
NBER WORKING PAPER SERIES

THE IMPACTS OF NEIGHBORHOODS ON INTERGENERATIONAL MOBILITY I: 
CHILDHOOD EXPOSURE EFFECTS

Raj Chetty
Nathaniel Hendren

Working Paper 23001
http://www.nber.org/papers/w23001

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2016, Revised May 2017

An earlier version of this paper was circulated as Part I of “The Impacts of Neighborhoods on 
Intergenerational Mobility: Childhood Exposure Effects and County Level Estimates.” The 
opinions expressed in this paper are those of the authors alone and do not necessarily reflect the 
views of the Internal Revenue Service or the U.S. Treasury Department. This work is a 
component of a larger project examining the effects of tax expenditures on the budget deficit and 
economic activity. All results based on tax data in this paper are constructed using statistics 
originally reported in the SOI Working Paper “The Economic Impacts of Tax Expenditures: 
Evidence from Spatial Variation across the U.S.,” approved under IRS contract TIRNO-12-
P-00374. We thank Gary Chamberlain, Maximilian Kasy, Lawrence Katz, Jesse Shapiro, and 
numerous seminar participants for helpful comments and discussions. Sarah Abraham, Alex Bell, 
Augustin Bergeron, Michael Droste, Niklas Flamang, Jamie Fogel, Robert Fluegge, Nikolaus 
Hildebrand, Alex Olssen, Jordan Richmond, Benjamin Scuderi, Priyanka Shende, and our other 
pre-doctoral fellows provided outstanding research assistance. This research was funded by the 
National Science Foundation, the Lab for Economic Applications and Policy at Harvard, Stanford 
University, and Laura and John Arnold Foundation. The views expressed herein are those of the 
authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Raj Chetty and Nathaniel Hendren. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



The Impacts of Neighborhoods on Intergenerational Mobility I: Childhood Exposure Effects 
Raj Chetty and Nathaniel Hendren
NBER Working Paper No. 23001
December 2016, Revised May 2017
JEL No. H0,J0,R0

ABSTRACT

We show that the neighborhoods in which children grow up shape their earnings, college 
attendance rates, and fertility and marriage patterns by studying more than seven million families 
who move across commuting zones and counties in the U.S. Exploiting variation in the age of 
children when families move, we find that neighborhoods have significant childhood exposure 
effects: the outcomes of children whose families move to a better neighborhood – as measured by 
the outcomes of children already living there – improve linearly in proportion to the amount of 
time they spend growing up in that area, at a rate of approximately 4% per year of exposure. We 
distinguish the causal effects of neighborhoods from confounding factors by comparing the 
outcomes of siblings within families, studying moves triggered by displacement shocks, and 
exploiting sharp variation in predicted place effects across birth cohorts, genders, and quantiles to 
implement overidentification tests. The findings show that neighborhoods affect intergenerational 
mobility primarily through childhood exposure, helping reconcile conflicting results in the prior 
literature.

Raj Chetty
Department of Economics
Stanford University
579 Serra Mall
Stanford, CA 94305
and NBER
chetty@stanford.edu

Nathaniel Hendren
Harvard University
Department of Economics
Littauer Center Room 235
Cambridge, MA 02138
and NBER
nhendren@gmail.com



I Introduction

To what extent are children’s economic opportunities shaped by the neighborhoods in which they

grow up? Despite extensive research, the answer to this question remains debated. Observational

studies have documented significant variation across neighborhoods in economic outcomes (e.g.,

Wilson 1987, Jencks and Mayer 1990, Massey 1993, Sampson et al. 2002, Sharkey and Faber 2014).

However, experimental studies of families that move have traditionally found little evidence that

neighborhoods affect economic outcomes (e.g., Katz et al. 2001, Oreopoulos 2003, Ludwig et al.

2013).

Using de-identified tax records covering the U.S. population, we present new quasi-experimental

evidence on the effects of neighborhoods on intergenerational mobility that reconcile the conflict-

ing findings of prior work and shed light on the mechanisms through which neighborhoods affect

children’s outcomes. Our analysis consists of two papers. In this paper, we measure the degree to

which the differences in intergenerational mobility across areas in observational data are driven by

causal effects of place. In the second paper (Chetty and Hendren 2017), we build on the research

design developed here to construct estimates of the causal effect of growing up in each county in the

United States on children’s long-term outcomes and characterize the features of areas that produce

good outcomes.

Our analysis is motivated by our previous work showing that children’s expected incomes con-

ditional on their parents’ incomes vary substantially with the area (commuting zone or county)

in which they grow up (Chetty, Hendren, Kline, and Saez 2014).1 This geographic variation in

intergenerational mobility could be driven by two very different sources. One possibility is that

neighborhoods have causal effects on economic mobility: that is, moving a given child to a differ-

ent neighborhood would change his or her life outcomes. Another possibility is that the observed

geographic variation is due to systematic differences in the types of people living in each area, such

as differences in demographics or wealth.

We assess the relative importance of these two explanations by asking whether children who

move to areas with higher rates of upward income mobility among “permanent residents” have

better outcomes themselves.2 Since moving is an endogenous choice, simple comparisons of the

1We characterize neighborhood (or “place”) effects at two geographies: counties and commuting zones (CZs),
which are aggregations of counties that are similar to metro areas but cover the entire U.S., including rural areas.
Naturally, the variance of place effects across these broad geographies is a lower bound for the total variance of
neighborhood effects, which would include additional local variation.

