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1. Introduction

The information efficiency of stock prices (Grossman and Stiglitz (1980)) plays an important

role in many aspects of financial economics. It determines the cost of capital when a firm goes

public (Diamond and Verrecchia (1991)), shapes agency and incentive problems in the firm

(Holmström and Tirole (1993)) and influences the level of capital investments (Chen et al.

(2007), Bai et al. (2013))). In practice, firms can affect the level of information efficiency

through hiring in labor markets. When firms issue public equity, they compete to hire a

reputable underwriter (typically an investment bank) with a talented analyst (often called

an "All-American") to cover the firm and generate public signals about firm profits (Krigman

et al. (2001)), thereby reducing uncertainty and increasing valuations.1 They pay for this

accurate coverage through both underwriting fees and underpricing (Cliff and Denis (2004)).

When firms, even in the absence of a need for external capital, want informationally

efficient stock prices for optimal contracting rationales, they can hire coverage from talented

media or investor relations professionals who help the firm improve voluntary disclosures

(Bushee and Miller (2012), Karolyi and Liao (2015)). Regardless of the situation, firms

compete for quality coverage and generate significant wage dispersion in these labor markets.

The most accurate and influential analysts earn millions of dollars a year in renumeration

covering initial public offerings (see, e.g., Stickel (1992)). Karolyi and Liao (2015) find also

substantial wage dispersion for investor relations officers.2

Despite the importance of coverage in determining the informational efficiency of firms,

there has been little theoretical research on these labor markets. As such, we provide an

assignment model, where coverage is endogenously determined by the labor market matching
1A large body of evidence points to the ability of this coverage to improve informational efficiency and

mean stock prices. Analyst coverage in the cross-section is correlated with more informative prices and deeper
markets (see, e.g., Brennan and Subrahmanyam (1995)). Exogenous shocks to analyst coverage generated
by brokerage house mergers (Hong and Kacperczyk (2010)) or closures (Kelly and Ljungqvist (2012)) show
that the effect of coverage on price efficiency is causal. Media coverage variation due to differential investor
access to local newspapers or newspaper strikes lead to similar causal conclusions for the benefits of coverage
for stock market pricing (Engelberg and Parsons (2011) and Peress (2014)).

2Similarly, Dougal et al. (2012) find that certain journalists are more influential in stock markets, pointing
to the importance of heterogeneity in talent when it comes to media coverage.
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of firms with agents who can generate coverage, defined as a public signal about the firm’s

fundamental pay-off.3 The agents have heterogeneous precision (indexed by h), which is

known to the market.4

Our paper focuses on firms issuing public equity as the main rationale for purchasing

coverage and the labor market for underwriters and analysts. Given that the best analysts

typically work at the best underwriters, our model can be thought of as applying to an un-

derwriter where the heterogeneity is the informational precision of the coverage. Extensions

allow firms to value efficiency for other reasons such as optimal contracting and apply to

other labor markets like media-or-investor relations professionals.5

Consistent with practice, firms hire at most one agent (an underwriter/analyst pair) to

generate coverage when they issue equity. We only allow the agent to work for one firm for

simplicity.6 The outcome of the labor market matching between firms and agents determines

the accuracy or precision of coverage across firms, i.e. the endogenous informational efficiency

in the stock market. We assume firms can differ potentially over a number of different

dimensions, including investment scale, amount of share issuance, risk-absorption capacity

of the firm’s investors, cashflow volatility, and its informational environment before the

purchase of coverage.

Empirical work points to the importance of assortative matching in the initial or sec-

ondary public offering stages between firms and underwriters by using a reduced form for

the value of a match (Fernando et al. (2005),Akkus et al. (2013)). Our analysis points to

the importance of sorting on multiple firm dimensions and we derive the complementarity

endogenously from the firm’s stock pricing and trading environment. That is, the noisy
3A typical starting point for thinking about assignment problems with heterogeneous agents is the model

of Becker (1973) and Rosen (1974). Building on this, there are extensive works that study labor market
sorting.

4Heterogeneity of ability for coverage agents and the observability of ability are realistic assumptions
given the observability of forecasting track records.

5We show in the extension section that we can model the value of matching in this labor market using
Holmström and Tirole (1993), whereby the firm derives benefits from better contracting with employees.

6In practice, agents can work for more than one firm. We can extend our set-up to account for this
setting.
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rational expectations equilibrium of Grossman and Stiglitz (1980) tells us the value of the

match to an agent of a given precision depending on multiple firm dimensions. Our model

extends earlier matching models used in the firm-CEO matching literature (see, e.g., Terviö

(2008); Gabaix and Landier (2008)), where complementarities are exogenously specified in

the firm’s production function and firms differ in only one dimension.

There are three dates. At t = 0, a firm issuing equity and seeking to maximize its share

price decides which agent it will hire, i.e. the assignment function µ(y) a firm of characteristic

y, where y can denote potentially different firm characteristics, to an agent of precision h.

Firms pay a competitive wage to hire an agent. Each agent works for and covers one firm,

producing the information for that firm at a fixed cost.

At t = 1, asset markets are open for each firm. The asset market follows a traditional

noisy rational expectations set-up. Investors submit price-contingent demand based on their

own private signals and whatever public signal the firm purchases in the labor market for

coverage.7 There are also noise traders in the market. At t = 2, the pay-off of the firm is

realized. For simplicity, we assume investors trade only one asset.8

We solve for an equilibrium consisting of an assignment function, wage function, and

investors demand and price function for each stock, such that they meet (1) the optimality

of firm coverage decisions, (2) optimality of investor conditions, (3) market clearing in the

labor market, given the distribution of talents and firms, and (4) market-clearing in the asset

markets.

In equilibrium, coverage improves the estimation of fundamentals by investors, i.e. the

market is more efficient. Since idiosyncratic risk is priced, this also means a higher stock

price for the company at t = 1.9 In other words, coverage improves both price efficiency
7We consider an asset market along the line of Grossman and Stiglitz (1980); Diamond and Verrecchia

(1981). Specifically, our setup is closet to the one in Hellwig et al. (2006).
8We show in the Appendix that our results go through as long as asset markets are incomplete and the

idiosyncratic risk of a firm is priced as a result as in Admati (1985).
9However, we have not modeled the potential bias in coverage as a result of conflicts of interest or incentive

issues (see, e.g., Michaely and Womack (1999), Hong and Kubik (2003), Dyck and Zingales (2003)). One
could introduce bias into our setting by assuming the noise traders are influenced by the bias. But assuming
that there is talent in spinning the news to get stock prices higher, we would end up with the same outcome in
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and the mean price, consistent with empirical evidence on the importance of coverage for

the pricing of the stock market.

Our model generates several sets of results. First, we derive the multi-dimensional-to-one

matching of firm characteristics of talent. We show that the many firm characteristics that

determine the value of a match can be collapsed into two dimensions. The first is scale

variables, including the size of the share issuance and the risk absorption capacity of the

firm, that lead to a higher risk premium. The second is transparency variables, including

the firm’s cash-flow precision, the precision of private signals and the degree of noise trading,

which lead to a lower risk premium.

Holding fixed scale, we show that there is positive assortative matching using an index

of the firm’s information environment that adds up the transparency variables. This result

follows from a closed-form characterization of the matching surplus function between the

firms and the agents. Firms with a higher opacity have more risk that investors have to bear

and hence pay more for accurate coverage. Holding fixed opacity, firms with a higher scale

have more risk that the investors have to bear. Hence, higher scale firms benefit the most

from paying for the most precise agents.

Building on Chiappori et al. (2015),10 we characterize the assignment equilibrium that

maps (assigns) these two dimensions of firms into the talent of agents. Our results on the

assignment function here naturally provide a theory for the aforementioned empirical work

on sorting in this labor market that will generate sharper tests of the importance of sorting.

We also derive a new asset pricing test of the influence of labor market sorting on the

informational efficiency of the firm. Under a null where the firm’s level informational effi-

ciency is not endogenous, we expect that the expected return of a stock to increase with firm

terms of valuations but through an alternative channel to information efficiency. But information efficiency
is, nonetheless, the most natural route to model this effect and the data also points to information efficiency
effects as well as mean price effects of coverage.

10Chiappori et al. (2015, 2016) present general mathematical methods to study matching problems in which
the dimensions of heterogeneity on the two sides of the market are unequal. Applying the Monge-Kantorovich
optimal transport problem, they are the first to establish the existence, uniqueness and qualitative properties
of stable matches in such an environment.

4



scale and firm opacity. But if informational efficiency is endogenous, then the relationships

between expected return between firm scale and firm opacity are no longer monotonically

increasing. There are two forces then that shape the cross-section of expected returns. The

first is the usual (exogenous) risk-sharing force whereby firms with higher scale and opacity

required higher expected return. The other is an (endogenous) information efficiency force

whereby firms with higher scale and opacity can purchase coverage to improve their efficiency.

In general, the shape between the cross-section of expected returns and these underlying pa-

rameters can be non-monotonic, depending on the strength of the relative strength of these

two forces.

In other words, the assignment function is an omitted variable in determining the cross-

section of expected returns. When we control for this omitted variable, we can then decom-

pose these two forces. The model offers a very simple functional form to take to the data.

Using a first-stage assignment function along the lines of Akkus et al. (2013), we can test

this asset pricing prediction. This is a test of the endogeneity of assignment and of the value

matching function being driven by a noisy rational-expectations equilibrium.

Importantly, we also prove that if there is a scarcity of talent to evaluate firms, the

endogenous information efficiency dominates, leading to a flatter relationship between ex-

pected return with firm size and opacity. Since we have a static model, our scarcity of talent

prediction can be interpreted as the exogenous arrival of new initial public offering (IPO)

or technologies that only some of the existing analysts in the labor market can accurately

decipher. As such, it is easy to look to time series variation in IPO waves and test if our

predictions are true.

