make use of monotonicity-based fixed-point theorems to establish the existence of an
equilibrium action and to derive some properties of the set of equilibrium effort levels. The
analysis of this subsection proceeds in four steps. Recall that we have denoted ∂−c (a) and
∂+c (a) to be the smallest and largest subgradients of c at a. By convention, we will denote
∂−c (0) = 0.

First, we will show that for all a ∈ Afeas, b∗a = ∂−c (a). We will then show that

â (ā) = argmax
a∈Afeas

Ba− CN (a, ā, N) ,

where
CN (a, ā, N) = max {NC (a) , (N − 1) b∗āamin (ā)} − (N − 1) b∗āa,

and we will establish that CN (a, ā, N) satisfies decreasing differences in (a, ā) on Afeas. By
Topkis’s (1998) theorem, this result implies that â (·) is increasing, so by Zhou’s (1994)
extension of Tarski’s (1955) fixed-point theorem, the set of fixed points of â (·) is nonempty
and compact.

Step 1 Lemma 6 establishes the first result, solving for the set of cost-minimizing contracts
of the unitary-principal problem in our setting.

LEMMA 6. b∗a = ∂−c (a).

Proof of Lemma 6. In order for b ∈ ∂c (a), it has to be the case that ∂−c (a) ≤ b ≤ ∂+c (a).

Given any b̃ such that a
(
b̃
)

= a, then setting b̃ = ∂−c (a) implements the same action at

weakly lower cost, and therefore b∗a = ∂−c (a).�
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Step 2 We now show that the maximization program (1) defined in Theorem 1A is solution-
equivalent to an unconstrained maximization program obtained by replacing C̄N (a, ā, N)
with

CN (a, ā, N) = max {NC (a) , (N − 1) b∗āamin (ā)} − (N − 1) b∗āa.

LEMMA 7. For all ā ∈ Afeas, the solutions to maximization program defined in (1), â (ā),
coincide with

argmax
a∈Afeas

Ba− CN (a, ā, N) .

Proof of Lemma 7. In this setting, we have Afeas
ā = Afeas ∩ [amin (ā) , 1], C̄N (a, ā, N) =

Nb∗a,āa− (N − 1) b∗āa, and

b∗a,āa =

{
(1− 1/N) b∗āa

C (a)

a = amin (ā)

a > amin (ā) .

By definition of amin (ā), for all a ≤ amin (ā), b∗a ≤ (1− 1/N) b∗ā. We therefore have that for
all a ∈ Afeas

ā , C̄N (a, ā, N) = CN (a, ā, N). Finally, for all a < amin (ā),

CN (a, ā, N) ≥ CN (amin (ā) , ā, N) ,

so that
argmax
a∈Afeas

ā

Ba− CN (a, ā, N) = argmax
a∈Afeas

Ba− CN (a, ā, N) ,

which completes the proof.�

Step 3 If CN (a, ā, N) satisfies decreasing differences in (a, ā) on Afeas, then Λ̃ (a, ā) sat-
isfies increasing differences in (a, ā) on Afeas. This is the case, as the following Lemma
shows.

LEMMA 8. CN (a, ā, N) satisfies decreasing differences in (a, ā) and increasing differences
in (a,N) on Afeas. Consequently, Λ̃ (a, ā) satisfies increasing differences in (a, ā) and de-
creasing differences in (a,N) on Afeas.

Proof of Lemma 8. Let a ≥ a′ and ā ≥ ā′ with a, a′, ā, ā′ ∈ Afeas. Define the difference
∆ (ā) ≡ CN (a, ā, N)− CN (a′, ā, N) and the value δ = (b∗ā − b∗ā′) (a− a′) ≥ 0. There are six
cases we need to consider. They are tedious but straightforward.
Case 1. If C (a) ≥ C (a′) ≥ (1− 1/N) b∗āamin (ā) ≥ (1− 1/N) b∗ā′amin (ā′), then

∆ (ā)−∆ (ā′) = −δ ≤ 0

Case 2. If C (a) ≥ (1− 1/N) b∗āamin (ā) ≥ C (a′) ≥ (1− 1/N) b∗ā′amin (ā′), then

∆ (ā)−∆ (ā′) = C (a′)− (1− 1/N) b∗āamin (ā)− δ ≤ 0
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Case 3. If C (a) ≥ (1− 1/N) b∗āamin (ā) ≥ (1− 1/N) b∗ā′amin (ā′) ≥ C (a′), then