2We define “permanent residents” as the parents who stay in the same commuting zone (or, in the county-level
analysis, the same county) throughout the period we observe (1996-2012).
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outcomes of children whose families move to different areas confound causal effects of place with

selection effects (differences in unobservables). We address this identification problem by exploiting

variation in the timing of children’s moves across areas.3 We compare the outcomes of children

who moved to a better (or worse) area at different ages to identify the rate at which the outcomes

of children who move converge to those of the permanent residents.4 The identification assumption

underlying our research design is that the selection effects (children’s unobservables) associated

with moving to a better versus worse area do not vary with the age of the child when the family

moves. This is a strong assumption, one that could plausibly be violated for several reasons. For

instance, families who move to better areas when their children are young may be more educated

or invest more in their children in other ways. We present evidence supporting the validity of this

identification assumption after presenting a set of baseline results.

In our baseline analysis, we focus on families with children born between 1980 and 1988 who

moved once across commuting zones (CZs) between 1997 and 2010. We find that on average,

spending an additional year in a CZ or county where the mean income rank of children of permanent

residents is 1 percentile higher (at a given level of parental income) increases a child’s income rank in

adulthood by approximately 0.04 percentiles. That is, the outcomes of children who move converge

to the outcomes of permanent residents in the destination at a rate of 4% per year of childhood

exposure. Symmetrically, moving to an area where permanent residents have worse outcomes

reduces a child’s expected income by 4% per year. When analyzing children who move more than

once during childhood, we find that children’s outcomes vary in proportion to the amount of time

they spend in each area rather than the specific ages during which they live in those areas.

Together, these results imply that neighborhoods have substantial childhood exposure effects:

every additional year of childhood spent in a better environment improves a child’s long-term

outcomes. Convergence is linear with respect to age: moving to a better area at age 8 instead of 9

is associated with the same increase in income as moving to that area at age 15 instead of 16. The

exposure effects persist until children are in their early twenties. Extrapolating over the duration

of childhood, from age 0 to 20, the 4% annual convergence rate implies that children who move

at birth to an area with one percentile higher incomes among permanent residents would pick up

3Several recent studies have used movers to identify causal effects of places on other outcomes using event-study
designs, comparing individuals’ outcomes before vs. after they move (e.g., Chetty et al. 2013, Finkelstein et al. 2016).
We use a different research design because we naturally do not have pre-move data on income in adulthood when
studying the impact of moving during childhood.

4Throughout the paper, we refer to areas where children have better outcomes in adulthood as “better” neigh-
borhoods. We use this terminology without any normative connotation, as there are of course many other amenities
of neighborhoods that may be relevant from a normative perspective.
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about 80% of that effect themselves. We find similar childhood exposure effects for several other

outcomes, including rates of college attendance, marriage, and teenage birth. We also find similar

exposure effects when families moves across counties.

As noted above, the identification assumption underlying the interpretation of the 4% conver-

gence rate as a causal exposure effect is that the potential outcomes of children who move to better

vs. worse areas do not vary with the age at which they move. We use three approaches to evaluate

this assumption: controlling for observable factors, isolating plausibly exogenous moves triggered

by aggregate displacement shocks, and implementing a set of outcome-based placebo tests. The first

two approaches are familiar techniques in the treatment effects literature, while the third exploits

the multi-dimensional nature of the treatments we study to implement overidentification tests.

To implement the first approach, we begin by controlling for factors that are fixed within

the family (e.g., parent education) by including family fixed effects.5 This approach identifies

exposure effects from comparisons between siblings, by asking whether the difference in outcomes

between two siblings who move to a new area is proportional to their age difference interacted

with permanent residents’ outcomes in the destination. We estimate an annual exposure effect of

approximately 4% per year with family fixed effects, very similar to our baseline estimate. These

sibling comparisons address confounds due to factors that are fixed within families, but they do

not account for time-varying factors, such as a change in family environment at the time of the

move that directly affects children in proportion to exposure time independent of neighborhoods.

We cannot observe all such time-varying factors, but we do observe two particularly important

characteristics of the family environment in each year: income and marital status. Controlling

flexibly for changes in income and marital status interacted with the age of the child at the time

of the move has no impact on the exposure effect estimates.

The preceding results rule out confounds due to observable factors such as income, but they

do not address potential confounds due to unobservable factors. In particular, whatever event

endogenously induced a family to move (e.g., a wealth shock) could also have had direct effects

5The idea of using sibling comparisons to better isolate neighborhood effects dates to the seminal review by
Jencks and Mayer (1990). Plotnick and Hoffman (1996) and Aaronson (1998) implement this idea using data on 742
sibling pairs from the Panel Study of Income Dynamics, but reach conflicting conclusions due to differences in sample
and econometric specifications. Several studies also use sibling comparisons to identify critical periods that shape
immigrants’ long-term outcomes (Basu 2010, van den Berg et al. 2014). Our approach differs from these studies in
that we focus on how the difference in siblings’ outcomes covaries with the outcomes of permanent residents in the
destination neighborhood, whereas the studies of immigrants estimate the mean difference in siblings’ outcomes as
a function of their age gap. This allows us to separate the role of neighborhood exposure from changes within the
family that also generate exposure-dependent differences across siblings, such as changes in income or wealth when
a family moves to a new country.
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on their children’s outcomes. Our second approach addresses the problem of bias associated with

endogenous choice by focusing on a subset of moves that are more likely to be driven by exoge-

nous aggregate shocks. In particular, we identify moves that occur as part of large outflows from