Second, we show this competitive-sorting effect is captured by the steepness of the wage

distribution. The wage of an agent is rising in his talent. The stronger is our competitive-

sorting effect, the steeper the wage profile is with talent.11 As a result, the strength of the

complementarity depends on external factors such as the amount of market noise and the
11Wages rise with firm scale, firm pay-off volatility, and the ratio of noise trading to the precision of private

signals in the market.
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extent of the precision that the market has about firm profits. We expect compensation to

be more skewed when there is more market noise or less market precision.

Consistent with this prediction, the compensation of the top analysts are highly skewed.

During the Internet Bubble Period of 1997-2000, security analysts’ pay were especially skewed

as the prices of dot-com stocks were noisy and underlying dot-com pay-offs were also highly

uncertain, consistent with our model’s prediction. More recently, during the 2005-2007

period, with the advent of the second Internet Bubble in social media stocks, analyst wages

became again skewed. A number of commentators expresses surprise given the regulations on

conflicts of interest that were established after the Internet Period.12 Our model shows that

such a superstar effect can occur even independent of regulatory concerns about conflicts

of interest leading to skewed wages for security analysts. This second set of predictions

on wages and IPO waves complements our earlier asset pricing test of endogenous market

efficiency.

Third, we show that sorting can amplify the neglected firm effect.13 The traditional

explanation of why some firms have no coverage and suffer from low prices as a result

requires that there be high fixed cost (see, e.g., Merton (1987)). But we show that the

neglect effect is magnified by the labor market sorting effect. That is, we can get a neglect

effect even at low fixed cost. When there are fixed costs to covering a firm, firms that are

smaller and less opaque do not pay for coverage since they do not benefit as much as other

firms. Less informationally opaque firms are only able to compete for and hire low precision

agents since the high precision ones work for higher opacity firms and get paid more. This

is a different take on the traditional interpretation of the neglect effect in the literature. We

show that, absent this labor market sorting effect, there is less neglected stocks.

Our model is similar to voluntary disclosure models for firms (see, e.g., Diamond and
12Susan Craig, "Star Analysts Are Back (No Autographs, Please), August 20, 2011, NYTIMES DealBook
13The earliest study on the neglected firm effect by Arbel et al. (1983) finds that stocks with zero or low

analyst coverage out-perform stocks with high analyst coverage. Subsequent studies such as Foerster and
Karolyi (1999) used quasi-experiments to establish the importance of coverage or investor recognition in
explaining the neglect effect. Recently, Tetlock (2007) and Fang and Peress (2009) find that stocks with
more media coverage have lower expected returns.
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Verrecchia (1991), Fishman and Hagerty (1989)). Firms might pre-commit to disclosing

a public signal of their earnings to improve the price efficiency and risk discount for their

shares. Results depend on the nature of the cost of disclosure, which is exogenously given

and requires convexity in the cost structure. The costs in our model are determined by the

entire stock market via labor market sorting and wages.

In reality, institutional investors themselves also pay for analyst coverage. In these situ-

ations, the analysts reports are private as opposed to public signals and is best modeled by

considering the information sales/production problem of a monopolistic agent selling infor-

mation to strategic traders (see, e.g., Admati and Pfleiderer (1986); García and Sangiorgi

(2011)). The precision is governed by the tradeoff between expected profits and ex ante

risk sharing. In these settings, traders are the ones bearing the information cost and thus

an externality emerges. This element does not exist in our setting as firms purchase public

signals that are available for all traders.

2. Model

The model lasts for three dates. There is a continuum of heterogeneous firms who issue equity

through stock markets with measure one. Specifically, a firm originally owns (1+ψ) measure

of shares and wants to raise capital by issuing one measure of their equity to investors. There

is a distribution of agents with measure one, denoted by GA(h) with support [hL, hU ] ≡ H,

who differ in terms of skills (i.e., the precision of information they can produce). The quality

of information for each firm’s profits thus depends on which agent a firm hires. At date

0, the allocation of agents across firms and agents’ fees are pinned down in a competitive

assignment equilibrium. At date 1, agents produce information, and trade takes place in

the stock markets. Finally, at date 2, the cash flow is realized, and all agents consume their

realized gains.

Firm: Firms seek to maximize mean share price at t = 1. A firm’s capital stock is
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denoted by k and each firm owns a risky project with volatility σθ. The payoff of the project

for the firm with capital k, is given by kθ, where θ is a firm-specific payoff drawn from a

Normal distribution with mean θ̄ and variance σ2
θ . We assume that the fundamental payoffs

are uncorrelated across firms.

In each market, there is a unit measure of a continuum of risk-averse investors. They

have CARA expected utility with coefficient of risk aversion γI . Investors are imperfectly

and heterogeneously informed. Specifically, each investor receives a private signal

xi = θ + σxεi,

where εi ∼ N(0, 1). The precision of investors’ private signal is then given by τx ≡ 1
σ2
x
. For

simplicity, we have only allowed each investor to trade only one stock. In Appendix, we show

that one can allow investors to trade multiple stocks as long as markets are incomplete and

idiosyncratic risk is priced.

For simplicity, we assume that each investor only has access to one market, and each

investor can submit their demand based on their information set. There are also noise

traders in each market. To solve the model in closed form, we assume that noise traders

purchase a random quantity Φ(u) of stock, where u ∼ N(0, σu) and Φ is the standard normal

CDF. This specific functional form assumed here is close to that in Hellwig et al. (2006).

We allow firms to differ in multiple characteristics, where y = (σθ, σx, σu, k, ψ, γI) ∈

Y ⊆ R6
+ represent firm types. That is, firms can differ in their project risks (σθ), clientele

(captured by precision σx and risk aversion γI of their investors), market condition (captured

by market noise σu), capital size (k) and the proportion of issued shares 1
1+ψ

. The types of

firms are distributed according to a probability measure νF on Y, which is assumed to be

absolutely continuous with respect to the Lebesgue measure.

Agent: When the agent h ∈ H works for the firm y ∈ Y , he can produce a report z at

cost C, which is constant across (h, y) at date 1. Coverage, or the report, is a noisy, unbiased
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signal regarding the payoff:

z = θ + σhη,

where η ∼ N(0, 1), and the variance of the report is parameter as

σ2
h =

1

h
.

Higher values of h denote more precise agents.

Labor Market for Agents (t = 0): At date 0, each firm can at most hire one agent to

cover the firm assuming the firm hires any at all. The fee paid to the agent is denoted by

ω(h). That is, the fee is independent of the signal and realized payoff.14 The fee ω(h) will be

determined in equilibrium. The payoff of agent h is then given by ω(h) − C. It is assumed

the firm is able to pre-commit to the hiring decision. The end-of-period cash flows for firm

y is then the profit from its project minus the fee that the firm commits to pay:

πy = kθ − ω(h).

At date 0, given the fee required to hire agent ω(h), a firm of type y, rationally anticipating

how different agents affect the stock price at date 1, chooses the optimal agent to maximize

the firm’s expected payoff,

U∗(y) = max
h∈H∪{∅}

E

[(
ψ

1 + ψ

)
(kθ − ω(h)) + p̃hy

]
, (1)

where p̃hy denotes the realized share price at date 1 for firm y if it hires agent h. That is,

a firm effectively maximizes its expected share price. In a noisy rational expectations stock

market equilibrium, the realized price will be a function of the fundamental θ, public signal

z, and the demand of noise traders ũ. That is, p̃hy = P (θ, z, u|h, y).

14Since the fee is not contingent on the report z, we thus assume away the agent’s incentive for biased
report.
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Financial Market for Stocks (t = 1): All investors observe the public signal z produced

by the agent and know its precision. Each can purchase at most one share for each stock or

none at all based on their information set. That is, they submit a price-contingent demand

schedule for stock y, which specifies their demand di(p) ∈ {0, 1} conditional on price p to

solve:15

max
d∈{0,1}

{
dE[(

πy
1 + ψ

− p)|xi, z, p]−
γI
2
d2V ar(

πy
1 + ψ

− p|xi, z, p)
}
. (2)

These bid functions determine the aggregate demand by informed investors. Together

with the demand from the noisy traders, the auctioneer selects a price to clear the market.

Equilibrium Definition: An equilibrium consists of an assignment µ(y): Y → H ∪ {∅},

competitive fee for agents ω(h) : H → R+, demand function for each investor in the mar-

ket (h, y), D(xi, z, p|h, y), and a price function P (θ, z, u|h, y) such that the following three

conditions are met.

First, in the labor market for agents, the optimality conditions for both firms and agents

are satisfied, which means that, given the wage ω(h), µ(y) is the type of agent that firm

y optimally chooses to hire. That is, µ(y) maximizes (1). Second, in each market (h, y),

investors choose their demand schedules to maximize (2). Third and lastly, the market-

clearing condition holds for both the labor and asset markets.

3. Equilibrium

We first analyze the surplus generated by agent h for firm y, taking into account how the

produced information affects the price movement in the stock market at t = 1. With this

surplus function, we then analyze the matching of agents and firms in the labor market.
15We maintain the assumption on demand for tractability. Alternatively, one can allow investors to submit

a bidding schedule di(p) ∈ R, which will not change the key economic results. In this alternative setup, one
would need to use a different assumption on the noise traders’ demand. Specifically, the noise traders’
demand is given by ũ instead of Φ(ũ). As standard, there exists a price which is linear in (θ, z, ũ).
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3.1. Financial Markets

When firm y hires agent h, investors thus obtain a public signal with precision h = 1
σ2
h
.