∆ (ā)−∆ (ā′) = (1− 1/N) b∗ā′amin (ā′)− b∗āamin (ā)− δ ≤ 0

Case 4. If (1− 1/N) b∗āamin (ā) ≥ C (a) ≥ C (a′) ≥ (1− 1/N) b∗ā′amin (ā′), then

∆ (ā)−∆ (ā′) = C (a′)− C (a)− δ ≤ 0

Case 5. If (1− 1/N) b∗āamin (ā) ≥ C (a) ≥ (1− 1/N) b∗ā′amin (ā′) ≥ C (a′), then

∆ (ā)−∆ (ā′) = (1− 1/N) b∗ā′amin (ā′)− C (a)− δ ≤ 0

Case 6. If (1− 1/N) b∗āamin (ā) ≥ (1− 1/N) b∗ā′amin (ā′) ≥ C (a) ≥ C (a′), then

∆ (ā)−∆ (ā′) = −δ ≤ 0.

Since Λ̃ (a, ā) = 1
N
Ba−CN (a, ā, N), Λ̃ (a, ā) satisfies increasing differences in (a, ā) on Afeas.

The argument that CN (a, ā, N) satisfies increasing differences in (a,N) is similar.�

We can therefore apply Topkis’s theorem to show that â (·) is increasing.

LEMMA 9. â (·) is increasing on Afeas.

Proof of Lemma 9. Follows directly from Topkis’s theorem.

The intuition behind Lemma 9 is that, given any cost-minimizing target contract, b∗ā, each
payer Pi either wants to leave (1− 1/N) b∗ā in place by contributing bi = 0, or they want to
top up (1− 1/N) b∗ā. If they choose to top it up, they will top it up to a cost-minimizing
contract, which is feasible, because b∗a is increasing in a.

Step 4 Our second theorem follows from Lemma 9.

THEOREM 2A. The set of equilibrium actions A∗ is nonempty and compact.

Proof of Theorem 2A. By Lemma 9 and the fact that Afeas is a compact subset of [0, 1], â (·)
is a monotone operator on a complete lattice. By Zhou’s (1994) extension of Tarki’s fixed-
point theorem to correspondences, the set of fixed points of â (·) is a nonempty complete
lattice, which in turn implies that A∗ is a compact subset of [0, 1].�

Putting all these results together, we get Theorem 1.

THEOREM 1. There is at least one equilibrium action, and there exists a function CN (a, ā, N)
such that action a∗ is an equilibrium action if and only if

a∗ ∈ argmax
a∈A

Ba− CN (a, a∗, N) .

The function CN (a, ā, N) exhibits increasing differences in (a,N) and decreasing differences
in (a, ā).
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Equilibrium, Efficiency, and Coordination Failures

PROPOSITION 1. The highest equilibrium action a∗H is bounded from above by aSB.

Proof of Proposition 1. By Lemma 8, CN (a, ā, N) satisfies increasing differences in (a,N),
which implies that for any ā, â (ā, N) is smaller for larger values of N . By Topkis’s theorem,
this in turn implies that the set of fixed points to a∗ ∈ â (a∗, N) is decreasing in strong set
order in N . Since aSB is the unique solution to a∗ ∈ â (a∗, 1), the result follows.�

PROPOSITION 2. Suppose Condition CR holds. If there are multiple equilibrium actions
a∗L and a∗H > a∗L, then there is a nondifferentiability. If there is a nondifferentiability at â,
then there exists a B for which a∗L = â and a∗H > â. If Condition W holds, then there is a
unique equilibrium action a∗.

