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1 Introduction

Research in macroeconomics has shown increasing interest in whether and how heterogeneity across

agents affects aggregate outcomes. In the study of economic development and growth, classic work

on this topic (Banerjee and Newman 1993; Galor and Zeira 1993) focuses on how capital market

imperfections interact with the distribution of wealth to affect development in the long run. More

recent work seeks to model the interplay of these forces with demographic change (Galor and Moav

2002; Hazan and Berdugo 2002; de la Croix and Doepke 2003; Moav 2005). Because the escape from

the Malthusian trap commonly coincides with the demographic transition (Galor 2011), an under-

standing of this economic-demographic interplay may be crucial for theories of current and histor-

ical economic growth. In this context, heterogeneity becomes especially interesting because it may

feed back into the dynamics of population composition, with implications for the pace of aggregate

change. Families with high relative fertility in one generation comprise a larger share of the next.

This paper studies how skill heterogeneity combines with decisions regarding the quality and

quantity of children to influence the path of aggregate fertility decline across generations. Fertility

decline—itself a transformation of social and economic life—plays a potentially important role in

generating economic growth (Ashraf, Weil, and Wilde 2013), and its timing and pace present an

important set of puzzles to economists and other social scientists. As its primary contribution, this

paper focuses on an under-explored demographic mechanism influencing its pace. The core insight

is that the fertility transition occurs unevenly, changing the relative fertility levels and population

shares of different skill groups. Different lineages undergo fertility transitions at different times. As

documented by Bengtsson and Dribe (2014), Clark and Cummins (2015), and Vogl (2016), the history

of differential fertility spans two regimes, Malthusian and modern. In the past, when Malthusian

population dynamics prevailed, higher-skill parents maintained higher levels of both fertility and

child investment. But around the time of the demographic transition, their fertility fell below that

of the lower-skilled, even as they continued to invest more in their children. Existing theoretical

research (Galor and Moav 2002; Galor and Michalopoulous 2012) argues that these changes in dif-

ferential fertility alter the skill composition of the population in the next generation, with important

consequences for economic growth and other forms of aggregate progress.1

1See also Clark (2007). These theories have much in common with the eugenic arguments of Francis Galton, Karl
Pearson, and Ronald Fisher (Kevles 1985).

1



Building on that literature, this paper theoretically explores implications for the path of aggre-

gate fertility and then quantifies these implications using micro-data from 40 developing countries.

The main theoretical result is that forces commonly associated with the fertility transition such

as rising living standards and rising returns to human capital investment induce compositional

shifts that initially promote fertility decline and then restrain it. This result squares well with ev-

idence from the demography literature (Bongaarts 2006, 2008) that following periods of sustained

fertility decline, many populations “stall” at fertility levels well above the replacement level. A

key determinant of these compositional shifts is the reduced-form association between a mother’s

fertility and her daughter’s fertility, which provides a useful estimand for the empirical work. The

theoretical framework predicts that within the Malthusian regime or the modern regime, this associ-

ation is positive, but for the transitional generation between regimes, the association turns negative.

Higher-skill parents bear more children and invest more in their human capital, but when their

children grow up, their greater human capital decreases their own fertility.

Using 82 Demographic and Health Surveys, the paper thus estimates mother-daughter associ-

ations in fertility and their determinants in birth cohorts spanning the second half of the twentieth

century from 40 developing countries. The results indicate that women of these cohorts bear chil-

dren predominantly in the modern regime, when fertility declines with skill. But while more recent

cohorts were also born in the modern regime, earlier cohorts in some countries are part of a tran-

sitional generation born in the Malthusian regime, when fertility rises with skill. Education thus

negatively predicts fertility in all cohorts, but the association of childhood family size with educa-

tion flips from positive the negative. As a result, in more recent cohorts, women with more siblings

bear more children in adulthood; this relationship is significantly weaker in earlier cohorts, and

in some cases, women with more siblings bear fewer children in adulthood. This striking finding

highlights how the fertility transition reverses relative fertility levels across lineages within a single

generation. The lineages with the most children per parent become the lineages with the fewest.

The theoretical framework rationalizes these changes as stemming from either rising productiv-

ity or increases in the return to investment in human capital (equivalently, decreases in the cost of

schooling). Past research (Vogl 2016) finds that changes in differential fertility in sample countries

were more consistent with the latter mechanism, involving the net return to parental investment in

their children’s human capital. In this paper, the role of human capital receives further support from
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analyses of the aggregate predictors of the intergenerational fertility association. Net of country and

cohort fixed effects, GDP per capita, urbanization, and child mortality do not predict the associa-

tion, but rising educational attainment—in the sample generation or in their parents’ generation—is

correlated with a rising intergenerational fertility association.

Yet the paper’s core demographic insight about the aggregate consequences of changing in-

tergenerational fertility associations is independent of the mechanism driving them. Because the

intergenerational fertility association becomes stronger, the population share of high-fertility par-

ents rises as a population approaches low fertility, pushing back against aggregate fertility decline.

To quantify this phenomenon, the paper non-parametrically estimates the difference between the

average number of children among mothers and the average number of grandchildren per daugh-

ter among grandmothers. This gap, which I term the composition effect, captures the extent to which

heterogeneity in fertility across women who grew up in families of different size affects average

fertility.2 Estimating this effect at the cohort level, I find that the composition effect becomes signifi-

cantly stronger as cohort fertility declines; well into the fertility transition, heterogeneity in fertility

across mothers in one generation raises the mean fertility of their daughters by as much as 10 per-

cent, and by 4 percent on average. To link these cohort-level associations to the evolution of total

fertility rates (TFR), the paper also carries out a complementary analysis of period fertility, aggre-

gating over the cross-sectional age distribution in a given year. Here again, the composition effect

on TFR becomes significantly stronger as TFR declines. In populations with TFRs less than 3, dif-

ferential fertility raises TFR by as much as 6 percent, and by 4 percent on average.

These findings demonstrate the role of heterogeneity in driving aggregate fertility dynamics.

In this sense, they relate to the economics literature on how micro-level demographic phenomena

like differential fertility and assortative mating aggregate up to the population or economy (Kremer

1993; Lam 1986; Fernandez and Rogerson 2001; de la Croix and Doepke 2003). That literature fo-

cuses largely on aggregating skill or income across households, whereas this paper shifts attention

toward fertility behavior, yielding results that may help resolve the puzzle of fertility “stalls.”3 The

2The composition effect of differential fertility bears similarities to the stable population theory concept of population
momentum (Keyfitz 1971). Population momentum stems from the gradual evolution of the population age structure
following a change in age-specific fertility rates. Analogously, one can view the composition effect as reflecting the
gradual evolution of lineages’ population shares following a change in their relative fertility rates.

3Indeed, my data contain three of the six countries that Bongaarts (2003) singles out for having “stalls:” Dominican
Republic, Kenya, and Peru. All three exhibit recent upward swings in composition effects on cohort fertility. Composition
effects on TFR are significantly positive in Dominican Republic and Peru but not Kenya.
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paper also expands on classic demographic research relating the average family sizes of women and

children. Preston (1976) points out that because children from larger families are over-represented in

the population, the average family size of children (i.e., sibship size) is generally larger than the av-

erage family size of women (i.e., fertility). In a hypothesis recently confirmed by Lam and Marteleto

(2014), Preston argues that this difference shifts slowly during the demographic transition, so that

average sibship size falls more slowly than average fertility. Just as in this paper, differential fertil-

ity reweights the population to slow the pace of aggregate demographic change as experienced by

the next generation. Both lines of research highlight the value of considering how the cross-section

interacts with the aggregate time series.

Additionally, the results add to a large body of research, spanning the social sciences, on inter-

generational associations in a range of outcomes, behaviors, and traits. Especially relevant is the

recent economics literature that studies how intergenerational associations vary across space and

over time. Much of this literature focuses on intergenerational earnings mobility, investigating its

variation both across countries (Björklund and Jantti 1997; Solon 1999; Corak 2013) and across sub-

national areas within a country (Chetty et al. 2014). International comparisons are also available

for intergenerational associations in of other outcomes, including educational attainment (Hertz et

al. 2007; Chevalier, Denny, and McMahon 2009) and health (Bhalotra and Rawlings 2013). In the

field of demography, interest in the association of mothers’ and daughters’ fertility dates back over

a century, to one of the earliest applications of the correlation coefficient (Pearson et al. 1899).4 Sum-

marizing and extending this literature, Murphy (1999, 2012) finds that the association strengthened

recently in rich countries and that it is weaker in poor than in rich countries. This paper further

extends Murphy’s analysis to shed light on changes over time within many countries, linking it to

a broader theory of aggregate demographic change.5

More broadly, the paper contributes to the economics literature on the demographic transition

and its relation to economic development (Galor 2011; de la Croix 2013). In both its theoretical

and empirical facets, this work has focused mostly on aggregate demographic and economic vari-

ables, with a small subset of the theoretical literature exploring the role of within-population hetero-

4Seminal contributions include Huestis and Maxwell (1932), Duncan et al. (1965), Ben-Porath (1975), Wise and Condie
(1975), Anderton et al. (1987), Kahn and Anderson (1992), and Axinn et al. (1994).

5Two recent contributions to biodemography (Murphy and Wang 2003; Kolk, Cownden, and Enquist 2014) study how
intergenerational fertility associations affect the time series of aggregate fertility rates, but only in the context of highly
stylized micro-simulation models.

4



geneity. While research in development economics has given more attention to within-population

heterogeneity (Schultz 1997), its primary goal has been to understand the determinants of fertil-

ity choice in poor countries, not to shed light on how heterogeneity affects the pace of aggregate

change. By analyzing heterogeneity and its consequences for many countries over half a century,

this paper seeks to improve the empirical basis for theories that link population dynamics with

aggregate change.

2 Heterogeneity and Aggregation in a Quality-Quantity Model

To shed light on how intergenerational shifts in population composition feed back into the process

of fertility decline, this section studies a simple model in the tradition of the theoretical literature

on demography and long-run economic growth. First, it derives how associations in the fertility

behavior of parents and children aggregate up to the population level, irrespective of the specific

behavioral model underlying these associations. Next, it analyzes a model in which parents of

heterogeneous skill choose the quality and quantity of their children, using the earlier aggregation

results to explore the evolving role of heterogeneity over the fertility transition. Finally, it broadens

the discussion to consider whether the empirical implications change if factors outside the model

also contribute to parent-child fertility associations.