Aggregating the demand decisions of all investors in market (h, y), market clearing then

implies ˆ
D(xi, z, p|h, y)dF (xi|θ) + Φ(ũ) = 1. (3)

From the investor’s optimization problem (2),

D(xi, z, p|h, y) ∈ arg max
d∈{0,1}

{
dE[

(
kθ − ω(h)

1 + ψ

)
− p|xi, z, p]−

γI
2
d2V ar(

(kθ − ω(h))

1 + ψ
− p|xi, z, p)

}
= arg max

d∈{0,1}

{
dE[

(
kθ − ω(h)

1 + ψ

)
− p|xi, z, p]−

γI
2

k2d2

(1 + ψ)2
V ar(θ|xi, z, p)

}
,

Since V ar(θ|xi, z, p) is constant over the realization of (xi, z, p), the demand D(xi, z, p|h, y) ∈

{0, 1} can be characterized by a cutoff x̂(z, p), such that D(xi, z, p|h, y) = 1 if and only if

xi > x̂(z, p).

Recall that each investor receives a private signal xi = θ+ σxεi, where εi ∼ N(0, 1). This

cut-off equilibrium then implies that only investors with good signals will buy, i.e. those

investors with

εi >
x̂(z, p)− θ

σx
.

With our specifications, the market-clearing condition can then be conveniently rewritten as

1− Φ(
x̂(z, p)− θ

σx
) + Φ(u) = 1. (4)

For the market to clear,

x̂ = θ + σxu.

Hence, observing price in our model is informationally equivalent to a public signal (i.e. this

cut-off value x̂) with the precision 1
σ2
xσ

2
u
.16 An investor’s information set can be summarized

16In general, as shown in Albagli et al. (2011), there exists a random variable that is only a function of θ
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by Ii = (xi, z, x̂). Thus, the conditional expectation of the fundamental is then given by

E[θ|Ii] =
σ−2
θ θ̄ + σ−2

x xi + (σxσu)
−2x̂+ hz

σ−2
θ + σ−2

x + (σxσu)−2 + h
. (5)

For the cut-off investor x̂, the price must be equalized to the payoff of holding one share.

Hence,

P (θ, z, u|h, y) = E
[(

kθ − ω(h)

1 + ψ

)
|xi = x̂, z, x̂

]
− γI

2

k2

(1 + ψ)2
V ar(θ|x, z, p) (6)

= − ω(h)

1 + ψ
+

k

1 + ψ
E[θ|xi = x̂, z, x̂]− γI

2

k2

(1 + ψ)2
V ar(θ|x, z, p).

Notice that since investors rationally take into account the fee expense, a higher fee

thus decreases the price, which shows up in the first term of Equation (6). The second

term represents the risk premium for firm y that hires analyst h, which has the following

expression
γI
2

k2

(1 + ψ)2
V ar(θ|x, z, p) =

κ(y)

τ(y) + h
, (7)

where τ(y) is an one-dimensional transparency index that summarizes the information char-

acteristic of firm:

τ(y) ≡ 1

σ2
x

+
1

σ2
xσ

2
u

+
1

σ2
θ

.

And, κ(y) is the scale index of a firm y :

κ(y) ≡ γIk
2

2(1 + ψ)2
.

Lemma 1 summarizes the properties of the risk premium.

Lemma 1. The risk premium for firm y that hires analyst h is given by Equation (7), which

strictly decreases with the precision of agent h and strictly increases with firm volatility σθ,

market noise σu, investors’ noise σx, risk aversion γI , firm size k, and the proportion of

and ũ, and contains the same information as the price.
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issued shares 1
1+ψ

.

That is, a higher level of precision h decreases the risk premium charged by investors,

since it improves an investor’s estimation of the fundamental pay-off. Firms with higher

volatility and a noisier financial market have a lower transparency index. All things being

equal, the risk premium is then higher for less transparent firms, since investors have to bear

more risk for those firms. Similarly, the risk premium is higher for firms with a larger scale.

But not all things will be equal in equilibrium, as firms with different characteristics have

varying incentives or purchase varying degrees of accurate coverage, or even none at all.

3.2. Matching in the Labor Market

Taking into account how the agent affects the price in the asset market, the allocation of

agents across firms can be solved as a matching problem. As is well-known in a matching

model, the allocation depends on the property of the matching surplus of the firm and agent.

In our model, this surplus is driven by the coverage effect in financial markets. Specifically,

the firm’s expected utility when hiring agent h can be conveniently rewritten as the expected

payoff of the project minus the risk premium and the agent fee:

U(y, h) = E
[(

ψ

1 + ψ

)
(kθ − ω(h)) + P (θ, z, u|h, y)

]
= kθ̄ − κ(y)

τ(y) + h
− ω(h). (8)

Although that the firm only pays some proportion of the fees at the end of the period

(i.e., ψ
1+ψ

ω(h)), the reduction in the asset price due to the hiring is ω(h)
1+ψ

. Hence, from a firm’s

view point, the total cost is simply the agent fee. As a result, the surplus between firm y
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and agent h, which is the sum of their payoff minus their outside option, yields

Ω(y, h) ≡ U(y, h)− U(y, ∅) + {ω(h)− C}

=κ(y)

{
1

τ(y)
− 1

τ(y) + h

}
− C, (9)

where ∅ denotes the case in which a firm hires no agent (i.e., the firm’s autarky value) and

the worker’s unemployed value is normalized to zero. The first term thus represents the gain

of firm y when it hires agent h relative to no hiring. The second term represents the payoff

of a worker, which is the fee minus the production cost. Hence, the surplus is simply the

value of coverage, which is the reduction in the risk premium (relative to no hiring) minus

the cost of producing information.

Technically, given the multiple characteristics of a firm, our environment is a multidimensional-

to-one matching problem. Chiappori et al. (2016) established regularity conditions under

which a stable matching exists and the assignment function µ(y) is unique and pure. That is,

each firm hires a unique agent instead of using mixed strategies. Given our surplus function

in (9) and the measure of firms νF is absolutely continuous with respect to the Lebesgue

measure, we show that these conditions are indeed satisfied and extend their results to the

environment where some agents remain unmatched.

Proposition 1. There exists a unique equilibrium {µ(y), ω(h)}. The market price for firm

y is characterized by Equation (6), setting (h, y) = (µ(y), y), and the demand function for

firm y is given by D(xi, z, p|µ(y), y).

Despite firms differing in multiple characteristics, from the surplus function, one can see

that the characteristics of firms can be simply reduced to two aggregated indices, namely

a transparency index τ(y) and a scale index κ(y), thereby simplifying our characterization.

With a slight abuse of the notation, we now denote the assignment function as a function

of these two indices directly. That is, the agent hired by firm y is denoted by µ(κ(y), τ(y)).

Proposition 2 first establishes the property of the assignment function as a function of these
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two indices directly.

Proposition 2. (1) Conditional on firms with the same scale index κ(y′) = κ(y), firm y′

hires a more precise agent than firm y if and only if firm y′ has a lower transparency index:

µ(κ, τ)≤ µ(κ, τ ′) iff τ ′ ≤ τ. (2) Conditional on firms with the same transparency index

τ(y′) = τ(y), firm y′ hires a more precise agent than firm y if and only if firm y′ has a higher

scale index: µ(κ, τ)≤ µ(κ′, τ) iff κ′ ≥ κ.

These results can be seen easily from the firms’ optimization problem. Specifically, given

that all firms face the same cost function ω(h), a firm that has a higher marginal benefit of

increasing precision must hire a more precise agent in equilibrium. From Equation (8), one

can see that the marginal value of more precise information is given by

∂U(y, h)

∂h
=

κ(y)

(τ(y) + h) 2
− ωh(h). (10)

In other words, there is complementarity between the precision of an agent and firms’

scale and the transparency of the firm’s endowed informational environment before hiring

from the labor market. The intuition is very simple: fixing the scale of a firm, when investors’

estimation of firm cashflow is less precise (i.e., a lower τ(y)), any increase in the precision of

public information improves their estimation more substantially. A lower transparency index

can be driven by a riskier project (a higher σθ) or a less informative capital market (a higher

level of investors’ noise σx or market noise σu). On the other hand, if any of the variances

converge to zero, τ(y)→∞, and the marginal value of public information thus goes to zero.

Hence, fixing the scale of a firm, there is a negative sorting between agent precision and firm

transparency. That is, a more opaque firm must hire a more precise agent.

Similarly, since firms with a higher scale κ(y) have more risk that investors have to bear,

a better investor estimation reduces the risk premium more substantially. Thus, fixing the

transparency, there is a positive sorting between agent precision and firm scale.
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Proposition 3. (1) The assignment function µ(κ, τ) must satisfy the following partial dif-

ferential equation: {
∂µ

∂τ
+

2κ

τ + µ(κ, τ)

∂µ

∂κ

}
= 0. (11)

(2) There exists a cutoff of agent h∗ ≥ hL such that agents are actively matched if and

only if h ≥ h∗ and ωh(h) > 0 for h ≥ h∗. The cutoff type h∗ must satisfy the following

conditions: (a) νF (Y0) = GA(h∗), where Y0 denotes the set of firms that are not matched

(i.e. Y0 ≡ {y ∈ Y |µ(y) = ∅}); (b) If h∗ > hL, Ω(µ−1(h∗), h∗) = 0 and Ω(y, h∗) < 0 for all

firms y ∈ Y0.

To see this, for all firms with index (κ, τ) :

U∗(κ, τ) ≡ U(κ, τ, ∅) + max
h̃∈H∪{∅}

{
Ω(κ, τ, h̃)−

(
ω(h̃)− C

)}
.

Assuming the double differentiability of U∗, we thus have ∂2Ω
∂κ∂h

∂µ
∂τ

= ∂2Ω
∂τ∂h

∂µ
∂κ
, which gives the

expression in Equation (11).

Without any fixed cost (i.e., C = 0), the surplus is positive for all agents and thus all

should be matched. On the other hand, given any positive fixed cost C > 0, agents with

lower precision may not be hired since they cannot generate enough value to compensate the

fixed cost.