ZIP codes, often caused by natural disasters or local plant closures. We replicate our baseline

design within this subsample of displaced movers, comparing the outcomes of children who move

to different destinations at different ages. We obtain similar exposure effect estimates for dis-

placed households, mitigating concerns that our baseline estimates are biased by omitted variables

correlated with a household’s choice of when to move.6

Although the evidence from the first two approaches strongly supports the validity of the identi-

fication assumption, each of these approaches itself rests on assumptions – selection on observables

and exogeneity of the displacement shocks – that could themselves potentially be violated. We

therefore turn to a third approach – a set of placebo (overidentification) tests that exploit hetero-

geneity in permanent residents’ outcomes across subgroups – that in our view provides the most

compelling method of assessing the validity of the research design.

We begin by analyzing heterogeneity across birth cohorts. Although outcomes within CZs are

highly persistent over time, some places improve and others decline. Exploiting this variation,

we find using multivariable regressions that the outcomes of children who move to a new area

converge to the outcomes of permanent residents of the destination in their own birth cohort, but

are unrelated to those of the preceding and subsequent birth cohorts (conditional on their own

birth cohort’s predictions). Such cohort-specific convergence is precisely what one would expect in

the causal exposure effect model, but it would be unlikely to emerge from sorting or other omitted

variables because the cohort-specific effects are only realized with a long time lag, after children

grow up.

We implement analogous placebo tests by exploiting variation in the distribution of outcomes

across areas. For instance, low-income children who spend their entire childhood in Boston and

San Francisco have similar outcomes on average, but children in San Francisco are more likely to

end up in the upper or lower tail of the income distribution (i.e., either in the top 10% or not

employed). The causal exposure effects model predicts convergence not just at the mean but across

the entire distribution; in contrast, it would be unlikely that omitted variables (such as changes in

parent wealth) would happen to perfectly replicate the entire distribution of outcomes in each area

6We eliminate variation due to individuals’ endogenous choices of where to move in these specifications by instru-
menting for each household’s change in neighborhood quality using the average change in neighborhood quality of
those who move out of the ZIP code during the years in our sample.
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in proportion to exposure time. In practice, we find quantile-specific convergence: controlling for

mean outcomes, children’s outcomes converge to predicted outcomes in the destination across the

distribution in proportion to exposure time, at a rate of about 4% per year.

Finally, we implement placebo tests exploiting heterogeneity in permanent residents’ outcomes

across genders. While outcomes are highly correlated across genders, there are some places where

boys do worse than girls (e.g., areas with concentrated poverty) and vice versa. When a family with

a daughter and a son moves to an area that is especially good for boys, their son does better than

their daughter in proportion to the number of years they spend in the new area. Once again, if our

findings of neighborhood exposure effects were driven by sorting or omitted variables, one would

not expect to find such gender-specific convergence in outcomes unless families are fully aware of

the exact gender differences in outcomes across areas and sort to neighborhoods based on these

gender differences.

Our findings yield three lessons. First, place matters for intergenerational mobility: the differ-

ences we see in outcomes across neighborhoods are largely due to the causal effect of places rather

than differences in the characteristics of their residents. Second, place matters largely because of

differences in childhood environment, rather than the differences in labor market conditions that

have received attention in previous studies of place. Moving to a better area just before enter-

ing the labor market has little impact on individual’s outcomes, suggesting that place-conscious

policies to promote upward mobility should focus primarily on improving the local childhood en-

vironment rather than conditions in adulthood. Third, each year of childhood exposure matters

roughly equally; there is no “critical age” after which the returns to living in a better neighborhood

fall sharply. This result is germane to recent policy discussions regarding early childhood inter-

ventions, as it suggests that improvements in neighborhood environments can be beneficial even in

adolescence.

Our results help explain why previous experimental studies – most notably, the Moving to

Opportunity (MTO) Experiment – failed to detect significant effects of moving to a better neigh-

borhood on economic outcomes. Prior analyses of the MTO experiment focused primarily on the

effects of neighborhoods on adults and older youth (e.g., Kling et al. 2007), because data on the

long-term outcomes of younger children were unavailable. In a companion paper (Chetty, Hen-

dren, and Katz 2016), we link the MTO data to tax records and show that the MTO data exhibit

childhood exposure effects consistent with those identified here. In particular, Chetty, Hendren,

and Katz (2016) find substantial improvements in earnings and other outcomes for children whose
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families received experimental vouchers to move to low-poverty neighborhoods at young ages. In

contrast, children who moved at older ages experienced no gains or slight losses.7

More generally, our findings imply that much of the neighborhood-level variation in economic

outcomes documented in previous observational studies does in fact reflect causal effects of place,

but that such effects arise through accumulated childhood exposure rather than immediate impacts

on adults. The idea that exposure time to better neighborhoods may matter has been noted since

at least Wilson (1987) and Jencks and Mayer (1990), and has received growing attention in obser-

vational studies in sociology (Crowder and South 2011, Wodtke et al. 2011, Wodtke 2013, Sharkey

and Faber 2014). We contribute to this literature by presenting quasi-experimental estimates of

exposure effects, addressing the concerns about selection and omitted variable bias that arise in

observational studies (Ludwig et al. 2008). Although we find evidence of childhood exposure effects

that are qualitatively consistent with the observational studies, we find no evidence of exposure

effects in adulthood either in this study or our MTO study, contrary to the patterns observed in

observational data (Clampet-Lundquist and Massey 1993).