2.1 Statistical Preliminaries

Let nit denote the fertility of parent i from generation t, with mean µt and variance σ2
t . Let ni,t+1

denote the fertility (in adulthood) of each of the parent’s children, such that if the parent has more

than one child, then the i, t + 1 subscript represents more than one member of generation t + 1.

Because the results below considers only expectations and conditional expectations, one can assume

that siblings have the same fertility without loss of generality, so this slight abuse of notation is

inconsequential. In fact, the model below exhibits no intra-family heterogeneity, but the results in

this subsection are general and do not only apply to the model. Given the notation, parent i from

generation t has nitni,t+1 grandchildren.

The paper is interested in how the reweighting of the population due to differential fertility in

generation t affects average fertility in generation t + 1. To quantify this phenomenon:
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Definition 1. The composition effect of differential fertility in generation t on average fertility in gen-

eration t+ 1, denoted ∆t+1, equals the average fertility of generation t+ 1 minus the average number

of grandchildren per child in generation t.

Using the notation above, one can express the composition effect as:

∆t+1 = Et+1 [ni,t+1]− Et [E (ni,t+1|nit)]

= Et

[(
nit
µt

)
E (ni,t+1|nit)

]
− Et

[
E (ni,t+1|nit)

]
= Et

[(
nit
µt
− 1
)

E (ni,t+1|nit)
] (1)

where Et+1 [·] is an expectation evaluated under the distribution of ni,t+1; Et [·] is an expectation

evaluated under the distribution of nt; and E (ni,t+1|nit) is the conditional expectation of a child’s

fertility given her parent’s fertility, also known as her childhood family size or sibship size. In

the first term of the second line, the distribution of nit is reweighted by the factor nit
µt

to give more

weight to members of generation t + 1 from larger sibships, reflecting the changing composition

of the population from t to t + 1. This factor gives more weight to members of generation t + 1

from larger sibships. If the conditional expectation E (ni,t+1|nit) is an increasing function, then the

added weight given to larger families raises average fertility, so that ∆t+1 > 0. In this case, fertility

heterogeneity in generation t raises average fertility in generation t + 1.

Both the model and the empirical work use a linear projection to summarize the conditional

expectation function E (ni,t+1|nit).

Definition 2. The intergenerational fertility association, denoted βt+1, is the coefficient from the linear

projection of ni,t+1 on nit.

This association has received much attention in the literature on the intergenerational transmission

of behaviors, outcomes, and traits. Here, it is particularly convenient because it can simplify the

formula for the composition effect. Because expression (3) represents the composition effect for a

conditional expectation of any form, computation may prove complicated. With a linear conditional

expectation, however, the expression reduces.

Lemma 1. If E (ni,t+1|nit) is linear, then ∆t+1 = βt+1
σ2

t
µt

.

The Theory Appendix contains all proofs. This result will prove useful for both the theory and

the empirical work. ∆t+1 increases in βt+1 and σ2
t , while decreasing in µt. In other words, the
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composition effect of differential fertility is more positive when the intergenerational association is

stronger or when the variance of childhood family size is larger relative to its mean. The role of

the variance-to-mean ratio σ2
t /µt, also known as the index of dispersion, in linking the cross-section

with aggregate outcomes is not unique to the composition effect. Exactly the same ratio appears in

Preston’s (1976) formula for the difference between the average family size of children and the aver-

age family size of women. Both there and here, it implies that the aggregate implications differential

fertility are larger when fertility is more dispersed relative to its mean.

Lemma 1 also provides a helpful decomposition of the composition effect in the linear case,

which the empirical work will implement. One component measures similarity in the reproductive

behavior of parents and children, while the other measures the relative spread of the fertility distri-

bution among parents. Because the second component is always positive, the composition effect is

negative promoting fertility decline only when the intergenerational association is negative.

2.2 Optimization Setup

The model setup closely follows the theoretical literature on differential fertility and economic

growth.6 Parents maximize a log-linear utility function over their own consumption cit, the number

of children nit, and human capital per child hi,t+1:

U (cit, nit, hi,t+1) = α log (cit) + (1− α) log (nithi,t+1) (2)

α ∈ (0, 1) indexes the weight the parents place on their own consumption relative to the combined

quantity and quality of children.

To produce child quality, or human capital, parents have access to a human capital production

function that is isoelastic with respect to total inputs xit: hi,t+1 = xη
it, with η ∈ (0, 1). Each children

is born with an input endowment θ > 0 (reflecting basic human capacity or free public school),

which parents can augment by purchasing additional education eit at price p. The endowed and

purchased inputs are assumed to be perfectly substitutable, so that xit = θ + eit. One can view p as

the inverse of the return to educational expenditure, so that an increase in this return is reflected in

falling p. The presence of the input endowment implies that low-skill parents will choose a corner

6See Galor and Moav (2002), Hazan and Berdugo (2002), de la Croix and Doepke (2003, 2005, 2008), and Moav (2005).
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solution in which fertility rises with their human capital (de la Croix 2013; Vogl 2016), and also that

the elasticity of human capital with respect to education is positive, which allows fertility to decline

with parental human capital in the interior solution (Jones, Schoonbroodt, and Tertilt 2010). Parents

themselves are endowed with human capital hit > 0, drawn from an distribution Ft.

The aggregate production function is Yt = AHt, where A > 0 is the exogenous level of technol-

ogy and Ht is the aggregate quantity of human capital in generation t, so the wage rate per unit of

human capital is A. Notably, the aggregate and human capital productions function have one input

each and are fixed over time. A fuller version of the model could incorporate spillovers, scale effects,

and additional inputs, but this theory section seeks to shed light on the compositional mechanism

and its empirical implications, not to provide a full theory of the growth process.

Each child costs τ ∈ (0, 1) units of time and κ > 0 goods, leading to the budget constraint:

cit + κnit + peitnit ≤ Ahit (1− τnit) (3)

Parents spend their full income Ahit on their own consumption (cit), the quantity costs of children

(κnit and τAhitnt), and the quality costs of children (peitnit).

2.3 Optimization Results

The first order conditions imply that parents set education at:

eit = max
{

0,
1

1− η

(
η

p
(Ahitτ + κ)− θ

)}
(4)

Education starts at a corner solution of zero for low-skill parents and then rises linearly with parental

skill in the interior solution. Parents spend on education if and only if their human capital exceeds

h̃ ≡ 1
τA

(
pθ
η − κ

)
. This threshold also plays an important role in fertility choice:

nit =


(1−α)Ahit
κ+τAhit

if hit ≤ h̃

(1−α)(1−η)Ahit
κ−pθ+τAhit

if hit > h̃
(5)

From inspection of equation (5), one can see that an additional assumption is necessary for unam-

biguous comparative statics with respect to parental skill.
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Assumption 1. The value of the input endowment is strictly larger than the goods cost: pθ > κ.

To obtain its value, the input endowment θ is scaled by the price of education p. This assumption

guarantees that h̃ > 0, so parents with very low skill choose a corner solution, and also that the

substitution effect of higher parental skill dominates its income effect in the interior solution.

Lemma 2. Fertility nit increases with parental human capital hit over the interval (o, h̃] and decreases with

hit over the interval (h̃, ∞).

Under Assumption 1, the model thus predicts a hump-shaped relationship between parental skill

and fertility. Below h̃, parents choose a corner solution for human capital expenditure, so the in-

come effect of higher skill dominates the substitution effect, and fertility rises with skill. Above h̃,

the substitution effect dominates, so fertility declines with skill.7 In data from 20 diverse develop-

ing countries, Vogl (2016) documents exactly this hump-shaped pattern, such that the least-skilled

exhibit lower fertility in the early stages of development and higher fertility in the later stages.

The corner solution also generates an s-shaped relationship between the human capital of par-

ents and children. Substitution of equation (4) into the human capital production function leads to

a first-order, non-linear dynamical system hi,t+1 = φ(hit), where:

φ (hit) ≡


θη if hit ≤ h̃{(

η
1−η

) (
κ+τAhit

p − θ
)}η

if hit > h̃
(6)

Equation (6) implies several useful properties.

Lemma 3. The dynamical system φ(·) is continuous, constant over the interval (o, h̃], and increasing and

concave over the interval (h̃, ∞), with limhit→∞ φ’ (hit) = 0.

These properties are key to identifying steady states of the dynamical system—with constant levels

of human capital (and therefore fertility) across generations—which help shed light on the model’s

implications for intergenerational associations and composition effects over the fertility transition.

In particular, φ(·) may have multiple steady states, generating heterogeneity that is sufficiently

tractable for the study of βt and ∆t.

7If pθ ≤ κ, the declining portion of the hump disappears, so that fertility everywhere increases with parental skill.
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Proposition 1. The dynamical system φ(·) is characterized by at least one and at most three steady state

levels of human capital and fertility, of which at least one and at most two are stable.

The dynamical system is guaranteed to have a steady state and may have up to three, two of which

have positive human capital expenditure and one of which has none. Of these three steady states,

those with the lowest and highest levels of human capital are stable, while the intermediate one

(which exists only if one of the others also exist) is unstable. For an environment with three steady

states, Figure 1 graphs the dynamical system together with the relationship between human capital

and fertility. Steady states ss1, ss2, and ss3 occur when φ(·) intersects the 45-degree line. ss1 and

ss3 are stable because φ(·) crosses the 45-degree line from above, whereas ss2 is unstable because it

crosses from below. In this case, the fertility level associated with ss1 is higher than that associated

with ss3, but other parameter values could lead to the opposite.

A more realistic version of the model could have idiosyncratic shocks to human capital, possibly

leading to a steady state distribution of lineages, which contrasts the current model’s indefinitely

expanding mass points. In the presence of multiple lineage-specific steady states, different lineages

expand at different rates, precluding a steady-state distribution but (perhaps attractively) implying

long-run evolution, as in Galor and Moav (2002) and Galor and Michalopoulos (2012). The remain-

der of the section focuses on the two stable steady states of an environment with three steady states.

Definition 3. A fertility regime is a distribution of fertility in which all lineages are in stable steady

states. A fertility regime is non-degenerate if fertility is heterogeneous within it.

The history of differential fertility over the course of economic development suggests two types of

fertility regimes: one in which the higher-skill steady state has higher fertility, and one in which it

has lower. I refer to the first type of regime as “Malthusian” and the second as “modern.” In Figure

1, a population distributed across ss1 and ss3 would be in a modern fertility regime.

