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1. Introduction

One branch of the "asset market approach" to exchange rates has focused
on the demand by residents of an open economy for foreign currency denominated
assets. In this view, people diversify their portfolios to hold a variety of
domestic and foreign assets with the aim of getting the maximum return on

their portfolios while taking into consideration the riskiness of the assets.

In particular, foreign currency denominated assets are subject to exchange
rate risk - or, perhaps more accurately, they might be subject to more
purchasing power risk than domestic assets. In the general equilibrium of

such a "portfolio balance" model, the supplies of outside assets affect

macroeconomic variables, including the exchange rate. The portfolio balance

approach to flexible exchange rates was pioneered by Black (1973), Kouri

(1976), Branson (1977) and Girton and Henderson (1977).
Some general forms of the portfolio balance model have been treated

empirically by, among others, Frankel(1982a, 1984), Branson, Haittunen and

Masson (1977, 1979), Dooley and Isard (1979, 1983) and Lewis (1986). These
models typically postulate that demand for domestic assets relative to foreign

assets is a function of i_i*_6, where i is the return on home assets, i is
the return on assets from abroad, and 8 is the expected rate of depreciation

of the domestic currency. The qusntity i_i*.8 is often referred to as the
risk premium in this literature. It represents the excess expected return the

domestic asset must pay to compensate for its riskiness. (Of course, the risk

premium as defined here could be negative, implying foreign assets pay a
greater expected rate of return.) These papers proceed by making some

assumption on how expectations of the future exchange rate are formed, and
then estimate bond demand equations as functions of the risk premium, or else
estimate a reduced form in which the exchange rate depends on asset supplies.

The portfolio balance approach can be seen as one possible explanation of
the finding by many authors (incluiing Geweke and Feige (1979), Frankel
(1980), Hansen and Hodrick (1980) and Cumby and Obstfeld (1981)) that
uncovered interest parity does not hold. That is, in the sample periods
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tested, the conditionally expected return differential between comparable
assets across countries is non-zero (i+1_i+i—5+1 has a non-zero mean
conditional on information available at time t). Although the presence of a
risk premium is one explanation for this finding, others include the
possibility of inefficient markets or a peso problem.

Numerous studies have tested whether the rejection of uncovered interest

parity is attributable to a risk premium, without resorting directly to

estimating bond demand equations. Various ingenious approaches have been

taken by Hansen and Hodrick (1983), Hodrick and Srivastava (1984), Domowitz

and Hakkio (1985), Mark (1985), Cumby (1986), Giovannini and Jorion (1987a),

and Kaininsky and Peruga (1986). These studies typically exploit the time
series properties of asset returns (and sometimes other variables sth as
consumption) without relying on asset supply data.

Cie branch of this literature can be viewed as a refinement on the

portfolio balance models, in that it derives asset demand equations (rather

than asset pricing equations as in most of the literature cited in the

previous paragraph) from an underlying utility maximization approach. Frankel

(1982b) proposed that a popular and reasonable model of asset diversification

-- the capital asset pricing model (CAF1) -- can be implemented for

international asset data and estimated. Furthermore, the restrictions that

CAI1 places on more general bond demand equations can be tested. Papers that
employ this type of international CAB test include Frankel (1983), Frankel
and Engel (1984), and Engel and Rodrigues (1986).

These papers demonstrate that CAW implies an equation of the form:

(1) Etzt+i c +

where z1 is a vector of real rates of return between time t and t+1 relative
to the real return on some numeraire asset (the jth real return is calculated

as [(1+i3)(l+a3)/(1+n)] — 1, where i is the nominal rate of return of an asset

in its own currency, a is the rate of appreciation of the currency relative to

the currency of the numeraire asset and i is the rate of inflation of prices
in the currency of the numeraire asset), c is a vector of constants, P is a
constant that is a measure of relative risk aversion of the typical market
participant, 0 is the conditional variance at time t of z1, arid - is a
vector whose jth element is the value of the total outstanding supply of the
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jth asset as a share of the value of all assets. The derivation of this
equation assumes that all investors have the same consumption basket, and that
the law of one price holds.

Frankel's key observation is that if Etzt+i is replaced by the realized
values of z1, then under rational expectations, the variance of the vector
of forecast errors (zt+i_Etzt+i) should equal 0. This suggests an empirical
test of CAPM. Regress each relative ex—post rate of return on all of the asset
shares in A.. If there are N assets (not counting the numeraire), this would
yield an NxN matrix of regression coefficients that under the CA14 hypothesis
should be proportional to the covariance matrix of the regression errors —

with the constant of proportionality equal to P.

In the international finance context, this idea has been implemented by

constructing aggregate asset data comprised of the outstanding obligations of

governments from each of several countries. Dollar assets are chosen as

numeraire, and average real returns for assets from each of the other

countries relative to the real return on dollar assets are calculated. In the

CAF4 tests that have been performed using this technique there has been little
support for the restrictions imposed by the CAPM theory. (See Frankel (1986)
for a discussion of this literature.)

Typically the conditional variance, 0, has been treated as a constant.
However, several authors, including Hodrick and Srivastava (1984), Ciznby and
Obstfeld (1984), Hsieh (1984) and Diebold and Nerlove (1986) have noted that
forecast errors in foreign exchange markets are notoriously heteroskedastjc.

Giovanniril and Jorion (1987a) offer some "back of the envelope" calculations
that suggest that the degree of variability over time in 0 is large enough to

account for the empitical failure of the CAI!1 model. (However, see Giovannini
and Jorion (198Th) and Frankel (1987)).

The international finance literature does not offer a very good guide to
the determinants of the variance of the forecast error. It seems plausible
that forecasts should have higher variance in times of economic turbulence.
(tie approach we take in this paper is to let 0 vary over time as a function of
macroeconomic data such as the U.S. money supply and oil prices. If, in fact
shocks to the U.S. money supply and dollar oil prices increased the difficulty
of forecasting foreign exchange rates, then the constant variance models of
Frankel are misspecified. They base their measurement of the forecast
variance at any time on the average of past squared forecast errors. However,
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if the money supply or oil prices have been behaving erratically in the recent
past, it is likely that the exchange rate forecast variance will increase.

A method of modelling time-varying variances that does not rely on
macroeconomic data has been suggested by Engle (1982). In essence, he
postulates that the variance this period is likely to be large following a
large error (positive or negative) in the previous period. In a univariate
context, for example, we might see

a + I3e,
where a is the variance this period, and E is the forecast error made at t for
the time t-1 forecast. This modelling of the variance is labelled
autoregressive conditional heteroskedasticity (ARCH) by Engle. ARCH models

have been used in the foreign exchange literature by Dojnowitz and Hakkio
(1985), Hsieh (1985) and Kaminsky and Peruga (1986).

In this paper we estinte and test a six-country international CAI4
model, allowing for time-varying variances following both ARCH specifications
and models relating the variance to macroeconomic data. We use aggregate asset
data representing the nominal obligations of six governments - France,
Germany, Italy, Japan, the U.K. and the U.S. - and the rates of return from

Eurocurrency markets from April 1973 to December 1984. These CAI1 tests can

be viewed as a direct extension of Frankel's tests by allowing for

heteroskedasticity. This work is also quite similar to that of Bollerslev,

Engle and Wooldridge (1985), who estimate - but do not test the restrictions

imposed by - one CAPH model for domestic U.S. assets, using nominal rates of

return.