Our findings are also consistent with recent studies that use other research designs – random as-

signment of refugees (Damm and Dustmann 2014), housing demolitions (Chyn 2016), and selection

corrections using group characteristics (Altonji and Mansfield 2016) – to show that neighborhoods

have causal effects on children’s long-term outcomes. The present analysis complements these stud-

ies and Chetty et al.’s (2016) re-analysis of the MTO experiment in two ways. First, it sheds light

on the mechanisms underlying neighborhood effects by delivering precise estimates of the magni-

tude and linear age pattern of childhood exposure effects. Second, it develops a scalable method

to estimate neighborhood effects in all areas, even those where randomized or natural experiments

are unavailable.8

7One important distinction between the two studies is that the analysis sample in the present quasi-experimental
study consists entirely of families who moved across commuting zones, whereas the MTO experiment compares
families who moved with families who did not move at all or stayed in an area similar to where they lived before.
As a result, the analysis here identifies the effects of moving to better vs. worse areas conditional on moving to a
different area, whereas the MTO analysis compares the effects of moving vs. staying in a given area. The exposure
effect estimates here thus net out any fixed disruption costs of moving to a different area, whereas such costs are not
netted out in the MTO experiment. This distinction may explain why Chetty, Hendren, and Katz (2016) find slightly
negative effects for children who move at older ages in the MTO data, whereas we estimate positive exposure effects
of moving to a better area (conditional on moving) at all ages here.

8Our estimates of neighborhood exposure effects are based on households who choose to move to certain areas.
The effects of moving a randomly selected household to a new area may differ, since households that choose to move
to a given area may be more likely to benefit from that move. The fact that exposure effects are similar within the
subset of displaced households and are symmetric for moves to better and worse areas suggests such heterogeneity
in exposure effects is limited, but further work is needed to understand how exposure effects vary with households’
willingness to move.

6



This paper is organized as follows. Section II describes the data. Section III presents our

empirical framework, starting with a description of differences in intergenerational mobility across

areas and then specifying our estimating equations. Section IV presents baseline estimates of

neighborhood exposure effects and discusses the mechanisms through which neighborhoods affect

children’s incomes. Section V presents tests evaluating our identification assumption. Section VI

presents estimates of exposure effects for other outcomes. Section VII concludes.

II Data

We use data from federal income tax records spanning 1996-2012. The data include both income

tax returns (1040 forms) and third-party information returns (e.g., W-2 forms), which contain in-

formation on the earnings of those who do not file tax returns. Because our empirical analysis is

designed to determine how much of the geographic variation in intergenerational mobility docu-

mented by Chetty et al. (2014) is due to causal effects of place, we use an analysis sample that is

essentially identical to the “extended sample” used in Chetty et al. (2014). Online Appendix A of

Chetty et al. (2014) gives a detailed description of how we construct the analysis sample starting

from the raw population data. Here, we briefly summarize the key variable and sample definitions,

following Section III of Chetty et al. (2014).

II.A Sample Definitions

Our base dataset of children consists of all individuals who (1) have a valid Social Security Number

or Individual Taxpayer Identification Number, (2) were born between 1980-1988, and (3) are U.S.

citizens as of 2013.9 We impose the citizenship requirement to exclude individuals who are likely

to have immigrated to the U.S. as adults, for whom we cannot measure parent income. We cannot

directly restrict the sample to individuals born in the U.S. because the database only records current

citizenship status.

We identify the parents of a child as the first tax filers (between 1996-2012) who claim the

child as a child dependent and were between the ages of 15 and 40 when the child was born.10

If the child is first claimed by a single filer, the child is defined as having a single parent. For

simplicity, we assign each child a parent (or parents) permanently using this algorithm, regardless

9For selected outcomes that can be measured at earlier ages, such as teenage labor force participation rates, we
extend the sample to include more recent birth cohorts, up to 1996.

10We impose the 15-40 age restriction to limit links to grandparents or other guardians who might claim a child as
a dependent.
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of any subsequent changes in parents’ marital status or dependent claiming.

If parents never file a tax return, we do not link them to their child. Although some low-income

individuals do not file tax returns in a given year, almost all parents file a tax return at some point

between 1996 and 2012 to obtain a tax refund on their withheld taxes and the Earned Income Tax

Credit (Cilke 1998). As a result, approximately 94% of the children in the 1980-1988 birth cohorts

are claimed as a dependent at some point between 1996 and 2012. The fraction of children linked

to parents drops sharply prior to the 1980 birth cohort because our data begins in 1996 and many

children begin to the leave the household starting at age 17 (Chetty et al. 2014, Online Appendix

Table I). This is why we limit our analysis to children born during or after 1980.

Our full analysis sample includes all children in the base dataset who are born in the 1980-88

birth cohorts for whom we are able to identify parents and whose mean parent income between

1996-2000 is strictly positive.11 We divide the full sample into two parts: permanent residents (or

stayers) and movers. We define the permanent residents of each commuting zone (CZ) c as the

subset of parents who reside in a single CZ c in all years of our sample, 1996-2012. The movers

sample consists of individuals in the full sample who are not permanent residents.