In this model, two forces are particularly natural for generating transitions between Malthusian

and modern regimes: rising productivity and a rising return to human capital expenditure, as rep-

resented by a decrease in the price of education, p. Rising productivity pushes up the wage return

to human capital, which increases fertility in the low-skill steady state, while decreasing fertility

in the high-skill steady state. Falling p decreases the fertility of the high skilled, while leaving the

low-skill steady state unchanged.
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Proposition 2. Consider a population initially in a non-degenerate fertility regime that experiences a one-

time, permanent increase in A or decrease in p. If the population attains a new non-degenerate fertility

regime, fertility in both the transition and the new regime is weakly higher among low human capital parents

and strictly lower among high human capital parents.

Consequently, if the population starts in a Malthusian regime, either force pushes it toward a mod-

ern regime. Each mechanism has a different implication for average fertility, however. A decline

in p reduces average fertility in the population, while an increase in A has an ambiguous effect.

In aggregate data on the demographic transition, average fertility typically first rises and then falls

(Dyson and Murphy 1985), so both mechanisms are consistent with features of the historical fertility

transition. The mechanisms directly relate to theories that place rising income and human capital at

the center of the transition (Galor 2011), but they also capture theories involving new social norms

that favor child investment (Caldwell 1981).

The model has omitted child mortality, which demographic transition theory views as a key

driver of fertility change. Because child mortality occurs before substantial human capital invest-

ment, the model can capture it by dividing the quantity costs of children by the survival rate. If m

is the child mortality rate, then the quantity costs become κ
1−m and τ

1−m . In this setup, a decrease in

child mortality raises (surviving) fertility in both steady states, with ambiguous effects on fertility

differentials. The prediction that net fertility rises with survival is common in fertility models in

which a share m of children die deterministically, although Doepke (2004) finds that it also holds in

appropriately parameterized models with stochastic child mortality and sequential fertility choice.

Thus, in most macroeconomic models of the demographic transition, child mortality does not play

a major role in net fertility change.

We are now equipped to consider how the intergenerational fertility association and the compo-

sition effect evolve over the transition from a Malthusian regime to a modern regime.

Proposition 3. In any non-degenerate fertility regime and any transition between non-degenerate regimes,

βt and ∆t are strictly positive, except during a transition from a Malthusian regime to a modern regime,

during which they are weakly negative for a single generation.

Because parents’ human capital is positively associated with children’s human capital, fertility is

also positively associated in all pairs of generations except one: the generations on either side of
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a flip in fertility differentials by skill. In fact, because human capital and fertility are constant in a

steady state, βt = 1 within a fertility regime. This implication is quantitatively unrealistic but could

be weakened by introducing stochastic shocks to human capital or income. As such, the model’s

predictions should be viewed as qualitative.

For population dynamics, the most important implication of Proposition 3 is that the compo-

sition effect is negative for a generation that experiences a reversal of differential fertility. If the

reversal is contemporaneous with the onset of aggregate fertility decline, then the negative compo-

sition effect initially speeds the decline. In subsequent generations, however, the composition effect

turns positive again, pushing back against aggregate fertility decline.

2.4 Empirical Implications

The most general empirical prediction is that when the fertility differential between high- and low-

skill parents flips, the intergenerational fertility association and the composition effect turn negative

for a generation. However, the model highlights only one source of the intergenerational associa-

tion, human capital persistence. Other possible sources include the genetic heritability of fecundity

and the cultural determinants of fertility preferences or behavior.8 Behavioral genetics research

finds some genetic heritability in markers of fecundity—including menstrual regularity and the

ages at menarche and menopause (van Akker et al. 1987; Treloar and Martin 1990)—which may

lead to the heritability of fertility. Meanwhile, a large literature in the social sciences highlights the

role of culture in the intergenerational transmission of traits and behaviors. Sociologists (Duncan et

al. 1965) have long emphasized this explanation for intergenerational fertility associations, positing

that growing up in a large family shapes the preference for a large family of one’s own.

To combine the model’s prediction with these alternative sources of the intergenerational fertility

association, one can express the association as:

dE [nt+1|nt]

dnt︸ ︷︷ ︸
overall association

=
∂E [nt+1|nt, ht+1]

∂nt︸ ︷︷ ︸
net transmission

+
∂E [nt+1|nt, ht+1]

∂ht︸ ︷︷ ︸
skill-fertility

× dE [ht+1|nt]

dnt︸ ︷︷ ︸
sibsize-skill

(7)

where the i subscripts are suppressed for simplicity. If the conditional expectation is linear, then

8Intergenerational associations in other socioeconomic outcomes, such as income or health, may also play a role.
Because these outcomes are closely linked to human capital, they are broadly related to the model.
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βt =
dE[nt+1|nt]

dnt
. Ideally, one could derive structural expressions for these partial derivatives directly

from the model, as in Becker and Tomes (1979), but the model’s non-monotonicity implies that only

reduced-form interpretations are possible.

Equation (7) expands the overall fertility association into sub-components using the chain rule.

These subcomponents include any intergenerational transmission of fertility net of the human cap-

ital mechanism, ∂E[nt+1|nt,ht+1]
∂nt

; the relationship between skill and fertility, ∂E[nt+1|nt,ht+1]
∂ht

; and the re-

lationship between childhood family size and skill, ∂E[ht+1|nt]
∂nt

. The first sub-component captures

persistence in the determinants of fertility that are not correlated with education, perhaps genetics

or culture. The model focuses on the second and third sub-components, which change in a stag-

gered fashion during the demographic transition. In a Malthusian regime, higher-skill parents bear

more children, so ∂E[nt+1|nt,ht+1]
∂nt

> 0, and women from larger sibships obtain more education, so
dE[ht+1|nt]

dnt
> 0. In a modern regime, both patterns are flipped, so ∂E[nt+1|nt,ht+1]

∂nt
< 0 and dE[ht+1|nt]

dnt
< 0.

In the transition between these two regimes, a single generation experiences long and auxiliary

parameters of opposite sign: ∂E[nt+1|nt,ht+1]
∂nt

< 0 and dE[ht+1|nt]
dnt

> 0. If the net intergenerational

transmission component is small or varies little over time, then the intergenerational association
dE[nt+1|nt]

dnt
follows the trajectory predicted by the model: large within the Malthusian and modern

regimes, small during the transition between them. However, in the presence of net intergener-

ational transmission, dE[nt+1|nt]
dnt

may not turn negative in the transition. Figure 2 represents these

changes schematically by plotting dE[nt+1|nt]
dnt

against ∂E[ht+1|nt]
∂nt

across the different fertility regimes.

Given Lemma 1, equation (7) has similar implications for the composition effect. The composi-

tion effect will be positive within the Malthusian and modern regimes but will shrink and possibly

turn negative during the transition. If it does turn negative during the transition, then it will ini-

tially speed the process of fertility decline, as predicted by the model. Otherwise, fertility will never

decline faster than it would in the absence of population reweighting, but in either case, the subse-

quent growth of the composition effect will slow the process of fertility decline.

The paper will argue that in the postwar era, developing countries moved from the transition

generation to the modern regime. The results will show that the intergenerational association and

the composition effect grew as the relationship between education and sibship size flipped from

positive to negative. Because this reversal coincided with fertility decline (Vogl 2016), one can expect

the intergenerational association and the composition effect to grow as aggregate fertility falls.
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3 Data on the Fertility of Mothers and Daughters

To link mothers’ and daughters’ fertilities, I draw on data from the Demographic and Health Sur-

veys, a collection of nationally-representative samples of women of childbearing age (generally

15-49). Two survey modules are key for the analysis. The fertility history module asks women to

list all of their own children ever born, while the sibling history module asks women to list all of

their siblings ever born to their mothers, both with details like birthdates and survival. Combined,

these two lists allow one to retrospectively track fertility behavior in a lineage over two generations.

Although the design of the DHS allows for comparisons across surveys and countries, ques-

tionnaires and sampling methods occasionally differ. Surveys must meet two criteria for inclusion

in the study sample. First, they must sample all women, not only ever-married women, to avoid

sample selection on an outcome closely related to fertility.9 Second, they must include information

on the survival of both offspring and siblings, to allow analysis of both ever-born and surviving

fertility. Based on these criteria, the paper uses 82 surveys in 40 African, Asian, Caribbean, Latin

American, and Pacific countries (see Appendix Table 1 for a list of countries and survey years).10

Together, these surveys provide data on sibship size and fertility for 966,498 women aged 15-49.

As its main unit of analysis, the analysis focuses on birth cohorts, estimating intergenerational

associations and composition effects among women born in the same country and the same 5-year

interval. Because this strategy generates parameter estimates for many cells per country, it allows a

rich analysis of changes in associations and composition effects within a country over time. Notably,

this approach abstracts from the model, which considers generations, or all women born to the same

group of mothers. Each cohort statistic characterizes a hypothetical generation of families whose size

is distributed according to the cross-sectional distribution of sibship size in the birth cohort.

Analyses of both the intergenerational association and the composition effect involve two steps:

first, estimating parameters for each country-cohort cell, and second, documenting patterns across

(rather than within) cells. In the first step, I use sampling weights provided by the DHS but rescale

them to maximize efficiency with multiple surveys per country. If a country-cohort cell includes

data from surveys k = 1, · · · , K, each with Nk observations, then the weights from survey k are

9The one exception to this rule is the 1996 Nepal DHS, which surveyed only ever-married women. Because 98 percent
of Nepalese women over 30 in that year were ever-married, I include data from that survey on women over 30.

10Two additional surveys, the 1989 Bolivia DHS and the 1999 Nigeria DHS, meet the sample inclusion criteria but are
omitted due to irregularities in the sibling history data.
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rescaled to sum to Nk
∑k Nk

. This approach weights surveys in proportion to their contribution to the

country-cohort sample. In the second step, analyses are unweighted to ensure representativeness.

For precision, I drop cells smaller than 250 women, the 5th percentile of the cell size distribution.

In an extension to the cohort analysis, I quantify implications for the total fertility rate (TFR), a

period measure of fertility that reflects the expected number of children for a woman who experi-

ences current age-specific fertility rates throughout her lifetime. The unit of analysis is a country-

year, so each survey generates a single estimate, and no weight rescaling is necessary.

Many parts of the analysis focus on relationships between estimated parameters, which are

based on the same underlying sample. For conservative statistical inference, I bootstrap all such

analyses in a two-step procedure. The first step randomly draws primary sampling units within

each survey, while the second step randomly draws countries.11 I do not otherwise correct for es-

timation error in the cell-level parameter estimates; earlier work on the same dataset (Vogl 2016)

found that Fuller’s (1987) error correction procedure did not meaningfully change the results.

4 Intergenerational Fertility Associations

This section estimates intergenerational fertility associations at the country-cohort level and studies

how they evolve. For completeness, it reports results for both ever-born and surviving fertility.

