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1 Introduction 

At the heart of economics is the belief that markets act to discipline firms for poor 

performance. While the role of markets in influencing firm behavior has been extensively studied, 

an alternative mechanism has received considerably less attention from economists. In his famous 

work, Exit, Voice and Loyalty, Albert Hirschman distinguishes two actions consumers might take 

when they perceive quality to have deteriorated: exit (withdrawing demand from a firm) and voice 

(supplying information to the firm). Hirschman defines voice as “Any attempt at all to change, 

rather than escape from, an objectionable state of affairs whether through individual or collective 

petition to the management directly in charge, through appeal to a higher authority with the 

intention of forcing a change in management or through various types of actions and protests, 

including those that are meant to mobilize public opinion.” (p. 30) Hirschman offers many 

examples of the choice between exit and voice, including the case of school quality: parents who 

are unhappy with their child’s school can either switch schools (exit) or complain to the principal 

and school board (voice). Exit may be particularly costly in this situation as it could involve 

moving, and so, Hirschman argues, many people may choose voice. While there is evidence that 

consumers exercise voice via complaints,1 there has been little empirical work on the fundamental 

idea proposed by Hirschman: that exit and voice are, in fact, alternative ways to achieve the same 

thing, with each emerging under different market conditions. 

In this paper, we begin to fill this void. We theoretically model and empirically study the 

relationship between voice and market structure. Hirschman himself points out that this 

relationship is not straightforward. On the one hand, the use of voice might grow as market 

concentration increases because the opportunities for exit decrease. On the other hand, since voice 

is more likely to be effective if backed by the threat of exit, the use of voice might decrease as 

market concentration increases because of the threat of exit becomes less credible. In the extreme 

case of monopoly, he argues that voice is the only available option but also unlikely to have much 

                                                           
1 Richins (1983) examines why people complain and emphasizes what she calls “vigilantism.” Gatignon and 

Robertson (1986) examine positive and negative word of mouth, with an emphasis on cognitive dissonance for 

negative and altruism and reciprocity for positive. Forbes (2008) shows that complaints are impacted by customer 

expectations. Beard, Macher, and Mayo (2015) explore exit and voice more directly in the context of complaints to 

the FCC about local telephone exchanges, and we discuss their work in further detail below. 



2 
 

impact. Thus, the equilibrium relationship between market structure and the use of voice is 

ambiguous.   

To resolve this ambiguity, we model the interactions between consumers and a firm as a 

relational contract in which consumers use voice to alert the firm to quality deteriorations in 

exchange for a “concession.” A key insight of our model is that, as competition decreases, the 

value to the firm of retaining a customer increases because the margins earned from the customer 

are higher. We show that there are conditions under which a relational contract with voice is an 

equilibrium of a repeated game and that, as competition in a market becomes stronger, those 

conditions become less likely to hold. Thus, our model predicts that voice is more likely to be 

observed when firms have a dominant position in a market. 

We then turn to measuring the relationship between quality, market structure, and voice. 

Empirically studying this relationship is challenging. First, voice has historically been difficult to 

observe in a systematic way. As Beard, Macher, and Mayo (2015, p. 719) note in their study of 

voice in telecommunications, “[f]irms are simply not inclined to publicize their shortcomings. 

Consequently, the ability of researchers to directly observe and study data on complaints is 

limited.” Second, voice is influenced by both quality and market structure but quality itself may 

be a function of market structure. As a result, unless quality is carefully controlled for, it may 

confound the estimated relationship between market structure and voice. For example, if market 

power incentivizes firms to degrade quality, then an analysis of the relationship between market 

structure and complaints might find more voice in concentrated markets even if there is little direct 

impact of market structure on voice. 

We develop an empirical strategy that allows us to overcome both of these challenges. Our 

setting is the U.S. airline industry and we measure voice using the millions of comments, 

complaints, and compliments that consumers make to or about airlines via the social network 

Twitter. Whereas most traditional channels for complaints are private and observed only by firms, 

Twitter’s public nature (the unit of communication – the ‘tweet’ – is public by default) provides 

us with a way of collecting systematic data on voice, albeit only voice exercised via this particular 

medium. While Twitter serves this role in many industries, several features of the airline industry 

(and the data available for this industry) allow us to develop an empirical strategy that overcomes 

the endogeneity issue described above. Specifically, the airline industry is comprised of a large 

number of local markets each with its own market structure. While market structure may influence 
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quality in this industry, one of the most important dimensions of quality – on-time performance – 

varies within markets and can be precisely measured. We exploit daily variation in an airline’s on-

time performance within a given market to estimate the relationship between quality and voice (as 

measured by daily tweet volume), while controlling for the underlying relationship between market 

structure and quality. We then exploit variation in market structure across cities to estimate how 

the relationship between quality and voice varies with market structure.  Thus, rather than estimate 

the relationship between market structure and voice across markets, we estimate the relationship 

between quality deterioration and voice within a market and then how this relationship varies 

across markets with different market structures. 

Our analysis combines three types of data. The first – and most novel – is a dataset that 

includes all tweets made between August 1, 2012 and July 31, 2014 that mention or are directed 

to one of the seven major U.S. airlines. This dataset includes several million tweets. For many of 

these tweets, we can identify the geographic location of the tweeter at the time of posting the tweet 

as well as the tweeter’s home city, thus allowing us to link tweets to both a specific airline and a 

specific market. We use the tweet-level data to create a measure of the amount of voice directed 

at a given airline on a given day from consumers in a given market. We then combine this with 

data from the U.S. Department of Transportation (DOT) on the on-time performance of every 

domestic flight and data on airlines’ flight schedules which allow us to construct measures of 

airport or city market structure.   

Our empirical analysis delivers several interesting findings and supports the predictions of 

our model. First, we find that consumers do indeed respond to quality reductions via voice. In both 

simple descriptive analyses and across a variety of regression specifications, we find that the 

number of tweets that an airline receives on a given day from individuals in a given market 

increases as its on-time performance in that market deteriorates. This result is robust to alternative 

ways of matching tweets to locations and alternative ways of measuring on-time performance. In 

addition, when we consider the content of the tweets, we find that this relationship is strongest for 

tweets with a negative sentiment and tweets that include words related to on-time performance. 

We believe that our analysis is the first to provide systematic and large-scale evidence that 

consumers do respond to quality deterioration via voice. 

Second, we find that the relationship between quality deterioration and tweet volume is 

stronger when the offending airline dominates an airport. It is well established that airport 
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dominance translates into route-level market power and higher fares (Borenstein, 1989 and 1991). 

Our finding that the relationship between quality deterioration and voice is stronger for dominant 

airlines is therefore consistent with the main prediction of our relational contracting model – that 

voice is more likely to emerge in concentrated markets where margins are higher and customers 

more valuable. Thus, our model and empirical findings serve to resolve the ambiguity in 

Hirschman about the relationship between market structure and voice.  

Finally, the results of our analysis of airline responses are also consistent with the relational 

contracting model we propose. When we examine data on a sample of airline responses to tweets, 

we find that airlines are most likely to respond to tweets from their most valuable customers, 

defined as customers who are from a market where the airline is dominant or customers who 

mention the airline’s frequent flier program in their tweet. This result is more speculative because 

we only have data on public responses by the airline through Twitter and hence do not observe all 

ways in which airlines can respond to complaints (for example, direct messaging, quality 

improvements, and email). Nevertheless, over 20% of tweets receive responses and these 

responses display a pattern that is consistent with a key prediction of our model – that airlines’ 

incentives to respond to voice are higher when customers are more valuable to them. Furthermore, 

we find that twitter users are more likely to tweet again to an airline if the airline has responded to 

their first tweet (that we observe). 

Hirschman’s Exit, Voice, and Loyalty received a great deal of attention after its release, 

with glowing reviews in top journals in political science and economics (Adelman 2013) and a 

debate about the breadth of its applicability in the 1976 American Economic Review Papers & 

Proceedings (Hirschman 1976; Nelson 1976; Williamson 1976; Freeman 1976; Young 1976). 

Despite this attention, formal modeling and modern empirical work have been limited. Fornell and 

Wernerfelt (1987, 1988) develop formal models of the ideas in Exit, Voice, and Loyalty and 

emphasize that – when product or service failures are difficult for a firm to observe – firms will 

want to facilitate complaints in order to learn about their own quality. Abrahams et al (2012) shows 

that firms can discover product deterioration via voice, by studying evidence of vehicle defects 

that arises through social media. Other work has explored incentives to contribute to social media 

platforms (Trusov, Bucklin, and Pauwels 2009; Berger and Schwartz 2011; Miller and Tucker 

2013; Wei and Xiao 2015) and the motivations to provide, and the consequences of, online reviews 

(e.g. Mayzlin (2006), Godes and Mayzlin (2004, 2006), Chevalier and Mayzlin (2006), Mayzlin, 
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Dover, and Chevalier (2014)). Nosko and Tadelis (2015) are able to link data on seller quality and 

transactions at the buyer level and show that buyers who have a more negative experience on eBay 

are more likely to exit (i.e.: less likely to transact again on the platform).  

The most closely related research to our work is Beard, Macher, and Mayo (2015). They 

also study customer complaints using the lens of Exit, Voice and Loyalty. They examine 

complaints to the U.S. Federal Communications Commission about telecommunications 

companies. They estimate the relationship between complaints and market structure, while 

controlling for consumer perceptions of quality, and find that markets that are more competitive 

were associated with fewer complaints. Our empirical strategy is different in that we estimate the 

relationship between quality deterioration and voice within a market, and how this relationship 

varies with market structure. More importantly for exploring Hirschman’s predictions, our data 

come from consumer complaints aimed at firms rather than from consumer complaints to a 

government regulator. 

Overall, we believe this paper makes several contributions. First, we provide the first 

systematic evidence that consumers do indeed exercise voice in response to quality deterioration 

and that Twitter serves as a platform for such voice. Second, we present a formal model of the 

relationship between quality, voice, and market structure that offers a way to resolve the ambiguity 

in this relationship as presented by Hirschman. While Hirschman focused on how consumers’ 

incentives to exercise voice vary with market structure, we also consider how firms’ incentives to 

respond to voice vary with market structure. Accounting for the firm’s incentives is what allows 

us to develop an equilibrium model of voice and comparative statics with the number of firms in 

the market. This relational contracting framework offers a conceptualization of voice as a 

mechanism for preserving valuable long-term relationships between customers and firms. We 

believe that this can be a useful way to model the role of voice in many markets. Third, we show 

that, in our setting, the responsiveness of voice to quality deterioration is greater in concentrated 

markets, consistent with the relational contracting model. Finally, the empirical strategy we 

develop, which exploits high-frequency within-market changes in quality, may offer a fruitful way 

of exploring these relationships in other settings. 

The remainder of this paper is organized as follows. In the next section, we lay out the 

theoretical considerations. In Section 3, we highlight how Twitter serves as an instrument for 
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voice. Section 4 describes our sources of data and sample construction, and Section 5 discusses 

our empirical approach. Section 6 presents our results. A final section concludes. 

2 Theoretical Considerations 

In his treatise, Hirschman saw exit and voice as two actions that consumers might take to 

discipline a firm after they had noted a decline in quality. As the introduction of voice was, at that 

time, novel in economics, Hirschman argued that it was unclear whether voice was an alternative 

to exit or something that might be used in conjunction with it. Specifically, when he considered 

what consumers might do if their supplier was a pure monopoly, he saw voice as the only option 

and (extrapolating somewhat) as a residual that is exercised whenever opportunities for exit are 

removed. Nonetheless, Hirschman noted that, from the perspective of the firm, voice can 

complement exit in signalling issues within the firm that should be addressed. Moreover, to the 

extent that voice can prevent exit, voice gives the firm the opportunity to improve performance 

without suffering irreparable harm. However, Hirschman then questioned whether consumers 

would go to the trouble of exercising voice in the absence of a credible exit option to back them 

up. Thus, Hirschman realized that the use of voice might occur more often when exit opportunities 

(i.e., competition) were readily available.2 As Hirschman wrote, “[t]he relationship between voice 

and exit has now become more complex. So far it has been shown how easy availability of the exit 

option makes the recourse to voice less likely. Now it appears that the effectiveness of the voice 

mechanism is strengthened by the possibility of exit. The willingness to develop and use the voice 

mechanism is reduced by exit, but the ability to use it with effect is increased by it.” (p.83) 

While Hirschman made numerous conjectures and arguments about the relationship 

between a consumer’s choices between exit and voice and competition, to date there exists no 

formal model of that relationship; specifically, for variation in concentration among oligopolists. 

Here, we blend the third important aspect of Hirschman’s work – loyalty – to provide that model. 

In an analogous way to a principal using an incentive contract to ensure that the quality of an 

agent’s work is high, we consider a contract between the consumer (akin to the principal) and the 

                                                           
2 Hirschman appears to reach no precise statement regarding the relationship between voice and competition but 

eventually becomes more interested in the notion that a monopoly, because it could possibly receive more voice than 

a competitive firm, might end up performing better than competitive firms. We note that this conjecture hinges on the 

proposition that voice is more likely to arise, and to generate a response, in a market with a monopolist rather than a 

market with competition.  
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firm (here the agent) to ensure that if the latter supplies lower than expected product quality, they 

will compensate the former. The special difficulty is that product quality is non-contractible (i.e., 

it is observable to both firm and consumer but is not verifiable by a third party). Thus, having 

already consumed a product and paid for it, a consumer must rely upon a firm fulfilling a promise 

for recompense that is not contained in a formal contract. The consideration of loyalty comes into 

play because we assume that what allows that promise to be credible is the expectation of repeated 

transactions between the consumer and the firm. This is an often-used game-theoretic notion of 

loyalty – in this case, the consumer’s loyalty to the firm. In the absence of such loyalty, for 

instance, if consumers more randomly chose firms each period, there is no scope for a firm’s 

promise to be made credible and, as we will show, no reason for the consumer to exercise voice. 

Here we provide a simple model based on a relational contract between a firm and each of its 

customers. While this model is straightforward, we believe it highlights the first order trade-offs 

involved and provides the sharp statement missing from the prior informal literature. 

2.1 Formal Model 

There is a continuum of consumers and 𝑛 ≥ 2 symmetric firms in a market with constant 

marginal supply costs of c per unit. Consider a consumer and their current supplier. The consumer 

demands one unit at each unit of time and the firms’ products are perfect substitutes except that a 

consumer has an infinitesimal preference to stay with the firm it chose in the previous period. The 

firm and consumer have a common discount factor of .  

The stage game of our model is as follows: 

1. (Pricing) Firms announce prices to the consumer and the consumer selects a firm to 

purchase from. 

2. (Quality Shock) With probability s, the consumer receives an unexpected quality drop on 

a product they have already purchased. This results in an immediate loss in consumer 

surplus of which is the same for any consumer suffering the loss. 

3. (Voice) The consumer can, at a one-time cost of C, communicate their dissatisfaction to 

the firm.  

4. (Mitigation) If the consumer has complained, the firm can offer the consumer a concession 

of B (where B is a choice variable on the real line). 
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5. (Exit) The consumer chooses whether to stay with the firm or exit. Exit means committing 

to a different supplier next period. 

Based on the stage game alone, the firm will offer the consumer no concession (B = 0) and the 

consumer will not exercise voice. This is because a concession will not alter the exit decision of 

the consumer and hence, cannot be credibly promised. Thus, the possibility of a concession and 

an observation of voice depends on the impact on future sales to the consumer - i.e., a consumer’s 

expected loyalty. 

Suppose that both the firm and consumer play a repeated game. Following Levin (2002) 

we consider the consumer as forming a relational contract with the firm where the firm promises 

the consumer a concession of B if the consumer alerts the firm to a quality drop. We assume that 

the quality drop is ex post verifiable by the firm.3 Formally: 

Definition. A (symmetric) relational contracting equilibrium with voice exists if (i) a consumer 

exercises voice if and only if they observe a quality shock; (ii) all firms offer a concession, B, if 

the consumer has exercised voice; and (iii) a consumer exits their firm in the period following the 

exercise of voice if no concession is given. 