In our baseline analysis, we focus on the subset of individuals who live in CZs with populations

in the 2000 Census above 250,000 (excluding 19.6% of the observations) to ensure that we have

adequately large samples to estimate permanent residents’ outcomes (the key independent variables

in our analysis) precisely. There are approximately 24.6 million children in the baseline analysis

sample for whom we observe outcomes at age 24 or later, of whom 19.5 million are children of

permanent residents.

II.B Variable Definitions and Summary Statistics

In this section, we define the key variables we use in our analysis. We measure all monetary

variables in 2012 dollars, adjusting for inflation using the headline consumer price index (CPI-U).

We begin by defining the two key variables we measure for parents: income and location.

Parent Income. Our primary measure of parent income is total pre-tax income at the household

level, which we label parent family (or household) income. In years where a parent files a tax return,

we define family income as Adjusted Gross Income (as reported on the 1040 tax return) plus tax-

exempt interest income and the non-taxable portion of Social Security and Disability benefits.

11We limit the sample to parents with positive income (excluding 1.5% of children) because parents who file a tax
return – as is required to link them to a child – yet have zero income are unlikely to be representative of individuals
with zero income and those with negative income typically have large capital losses, which are a proxy for having
significant wealth.
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In years where a parent does not file a tax return, we define family income as the sum of wage

earnings (reported on form W-2), unemployment benefits (reported on form 1099-G), and gross

social security and disability benefits (reported on form SSA-1099) for both parents.12 In years

where parents have no tax return and no information returns, family income is coded as zero.13

Income is measured prior to the deduction of income taxes and employee-level payroll taxes, and

excludes non-taxable cash transfers and in-kind benefits.

In our baseline analysis, we average parents’ family income over the five years from 1996 to 2000

to obtain a proxy for parent lifetime income that is less affected by transitory fluctuations (Solon

1992). We use the earliest years in our sample to best reflect the economic resources of parents

while the children in our sample are growing up.14 Because we measure parent income in a fixed

set of years, the age of the child when parent income is measured varies across birth cohorts. We

account for this variation by conditioning on the child’s birth cohort throughout our analysis.

Parent Location. In each year, parents are assigned ZIP codes of residence based on the ZIP

code from which they filed their tax return. If the parent does not file in a given year, we search

W-2 forms for a payee ZIP code in that year. Non-filers with no information returns are assigned

missing ZIP codes. For children whose parents were married when they were first claimed as

dependents, we always track the mother’s location if marital status changes. We map parents’ ZIP

codes to counties and CZs using the crosswalks and methods described in Chetty et al. (2014,

Online Appendix A).

Next, we define the outcomes that we analyze for children.

Income. We define child family income in exactly the same way as parent family income. We

measure children’s annual incomes at ages ranging from 24-30 and define the child’s household

based on his or her marital status at the point at which income is measured. For some robustness

12The database does not record W-2’s and other information returns prior to 1999, so non-filer’s income is coded
as 0 prior to 1999. Assigning non-filing parents 0 income has little impact on our estimates because only 3.1% of
parents in the full analysis sample do not file in each year prior to 1999 and most non-filers have very low W-2 income
(Chetty et al. 2014). For instance, in 2000, the median W-2 income among non-filers in our baseline analysis sample
was $0.

13Importantly, these observations are true zeros rather than missing data. Because the database covers all tax
records, we know that these individuals have 0 taxable income.

14Formally, we define mean family income as the mother’s family income plus the father’s family income in each
year from 1996 to 2000 divided by 10 (or divided by 5 if we only identify a single parent). For parents who do
not change marital status, this is simply mean family income over the 5 year period. For parents who are married
initially and then divorce, this measure tracks the mean family incomes of the two divorced parents over time. For
parents who are single initially and then get married, this measure tracks individual income prior to marriage and
total family income (including the new spouse’s income) after marriage. These household measures of income increase
with marriage and naturally do not account for cohabitation; to ensure that these features do not generate bias, we
assess the robustness of our results to using individual measures of income.
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checks, we analyze individual income, defined as the sum of individual W-2 wage earnings, UI

benefits, SSDI payments, and half of household self-employment income.

Employment. We define an indicator for whether the child is employed at a given age based on

whether he has a W-2 form filed on his behalf at that age. We measure employment rates starting

at age 16 to analyze teenage labor force participation.

College Attendance. We define college attendance as an indicator for having one or more 1098-T

forms filed on one’s behalf when the individual is aged 18-23. Title IV institutions – all colleges and

universities as well as vocational schools and other post-secondary institutions eligible for federal

student aid – are required to file 1098-T forms that report tuition payments or scholarships received

for every student. The 1098-T forms are available from 1999-2012 and are filed directly by colleges

independent of whether an individual files a tax return. Comparisons to other data sources indicate

that 1098-T forms capture more than 95% of college enrollment in the U.S. (Chetty et al. 2017).

Teenage Birth. For women, we define an indicator for teenage birth if they are listed as a

parent on a birth certificate when they are between the ages of 13 and 19, using data from the

Social Security Administration’s DM-2 database.15

Marriage. We define an indicator for whether the child is married at at a given age based on

the marital status listed on 1040 forms for tax filers. We code non-filers as single because linked

CPS-IRS data show that the vast majority of non-filers below the age of 62 are single (Cilke 1998).