Given that Ω(y, h) increases with precision, the surplus function is then positive if and

only if the precision of an agent is above a cutoff value ĥ(κ, τ), which is the precision that

solves Ω(y, h) = 0. Moreover, all firms essentially compete for more precise agents. This

thus explains (1) the cutoff rule: if a less precise agent is hired in equilibrium, then a more

precise agent must be hired as well; (2) the agent fee increases with precision ωh(h) > 0.

Generally, the assignment function must satisfy Equation (11) together with the restric-

tion on the market-clearing condition. As discussed in Chiappori et al. (2016), when type

spaces are multidimensional, it is generally not possible to derive a closed-form solution for

the assignment function. We now consider the following nested environment that allows for
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a full characterization. Most of our results below do not require a nested environment but

some of the wage distribution implications do. This nested environment is empirically plau-

sible, however, as we explain below. It also offers the reader an illustration of the matching

patterns and deeper insight into the assignment solution.

3.3. Full Characterization under Nested Matching

Facing the equilibrium fee ω(h), ωh(h) represents the marginal cost of a particular precision

from the view point of firms. From the first order condition, if firm y chooses to match with

agent µ(y) in equilibrium, then his marginal benefit of precision must equal the marginal

cost. That is, Ωh(y, µ(y)) = ωh(µ(y)).

In other words, once we have figured out the value of ωh(h), one can then find out the

set of firms that are matched to agent h. Note that when firms differ in both indices, two

different types of firms may have the same marginal value of h. To facilitate the analysis,

define the set of firms y whose marginal benefit of precision h is given by a value of m :

Υ(h,m) ≡ {y ∈ Y | Ωh(y, h) = m} .

That is, if the marginal cost of hiring agent h is given by ωh(h), then Υ(h, ωh(h)) is the set

of firms that are matched to agent h.

Clearly, ωh(h) is an equilibrium object that depends on the underlying distribution. We

now consider the following algorithm that allows us to construct an explicit solution for this

multi-dimensional environment. For simplicity, we assume C = 0 throughout this section;

nevertheless, a similar characterization can be obtained for C > 0. The basic idea of the

equilibrium construction is the following.

First, for each h, we will need to choose some level m ∈ R that satisfies the following

condition:

17



νF ({y ∈ Y | Ωh(y, h) ≤ m}) = GA(h). (12)

That is, by choosing m properly for each agent h, the measure of firms whose marginal

benefit of h is lower than m, denoted by Y (h,m) ≡ {y ∈ Y |Ωh(y, h) ≤ m}, exactly coincides

with the measure of agents below h.

Second, set ωh(h) = m and assign agent h to the set of firms in Υ(h, ωh(h)). That is,

µ−1(h) = Υ(h, ωh(h)). Figure 1 illustrates the construction above. For each value of h,

the set of firms whose marginal value of h is m (i.e. Υ(h,m)) can be represented by a

quadratic relationship between κ and τ : κ = m(τ + h)2, as the marginal value is given by

Ωh(y, h) = κ
(τ+h)2

. Firms below this curve thus constitute the set of firms whose marginal

benefit of precision is lower than m. Intuitively, if m were the price for precision h, all firms

below (above) the line find this type of agent too expensive (cheap).

Choosing m for each h is thus as if we are choosing the price for any given precision.

Equation (12) requires that, in equilibrium, the price for any particular precision must be

chosen in a way so that the measure of firms that find this type of agent too expensive

exactly coincides the measure of agents that are below this agent.

By setting m = ωh(h), it is only optimal for firms in the set Υ(h, ωh(h)) to match with

agent h. The set of firms that are matched to h is illustrated in Figure 1, where each line is

given by κ = ωh(h)(τ + h)2 and ωh(h) is chosen so that Equation (12) is satisfied.
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Figure 1: Figure 1 illustrates the set of firms that hire agent with precision h, where h3 > h2 > h1. Each
line is given by κ = ωh(h)(τ + h)2 and ωh(h) is chosen so that the measure of firms below the line coincides
with GA(h).

As established in Chiappori et al. (2015), this algorithm works only in the environment

where the constructed ωh(h) in the above procedure satisfies the following nested condition:

Y (h, ωh(h)) ⊂ Y (h′, ωh(h
′)) ∀h′ > h. (13)

That is, the construction of the fee schedule is such that if a firm finds that hiring agent

h is too expensive, then it must find a more precise agent h′ > h too expensive as well. In

other words, the constructed indifference set in Figure 1 never intersects.

Observe that Condition (13) together with Condition (12) guarantee that (1) the set of

firms that found h to be too expensive are always matched to firms below agent h and (2)

the market clears in the sense that the measure that hire firms who hire agents below h

coincides with the measure of agents below h. As a result, the optimality condition of firms

and market-clearing condition are satisfied. Proposition 4 summarizes the characterization.

Proposition 4. Let ωh(h) be the value that solves Y (h, ωh(h)) = GA(h). Under nested

matching (i.e., if condition (13) holds), the optimal assignment is characterized by µ−1(h) =

Υ(h, ωh(h)).

As discussed in Chiappori et al. (2015), whether condition (13) actually holds generally
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depends on the underlying measure of agents and firms. Chiappori et al. (2015) further

provides criteria for this condition to hold and establishes that it is always possible to find

such a underlying distribution that satisfies this condition. Note that, in our environment,

if the constructed ω(h) turns out to be convex, then condition (13) must hold. That is, if a

firm y′ = (κ′, τ ′) is such that κ′ < ωh(h)(τ ′ + h)2, then κ′ < ω′(h′)(τ ′ + h′)2 for any h′ > h

when ω′′(h) ≥ 0. Hence, whenever the underlying distribution leads to a convex ω(h), we

know immediately that the above procedure indeed characterizes the stable matching.

Firms with Homogeneous Scales We now look at the case when firms have the same

κ(y) = κ ∀y but different cash flow volatility (σθ), different clientele (captured by investor’s

precision σx), and different market noise (σu). As discussed below, this is in fact a special

case where condition (13) holds for any distribution.

Since the types of firms can be summarized by a one-dimensional transparency index τ(y),

the model then simply collapses to the standard model with one-dimensional heterogeneity.

LetGF (τ) denote the measure of firms that have a transparency index lower than τ : GF (τ) ≡

νF ({y ∈ Y : τ(y) ≤ τ}). Specifically, since a more opaque firm (i.e., one with a lower

transparency index) has a higher marginal value of precision, such a firm must hire a more

precise agent.

According to Equation (12), ωh(h) is then simply the marginal value of precision h for

firms τ, where the measure of firms above firm τ (i.e., those that found h to be too expensive)

coincides with the measure of agents below h. That is, µ−1
h (h) is a firm with index τ such

that 1−GF (τ) = GA(h).

Since a more precise agent is matched to a more opaque firm (i.e., µ−1(h) > µ−1(h′) for
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h′ > h), one can show that condition (13) is always satisfied. Formally,

Y (h, ωh(h)) = {τ ∈ Y | κ

(τ + h)2
≤ κ

(µ−1(h) + h)2
}

= {τ ∈ Y | τ ≥ µ−1(h)}

⊂ {τ ∈ Y | τ ≥ µ−1(h′)} = Y (h′, ωh(h
′)).

Hence, the wage profile and assignment function can be simply characterized by the

following equations:

ωh(h) =
κ

(µ−1(h) + h)2
, (14)

µ−1
h (h) = − dGA(h)

dGF (µ−1(h))
. (15)

As is standard in the one-dimensional matching model, Equation (14) shows that the

marginal increase in the fee of agent h is his contribution to the surplus Ωh(µ
−1(h), h) within

the match, given his optimal assignment µ−1(h). For all agents that are actively matched,

Equation (15) can be derived directly from the familiar market-clearing condition:

1−GF (µ−1(h)) = GA(h).

As discussed above, condition (12) in the two-dimensional case is in fact equivalent to this

market-clearing condition in the one-dimensional case.

4. Implications

We now establish the empirical implications for cross-sectional variation in coverage and

asset returns as well as agent wages.
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4.1. Asset Pricing Test of Endogenous Information Efficiency and

Labor Market Sorting

We examine how the cross-sectional variation in coverage affects the expected return across

firms. Given any price p, the asset return is given by E[πy − p|p]. The (unconditional)

expected asset return for firm y is then given by

R(y) ≡ E
[(

kθ − ω(µ(q(y)))

1 + ψ

)
− P (θ, z, u|µ(y), y)

]
=

κ(y)

τ(y) + µ(y)
.

If coverage were homogeneous across firms, one would expect that the risk premium must

increase with the scale and decrease with the transparency of the firm. This is, however, no

longer true when the quality of coverage is endogenous. To see this formally, the change in

the risk premium with respect to the transparency and scale of a firm is given by:

∂R(y)

∂τ
∝ −{1 + µτ (κ(y), τ(y))} ,

∂R(y)

∂κ
∝ {τ(y) + µ(y)− κµκ(κ(y), τ(y))} .

Comparison to the No-Sorting Benchmark As expected, if all firms hire the same

agent (µτ = 0 and µκ = 0), the risk premium must increase with scale and decrease with

transparency: ∂R(y)
∂τ

< 0 and ∂R(y)
∂κ

> 0. However, according to Proposition 2, the sorting

generates an opposite force: the more opaque and/or larger firm hires a more precise agent

in equilibrium (i.e. µτ < 0 and µκ > 0), which in turn decreases the risk premium.

To highlight the sorting effect, we further consider a counterfactual environment where

agents and firms are matched randomly. That is, the type of agent hired by each firm is

randomly drawn from the distribution GA(h). In this case, firm y will hire analyst h as long

as the surplus Ω(y, h) is positive (i.e., when h ≥ ĥ(κ, τ)). Hence, under random matching,
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the average expected return for firm y conditional on having coverage is then given by

RRM(y) ≡
ˆ hH

ĥ(κ,τ)

(
κ(y)

τ(y) + h

)
dGA(h).