Proof of Proposition 2. For the first part of the proposition, define the quantity H (a) =
b∗a +a∂−b∗a on a ∈ Afeas, where ∂−b∗a = lima′↑a (∂−c (a)− ∂−c (a′)) / (a− a′). H (a) is strictly
increasing in a, because b∗a is strictly increasing in a on Afeas and ∂−b∗a is weakly increasing
in a by Condition CR. For a∗L and a∗H > a∗L to be equilibrium actions, it has to be the case
that

∂−CN (a∗L) ≤ B ≤ ∂+CN (a∗L)

∂−CN (a∗H) ≤ B ≤ ∂+CN (a∗H) ,

which implies that ∂+CN (a∗L) ≥ ∂−CN (a∗H). Define ∆ (a∗L) = ∂+CN (a∗L)−∂−CN (a∗L). Then
this last inequality implies that

N∆ (a∗L) ≥ H (a∗H)−H (a∗L) > 0,

where the strict inequality follows from the argument above that H (a) is strictly increasing
in a. The result that ∆ (a∗L) > 0 means that C is not differentiable at a∗L.

For the second part of the proposition, suppose ∆ (ā) > 0 for some ā. Set B = ∂+CN (ā)
and define ā+ = lima↓ā,a∈Afeas a to be the smallest incentive-feasible action larger than ā.
Since

∂+CN (ā) = N∂+C (ā)− (N − 1) b∗ā = N∂−C
(
ā+
)
− (N − 1) b∗ā

> N∂−C
(
ā+
)
− (N − 1) b∗ā+ = ∂−CN

(
ā+
)

,

and since ∂+CN (a) is increasing in a, this implies that ∂−CN (ā+) < B ≤ ∂+CN (ā+), and
therefore ā+ > ā is also an equilibrium action.

For the last part of the proposition, note that if Condition W holds, then MCN (ā) is a
singleton and is equal to c′ (ā)+Nāc′′ (ā), which is strictly increasing. B ∈MC (a∗) therefore
has a unique solution a∗.�

PROPOSITION 3. Suppose Condition CR holds. If there are multiple equilibrium actions,
a∗L and a∗H > a∗L, then (i) there exists an equilibrium with a∗ = a∗H that Pareto dominates
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an equilibrium with a∗ = a∗L, and (ii) there does not exist an equilibrium with a∗ = a∗L that
Pareto dominates any equilibrium with a∗ = a∗H .

Proof of Proposition 3. The first part of this proposition follows, because symmetric equilibria
are Pareto rankable. In a symmetric equilibrium, each payer receives 1/N of the total surplus
of all the payers. This total surplus, Ba−C (a) is increasing and convex by Condition CR, so
it is higher for a∗H than for a∗L, since both are smaller than aSB by Proposition 1. The provider
is also better off under a∗H than under a∗L, because incentive rents, R (a) are increasing in
a by Condition CR. The second part of the proposition also follows from the observation
that R (a) is increasing in a when Condition CR is satisfied: the lower equilibrium action
necessarily makes the provider worse off.�

Accountable Care Organizations

PROPOSITION 4. Suppose Condition W holds. Then for each S, there is a unique aggregate
equilibrium contract b∗ (S), which is decreasing in S.

Proof of Proposition 4. If Condition W holds, then there is a unique equilibrium action
a∗ (S), which satisfies B + S = c′ (a∗ (S)) +Na∗ (S) c′′ (a∗ (S)). Moreover, we will also have
that b∗ (S) + S = c′ (a∗ (S)). Implicitly differentiating both expressions, we have

db∗ (S)

dS
= −N c′′ (a∗ (S)) + a∗ (S) c′′′ (a∗ (S))

(1 +N) c′′ (a∗ (S)) +Na∗ (S) c′′′ (a∗ (S))
< 0,

establishing that b∗ (S) is decreasing in S.�

PROPOSITION 5. Suppose Condition CR holds, and there is a sticking-point equilibrium.
Then there exists a B and an ACO intervention S > 0 such that b∗L (S) > b∗L (0). Addition-
ally, for any value κ > 0, there exists a B for which the returns to an ACO intervention are
greater than κ in the least equilibrium.

Proof of Proposition 5. For both parts of the proposition, let B = ∂+CN (a∗L (0)). Since
a∗L (0) = 0 < a∗H (0), we have that b∗L (0) = 0. Set S = ε > 0 small. Then a∗L (ε) > 0 and
b∗L (ε) + ε = ∂−c (a∗L (ε)), so that b∗L (ε) = ∂−c (a∗L (ε))− ε > 0 for sufficiently small ε, which
establishes the first claim.