We also allow for a generalization of the Frankel-type CAPH model by

introducing the possibility that the empirical CAEM equation (1) does not hold

exactly. We imbed the model in the traditional measurement error framework
and test the CAPH restriction under the assumption that the variance of the

forecast error depends on observable data. We are able to identify the

elements of the variance matrix of the measurement error because they are

assumed to be time-invariant, as opposed to the variance of the forecast

errors.

In section 2 we introduce the time-varying variance CA1 model and test
CAPH under the assumption that the variance is a function of macroeconomic
variables. In the next section, some multivariate ARCH models are presented
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and estimated. The CAF1 restrictions are tested. Section 4 presents the
measurement error nxxiel, and section 5 conchxies. The appenthces contain
thscussions of the Lagrange multiplier tests that appear throughout the paper,
the sources of the data, and the estimation techniques.
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2. CAP1 with Time-Varying Variances

A general model of the real rates of return on N+1 assets might be that
the rates of return are influenced by changes in the value of the outstanding
supply of these assets. Thus, one might expect that for any given asset, its
expected rate of return would rise if the supply of that asset increased. The
expected return on this asset may also be influenced by an increase in the
supplies of other assets.

Choosing one asset as numeraire, the expected rates of return on the
N—vector for the other assets relative to the numeraire might be a function of
the value of the supplies of these assets as a share of the total value of the
N+1 assets. Thus, we could write:

(2) Etzt+i 0 +

where B is an NxN matrix of coefficients, and the other variables are defined

as in section 1. In this general form of the equation, B could vary over

time.

Equation (1) is clearly a restriction on equation (2) - it forces the

matrix of coefficients in the N equations to be proportional to the covariance
matrix of forecast errors of z1. In the earlier papers that have tested

international CAB1, B and Q were treated as constants. Here, we allow both th

vary over time. As in the previous literature, we can test the restriction

imposed by CAB,1 that B is proportional to 0.

In this paper, there are six aggregate assets. Each is essentially the

outstanding debt at the end of period t of each of the six governments. The

debt is calculated in such a way as to inclixle only the value of debt in the
hands of the public. For example, corrections are made for foreign exchange
intervention by central banks that may remove some of the obligations of one
government from public hands and replace it with another. The calculation of

the data is described in detail in Frankel (1982b). The data set used here is

an updated data set kindly provided to us by Alberto Giovannini. The asset

share data are measured at the end of the month and run from April 1973 to

December 1984. See Appendix 2 for a description of the data.
To produce an empirical model, it is assumed that expectations are formed
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rationally. Thus equations (1) and (2) can be transformed into regression

equations by replacing the expected value of with the ex post realized
value of this variable, and appending an error term equal to the forecast
error at the end of each equation. Thus, the ex post real rates of return are
used to calculate z1, with the dollar as the nuineraire asset. The rate of
return the asset of each country is calculated in dollar terms as

1/S, where i is constructed for each country from spot
one—month forward exchange rates and the Eurodollar one-month rate assuming
covered interest parity, and S is the end of period exchange rate in dollars
per unit of each country's currency (e •g., the dollars per mark exchange
rate) .Each nominal rate is then deflated by the comnon deflator which
is a dollar inflation index. is a geometrically weighted average of price

indices of the six countries (converted into dollar terms by multiplying by

Sr). The ex post rates of return are measured from July 1973 to January 1985.
These data are described in more detail in Appendix 2.

We assume that errors are distributed normally. The log likelihood for
observation t is given by

(3) lnL —2.5lnn —.51nI0I —.5(z — c — BtXt)'Q(zt — c —
BtXt).

When the CARl constraint is imposed,
Bt PQ. We estimate the likelihood

under alternative asswiptions about the behavior of 0 over time.
Table 1 reports the maximum likelihood estimates of' the model under the

CAPM constraint and under the additional constraint that the variance matrix
be constant over time. These estimates correspond to those reported by
Franke]. (1982b) and Frankel and Engel (1984).

Although the point estimate of p in this model is negative, its standard
error is very large, so that essentially no economically reasonable value of P
can be ruled out. In particular, p 0 is not rejected, which would say that
there is no evidence of a risk premium.

Table 1 also reports the Lagrange Multiplier (UI) statistic for a test of
CARl. (Our calculation of the Lagrange Multiplier statistics in this paper is
described in detail in Appendix 1.) The alternative hypothesis is actually a
somewhat restricted version of the general unrestricted version of the model
in equation 2. In the test reported here, under the alternative hypothesis B
is still restricted to be symmetric, although it is no longer proportional to
the covar lance matrix. This means that a one unit increase in the supply of
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asset j has the same effect on the relative return of asset i that a one unit
increase in the supply of asset j has on the return of asset i. CAPM is
rejected at the 1% level even against this restricted form of the alternative
hypothesis. The test statistic reported is with 14 degrees of freedom.
(We are testing 15 proportionality restrictions while estimating the

constant of proportionality, implying 14 unique restrictions.)

In this constant variance version there is not much encouraging news for

the CAR4 hypothesis. However, the CARl model does not require that 0 be
constant over time. Q represents the variance conditional on information

available at time t. It is a measure of dispersion of forecast errors for

market participants. Frankel's formulation of CARl is a significant advance

on those empirical specifications that require the "beta" of each asset to be

constant over time or else vary in a deterministic way. The "beta" for each

asset will, in fact, vary as the supplies of the assets change over time. But
there is another possible source of variation in the beta that Frankel does
not allow for, and that is the change over time in 0.

The CARl hypothesis does not provide any particular clue to the source of
change in the conditional variance of forecast errors over time. A more
complete general equilibriin model of the economy would investigate the source
of shocks to the economy and indicate what might cause fluctuations in the
forecast variance. In the absence of such a model, we will test some
plausible macroeconomic sources of variation.

Each element of' the covariance matrix 0 could vary independently with the
macroeconomic data (subject to the synmietry constraint on 0). Thus, in our
five equation model, each of the 15 elements of 0 might be a linear function
of some variable or variables x. As a practical matter, this five equation
system with the constraint imposed between coefficients and the variance
matrix is very difficult to estimate. We find it desirable to parameterize

the process parsimoniously, at least in our first pass at estimating the
time—varying variance model. Thus, we let the variance depend on only one

variable at a time, and initially we model the variance according to

(4)

In this equation, P is an upper triangular matrix of parameters to be
estimated and h is column vector of parameters. The macroeconomic variable
is given by x. In all cases the values of the data are positive numbers, so

8



the form of equation (4) guarantees that the estimated 0 matrix is positive
semi—definite. In practice, imposing this positive-semi-definiteness

constraint is useful in achieving convergence of the maximum likelihood
estimates. Note that we are restricting the variance to depend only on one x
(at a time) and that only twenty parameters are used to describe the relation
between the variance and the macroeconomic data. The variance refers to
the variance of the forecast made at time t of t+1 variables, and that this
variance is a function only of variables known at time t.

We have chosen macroeconomic variables that seem most likely to have
influenced the variance of forecast errors of the exchange rate. We allow the
variance to depend on stationary representations of the U.S. money supply and
of the dollar price of oil. Both variables had very large economic effects
during our sample period both in the U.S. and abroad. Furthermore, it is

likely that the size and unpredictability of these variables over this span of
time added to the variability of forecasts of many macroeconomic variables,

including exchange rates. In tables 2 and 3 the variance is a function of the

square of the change in the logs of money and oil prices, respectively.