Since less transparent and/or larger firms are less selective, average coverage quality in

fact decreases with scale and increases with transparency: µRMκ (κ, τ) < 0 and µRMτ (κ, τ) > 0.

Hence, under random matching, the risk premium always increases with scale and decreases

with transparency, which is in sharp contrast to the sorting model. As established in Propo-

sition 5, only the coverage pattern under sorting can overturn the standard opacity and size

prediction of expected returns.

Proposition 5. (Coverage Effect and Non-Monotonic Expected Returns) Expected returns

can be non-monotonic in transparency and scale as a result of the coverage effect under

competitive sorting. By contrast, under the no-sorting benchmark, expected returns must

increase with scale and decrease with transparency.

Figure 2 shows expected returns under sorting compared with random matching, which

gives a concrete example of where the coverage effect dominates. The coverage of each firm

µ(κ, τ) is shown in Figure 3. As shown in the left panel, expected returns can be non-

monotonic in transparency and scale, which is in sharp contrast to the random matching

environment in the right panel.

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

τ

κ

heat map for return R(κ,τ)=κ/(τ+µ(κ,τ))

 

 

0.5

0.55

0.6

0.65

0.7

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

τ

κ

heat map for return R
avg

(κ,τ)=κ/(τ+avg(h))

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: The heat map shows expected returns under sortingR(κ, τ) (left panel) and under randommatching
RRM (κ, τ) (right panel). The distributions for agents and firms are assumed to be uniform, where h ∼ U [0, 2],
κ ∼ [1, 2], and τ ∼ U [1, 2].
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Figure 3: The heat map shows the assignment µ(κ, τ) when the distributions of agents and firms are assumed
to be uniform, where h ∼ U [0, 2], κ ∼ [1, 2], and τ ∼ U [1, 2], and C = 0.

The Magnitude of the Coverage Effect The strength of the coverage effect–captured

by µτ and µκ– also endogenously depends on the underlying distributions of firms and agents

(i.e., the competition). To see this clearly, first consider the simple case where firms have ho-

mogeneous scales. In this case, the change in precision as a function of a firm’s transparency

is characterized by Equation (15), which shows explicitly how the underlying distribution

affects the magnitude of the coverage effect. Without loss of generality, assume that GA(h)

are uniformly distributed between [hL, hU ]. One can then clearly see that the strength of this

coverage effect increases with the dispersion of agents’ talents. That is, Equation (15) can

be rewritten as:

µτ (τ) = −dGF (τ)(hU − hL).

When firms differ in both indices, the assignment function does not have a simple analytical

expression. Nevertheless, the same intuition holds. More dispersed talents simply suggest

that it generates a large cross-sectional difference in the coverage, which thus leads to higher

slopes of µτ and µκ and to Proposition 6:

Proposition 6. Assume GA(h) are uniformly distributed between [hL, hH ]. Under nested

matching, a higher dispersion of talents leads to a stronger endogenous coverage effect (i.e.,

a steeper µτ and µκ)
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Discussion on Empirical Tests From these propositions, we can derive the following

simple set of equations to take to the data:

lnR(κ, τ) = lnκ− ln(τ + µ(κ, τ)) (16)

∂ lnR

∂ lnκ
= 1− κµκ(κ, τ)

τ + µ(κ, τ)
(17)

∂ lnR

∂ ln τ
= −τ

(
1 + µτ (κ, τ)

τ + µ(κ, τ)

)
. (18)

Note that if there is no sorting, µk = µτ = 0, we find that the log of the expected

return of a firm rises with log scale k and decreases with log transparency τ (this is the risk-

sharing force). Empirically, since there is a measurement error, we might not get exactly the

coefficients of one but expect something close. But if there is sorting (µk and µτ are non-

zero), it is easy to see from these equations that these relationships need not be monotonic

anymore and can actually be highly non-monotonic as we described in the 3-D plots above,

depending on the strength of the sorting or the endogenous information efficiency effect.

One way to test these equations structurally is to using a first-stage assignment function

along the lines of Akkus et al. (2013). We can test these asset pricing predictions. This is

a test of the endogeneity of the assignment and of the value matching function being driven

by a noisy rational-expectations equilibrium. We expect the coefficients in front of log size

and transparency to be steeper once we control for the assignment function.

Another way to test our model is to use Proposition 6. Our scarcity of talent prediction

can be interpreted as the exogenous arrival of a new initial public offering (IPO) or tech-

nologies that only some of the existing analysts in the labor market can accurately decipher.

As such, it is easy to look to time series variation in IPO waves and test if our predictions

are true. All else equal, we expect the coefficients in front of log size and transparency to be

flatter when there is an IPO wave.
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4.2. Wage Dispersion and the Superstar Effect

We now establish the empirical implications for agent wages. Clearly, the wage of an agent

rises with in his talent (i.e., precision). The slope of the wage profile thus represents the

return on talent. As in the CEO literature (see, e.g., Terviö (2008); Gabaix and Landier

(2008)), a higher return of talent can thus be interpreted as a stronger superstar effect. We

now establish how such an effect depends the underlying parameters, linking our predictions

to the rise of the superstar effect among securities analysts.

Recall that in equilibrium, firms choose agent h if and only if their marginal value pre-

cision of h is equal to marginal cost ωh(h). In other words, the marginal increase in the fee

of agent h is then his contribution to the surplus within the match: ωh(h) = Ωh(µ
−1(h), h)

where µ−1(h) is the set of firms that are matched to agent h. Since the sorting predicts that

a more precise agent is matched to a firm that has a higher value of precision (i.e., either a

larger or a more opaque firm), it thus further amplifies the superstar effect.

Comparison to the No-Sorting Benchmark To see how sorting amplifies the superstar

effect formally, we again compare to the environment under random matching. Notice that,

in our model, the wage of an analyst is pinned down competitively by his next best competitor

so that it is optimal for each firm to hire their optimal agent. Such a mechanism is absent

in the random matching setting. Thus, following the standard random matching setup, we

assume that the wage is determined by Nash bargaining, which yields

ωRM(y, h) = (1− β)C + β

{
κ(y)

τ(y)
− κ(y)

τ(y) + h

}
, (19)

where β is the (exogenous) bargaining power of workers. For simplicity, assume that the

surplus is positive for all pairs. The average wage for agent h under random matching is

then given by ωRM(h) ≡
´
Y
ωRM(y, h)dνF , and its slope is given by:
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ωRMh (h) = β

ˆ
Y

(
κ(y)

(τ(y) + h)2

)
dνF . (20)

That is, the slope is given by the average marginal value of precision across all firms. Since

the marginal value of precision is decreasing in h, Equation (20) thus implies that that the

wage must be concave in talent under random matching: ωRMhh (h) < 0.

Clearly, a more precise analyst receives a higher wage due to his higher ability in both

environments. However, Equation (20) shows that the prediction of the slope differs across

two settings: the marginal value for a more precise agent is given by his added value for a

larger or more opaque firm in the sorting environment, instead of an average value across all

firms under random matching.

This thus suggests that the slope of the wage profile for agents at the top is much higher

in the sorting framework than the one under random matching. By contrast, the slope of the

wage profile for agents at the bottom is much lower in the sorting framework, as such agents

can only match to firms with a lower marginal value. Thus, sorting amplifies the superstar

effect in the sense that it increases the return on talent for agents with higher precision but

decreases the return of agents with lower precision.

The Steepness of the Wage Profile We now establish that, under nested matching,

the return on talent depends on the underlying parameters. Recall that the value of ωh(h)

is given by m that solves Equation (12). That is, among agents that are actively matched,

νF
(
{y ∈ Y | κ(y)

(τ(y) + h)2
≤ m}

)
= GA(h). (21)

Equation (21) clearly shows that, given any agent h, when more agents are below him (i.e.,

less talents below h), the value of m that clears the market must increase, which thus implies

the wage becomes steeper for agent h. By contrast, this force is again absent under random

matching. This can be seen clearly from Equation (19), where ωRMh (h) is independent of the
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talent distribution GA(h).

Proposition 7. Consider two talent distributions GA
1 (h) and GA

2 (h) with the same range.

Assuming nested matching, if GA
2 (h) is first-order stochastically dominated by GA

1 (h) (i.e.,

GA
1 (h) ≤ G2

B(h)), ωh(h) is higher under distribution GA
2 (h). That is, the slope of wage profile

ωh(h) is higher when talents are scarce.

We now turn to analyze how the wage depends on the distribution of firms. Consider

the case when all firms become larger or more opaque. That is,κ′ = λκ and/or τ ′ = τ
λ
for all

firms for some constant λ ≥ 1.

Proposition 8. Under nested matching, the slope of wage profile ωh(h) increases when all

firms have larger scale or become more opaque.

Intuitively, the marginal value of precision is now higher. One would then expect a higher

return on talent. Moreover, since sorting leads to a stronger superstar effect compared with

andom matching, one can easily see that such an effect is further amplified. That is, for

example, when firms are multiplied by constant λ, the difference in slope ωh(h)− ωRMh (h) is

then simply scaled up by λ.

Our result thus connects the superstar effect to the underlying distribution of firms.

During the Internet Bubble Period of 1997-2000, security analysts’ pay were highly skewed

as the prices of dot-com stocks were noisy and underlying dot-com payoffs were also highly

uncertain. Top analysts such as Henry Blodgett and Mary Meeker had compensation in the

millions of dollars per year similar to top investment bankers. After the dot-com bubble, it

is generally thought that compensation was significantly scaled back because of regulatory

reforms such as Reg-FD which curtailed conflicts of interests in the industry.