Ever-born fertility is more relevant for intergenerational associations in fertility behavior, whereas

surviving fertility is more relevant for intergenerational associations in fertility outcomes. Either

measure of fertility may be relevant for the demand for children, depending on parents’ ability to

target the number of surviving offspring subject to mortality risk.12

4.1 Methods

I estimate intergenerational associations using a linear model relating a woman’s fertility outcome

at a specific age to her sibship size. For woman i from country c and 5-year birth cohort t:

ya
ict = αa

ct + βa
ctsict + ua

ict (8)

11Unless otherwise noted, I compute analytical standard errors (clustered by primary sampling unit) for the cell-level
statistics themselves. Only analyses relating estimated cell-level parameters are bootstrapped.

12From the model’s perspective (and an evolutionary perspective), only surviving fertility is relevant. Surviving fertil-
ity is also attractive because it is less subject to recall bias, or the forgetting of deceased children.

15



where ya
ict is cumulative fertility at age a, and sict is sibship size. βa

ct is country-cohort ct’s intergen-

erational fertility association at age a, capturing all mechanisms linking a mother’s fertility with her

daughter’s. It is not a causal effect, and its sources are not necessarily limited to the mechanism

specified in the model.

The choice of a poses a methodological tradeoff. The DHS interviews most respondents midway

through their childbearing years, so the analysis must consider cumulative fertility before the end of

reproductive age. An earlier a allows for a larger sample and coverage of later birth cohorts, while

a later a covers more of the reproductive lifespan. To deal with this trade-off, I follow research

on intergenerational income mobility, where similar issues arise (Solon and Haider 2006).13 In a

recent analysis, Chetty et al. (2014) choose the age at which the intergenerational income association

becomes stable for the rest of the lifecycle. If fertility gaps are concentrated early in the reproductive

lifespan, then one can take a similar approach to analyzing intergenerational fertility associations.

Along these lines, I choose the earliest age a for which βa
ct approximates the completed fertility

transmission coefficient. To find this age, I draw on the full fertility histories of women at least 45

years old to estimate βa
ct at ages 20, 25, 30, 35, 40, and 45. I then regress the cohort’s age-45 associa-

tion on its association at an earlier age.14 Appendix Figure 1 plots the results by age, indicating that

intergenerational associations at earlier ages are informative about the association for completed

fertility (as measured at age 45). From age 25 on, all estimated slopes are significantly different from

zero and extremely close to 1 for ever-born and surviving fertility. At age 20, however, the estimated

slope for surviving fertility is substantially (albeit insignificantly) below 1 and also not significantly

different from 0. Given these results, the analysis focuses on cumulative fertility at age 25.

Motivated by equation (7), one can decompose the intergenerational fertility association into

its driving forces: (1) the association of sibship size and fertility, conditional on human capital; (2)

the association of human capital and fertility, conditional on sibship size; and (3) the association of

sibship size and human capital. Two equations summarize these three partial derivatives. The first

expresses fertility outcomes as a function of sibship size and education:

ya
ict = Aa

ct + Ba
ctsict + Γa

cteduict + Ua
ict (9)

13Since age-earnings profiles are steeper for individuals with high lifetime earnings, early measurement of the child’s
income can bias estimates of the parent-child association downward. This lifecycle bias is analogous to the problem that
arises here, except that the dependent variable is a flow (income) rather than a stock (cumulative fertility).

14A limitation of this approach is that it overlooks future changes in the age profile of fertility.
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while the second expresses education as a function of sibship size:

eduict = ψct + ϕctsict + vict (10)

In the language Goldberger (1991) uses to characterize omitted variables bias, equation (8) is a

“short” regression, while equations (9) and (10) are the corresponding “long” and “auxiliary” re-

gressions. Ba
ct is the net intergenerational transmission term discussed in Section 2.4, accounting for

factors outside the theoretical framework. Γa
ct is the skill-fertility association, representing differen-

tial fertility in the current generation, while ϕct is the sibsize-skill association, reflecting differential

fertility in the last generation. By equation (7), the cohort coefficients are related by the identity

βa
ct = Ba

ct + ϕctΓa
ct, which confirms that βa

ct is smaller when Γa
ct and ϕct are of opposite sign.

4.2 Results

The analysis of intergenerational fertility associations proceeds in six steps. To build intuition for

the full-sample results, I first present a case study of Bolivia, which has data covering birth cohorts

from the mid-1940s to the mid-1980s, a period in which the country underwent a marked reversal

of differential fertility. Next, I describe the distribution of parameter estimates in the full sample,

followed by an exploration of how they change across cohorts, how they relate to each other, and

how they relate to other demographic processes like marriage. Finally, I regress the fertility asso-

ciations on economic aggregates in early life and early adulthood to understand the drivers of the

observed changes.

Bolivian Case Study The case study of Bolivia appears in Table 1. To reduce the number of results

to report, the case study uses decadal birth cohorts instead of the 5-year cohorts of the main analysis.

For each decade of birth from 1945-54 to 1975-83 (data are unavailable for 1984), the table estimates

the four slope parameters of equations (8)-(10) using age-25 ever-born fertility. Panel A reports

estimates of the overall intergenerational fertility association, βa
ct, which is 0 in the 1945-54 cohort

but steadily grows to a statistically significant 0.08 by the 1975-83 cohort. That is to say, among

Bolivian women born just after World War II, childhood family size has no relation to adult fertility.

But among their counterparts born three decades later, each additional sibling is associated with an

additional one-twelfth of a child by age 25.
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Panel B reports estimates of the “long” regression, showing that net of education, the intergen-

erational transmission of fertility starts positive at 0.01 and then grows to roughly 0.03 in later birth

cohorts. Net of sibship size, education has an negative association with fertility across all cohorts,

although the association is most negative for the most recent cohorts. Interpreted through the theo-

retical framework of Section 2, fertility patterns in all cohorts are consistent with a modern regime.

However, in Panel C’s estimates of the “auxiliary” regression, the association of sibship size and ed-

ucation flips from positive to negative, consistent with a shift from Malthusian to modern fertility

patterns in the parents’ generation. Taken together, staggered shifts in the skill-fertility relationship

across generations account for over half of the growth in the intergenerational fertility association.

Distribution of Parameter Estimates The full-sample analysis applies these same methods to all

5-year birth cohorts, for both ever-born and surviving fertility. Table 2 summarizes the parameter

estimates. Column (1) presents the mean and standard deviation of the parameter estimate across

cells. The remaining columns summarize the distributions of the associated t-statistics, based on

analytic standard errors clustered at the primary sampling unit level.

Two patterns immediately emerge for intergenerational associations in both ever-born and sur-

viving fertility. First, the central tendencies of βa
ct and Ba

ct are close to zero, and the supports of

their distributions contain both positive and negative values. Second, the dispersion of Ba
ct—from

the “long” regression, which controls for education—is smaller than that of βa
ct from the “short”

regression. Heterogeneity in the role of education thus explains part of the observed heterogeneity

in intergenerational fertility association. To shed additional light on this heterogeneity, Appendix

Figure 2 plots kernel densities of the estimated βa
ct and Ba

ct across country-cohort cells, revealing

that the distribution of Ba
ct has shorter right and left tails than the distribution of βa

ct. This finding

suggests that education amplifies both positive and negative intergenerational fertility associations.

One interpretation is that intergenerational fertility associations are small everywhere, so that

the distributions observed in Figure 2 are the result of sampling variability. However, the distribu-

tions of t-statistics in Table 2 do not fit such an interpretation. At the 5 percent significance level, the

ever-born fertility association is significantly positive in 29 percent of cells and significantly nega-

tive in 2 percent; the surviving fertility association is significantly positive in 16 percent of cells and

significantly negative in 9 percent. As a result, the distribution of the surviving fertility associations
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contains too many positive values and too many negative values to be explained by randomness.

The amplifying role of education has two potential sources: heterogeneity in the association

of education with fertility (Γct) and heterogeneity in the association of sibship size with education

(ϕct). Theory predicts staggered reversals in these associations. The skill-fertility association flips

first, inducing a flip in the next generation’s sibsize-skill association. For insight into which of

these sources is at play, Table 2 also reports distributions of estimates and t-statistics for Γct and

ϕct. The reversal of the skill-fertility association had already occurred before the sample cohorts

began childbearing, with 90 percent of the estimates significantly negative for ever-born fertility

and 80 percent for surviving fertility. In contrast, the distribution of the sibsize-skill association has

significant mass in both tails, suggesting that some cohorts were born when Malthusian fertility

patterns prevailed, so that children with higher skill parents had more siblings and obtained more

education. For ever-born fertility, 40 percent of ϕct estimates are significantly positive and 26 percent

negative. For surviving fertility, 56 percent are positive and 16 percent negative.

Cohort Trends in Parameter Estimates The preceding evidence suggests that most women in the

sample bore children during the modern era, but some were born during the Malthusian era. One

can shed more light on this issue by considering how the parameters change on average across

successive cohorts. To characterize these trends, I regress each estimated parameter on country fixed

effects and cohort fixed effects, plotting the cohort effects in Figure 3. I set the omitted category to

the the only cohort for which data are available for all countries, 1965-9, and then add the mean

parameter value to the cohort effects, so the figure provides information about average levels and

changes. The horizontal line reflects the 1965-9 mean; the point estimates and 95 percent confidence

intervals are for differences relative to this line.

Starting from the right-hand side of Figure 3, one can see clear evidence of the transition from

Malthusian to modern regimes. For both ever-born and surviving sibship size, the sibsize-skill as-

sociation is positive on average for the 1965-9 cohort, significantly more positive for earlier cohorts,

and significantly more negative for later cohorts. Moving forward one generation, the skill-fertility

association is negative on average for the 1965-9 cohort, but similar to the sibsize-skill association,

it is significantly more positive for earlier cohorts, and significantly more negative for later cohorts.

Meanwhile, the net transmission coefficient averages near zero with little change.
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The intergenerational association equals the net transmission coefficient plus the product of

the two skill-related associations. Since the transmission coefficient is constant while the the skill-

related associations become more negative across successive cohorts, intergenerational fertility as-

sociations should become more positive. Indeed, the left-most panels of Figure 3 indicate that inter-

generational associations for both ever-born and surviving fertility have become significantly more

positive since the 1965-9 cohort. Magnitudes are not large: the intergenerational association av-

erages 0.02-0.03 for the 1980-4 cohort, implying that a woman with 10 siblings can expect to have

1
10 more children by age 25 than a woman with no siblings. Nevertheless, the data show a clear

strengthening of the association, consistent with the theory.