 

Clearly, the final element of the consumer’s strategy in this definition involves a threat to exit 

which is not exercised on the equilibrium path. 

What level of concession (B) will allow this relational contract to be an equilibrium of the 

proposed repeated game?  First, consider the cost to a firm of losing a consumer. As each consumer 

prefers to stay, marginally, with its current firm, if a firm loses a consumer, it cannot attract 

another. Thus, it loses: 

𝛿

1−𝛿
(𝑝(𝑛, 𝐵) − 𝑐 − 𝑠𝐵). 

Equilibrium price, 𝑝(𝑛, 𝐵), is written as a function of both the number of firms, n, and the 

symmetric concession offered by firms, B. As is common, p is assumed to be decreasing in n. Note 

that 𝑝(𝑛, 𝐵) is increasing in B. To see this, observe that, if 𝑝(𝑛, 𝐵) = 𝑚(𝑛, 𝐵)(𝑐 + 𝑠𝐵) (where m 

is a firm’s mark-up and 𝑐 + 𝑠𝐵 is a firm’s full marginal cost), each component is increasing in B.  

Importantly, the cost to the firm of a consumer choosing exit is increasing in market 

concentration (i.e., with a fall in n). The intuition is that, when market concentration is high, the 

firm earns high margins from each consumer and faces larger costs should the consumer exit. Thus, 

                                                           
3 This eliminates the notion of a false complaint by the consumer. However, it is not observable by third parties ruling 

out a formal contractual commitment. This is an interesting issue that we leave for future research. 
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absent other considerations, firms with greater degrees of market power face incentives to find 

ways to convince consumers to exercise voice and credibly promise recompense rather than lose 

those consumers in the face of a quality shock. 

Second, a necessary condition for a consumer to exercise voice is that 𝐵 ≥ 𝐶. If this 

condition did not hold, then even if the consumer expects a concession, they would not file a 

complaint as the costs of voice would outweigh the benefit they would receive. 

Third, what happens if a consumer exits? As there is a continuum of consumers, there will 

be no impact on the price in the market.4 Similarly, if a relational contracting equilibrium with 

voice otherwise exists, the consumer can expect to receive additional utility of 𝑠(𝐵 − 𝐶) by 

switching to another firm for which the relational contract is expected to hold. The consumer will 

lose the infinitesimal advantage to their present supplier, however, as this arises for whomever the 

consumer’s supplier is in the next period, that shortfall will be temporary. Moreover, for this 

reason, the firm will not be able to replace, in the subgame following exit, the consumer with 

another.  

Given the above discussion, we can now consider whether a relational contracting 

equilibrium with voice exists. Specifically, is there a B that the firm will offer to prevent exit and 

the consumer will accept to keep from exiting? That B must satisfy: 

𝛿

1−𝛿
(𝑝(𝑛, 𝐵) − 𝑐 − 𝑠𝐵) ≥ 𝐵 ⟹

𝛿

1−𝛿(1−𝑠)
(𝑝(𝑛, 𝐵) − 𝑐) ≥ 𝐵  

𝐵 ≥ 𝐶  

The first incentive constraint is for the firm and says that the expected future value of a consumer 

is greater than the cost of providing a concession today. The second incentive constraint is for the 

consumer and says that the concession must induce the consumer to incur the costs of voice and 

not exit the firm.  

Putting the two constraints together, we can see that a sufficient condition for a relational 

contracting equilibrium to exist is that:5 

                                                           
4 One can imagine situations where there will be an impact on the price a consumer faces if they exit and commit not 

to consider their current supplier in the future. We explore this situation in the online appendix. For instance, price 

may be determined in a search model in which case the consumer may end up facing higher prices when removing a 

firm from its consideration list. Nonetheless, ultimately, we demonstrate that, accounting for potentially higher prices 

or other costs of exit, does not change the qualitative prediction of our model as the first order effects we identify here 

can still dominate. 
5 Here we substitute C for B in the pricing function as price is non-decreasing in B; making this a sufficient condition. 

A necessary condition would be there exists B > C such that (*) for B in the pricing function. 
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𝛿

1−𝛿(1−𝑠)
(𝑝(𝑛, 𝐶) − 𝑐) ≥ 𝐶  (*) 

The following proposition summarizes the properties of this equilibrium: 

Proposition 1. A relational contracting equilibrium with voice exists for sufficiently high  and 

low C. A relational contracting equilibrium does not exist for n sufficiently large. 

 

The first part of the proposition follows from the usual assumptions for the folk theorem in repeated 

games. The second part follows because the LHS of (*) is decreasing in n and converges to 0 

whereas the RHS does not change in n and is positive.  

The model confirms Hirschman’s intuition that market power plays an important role in 

the efficacy of voice. However, it shows also that the future value of a customer to the firm plays 

a critical role in determining whether a consumer believes that exercising voice will be 

consequential. Hence, the higher is  the more the firm values its future margins from the customer 

and the more likely we are to observe voice in equilibrium. 

The model highlights why Hirschman’s informal intuition caused confusion as the impact 

of market concentration on voice does not operate in the same way at the extremes of pure 

monopoly and perfect competition. On the monopoly side, what happens if n = 1? In that case, 

should a consumer exit, the consumer has no other option and so loses all of the consumer surplus 

associated with the relationship. Importantly, this may render a relational contract with voice non-

existent because exit is never credible as a consumer who complains but does not obtain a response 

comes ‘crawling back.’ When there is some competition, a consumer’s threat to exit the firm 

forever can become credible as, in the relational contracting equilibrium, the consumer believes 

(a) that its current firm will not honor future promises and (b) that it only faces an infinitesimal 

cost for a single period if it exits the firm and chooses another. In other words, it will not come 

‘crawling back.’ While (a) is also true for a pure monopoly situation, (b) is not and the consumer 

faces large costs if it does not return to the firm. Thus, for a monopoly situation, the firm may not 

offer a sufficient recompense to induce the consumer to exercise the costs associated with voice.  

In the case of perfect competition (as n goes to infinity), then 𝑝(𝑛, 𝐶) → 𝑐 + 𝑠𝐶. 

Importantly, the firm no longer earns a positive margin from a consumer. In this situation, as 

demonstrated in Proposition 1, there will be no level of B that it would pay to retain a consumer 

regardless of other parameters. Thus, in this case, voice would not be exercised because the 

consumer would not expect the firm to respond to it. The key idea here is that an equilibrium with 
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voice is more likely as concentration falls; however, this result is potentially undermined at the 

extremes of pure monopoly and perfect competition but for distinct reasons.6  

Our model presents the relational contract between a consumer and a firm as a grim trigger 

strategy whereby exit occurs if the consumer receives a quality decline without a concession. 

While this concession could encompass an actual payment or gift to the consumer, our model is 

consistent with a more general interpretation. For instance, a consumer who lodges a complaint 

may not expect an actual response but instead expect an improvement in the future (for instance, 

a reduced rate of quality decline). If the issues continued, then the consumer could engage in exit 

in the future without exercising additional voice. For this reason, the model is a predictor of 

consumer exercise of voice more than it is a predictor of the cause of the voice or the nature of the 

response. Thus, a consumer might complain for issues outside of the firm’s control (say, a weather 

interruption) but not expect an explicit response unless other issues arose (such as the inability of 

the firm to reallocate resources in response to the adverse event). The key factor in predicting voice 

is that the consumer considers the likelihood that a firm will care to retain them rather than let 

them exit and this is what drives the decision to delay exit in favour of voice.  

Of course, voice might arise for other reasons as well. Some people may gain utility from 

exercising voice (i.e., C < 0 for them) or, alternatively, exercise voice for pro-social reasons to 

signal issues with the firm to others. The relationship implied by Proposition 1, however, requires 

that there exist consumers for whom C > 0 and who receive no significant benefits from voice 

other than a firm response. Finally, while our model has focussed on the industrial organization 

drivers of voice, it is also possible that firms will encourage voice to learn about and respond to 

quality reductions. For instance, firms may want to use consumers to monitor employee 

performance and therefore encourage complaints or ratings of employees or agents. Of course, 

monitoring can also be achieved by exit and so it is possible to imagine that the firm’s incentives 

to invest in organizational structures that are more responsive to voice may be related to the same 

considerations that drive the relational contract examined here (see Fornell and Wernerfelt (1987, 

1988) for a formal analysis of complaints as monitoring). 

                                                           
6 We explored variants of the model presented here. For instance, in the online appendix, we consider the full 

equilibrium outcome in a Cournot model that endogenized p(n, B) in order to determine whether symmetric firms 

would choose to adhere to the proposed relational contract when others did so; confirming this is a full equilibrium 

outcome.  
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2.2 Implications for Empirical Analysis 

Our model predicts that voice is more likely to be an equilibrium when market 

concentration is higher. Estimating the relationship between voice, quality deterioration, and 

market concentration is therefore the primary focus of our empirical analysis. Furthermore, in our 

model, the reason voice is more likely to emerge in concentrated markets is because firms are more 

likely to respond if they risk losing a valuable consumer. This suggests several other relationships 

that we can explore empirically. First, using data on airline responses to tweets, we can investigate 

whether airlines disproportionately respond to tweets from customers who are more valuable. 

Second, since our model predicts that the goal of voice is to elicit a response or concession from 

the firm, we will explore how quality deterioration impacts tweets to an airline relative to tweets 

that are simply about the airline. Third, since our model suggests that voice and a concession serve 

to maintain a future relationship between the customer and firm, we will investigate whether 

customers who receive a response to their tweet are more likely to tweet again. 

3 Twitter as a Mechanism for Voice 

Twitter provides a technology for observing and measuring voice. We are not the first to 

make the connection between tweets and voice. For example, Ma, Sun, and Kekre (2015) examine 

the reasons for voice by 700 Twitter users who tweet to a telecommunications company. They 

model optimal responses by the company and emphasize the service interventions improve the 

relationship with the customer. Bakshy et al (2011) show how ideas flow through Twitter. They 

emphasize that the idea of a small number of “influencers” does not hold in the data and that 

messages can be amplified through the network.  

As a type of social media, Twitter also lowers the cost of exercising voice. It is lower cost 

than writing a letter to an airline or the FAA. Hirschman (p. 43) emphasizes that the use of voice 

will depend on “the invention of such institutions and mechanisms as can communicate complaints 

cheaply and effectively.” Twitter and other social media also make voice, and the response to 

voice, visible to others. This should increase the effectiveness of voice and its expected payoff. In 

this paper, we do not emphasize how Twitter has changed voice. We treat Twitter as a platform 

for exercising and measuring voice and use the data to understand the interaction between voice 

and market power.  
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Many companies appear to have recognized that customers are “talking” about them on 

Twitter. They have invested considerable resources in managing social media in general and social 

media complaints in marketing. For example, Wells Fargo invested in a social media “command 

center” to manage and respond to complaints on Twitter (Delo 2014). In addition, there are 

companies that offer enterprises social media dashboards and management tools (such as 

Conversocial and Hootsuite). Indeed, many airlines have employees dedicated to responding to 

customers through social media.7 Twitter itself has recognized that it plays this role and has 

published studies regarding their role in customer service (Huang, 2016) and their intention to 

make this a core product in their service (Cairns, 2016). 

4 Empirical Setting and Data 

4.1 Empirical Setting  

Our empirical setting is the U.S. airline industry. While it is likely that Twitter has 

facilitated voice in many industries, we chose the airline industry as our setting because it has 

several features that make it particularly well suited for a study of the relationship between voice 

and market structure. First, a key measure of quality in this industry – on-time performance – is 

easily measured and data on flight-level on-time performance is readily available. This allows us 

to link the volume of voice to variation in an objective measure of vertical product quality. 

Importantly, on-time performance is determined at the flight level and therefore varies within 

markets not just across markets. Second, all the major U.S. airlines had established Twitter handles 

by 2012. Thus, it was technologically feasible for consumers to exercise voice to airlines via 

Twitter. Third, the airline industry is comprised of many distinct local markets. Each airport (or 

city) has its own market structure and configuration of airlines. This means that the opportunities 

for exit and the margins earned from consumers will vary across markets.  Finally, since many 

consumers fly on a regular or even frequent basis, this setting is one in which the potential for 

future transactions to impact current behavior (i.e.: the scope for a relational contract) is quite real. 

                                                           
7 See, for example, http://www.cnbc.com/2016/09/27/frustrated-flyers-listen-up-airlines-hear-your-rant-on-

twitter.html and http://airrating.com/ (accessed by authors on October 30, 2106). 

http://www.cnbc.com/2016/09/27/frustrated-flyers-listen-up-airlines-hear-your-rant-on-twitter.html
http://www.cnbc.com/2016/09/27/frustrated-flyers-listen-up-airlines-hear-your-rant-on-twitter.html
http://airrating.com/
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4.2 Data 

Our analysis combines three types of data. The first is data on tweets made to or about one 

of the major seven U.S. airlines. We purchased this data from Gnip, a division of Twitter. We 

combine this with data on airline on-time performance, from the Department of Transportation 

(DOT), and with data on airline flight schedules, purchased from the Official Airlines Guide 

(OAG).   

i. Twitter Data 

The raw data purchased from Gnip contains all tweets made between August 1, 2012 

12:00AM and August 1 2014 12:00 AM that include any of the following strings: “@alaskaair", 

"#alaskaair", "alaska airlines", "alaskaairlines", "@americanair", "#americanair", 

"americanairlines", "american airlines", "@delta", "#delta", "delta airlines", "deltaairlines", 

"@jetblue", "#jetblue", "jetblue", "jet blue", "@southwestair", "#southwestair", 

"southwestairlines", "southwest airlines", "@united", "#united", "unitedairlines", "united airlines", 

"@usairways", "#usairways", "us airways", "usairways".  These strings include the Twitter handles 

of the seven largest U.S. airlines (Alaska Airlines, American Airlines, Delta Airlines, JetBlue, 

Southwest Airlines, United Airlines, and US Airways) as well as the names of these airlines, on 

their own and with a hashtag.8 Together, these seven airlines accounted for over 80% of passenger 

enplanements at the start of our sample period.9 The level of observation in this data is the “tweet”.  

The raw tweet-level dataset contains 11,367,462 observations.   

This data contains all initial communications from consumers to the airlines on Twitter. 

While the structure of Twitter now allows for private communication (or direct messages) between 

Twitter members who do not follow one another, during our sample period this was not possible. 

Specifically, if a consumer followed an airline but the airline did not follow a consumer, the 

consumer could not send a private message to the airline. By contrast, it is possible, and probable, 

                                                           
8 A Twitter “handle” is the unique identifier, starting with the “@” symbol, for each participant on Twitter. While 

each tweet is public in the sense that anyone can see it, Twitter users let users know about a message by tagging them 

using their handle. A tweet that mentions an airline’s handle is therefore directed at the airline and meant for the airline 

to see it. 58% of the tweets in our data mention the airline’s handle. A Twitter “hashtag” is a way for Twitter users to 

highlight a phrase that other Twitter users may search for or find interesting, starting with the “#” symbol. A tweet 

that mentions an airline hashtag tells the users’ followers that the airline is a key part of the tweet. 
9 This number is based on the enplanement data in the Air Travel Consumer Report for August 2012.  It likely is an 

understatement as it does not include passengers travelling on these airlines’ regional partners.  
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that some airline responses to consumers are done privately (even if via Twitter) and will not 

appear in our data. 

Many tweets that met our initial filter criteria but were not about airlines. To identify these 

tweets, we looked at all hashtags and handles that started with the same characters as our tweets 

but did not end with these characters. The most common of these were mentions of arenas and 

stadiums named after airlines such as American Airlines Arena, mentions of the soccer team 

Manchester United, mentions of the United States or United Kingdom, and some hashtags such as 

@deltaforce. After eliminating the tweets that were clearly not about airlines, 5,900,691 tweets 

remained.  