Our model predicts that, beyond regulatory pressures, this compensation is also funda-

mentally tied to the uncertainty in the stock market and scarcity of talent. Indeed, during

the Second Internet Boom of the mid-2000s, compensation for analysts have returned with

again very skewed pay-offs for the top analysts.
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Through the lens of our model, one can thus interpret both the first and the second

internet boom as periods in which talents become more scarce, as fewer can understand the

new technology. As discussed above, the competitive sorting environment can generate much

higher wage dispersion and a stronger superstar effect.

4.3. Coverage and Neglected Stocks

Due to the fixed cost of information production, one would expect that some firms are being

neglected. As shown in Proposition 4, certain firms do not hire any agent in equilibrium

µ(y) = ∅. In this section, we show that competition (i.e., sorting) further amplifies this

neglected effect.

To measure the neglected effect, we look at the total measure of firms that are being

neglected, which is given by νF (Y0). In other words, 1−νF (Y0) then represents the extensive

margin of aggregate market coverage. In order to show how sorting amplifies the neglected

effect, we compare our results with a counterfactual environment in which all firms can

choose to hire an average quality of agents h̄ =
´
hdGA(h). Let µns(y) ∈ {∅, h̄} denote

whether a firm has an agent covering it in the no-sorting benchmark. The set of firms that

receive zero coverage without sorting is denoted by

Y ns
0 ≡ {y ∈ Y | : µns(y) = ∅} .

Proposition 9. (Results on the Measure of Neglected Firms)

There exist c̄ > 0 and c > 0, such that, for any C ∈ (c, c̄), sorting leads to a higher

measure of neglected stocks: νF (Y0) > νF (Y ns
0 ) = 0.

The first result establishes that competition leads to more firms being neglected. The

intuition is very simple. Firms that are smaller or more transparent are most selective

in terms of their hiring. That is, recall that firm (κ, τ) hires an agent if and only if h ≥

ĥ(κ, τ). Given that the surplus function increases with scale and precision but decreases with
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transparency, smaller and more transparent firms thus have a higher threshold. However,

the sorting suggests that these firms can only matched to agents with lower precision, since

they could not compete with other firms. As a result, these firms rather remain unmatched

(i.e., neglected).

The condition on the production cost simply guarantees that the cost is not too high so

that it is valuable to hire an average analyst (i.e., Ω(κL, τH , h̄) ≥ 0 ) but it is also not too low

so that the worst agent does not generate enough surplus to compensate for the production

cost (i.e., Ω(κL, τH , hL) < 0). Hence, within this parameter region, the neglected firm effect

is purely driven by the sorting.

5. Extensions

5.1. One Agent for Multiple Firms

We have so far considered a one-to-one matching environment, that is one agent can only be

hired by one firm. The model, however, can be easily extended to the environment where

an agent is allowed to work for N ≥ 1 firms instead. The parameter N thus captures the

capacity constraint of the underwriter or analyst.

Intuitively, given that an agent can work for N firms, more talent is available from the

viewpoint of firms. That is, N effectively changes the talent distribution. Since all firms

would prefer to hire a better agent, the market clearing condition under nested matching

can then be rewritten as:

νF ({y ∈ Y | Ωh(y, h) ≥ m}) = N(1−GA(h)). (22)

In words, the left-hand side represents the measure of firms whose marginal value of h is

above m. Those firms must hire an agent above h. Since each agent above h can work for

N firms, the measure of these firms must equal N(1 − GA(h)). If all firms hire an agent in
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equilibrium, then the cutoff type h∗N must be given by 1 = N(1−GA(h∗N)). In other words,

the equilibrium is thus equivalent to the environment where G̃A(h) =
GA(h)−G(h∗N )

1−GA(h∗N )
with the

support [h∗N , h
U ]. One can thus solve for ω(h) under the distribution G̃A(h) and the payoff

for all agents above h∗ is then given by Nω(h).

Moreover, Equation (22) shows that the solution of m (and thus ωh(h)) must decrease

in N. The intuition is simple: as a result of competition, the return on talent becomes lower

when there is more talent out there.

5.2. Contracting and Firm Demand for Information Efficiency

The firms in our main model hire agents in order to reduce the cost of capital when going

public. Another possible reason for why firms care about market efficiency is using infor-

mative stock prices to alleviate moral hazard, as in Holmström and Tirole (1993). We now

consider this monitoring channel as an alternative way that an agent provides value to the

firm, and analyze the sorting outcome in this environment.

For simplicity, we assume all investors are risk neutral instead (i.e., shutting down the

risk premium channel in the main model) and all firms face a moral hazard problem. The

firm is run by a risk neutral manager, who exerts effort at t = 0 that affects the final output

of the firm. The payoff of the firm is given by

θ = v + e,

where v is a firm-specific payoff drawn from a normal distribution with mean v̄ > 0 and

variance σ2
θ , and e is the component of earnings determined by managerial effort. Hence,

θ̄ = v̄ + ē, where ē denotes the manager’s equilibrium effort.

Managers are paid at t = 1. In the spirit of Holmström and Tirole (1993), we assume

that the compensation of the manager (denoted by I) is based on a fixed salary w0 and can
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be contingent on the stock price at t = 1. That is,

I = w0 + αp̃hy,

where (w0, α) are chosen optimally by the insider, and p̃hy is the realized market price. For

simplicity, we assume that the firm pays the manager and agent out of his own pocket at

t = 1, and thus the price of stock only depends on the final payoff. Given that investors are

risk neutral, the price is then simply the expected payoff. That is, the price expression can

be obtained by setting θ̄ = v̄+ ē in Equation (6) with γ = 0, where ē denotes the manager’s

equilibrium effort:

P (θ, z, u|h, y) = E
[(

kθ

1 + ψ

)
|xi = x̂, z, x̂

]
(23)

=
k

1 + ψ

(
τθθ̄ + τm(θ + σxu) + hz

τθ + τm + h

)
,

where τm ≡ σ−2
x + (σxσu)

−2 and τθ = σ−2
θ . Given the compensation and effort level e, the

utility of the risk-neutral manager is then given by

W (w0, α, e) = w0 + αP (v + e, z, u|h, σ)− kc(e),

where c(e) = 1
2
e2 is the manager’s effort cost.

Facing the agency problem of the manager, the firm is now choosing both the analyst h

as well as the managerial contract (w0, α) optimally at t = 0. The payoff of the firm when

hiring agent h is given by

J(y, h) = max
{w0,α,e}

E[
k(v + e)ψ

1 + ψ
− (w0 + αP (v + e, z, ũ|h, y))] (24)

subject to the manager’s (1) individual compatibility (IC) constraint: e ∈ arg maxe E[W (w0, α, e)]

and (2) individual rationality (IR) constraint: E[W (w0, α, e)] ≥ 0.
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Similar to our baseline model, the firm chooses agent h optimally to solve the following

problem: U∗(y) = maxh{J(y, h) − ω(h)}. Hence, the sorting pattern is determined by the

complementarity of the payoff function J(y, h). Since the manager is risk-neutral, the firm

does not have an incentive to pay the fixed fee w0 as it does not provide incentives for a

manager to exert effort. That is, w0 = 0 for the optimal contract.

One can show that the solution to problem (24) can be simply reduced to the following:

J(y, h) = kmax
e

{(
ψ

1 + ψ
− φ(y, h)e

)
(v̄ + e)

}
,

where

φ(y, h) ≡
(

τθ
τm + h

+ 1

)
.

The function φ(y, h) can be interpreted as the cost of incentivizing effort. Such a cost

is lower if market information is more precise (i.e., higher h and τm) and when the firm is

more volatile (i.e., lower τθ). Intuitively, when firms are less volatile, investors put a higher

weight on the prior θ̄ = (v̄+ ē) in equilibrium (as shown in Equation (23)) and thus the price

responds less to the true state and it is harder to incentivize the manager.

Clearly, a more precise agent leads to a higher payoff for firms, as it is easier to incentivize

the manager. Formally,

Jh(y, h) = −ke∗(y, h)(v̄ + e∗(y, h))
∂φ(y, h)

∂h
> 0.

A firm with a larger scale k or one that retains a higher share ψ has a higher marginal

value of precision, since they benefit more when manager exert a higher efforts, which leads

to a higher fundamental. Furthermore, as shown in Appendix A.2, under parameters such

that firms’ projects are relatively risky, Jτmh < 0 and Jτθh > 0. Intuitively, since the market

condition τm and precision h are substitutes, the marginal value for h is thus lower for

firms with higher market precision τm. On the other hand, when firms are less volatile (i.e.,
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high τθ), any additional precision is more valuable, as it reduces the incentive cost more

significantly (i.e., ∂2φ
∂h∂τθ

< 0). The detailed derivation is in Appendix A.2.

6. Conclusion

We provide a theory of endogenous stock market efficiency that emphasizes the sorting or

assignment of firms of heterogeneous characteristics in a variety of labor markets where agents

generate a public signal about the firm’s fundamental value, i.e. coverage, with heterogeneous

precision. For instance, in a noisy rational-expectations stock market equilibrium when a

firm is going public, we show that there is positive assortative matching. In general, firms

with higher noise or scale index benefit more and pay more for accurate coverage as it leads

to greater price efficiency and less risk discount.

It turns out that this assortative matching effect has wide-reaching implications for think-

ing about a host of issues in stock markets, including coverage patterns, wage distributions

and even well known asset pricing anomalies including the neglected firm effect. The model

generates a number of new testable implications for future empirical work. The distinguishing

feature of our model is that coverage, compensation and stock pricing are all endogenously

determined across firms. As such, there are a large number of sharp predictions that have

not yet been tested.
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A. Appendix

A.1. Omitted Proofs

A.1.1. Proof for Lemma 1

Proof.