The assumption of rational expectations might lead one to conclude that

only unexpected changes in oil prices or the money supply would increase the
difficulty of making forecasts. In this view, consumers are able to form
expectations of the money supply and oil prices given the past behavior of
these variables. A large, but expected, change in one of them will not add
any uncertainty, or make forecasts of exchange rates more difficult. To allow
for this possibility, we fit ARIMA models to the logs of U.S. Ml and dollar

oil prices. We then squared the residuals, and allowed for the variance of

the exchange rate forecast to increase if there were a large innovation in one

of these variables in the previous month. Appendix 2 contains a description
of the ARIMA models.

Table 2 reports the estimates of the model when the variance is allowed
to depend on the square of the one month change in the log of the U.S. money
supply. Three of the coefficients in the h vector are individually
significantly different from zero, and the chi-square test indicates that they
are jointly significant at the 5% level. Thus we can reject the constant 0

version of CAPM, in favor of a model in which the forecast variances are
greater when there are large percentage changes in the money supply.

Given that this model is a significant improvement on the model whose

9



estimates are reported in Table 1, we now want to test whether the
restrictions imposed by CARl are binding. In Table 5, the coefficients were
constrained to be proportional to the variance matrix 0. The unconstrained
model in this case would let the coefficient matrix B (from equation (2)) vary
over time as a function of the square of the change in the log of the money
supply, and not be constrained to be related in any way to the 0 matrix. At
the bottom of Table 5 is reported the LII statistic for the test of the CAFI
restriction against the alternative that B is symmetric but not constrained to
be proportional to the variance matrix of the residuals. The statistic has
19 degrees of freedom and, as indicated in the table, shows that the CA1
restrictions are strongly rejected. Actually, visual inspection of Table 2 is
enough to cast serious doubt on the CARl hypothesis since the point estimate
of p is negative (but not significantly different from zero).

A note of caution is in order here. Suppose the UI test had failed to

reject the CARl restrictions in Table 5. How should we interpret such a

failure to reject? We estimate p quite imprecisely, and in fact cannot reject

that p is zero. But this means that we cannot reject the hypothesis that our

explanatory variables have no ability to explain our dependent variables,

since all of the explanatory variables are multiplied by P. Thus, were we not

to reject CARl, probably the correct interpretation would be that we are
unable to explain relative rates of return using asset shares —— but we seem
to do about as badly whether or not the restrictions of CARl are imposed.

Table 3 reports the results of the estimation in which the variance of

the forecast errors is a linear function of the square of the change in the

dollar price of oil. Here we do not quite reject the hypothesis that the

macro data do not help explain changes in the variances and that 0 is constant

at the 5% level. None of the elements of the h vector are individually

significantly different from zero. The UI test at the bottom of the table

indicates that the CAPM restrictions are strongly rejected.

The hypotheses that the variance in the forecast errors is related to the

size of unanticipated changes in money and oil prices are tested in Tables 4

and 5. We in fact find that the squared ARIMA residuals for oil prices do a

good job of explaining changes in the variance under the CARl restrictions (in

the sense that the likelihood is significantly improved over the constant 0

model), but the ARIMA residuals for money are not as successful. However, in

both cases the point estimate of p is negative, and in both cases the 121 test
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rejects the CABI restrictions in favor of the more general model of equation
2. It is interesting that the unexpected squared changes in the oil prices do

a better job of explaining the variance than the squared changes in the
variable itself. However, since the restricted model is rejected, not too
much significance can be attached to this outcome.

Equation (4) restricts the matrix of coefficients that multiplies the

macroeconomic variable to have only five independent parameters. We also

estimated the general form of equation (4) in which the matrix multiplying the

macro variable has fifteen parameters. Specifically, we take the variance to
be given by

(5)

where Q is an upper triangular matrix. This formulation imposes the
constraint that 0 be positive semi-definite. The five parameter version of

this model given by equation (4) is a restriction on equation (5) which forces
all but the top row of Q to equal zero -- providing ten zero restrictions.

In no case is the 15 parameter model a significant improvement on the 5

parameter model of equation (4). Table 6 reports the log likelihoods, the

statistics and the p-values for the null hypothesis that all but the top row
of Q is zero. In no case is the null hypothesis rejected at the 5% level.

In this section we have found some evidence that the variance of the
forecast error does change over time. In particular, we find that the square
of the unanticipated monthly growth rate of dollar oil prices and of the
monthly growth rate of U.S. Ml are significant explainers of the variance of
the residuals. Thus, the constant 0 version of CARl can be rejected.
However, these models offer little consolation for the more general CAW

model, since the CARl restrictions are in every case strongly rejected. The

next section considers a more time series oriented model of the variance
process — the AEJH model.
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3. CARl with ARCH

Often the economist does not know the true model of the variance.

Without a full general equilibrliml model of the economy, we do not know

exactly which macroeconomic variables the variance should be related to. In

such a case Engle's (1982) ARCH model is well-suited.

Engle 'S model does not require knowledge of the structure of the economy.
Instead, it makes the reasonable postulation that, for example, if the
absolute size of errors in t—1 are large, that the conditional variance at
time t would be larger than average. This is the essence of the ARCH
hypothesis.

In this section we apply the general idea of ARCH to our five equation
CARl system. We test two versions of ARCH. They take the general form:

(6)

where P is a constant upper triangular matrix, G is a constant syninetric
matrix and ef represents the lagged forecast error (the error made in
predicting the returns between t-1 and t). This formulation ensures that the
estimated variance matrices are positive semi-definite. (This property is not

necessarily satisfied in the ARCH formulation used by Bollerslev, Erigle and
Wooldridge.)

Equation (6) represents a particular form of a first—order ARCH. In our
applications we will take G first to be diagonal (so that it has five

independent non-zero elements) and then we will consider the general syninetric
case for G (with fifteen independent elements). Even our "general" case is a
quite parsimonious fonn of a first order ARCH. There are 15 elements in the

time t conditional covariance matrix. In its most general formulation, each

of those 15 elements could be related linearly to each of the 15 elements in

the moment matrix for the lagged residual. Thus, for the general first-order
ARCH, we could postulate a model with 225 parameters relating the current
conditional variance to the lagged errors. Moreover, in generalized ARCH
models (see Bollerslev (1986)), the variance matrix is essentially related to
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a distributed lag of error moment matrices. In a multiple equation model such
as the one estimated here, the niziber of ARCH parameters increases quite
quickly with the nuaber of equations.

Two considerations motivate our model of equation (6). First, estimation

of a five-equation ARCH system that imposes constraints between coefficients

and elements of the variance matrix is very difficult. It is made much more

manageable by choosing specifications with a low nimiber of parameters. The
less parsimoniously parameterized versions are not only more difficult to

estimate, but given the limited data set from the floating rate period, they
also leave too few degrees of freedom for meaningful estimation. The second
advantage of our formulation is that it constrains the estimates of the
variance to be positive definite (while the Bollerslev, Engle and Wooldridge

set-up does not). This turns out to be of great practical importance in

estimating a large multi-equation ARCH system.

In Table 7 we present the results of an ARCH estimation in which the

matrix G is diagonal. Thus, there are five ARCH parameters to estimate. The
constant variance model could be thought of as a constrained version of this

time-varying variance formulation, in which the five ARCH parameters are
forced to be zero. It is easy to perform a likelihood ratio test of this

constraint. Doubling the difference between the log likelihood for the model

reported in Table 7 and the one reported in Table 1 gives a statistic with

5 degrees of freedom equal to 37.78. This is easily significant at the 1%

level — so we can reject the constraint that the variance is constant over
time.