The Twitter data includes many variables including the date and time of the tweet, the 

content of the tweet, some information about the profile of the Twitter user (including where they 

are from and their number of followers) and, for a fraction of the tweets, the location from which 

the tweet was made. From the content of the tweet, it is possible to determine which tweets are 

“retweets”, indicating that someone was passing on a tweet originally written by someone else. It 

is also possible to distinguish tweets to the airline from tweets about the airline based on whether 

the tweet includes the airline’s Twitter handle. We are also able to determine which tweets were 

made by the airlines themselves. We focus on tweets to or about an airline and therefore exclude 

the 14,382 tweets in the data which were made by the airlines themselves. This yields 5,886,309 

total tweets. 32% of these tweets were “retweets.” We drop the retweets from our analysis and 

focus on the 4,003,326 unique tweets made by Twitter users to or about the major U.S. airlines. 

Finally, we exclude all observations from two specific time periods: (1) the days around Super 

Storm Sandy (Oct. 27 to Nov. 1 2012), when delays and cancellations were widespread but few 

people were likely to be tweeting about airlines; (2) April 13 to 15, 2014, when twitter use related 

to airlines was unusually high because of a fake bomb threat made on twitter against American 

Airlines and a US Airlines customer service tweet containing a pornographic image. This leaves 

3,860,528 tweets to or about the seven U.S. airlines. 

To collect data on airline responses to tweets, we created a program that called up each of 

the 3,860,528 tweets in our data on the twitter website (through the Application Program 

Interface). The program examined all responses to the tweet to see if any of the responses were 

from the airline’s handle. If so, then we code the airline as having responded. By May 2016, US 

Airways had discontinued its twitter handle after its 2015 merger with American Airlines. 
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Therefore, because we collected the response data in 2016, we do not observe any responses to 

tweets by US Airways and we drop the US Airways data from the response analysis.10   

ii. On-Time Performance Data 

We combine the Twitter data with data on the on-time performance of each of the airlines. 

Since September 1987, all airlines that account for at least one percent of domestic U.S. passenger 

revenues have been required to submit information about the on-time performance of their 

domestic flights to the DOT. These data are collected at the flight level and include information 

on the scheduled and actual departure and arrival times of each flight, allowing for the calculation 

of the precise departure and arrival delay experienced on each flight.11 The data also contains 

information on canceled and diverted flights.  

We use these data to construct daily measures of an airline’s on-time performance in a 

given market (as well as a measure of the airline’s total number of flights from a market, to use as 

a control variable). There are multiple ways to measure on-time performance – for example, the 

number or share of the airline’s flights that are delayed, the average delay in minutes, or the number 

or share of flights delayed more than a certain amount of time. Cancellations can either be included 

with delays or considered on their own. In general, different measures of on-time performance are 

highly correlated with each other.  

As our main measure of on-time performance, we calculate the number of an airline’s 

flights from a given airport on a given day that depart more than 15 minutes late or are canceled. 

For multi-airport cities, we calculate the number of an airline’s flights from any of the airports in 

the city that depart more than 15 minutes late or are canceled. We use the 15-minute threshold 

because the DOT has adopted the convention of considering a flight to be “on-time” if it arrives 

within 15 minutes of its scheduled arrival time. We focus on departure delays but could use arrival 

                                                           
10 We encountered one other issue in collecting the response data.  Tweets from accounts that had been closed or were 

private would not appear on the twitter when we searched for responses.  We coded these tweets as not having received 

a response though it is possible that they did. A random sample of 200 of our tweets found nine such closed and private 

accounts. This will result in some noise in our response variable. 
11Airlines’ regional partners report the on-time performance of the flights they operate on behalf of a major under their 

own code, not the major’s code.  Since customers likely associate these flights with the major given that they are flown 

under the major’s brand, we include flights operate by a major’s regionals partners in our measures of the major 

airlines’ on-time performance. To do this, we use information from the Official Airlines Guide (OAG) data to match 

regional flights in the BTS data to their affiliated major airline. 
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delays instead as – within an airline-airport-day – departure and arrival days are highly correlated 

with each other. Our results are robust to alternative measures of on-time performance. 

iii. Flight Schedule Data 

 We use data from the Official Airlines Guide (OAG) to construct measures of airline’s size 

and share of operations in a given market. The OAG data provide detailed flight schedule 

information for each airline operating in the U.S. Each observation in this data is a particular flight 

and contains information on the flight number, airline, origin airport, arrival airport, departure 

time, and arrival time. Our sample of OAG data includes the complete flight schedule for each 

airline for a representative week for each month (specifically, the third week of each month). 

 From the OAG data, we calculate each airline’s total number of domestic flights from each 

airport during the representative week as well as the total number of domestic flights from the 

airport by any of the seven airlines. We then use this to construct each airline’s share of flights 

from the airport. This gives us a measure of each airline’s dominance at an airport each month. 

For our analysis, we want a time-invariant measure of an airline’s dominance at an airport. We 

calculate each airline’s average share of flights at each airport over our two-year sample period 

and, from these shares, we construct four categories of airport dominance: less than 15% of the 

flights from the airport, between 15% and 30% of flights from the airport, between 30% and 50% 

of the flights from the airport, 50% or more of the flights from the airport.12 We construct 

analogous measures of dominance at the city level for multi-airport cities. 

An airline’s share of flights from a given airport (or city) captures how easy or difficult it 

would be for a consumer to avoid (i.e.: exit from) that airline on subsequent flights. As discussed 

earlier, however, the ease of exit makes voice less necessary but more effective since backed by a 

credible threat of exit.  As our model highlights, the likelihood that a firm responds to voice and, 

in turn, the incentive for consumers to exercise voice depends on the future value of the consumer 

to the firm.  Airlines with a dominant position at an airport charge higher fares and are particularly 

attractive to high willingness-to-pay travelers because their large network means they offer the 

                                                           
12 There are several different ways to capture an airline’s dominance at an airport. Previous work (for example, 

Lederman 2007) has also used an airline’s share of departing flights. Borenstein (1989) uses an airline’s share of 

originating passengers at an airport but reports that his results are robust to using an airlines’ share of departing flights, 

departing seats, or departing seat miles. Some studies simply identify the airports that an airline uses as its hubs. These 

different measures are typically highly correlated with each other. 
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most attractive frequent-flier program to consumers in that market (see Borenstein (1989) and 

Lederman (2008)). As a result, the costs of losing a customer may be greater for dominant airlines.   

4.3 Construction of the Estimation Samples 

The central goal of our analysis is to explore the relationship between quality (measured 

by on-time performance) and voice (measured by the volume of tweets) and investigate how this 

relationship varies with market structure. Thus, our empirical strategy requires us to link tweets to 

the on-time performance of the tweeted-about airline and the market structure faced by the 

individual who made the tweet. While we are not able to match individual tweets to particular 

flights, we can match tweets to airports (or cities) and, in turn, to an airline’s on-time performance 

in that airport (or city) on the day the tweet was made.  Since market structure varies at the airport 

(or city) level, once we have matched tweets to airports, we can also integrate information on the 

market structure at the airport (or city).  

We use three different methods for matching tweets to airports. First, many Twitter users 

identify a location in their Twitter profile. This location does not change from tweet to tweet and 

can be interpreted as “home”, as identified by the Twitter user. Because we are focusing on how 

the relationship between quality deterioration and voice varies with market structure, we use the 

location given in the profile of the Twitter user as our primary measure of the tweeter’s home 

market. Many Twitter users in our data leave this location blank, identify an international location, 

a non-specific location (such as “united states”, “california”), or identify a humorous location (such 

as “Hogwarts” or “in a cookie jar”). We, of course, cannot identify a location in profile for these 

tweets.  However, for 36% of the tweets in our data, the location is specific enough that we can 

match it to a U.S. city with a major airport. In our tables, we describe this source of location 

information as “Location given in profile”. For cities with multiple airports, we create a code to 

capture the city rather than a specific airport. For example, we use the code “NYC” for a tweet 

from a profile that identifies New York City as home. Because of the multi-airport cities, when we 

use this location measure, we construct our airline on-time measures and market structure 

measures at the city – rather than airport – level. 

Second, for some of the tweets in the data (approximately 7%), the Twitter user chose to 

use a feature of Twitter that identifies, through GPS, the location from which the tweet was posted. 

Specifically, the data indicates the latitude and longitude coordinates of the location from which 

the tweet was made. We combine this with data on the latitude and longitude of each U.S. airport 
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and identify the nearest airport. We refer to tweets with this location information as “geocode 

stamp on tweet”.  

The third way that we link tweets to airports is by exploiting information in the content of 

the tweet. Some tweets contain the code of a specific airport. For each tweet in the data, we 

determine whether the tweet contains the airport codes of any of the 193 largest airports in the U.S.  

We do this by determining whether the tweet includes the airport code in capital letters with a 

space on either side. For example, we code a tweet with “ORD” as having Chicago’s O’Hare 

airport in the tweet. 4% of tweets have an airport mentioned in the tweet under this definition.  We 

refer to these tweets as the “Airport mentioned in tweet” observations. 

Overall, we have airport-level information for 427,536 tweets (based on the latter two 

measures of location) and city-level information for 1,394,070 tweets (based on all three measures 

of location).13 As a check on the reliability of the different location measures, we examine the 

195,945 tweets for which we have both city information (from the user’s profile) and airport 

information (from either a geocode stamp or an airport mentioned in the tweet) information. For 

these 195,945 tweets, the city and airport locations match 47.0% of the time. As a benchmark, if 

the measures perfectly captured the correct city and airport, we might expect them to match slightly 

less than 50% of the time because of return trips and stopovers. We view this as suggesting validity 

to both the airport and city measures.  

Having matched tweets to cities and/or airports, we are able to construct the airline-airport-

day and airline-city-day datasets that we use for our regression analysis. We restrict the sample to 

airports/cities with at least 140 flights per week in the OAG data (i.e.: at least 20 flights per day). 

This produces 100 airports in the airline-airport-day sample and 82 cities in the airline-city-day 

sample. For each airline operating at each airport on each day (or in each city each day), we 

combine measures of the airline’s on-time performance at the airport (or in the city) on the day 

with the total number of tweets to or about the airline that day from individuals associated with 

the airport (or city). Finally, we merge in the measures of the airline’s dominance at the airport (or 

in the city). Our final airline-airport-day dataset contains 382,141 observations while the final 

airline-city-day dataset contains 318,077 observations.  

                                                           
13 We exclude 63,090 tweets (4.4% of the tweets with city information) that mention more than one airline because 

we are not able to associate these tweets with one particular airline.  
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4.4 Descriptive Statistics 

Table 1 provides descriptive statistics at the tweet-level. Panel A shows the share of tweets 

for which we have different types of location information. Panel B compares the distribution of 

tweets across airlines for the three sets of observations we use (all tweets, tweets with geocodes, 

and tweets with any location information). American Airlines is the most common airline 

mentioned in tweets, with 26% of all tweets relating to American Airlines. Alaska Airlines is the 

least common, with less than 3% of all tweets. As the table suggests, the composition of the three 

samples, in terms of the fraction of tweets to or about each airline, is very similar. 

Figure 1a shows the average number of daily tweets by month over time for the subsample 

of our data with city information.14 The figure shows that the average number of tweets about 

airlines increases from around 1,500 per day at the beginning of the sample to over 2,500 per day 

toward the end of the sample. Figure 1b shows that all airlines experienced an increase in tweet 

volume over time. 

Table 2 contains descriptive statistics for the airline-city-day (in the top panel) and airline-

airport-day datasets (in the bottom panel). Because cities with multiple airports are aggregated 

across airports, the city-airline-day data has fewer observations. Also, both because of aggregation 

and because we have many more tweets with city-level information than airport-level information, 

the number of tweets per day is much higher at the city level (on average, 4.26 tweets per airline-

city-day compared to 0.59 tweets per airline-airport-day). In addition to the number of tweets, the 

table presents summary statistics for the on-time performance and airline dominance measures. 

The table indicates that, for 48% of airline-city combinations, the airline operates less than 15% 

of flights from the city. For about 35% of the combinations, the airline operates between 15% and 

30% of flights at the city, for about 12%, the airline operates 30%-50% of the flights from the city, 

and for about 5% of observations, the airline operates more than 50% of the domestic flights from 

the city. The numbers for the airline-airport level dataset are similar though not identical.15 In both 

                                                           
14 We focus on this subset of our data because we use it for most of the analysis that follows. The patterns look similar 

when we use all tweets, but the numbers are larger as Figure 1 uses only 36% of all tweets. 
15 In both datasets, the observations in which an airline operates more than 50% of domestic flights are primarily 

airlines at large hubs (for example, Delta Air Lines in Atlanta, United Airlines in Cleveland, American Airlines in 

Dallas-Fort Worth, and Southwest Airlines in Las Vegas). There is a larger number of observations in which an airline 

operates between 30% and 50% of domestic flights.  These include both airlines at their own (less dominated) hubs 
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datasets, about 20% of an airline’s flights at an airport or in a city are delayed more than 15 minutes 

or canceled on a given day.16  

For the majority of our empirical analysis, we define an airline’s level of dominance using 

the city-level measures, even when we match tweets at the airport level. We do this because there 

is likely substitution across the different airports in a given city and therefore we want our measure 

of a consumer’s ability to exit from an airline to include alternatives at other airports. Brueckner, 

Lee, and Singer (2014), for example, argue and provide evidence that city-pairs rather than airport-

pairs should be the relevant unit of analysis in studies of airline markets.  

We also construct a number of variables to capture the content and sentiment of the tweets 

received. From these tweet-level characteristics, we construct airline-city-day level counts of the 

number of tweets with these characteristics.  These variables serve as more nuanced and detailed 

measures of voice. First, we construct a variable (“# of tweets to handle”) that measures the number 

of tweets to the airline’s handle. Tweets to the airline’s handle are directed through Twitter to the 

airline whereas tweets about the airline are not. On average, an airline receives 2.96 tweets to its 

handle, on a given day from consumers associated with a given city. Second, we measure the 

number of tweets that mention on-time performance, which has a mean of 0.77.17 Third, we 

construct a variable that captures whether the content of the tweet is positive or negative. This 

measure of “sentiment” is a standard measure from computer science and provides a probability 

that a particular tweet is negative. The idea of the algorithm is to look for the symbols “:)” for 

positive sentiment and “:(” for negative sentiment.18 The algorithm then identifies the probability 

                                                           
and, mostly, airlines at smaller airports where they have a significant share of flights but the airport is not a hub to 

them or to any carrier.  
16 For a subset of the flights, we have a measure (reported by the airline) of whether the airline is at fault in the delay. 

The average number at fault is close to the average number delayed because we disproportionately observe larger 

airports for this data.  
17 We define a tweet being about on-time performance if it contains one of seven strings related to on-time 

performance: “wait”, “delay”, “cancel”, “time”, “late”, “miss”, or “tarmac”. We define a tweet being about frequent 

flier programs if it contains one of the following strings: “aadvantage”, “mileage” (includes “mileageplus”), “miles” 

(includes “dividend miles”), “trueblue”, “skymile”, “lounge”, “rewards” (includes “rapidrewards”), “admiral”, “club” 

(includes “united club”), “gold”, “diamond”, “silver”, “elite”, “frequent”, “status”, “premier”, “100k”, “50k”, or 

“25k”. While these words may appear in our contexts, in our sample of airline tweets they almost always refer to 

frequent flier programs. 
18 Read (2005) developed the idea of using emoticons to measure sentiment. It appears in reviews on sentiment analysis 

such as Pang and Lee (2008) and has been shown to be particularly useful for Twitter data (e.g. Agarwal et al 2011, 

Pak and Paroubek 2010). The algorithm we use builds on code from a June 16, 2010 post at 
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the :) or :( symbol appears, given the appearance of the various word pairs (“bi-grams”). For 

example, the word pair (“again”, “cancel”) appears disproportionately often with “:(” and the word 

pair (“great”, “service”) appears more often with “:)”. Then, for the full tweet-level data set, we 

predict the probability that a particular tweet has negative sentiment based on the word pairs 

contained in the tweet. Table 3 provides sample tweets for different levels of sentiment. 