V ar(θ|x, z, p) = σ2
θ −


σ2
θ

σ2
θ

k
1+ψ

(h+τm)σ2
θ

(h+τm+τθ)


T

Σ−1
dd


σ2
θ

σ2
θ

k
1+ψ

(h+τm)σ2
θ

(h+τm+τθ)

 =
1

(τm + h+ 1
σ2
θ
)
,

where Σdd ≡


σ2
θ + σ2

x σ2
θ

k
1+ψ

(h+τm)σ2
θ

(h+τm+τθ)

σ2
θ σ2

θ + σ2
h

k
1+ψ

(h+τm)σ2
θ+hσ2

h

(h+τm+τθ)

k
1+ψ

(h+τm)σ2
θ

(h+τm+τθ)
k

1+ψ

(h+τm)σ2
θ+hσ2

h

(h+τm+τθ)

(
k

1+ψ

)2
(τθ+τm)τ−1

θ +h+τ2m(σ2
xσ

2
u)

(τθ+h+τm)2

 .

Hence, the expression for the risk premium is given by

γIk
2V ar(θ|x, z, p)

2(1 + ψ)2
=

γIk
2

2(1 + ψ)2( 1
σ2
x

+ 1
σ2
xσ

2
u

+ 1
σ2
θ

+ h)
=

κ(y)

τ(y) + h

The risk premium strictly decreases with precision h and increases with all noise variables

σj as ∂τ(y)
∂σj

< 0, where j ∈ {θ, x, u}, and the factors that increase the scale κ(y) are k,γI , and

1
1+ψ

.

A.1.2. Proof for Proposition 1

Proof. Given that the set of agents and firms’ types are bounded and the surplus is contin-

uous, according to Theorem 4 in Chiappori et al. (2015), there exists a stable match in the

labor market and the stable match must maximize the aggregate surplus.

Moreover, when the information cost is small enough (e.g., when C = 0) so that the
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matching surplus generated by all agents across all firms is positive (i.e.,Ω(y, h) ≥ 0 ∀ y, h),

the surplus function satisfies the following condition: for any given y, DyΩ(y, h) 6= DyΩ(y, h′)

for h 6= h′, where Dy denotes the derivatives with respect to vector y. That is, for a fixed firm

y, a different h implies a different marginal surplus for y. Hence, Theorem 6 in Chiappori et al.

(2015) guarantees that there is a unique stable matching outcome, and that the assignment

function µ(y) is pure. That is, firm y always chooses a unique agent h and never randomizes

between different agents.

We now consider the case for large information costs so that the information value is not

worth the production cost for some matching pairs. Clearly, among the subset of agents

that are actively matched, the surplus must be positive (i.e., Ω(y, µ(y)) > 0); hence, for the

same logic, the matching solution for these firms and agents must be unique and pure.

We now turn to the set of firms that are being neglected. Note that, for any given ω(h),

firms’ optimization problem can be rewritten as:

U∗(κ, τ) = max

{
max

h∈[h∗,hU ]
{− κ

τ + h
− ω(h)}, −κ

τ

}
.

= max

{
− κ

τ + he(κ, τ)
− ω(he(κ, τ)), −κ

τ

}
,

where he(κ, τ) = arg maxh∈[h∗,hU ]{− κ
τ+h
− ω(h)}. Hence, this shows that a firm either hires

an agent he(κ, τ) or remain in autarky µ(y) = {∅}. Thus, µ(y) is pure and unique for all

firms, including those that choose to be unmatched. Furthermore, given ω(h), the set of

firms that are being neglected can be characterized as

Y0 = {y ∈ Y | κ
τ
− κ

τ + he(κ, τ)
− ω(he(κ, τ)) < 0}. (25)

Furthermore, since Ω(y, h∗) < 0 ∀y ∈ Y0 and the surplus increases with precision, the

surplus between neglected firms and agents below the cutoff types must be negative as well
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(i.e., Ω(y, h) < 0∀h < h∗). This thus shows that it is indeed optimal for those firms to remain

unmatched µ(y) = {∅}.

A.1.3. Proof for Proposition 2

Proof. Given that Uh(κ, τ, h) increases with scale κ and decreases with transparency τ , ac-

cording to Milgrom and Segal (2002), µ(κ, τ), the solution to Equation (1), must increase

with κ and decrease with τ. Since Uh(κ, τ, h) = Ωh(κ, τ, h), this is equivalent to looking at

the complementarity of the surplus function, as is standard in the matching model.

A.1.4. Proof for Proposition 3

Proof. (1) From Equation (8), the payoff for firms with index (κ, τ) yields:

U∗(κ, τ) ≡ U(κ, τ, ∅) + max
h̃∈H∪{∅}

{
Ω(κ, τ, h̃)− (ω(h̃)− C)

}

From the envelope theorem U∗κ(κ, τ) = Uκ(κ, τ, ∅)+Ωκ(κ, τ, µ(κ, τ)) and U∗τ (κ, τ) = Uτ (κ, τ, ∅)+

Ωτ (κ, τ, µ(κ, τ)). The cross-partial derivatives yield:

U∗κτ = Uκτ (κ, τ, ∅)+Ωκτ (κ, τ, µ) + Ωκh(κ, τ, µ)
∂µ

∂τ

U∗τκ = Uκτ (κ, τ, ∅)+Ωκτ (κ, τ, µ) + Ωτh(κ, τ, µ)
∂µ

∂κ

Assuming the double differentiability of U∗, we thus have Ωκh(κ, τ, µ)∂µ
∂τ

= Ωτh(κ, τ, µ)∂µ
∂κ
,

which gives the expression in Equation (11).

(2) We now show that an agent is actively matched iff h ≥ h∗. The cutoff role can be

proved by contradiction. Suppose there exists h2 > h1 such that agent h2 is not matched but

agent h1 is actively matched with firm y′. That is, µ−1(h2) = ∅ and µ−1(h1) = y′ ∈ Y . Given

that agent h1 is actively matched with firm y′, the surplus must be positive: Ω(y′, h1) > 0
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and thus Ω(y′, h2) > 0, given that Ωh > 0. Hence, there is a profitable deviation for firm y′

by offering wage ω(h1) to agent h2. Both firm y′ and worker h2 are better off in this case:

firm y′ is strictly better off since he receives better coverage by paying the same wage; while

agent h2 now receives ω(h1)−C, which must be (weakly) larger than zero (i.e., the autarky

value). That is, the pair-wise stability condition is violated.

Furthermore, the utility of the agent is expressed as

ω(h)− C = max
y∈Y ∪{∅}

{Ω(y, h)− (U∗(y)− U(y, ∅))}

Hence, the envelope theorem implies ωh(h) = Ωh(µ
−1(h), h)) > 0 for µ−1(h) 6= {∅}.

Condition (a) νF (Y0) = GA(h∗) is the market clearing condition. Since both firms and

agents have the same measure, the measure of neglected firms and unemployed agents must

be the same.

We now establish condition (b): if h > hL (i.e., some agents are unmatched), Ω(µ−1(h∗), h∗) =

0. We prove this by contradiction. Suppose that in equilibrium, Ω(µ−1(h∗), h∗) > 0 and let

y∗denote a firm that is matched to agent h∗. Then there exists firm yε such that κ(yε) =

κ(y∗)− ε and τ(yε) = τ(y∗) + ε such that Ω(yε, h
∗− ε′) > 0 for some ε, ε′ > 0. From Proposi-

tion 2, since this firm has a smaller scale and higher transparency, it must hire a lower agent

than firm y∗. However, since h∗ is the cutoff type by definition, this firm must be inactive

µ(yε) = {∅}. But, there then exists a profitable deviation: firm yε can hire agent h∗ − ε′ by

paying wage C. In this case, an agent is indifferent, while the firm is strictly better off:

U(yε, h
∗ − ε′) =

κ(yε)

τ(yε) + h∗ − ε′
− C > U(yε, ∅) =

κ(yε)

τ(yε)

The inequality follows from the fact that Ω(yε, h
∗ − ε′) > 0.

Lastly, since Ω(µ−1(h∗), h∗) = 0, then the cutoff type must earn zero (i.e., ω(h∗) = C).

Hence, for firms being neglected, it must be the case that they rather choose not to hire
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agent h∗. That is,

U(y, h∗) =
κ(y)

τ(y) + h∗
− C < U(y, ∅) =

κ(y)

τ(y)

This thus establishes that Ω(y, h∗) < 0 for y ∈ Y0.

A.1.5. Proof for Proposition 4

Proof. By construction, Equations (12) and(13) guarantee that the market clearing condition

is satisfied: the measure of agents below h is the same as the measure of firms that hire agents

whose precision is lower than h. We now examine firms’ optimality condition.

Recall thatΥ(h, ωh(h)) is the set of firms that are matched to agent h,

Υ(h, ωh(h)) ≡ {y ∈ Y | Ωh(y, h) = ωh(h)} .

Since Ωh(y, h) = κ
(τ+µ(y))2

= Uh(y, µ(y)), it thus shows that the FOC of firms is satisfied as

Uh(y, µ(y)) = ωh(µ(y)).

We now show that µ(y) is indeed the maximum of U(y, h). Condition (13) suggests that,

for any h′ > µ(y), y ∈ Y (µ(y), ωh(µ(y)) ⊂ Y (h′, ωh(h
′)). That is, the marginal cost of a

hiring a better agent h′ is too high:

Uh(y, h
′) < ωh(h) ∀h′ > µ(y).

That is, U(y, h) decreases with h for h > µ(y). Similarly, hiring an agent with lower precision

is too cheap:

Uh(y, h
′) > ωh(h) ∀h′ < µ(y).