The ARCH parameters range in size from about .23 to about .64, so the

variance process appears stationary over time. (All the parameters are

significantly different from one.) Four of the five parameters are
significantly different from zero at the 1% level in a two-sided t test.

Allowing the variance to change over time greatly reduces the standard

error on the estimated coefficient of relative risk aversion. It drops from
42.7 as reported in Table 1 to 15.0 in the ARCH model presented in Table 10.

The point estimate of p is extremely high - around 13.6. In a one—sided t

test it is not significantly different from zero at the 5% level.

This model with the CARl constraint is tested against the alternative
that the B matrix has the same form as 0 but is not constrained to be

proportional to the covariance matrix. As the UI statistic in table 7
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indicates, CA14 is still strongly rejected at the 1% level.

Figures la-le are graphs of the estimated conditional variances from this
model. Also drawn on the graph is an estimate of the unconditional variance.
In most periods the conditional variances are much smaller than the
unconditional one. Frankel (1986) argued that, given the size of his
estimates of the unconditional variance, a change in the supply of outside
assets is unlikely to generate much change in the risk premium, since the
change in the risk premium is the product of the change in the asset supply
and the variance of exchange rate forecasts (times p). Furthermore, he argues
that the conditional variance will be smaller than the unconditional variance,
so that even if the variance were allowed to vary over time the CARl model
still could not explain much of the exchange risk premium. Pagan (1986) has
pointed out that, in fact, the conditional variance need not be smaller than
the unconditional variance. The graphs in Figure 1 confirm that for some
periods the conditional variances are much larger than the unconditional
variance. However, on average they must be smaller, as Frankel (1987)
indicates.

If the variance does vary over time, the variability of the variances
themselves might explain the observed size of risk premia within the framework
of CARI. This point is brought out in the exchange between Giovannini and
Jorion (1987a, 198Th) and Frankel (1987). The results from our ARCH
estimation and CARl tests, though, make this speculation moot. Our estimation
does allow the variance to change, but CARl is still strongly rejected.

Because the five parameter ARCH model of CARl is such a large improvement
on the CARl model constrained to have a constant variance, we proceed to test
a less sparsely parameterized ARCH model. Table 8 reports the results of the
estimation in which the G matrix is allowed to be a general syimaetric matrix.
There are 15 independent elements in G.

The 5 parameter ARCH is a restricted version of the ARCH in this model in
which all the off diagonal elements are forced to be zero. That imposes ten
restrictions on this richer specification. The likelihood ratio test for
these restrictions yields a statistic with ten degrees of freedom of 43.34,

which is easily significant at the 1% level. Thus, we seem to gain a lot by

going to this more general specification.

There is one troubling aspect to this particular form of the model.The

characteristic roots of the estimated G matrix are —.646, .198, .305, .421 and

14



1.144. This last root indicates the possibility of non-stationarity in the

variance process.
If indeed the ARCH process is not stationary, Engle and Bollerslev (1986)

suggest that the limiting distributions of the coefficients and test
statistics as reported here may not be correct. Not much is known about the
asymptotic properties of ARCH models with unit roots. We will proceed here by
reporting our test statistics, but they should be interpreted with caution.

Figures 2a-2e show the estimates of the conditional variances for the

five relative real rates of return in this model. As in the five-parameter

ARCH model, there are a few periods in which the conditional variances are

very large relative to the remainder of the time. We do not inckde an

estimate of the unconditional variance here, because the non-stationarity of

the variance in our estimates indicates that the unconditional variance does
not exist.

This ARCH specification once again reduces the standard error of the

estimate of p — from 15.0 in the 5 parameter ARCH to 9.4 here. The estimate

of p is negative and significantly different from zero. This would be very

troubling were it not for the fact that the restrictions of CM1 relative to a

formulation of asset demands with a syniDetric B are very strongly rejected.

The rejection is much stronger than in any of our earlier specifications of

the CAI1 model. So, the model reported in Table 8 is not capturing the true
behavior of investors in international financial markets.

It is not clear why CA1 fares so badly in this case. Perhaps the

non-stationarity in the variance is distorting the test statistics, but more
likely the CAI1 restrictions are just very strong relative to a model that
allows returns to depend in a relatively unrestricted way on asset shares and

lagged covariances.
It is possible that we have not considered a general enough ARCH

specification. Perhaps the variance is related to the moment matrix of

forecast errors at lags greater than 1. We tested for this possibility
following a suggestion of Bollersev (1986). We performed some time-series

identification on the squared deviations from means of the relative rates of

return. We found in all cases either no serial correlation or support for the

MA1 specification. These results are consistent with our choice of ARCH

models. In particular, there was no evidence of an AR1 component in any of

the series, which would support Bollerslev's QARCH specification.
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In sections 2 and 3 we have estimated a variety of CAPM models with

time-varying variances. There seems to be abundant evidence that the

explanatory power of the model is increased by letting the conditional
covariances of the asset returns to change over time. Yet, these more
sophisticated models still provide no support for the CA1I restrictions

between coefficients and variances when tested against the more general
unconstrained asset pricing models. We perform six LII tests of the capital
asset pricing model in sections 2 and 3, and they all reject the restrictions.

In the next section we take up the possibility of some specific cases of

misspecification in equation (1).

4. Measurement Error

The model presented in equation (1) and estimated in sections 2 and 3 is

a model in which it is assumed that the CM"1 equation holds exactly and all

variables are measured without error, so that the residual in the estimating

equation can be identified with the forecast error. There is a large class of

empirical macroeconomic models that make the same assumptions in order to

exploit "orthogonality conditions". These assumptions are particularly

convenient because they rule out any simultaneous equations problem. The

right hand side variables in equation (1) are uncorrelated with the error term
because under rational expectations all currently known variables are

orthogonal to forecast errors.
Suppose that equation (1) did not exactly describe investors' behavior,

but instead it was only correct on average. Preference shocks, for example,

would be represented by a disturbance appended to the true model of equation
(1). Then when we replace the expectation of z1 with its realization, the

disturbance term in the estimating equation will be the sum of the forecast

error and the preference shocks. In this case, the explanatory variables —-

the asset shares —— would be correlated with the error, since we would expect

that as risk preferences change the values of the outstanding stocks of the
assets would also change. Thus, the estimation techniques undertaken here
would be rendered invalid. It should be understood, then, as Frankel and

Engel discuss, that the CARl tests discussed previously in this paper are

16



tests that the CA11 equation (1) holds exactly.
There is another problem that the addition of demand errors cause that

is special to this problem and would not necessarily appear in some other test
of "orthogonality conditions". It is also present if there is measurement
error in either the dependent or explanatory variables. When some source of
error other than the forecast error is present in the residual, it is no
longer the case that under CA11 the coefficients on the asset shares should be
proportional to the variance of the residual. They should only be
proportional to the variance of the forecast error.

Although we offer no general solution to the problems of

misspecification, we can generalize the tests in one direction when forecast

errors have a time-varying variance. We can identify and estimate equation

(1) even if there is measurement error in the rates of return. This
identification is possible when the variance of the forecast errors is a

function of observable data, and the variance of the measurement error is

constant.