Relationship Between Parameter Estimates While Figure 3 provides evidence of average changes

across cohorts, one can glean further evidence of the link between intergenerational fertility associ-

ations and skill-fertility associations by directly relating them. Figure 4 carries out such an analysis.

On the left-hand side, the figure draws scatterplots and local linear regressions (with confidence

intervals based on bootstrapped pointwise standard errors) linking the intergenerational fertility

association to the sibsize-skill association. Both the scatterplot and non-parametric fit reveal neg-

ative relationships for both ever-born and surviving fertility, with the scatterplot also suggesting

regional variation. Latin American and Caribbean (LAC) cohorts have more negative sibsize-skill

associations and more positive intergenerational fertility associations. In the starkest cases (recent

cohorts in the Andes), a women with 10 siblings can expect to have 5 years less education and 1 more

child than a woman with no siblings. At the other end of the spectrum (older cohorts in Africa), the

woman with 10 siblings would expect to have 3 years less education and 1
3 fewer children than her

counterpart without siblings. The intercepts of the local linear regressions are significantly positive

at the 5 percent level, reflecting a net transmission coefficient Ba
ct that is on average greater than

zero. As reported in the top-right corners of the figures, ordinary least squares (OLS) regressions on

these scatterplots lead to significantly negative slopes of roughly -0.1 (p < 0.01) for both measures

of fertility. Relative to the standard deviations in Table 2, these slopes imply that variation in the

estimated sibsize-education association explains roughly one-third of the variation in the estimated

intergenerational fertility association.

Despite the apparent importance of regional variation, within-country variation produces simi-
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lar results. The right-hand side of Figure 3 plots residuals after regressing the estimated parameters

on country and cohort fixed effects. A negative slope obtains again, suggesting that as the sibsize-

skill association turns more negative across successive cohorts within a country, the intergenera-

tional fertility association turns more positive. The LAC region reaches furthest into the southeast

and northwest quadrants, implying that the simultaneous drop in the sibsize-skill association and

rise in the intergenerational fertility association were strongest in that region. As reported in the

top-right corners, OLS estimates of the slopes are very similar with and without fixed effects, and

they remain significant at the 1 percent level.

Role of Marriage and Fertility Onset The fact that intergenerational fertility associations mea-

sured early in the reproductive lifecycle strongly predict associations measured late in the repro-

ductive lifecycle suggests that marriage and the initiation of childbearing may play an important

role. To what extent do the preceding results reflect changes in the ages at marriage and first birth?

Ordinary least squares estimation of equation (8) is inappropriate for answering this question be-

cause never-married and childless women have censored outcomes. As such, I estimate Cox hazard

regressions in which the age at first marriage or first birth is the outcome, and surviving sibship size

is the independent variable.15

Figure 5 presents the results in a format analogous to Figure 4, plotting the hazard ratio against

the sibsize-skill association on the left-hand side, and plotting residuals net of country and cohort

fixed effects on the right-hand side. A hazard ratio greater (less) than 1 indicates that women from

larger sibships have higher (lower) marriage or first birth risk. For both outcomes, both with and

without country and cohort fixed effects, Figure 5 reveals clear negative slopes. When women

with more siblings obtain more education, they marry and begin having children later, as reflected

in hazard ratios that are on average significantly below 1. In contrast, when such women obtain

less education, they marry and begin having children earlier, as reflected in hazard ratios that are

on average significantly above 1. The explanation for this pattern follows the same logic as that

for Figure 4. Most women in the sample came of age in an era when more education meant later

marriage and birth. As a result, for those born in the Malthusian era, sibship size negatively predicts

marriage and childbearing risk, while for those born in the modern era, the opposite result obtains.

15Results for ever-born sibship size are similar, so I omit them to conserve space.
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Aggregate Predictors of the Intergenerational Fertility Association The theoretical framework

showed that human capital can play an important role in the evolution of the intergenerational

fertility association. One way to test this proposition is to relate the association to economic and

demographic aggregates. To this end, this section regresses the intergenerational fertility association

on log GDP per capita (from the Penn World Table), the urbanization rate (from the UN), the infant

mortality rate (from the UN), and average educational attainment among adults (from the Barro

and Lee dataset). Because the intergenerational association depends on fertility decisions in two

generations, I consider two measurements of each variable, first in the five-year period of birth and

then in the five-year period surrounding the 20th birthday.

Table 3 reports the results, with ever-born fertility in columns (1)-(4) and surviving fertility in

columns (5)-(8). The odd-numbered columns only include aggregates measured at birth; the even-

numbered columns add the age-20 measures. Because the aggregate data are not available for the

full panel, the sample size shrinks to 150 country-cohort cells. All regressions include country and

cohort fixed effects, standard errors are clustered at the country level.

Columns (1) and (5) begin with all four aggregate variables measured in childhood, finding a

significant role for education but not living standards, urbanization, or infant mortality. For both

ever-born and surviving fertility, a one-year increase in average educational attainment is associated

with a strengthening of the intergenerational association by slightly more than 0.02, or two-thirds

of a standard deviation. Adding the age-20 measures in columns (2) and (6) does not change the

takeaway, with significant coefficients on the education variables but no others. The coefficient

on average education at birth shrinks somewhat, implying that some of the relationship between

average education at birth and the intergenerational fertility association is mediated by average

education in early adulthood. However, the two fertility measures yield conflicting results on which

age is more important.

Because changes in living standards, urbanization, and infant mortality appear to play no role

in the evolution of the intergenerational fertility association, it is useful to rerun the preceding re-

gressions omitting these covariates. Columns (3)-(4) and (7)-(8) carry out this exercise, regression

the estimated association on average education in childhood and early adulthood, plus country and

cohort fixed effects. The results are similar but generally more statistically significant.16

16In columns (3)-(4) and (7)-(8), it is possible to expand the sample because data on GDP per capita are sparse. In the
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5 Composition Effects on Average Fertility

What do these strengthening intergenerational associations imply for the evolution of average fer-

tility? This section estimates the composition effect of differential fertility among cohort t’s parents

on the average fertility of cohort t. Of particular interest is how the composition effect varies with

average fertility in cohort t, which speaks to how the dynamics of population composition affect the

evolution of aggregate fertility rates.

5.1 Methods

For empirical application, the composition effect in Section 2 requires three modifications. First, the

model considered a population of one sex for analytical convenience, but the empirical measure

must account for the reality of two sexes. As such, I refine the definition the composition effect to

be the average number of children born to women minus the average number of grandchildren per

daughter born to their mothers.17 Second, Section 2 wrote the composition effect over the distribution

of fertility in the grandparent generation, but the DHS offers data on the women themselves. Thus,

the definition of the composition effect I take to the data must involve two ingredients: the average

fertility of women from cohort ct, ȳa
ct, and their deweighted average fertility, ỹa

ct, which undoes

the reweighting of the population due to differential fertility among their mothers. Let K be the

maximum number of surviving females in a woman’s sibship (including herself); ηctk be the share

of women from country-cohort ct with k surviving females in their sibships; and ȳa
ctk be the average

fertility of women with k surviving females in their sibships. Then:

ȳa
ct = ∑K

k=1 ηctkȳa
ctk and ỹa

ct = ∑K
k=1

(
ηctk/k

∑K
l=1 ηctl/l

)
ȳa

ctk

Third, because changing fertility levels complicate comparisons of composition effects at different

stages of the fertility transition and at different ages, I divide the absolute composition effect by the

average fertility that would obtain in the absence of reweighting from differential fertility in the

previous generation. This new measure, the relative composition effect, captures how the reweighting

of the population affects average fertility in proportional terms.

expanded sample, the results for education remain similar but again become more statistically significant.
17A more detailed definition might explicitly consider men and the role of assortative mating, but the DHS only offers

data on women’s sibship sizes, making such an extension impossible to estimate.
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For country-cohort ct, the relative composition effect on mean fertility at age a is:

δa
ct =

ȳa
ct − ỹa

ct
ỹa

ct
(11)

This expression is a simple non-linear combination of the weighted and deweighted averages. The

non-parametric estimator for the relative composition effect plugs in the empirical analogs of those

averages. Keeping with Section 4, the measure of fertility is cumulative fertility at age 25. For

conciseness, I report results only for children ever born; unreported results for surviving fertility

are extremely similar. Notably, however, ỹa
ct reweights on the number of surviving sisters only, as

deceased sisters are irrelevant to the cohort’s composition in adulthood.

In the case of a linear conditional expectation function, the composition effect equals the in-

tergenerational association times the variance-to-mean ratio of childhood family size. To clearly

link the composition effect estimates with the fertility transmission results of the previous section,

I carry out this decomposition using sibship rather than sistership size.18 For county-cohort ct, the

decomposition is:

δa
ct =

(
βct

ỹct

)(
σ̃2

ct
s̃ct

)
(12)

where βct is the slope from a regression of ever-born fertility on surviving sibship size; ỹct is defined

above; and σ̃2
ct and s̃ct are the deweighted variance and mean of sibship size, respectively. The rela-

tive composition effect has two components: a relative intergenerational association and a ratio. If

the intergenerational association becomes positive during fertility decline, but the ratio stays con-

stant, then the composition effect rises. Each of these components is separately estimable, and their

product provides a parametric estimator for the composition effect.

5.2 Results

As in Section 4.2, I begin with case study evidence from Bolivia to build intuition. I then present

estimates for all country cohort cells and track their evolution over the fertility transition.

Bolivian Case Study The case study of Bolivia appears again in Table 4, using the same four

decadal cohorts as Table 1. Panel A presents relative composition effects across cohorts, estimated

18Results are extremely similar if one changes the covariate to the surviving number of female siblings, which would
more appropriately capture the dynamics of a two-sex population but would have a less obvious relation to Section 4.
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first non-parametrically using equation (11) and then parametrically using equation (12). Panel B

then decomposes each parametric estimate into a relative fertility association and a variance-to-

mean ratio. Panel C reports additional descriptive statistics. Because the estimands in Panels A and

B are non-linear combinations of other parameters, standard errors are block-bootstrapped at the

primary sampling unit level.

In Panel A, both the non-parametric and parametric estimates are consistent with a popula-

tion that started in transition and then settled into a modern regime. The earliest cohort exhibits a

marginally significant negative composition effect, implying that differential fertility in the previ-

ous generation decreases the cohort’s average fertility, by 2-3 percent. The non-parametric estimate

for this cohort is more negative and more statistically significant (p = 0.098) than the parametric

estimate, but both estimates display a marked upward trend across subsequent cohorts. The latest

cohort exhibits a significantly positive composition effect using either estimator, such that differen-

tial fertility in the previous generation increases this cohort’s average fertility by 6-9 percent. The

corresponding levels of fertility can be seen in the descriptive statistics at the bottom of the table.