It is difficult to algorithmically assess sentiment with the 140 characters in a tweet, and so 

this measure is noisy, with little obvious difference between a tweet given a score of 0.4 and a 

tweet given a core of 0.6. Furthermore, the average score variable is missing for airline-location-

days without tweets. The algorithm does a better job with tweets that score very positive (below 

0.1) or very negative (above 0.9).19 Therefore, we identify very positive and very negative tweets, 

in addition to the average score. On average, across airline-city-days, airlines receive 1.90 very 

positive tweets and 0.98 very negative tweets.  

5 Empirical Approach 

We proceed with our analysis in four stages. After some motivating descriptive analysis, 

we first investigate the relationship between the volume of tweets received and on-time 

performance to determine whether, in this setting, consumers use voice to respond to quality 

deterioration. Second, we examine whether market dominance increases or decreases the strength 

of this relationship, the core empirical question underlying Hirschman’s Exit, Voice, and Loyalty. 

Third, we carry out some analyses that exploit the content and sentiment of tweets to provide 

evidence that our main results are consistent with voice being a response to quality deterioration. 

Fourth, we carry out a number of supplementary analyses that specifically explore aspects of the 

relational contracting model that we propose.   

In most of the analysis that follows, our empirical approach focuses on the relationship 

between tweets and on-time performance. We view this correlation as measuring a response 

                                                           
http://streamhacker.com/2010/06/16/text-classification-sentiment-analysis-eliminate-low-information-features/ 

(accessed May 14, 2015). The code is modified to remove user names and add “stemming” of words (so that “cancel”, 

“cancels”, and “canceled” are all coded as the same word). For a training data set, we combine all the tweets in our 

data with happy or sad emoticons with the tweet training data set available at 

http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip.  
19 The algorithm, however, does not do a very good job of recognizing sarcasm in tweets, as exemplified by the first 

tweet with probability negative of 0.10 in Table 3. As a result, sarcastic tweets, intended to be negative, are sometimes 

mistakenly classified as positive.  

http://streamhacker.com/2010/06/16/text-classification-sentiment-analysis-eliminate-low-information-features/
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
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elasticity to service failures. Fundamental to Hirschman’s framework, and to our formalization, is 

that voice is a response to quality deterioration. A key advantage to our setting is that airline delays 

and cancellations provide a measure of quality deterioration that changes frequently, even for a 

given airline in a given market. This enables us to measure how the elasticity of voice to quality 

deterioration changes with market structure while controlling for the average relationship between 

market structure and quality. While our model does not explicitly distinguish between quality 

deterioration that the consumer believes is or is not the airline’s fault, we present some analysis in 

the results section that attempts to separate these two types of reductions in quality.  

Our main empirical specification regresses the number of tweets about an airline on a given 

day by consumers associated with a given location on the on-time performance of that airline at 

that location on that day. To analyze whether and how this relationship varies with an airline’s 

dominance of a market, we interact an airline’s on-time performance with a measure of its 

dominance of the airport or city. Our models control for airline-location, which will control for 

factors that influence the average amount of voice that an airline receives from consumers in a 

particular market. Importantly, these controls will capture the overall scale of an airline’s 

operations at an airport or in a city, which likely impacts the amount of voice received as larger 

operations imply more passengers carried. These controls will also capture any impact that an 

airline’s level of dominance in a market has on the amount of voice it receives. Note that an 

airline’s scale of operations and level of dominance are not necessarily related. Airlines will have 

both many flights and a large share of flights at their hub airports. However, airlines may also 

dominate small airports at which they do not operate very many flight, in absolute terms. In 

addition, at large airports that are not a hub to any carrier (such as Boston’s Logan Airport and 

New York’s La Guardia Airport), several airlines operate a significant number of flights but none 

dominates the airport. Our specifications also include location-day fixed effects, which capture 

both location-level causes of delay (such as weather) and the diffusion of Twitter during our 

sample period in a very flexible way, allowing the diffusion rate to differ across locations.  

One challenge we encounter is setting up our empirical analysis is choosing the appropriate 

functional form for our dependent variable as well as our measure of on-time performance.  Both 

the number of tweets an airline receives on a given day in a given market as well as the number of 

its flights that are delayed or canceled have a large mass at zero and a very long right tail. In 

particular, at locations in which airlines have a larger scale of operations, they can receive more 
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tweets and have a greater number of delayed or canceled flights.  As a result, for these variables, 

both the mean and standard deviations vary substantially across airline-locations. For example, in 

our data, we observe Delta, at its hub in Atlanta, have an average of 157.6 delayed or canceled 

flights per day, with a standard deviation of 113.8.  On the other hand, US Airways in Atlanta has 

1.9 flights delayed or canceled, on average, per day, with a standard deviation of 2.1. For US 

Airlines, at its hub in Charlotte, the mean and standard deviation are 49.5 and 33.6, while Delta’s 

values are 3.5 and 3.4. A similar comparison holds for the number of tweets received per day. 

To create a measure of on-time performance deterioration that is comparable across airline- 

locations, we standardize the number of flights delayed more than 15 minutes or canceled variable 

by subtracting the airline-location mean and dividing by its standard deviation and we use this as 

our main measure of on-time performance.20 Because the mean and variance of the number of 

tweets variables are similarly impacted by an airline’s scale of operations at an airport, we 

standardize them in a similar fashion. For robustness, in the online appendix, we carry out all of 

the analyses using the logarithm of each of these variables (plus one).   

Using this standardized data, our core regression specification for airline a in location l on 

day t is: 

StdTweetsalt=StdDelaysalt+StdDelaysalt×AirlineDominanceal+StdFlightsalt+lt+alt 

Because of the standardization, airline-location fixed effects are not appropriate. Instead, they are, 

in effect, already differenced out. Because of this, the main effect of AirlineDominanceal is not 

included. In the robustness analysis that uses a non-standardized logged specification, the airline-

location fixed effects are included. Standard errors are clustered at the location level.  

6 Results 

a. Motivating Analysis 

Before turning to the regression analysis, in Table 4 we illustrate the variation in our data 

that we exploit in our regression analysis. Using the location provided in a consumer’s twitter 

profile as the location definition, each cell shows the correlation coefficient between poor on-time 

performance and the average number of tweets by airline-location-day, both normalized by 

                                                           
20 This approach has been used in other settings to adjust outcome measures that have different means and variances. 

See, for example, Chetty, Friedman and Rockoff (2014) and Bloom, Liang, Roberts and Ying (2014). 
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location-airline mean and standard deviation, using the method described above. The table shows 

a positive correlation between delays and tweets, which gets larger as an airline’s market 

dominance increases. 

b. Tweets and On-Time Performance 

Table 5 estimates the relationship between tweets and on-time performance without 

interactions with market structure. The first row contains the coefficient of interest: the 

(normalized) number of the airline’s flights in a location delayed at least 15 minutes or canceled. 

If, as hypothesized, tweets are a response to quality deterioration, we would expect the coefficient 

to be positive. In most of our analysis, our main dependent variable is the normalized number of 

tweets to or about an airline on a day by individuals associated with a given city, based on the 

location information in the individual’s Twitter profile. We focus on this measure because it 

captures the Twitter users’ home city and is therefore most likely to capture the market structure 

they typically face. In Tables 5 and 6, we also show robustness to the alternative ways of matching 

tweets to locations. 

Table 5 shows a robust statistical relationship between on-time performance and tweet 

volume. Across four different specifications, the point estimate is always positive, statistically 

significant, and large in magnitude. Column 1 includes controls for the number of flights that the 

airline has at that airport, and location-city fixed effects. As expected, having more flights from a 

location increases the number of tweets received from consumers in that city. This serves as our 

main empirical specification for the remainder of the paper. Note that the variable capturing the 

(standardized) number of flights the airline operates is only identified off of differences in the scale 

of an airline’s operations across days and the coefficient on this variable is, not surprisingly, 

insignificant and small in magnitude.  

The coefficient estimate in column 1 suggests that an increase in the share of delayed or 

canceled flights of one standard deviation is associated with 0.078 standard deviations more 

tweets. Column 2 shows robustness to associating tweets to locations using any of the three sources 

of location information. Column 3 changes the dependent variable to log(tweets with location 

given in profile+1), demonstrating that the sign of the correlation is robust though the coefficient 

should not be interpreted as an elasticity. The R-squared here is much larger than in the other 

columns, suggesting that the standardization differences out much of the explainable variation. In 

Column 4, tweets are matched to the airport (rather than the city) closest to the user at the time the 
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tweet was made and then aggregated to the airline-airport-day level. The airport-level analysis also 

shows a positive and statistically significant relationship between delays and tweet volume. 

Overall, we view Table 5 as clearly revealing that there is a robust statistical relationship between 

tweets and quality deterioration, which emerges across various location measures, fixed effect 

specifications, and functional forms. 

c. Tweets, On-Time Performance, and Market Structure 

To assess how market dominance affects the relationship between tweets and on-time 

performance, we add interactions between our measures of on-time performance and an airline’s 

level of dominance in a city or at an airport. The first column in Table 6 re-estimates column 1 of 

Table 5 with the added interactions as specified in the regression equation above. The first row 

shows the main effect of delays and cancellations, which captures the relationship between tweets 

and on-time performance when an airline operates less than 15% of the flights in a market. The 

following rows show the interactions with the three higher categories of airport dominance.  

Column 1 shows that the relationship between on-time performance deterioration and 

tweets is stronger when an airline has a dominant position at an airport. In particular, a one standard 

deviation deterioration in on-time performance generates about 85% more voice when an airline 

operates between 30% and 50% of flights in the market and more than double the amount of voice 

when an airline has more than 50% of the flights in the market. When an airline operates between 

15% and 30% of flights in a city, the impact of a deterioration in on-time performance is only 

marginally statistically (and economically) different from the impact when an airline has less than 

15% of flights. Therefore, for the remainder of specifications, we combine the two lower categories 

and use that as the excluded category. We show this in column 2. In columns 3 to 5, we show that 

the pattern of interaction effects is robust to using any of the three sources of location information, 

to using log(tweets with location given in profile+1) as the dependent variable, and to using the 

airport (rather than the city) closest to the user at the time the tweet was made. 

Across all specifications, the coefficients on the interactions between quality and airline 

dominance (measured by 30-50% share of flights or over 50% of flights from the city) are positive 

and statistically significant. Furthermore, the coefficient when airlines have over 50% of flights is 

larger than the coefficient when airlines have 30-50% of flights. Thus, our results indicate that - 

when airlines are dominant in a market - the relationship between on-time performance and tweets 

is stronger. Interpreted through the lens of Exit, Voice, and Loyalty, and as predicted by our 
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relational contracting model, we find that voice is more likely to emerge as a response to quality 

deterioration when an airline is the dominant firm in a market  

d. Evidence that the Results are driven by Comments about Quality Deterioration 

In this section, we include additional analyses that investigate whether the increase in voice 

that we measure is likely to be a response to an unexpected deterioration in quality.21 In particular, 

we show that tweets specifically about on-time performance rise when on-time performance 

deteriorates and that tweets become more negative in sentiment when on-time performance 

deteriorates. We also show delays that are the airline’s fault generate a larger increase in tweets 

(in general and specifically for dominant airlines) than delays that are not the airline’s fault.  

Together, we view these results as suggesting that the increase in tweets that we are capturing is 

indeed a response to unexpected quality deterioration and not the result of some other factor (such 

as, a mechanical increase in tweeting because people have time to use Twitter while waiting at the 

airport or simple complaining about factors outside the airline’s control, such as adverse weather). 

Table 7 re-estimates the main specification from Tables 5 and 6 using two alternative 

dependent variables: the number of tweets that mention on-time performance and the number of 

tweets that do not. The results in the first two columns show that, when delays and cancellations 

increase, tweets that mention on-time performance increase twice as much as tweets that do not 

mention on-timer performance. Columns 3 and 4 show that, as dominance grows, the increase in 

the number of tweets about on-time performance is larger than the increase in the number of tweets 

not about on-time performance.  

Table 8 explores tweet sentiment. Recall that for each tweet, the algorithm predicts the 

likelihood that the sentiment of the tweet is negative. The dependent variable in columns 1 and 2 

is the average predicted sentiment of the tweets received by an airline in market on a day. The 

value is missing when there are no tweets on a day. These columns investigate whether on-time 

performance impacts the average sentiment of tweets received. We find that the average negative 

sentiment of the tweets received is higher when delays and cancellations increase and that the same 

deterioration in on-time performance generates more negative sentiment when an airline is 

                                                           
21 From this point on, we only present standardized results at the city level. However, in the online appendix, we 

present all of these specifications estimated with non-standardized logged variables and estimated with standardized 

variables at the airport level. 
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dominant. In columns 3 and 4, we explore whether a deterioration in on-time performance impacts 

the number of very negative or very positive tweets received. We find that both very negative and 

very positive tweets increase when on-time performance is worse, but the impact on very negative 

tweets is much larger.22 Columns 5 and 6 include the interactions with market share and, again, 

show that the increase in very negative tweets is much larger than the increase in very positive 

tweets and that the impact of market dominance on the relationship between on-time performance 

and tweets is larger for very negative tweets. 

A feature of our setting is that quality may deteriorate for reasons outside the airline’s 

control, such as bad weather. Consumers know that this is possible when they purchase their tickets 

and therefore may not voice in response to this type of quality deterioration. If this were the case, 

we would expect our results to be strongest for deteriorations in quality that are – or are perceived 

to be – within the airline’s control. We investigate this in Table 9, first by explicitly including 

variables measuring daily weather and then by distinguishing between delays that are and are not 

the airline’s fault. Before turning to these results, it is worth pointing out that all of our 

specifications include city-day (or airport-day) fixed effects. Thus, we are already controlling for 

the weather in a city (or at an airport) on a day and cannot directly include measures of the weather 

experienced on that day. Moreover, this implies that the coefficients on the delay variables in our 

regressions are only identified off differences in on-time performance across airlines at an airport 

on a day, after accounting for the average impact of that day’s weather on delays and cancellations. 

However, because it is possible that adverse weather may impact dominant airlines differently than 

non-dominant airlines (and this could, in turn, confound the interaction terms in our regressions), 

we estimate specifications where we interact weather variables with the dominance variables.23 

The results are presented in columns 1 and 2 of Table 9. The first column includes a single weather 

                                                           
22 The finding that very positive tweets increase when on-time performance deteriorates may seem surprising but can 

be explaining by two factors.  First, a deterioration in on-time performance gives airlines an opportunity to remedy 

problems and a successful remedy can lead to a very positive tweet.  Second, as mentioned above, the algorithm often 

misclassifies sarcastic tweets, which are intended to be negative but sound positive. These types of tweets are likely 

to increase when on-time performance gets worse. 
23 The weather data are from the National Oceanic and Atmospheric Administration (NOAA) Quality Controlled Local 

Climatological Data.  These data provide daily information on a large number of weather variables captured by 

weather stations.  Stations exist at every airport.  We collected the data for every airport in our dataset.  For our city-

level analysis, when a city had multiple airports, we randomly chose one of the airports in the city and used that 

airport’s readings for all airports in the city. The weather data can be found at 

https://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N (last accessed December 20, 2016). 

https://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N
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variable that equals one if there was rain, snow, or fog in the departure city on a given day. The 

second column instead uses a continuous measure of the total amount of precipitation (rain and 

snow) in the city on the day. Both specifications show that inclusion of the additional interaction 

terms has little impact on the coefficients on the on-time performance variables and their 

interactions. The coefficients on the weather interactions are statistically not significant. 

In the third column of Table 9, we directly investigate whether the response to quality 

deterioration via voice is greater when the quality deterioration is likely to be the airline’s fault. 

To do this, we take advantage of the fact that the DOT on-time performance data also contain 

information on the (self-reported) causes of delay for each flight that is more than 15 minutes 

late.24 We then construct a variable measuring the number of flights delayed more than 15 minutes 

that are the airline’s fault and the number delayed more than 15 minutes that are not the airline’s 

fault. We include both of these and their interactions with the dominance variables, in the 

regression. The results appear are shown in column 3 of Table 9. While correlation between fault 

and not-at-fault delays reduces power, we find that the interaction effects are larger in magnitude 

for delays that are the airline’s fault.   