Our economic model is still given by equation (1), but the model to

estimate no longer simply replaces Etzt+i with z1 - We now have:

(7) z1 = c + POX + +

where u is the measurement error of z. The variance of C is given by 0 while

the variance of u is equal to E. We assiuoe that u is uncorrelated with C and

A, and that E is constant.

The likelihood for the model in this case is given by:

(8) lnL = —2.51n?r
_.51n1+tl _.5(zt — c — BtAt)'+t1(zt — c — BtAt),

where + Var C + ut+i) + E. When the CAR4 constraint is imposed,

the matrix of coefficients is proportional to the variance of the forecast

errors: Bt p0•
It is useful to consider for a moment why E is identified in this model.

Intuitively, identification comes because the part of the variance that also
appears in the asset pricing equations is time-varying, while the

measurement error variance (E) is not. Suppose the forecast error variance

were constant as in the Frankel empirical models. Then it would be impossible
to distinguish between the forecast error variance and the measurement error
variance. Suppose we had some estimate of this hypothetically constant 0 as
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well as estimates of p, , arxi + that maximized the likelihood. We could
obtain the same value of the likelihood with, for example, a 20, a value

* * *of p .5p, a value of + - 0 , and the same estimate of +. However,
when is time-varying, we can no longer perturb its value without changing
the value of the likelihood, since the forecast error variance is the only
part of the total error variance that changes with time.

We only consider models of the forecast error variance in which the
variance depends on macroeconomic data, as in equation (4). While we are able
to separate out the variance of the forecast errors from the variance of the
measurement error, we cannot distinguish between the forecast error and the
measurement error themselves. The ARCH model, however, requires that the
forecast errors be identifiable, if we hypothesize that the variance of the
forecast error depends on the lagged moment matrix of realized forecast
errors. So, we must abandon ARCH as our model of the time—varying variance of
forecast errors, and instead rely on equation (4).

The models of section 2 are restricted forms of equation (7). They force

the matrix E to be zero. As in the previous sections, we choose a form for

the variance that ensures it is positive semi-definite. Equation (4) defines

our model for For the variance of the measurement error we impose

(9) Q'Q
where Q is an upper triangular matrix. The models of section 2 force Q to
equal zero —— a total of 15 restrictions.

We calculate maxiirn.mi likelihood estimates for the model using the two
macroeconomic variables that seemed to do the best job in explaining the
variances in sections 2 and 4 of this paper -- the square of the change in the
log of money and the squared residual from the oil price ARIMA. Results of
this estimation are reported in tables 9 and 10.

These measurement error models do not significantly improve the
explanatory power of the models estimated in section 2 where the asset pricing
equation was assumed to hold identically. Table 9, which contains the
estimates for the model in which money helps explain forecast error variances,

reports a log likelihood of 1652.55. The restricted form of this model,

reported in table 2, has a log likelihood of 1647.63. While the log

likelihood of the restricted model is of necessity lower than of the

unrestricted, the chi-square test of the 15 restrictions yields a statistic of

9.84 which is far less than the 5% critical level of 25.0.
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The same conclusions can be drawn from the model in which the square of
the innovation of the oil price is a determinant of the conditional variance
of the forecast errors, as indicated in Table 10. The log of the likelihood

for this model is 1651.08, compared to the log likelihood for its

corresponding restricted model reported in Table 5 of 1645.89. The chi—square

statistic with 15 degrees of freedom is 9.38, which again is insignificant.

In general, the measurement error model does very poorly. The point

estimates of p are quite unappealing. There seems to be a high degree of

correlation between the elements of P and Q, as evidenced by the high standard
errors on the individual components of the two matrices (while in the

restricted models of Tables 2 and 5, the elements of P are estimated with a
great deal of precision). While the evidence of sections 2 and 3 has provided
little support for the CARl model, it is clear that the measurement error
model is not the solution to the misspecification.
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6. Conclusion
The CA4 model is in many respects a very attractive model for pricing of

international assets. It can be derived from a (restrictive) utility

maximizing framework, and the asset demand equations that it produces are a
special case of those stodied in the portfolio balance literature.
Unfortunately, the restrictions that CAR1 places on those more general asset
demand equations -- restrictions that imply that the returns on assets are
functions not only of the supplies of assets, but also of the variances and
covar lances of the asset returns —— have universally been rejected in previous
literature. Although this paper allows for substantial generalization of the
CARl model, its restrictions are still not accepted.

One might think of several reasons why previous papers have rejected CARl
-- but some of the most important problems with past models are taken care of
here. One of the most obvious problems, as pointed out by Giovannini and
Jorion (1987a) among others, is that in practice those who have implemented
the Frankel test have assumed the forecast error variances and covariances to
be constant over time. Given the abundant evidence of heteroskedasticity in
these errors, this seemed like a natural point of misspecification in the
empirical CARl models. However, we test several versions of CARl with
conditionally heteroskedastic errors but still find little support for the
model.

It is sometimes argued that a deficiency in the Frankel approach is that
the only way it can provide a measure of the variance of expectatiorial errors
is by extrapolating from past expectational errors. It is argued that if
there is a policy change or some other economic shock that increases
uncertainty, that there is no way to pick this up reliably from the data.
This argument carries much less weight when we allow the variance of the
forecast error to be a function of economic variables whose changes are apt to
be important generators of uncertainty —— such as money growth or oil prices.
(Xr models of sections 2 and 3 allow for just such a possibility, yet again
CARl gets no support.

Another potential problem with the Frankel set-up is that it requires the
CAR equation to hold exactly. We have relaxed this constraint in section 4
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by allowing for sri error that is uncorrelated with the forecast error and the
right-hand-side variables. However, this model is no improvement empirically.

This paper extends the frontiers of estimation of international CAPM to
consider some of the most important possibilities that have been suggested for

the empirical failure of that model, yet the model still does not get a shred
of support.
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Appendix 1

Lagrange Multiplier Test

In several places in this paper, we have presented maximum likelihood

estimates of a model and wish to compare the model to a less restricted

model. In every case the estimates reported could have been obtained by

estimating the less restricted model subject to some restrictions. (These are

zero restrictions exclusively in this paper.) We obtained our estimates by

maximizing the restricted likelihood:

(A) 0R solves max
0

where is the vector of restricted maximum likelihood estimates and ZR(O) is

the log likelihood function for the restricted model. A mathematically

equivalent way to obtain the reported estimates would be by obtaining:

(B) solves max Z(O) subject to H h(O)O
0

°

where Z represents the unrestricted log likelihood function and h(0) is the

vector valued function of constraints. For convenience, the solutions to

problems (A) and (B) are represented by the same vector although the solution

to (B) has higher dimension than the solution to (A).

One asymptotic test of the null hypothesis H0: h(&)O is the Lagrange

multiplier test based on the statistic:

—1

-

ae' ae 80'
evaluated at the restricted maximum likelihood estimate, 0R• See Amemiya

(1985) page 142 for details. We used a variant of the asymptotically

equivalent test statistic

—1

-1 ____ -1
a2z

T T I whereI-
80' 80 80 80'
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discussed by Silvey (1975), pages 118-119. We replaced T11 with the
following asymptotically equivalent form suggested by Berndt, Hall, Hall, and

Hausman (1974):

T 8C 8C
T1 E

t
ti ae ae'

where £ represents the log likelihood for observation t.