Deweighted average fertility starts higher than actual average fertility (1.9 versus 1.8 children ever

born) but ends lower (1.5 versus 1.6 children ever born).

Panel B reveals that this increasing trend in the relative composition effect is driven by a rising

relative intergenerational association, rather than a rising variance-to-mean ratio. The association is

(insignificantly) negative for the earliest cohort but then swells to (a significant) 0.06 for the latest co-

hort, implying that each additional sibling is associated with a 6 percent increase in fertility relative

to the deweighted mean. Meanwhile, the variance-to-mean ratio of sibship size steadily declines

across cohorts, from 2.1 to 1.7, thus acting to limit increases in the composition effect. However, this

force lacks the strength to to entirely offset the rising relative intergenerational association. Overall,

the Bolivian data indeed suggest that composition effects turn positive as the fertility transition sets

in, pushing back against decline of average fertility.

Composition Effects over the Fertility Transition For the full sample, Figure 6 plots the com-

position effect and its components against deweighted average fertility, along with local linear

regression estimates. Using deweighted (rather than actual) average fertility on the x-axis eases

interpretation because actual fertility is (1 + δ) x when deweighted fertility is x.
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On the left side of Panel A, non-parametric estimates of equation (11) show the composition

effect averaging near zero for levels of deweighted average fertility above 1.5. But below 1.5, the

composition effect rises. At the lowest observed levels of fertility, differential fertility in the previous

generation raises current mean fertility by as much as 10 percent, and by 4 percent on average—with

the regression function significantly different from zero at p = 0.06. OLS estimation on this scatter-

plot yields a marginally significant negative slope coefficient of -0.010 (p = 0.13).19 If one uses an

indicator for the bottom decile of deweighted average fertility instead of the continuous measure,

the coefficient on that indicator is 0.024 (p = 0.02). Composition effects are thus higher at lower

levels of cohort fertility.

On the right side of Panel A, parametric estimates based on equation (12) point to a similar but

even more pronounced rise below 1.5. At the 5 percent level, the regression function is significantly

positive at the lowest levels of deweighted average fertility and significantly negative at the high-

est levels. OLS estimation on this scatterplot also yields a significant negative slope (p = 0.01).

Together, then, both composition effect estimators suggest that endogenous changes in population

composition push back against aggregate fertility decline late in the fertility transition. Consistent

with the patterns in Section 4, the growth of the composition effect late in the fertility transition is

especially apparent in the LAC region.

Panel B of Figure 6 decompose equation (12) into the association and ratio components, reveal-

ing that the rise in composition effects as fertility falls can be attributed entirely to rising intergenera-

tional associations. The relative intergenerational association decreases with the level of deweighted

fertility, whereas the variance-to-mean ratio increases with it. Both of these relationships are char-

acterized by OLS slope coefficients that are significant at the 5 percent level. The results for the full

sample thus mimic the case study evidence from Bolivia.

6 Implications for Period Fertility Rates

Cumulative fertility at age 25 is an uncommon measure, making the cohort results difficult to inter-

pret. This section estimates the implications for the total fertility rate (TFR), or the number of chil-

dren a woman would expect to bear if she experienced current age-specific fertility rates throughout

19With the inclusion of country and cohort fixed effects, the coefficient on the continuous measure rises in absolute
value, to -0.019, but maintains a similar significance level, at p = 0.16.
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her reproductive lifecycle. TFR is a period measure of fertility, summing over the cross-sectional

distribution of age-specific fertility rates, so each DHS survey provides exactly one estimate.

6.1 Methods

To analyze TFR, redefine the outcome ya
ict as an indicator for whether woman i of age a from country

c and birth cohort t gave birth in the year preceding the survey. Let the τ be the survey year, so that

the cohort average ȳa
ct is an age-specific fertility rate for age a in year τ = t + a. Similarly, the

deweighted cohort average ỹa
ct is the age-specific fertility rate that would have obtained absent the

influence of differential fertility on population composition. The total fertility rate and deweighted

total fertility rate sum over these age-specific rates. For country c in year τ:

TFRcτ = 5 ∑a ȳa
c,τ−a and dTFRcτ = 5 ∑a ỹa

c,τ−a

The summations are multiplied by five because I use five-year age groups, from 15-19 to 45-49.20 The

composition effect of differential fertility on TFR is the relative difference between actual TFR and

the TFR that would obtain if women from different sibship sizes were equally represented within

their age group:

δcτ =
TFRcτ − dTFRcτ

dTFRcτ
(13)

As in the cohort analysis, this expression is a non-linear combination of weighted and deweighted

averages. The empirical analog is a non-parametric estimator for the composition effect on TFR.

For the linear case, the cohort analysis decomposed the composition effect into a relative in-

tergenerational association and variance-mean ratio. For TFR, the decomposition becomes com-

plicated because the numerator of the right-hand side of equation (13) sums 7 age-group-specific

absolute composition effects, each of which has a separate multiplicative decomposition. However,

one can approximate the decomposition by assuming that either the association component or the

ratio component is constant across age groups. Because the paper focuses on variation in intergen-

erational associations, I hold the variance-to-mean ratio at its average:

δcτ =
∑a βa

c,τ−a
σ2

c,τ−a
µc,τ−a

dTFRcτ
≈
(

5 ∑a βa
c,τ−a

dTFR

)(
1
7 ∑a

σ̃2
c,τ−a

µ̃c,τ−a

)
(14)

20Specifically, for age group a with lower bound a and upper bound a, the birth cohort τ − a would be born between
the year τ − a and the year τ − a.
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where βa
c,τ−a is the coefficient from a regression of an indicator for a birth in the year preceding the

survey on surviving sibship size for respondents aged a, while σ̃2
c,τ−a and µ̃c,τ−a are the deweighted

variance and mean of sibship size, respectively. In the approximate decomposition of equation (14),

δcτ again has two parts: a relative association and a ratio. In the first, the total fertility association

5 ∑a βa
c,τ−a, which mimics the total fertility rate by summing over the cross-sectional distribution of

age-specific fertility associations, is divided by the deweighted TFR. In the second, the ratio of the

variance to the mean of sibship size is averaged across the seven age groups. As in Section 5, the

product of these components provides a parametric estimator for the composition effect, which in

this case is approximate in the linear case.

6.2 Results

For each of the 81 surveys in the sample (not including Nepal 1996, which lacks representative infor-

mation on younger, unmarried women), Figure 7 plots the composition effect and its components

against deweighted TFR, along with local linear regression estimates. The results mirror the co-

hort results in the previous section. In Panel A, non-parametric estimates of the composition effect

average near zero when deweighted TFR exceeds 4, but below this threshold, they turn positive.

At the lowest observed levels of deweighted average fertility, differential fertility in the previous

generation raises average fertility by 4 percent on average (p < 0.01), and by as much as 6 percent.

OLS estimates also show a significantly negative slope, such that each additional child per woman

is associated with a 0.7-point lower composition effect. Parametric estimates based on the approxi-

mation in equation (14) display similar patterns, although as in the cohort results, they are larger in

magnitude and more statistically significant. In a notable difference from the cohort results, neither

regression function ever turns significantly negative.

Here again, the association component rather than the ratio component drives the implied evo-

lution of the composition effect over the fertility transition. As deweighted TFR falls below 4 in

Panel B of Figure 7, the total fertility association rises dramatically as a share of deweighted TFR,

such that at the lowest observed fertility levels, each additional sibling is associated with a 5 per-

cent increase in the number of children per woman. In contrast to the cohort results, the average

variance-to-mean ratio for sibship size does not appreciably change with the level of fertility.

Overall, then, the analysis of period fertility rates has similar conclusions to the analysis of
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cohort fertility rates. In the later phases of the process of aggregate fertility decline, the composition

effect slows the process by raising average fertility. With non-parametric estimates of 4 percent on

average and 6-10 percent in the most pronounced cases, these results explain a small but systematic

feature of aggregate fertility dynamics.

7 Conclusion

The question of whether girls from large families tend to bear many children in adulthood has

drawn the attention of social scientists and statisticians for over a century. Nevertheless, existing

research has shed limited light on how this association evolves over the course of the fertility tran-

sition, and on what implications it has for aggregate fertility outcomes. This paper fills that gap on

two levels.

First, it first theoretically explores the evolution of the association in a quality-quantity frame-

work drawn from the literature on demography and long-run economic growth. The theoretical

results highlight the importance of the changing relationship between human capital and fertil-

ity. Intergenerational fertility associations and therefore also composition effects turn positive

when fertility differentials by skill are aligned across generations, which occurs within the Malthu-

sian or modern regimes but not during the transition between them. As a result, differential fertility

initially encourages the decline of aggregate fertility but then hinders it.

Second, the empirical analysis confirms these predictions in data on mother-daughter pairs from

40 developing countries over half a century. In these data, intergenerational associations grow dur-

ing the transition to a modern fertility regime, as the link between human capital and fertility flips

from positive to negative, and the skill-fertility association becomes more negative. Due to this

change in intergenerational associations, the composition effect of differential fertility on average

fertility turns positive as the fertility transition progresses.

The paper’s approach provides a new demographic lens for understanding the pace of the global

decline of fertility, the subject of a large literature in economics (Schultz 1997; Galor 2011; de la Croix

2012). From a broader economic perspective, the results are of interest not just because they clarify

aggregate fertility dynamics but also because they demonstrate a unique way in which intergener-

ational associations aggregate up to population-level dynamics. In this sense, this paper is related
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to the literature exploring how the intergenerational transmission of economic status affects the

dynamics of the income distribution (Becker and Tomes 1979; Goldberger 1989).

While the paper breaks new ground on the changing causes and consequences of fertility trans-

mission, several questions remain open. First, although fertility differentials by female education

clearly influence intergenerational fertility associations, other sources of intergenerational persis-

tence, such as fecundity and culture, may also play a role. A fuller model of the evolution of in-

tergenerational transmission would also take these factors into account, although data limitations

hinder tests of such a model. Second, although the paper provides evidence that changes in differ-

ential fertility and population composition interact to increase the composition effect of differential

fertility, future research could further draw out the connections to the pace of fertility decline, and

especially to the recent “stalls” Bongaarts (2006, 2008) has identified in many populations. Finally,

the analysis here has not considered other demographic influences on the time path of aggregate

fertility, such as assortative mating, or intergenerational influences that span more than two gen-

erations (Mare 2011). Investigations into the consequences of these other mechanisms may shed

further light on the micro-level demographic phenomena influencing the pace of aggregate change.
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Theory Appendix

Proof of Lemma 1

Let E (ni,t+1|nit) ≡ a + bnit. Then:

∆t+1 = Et

[(
nit
µt

)
E (ni,t+1|nit)

]
− Et

[
E (ni,t+1|nit)

]
= Et

[(
nit
µt

)
(a + bnit)

]
− Et

[
a + bnit

]
= b

µt
Et
[
n2

it
]
− bEt

[
nit

]
= b

Et[n2
it]−bEt

[
nit

]2

µt

= b σ2
t

µt

Since βt+1 is the coefficient from the linear projection of ni,t+1 on nit, βt+1 = b. Then ∆t+1 = βt+1
σ2

t
µt

.