Overall, we view the results in this section as indicating that the relationships we have 

uncovered are indeed evidence of consumers using voice when they experience unexpectedly poor 

quality.  

e. Support for the Relational Contracting Model 

In this section, we carry out a number of analyses that investigate specific predictions of the 

relational contracting conceptualization of voice proposed above.  

i. The model emphasizes the value of customers 

The model emphasizes that firms have a larger incentive to respond to voice exercised by 

more valuable (or profitable) customers. We therefore examine whether the airlines are more likely 

to respond to tweets from customers that are more valuable. We capture the expected profitability 

                                                           
24 This information is part of the on-time performance data collected by the DOT. For each delayed flight, airlines are 

required to indicate the cause(s) of the delay: air carrier delay, weather delay, National Aviation System delay, security 

delay and late arriving aircraft delay. Airlines can attribute delay the multiple categories, indicating the number of 

minutes by each cause. We consider delays categorized as carrier delays or late aircraft delays to be the airline’s fault.  

Because this variable is self-reported by airlines, it is reasonable to see it as a lower bound on the fraction of delays 

that are the fault of the airline. 
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of consumers in two ways. First, as in the analysis above, by whether the customer lives in a city 

where the airline has a large share of flights. Second, by whether the tweet mentions that the 

customer is in a frequent flier program. Customers who are entrenched in an airline’s frequent flier 

program (FFP) are more valuable for several reasons. First, they are more likely to be business 

travelers. Business travelers have a higher willingness-to-pay, which airlines exploit through price 

discrimination. Second, if they are already invested in the airline’s FFP, the marginal value of 

additional frequent flier points will be higher for them (due to the non-linearity of most FFP reward 

structures). This, in turn, will further raise their willingness-to-pay (Lederman 2007, 2008). Third, 

they are more likely to fly frequently which increases the value of preserving a long-term 

relationship with them.   

As mentioned above, we collected data on whether each tweet received a response for the 

airline (excluding US Airways). Overall, 21.4% of tweets receive responses. Of tweets that 

mention the airline’s handle, 34.7% receive responses. Figure 2a shows that the fraction of tweets 

that receive responses grew rapidly until June 2013, and then leveled off. Figure 2b shows that 

there is considerable variation in response rates by airline, with American being most responsive 

during this period and Southwest being the least responsive. 

Before proceeding with the airline response analysis, it is important to recognize that there 

are other ways airlines could respond to tweets, including email, direct messages, and future 

quality improvements. We are unable to observe these, yet they would be consistent with the 

“concession” we describe in our model. Nevertheless, we view the relatively high response rate as 

consistent with our theoretical framework and indicative that Twitter is an important channel of 

communication with customers in this industry. 

In Table 10, we estimate whether airlines are more likely to respond to tweets from 

customers who are more valuable. For this analysis, the level of observation is the tweet and the 

dependent variable is an indicator variable for whether the tweet received a response from the 

airline. We estimate a logit model. We control for other factors that might elicit an airline response 

including whether the tweet contains the airline’s handle, whether the tweet contains a customer 

service keyword,25 and whether the tweet contains an on-time performance keyword. We also 

                                                           
25 We define customer service strings as “food”, “water”, “desk”, “agent”, “attendant”, “attendent”, “counter”, 

“queue”, “manning”, “crew”, “rude”, “nasty”, “service”, “staff”, “awful”, “drink”, “svc”, and “handling”. 
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control for the airline, the tweeter’s number of followers, the tweet sentiment, and a linear time 

trend. 

The estimate in the first row of Column 1 shows that airlines are more likely to respond to 

tweets from customers associated with markets in which the airline operates more than a 30% of 

flights. The remaining rows show the impact of the other variables: airlines respond more often to 

tweets with a negative sentiment, to tweets to their handle, to tweets with customer service 

keywords, and to tweets with on-time performance keywords. We see no consistent correlation 

between the number of followers and response rates, a result we revisit below.26 

Column 2 switches the definition of most valuable customers from location to whether the 

tweet contains a word that suggests that the tweet comes from a frequent flier. In many ways, we 

believe that this is a better measure because airline social media managers will have easy access 

to the tweet content while the location information may be harder to find.  The result suggests that 

airlines respond more to tweets with frequent flier keywords. Column 3 includes both frequent 

flier keyword and location information and shows that the positive coefficients are robust. Overall, 

we interpret Table 10 as suggesting that airlines are more likely to respond to tweets from their 

more profitable customers. 

ii. The model emphasizes direct communication 

In our relational contracting model, customers use voice to complain directly to the firm, 

rather than to “vent” or punish the firm by telling others about their bad experiences. Of course, 

one difference between Twitter and other channels for voice is its public nature. This raises the 

possibility that venting or inflicting demand losses on the airline in other markets may be part of 

the reason people tweet in response to delays and cancellations. Here, we provide evidence that 

suggests venting is unlikely to be the primary motivation for the relationships we observe.  

If a tweet is directed to an airline’s handle, it suggests that the customer wants the airline 

to see that tweet (rather than simply complain about the airline to friends and followers). In 

particular, tweets to a handle will show up in the airline’s notification center automatically. Thus, 

a tweet to an airline’s handle is a (public) message directed to the airline rather than a public 

                                                           
26 The relationship between number of followers and responses is non-linear. To communicate the non-linearity, we 

split the data into 0-25th percentile, 25th to 50th percentile, 50th to 75th percentile, 75th to 99th percentile, and (to account 

for the few twitter users with a very large number of followers) over 99th percentile. 
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message about the airline directed to the sender’s Twitter followers. Table 11 compares the impact 

of on-time performance deterioration on tweets made to an airline’s handle and tweets not directed 

at the handle. Columns 1 and 2 show that when delays and cancellation increase both tweets to the 

handle and tweets not to the handle rise, though tweets to the handle increase slightly more. Thus, 

while there seems to be some public complaining in response quality deterioration, much of the 

additional voice is directed at the airlines. Furthermore, columns 3 and 4 show that dominance has 

a larger impact on the responsiveness of tweets to the handle to poor on-time performance than 

tweets not to the handle. In addition, returning to Table 10, which estimated the airline response 

models, we find there that airlines are more likely to respond to tweets to their handle than tweets 

that simply mention them.  Overall, we see this collection of results as suggesting that the 

customers use Twitter to communicate with the airline rather than simply complain publicly about 

the airline. 

Table 11, however, does not address the fact that even a tweet to an airline’s handle is 

public and that the public nature of the tweet might nevertheless be driving the consumer’s decision 

to exercise voice. We explore this in two ways, each using the number of followers as a signal of 

the important of the public nature of the tweet. First, we replace number of tweets with average 

number of followers as the dependent variable. Table 12 displays the results. Column 1 shows that 

the average number of followers for people who tweet on days with delays and cancellations is 

very slightly higher—a one standard deviation increase in delays is correlated with a 0.005 

standard deviation increase in average number of followers. Furthermore, and perhaps more 

importantly, column 2 shows that this relationship is unrelated to market dominance. Thus, the 

number of followers does not appear to be substantially different for tweets that are about delays 

or cancellations in places where an airline is dominant.  

Second, returning to Table 10, which estimated the airline response models, we find no 

consistent relationship between a tweeter’s number of followers and the likelihood of receiving an 

airline response though we do find that airlines are much more likely to respond to tweeters in the 

99th percentile of the follower’s distribution. We interpret Table 11, Table 12, and the followers 

results in Table 10 as together suggesting that tweets about airlines during periods of poor 

performance are often communications to the airline.  
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iii. The model implies responses should lead to future tweets 

Finally, in Table 13, we look at whether twitter users who receive a response from an airline 

are more likely to tweet again to the same airline in the future. Many of the twitter users in our 

data tweet multiple times to an airline. The 3,860,528 tweets in the data are made by 1,457,945 

different users, Of these, 520,807 tweet more than once. The median number of tweets is 1, the 

75th percentile is 2, the 99th percentile is 26 and the maximum is 6635. Excluding those whose first 

tweet was to US Airways, we can analysis 1,375,416 different users. 

Table 13 explores whether users are more likely to tweet again to an airline if their first tweet 

received a response. In this way, the results explore whether responses (suggesting a successful 

use of the relational contract) lead to repeated use of the relational contract. Columns (1) and (2) 

look at the first tweet by each user. The dependent variable is whether the user tweeted again to 

the same airline during our sample period. The main covariate is whether an airline responded to 

the first tweet. Column (1) shows a logit regression of tweeting again on responses without 

additional controls. There is a positive correlation between airlines responding to an individual’s 

first tweet and that individual tweeting again in the following years. Column (2) adds controls for 

sentiment, number of followers, whether the tweet was to the handle, customer service keywords 

in the tweet, on time performance keywords in the tweet, whether the original tweet contained a 

frequent flier keyword, the share of flights for the airline in the location of the tweeter, airline fixed 

effects, and a linear time trend. The coefficient on airline response is still positive. The controls 

generally suggest, unsurprisingly, that more active and experienced twitter users are more likely 

to tweet again.  

Two potential concerns with this analysis are that the later tweets are part of the same 

conversation as the initial tweet and that tweeters who show up early in the sample have more 

opportunities to tweet again. Therefore, columns (3) and (4) look only at users whose first tweet 

in our data was in 2012. The dependent variable is whether we observe another tweet to an airline 

by these users in the later part of the data set, in 2013 or 2014. Again, the results show that users 

who received a response are more likely to tweet again. 

Overall, we view our collection of results as consistent with a relational contracting model of 

voice. While the evidence here does not reject the possibility that other motivations for voice may 

also operate, it suggests that voice elicits an airline response when it comes from the highest value 

customers, rather than by the customers that have the greatest ability to damage the airline’s 
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reputation by communicating a complaint to a large number of followers. Furthermore, when the 

airline responds (as expected in the relational contracting model), the twitter users are more likely 

to tweet again to an airline. 

7 Conclusion 

Based on the original ideas in Hirschman’s Exit, Voice and Loyalty, we have developed a 

formal model of voice as the equilibrium of relational contract between a firm and its customer. 

Our model resolves a key ambiguity in Hirschman’s formulation – namely, how market structure 

influences the choice between exit and voice. Our model predicts that voice is more likely to 

emerge in concentrated markets because the value to firms of retaining consumers is higher. 

Empirically, we have developed a strategy for estimating the relationship between quality 

deterioration, voice and market structure. Our analysis uses Twitter data, which provides us with 

a systematic way of measuring voice. Our empirical strategy takes advantage of the fact that, in 

the airline industry, a key dimension of quality – on-time performance – varies at very high 

frequency and therefore we can exploit daily variation in the quality an airline provides in a given 

market. This allows us to control for the underlying relationship between market structure and 

quality while tracing out the relationship between market structure and voice.  

Our empirical results show that consumers do indeed use voice to express disappointment 

when quality deteriorates. We believe that this is the first large-scale study to document this fact. 

With respect to the relationship with market structure, our results indicate that consumer are more 

likely to use voice when the quality deterioration is by a firm that is dominant in the consumer’s 

home market. These relationships are more pronounced for tweets that mention on-time 

performance and tweets that are negative in sentiment.  The relationships are also more pronounced 

when delays are the airline’s own fault.  Consistent with a relational contracting model, we find 

that firms are more likely to respond to their most valuable customers and that users whose tweets 

receive a response from the airline are more likely to tweet to that airline again in the future. 

New communication technologies such as social media are both lowering the costs of voice 

and making voice observable to researchers. These new technologies may increase the use of voice 

in markets and generate renewed research interest on the topic of voice. We view this paper as a 

first step in establishing such a research agenda. By exploiting the public nature of tweets and 

taking advantage of detailed data on quality that is available in the airline industry, we have 
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investigated the relationship between quality, voice, and market structure. Going forward, there 

are several interesting follow-up research questions worthy of future investigation. One such 

question is how the advent of new communication technologies affects the volume and nature of 

voice. This requires an empirical setting in which one could study complaints before-and-after the 

introduction of a new communication channel for voice. A second promising line of research could 

study the choice between voice and exit, at the customer level. Our setting does not allow us to 

observe exit directly, rather we infer exit options based on market structure. However, other 

settings, might allow researchers to observe this choice at the individual level. Finally, a 

fundamental question in this literature is whether lowering the costs of voice impacts equilibrium 

quality and welfare.   
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Table 1: Tweet-level Descriptive Statistics 

 

Panel A: GEOGRAPHIC INFORMATION IN FULL SAMPLE 

Variable Obs. Mean Std. Dev Min Max 

Location given in profile 3,860,528 0.3611 0.4803 0 1 

Airport mentioned in tweet 3,860,528 0.0434 0.2037 0 1 

Geocode stamp on tweet 3,860,528 0.0727 0.2597 0 1 

Any location information 3,860,528 0.4199 0.4935 0 1 

Airport in tweet or geocode 3,860,528 0.1107 0.3138 0 1 

 

Panel B: FRACTION OF TWEETS BY AIRLINE 

 FULL 

SAMPLE 

SAMPLE WITH 

AIRPORT 

INFORMATION  

(GEOCODE OR IN 

TWEET) 

SAMPLE WITH CITY 

INFORMATION 

(GEOCODE, IN TWEET, 

OR CITY IN PROFILE) 

American Airlines 0.2560 0.2451 0.2584 

Alaska Airlines 0.0292 0.0265 0.0343 

JetBlue 0.1203 0.1269 0.1389 

Delta Air Lines 0.1291 0.1499 0.1349 

United Airlines 0.2495 0.2380 0.2082 

US Airways 0.0993 0.0999 0.0959 

Southwest Airlines 0.1167 0.1136 0.1293 
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Table 2: Location-Airline-Day Descriptive Statistics 

 

CITY LEVEL DATA 

Variable Obs. Mean Std. Dev. Min Max 

# tweets (location given in profile) 318,077 4.2575 12.3134 0 1179 

# tweets (any location definition) 318,077 4.6184 13.0956 0 1212 

Airline-airport flights 318,077 33.7528 78.2108 1 948 

Airline share of flights in city      

Under 15% 318,077 0.4830 0.4997 0 1 

15-30% 318,077 0.3477 0.4762 0 1 

30-50% 318,077 0.1219 0.3272 0 1 

Over 50% 318,077 0.0474 0.2125 0 1 

Number delayed      

Dep. delay > 15 min. or canceled 318,077 7.1733 22.0518 0 813 

Delays that are airline’s fault 221,957 6.8400 17.8120 0 466.8 

Delays that are not airline’s fault 221,957 2.7761 8.6877 0 622.3 

Tweet content  

(for location in profile tweets) 

     

# tweets to handle 318,077 2.9590 8.9405 0 768 

# tweets not to handle 318,077 1.2986 4.4583 0 492 

Average sentiment 177,703 0.3580 0.2915 0 1 

# tweets mention on time performance 318,077 0.7735 2.8192 0 450 

# very positive tweets 318,077 1.8997 5.6670 0 457 

# very negative tweets 318,077 0.9768 3.5939 0 587 

Average # followers 177,703 3737.8 23844.7 0 2,917,676 

AIRPORT LEVEL DATA 

Variable      

# tweets (geocode stamp ) 382,141 0.5900 1.8693 0 97 

Airline-airport flights/week 382,141 28.2882 69.5922 1 948 

Airline share of flights at airport      

Under 15% 382,141 0.5045 0.5000 0 1 

15-30% 382,141 0.3230 0.4676 0 1 

30-50% 382,141 0.1288 0.3350 0 1 

Over 50% 382,141 0.0413 0.1990 0 1 

Number delayed 382,141 0.5045 0.5000 0 1 

Dep. delay > 15 min. or canceled 382,141 6.0115 19.6152 0 813 
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Table 3: Sample tweets by sentiment 

Tweets with probability negative less than 0.01 

thanks @united for the upgrade to an exit row seat; just arrived at dulles.  #goodservice 

@united @boeingairplanes incredible plane design! really like the gold streak across the front of the plane as well! 

@americanair you're welcome american airlines. i love your planes, they are very bigs. 

thanks @unitedairlines for another great flight to nyc! 

Tweets with probability negative of 0.10 

love the @united premieraccess telephone number. no waiting &amp; no change fee. 

congrats @southwestair you are 5 for 5 in being late on flights. i'm at 300 hours of list time for the year! 