For the second claim, note that there is some δ > 0 such that for all ε > 0, a∗L (ε) ≥
a∗L (0) + δ. It follows that there is some ∆ > 0 such that for all ε > 0, WL (ε)−WL (0) ≥ ∆.
a∗L (ε) is weakly increasing in ε and is bounded from above by one. We therefore have that
for ε < ∆/κ,

WL (ε)−WL (0)

εa∗L (ε)
≥ ∆

a∗L (ε)

1

ε
≥ ∆

ε
> κ.

This establishes the second claim.�
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Provider Fragmentation

The first lemma in this section shows that integration and non-integration weakly dominate
any other governance structure. In order to establish this claim, we can define all sixteen
governance structures by which items are controlled by doctor A. Denote these governance
structures as g1 = (π, a, d1, d2), g2 = (π, a, d1), g3 = (π, a, d2), g4 = (π, a), g5 = (π, d1, d2),
g6 = (π, d1), g7 = (π, d2), g8 = (π), g9 = (a, d1, d2), g10 = (a, d1), g11 = (a, d2), g12 = (a),
g13 = (d1, d2), g14 = (d1), g15 = (d2), g16 = ∅. The set of possible governance structures is
G = {g1, . . . , g16}. Note that g1 = I and g2 = NI.

LEMMA 10. Given any aggregate bonus b, either g∗ = NI or g∗ = I.

Proof of Lemma 10. First, note that if doctor i possesses π, then total surplus is weakly
higher if doctor i also possesses a. This is because if it is ever optimal for the doctors to
choose a > 0, then the doctor possessing a will only do so if she also possesses π. This step
establishes that each of g5, . . . , g12 is weakly dominated by one other governance structure.
Next, note that if doctor A (B) possesses d2 (d1), then she should also possess d1 (d2). If,
say, doctor A possesses d2, then in any pure-strategy equilibrium, she will always choose
d2 = d1. Any equilibrium choice involving d2 = d1 = 0 is also an equilibrium choice under
the governance structure in which she possesses d1, and any equilibrium choice involving
d2 = d1 = 0 is also an equilibrium choice under the governance structure in which doctor B
possesses both d1 and d2. This observation implies that g3 and g14 are weakly dominated.
Next, since α < 1, governance structure g4 is strictly dominated by g1 and governance
structure g16 is weakly dominated by g2. Finally, governance structure g13 yields the same
outcomes as g1, and governance structure g15 yields the same outcomes as g2. The details
for all these claims are straightforward but tedious.�

LEMMA 11. Given an aggregate contract b, WNI (b) = max {V (b)− 1, 0} and W I =
V (b) − α. There exists a b̂, which may be 0 or ∞, such that for all 0 ≤ b ≤ b̂, non-
integration is optimal, and for all b ≥ b̂, integration is optimal.

Proof of Lemma 11. Given an aggregate contract b, under non-integration, doctor B will
always choose d2 = 1. Doctor A then solves

max
a,d1

ba (1− |d1 − 1|)− d1 − c (a) .

If she chooses d1 = 1, then the problem becomes

max
a
ba− c (a)− 1,

and by definition, the value of this problem is V (b) − 1. If she chooses d1 = 0, then she
receives 0. She will therefore coordinate with doctor B if V (b) − 1 ≥ 0, and she will not
otherwise. Doctor B receives 0 no matter what, so total welfare is given by WNI (b) =
max {V (b)− 1, 0}.

Under integration, doctor A will choose d1 = d2 = 0 to minimize her private costs, while
still coordinating. These choices yield a payoff of −α for doctor B. Further, doctor A will
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solve
max

a
ba− c (a) ,

and will therefore receive V (b). Total welfare under integration is therefore V (b)− α.
Since α < 1, if V (b) ≤ α, W I (b) ≤ 0 = WNI (b). If α ≤ V (b) ≤ a, W I (b) ≥ 0 =

WNI (b), and if V (b) ≥ α, W I (b) ≥ WNI (b). By the envelope theorem, V ′ (b) = a∗ (b) ≥ 0,
so V (b) is increasing, which implies the last set of results.
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