The Lagrange multiplier test statistic used in this paper:
—1

T 8ë 8t_ t t _
80' t1 88 80' 80

irns an asymptotic distribution with degrees of freedom equal to the number

of unique restrictions imposed by H. See Silvey (1975), pp. 118-119 or Judge

et al (1985), pp. 182-184 for detailed derivations of these distribution

results.
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Appendix 2

Data Appendix

Our analysis relies on rate of return and aggregate asset data for the

six countries in the study: France, Germany, Italy, Japan, United Kingdom,
and United States. The assets studied are publicly held outstanding
government debt denominated in the six currencies: francs, yen, lire, marks,

pouncLs, and dollars. The calculation method, designed to measure debt at the

end of each month, is described in detail in Frankel (1982). We used an

updated data set provided by Alberto Giovannini. Our other major source of

data was the Data Resources Inc. DRIFACS data base. (We are indebted to Ken

Froot and Susan Collins for porviding us access to this data.) We also

obtained data from the Citibank Citibase tape and the International Monetary
Fund's IFS tape.

Asset Shares

A complete description of how the values of the assets is calculated is

included in Frankel (1982). Briefly, for each country the asset data starts

with the value of outstanding debt reported by each government. To this

figure is added the cumulative value of foreign exchange purchases by the

central bank of that country (which has the effect of exchanging foreign
denominated assets for domestic denominated assets in the hands of the
public.) Subtracted from this total is the value of assets held in that
currency by central banks (a figure which is obtainable through numbers
available in the IMF Annual Report). Because no correction is made for debt
held by the central bank of its own government, these figures for the values
of the outstanding assets are the values of debt and monetary base held by the
public for each country.

The analysis in the paper utilizes asset shares rather than the level of
assets. The asset shares were computed from the asset levels, measured in
dollars. The asset share data covered the period from June 1973 to December
1984.
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Rates of Return

The nominal rate of return for dollar assets was taken as the average of
the bid and ask Eurodollar rates (DRIFACS series USDO1B and USDO1A) on
one—month securities, measured on the last day of the month that was not a
holiday.

The nominal rate of return for the other five currencies was calculated
assuming covered interest parity:

1 +
(St/Ft)(1 + lt+i)

where i is the interest rate for those five currencies, i is the one—month

Eurodollar rate, S is the dollars per unit of foreign currency exchange rate

and F is the dollars per unit of foreign currency one—month forward exchange

rate, measured on the last day of the month. The interest rate calculated on

the last day of the month gives the return (known with certainty) for assets
held for the forthcoming month (hence the t+1 subscript). The exchange rates
are averages of bid and ask rates (DRIFACS series FROJOB, FRa)OA, WOCOOB,
WGCOOA, ITCOOB, ITCOOA, JACOOB, JACOOA, UKCOOB, and UKCXJOA) as were the
forward rates (DRIFACS series FRCO1B, FRCO1A, WGCO1B, WGCO1A, IltOiB, ITCO1A,

JACO1B, JACO1A, UKCO1B, and UKCO1A).

The nominal rates of return are converted to ex—post real rates by a

cczinon price index., P:

S r . 1/12
t ct+1

1
'ct+l

[
+

100

This forimala gives, for time t, the ex-post real return from holding the
government assets of country c from the end of period t to the end of period
t+1.

The coninon price index, ' is computed as a geanetric mean of the
constmier price indices, IFS item 64, for the six countries at time t after
they are converted to dollars by multiplying by the end of period exchange
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rate.

The weights used in the geometric mean are the 1984 shares of total GNP
in dollars. The individual country (P are measured by IFS item 99a (except
for France where GDP, IFS item 99b, was used because current C2'JP was not
available.) These are converted into dollars by dividing by the end of period
exchange rates, IFS item ae. In 1984 the shares were:

France .0682847

Germany .0851713
Italy .0479105

Japan .181802
United Kingdom .0568336
United States .559998

Economic Variables

In Section 2 we allowed the variance of the forecast errors to be a

function of an oil price index and the United States money supply. These data

were obtained from the Citibase data tape for the period January 1973 to

December 1984. The money supply measure used was Citibase variable FM1,

United States Ml measured in current dollars as a seasonally adjusted monthly
average of daily figures. The oil price index used was the Citibase variable

PW561, the producer price index for crude petroleum products (1967100), not

seasonally adjusted.

To measure the surprise component of the money supply and oil prices, we

estimated ARIMA models for the natural logarithm of each series over the

period January 1973 to December 1984. The autocorrelations of each series

indicated that both the money supply and the oil price index were

nonstationary in levels and stationary in first differences. Identification

indicated that the money supply followed a moving average process with one and

four lags. The estimated model for the differences in natural logs, is

shown below along with the Box-Pierce statistic calculated from the residuals
(standard errors of the coefficients are shown in parentheses):

0.0055398 + 0.2759634 at — 0.2574734 at4
(0.0003996) (0.0843936) (0.0862326)
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R2: 0.115483 Q—Statistic (24 lags) 22.24084
S.E. of 0.004795 S.D. of dependent var 0.005063

144 Observations (January 1973 to December 1984)

The first difference of the logarithm of the oil price series,
DPt,

identified as an AR(1). The estimated model is presented below along with the

Box-Pierce Q statistic calculated fron the residuals (standard errors of the

coefficients are shown in parentheses):

DPt 0.0119926 + 0.4095051 DPt1 + at
(0.0043962) (0.0766518)

R2— 0.167357 Q—Statistic (24 lags) 21.89200

S.E. of 0.031151 S.D. of dependent var 0.034019

144 Observations (January 1973 to December 1984)

Both ARD4A models appear to fit the series well.
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Appendix 3

Estimation Techniques

This appendix contains a brief discussion of the techniques we used in
order to obtain the inaxinnmi likelihood estimates reported in the tables. We
used various hill-climbing methods available in the Gauss prograuining
language. In general we found the Berndt, Hall, Hall and Haumn (1974)

routine led to some problems. For the models in which the variance depends
only on economic variables, we primarily used the method of Broyden, Fletcher,

Goldfarb and Shanno. This algorithm seemed to work quickly and reliably. We

actually used BHHH for the first and last iterations. The BHHH method

provides a consistent estimator of the information matrix, while BFGS and the
other methods available do not. Furthermore, according to the Gauss manual,
BHHH seems to provide more reliable numerical estimates of the Hessian matrix.

For the ARCH models we found the Davidon, Fletcher and Powell algorithm

to be more trustworthy, though very slow. Typically we would proceed with the

DFP method until the likelihood was changing by small amounts. Then we would

switch to the Broyden, Fletcher, Goldfarb and Shanno algorithm, which seemed

to work more quickly. (Both the DFP and BFGS algorithms are described in

Dennis and Schnabel (1983).) We used BHHH for the first and last iterations.

In all cases we used numerical estimates of the derivatives. The

analytic derivatives of the likelihood function in the ARCH models with

respect to the parameters are expressions involving all the lagged variables

for any observation, so they are quite complicated. Hence, we have to rely on
numeric derivatives.