@southwestair this is a nice aircraft with the slick blue over head lighting and better design air vents...   #greatcompany 

Tweets with probability negative of 0.30 

@united will your b787 ever fly to @heathrowairport 

is it just me or has @united gotten better... two upgrades in one travel. 

@jetblue not much info. looks like they are taking us back to the gate now. 

Tweets with probability negative of 0.50 

knock knock @united anybody home ?? 

i can't. i am done. standing applause for southwest airlines, no encore, i can't do it 

@united - i gave many of years to ual for which i'm grateful. 

judge approves american airlines' bankruptcy plan - yahoo finance http://t.co/z701ojfrnv via @yahoofinance 

Tweets with probability negative of 0.70 

@united why in the world did you guys do away with infant preboarding? 

@americanair about to but flight is oversold. thoughts? 

crazy traffic, on my way to #jfk #delta 

Tweets with probability negative of 0.90 

@united embarrassing to fly with you tonight. multiple points of failure. 

11 hours later i've arrived in austin, cheers @americanair #awful 

@americanair classless, no help flt attendants. airline industry is just so sad. 

Tweets with probability negative more than 0.99 

@united you have terrible customer service. how do you run a business with such uneducated employees 

delayed 12 hrs @united customer service packed with complaints #typical #embarrassingairline 

@jetblue even more disappointing that you're making seem like she accidentally hung up on me #jetbluetakesnoblame 

@americanair just ignore me if you want, but don't patronize me. your service sucks. if you cared you would do something.  
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Table 4: Correlation between On-Time Performance and Number of Tweets, by Dominance 

 

Airline share of flights at 

airports in the city 
Correlation coefficient 

Under 15% 0.112 

15-30% 0.125 

30-50% 0.181 

Over 50% 0.204 
Unit of observation is airline-location-day. Location identified as location 

in profile. Correlation coefficients shown. 
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Table 5 

Relationship between On-Time Performance and Tweet Volume 

 
 

(1) (2) (3) (4) 

Dependent Variable Standardized 

# Tweets 

Standardized 

# Tweets 

Log(# 

Tweets+1) 

Standardized 

# Tweets 

Location Measure Location in 

profile (city) 

Any Location 

Information (city) 

Location in 

profile (city) 

Geocoded 

Tweets (airport) 

# flights delayed>15 min or 

canceled 
0.078*** 0.081*** 0.069*** 0.052*** 

(0.005) (0.005) (0.004) (0.004) 

# airline flights departing 

that location 
0.001 0.0004 0.001 -0.0001 

(0.004) (0.004) (0.009) (0.003) 

     

Fixed effects Day-location Day-location Day-location, 

Airline-location 

Day-location 

N 318,077 328,692 338,754 382,141 

R-sq 0.005 0.005 0.451 0.002 

Dependent variable identified in column headers. In columns 1, 2, and 4, all variables are normalized using airline-location mean 

and standard deviation (and so airline-location fixed effects are not included). In column 3, variables are logged. Unit of observation 

is the location-airline-day. In columns 1-3, location is defined by city. In column 4, location is defined by airport. Robust standard 

errors clustered by airport in parentheses. Airline-location fixed effects are estimated directly in column 3.  Day-location fixed 

effects are differenced out using stata’s xtreg, fe command.  +p<0.10, *p<0.05, **p<0.01, ***p<0.001  
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Table 6 

Relationship between On-Time Performance, Tweet Volume and Market Dominance 
  

(1) (2) (3) (4) (5) 

Dependent Variable Standardized 

# Tweets 

Standardized 

# Tweets 

Standardized 

# Tweets 

Log(# 

Tweets+1) 

Standardized 

# Tweets 

Location Measure Location in 

profile (city) 

Location in 

profile (city) 

Any Location 

Information 

(city) 

Location in 

profile (city) 

Geocoded 

Tweets (airport) 

# flights delayed >15 min or 

canceled 

0.063*** 0.069*** 0.071*** 0.063*** 0.044*** 

(0.006) (0.005) (0.005) (0.005) (0.004) 

# flights delayed >15 min or 

canceled × 15-30% share  

0.013+     

(0.008)     

# flights delayed >15 min or 

canceled × 30-50% share  

0.054*** 0.048*** 0.051*** 0.023** 0.040*** 

(0.012) (0.012) (0.011) (0.007) (0.009) 

# flights delayed >15 min or 

canceled × >50% share  

0.091*** 0.087*** 0.094*** 0.061*** 0.097*** 

(0.020) (0.020) (0.021) (0.017) (0.019) 

# airline flights departing that 

airport 

-0.0001 0.000008 -0.0002 0.001 -0.001 

(0.004) (0.004) (0.004) (0.009) (0.003) 

Fixed effects Day-location Day-location Day-location Day-location, 

Airline-location 

Day-location 

N 318,077 318,077 328,692 338,754 382,141 

R-sq 0.005 0.005 0.006 0.451 0.003 

Dependent variable identified in column headers. In columns 1, 2, 3, and 5, all variables are normalized using airline-location mean and standard 

deviation. In column 4, variables are logged. Unit of observation is the location-airline-day. In columns 1-4, location is defined by city. In column 

5, location is defined by airport. Robust standard errors clustered by airport in parentheses. Airline-location fixed effects are estimated directly 

in column 4. Day-location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001  
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Table 7 

Relationship between On-Time Performance, Tweet Volume and Market Dominance, by  

 On-Time Performance Mentioned in Tweet 

 
 

(1) (2) (3) (4) 

Dependent Variable Standardized 

# tweets about 

on-time 

performance 

Standardized 

# tweets not 

about on-time 

performance 

Standardized 

# tweets about 

on-time 

performance 

Standardized 

# tweets not 

about on-time 

performance 

# flights delayed >15 min or canceled 0.112*** 0.052*** 0.103*** 0.045*** 

(0.008) (0.004) (0.007) (0.004) 

# flights delayed >15 min or canceled  

× 30-50% share  
  0.041** 0.042*** 

  (0.015) (0.010) 

# flights delayed >15 min or canceled  

× >50% share  
  0.119*** 0.066*** 

  (0.025) (0.016) 

# airline flights departing that airport -0.012*** 0.005 -0.013*** 0.005 

(0.003) (0.004) (0.003) (0.004) 

     

Fixed effects Day-location Day-location Day-location Day-location 

N 318,077 318,077 318,077 318,077 

R-sq 0.009 0.002 0.010 0.003 

Dependent variable identified in column headers. All variables are normalized using airline-location mean and standard 

deviation. Unit of observation is the location-airline-day. Location is defined by city. Robust standard errors clustered by airport 

in parentheses. Day-location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, 

***p<0.001 
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Table 8 

Relationship between On-Time Performance, Tweet Volume and Market Dominance, by 

Tweet Sentiment 

 
 

(1) (2) (3) (4) (5) (6) 

Dependent Variable Standardized 

Average 

negative 

sentiment of 

tweets 

Standardized 

Average 

negative 

sentiment of 

tweets 

Standardized 

# very 

negative 

tweets 

Standardized 

# very 

positive 

tweets 

Standardized 

# very 

negative 

tweets 

Standardized 

# very 

positive 

tweets 

# flights delayed or canceled 0.080*** 0.072*** 0.097*** 0.026*** 0.088*** 0.020*** 

(0.007) (0.006) (0.007) (0.003) (0.007) (0.003) 

# flights delayed >15 min or 

canceled × 30-50% share  
 0.047**   0.044** 0.033*** 

 (0.015)   (0.013) (0.009) 

# flights delayed >15 min or 

canceled × >50% share  
 0.044*   0.106*** 0.056*** 

 (0.020)   (0.025) (0.011) 

# airline flights departing that 

airport 
-0.012* -0.012* -0.010* 0.011** -0.010** 0.011** 

(0.005) (0.005) (0.004) (0.004) (0.004) (0.004) 

       

Fixed effects Day-

location 

Day-

location 

Day-

location 

Day-

location 

Day-

location 

Day-

location 

N 177,703 177,703 317,325 318,077 317,325 318,077 

R-sq 0.004 0.004 0.007 0.001 0.007 0.001 

Dependent variable identified in column headers. All variables are normalized using airline-location mean and standard 

deviation. Unit of observation is the location-airline-day. Location is defined by city. Robust standard errors clustered by airport 

in parentheses. Day-location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, 

***p<0.001 
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Table 9 

Weather, Delay Cause, and the Relationship between On-Time Performance, Tweet 

Volume and Market Dominance 
 

(1) (2) (2) 

Dependent Variable Standardized 

# tweets 

Standardized 

# tweets 

Standardized 

# tweets 

# flights delayed or canceled 0.070*** 0.071***  

(0.006) (0.006)  

# flights delayed >15 min or canceled  

× 30-50% share  
0.049*** 0.049***  

(0.012) (0.012)  

# flights delayed >15 min or canceled  

× >50% share  
0.075*** 0.073***  

(0.020) (0.019)  

Rain, Snow, or Fog Dummy  

× 30-50% share  
-0.0002   

(0.006)   

Rain, Snow, or Fog Dummy  

× >50% share  
-0.011   

(0.008)   

Quantity of Precipitation  

× 30-50% share  
 -0.006  

 (0.005)  

Quantity of Precipitation  

× >50% share  
 -0.003  

 (0.010)  

# flights delayed > 15 min that are airline’s 

fault 
  0.063*** 

  (0.005) 

# flights delayed > 15 min that are airline’s 

fault × 30-50% share  
  0.032* 

  (0.012) 

# flights delayed >15 min that are airline’s 

fault × >50% share  
  0.058** 

  (0.018) 

# flights delayed > 15 min that are not 

airline’s fault 
  0.038*** 

  (0.004) 

# flights delayed > 15 min that are not 

airline’s fault × 30-50% share  
  0.017 

  (0.010) 

# flights delayed >15 min that are not 

airline’s fault × >50% share  
  0.016 

  (0.024) 

# airline flights departing that airport -0.001 -0.001 0.002 

(0.004) (0.004) (0.005) 

    

Fixed effects Day-location Day-location Day-location 

N 292,295 289,439 221,957 

R-sq 0.005 0.005 0.006 

Dependent variable is city-level tweets with the location in profile known. Airline fault is defined by 

the airline in regulatory filings. All variables are normalized using airline-location mean and standard 

deviation. Unit of observation is the location-airline-day. Location is defined by city. Robust standard 

errors clustered by airport in parentheses. Day-location fixed effects are differenced out using stata’s 

xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table 10 

Response Rates  

  
(1) (2) (3) 

30-50% share 0.241***  0.238*** 

(0.008)  (0.008) 

>50% share 0.176***  0.173*** 

(0.013)  (0.013) 

Frequent flier keyword  0.262*** 0.258*** 

 (0.027) (0.027) 

Probability sentiment is negative 0.048** 0.060*** 0.062*** 

(0.017) (0.017) (0.017) 

# followers, 25th -50th  percentile 0.042*** 0.057*** 0.043*** 

(0.009) (0.009) (0.009) 

# followers, 50th -75th  percentile -0.054*** -0.034** -0.052*** 

(0.011) (0.011) (0.011) 

# followers, 75th -99th  percentile -0.119*** -0.096*** -0.118*** 

(0.013) (0.013) (0.013) 

# followers, over 99th  percentile 0.135*** 0.153*** 0.136*** 

(0.024) (0.024) (0.024) 

Handle 3.125*** 3.134*** 3.120*** 

(0.034) (0.034) (0.034) 

Customer service keyword 

 

0.392*** 0.399*** 0.398*** 

(0.010) (0.010) (0.010) 

On time performance keyword 

 

0.482*** 0.490*** 0.486*** 

(0.010) (0.010) (0.010) 

American Airlines 

 

4.024*** 3.998*** 4.017*** 

(0.071) (0.071) (0.071) 

Alaska Airlines 2.630*** 2.639*** 2.628*** 

(0.077) (0.077) (0.077) 

JetBlue 3.356*** 3.339*** 3.359*** 

(0.074) (0.074) (0.074) 

Delta Air Lines 

 

1.397*** 1.385*** 1.382*** 

(0.071) (0.071) (0.071) 

United Airlines 2.819*** 2.818*** 2.803*** 

(0.071) (0.071) (0.071) 

Date 0.001*** 0.001*** 0.001*** 

(0.0001) (0.0001) (0.0001) 

N 3,477,105 3,477,105 3,477,105 

Log Likelihood -1,231,187 -1,230,723 -1,229,926 
Logit regression. Dependent variable is whether the airline responded to the tweet. Unit of observation is the tweet. Southwest airlines is 

the base for the airline dummy variables. No response data for US Airways. Regressions include 11 month-of-the-year dummy variables. 

+p<.10, *p<0.05, **p<0.01, ***p<0.001 
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Table 11 

Relationship between On-Time Performance, Tweet Volume and Market Dominance, 

Tweets to Handle and Not to Handle 

 
 

(1) (2) (3) (4) 

Dependent Variable Standardized 

# tweets to 

handle 

Standardized 

# tweets not 

to handle 

Standardized 

# tweets to 

handle 

Standardized 

# tweets not 

to handle 
# flights delayed or canceled 0.069*** 0.048*** 0.059*** 0.045*** 

(0.005) (0.004) (0.005) (0.004) 
# flights delayed >15 min or canceled  

× 30-50% share  
  0.050*** 0.015+ 

  (0.010) (0.009) 
# flights delayed >15 min or canceled  

× >50% share  
  0.092*** 0.049** 

  (0.021) (0.015) 
# airline flights departing that airport 0.002 0.001 0.001 0.001 

(0.004) (0.004) (0.004) (0.004) 

     

Fixed effects Day-location Day-location Day-location Day-

location 

N 318,077 317,844 318,077 317,844 

R-sq 0.004 0.002 0.004 0.002 
Dependent variable is in column headers with city-level tweets with the location in profile known. All variables are 

normalized using airline-location mean and standard deviation. Unit of observation is the location-airline-day. 

Location is defined by city. Robust standard errors clustered by airport in parentheses. Day-location fixed effects are 

differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table 12 

Relationship between On-Time Performance, Market Dominance, and Average Number of 

Followers 

 
 

(1) (2) 

Dependent Variable Standardized 

Average # of 

followers 

Standardized 

Average # of 

followers 
# flights delayed or canceled 0.0054+ 0.0056 

(0.0032) (0.0034) 
# flights delayed >15 min or canceled  

× 30-50% share  
 -0.0018 

 (0.0081) 
# flights delayed >15 min or canceled  

× >50% share  
 0.0001 

 (0.0099) 
# airline flights departing that airport -0.0008 -0.0008 

(0.0035) (0.0035) 

   

Fixed effects Day-location Day-location 

N 177,671 177,671 

R-sq 0.0001 0.0001 
Dependent variable is in column headers with city-level tweets with the location in profile known. All variables are 

normalized using airline-location mean and standard deviation. Unit of observation is the location-airline-day. 