Summary Statistics. Table I reports summary statistics for our analysis sample and various

subgroups used in our CZ-level analysis; Online Appendix Table I presents analogous statistics

for the sample used in our county-level analysis. The first panel reports statistics for permanent

residents in our full analysis sample who live in CZs with more than 250,000 people. The second

panel considers the 4.4 million children who moved between CZs with more than 250,000 people

(excluding children whose parents moved more than three times between 1996-2012, who account

for 3% of the observations). The third panel focuses on our primary analysis sample of one-time

movers: children whose parents moved exactly once across CZs between 1996-2012, are observed

in the destination CZ for at least two years, and moved at least 100 miles.16 There are 1.6 million

15The total count of births in the SSA DM-2 database closely matches vital statistics counts from the Center for
Disease Control prior to 2008; however, the DM-2 database contains approximately 10% fewer births between 2008-
2012. Using an alternative measure of teenage birth that does not suffer from this missing data problem – in which
we define a woman as having a teen birth if she ever claims a dependent who was born while she was between the
ages of 13 and 19 – yields very similar results (not reported). We do not use the dependent-claiming definition as our
primary measure of teenage birth because it only covers children who are claimed as dependents by their mothers.

16We impose these restrictions to eliminate moves across CZ borders that do not reflect a true change of location.
We measure the distance of moves as the distance between the centroids of the origin and destination ZIPs (obtained
from www.boutell.com/zipcodes). We show the robustness of our results to using alternative cutoffs for minimum
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children in this one-time movers sample.

While our analysis does not require movers to be comparable to permanent residents, we find

that movers and permanent residents have similar characteristics. Median parent family income is

$61,300 for permanent residents, compared to $58,700 for one-time movers. Children of permanent

residents have a median family income of $35,600 when they are 30 years old, compared with

$33,600 for one-time movers. Roughly 70% of children of permanent residents and one-time movers

are enrolled in a college at some point between the ages of 18 and 23. 11% of daughters of permanent

residents and one-time movers have a teenage birth.

III Empirical Framework

In this section, we first present a descriptive characterization of intergenerational mobility for

children who grow up in different areas in the U.S. We then formally define our estimands of

interest – childhood exposure effects – and describe the research design we use to identify these

exposure effects in observational data.

III.A Geographical Variation in Outcomes of Permanent Residents

We conceptualize “neighborhood” effects as the sum of place effects at different geographies, ranging

from broad to narrow: commuting zones, counties, ZIP codes, and census tracts. In the main text

of this paper, we focus on variation across commuting zones (CZs). CZs are aggregations of counties

based on commuting patterns in the 1990 Census constructed by Tolbert and Sizer (1996). There are

741 CZs in the U.S.; on average, each CZ contains 4 counties and has a population of 380,000. We

replicate the results reported in the main text at the county level in Online Appendix C. We focus

on variation across relatively broad geographic units to maximize statistical precision because some

of our research designs require large sample sizes to discern fine variation in permanent residents’

outcomes across subsamples.

We characterize the outcomes of children who spent their entire childhoods in a single CZ by

focusing on children of “permanent residents” – parents who stay in the same CZ between 1996

and 2012.17 Importantly, our definition of permanent residents conditions on parents’ locations,

population size and move distances in Online Appendix A.
17Because our data start in 1996, we cannot measure parents’ location over their children’s entire childhood. For

the 1980 birth cohort, we measure parents’ location between the ages of 16 and 32; for the 1991 birth cohort, we
measure parents’ location between 5 and 21. This creates measurement error in children’s childhood environment
that is larger in earlier birth cohorts. Fortunately, we find that our results do not vary significantly across birth
cohorts, and in particular remain similar for the most recent birth cohorts. The reason such measurement error turns
out to be modest empirically is that most families who stay in a given area for several years tend not to have moved
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not children’s locations in adulthood. The CZ where a child grew up may differ from the CZ where

he lives when we measure his earnings in adulthood.

Since places can have different effects across parent income levels and over time, we characterize

children’s mean outcomes conditional on their parents’ income separately for each CZ c and birth

cohort s. Chetty et al. (2014) show that measuring incomes using percentile ranks (rather than

dollar levels) has significant statistical advantages. Following their approach, we define child i’s

percentile rank yi based on his position in the national distribution of incomes relative to all others

in his birth cohort. Similarly, we measure the percentile rank of the parents of child i, p(i), based

on their positions in the national distribution of parental income for child i’s birth cohort.

Let ȳpcs denote the mean rank of children with parents at percentile p of the income distribution

in CZ c in birth cohort s. Figure I illustrates how we estimate ȳpcs for children born in 1980 to

parents who are permanent residents of the Chicago CZ. This figure plots the mean child rank at

age 30 within each percentile bin of the parent income distribution, E[yi|p(i) = p]. The conditional

expectation of a child’s rank given his parents’ rank is almost perfectly linear, a property that

is robust across CZs (Chetty et al. (2014), Online Appendix Figure IV). Exploiting linearity, we

parsimoniously summarize the relationship between children’s mean income ranks and their parents’

ranks by regressing children’s ranks on their parents’ ranks in each CZ c and birth cohort s:

yi = αcs + ψcspi + εi. (1)

We then estimate ȳpcs using the fitted values from this regression:

ȳpcs = α̂cs + ψ̂csp. (2)

For example, in Chicago, ȳ25,c,1980 = 40.1 for children growing up at the 25th percentile of the

national income distribution and ȳ75,c,1980 = 59.3 for children growing up at the 75th percentile.