Thus, U(y, h) increases with h for h < µ(y). Hence, the constructed µ(y) solves the firm’s

optimization problem.
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A.1.6. Proof for Proposition 5 and 6

Proof. Let ĥ(κ, τ) denote the solution such that Ω(κ, τ, h) = 0. Since the surplus increases

with scale κ and decreases with transparency τ, it must be the case that ĥτ (κ, τ) ≥ 0

and ĥκ(κ, τ) ≤ 0. By Leibniz’s rule, below shows that the expected return under random

matching must increase in size and decrease in transparency.

RRM
τ (κ, τ) = −

ˆ hH

ĥ(κ,τ)

κ

(τ + h)2
dGA(h)− κ

τ + ĥ(κ, τ)
ĥτ (κ, τ) < 0

RRM
κ (κ, τ) =

ˆ hH

ĥ(κ,τ)

1

(τ + h)
dGA(h)− κ

τ + ĥ(κ, τ)
ĥκ(κ, τ) > 0.

The coverage effect dominates whenever

∂R(y)

∂τ
∝ −{1 + µτ (κ(y), τ(y))} > 0

∂R(y)

∂κ
∝ {τ(y) + µ(y)− κµκ(κ(y), τ(y))} < 0

In one-dimension case, we have µτ (τ) = −dGF (τ)(hU − hL) and similarly, µκ(κ) =

dGF (κ)(hU − hL). Hence, the larger the dispersion, the more likely that the coverage effect

dominates. For two-dimensional case, under nested matching, define

M(µ,m) ≡ νF ({y ∈ Y | Ωh(µ, h) ≤ m}

=

ˆ τH

τL

(ˆ m(τ̃+µ)2

κL

gF (κ̃, τ̃)dκ̃

)
dτ̃ ,

where gF (κ̃,τ̃) denotes the density function. Clearly, Mµ > 0 and Mm > 0. Since µ(κ, τ)

must solve Condition (12), which can be rewritten as

M(µ,
κ

(τ + µ)2
)−

(
µ− hL

∆

)
= 0,
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where ∆ = hH − hL. We thus have,

∂µ(κ, τ)

∂τ
= −

(
−2∂M

∂m
κ

(τ+µ)3

dM
dµ
− 1

∆

)
,
∂µ

∂κ
= −

(
∂M
∂m

1
(τ+µ)2

dM
dµ
− 1

∆

)

Hence, the larger the dispersion ∆, the steeper ∂µ
∂τ

and ∂µ
∂κ
.

A.1.7. Proof for Proposition 7

Proof. For any given h, recall that ωh(h) is the value of m that solves

νF ({y ∈ Y | Ωh(y, h) ≤ m}) = GA(h).

Since RHS increases with m (recall thatMm > 0), thus, a higher GA(h) implies that a higher

m. Hence, if GA
1 (h) ≤ GA

2 (h), then ωh(h) is higher under GA
2 (h).

A.1.8. Proof for Proposition 8

Proof. One can easily see that, if all firms scales are multiplied by some constant λ. Then,

the value of m that solves the equation below is simply also multiplied λ :

νF
(
{y ∈ Y | κ(y)

τ(y) + h
≤ m}

)
= νF

(
{y ∈ Y | λκ(y)

τ(y) + h
≤ λm}

)
= GA(h).

When all firms become more opaque, the marginal value increase for all h, hence, the

value of m that solves the above equation must goes up as well. Hence, a higher ωh(h) ∀h.
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A.1.9. Proof for Proposition 9

Proof. Assume that there exists yL such that κ(yL) ≤ κ(y) and τ(yL) ≥ τ(y) ∀y. That

is, intuitively, yL is the firm that has the lowest marginal value of precision since he has

smallest scale and highest transparency. Let c be the value of the information cost such that

Ω(κ(yL), τ(yL), hL) = 0 and let c̄ be the value such that Ω(κ(yL), τ(yL), h̄) = 0. For any

C ∈ (c, c̄), it must be the case that h∗ > hL; otherwise, the sorting implies that the lowest

firm must hire the least precise agent µ(κ(yL), τ(yL)) = hL but Ω(κ(yL), τ(yL), hL) < 0.

Hence, from condition (a) in Proposition 3, νF (Y0) = G(h∗) > 0. On the other hand, those

firms will hire agent h̄ since Ω(κ, τ, h̄) > Ω(κ(yL), τ(yL), h̄) = 0. Hence, for any C ∈ (c, c̄),

νF (Y ns
0 ) = 0 < νF (Y0).

A.2. Derivation for Contracting Channel

Firms design the contract {α, e} to solve the following constrained optimization problem:

J(y, h) = max
{α,e}

{
k

1 + ψ
(ψ − α)(v̄ + e)

}
subject to

c′(e) = e =
α

1 + ψ

τm + h

τθ + τm + h
(26)

and
α

1 + ψ
(v̄ + e)− c(e) ≥ 0. (27)

Plugging in Equation (26) into the participation constraint, one can see that PC is always

satisfied, assuming v̄ > 0:

α

1 + ψ
(v̄ + e)− c(e) = e

((
τθ + τm + h

τm + h

)
(v̄ + e)− c(e)

e

)
∝
{
v̄ + e−

(
τm + h

τθ + τm + h

)
1

2
e

}
> 0
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Thus, the problem can be rewritten as

J(y, h) = kmax
e

{(
ψ

1 + ψ
− φ(y, h)e

)
(v̄ + e)

}
,

where φ(y, h) ≡ (τθ+τm+h)
τm+h

=
(

τθ
τm+h

+ 1
)
. The parameter φ thus captures of cost of incen-

tivizing effort. FOC of e yields:

ψ

1 + ψ
− 2φ(y, h)e− φ(y, h)v̄ = 0.

One can show that SOC is also satisfied, and thus the solution is given by e∗(φ, ψ) =
ψ

1+ψ
−φv̄

2φ
, which decreases with the incentive costφ.

We assume that (A1) τm +h > τθ and (A2) ψ is large enough so that ψ
1+ψ

> 2v̄ > φv̄ and

thus e∗ > 0.

The complementarity is given by the cross-partial. Clearly, Jkh > 0. Furthermore, observe

that precision h and variable (τθ, τm) affect the value only by changing the cost of incentives

φ. The value of firm decreases with the cost φ, as Jφ = −e∗(v̄ + e∗) < 0, given that e ≥ 0

and v̄ > 0. Specifically, for x ∈ {τθ, τm},

∂2J

∂h∂x
= Jφφ

∂φ

∂h

∂φ

∂x
+ Jφ

∂2φ

∂x∂h

=

(
ψ

1 + ψ

)2
k

2φ3


∂φ

∂h

∂φ

∂x
− φ

2

1− φ2v̄2(
ψ

1+ψ

)2

︸ ︷︷ ︸
(+)


∂2φ

∂x∂h


In general, there are two effects: The first effect is driven by the convexity of value

function, Jφφ = −(v̄ + 2e∗) ∂e
∂φ

=
(

ψ
1+ψ

)2
k

2φ3
> 0. The second effect represents the comple-

mentarity of varied variables on the incentive cost. We focus on parameters under which the

second dominates. Intuitively, since the market precision and agent precision are substitute,

we have ∂2J
∂h∂τm

< 0 if the second effect dominates. On the other hand, if a firm has a less
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volatile project, a higher precision becomes more valuable as it can decrease the incentive

cost more substantially. That is, ∂2J
∂h∂τθ

> 0 when the second effect dominates. Formally, one

can show that the second effect dominates when τm + h is large enough compared to τθ for

both cases:

∂2J

∂h∂τm
∝

1−
(

1 +
τm + h

τθ

)1− φ2v̄2(
ψ

1+ψ

)2


 < 0

and

∂2J

∂h∂τθ
∝

−1 +

(
1 + τm+h

τθ

)
2

1− φ2v̄2(
ψ

1+ψ

)2


 > 0.

Lastly, Jψ = (v̄+e∗)
(1+ψ)2

> 0 and thus Jψh = 1
(1+ψ)2

∂e
∂φ

∂φ
∂h
> 0.

A.3. Setting with Multiple assets

Our results can be easily extended to the environment where the same (deep-pocket) investor

i can invest multiple assets in different markets and submit the demand function dji (p
j) ∈

{0, 1} for firm j. For simplicity, we assume all investors have the same precision and risk

aversion. Specifically, assume that each investor has access to N market and his private

signal for each market (i.e., firm) is given by xji = θj + σxεi, And Ii = (xji , z
j, pj)j=1,...N

that contain the information for each market j. The investor’s wealth is the given by Wi =∑
j∈N d

j
i (

kθj

1+ψ
− pj). Hence, an investor then solves the following maximization problem:

U i = max
dj

EIi

[∑
j∈N

dj(θj − pj)

]
− γI

2
V ar(

∑
j∈N

(dj)2

(
kθj

1 + ψ
− pj

)
|Ii).

= Σj∈N

{
max
dj

EIi
[
dj(θj − pj)

]
− γIk

2(dj)2

2(1 + ψ)2
V ar(θj|Ii).

}

Given that all assets and signals are uncorrelated, one can see that our result remains

unchanged since the optimization for each asset can be solved separately.

48


	Introduction
	Model
	Equilibrium
	Financial Markets
	Matching in the Labor Market 
	Full Characterization under Nested Matching

	Implications
	Asset Pricing Test of Endogenous Information Efficiency and Labor Market Sorting
	Wage Dispersion and the Superstar Effect
	Coverage and Neglected Stocks

	Extensions
	One Agent for Multiple Firms 
	Contracting and Firm Demand for Information Efficiency

	Conclusion
	Appendix
	Omitted Proofs
	Proof for Lemma 1
	Proof for Proposition 1
	Proof for Proposition 2
	Proof for Proposition 3
	Proof for Proposition 4
	Proof for Proposition 5 and 6
	Proof for Proposition 7 
	Proof for Proposition 8
	Proof for Proposition 9

	Derivation for Contracting Channel 
	Setting with Multiple assets 