Location is defined by city. Robust standard errors clustered by airport in parentheses. Day-location fixed effects are 

differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 



51 
 

Table 13 

Relationship between Receiving a Response to a Tweet and Tweeting Again 

 

Dependent Variable =1 if Tweet again,  

after first tweet 

=1 if Tweet in 2013 or 2014, 

given first tweet in 2012  
(1) (2) (3) (4) 

Airline responded to first tweet 0.897*** 0.772*** 0.517*** 0.341*** 

(0.005) (0.006) (0.015) (0.017) 

Frequent flier keyword  0.221***  0.503*** 

 (0.009)  (0.021) 

30-50% share   0.234***  0.401*** 

 (0.007)  (0.015) 

 >50% share   0.435***  0.798*** 

 (0.011)  (0.024) 

Probability sentiment is negative  0.056***  -0.204*** 

 (0.005)  (0.012) 

# followers, 25th -50th  percentile  0.044***  0.292*** 

 (0.005)  (0.012) 

# followers, 50th -75th  percentile  0.169***  0.466*** 

 (0.005)  (0.013) 

# followers, 75th -99th  percentile  0.446***  0.804*** 

 (0.006)  (0.014) 

# followers, over 99th  percentile  0.703***  1.217*** 

 (0.026)  (0.060) 

Handle  0.490***  0.503*** 

 (0.004)  (0.010) 

Customer service keyword 

 

 0.081***  0.017 

 (0.006)  (0.015) 

On time performance keyword 

 

 0.123***  0.045*** 

 (0.006)  (0.013) 

American Airlines 

 

 0.059***  -0.066*** 

 (0.007)  (0.016) 

Alaska Airlines  -0.098***  -0.313*** 

 (0.012)  (0.032) 

JetBlue  0.103***  -0.113*** 

 (0.007)  (0.018) 

Delta Air Lines 

 

 -0.195***  -0.166*** 

 (0.007)  (0.017) 

United Airlines  0.096***  0.130*** 

 (0.006)  (0.016) 

Date  -0.002***  -0.002*** 

 (0.0001)  (0.0001) 

Constant -1.035*** 33.811*** -1.064*** 44.824*** 

(0.002) (0.182) (0.005) (1.908) 

N 1,375,416 1,375,416 259,299 259,299 

Log Likelihood -812,567 -780,934 -149,639 -144,111 

Dependent variable in columns 1 and 2 is whether tweeted again to the same airline. Dependent variable in 

columns 3 and 4 is whether tweeted again to the same airline in 2013 or 2014. Sample in columns 1 and 2 is 

first tweet. Sample in columns 3 and 4 is first tweet by tweeter in 2012. Unit of observation is the tweeter. 

Logit regression. +p<0.10, *p<0.05, **p<0.01, ***p<0.001
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Figure 1a: Average Daily Tweets by Month (Data with city information) 

 
 

Figure 1b: Average Daily Tweets by Month by Airline (Data with city information) 

 



2 
 

Figure 2a: Response rates, over time 

 
 

 

Figure 2b: Response rates by airline, over time 
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APPENDIX A: TABLES 

 

Table A1: Descriptive Statistics for Response Data 

 

Variable Obs. Mean Std. Dev. Min Max 

Airline replied 3,477,105 0.2143 0.4103 0 1 

Airline replied if tweet to airline handle 2,040,504 0.3612 0.3956 0 1 

Frequent flier keyword 3,477,105 0.0539 0.2258 0 1 

Airline 30-50% share city 3,477,105 0.0958 0.2943 0 1 

Airline >50% share city  3,477,105 0.0367 0.1880 0 1 

Probability sentiment is negative 3,477,105 0.3612 0.3956 0 1 

Number of followers, 25th -50th  percentile 3,477,105 0.2521 0.4342 0 1 

Number of followers, 50th -75th  percentile 3,477,105 0.2503 0.4332 0 1 

Number of followers, 75th -99th  percentile 3,477,105 0.2379 0.4258 0 1 

Number of followers, over 99th  percentile 3,477,105 0.0099 0.0989 0 1 

Handle 3,477,105 0.5868 0.4924 0 1 

Customer service keyword 3,477,105 0.1041 0.3054 0 1 

On time performance keyword 3,477,105 0.1588 0.3655 0 1 

American Airlines 3,477,105 0.2842 0.4510 0 1 

Alaska Airlines 3,477,105 0.0324 0.1770 0 1 

JetBlue 3,477,105 0.1336 0.3402 0 1 

Delta Air Lines 3,477,105 0.1433 0.3504 0 1 

United Airlines 3,477,105 0.2770 0.4475 0 1 
US Airways tweets are omitted as there is no response data to those tweets. 
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Table A2: Descriptive Statistics for Repeat Tweeter Analysis 

 

Variable Obs. Mean Std. Dev. Min Max 

All tweeters, first tweet about airline 

Tweeted again to same airline 1,457,945 0.3296 0.4701 0 1 

Airline replied 1,457,945 0.1475 0.3547 0 1 

Frequent flier keyword 1,457,945 0.0436 0.2041 0 1 

Airline 30-50% share city 1,457,945 0.0823 0.2748 0 1 

Airline >50% share city  1,457,945 0.0270 0.1622 0 1 

Probability sentiment is negative 1,457,945 0.3539 0.3932 0 1 

Number of followers, 25th -50th  percentile 1,457,945 0.2844 0.4512 0 1 

Number of followers, 50th -75th  percentile 1,457,945 0.2379 0.4258 0 1 

Number of followers, 75th -99th  percentile 1,457,945 0.1656 0.3717 0 1 

Number of followers, over 99th  percentile 1,457,945 0.0050 0.0703 0 1 

Handle 1,457,945 0.5038 0.5000 0 1 

Customer service keyword 1,457,945 0.1011 0.3015 0 1 

On time performance keyword 1,457,945 0.1559 0.3628 0 1 

American Airlines 1,457,945 1,457,945 0.2369 0.4252 0 

Alaska Airlines 1,457,945 1,457,945 0.0343 0.1821 0 

JetBlue 1,457,945 1,457,945 0.1343 0.3410 0 

Delta Air Lines 1,457,945 1,457,945 0.1748 0.3798 0 

United Airlines 1,457,945 1,457,945 0.2650 0.4413 0 

First tweet for 2012 tweets 

Tweeted to same airline in 2013 or 2014 259,299 0.3933 0.4885 0 1 

Airline replied 259,299 0.0809 0.2728 0 1 

Frequent flier keyword 259,299 0.0409 0.1981 0 1 

Airline 30-50% share city 259,299 0.0887 0.2843 0 1 

Airline >50% share city  259,299 0.0316 0.1748 0 1 

Probability sentiment is negative 259,299 0.3521 0.3919 0 1 

Number of followers, 25th -50th  percentile 259,299 0.2991 0.4579 0 1 

Number of followers, 50th -75th  percentile 259,299 0.2360 0.4246 0 1 

Number of followers, 75th -99th  percentile 259,299 0.1665 0.3726 0 1 

Number of followers, over 99th  percentile 259,299 0.0046 0.0679 0 1 

Handle 259,299 0.3929 0.4884 0 1 

Customer service keyword 259,299 0.0935 0.2912 0 1 

On time performance keyword 259,299 0.1503 0.3573 0 1 

American Airlines 259,299 0.2580 0.4376 0 1 

Alaska Airlines 259,299 0.0275 0.1635 0 1 

JetBlue 259,299 0.1583 0.3651 0 1 

Delta Air Lines 259,299 0.1546 0.3615 0 1 

United Airlines 259,299 0.2781 0.4481 0 1 
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ROBUSTNESS TO LOGGED SPECIFICATION 

Table A3 

Robustness of Table 5: Tweets and On-Time Performance 

 
 

(1) (2) 
 

City-level 

location in 

profile 

only 

City-level 

all three 

location 

measures 

Flights delayed or 

canceled 
0.069*** 0.073*** 

(0.004) (0.004) 

Airline flights departing 

that location 
0.001 0.001 

(0.009) (0.009) 

   

Fixed effects Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

N 338,754 338,754 

R-sq 0.451 0.468 

Dependent variable is number of tweets as identified in column headers. Number of tweets and delays use log(variable+1). Airline flights is logged. Unit of observation is 

the location-airline-day. Location is defined by city. Robust standard errors clustered by airport in parentheses. Airline-location fixed effects are estimated directly. Day-

location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001  
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Table A4 

Robustness of Table 6: Tweets, On-Time Performance, and Market Dominance 
  

(1) (2) (3) 
 

City-level 

location in 

profile only 

City-level 

location in 

profile only 

City-level all 

three location 

measures 

Flights delayed or canceled 0.061*** 0.063*** 0.066*** 

(0.005) (0.005) (0.005) 

Flights delayed or canceled 

x Airline 15-30% share city 

0.004   

(0.007)   

Flights delayed or canceled 

x Airline 30-50% share city 

0.025** 0.023** 0.026*** 

(0.007) (0.007) (0.007) 

Flights delayed or canceled 

x Airline >50% share city 

0.062*** 0.061*** 0.068*** 

(0.017) (0.017) (0.017) 

Airline flights departing 

that airport 

0.001 0.001 0.001 

(0.009) (0.009) (0.009) 

Fixed effects Day-location, 

Airline-

location 

Day-location, 

Airline-

location 

Day-location, 

Airline-

location 

N 338,754 338,754 338,754 

R-sq 0.451 0.451 0.468 

Dependent variable is number of tweets as identified in column headers. Number of tweets and delays use log(variable+1). Airline flights is logged. Unit of 

observation is the location-airline-day. Location is defined by city. Robust standard errors clustered by airport in parentheses. Airline-location fixed effects are 

estimated directly. Day-location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table A5 

Robustness of Table 7: On-Time Performance Mentioned in Tweet 

 
(1) (2) (3) (4) 

 
Number 

tweets about 

on-time 

performance 

Number 

tweets  not 

about on-time 

performance 

Number 

tweets about 

on-time 

performance 

Number 

tweets not 

about on-time 

performance 

Flights delayed or canceled 0.071*** 0.047*** 0.059*** 0.042*** 

(0.007) (0.004) (0.006) (0.004) 

Flights delayed or canceled x Airline 30-50% 

share city 
  0.044** 0.019** 

  (0.014) (0.006) 

Flights delayed or canceled x Airline >50% 

share city 
  0.112** 0.053*** 

  (0.033) (0.013) 

Airline flights departing that airport -0.020*** 0.007 -0.021*** 0.006 

(0.004) (0.008) (0.004) (0.008) 

     

Fixed effects Day-location, 

Airline-

location 

Day-location, 

Airline-

location 

Day-location, 

Airline-

location 

Day-location, 

Airline-

location 

N 338,754 338,754 338,754 338,754 

R-sq 0.357 0.442 0.359 0.443 

Dependent variable type identified in column headers. Number of tweets and delays use log(variable+1). Airline flights is 

logged. Unit of observation is the location-airline-day. Location is defined by city. Robust standard errors clustered by airport in 

parentheses. Airline-location fixed effects are estimated directly. Day-location fixed effects are differenced out using stata’s 

xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table A6 

Robustness of Table 8: Sentiment 

 
(1) (2) (3) (4) (5) (6) 

 
Average 

negative 

sentiment 

Average 

negative 

sentiment 

Number of 

very 

negative 

tweets 

Number of 

very 

positive 

tweets 

Number of 

very 

negative 

tweets 

Number of 

very 

positive 

tweets 

Flights delayed or canceled 0.026*** 0.027*** 0.070*** 0.024*** 0.060*** 0.019*** 

(0.002) (0.002) (0.007) (0.002) (0.006) (0.003) 

Flights delayed or canceled x 

Airline 30-50% share city 
 -0.001   0.038** 0.019** 

 (0.003)   (0.012) (0.006) 

Flights delayed or canceled x 

Airline >50% share city 
 -0.007+   0.100** 0.054*** 

 (0.004)   (0.030) (0.011) 

Airline flights departing that 

airport 
-0.010* -0.010* -0.017*** 0.011 -0.018*** 0.011 

(0.005) (0.005) (0.005) (0.007) (0.005) (0.007) 

       

Fixed effects Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

N 178,908 178,908 338,754 338,754 338,754 338,754 

R-sq 0.079 0.079 0.371 0.419 0.372 0.420 

Dependent variable type identified in column headers. Number of tweets and delays use log(variable+1). Airline flights is 

logged. Unit of observation is the location-airline-day. Location is defined by city. Robust standard errors clustered by airport 

in parentheses. Airline-location fixed effects are estimated directly. Day-location fixed effects are differenced out using stata’s 

xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table A7 

Robustness of Table 9 

Weather, Delay Cause, and the Relationship between On-Time Performance, Tweet 

Volume and Market Dominance 
 

(1) (2) (2) 

Dependent Variable # tweets # tweets # tweets 

# flights delayed or canceled 0.063*** 0.063***  

(0.005) (0.005)  

# flights delayed >15 min or canceled  

× 30-50% share  
0.020** 0.022**  

(0.008) (0.008)  

# flights delayed >15 min or canceled  

× >50% share  
0.056** 0.055**  

(0.018) (0.018)  

Rain, Snow, or Fog Dummy  

× 30-50% share  
0.013   

(0.008)   

Rain, Snow, or Fog Dummy  

× >50% share  
0.004   

(0.012)   

Quantity of Precipitation  

× 30-50% share  
 -0.012  

 (0.007)  

Quantity of Precipitation  

× >50% share  
 0.020  

 (0.019)  

# flights delayed > 15 min that are airline’s 

fault 
  0.058*** 

  (0.004) 

# flights delayed > 15 min that are airline’s 

fault × 30-50% share  
  0.014 

  (0.009) 

# flights delayed >15 min that are airline’s 

fault × >50% share  
  0.036* 

  (0.018) 

# flights delayed > 15 min that are not 

airline’s fault 
  0.047*** 

  (0.005) 

# flights delayed > 15 min that are not 

airline’s fault × 30-50% share  
  -0.005 

  (0.008) 

# flights delayed >15 min that are not 

airline’s fault × >50% share  
  0.001 

  (0.015) 

# airline flights departing that airport 0.0001 0.0001 0.010 

(0.009) (0.009) (0.012) 

    

Fixed effects Day-location Day-location Day-location 

N 312,011 308,715 229,984 

R-sq 0.435 0.435 0.429 

Dependent variable is number of tweets with city-location known. Number of tweets and delays use 

log(variable+1). Airline flights is logged. Unit of observation is the location-airline-day. Location is defined 

by city. Robust standard errors clustered by airport in parentheses. Airline-location fixed effects are estimated 

directly. Day-location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, 

**p<0.01, ***p<0.001 
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Table A8 

Robustness of Table 11: Handles 

 
(1) (2) (3) (4) 

 
Number 

tweets to 

handle 

Number 

tweets not 

to handle 

Number 

tweets to 

handle 

Number 

tweets not 

to handle 

Flights delayed or canceled 0.065*** 0.030*** 0.057*** 0.027*** 

(0.005) (0.003) (0.005) (0.003) 

Flights delayed or canceled x Airline 30-

50% share city 
  0.028*** 0.006 

  (0.007) (0.006) 

Flights delayed or canceled x Airline 

>50% share city 
  0.077*** 0.038** 

  (0.019) (0.014) 

Airline flights departing that airport -0.004 0.002 -0.004 0.001 

(0.008) (0.007) (0.008) (0.007) 

     

Fixed effects Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

Day-

location, 

Airline-

location 

N 338,754 338,754 338,754 338,754 

R-sq 0.452 0.320 0.452 0.320 

Dependent variable type identified in column headers. Number of tweets and delays use log(variable+1). 

Airline flights is logged. Unit of observation is the location-airline-day. Location is defined by city. Robust 

standard errors clustered by airport in parentheses. Airline-location fixed effects are estimated directly. Day-

location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, 

***p<0.001 
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Table A9 

Robustness of Table 12 

Relationship between On-Time Performance, Market Dominance, and Average Number of 

Followers 

 
 

(1) (2) 

Dependent Variable Average # of 

followers 

Average # of 

followers 

# flights delayed or canceled 0.023* 0.019* 

(0.009) (0.009) 

# flights delayed >15 min or canceled  

× 30-50% share  
 0.022 

 (0.024) 

# flights delayed >15 min or canceled  

× >50% share  
 0.029 

 (0.028) 

# airline flights departing that airport -0.021 -0.021 

(0.038) (0.039) 

   

Fixed effects Day-location, 

Airline-

location 

Day-location, 

Airline-

location 

N 178,810 178,810 

R-sq 0.059 0.059 

Dependent variable is in column headers with city-level tweets with the location in profile known. Number of delays 

and average number of followers use log(variable+1). Airline flights is logged. Unit of observation is the location-

airline-day. Location is defined by city. Robust standard errors clustered by airport in parentheses. Airline-location 

fixed effects are estimated directly. Day-location fixed effects are differenced out using stata’s xtreg, fe command. 