Figure II maps children’s mean income ranks at age 30 by CZ for children with parents at the

25th percentile (Panel A) and 75th percentile (Panel B); analogous maps at the county level are

presented in Online Appendix Figure I. We construct these maps by dividing CZs into deciles based

on their estimated value of ȳ25,c,s and ȳ75,c,s, with lighter colors representing deciles with higher

mean outcomes. As documented by Chetty et al. (2014), children’s outcomes vary substantially

across CZs, especially for children from low-income families. Chetty et al. (2014, Section V.C)

discuss the spatial patterns in these maps in detail. Here, we focus on investigating whether the

in the past either. For example, among families who stayed in the same CZ c when their children were between ages
16-24, 81.5% of them lived in the same CZ when their children were age 8.
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variation in these maps is driven by causal effects of place or heterogeneity in the types of people

living in different places.

III.B Definition of Exposure Effects

Our objective is to determine how much a child’s potential outcomes would improve on average

if he were to grow up in an area where the permanent residents’ outcomes are 1 percentile point

higher. We answer this question by studying children who move across areas to estimate childhood

exposure effects. We define the exposure effect at age m as the impact of spending year m of one’s

childhood in an area where permanent residents’ outcomes are 1 percentile point higher.

Formally, consider a hypothetical experiment in which we randomly assign children to new

neighborhoods d starting at age m for the rest of their childhood. The best linear predictor of

children’s outcomes yi in the experimental sample, based on the permanent residents’ outcomes in

CZ d (ȳpds), can be written as

yi = α+ βmȳpds + θi, (3)

where the error term θi captures family inputs and other determinants of children’s outcomes.

Since random assignment guarantees that θi is orthogonal to ȳpds, estimating (3) using OLS yields

a coefficient βm that represents the mean impact of spending year m of one’s childhood onward

in an area where permanents residents have 1 percentile better outcomes. We define the exposure

effect at age m as γm = βm − βm+1.18 Note that if income yi is measured at age T , βm = 0 for

m > T , as moving after the outcome is measured cannot have a causal effect on the outcome.

Estimating the exposure effects {γm} is of interest for several reasons. First, a positive effect

(at any age) allows us to reject the null hypothesis that neighborhoods do not matter, a null

of interest given prior experimental evidence. Second, {γm} is informative about the ages at

which neighborhood environments matter most for children’s outcomes. Third, the magnitude of

β0 =
∑T

t=0 γm – the impact of assigning children to better neighborhood from birth – provides

an estimate of the degree to which the differences in children’s outcomes across areas are due to

place effects vs. selection. If place effects are homogeneous across children within birth cohorts and

parent income groups, β0 = 0 would imply that all of the variation across areas is due to selection,

while β0 = 1 would imply that all of the variation reflects causal effects of place. More generally,

the magnitude of β0 tells us how much of the differences across areas in Figure II rub off on children

18For simplicity, we do not allow βm to vary across parent income percentiles p in our baseline analysis, thereby
estimating the average exposure effect across families with different incomes. We estimate (3) separately by parental
income level in Online Appendix Table III.
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who are randomly assigned to live there from birth.

Although β0 sheds light on the causal effect of places on average, we caution that it does not

identify the causal effect of any given area on a child’s potential outcomes. The causal effect of

growing up in a given CZ c will generally differ from the mean predicted impact based on permanent

residents’ outcomes (α + β0ȳpds) because selection and causal effects will vary across areas. We

build on the methodology developed in this paper to estimate the causal effect of each CZ and

county in the second paper in this series (Chetty and Hendren 2017).

III.C Estimating Exposure Effects in Observational Data

We estimate exposure effects by studying families who move across CZs with children of different

ages in observational data. In observational data, the error term θi in (3) will generally be correlated

with ȳpds. For instance, parents who move to a good area may have latent ability or wealth that

produces better child outcomes. Estimating (3) in an observational sample of families who move

exactly once yields a regression coefficient

bm = βm + δm,

where δm =
cov(θi,ȳpds)
var(ȳpds)

is a standard selection effect that measures the extent to which parental

inputs and other determinants of children’s outcomes for movers covary with permanent residents’

outcomes. Fortunately, the identification of exposure effects does not require that where people

move is orthogonal to child’s potential outcomes. Instead, it requires that when people move

to better versus worse areas is orthogonal to children’s potential outcomes, as formalized in the

following assumption.

Assumption 1. Selection effects do not vary with the child’s age at move: δm = δ for all m.

Assumption 1 allows for the possibility that the families who move to better areas may differ

from those who move to worse areas, but requires that the extent of such selection does not vary

with the age of the child when the parent moves. Under this assumption, we obtain consistent

estimates of exposure effects γm = βm − βm+1= bm − bm+1 from (3) even in observational data

because the selection effect δ cancels out when estimating the exposure effect. We can estimate

the selection effect δ itself by examining the outcomes of children whose families move after their

income is measured, e.g. at age a ≥ 30 if income is measured at age T = 30. Because moves at

age a > T cannot have a causal effect on children’s outcomes at age 30, bm = δ for m > T under

Assumption 1. Using the estimated selection effect, we can identify the causal effect of moving to
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a better area at age m as βm = bm − bT+1 and thereby identify β0, the causal effect of growing up

from birth in an area with 1 percentile better outcomes.