We also found it useful to give the maximization routine "good" starting

values. To estimate the models in which the variance depends only on economic

variables we picked as starting values the 21 parameters from the constant

variance model and then more or less arbitrarily picked starting values for
the five remaining parameters. In the versions in which 15 parameters relate
the economic data to the variance, we took as starting values the 26
parameters from the version in which 5 parameters relate the variance to
economic var, and then picked arbitrary starting values for the other 10
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variables. Analogously, to estimate the 5 parameter ARCH, we took as starting
values the estimates of the 21 parameters from the constant variance CAPM
model, and took .4 to be the starting values for the ARCH parameters. In the
15 parameter ARCH specification, our starting values were the estimates from
five parameter ARCH ,with off-diagonal elements of G equal to . 01. We

proceeded in the same manner for the models of sections 4 and 5.
At each iteration, an initial value for the first lagged error in the

ARCH models must be specified. This was always taken to be zero.
All estimation was performed on a Compaq 386 computer equipped with an

Intel 80387 coprocessor. Each model estimated required from about 40
iterations to as many as 400 iterations to converge. Depending on the

complexity of the problem and how good the initial guesses were, the model

would take anywhere from 1 hour to 20 hours to converge. (We actually
switched to the 80387 midway through our work. On the 80287 coprocessor these

times are approximately doubled.)
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Table 1

CARl Estimation, constant 0

C +

Vart(Ct+i) p'p

*** Log Likelihood 1639.789088 ***

The estimate of

FRk
.0039629

(.016893 1)

The estimate of

—19.287650
(42.676856)

The estimate of

.0322951

(.0019034)

0

the upper triangular matrix P:
.0288285 .0223217 .0179637

(.0018396) (.0024820) (.0024482)

.0165643 .0018479 .0034280
(.0010655) (.0017589) (.0030412)

0 .0181945 .0009552

(.0006800) (.0040832)

0 0 .0270647

(.0015644)

UK
.0020641

(.0133013)

(standard errors in parentheses)

Test of CARl Restrictions
lagrange multiplier test statistic 33.221925

marginal significance level 0.002676 (14 d.f.)

the vector c'
GER ITA JAP

.0028871 .0044543 .0052062

(.0172629) (.0140137) (.0173972)

the coefficient p:

0

0

0 0

.016112 1

(.0025755)

.0046026

(.0023601)

.0030412

(.0025898)

.0051627
(.0018011)
.0237012

(.0014565)

0 0
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Table 2
CAf1 Estimation, Variance a Function of

Square of Change in Log of U.S. Ml

zt+1
C + + Ct41

vart(Ct+i) P'P + hh'xt

x. square of change in log U.S. Ml

*** Log Likelihood : 1647.625183

the vector c'

GER ITA JAP
0.004988 0.006123 0.006953

(0.013695) (0.011231) (0.014585)

the coefficient p:

the upper triangular matrix P:

0.025191 0.020613 0.018436

(0.002419) (0.002908) (0.003298)

0.015772 0.001692 0.005086

(0.001358) (0.002119) (0.003297)

0 0.018193 0.001027

(0.000716) (0.004228)

0 0 0.026389

(0.001625)

Test of CA14 Restrictions
lagrange multiplier test statistic 56.225719

marginal significance level = 0.000015 (19 d.f.)
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The estimate of
FRA

0.005956
(0.013681)

The estimate of

—23.934543
(36.290540)

The estinmte of
0.030219
(0.002054)

0

0

0

0

UK
0 .003338
(0.011425)

0. 019729

(0.003370)

0.009071

(0.002637)

0.003226
(0 .002686)

0.001813

(0.002341)

0.018658

(0.002559)

00 0

The estimate of the vector h':
1.590317 2.077879 1.201510

(0.713113) (0.645719) (0.622900)
(standard errors in parentheses)

0.287016 —0.917194
(0.607644) (0.559770)



Table 3
CAI!1 Estimation, Variance a Function of
Square of Change in Log of Oil Prices

= c + PQX +

vai(e) P'P + hh'x
x square of change in log of oil prices

*** Log Likelihood : 1644.831445 ***

The estimate of the vector c'
FRA GER ITA JAP UK

0.001267 0.000111 0.002179 0.002574 —0.000065
(0.015653) (0.016243) (0.012810) (0.016369) (0.011975)

The estimate of the coefficient p:

—12.116358
(39.781602)

The estimate of the upper triangular matrix P:
0.031925 0.029232 0.021589 0.018180 0.014923

(0.001909) (0.001905) (0.002446) (0.002405) (0.002522)
0 0.015851 0.002886 0.002749 0.006823

(0.001026) (0.002252) (0.002975) (0.002348)
0 0 0.017783 0.001374 0.001311

(0.000614) (0.004243) (0.002801)
0 0 0 0.026995 0.005779

(0.001667) (0.002130)
0 0 0 0 0.022210

(0.001541)
The estimate of the vector h':

0.166874 —0.015146 0.222064 —0,001335 0.308111
(0.226000) (0.294538) (0.206733) (0.264205) (0.184717)

(standard errors in parentheses)

Test of CAIT4 Restrictions
lagrange multiplier test statistic 41.783589

marginal significance level = 0.001895 (19 d.f.)
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Table 4

CARl Estimation, Variance a Function of
Squared Residuals from U.S. Ml ARIMA

Z1 c + PQX +

°t P'P + hh'x,

x squared residuals from U.S. Ml ARIMA

*** Log Likelihood : 1642.882930 ***

The estimate of the vector c'

FRA GER ITA JAP UK
0.001309 0.000170 0.002201 0.002633 —0.000140
(0.009329) (0.009666) (0.007950) (0.010075) (0.008103)

The estimate of the coefficient p:
—11.979929
(25.283582)

The estimate of the upper triangular matrix P:
0.029774 0.026267 0.019919 0.014512 0.017220

(0.002634) (0.003280) (0.002598) (0.003762) (0.002958)
0 0.016545 0.001767 0.003173 0.004906

(0.001151) (0.001874) (0.003399) (0.002458)
0 0 0.018123 0.005011 0.003619

(0.000818) (0.004116) (0.002703)
0 0 0 0.026596 0.006513

(0.001811) (0.002158)
0 0 0 0 0.022410

(0.001939)
The estimate of the vecthr h':

2.809936 2.674950 2.294778 2.656054 0.137049
(1.502476) (1.237809) (1.128216) (1.282874) (1.276563)

(standard errors in parentheses)

Test of CA11 Restrictions
lagrange multiplier test statistic 43.015021

marginal significance level 0.001290 (19 d.f.)
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Table 5

CAH1 Estimation, Variance a Function of

Squared Residuals froni Oil Price ARIMA

c + +

P'P + hh'x.
squared residuals from oil price ARIMA

The estimate of the vector c'
FR GER

0.007924 0.006649
(0.014236) (0.014920)

The estimate of the coefficient p:
—28.590147
(36.423752)

0.014499
(0.00257 1)
0.006072

(0.002477)
0.001757

(0.002904)
0. 005706

(0. 001911)
0. 026918

(0.001616)

(standard errors in parentheses)

Test of CAI'1 Restrictions

lagrange multiplier test statistic = 53.858668

marginal significance level 0.000035 (19 d.f.)
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*** Log Likelihood 1645.886909

ITA JAP UK
0.007915 0.008725 0.005302

(0.011401) (0.015060) (0.010897)

The estimate of

0.031231
(0.001860)

0

0

0

0

The estimate of
0. 288975
(0.250094)

the upper triangular matrix P:

0.029080 0.020707 0.018182
(0.001971) (0.002482) (0.002438)
0.015867 0.002965 0.002615

(0.001043) (0.002033) (0.003054)
0 0.017710 0.001530

(0.000666) (0.004738)
0 0 0.026918

(0.001623)

the vector h'
0.1019411

(0. 238875)

0 0 0

0.315394 0.060141 0.285922
(0.218500) (0.368671) (0.177539)