+p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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ROBUSTNESS TO AIRPORT LEVEL SPECIFICATION 

Table A10 

Robustness of Table 5: Tweets and On-Time Performance 

 
 

(1) (2) (3) (4) 

Dependent Variable Standardized 

# Tweets 

Standardized 

# Tweets 

Standardized 

# Tweets 

Standardized 

# Tweets 

Location Measure Closest 

airport 

Airport in 

tweet 

Both Airport-

level location 

measures 

Within two 

miles of 

airport 

Flights delayed or 

canceled 
0.052*** 0.066*** 0.073*** 0.046*** 

(0.004) (0.004) (0.004) (0.004) 

Airline flights departing 

that location 
-0.0001 0.002 0.002 0.006+ 

(0.003) (0.003) (0.003) (0.003) 

     

Fixed effects Day-location Day-location Day-location Day-location 

N 382,141 382,141 382,141 371,883 

R-sq 0.002 0.003 0.004 0.002 

Dependent variable is number of tweets as identified in column headers. All variables are normalized using airline-airport mean and standard deviation. Location is defined 

by airport. Robust standard errors clustered by airport in parentheses. Day-location fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, 

**p<0.01, ***p<0.001  
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Table A11 

Robustness of Table 6: Tweets, On-Time Performance, and Market Dominance 
  

(1) (2) (3) (4) (5) 

Dependent Variable Standardized 

# Tweets 

Standardized 

# Tweets 

Standardized 

# Tweets 

Standardized 

# Tweets 

Standardized 

# Tweets 

Location Measure Closest airport Closest airport Airport in 

tweet 

Both Airport-

level location 

measures 

Within two 

miles of 

airport 

Flights delayed or canceled 0.039*** 0.044*** 0.055*** 0.062*** 0.039*** 

(0.004) (0.004) (0.004) (0.004) (0.003) 

Flights delayed or canceled 

x Airline 15-30% share city 

0.012+     

(0.006)     

Flights delayed or canceled 

x Airline 30-50% share city 

0.045*** 0.040*** 0.049*** 0.051*** 0.030** 

(0.009) (0.009) (0.011) (0.009) (0.010) 

Flights delayed or canceled 

x Airline >50% share city 

0.100*** 0.097*** 0.135*** 0.136*** 0.091*** 

(0.018) (0.019) (0.023) (0.023) (0.019) 

Airline flights departing 

that airport 

-0.001 -0.001 0.001 0.001 0.005+ 

(0.003) (0.003) (0.003) (0.003) (0.003) 

Fixed effects Day-location Day-location Day-location Day-location Day-location 

N 382,141 382,141 382,141 382,141 371,883 

R-sq 0.003 0.003 0.004 0.005 0.002 

Dependent variable is number of tweets as identified in column headers. All variables are normalized using airline-airport mean and standard deviation. Location 

is defined by airport. Robust standard errors clustered by airport in parentheses. Day-location fixed effects are differenced out using stata’s xtreg, fe command. 

+p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table A12 

Robustness of Table 7: On-Time Performance Mentioned in Tweet 

 
(1) (2) (3) (4) 

 
Standardized 

Number 

tweets about 

on-time 

performance 

Standardized 

Number 

tweets  not 

about on-time 

performance 

Standardized 

Number 

tweets about 

on-time 

performance 

Standardized 

Number 

tweets not 

about on-time 

performance 

Flights delayed or canceled 0.064*** 0.034*** 0.056*** 0.028*** 

(0.005) (0.003) (0.004) (0.003) 

Flights delayed or canceled x Airline 30-50% 

share city 
  0.040*** 0.031*** 

  (0.011) (0.008) 

Flights delayed or canceled x Airline >50% 

share city 
  0.108*** 0.077*** 

  (0.020) (0.018) 

Airline flights departing that airport -0.004 0.001 -0.005+ 0.001 

(0.002) (0.003) (0.002) (0.003) 

     

Fixed effects Day-location Day-location Day-location Day-location 

N 380,637 382,141 380,637 382,141 

R-sq 0.003 0.001 0.003 0.001 

Dependent variable is number of tweets as identified in column headers. All variables are normalized using airline-airport mean 

and standard deviation. Location is defined by airport. Robust standard errors clustered by airport in parentheses. Day-location 

fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table A13 

Robustness of Table 8: Sentiment 

 
(1) (2) (3) (4) (5) (6) 

 
Standardized 

Average 

negative 

sentiment 

Standardized 

Average 

negative 

sentiment 

Standardized 

Number of 

very 

negative 

tweets 

Standardized 

Number of 

very 

positive 

tweets 

Standardized 

Number of 

very 

negative 

tweets 

Standardized 

Number of 

very 

positive 

tweets 

Flights delayed or canceled 0.085*** 0.079*** 0.063*** 0.014*** 0.055*** 0.009*** 

(0.007) (0.007) (0.004) (0.003) (0.004) (0.003) 

Flights delayed or canceled x 

Airline 30-50% share city 
 0.036*   0.037** 0.021** 

 (0.015)   (0.011) (0.007) 

Flights delayed or canceled x 

Airline >50% share city 
 0.005   0.104*** 0.053*** 

 (0.014)   (0.019) (0.015) 

Airline flights departing that 

airport 
-0.027*** -0.028*** -0.008** 0.006* -0.008*** 0.006* 

(0.007) (0.007) (0.002) (0.003) (0.002) (0.003) 

       

Fixed effects Day-

location 

Day-

location 

Day-

location 

Day-

location 

Day-

location 

Day-

location 

N 88,807 88,807 379,590 382,141 379,590 382,141 

R-sq 0.004 0.004 0.003 0.0001 0.003 0.0001 

Dependent variable is number of tweets as identified in column headers. All variables are normalized using airline-airport mean 

and standard deviation. Location is defined by airport. Robust standard errors clustered by airport in parentheses. Day-location 

fixed effects are differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001  



17 
 

Table A14 

Robustness of Table 9: Weather, Delay Cause, and the Relationship between On-Time 

Performance, Tweet Volume and Market Dominance 
 

(1) (2) (2) 

Dependent Variable Standardized 

# tweets 

Standardized 

# tweets 

Standardized 

# tweets 

# flights delayed or canceled 0.045*** 0.044***  

(0.004) (0.004)  

# flights delayed >15 min or canceled  

× 30-50% share  
0.041*** 0.041***  

(0.009) (0.009)  

# flights delayed >15 min or canceled  

× >50% share  
0.090*** 0.094***  

(0.020) (0.020)  

Rain, Snow, or Fog Dummy  

× 30-50% share  
0.0005   

(0.005)   

Rain, Snow, or Fog Dummy  

× >50% share  
0.004   

(0.009)   

Quantity of Precipitation  

× 30-50% share  
 -0.005  

 (0.005)  

Quantity of Precipitation  

× >50% share  
 -0.013  

 (0.009)  

# flights delayed > 15 min that are 

airline’s fault 
  0.040*** 

  (0.004) 

# flights delayed > 15 min that are 

airline’s fault × 30-50% share  
  0.017* 

  (0.008) 

# flights delayed >15 min that are 

airline’s fault × >50% share  
  0.069*** 

  (0.016) 

# flights delayed > 15 min that are not 

airline’s fault 
  0.018*** 

  (0.004) 

# flights delayed > 15 min that are not 

airline’s fault × 30-50% share  
  0.017* 

  (0.008) 

# flights delayed >15 min that are not 

airline’s fault × >50% share  
  0.026* 

  (0.011) 

# airline flights departing that airport -0.001 -0.001 0.001 

(0.003) (0.003) (0.004) 

    

Fixed effects Day-location Day-location Day-location 

N 352,415 348,881 260,442 

R-sq 0.003 0.003 0.003 

Dependent variable is airport-level tweets with goecode. Airline fault is defined by the airline in 

regulatory filings. All variables are normalized using airline-location mean and standard deviation. 

Unit of observation is the location-airline-day. Location is defined by airport. Robust standard errors 

clustered by airport in parentheses. Day-location fixed effects are differenced out using stata’s xtreg, 

fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001  
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Table A15 

Robustness of Table 11: Handles 

 
(1) (2) (3) (4) 

 
Standardized 

Number 

tweets to 

handle 

Standardized 

Number 

tweets not to 

handle 

Standardized 

Number 

tweets to 

handle 

Standardized 

Number 

tweets not to 

handle 

Flights delayed or canceled 0.050*** 0.024*** 0.042*** 0.020*** 

(0.004) (0.003) (0.003) (0.003) 

Flights delayed or canceled x Airline 30-

50% share city 
  0.043*** 0.016+ 

  (0.009) (0.008) 

Flights delayed or canceled x Airline 

>50% share city 
  0.089*** 0.068*** 

  (0.018) (0.016) 

Airline flights departing that airport -0.002 0.005+ -0.003 0.005+ 

(0.002) (0.003) (0.002) (0.003) 

     

Fixed effects Day-location Day-location Day-location Day-

location 

N 382,141 382,141 382,141 382,141 

R-sq 0.002 0.0001 0.002 0.001 

Dependent variable is number of tweets as identified in column headers. All variables are normalized using 

airline-location mean and standard deviation. Location is defined by airport. Robust standard errors clustered 

by airport in parentheses. Airline-location fixed effects are estimated directly. Day-location fixed effects are 

differenced out using stata’s xtreg, fe command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table A6 

Robustness of Table 12: Relationship between On-Time Performance, Market Dominance, 

and Average Number of Followers 

 
 

(1) (2) 

Dependent Variable Standardized 

Average # of 

followers 

Standardized 

Average # of 

followers 

# flights delayed or canceled 0.001 -0.001 

(0.008) (0.008) 

# flights delayed >15 min or canceled  

× 30-50% share  
 0.011 

 (0.009) 

# flights delayed >15 min or canceled  

× >50% share  
 0.007 

 (0.015) 

# airline flights departing that airport -0.005 -0.005 

(0.005) (0.005) 

   

Fixed effects Day-location Day-location 

N 88,807 88,807 

R-sq 0.0001 0.0001 

Dependent variable is airport-level tweets with goecode. All variables are normalized using airline-location mean and 

standard deviation. Unit of observation is the location-airline-day. Location is defined by airport. Robust standard 

errors clustered by airport in parentheses. Day-location fixed effects are differenced out using stata’s xtreg, fe 

command. +p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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APPENDIX B: EXTENSIONS TO THE THEORY 

 

The model in the paper is geared towards a mass market industry like airlines. When a consumer leaves a 

firm, they do not expect the prices they face at other firms to change. In addition, the model does not fully 

model equilibrium outcomes. Here we amend the baseline model on both of these dimensions to 

demonstrate the robustness of the model’s conclusions. 

When exit raises price 

Here we consider a situation where, if a consumer exits, it has one less firm it can deal with. Suppose that 

all firms understand this and so they can set prices to this consumer differently. Then, an exiting consumer 

will face a higher price from other firms.  

To illustrate this, consider a Salop circle model with per unit transportation cost of t. Suppose that if a 

consumer exits a firm, they face a smaller circle with n – 1 firms evenly spaced. Thus, the price they face 

changes from 𝑐 + 𝑠𝐵 +
𝑡

𝑛
 to 𝑐 + 𝑠𝐵 +

𝑡

𝑛−1
.27 

With this, should it exit, the total costs for the consumer if they stay with the firm (LHS of B1 below) is 

that they face the same price (because the other consumers with that firm are presumably still under the 

assumption that there is a relational contract) while if they exit (RHS of B1 below), the price goes up but 

the consumer believes that if there is a complaint, they will get mitigation. The costs of staying are higher 

than those of exit if: 

𝑐 + 𝑠𝐵 +
𝑡

𝑛
≥ 𝑐 + 𝑠𝐵 +

𝑡

𝑛−1
− 𝑠(𝐵 − 𝐶)  (B1) 

⟹ 𝐵 ≥ 𝐶 +
𝑡

𝑠𝑛(𝑛−1)
 (B2) 

As n gets large, B2 will hold. For n = 2, 𝐵 ≥ 𝐶 +
𝑡

2𝑠
. Notice that this constraint varies with n in the opposite 

direction as the firm incentive constraint. This captures the other part of the Hirschman intuition. 

Given this, the full condition (that is, (*) in the paper’s model) becomes: 

𝛿

1−𝛿

𝑡

𝑛
≥ 𝐶 +

𝑡

𝑠𝑛(𝑛 − 1)
 

or  

𝛿𝑠𝑡(𝑛 − 1) − 𝑡(1 − 𝛿)

𝑠𝑛(𝑛 − 1)(1 − 𝛿)
≥ 𝐶 

                                                           
27 In a more realistic setting, the fact that a consumer is at a particular firm means that it will have a further distance 

from other firms if it exits and, if other firms understood that, the pricing outcome may be different. This is an 

interesting possibility but involves unnecessary complications for our purposes here, so we make the simplifying 

‘shrinkage’ assumption instead 
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It can be shown that this constraint is more likely to hold as n falls so the comparative static we have 

emphasized still holds. That is despite consumers facing increased prices if they exit, the relative costs of 

exit rise faster for firms.  

Full Equilibrium Model 

We now provide a model based on our baseline model (without exit-associated price changes) that will give 

us 𝑝(𝑛, 𝐵) as an equilibrium outcome. Suppose that the n firms compete a la Cournot with homogeneous 

goods. Suppose that the relational contract is in place (where each firm agrees to pay B should a consumer 

communicate a quality decline). Then 𝑝 = 𝑎 − 𝑠∆ + 𝑠(𝐵 − 𝐶) − 𝑏𝑄 where Q is industry output. In this 

case, under a Cournot equilibrium it can be shown that: 

𝑝(𝑛, 𝐵) =
𝑎 + 𝑐𝑛 + 𝑠(𝐵(𝑛 + 1) − 𝐶 − ∆)

𝑛 + 1
 

Note that as B is a pure transfer, it does not impact on prices nor profits. Given (*) in the paper, this means 

that a relational contract equilibrium will hold if: 

𝛿 (
𝑎 + 𝑐 − 𝑠∆

(𝑛 + 1)(1 − 𝛿) − 𝛿𝑠
) ≥ 𝐶 

As expected as n increases, the left hand side of this inequality falls.  

Note that allowing voice strictly reduces welfare. Prices are higher but consumer surplus is lower as are 

profits. The reason is that mitigation (B) is a transfer while communication cost (C) is a cost. For there to 

be welfare improvements, the firm must actually be induced to do something of value. 

Given this, what we need to check is whether the firm has a long-term incentive to keep to the relational 

contract. That is, this analysis checks if the firm is willing to honor a relational contract with individual 

customers but is it willing to honor it with all of them? Suppose that a firm decides to deviate and publicly 

promise not to respond to complaints while the remaining n – 1 firms continue to uphold the relational 

contract. In this case, the deviating firm ends up with an equilibrium price of: 

�̃� =
𝑎 + 𝑐𝑛 + 𝑠(𝐶(𝑛 − 1) − ∆)

𝑛 + 1
 

while the remaining firms end up with an equilibrium price of: 

𝑝(𝑛, 𝐵) =
𝑎 + 𝑐𝑛 + 𝑠(𝐵(1 + 𝑛) − 2𝐶 − ∆)

𝑛 + 1
 

Note that �̃� < 𝑝(𝑛, 𝐵) ⟹ 𝐶 < 𝐵. Let’s now compare the profits of the deviating firm to its profits in the 

full relational contracting equilibrium. The profits from deviating will be lower if: 

𝐵 ≥
𝑛

𝑛 + 1
𝐶 (2 −

𝑛𝑠𝐶

𝑎 − 𝑐 + 𝑠((𝑛 − 1)𝐶 − ∆)
) 

For n large, this becomes 𝐶 ≤ 𝐵 while for 𝑛 = 2, this becomes: 
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𝐵 ≥
4

3
(

𝑎 − 𝑐 − 𝑠∆

𝑎 − 𝑐 + 𝑠(𝐶 − ∆)
) 𝐶 

If B = C, then this becomes: 

𝑎 − 𝑐 − 𝑠∆ + 𝑠(𝑛 − 1)𝐶

2(𝑎 − 𝑐 − 𝑠∆) + 𝑠(𝑛 − 2)𝐶
≥

𝑛

𝑛 + 1
 

For n low, this holds but for n very large it does not hold. 

In summary, for n low, it is not worthwhile for a firm to deviate and refuse to acknowledge voice. 

 