Proof of Lemma 2

Differentiation of equation (5) leads to:

∂nit

∂hit
=


(1−α)κA

(κ+τAhit)
2 > 0 if hit ≤ h̃

(1−α)(1−η)(κ−pθ)A
(κ−pθ+τAhit)

2 < 0 if hit > h̃

Proof of Lemma 3

φ (·) has domain R+, is a constant function for hit < h̃, and is a power function for hit > h̃, implying

continuity for all hit 6= h̃. Further, limhit↓h̃

{(
η

1−η

) (
κ+τAhit

p − θ
)}η

= θη , proving continuity on R+.

Differentiation of equation (6) leads to:

φ’ (hit) =


0 if hit ≤ h̃

η
(

τA
p

) (
η

1−η

)η (
κ+τAhit

p − θ
)η−1

> 0 if hit > h̃

where the second line is positive because κ+τAhit
p − θ > κ+τAh̃

p − θ = θ
(

1
η − 1

)
> 0. In the limit,

limhit→∞ φ’ (hit) = limhit→∞ η
(

τA
p

) (
η

1−η

)η (
κ+τAhit

p − θ
)η−1

= 0.
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Further differentiation leads to:

φ” (hit) =


0 if hit ≤ h̃

η (η − 1)
(

τA
p

)2 ( η
1−η

)η (
κ+τAhit

p − θ
)η−2

< 0 if hit > h̃

Proof of Proposition 1

To prove that at least one steady state exists, note:

• If h̃ > θη , then φ (·) must cross the 45 degree line from above at hit = θη because φ (hit) = θη

for all hit ≤ h̃ .

• If h̃ ≤ θη , then φ (·) must cross the 45 degree line from above at some hit > θη because φ (·) is

continuous, φ (θη) > θη , and limhit→∞ φ’ (hit) = 0.

In each of these steady states, φ (·) crosses the 45 degree line from above, so at least one steady state

is stable. To prove that the number of steady states cannot exceed three, note:

• For hit > h̃, φ (·) is strictly increasing and strictly concave, so it can cross or be tangent to the

45 degree line at most twice, once from below with φ’ > 1 and once from above with φ’ < 1.

• For hit ≤ h̃, φ (·) is constant, so it can cross the 45 degree line from above or be tangent to it

only once.

Because φ (·) can cross the 45 degree line from above at most once for hit > h̃ and at most once for

hit ≤ h̃, at most two steady states are stable.

Proof of Proposition 2

An increase in A or decrease in p reduces the corner solution threshold 1
τA

(
pθ
η − κ

)
. Call this

threshold ĥ, so that ĥ < h̃. Then differentiation of equation (5) leads to:

∂nit

∂A
=


(1−α)κhit

(κ+τAhit)
2 > 0 if hit ≤ ĥ

(1−α)(1−η)hit(κ−pθ)

(κ−pθ+τAhit)
2 < 0 if hit > h̃

and:

∂nit

∂p
=


0 if hit ≤ ĥ

θ(1−α)(1−η)Ahit

(κ−pθ+τAhit)
2 > 0 if hit > h̃
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Differentiation of equation (6) leads to:

∂φ

∂A
≡


0 if hit ≤ ĥ(

η
1−η

)η (
κ+τAhit

p − θ
)η−1 ητhit

p > 0 if hit > h̃

and:

∂φ

∂p
≡


0 if hit ≤ ĥ

− η
p

(
η

1−η

)η (
κ+τAhit

p − θ
)η−1 (

κ+τAhit
p

)
< 0 if hit > h̃

First consider lineages initially in the low human capital stable steady state, hit = θσ. Since the

population attains a new non-degenerate fertility regime, ĥ > θη . Thus, for these lineages, φ (·) and

therefore hit do not change. In the case of higher A, these lineages choose higher nit; in the case of

lower p, nit is unchanged.

Next consider lineages initially in the high human capital stable steady state, with hit > h̃. φ (·) rises

from higher A or lower p, so hit rises with t, and hit > h̃ in every period. Holding hit constant, nit

falls from higher A and lower p. Since hit rises with t and ∂nit
∂hit

< 0 for hit > h̃, nit falls further. Thus,

for these lineages, nit is lower in the transition and the new regime.

Proof of Proposition 3

Denote the stable steady state human capital levels in generation t as h0t and h1t, with h0t < h1t, and

let n0t and n1t denote the associated fertility levels. Let h0,t+1, h1,t+1, n0,t+1, and n1,t+1 be the same

outcomes for the next generation of the 0 and 1 lineages. Then the intergenerational transmission

coefficient is βt+1 =
n1,t+1−n0,t+1

n1t−n0t
. If the child cost parameters and the human capital production

function is the same in both t and t + 1, then hi,t+1 = hit and ni,t+1 = nit for all lineages, so βt+1 = 1.

In the transition between two Malthusian regimes, n0t < n1t, n0,t+1 < n1,t+1, n0,t+1 ≥ n0t, and

n1,t+1 < n1t, so βt+1 ∈ (0, 1). In the transition between two modern regimes, n0t > n1t, n0,t+1 >

n1,t+1, n0,t+1 ≥ n0t, and n1,t+1 < n1t, so β > 1. During a transition between Malthusian and modern

regimes, there exists t such n0t > n1t, n0,t+1 ≤ n1,t+1, n0,t+1 ≥ n0t, and n1,t+1 < n1t, so βt+1 ≤ 0.

Because the skill distribution has two mass points in any non-degenerate regime and any transition

between non-degenerate regimes, E (nt+1|nt) can be fully characterized by a linear function, and

σ2
t > 0. Therefore, ∆t+1 = βt+1

σ2
t

µt
. Since µt > 0, sgn (∆t+1) = sgn (βt+1).
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Figure  1:  Fertility  and  the  Dynamics  of  Human  Capital  
  

  
Note:  The  figures  depict  a  parameterization  of  the  model  in  which  steady  states  with  higher  
human  capital  have  lower  fertility.  A  modern  fertility  regime  would  obtain  if  all  lineages  were  
located  at  ss1  or  ss3.     
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Figure  2:  Intergenerational  Associations  across  Fertility  Regimes  

  

Note:  The  figure  is  a  schematic  plot  of  the  overall  intergenerational  fertility  association  against  
the  sibsize-‐‑skill  relationship.  In  the  Malthusian  regime,  the  sibsize-‐‑skill  and  skill-‐‑fertility  
relationships  are  both  positive,  leading  to  a  positive  intergenerational  fertility  association.  In  the  
transition,  the  sibsize-‐‑skill  relationship  stays  positive,  but  the  skill-‐‑fertility  relationship  turns  
negative,  leading  to  a  potentially  negative  intergenerational  fertility  association.  In  the  modern  
regime,  the  sibsize-‐‑skill  and  skill-‐‑fertility  relationships  are  both  negative,  leading  to  a  positive  
intergenerational  fertility  association.  The  intercept  reflects  the  net  intergenerational  
transmission  coefficient.     
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Figure  3:  Cohort  Effects  in  Parameter  Estimates  

  
Note:  Sample  includes  581,143  women  from  258  country-‐‑cohort  cells  with  at  least  250  
observations.  Plots  represent  cohort  effects  from  regressions  of  the  estimated  country-‐‑cohort  
parameters  on  country  and  cohort  fixed  effects.  Capped  spikes  represent  95%  confidence  
intervals  based  on  bootstrapped  standard  errors.  Omitted  category  is  1965-‐‑69,  the  only  cohort  
with  data  available  from  all  countries.  Horizontal  lines  are  average  parameter  values  across  
countries  for  the  1965-‐‑69  cohort.  Fertility  associations  are  based  on  cumulative  fertility  at  age  25.    
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Figure  4:  Intergenerational  Fertility  Associations  vs.  Sibsize-‐‑Skill  Associations	  	  

  
Note:  Sample  includes  581,143  women  from  258  country-‐‑cohort  cells  with  at  least  250  
observations.  Solid  curves  are  local  linear  regressions  with  bandwidths  of  0.1;  dashed  curves  are  
95%  confidence  intervals  based  on  bootstrapped  pointwise  standard  errors.  OLS  results  
reported  in  the  top  right  corner  of  each  panel  are  slope  coefficients  from  the  analogous  linear  
regressions,  with  bootstrapped  standard  errors  in  brackets.  Fertility  associations  are  based  on  
cumulative  fertility  at  age  25.  
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Figure  5:  Role  of  Earlier  Marriage  and  Childbearing  

  
Note:  Sample  includes  581,143  women  from  258  country-‐‑cohort  cells  with  at  least  250  
observations.  Solid  curves  are  local  linear  regressions  with  bandwidths  of  0.1;  dashed  curves  are  
95%  confidence  intervals  based  on  bootstrapped  pointwise  standard  errors.  OLS  results  
reported  in  the  top  right  corner  of  each  panel  are  slope  coefficients  from  the  analogous  linear  
regressions,  with  bootstrapped  standard  errors  in  brackets.  All  estimations  use  surviving  
sibship  size.    
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Figure  6:  Composition  Effects  on  Cohort  Average  Fertility  

Note:  Sample  includes  581,143  women  from  258  country-‐‑cohort  cells  with  at  least  250  
observations.  Solid  curves  are  local  linear  regressions  with  bandwidths  of  0.5;  dashed  curves  are  
95%  confidence  intervals  based  on  bootstrapped  pointwise  standard  errors.  OLS  results  
reported  in  the  top  right  corner  of  each  panel  are  slope  coefficients  from  the  analogous  linear  
regressions,  with  bootstrapped  standard  errors  in  brackets.  Estimates  are  based  on  based  on  
cumulative  ever-‐‑born  fertility  at  age  25.     
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Figure  7:  Composition  Effects  on  the  Total  Fertility  Rate  