Table 6
CAITI Estimation, General Parameterizat ion of Variance

as a Function of Macroeconomic Data
c + +

0 P'P + Q'QXt

Square of Change in jg of U.S. Ml

Log of likelihood 1649.718806

Chi—square statistic (10 d.f.) 4.187246
Marginal significance level :0.93850486

Square of Change in jg of Price of Oil
Log of likelihood : 1645.836216
Chi—square statistic (10 d.f.) 2.009542
Marginal significance level :0.99626650

Square of Residual from U.S. Ml ARIMA

Log of likelihood 1643.892504
chi—square statistic (10 d.f) 2.019542
Marginal significance level :0.99618817

Square of Residual from Oil Price AR!MAL

Log of likelihood 1646.620739
Chi—square statistic (10 d.f.) 1.467660
Marginal significance level :0.99903254
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Table 7
CAI Estimation, 5 Parameter ARCH

c + +

P'P + Ge'G

*** Log Likelihood : 1658.682319 ***

The estimate of the vector c'
FRA GEE ITA JAP UK

—0.006027 —0.007428 —0.004122 —0.004009 —0.006882
(0.006596) (0.006869) (0.005514) (0.006892) (0.005812)

The estimate of the coefficient p:

13.270001

(15.036330)
The estimate of the upper triangular matrix P:

0.030631 0.027416 0.021628 0.015429 0.015644
(0.002278) (0.002153) (0.002339) (0.003147) (0.002867)

0 0.015277 0.002311 0.002357 0.004313
(0.001201) (0.001541) (0.003246) (0.002660)

0 0 0.015184 —0.000316 0.002262
(0.000578) (0.003692) (0.003157)

0 0 0 0.022775 0.005693

(0.001720) (0.002368)
0 0 0 0 0.023374

(0.001620)
The estimates of the diagonal elements of G:

0.425252 0.384488 0.478617 0.642844 0.227064

(0.103266) (0.106483) (0.082283) (0.103571) (0.116554)

(standard errors in parentheses)

Test of CAIN Restrictions
lagrange multiplier test statistic 45.846083

marginal significance level 0.000521 (19 d.f.)
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Table 8

CA11 Estimation, 15 Parameter ARCH

zt+1 C + PQtA.t +

0 p'p +

*** Log Likelihood : 1680.349931

The estimate of the vector c'
FRA GER ITA JAP UK

0.005302 0.004158 0.002732 0.005903 0.001906
(0.005211) (0.004958) (0.004468) (0.004900) (0.003912)

The estimate of the coefficient p:
—18.815029

(9.366542)
The estimate of the upper triangular matrix P:

0.030750 0.028908 0.023892 0.018148 0.016024
(0.002431) (0.002272) (0.002072) (0.003315) (0.003051)

0 0.015238 —0.001725 0.003238 0.004367
(0.001211) (0.001288) (0.003848) (0.002422)

0 0 0.007587 0.004764 0.007590
(0.001389) (0.005438) (0.004048)

0 0 0 0.025977 0.003559
(0.001905) (0.002234)

0 0 0 0 0.020771
(0.001922)

The estimate of the syninetric matrix G:
0.551903 0.018319 —0.334667 0.092724 —0.106092

(0.133893) (0.081518) (0.083272) (0.073811) (0.086655)

0.018319 0.276057 —0.180710 0.053321 0.033104
(0.103955) (0.084837) (0.075722) (0.080986)

—0.334667 —0.180710 0.689377 —0.322378 0.349194
(0.122514) (0.083084) (0.095240)

0.092724 0.053321 —0.322378 0.251767 0.321065
(0.154097) (0.130203)

—0.106092 0.033104 0.349194 0.321065 —0.347991
(0.155485)

(standard errors in parentheses)

Test of CABI Restrictions
lagrange multiplier test statistic 88.6136637
marginal significance level 0.000000 (29 d. f.)
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Table 9

Measurement Error, Variance of Forecast Error a Function of

Square of Change in Log of U.S. Ml
c + + e+1 +

It(et+i) P'P + hh'x.
vart(ut+i) Q'Q

x square of change in log of U.S. Ml

*** Log Likelihood : 1652.550603 ***

The estimate of the vector c'
FRA GER ITA JAP UK

0.035629 0.035035 0.040648 0.033120 —0.005391
(0.041356) (0.034263) (0.041738) (0.033050) (0.027549)

The estimate of the coefficient p:
—825.095579

(991.230505)

The estimate of the upper triangular matrix P:
0.016300 0.005168 0.009236 0.005001 —0.002644

(0.014090) (0.012205) (0.016772) (0.005378) (0.011199)
0 0.011229 0.004178 0.006745 0.000330

(0.012680) (0.018539) (0.007675) (0.012587)
0 0 0.014596 —0.003179 —0.004776

(0.013975) (0.009402) (0.012804)
0 0 0 0.006733 0.005633

(0.011472) (0.014762)
0 0 0 0 0.000000

(533.9825)
The estimate of the vector h'

0.872287 1.333254 0.487075 —0.291049 —1.271120
(0.584745) (0.521342) (0.598958) (0.366732) (0.365828)

The estimate of' the upper triangular matrix Q:
0.026724 0.028347 0.019949 0.018372 0.023666

(0.009158) (0.009604) (0.010363) (0.006283) (0.013799)
0 0.004564 —0.008531 —0.011976 —0.004068

(0.073867) (0.203270) (0.261557) (0.159312)
0 0 0.005144 —0.014921 0.010971

(0.362406) (1.950776) (0.399700)
0 0 0 —0.014441 —0.004597

(2.229423) (2.374180)

0 0 0 0 —0.000005

(3045.827)
(standard errors in parentheses)
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Table 10

Measurement Error, Variance of Forecast Error a Function of
Square Residuals from Oil Price ARIMA

Z1 C + + +

P'P + hh'x
Vart(Ut+i) Q'Q

x squared residuals from oil price ARIMA

*** Log Likelihood : 1651.080910 ***

The estimate of the vector C'
FRA GER ITA JAP UK

0.040010 0.043604 0.044028 0.032435 —0.011706
(0.043150) (0.035958) (0.039476) (0.031975) (0.027287)

The estimate of the coefficient p:
—3615.193209
(7848.353986)

The estimate of the upper triangular matrix P:
0.012727 0.000795 0.003390 0.001432 —0.002299

(0.014722) (0.003466) (0.006885) (0.001774) (0.004887)
0 0.008435 0.003630 0.002548 —0.002014

(0.009878) (0.005947) (0.003732) (0.004835)

0 0 0.007502 —0.001283 —0.002294
(0.009197) (0.002988) (0.005944)

0 0 0 0.004311 0.003621

(0.005121) (0.005422)

0 0 0 0 —0.000000
(556.1796)

The estimate of the vector h'
0.077217 —0.116686 0.076154 —0.005022 —0.002702

(0.083384) (0.146096) (0.113008) (0.044544) (0.088752)
The estimate of the upper triangular matrix Q:

0.029282 0.031929 0.022481 0.018738 0.018558
(0.006678) (0.006995) (0.003786) (0.004458) (0.007404)

0 0.004618 —0.012402 —0.014263 0.001691
(0.063832) (0.223960) (0.255834) (0.087216)

0 0 0.008931 —0.020890 0.001934
(0.323567) (1.478327) (0.106485)

0 0 0 —0.004544 —0.021624
(7.615409) (35.99457)

0 0 0 0 —0.001627
(478.4125)

(standard errors in parentheses)
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