Note:  Sample  includes  81  surveys.  Solid  curves  are  local  linear  regressions  with  bandwidths  of  
1;  dashed  curves  are  95%  confidence  intervals  based  on  bootstrapped  pointwise  standard  errors.  
OLS  results  reported  in  the  top  right  corner  of  each  panel  are  slope  coefficients  from  the  
analogous  linear  regressions,  with  bootstrapped  standard  errors  in  brackets.     
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Table  1:  Sibship  Size,  Educational  Attainment,  and  Age-‐‑25  Fertility  in  Bolivia  
   1945-‐‑54      1955-‐‑64      1965-‐‑74      1975-‐‑83  
   Ever   Surv.      Ever   Surv.      Ever   Surv.      Ever   Surv.  
   (1)   (2)      (3)   (4)      (5)   (6)      (7)   (8)  
A.  Short  regression  (dependent  variable:  #  children  at  age  25)  
#  siblings  (β)   0.0001   0.005      0.009   0.014      0.048   0.043      0.081   0.073  
   [0.016]   [0.012]      [0.007]   [0.006]      [0.007]   [0.006]      [0.008]   [0.007]  
  
B.  Long  regression  (dependent  variable:  #  children  at  age  25)  
#  siblings  (B)   0.010   0.014      0.014   0.026      0.035   0.042      0.029   0.039  
   [0.015]   [0.015]      [0.007]   [0.074]      [0.006]   [0.002]      [0.007]   [0.008]  
Yrs.  of  ed.  (Γ)   -‐‑0.064   -‐‑0.030      -‐‑0.082   -‐‑0.053      -‐‑0.115   -‐‑0.090      -‐‑0.130   -‐‑0.110  
   [0.007]   [0.006]      [0.003]   [0.003]      [0.003]   [0.003]      [0.003]   [0.003]  
  
C.  Auxilliary  regression  (dependent  variable:  yrs.  of  ed.)  
#  siblings  (φ)   0.148   0.322      0.062   0.205      -‐‑0.112   -‐‑0.010      -‐‑0.399   -‐‑0.373  
   [0.048]   [0.059]      [0.024]   [0.029]      [0.022]   [0.027]      [0.029]   [0.034]  
  
D.  Means  and  standard  deviations  
#  children   1.8  (1.6)   1.4  (1.3)      1.9  (1.6)   1.6  (1.3)      1.8  (1.5)   1.6  (1.3)      1.6  (1.4)   1.4  (1.2)  
#  siblings   4.6  (2.9)   3.5  (2.4)      5.4  (3.0)   4.2  (2.4)      5.4  (2.9)   4.4  (2.4)      5.3  (2.8)   4.5  (2.4)  
Yrs.  of  ed.   4.7  (5.4)      6.1  (5.3)      7.5  (5.1)      9.0  (5.1)  
                                   
#  obs.   1,808      7,758      10,090      6,834  
Note:  Brackets  contain  standard  errors  clustered  at  the  level  of  the  primary  sampling  unit;  
parentheses  contain  standard  deviations.  Data  source:  1994,  2003,  and  2008  Bolivia  
Demographic  and  Health  Surveys.  
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Table  2:  Summary  of  Age-‐‑25  Parameter  Estimates  
         Distribution  of  t-‐‑statistics  

  
Mean  (S.D.)      t  ≤  -‐‑1.96      -‐‑1.96  <  t  <  1.96      t  ≥  1.96  

   (1)      (2)      (3)      (4)  
A.  Ever-‐‑born                       
β  (overall  association)   .017  (.030)      2%      70%      29%  
B  (net  transmission)   .014  (.020)      2%      70%      29%  
Γ  (skill-‐‑fertility)   -‐‑.098  (.048)      90%      29%      <  1%  
φ  (sibsize-‐‑skill)   .005  (.149)      26%      35%      40%  
                       
B.  Surviving                       
β  (overall  association)   .005  (.030)      9%      75%      16%  
B  (net  transmission)   .007  (.021)      6%      77%      17%  
Γ  (skill-‐‑fertility)   -‐‑.070  (.050)      80%      17%      3%  
φ  (sibsize-‐‑skill)   .082  (.165)      16%      29%      55%  
Note:  Sample  includes  581,143  women  from  258  country-‐‑cohort  cells  with  at  least  250  
observations.  S.D.  =  standard  deviation  of  the  parameter.  Fertility  associations  are  based  on  
cumulative  fertility  at  age  25.  t-‐‑statistics  are  based  on  standard  errors  clustered  at  the  primary  
sampling  unit  level.  
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Table  3:  Aggregate  Predictors  of  Intergenerational  Fertility  Associations  
   Ever-‐‑born      Surviving  
   (1)   (2)   (3)   (4)      (5)   (6)   (7)   (8)  
Log  annual  GDP  per  capita  (PPP),  Penn  World  Table           
    At  birth   0.008   0.01            0.003   0.005        
   [0.012]   [0.016]            [0.012]   [0.014]        
    At  age  20      -‐‑0.007               0.001        
      [0.016]               [0.018]        
Urbanization  rate  (0-‐‑1),  UN                 
    At  birth   0.081   0.044            -‐‑0.008   -‐‑0.064        
   [0.101]   [0.096]            [0.113]   [0.106]        
    At  age  20      -‐‑0.009               -‐‑0.011        
      [0.089]               [0.088]        
Infant  mortality  rate  (0-‐‑1),  UN                 
    At  birth   0.015   0.012            -‐‑0.0003   -‐‑0.001        
   [0.015]   [0.013]            [0.011]   [0.011]        
    At  age  20      0.003               -‐‑0.004        
      [0.013]               [0.010]        
Average  adult  years  of  education  (25+)  Barro-‐‑Lee           
    At  birth   0.024   0.018   0.027   0.020      0.021   0.011   0.022   0.011  
   [0.010]   [0.009]   [0.009]   [0.008]      [0.011]   [0.009]   [0.009]   [0.008]  
    At  age  20      0.009      0.010         0.017      0.016  
      [0.007]      [0.007]         [0.008]      [0.007]  
                             
#  cells   150   150   150   150      150   150   150   150  
#  countries   31   31   31   31      31   31   31   31  
Notes:  All  regressions  include  country  and  cohort  fixed  effects.  Brackets  contain  standard  errors  
clustered  at  the  country  level.  Outcomes  are  intergenerational  fertility  associations  based  on  
cumulative  fertility  at  age  25.  Urbanization  and  infant  mortality  rates  are  scaled  between  0  and  1  
to  reduce  the  number  of  decimal  places  in  the  coefficients.  
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Table  4:  Composition  Effects  on  Age-‐‑25  Fertility  in  Bolivia  
   1945-‐‑54      1955-‐‑64      1965-‐‑74      1975-‐‑83  
   (1)      (2)      (3)      (4)  
A.  Relative  Composition  Effects  
Nonparametric   -‐‑0.032      -‐‑0.009      0.007      0.058  
   [0.020]      [0.008]      [0.009]      [0.011]  
Parametric   -‐‑0.018      0.0009      0.038      0.093  
   [0.023]      [0.008]      [0.009]      [0.012]  
                       
B.  Components  
Relative  intergenerational  association   -‐‑0.009      0.0005      0.022      0.056  
   [0.011]      [0.005]      [0.005]      [0.007]  
Variance/mean  of  sibsize   2.05      1.88      1.76      1.66  
   [0.07]      [0.05]      [0.03]      [0.05]  
                       
C.  Means  and  standard  deviations  
Children  ever  born  at  age  25   1.8  (1.6)      1.9  (1.6)      1.8  (1.5)      1.6  (1.4)  
Deweighted  children  ever  born  at  age  25   1.9  (1.7)      1.9  (1.6)      1.8  (1.5)      1.5  (1.3)  
                       
Number  of  observations   1,808      7,758      10,090      6,834  
Note:  Brackets  contain  standard  errors  block  bootstrapped  at  the  primary  sampling  unit  level;  
parentheses  contain  standard  deviations.  Data  source:  1994,  2003,  and  2008  Bolivia  
Demographic  and  Health  Surveys.  
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Appendix  Table  1:  Demographic  and  Health  Surveys  Included  in  the  Sample  
Benin:  1996,  2006  
Bolivia:  1994,  2003,  2008  
Burkina  Faso:  1999  
Burundi:  2010  
Cambodia:  2000,  2005,  2010  
Cameroon:  1998,  2004  
Central  African  Republic:  1995  
Chad:  1996,  2004  
Congo,  Democratic  Republic:  2007  
Congo,  Republic:  2005  
Cote  d'ʹIvore:  1994  
Dominican  Republic:  2002,  2007  
Ethiopia:  2000,  2005,  2010  
Gabon:  2000  
Guinea:  2000,  2005  
Haiti:  2000,  2005  
Indonesia:  2012  
Kenya:  2003,  2008  
Lesotho:  2004,  2009  
Madagascar:  1992,  1997,  2004,  2008  

Malawi:  1992,  2000,  2004,  2010  
Mali:  1995,  2001,  2006  
Morocco:  1992,  2003  
Mozambique:  1997,  2003  
Namibia:  1992,  2000  
Nepal:  1996,  2006  
Nigeria:  2008  
Peru:  1992,  1996,  2000,  2004  
Philippines:  1993,  1998  
Rwanda:  2000,  2005,  2010  
São  Tomé  &  Príncipe:  2008  
Senegal:  1992,  2005  
Sierra  Leone:  2008  
South  Africa:  1998  
Sudan:  2010  
Swaziland:  2007  
Tanzania:  1996,  2004,  2010  
Togo:  1998  
Zambia:  1996,  2001,  2007  
Zimbabwe:  1994,  1999  
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Appendix  Figure  1:  Choosing  the  Age  at  Fertility  Measurement  

  
Note:  Sample  includes  75,062  women  from  95  country-‐‑cohort  cells  with  at  least  250  women  over  
age  45.  Each  coefficient  and  95%  confidence  interval  comes  from  a  separate  regression  of  the  
fertility  association  at  age  45  on  the  fertility  association  at  an  earlier  age.  Capped  spikes  
represent  95%  confidence  intervals  based  on  bootstrapped  standard  errors.  
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Appendix  Figure  2:  Kernel  Densities  of  Intergenerational  Fertility  Associations  

  
Note:    Kernel  density  estimates  with  a  bandwidth  of  0.01.  Sample  includes  581,143  women  from  
258  country-‐‑cohort  cells.  The  intergenerational  fertility  association  is  from  a  univariate  
regression,  while  the  net  intergenerational  transmission  coefficient  is  from  a  regression  that  
controls  for  education.  Fertility  associations  are  based  on  cumulative  fertility  at  age  25.  
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