Of course, Assumption 1 is a strong restriction that may not hold in practice. We therefore

evaluate its validity in detail after presenting a set of baseline estimates in the next section.

IV Baseline Estimates of Childhood Exposure Effects

This section presents our baseline estimates of exposure effects {γm}. We begin by presenting a

set of semi-parametric estimates of {γm} using specifications that condition on origin fixed effects

and correspond most closely to the hypothetical experiment described in Section III.B. We then

present estimates from parametric models that show how movers’ outcomes can be parsimoniously

modeled as a linear combination of the outcomes of permanent residents in origins and destination.

Finally, we present a set of supplementary results that shed light on the mechanisms through which

neighborhoods affect children’s outcomes.

In our baseline analysis, we focus on children whose parents moved across CZs exactly once

between 1996 and 2012 and are observed in the destination CZ for at least two years. We also

restrict attention to families who moved at least 100 miles to exclude moves across CZ borders

that do not reflect a true change of neighborhood and limit the sample to CZs with populations

above 250,000 to minimize sampling error in the estimates of permanent residents’ outcomes ȳpds.

We show that the findings are robust to alternative cutoffs for population size and move distance

in Online Appendix A, and present estimates that include families who move more than once in

Online Appendix B.

In prior work (Chetty et al. 2014), we found that the intergenerational correlation between

parents’ and children’s incomes stabilizes when children turn 30, as college graduates experience

steeper wage growth in their 20s (Haider and Solon 2006). Measuring income at age 30 limits us

to estimating exposure effects only after age 15 given the time span of our dataset.19 Fortunately,

measuring income at earlier ages (from 24-30) turns out not to affect the exposure effect estimates.

The reason is that our estimates of bm are identified by comparing the incomes of children who

move with the incomes of permanent residents in the destination at the same age. The incomes

of permanent residents serve as goalposts that allow us to measure the degree of convergence in

incomes at any age, even before we observe children’s permanent income. For example, if a given

19The most recent birth cohort for which we observe income at age 30 (in 2012) is the 1982 cohort; since our data
begin in 1996, we cannot observe moves before age 15.
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area c sends many children to college and therefore generates relatively low incomes at age 24, we

will obtain a higher estimate of bm if a child who moves to area c has a low level of income at

age 24. We therefore measure income at age 24 in our baseline specifications to estimate exposure

effects for the broadest age range.20

IV.A Semi-Parametric Estimates

To begin, consider the set of children whose families moved when they were exactly m years old.

We analyze how these children’s incomes in adulthood are related to those of permanent residents

in their destination CZ using the following linear regression:

yi = αqos + bm∆odps + ε1i, (4)

where yi denotes the child’s income rank at age 24, αqos is a fixed effect for the origin CZ o by

parent income decile q by birth cohort s and ∆odps = ȳpds − ȳpos is the difference in predicted

income rank (at age 24) of permanent residents in the destination versus origin for the relevant

parent income rank p and birth cohort s. Equation (4) can be interpreted as an observational

analog of the specification in (3) that we would ideally estimate in experimental data.21

Figure III presents a non-parametric binned scatter plot corresponding to the regression in (4)

for children who move at age m = 13. To construct the figure, we first demean both yi and ∆odps

within the parent decile (q) by origin (o) by birth cohort (s) cells in the sample of movers at age

m = 13 to construct residuals: yri = yi −E[yi|q, o, s] and ∆r
odps = ∆odps −E[∆odps|q, o, s]. We then

divide the ∆r
odps residuals into twenty equal-size groups (ventiles) and plot the mean value of yri

vs. the mean value of ∆r
odps in each bin.

Figure III shows that children who move to areas where children of permanent residents earn

more at age 24 themselves earn more when they are 24. The relationship between yi and ∆odps is

linear. The regression coefficient of b13 = 0.615, estimated in the microdata using (4), implies that

a 1 percentile increase in ȳpds is associated with a 0.615 percentile increase in yi for the children

who move at age 13.

20We show below that we obtain similar estimates when measuring income at later ages (from 26-30) over the
overlapping range of ages at which children move. We do not study income before age 24 because many children
are enrolled in college at earlier ages and because we find that exposure effects persist until age 23 when income is
measured at any point between 24 and 30. We study college attendance as a separate outcome in Section VI.

21We use parent income deciles rather than percentiles to define the fixed effects αqos to simplify computation;
using finer bins to measure parent income groups has little effect on the estimates. Conditional on parent percentile,
origin, and birth cohort, the variation in ∆odps is entirely driven by variation in the destination outcomes (ȳpds).
Hence, bm is identified from variation in ȳpds, as in (3), up to the approximation error from using parent deciles
instead of exact percentiles.
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Building on this approach, we estimate analogous regression coefficients bm for children whose

parents move at each age m from 9 to 30. We estimate {bm} using the following specification:

yi = αqosm +
30∑
m=9

bmI(mi = m)∆odps +
1987∑
s=1980

κsI(si = s)∆odps + ε2i, (5)

where αqosm is an origin CZ by parent income decile by birth cohort by age at move fixed effect

and I(xi = x) is an indicator function that is 1 when xi = x and 0 otherwise. This specification

generalizes (4) by fully interacting the age at move m with the independent variables in (4). In

addition, we permit the effects of ∆odps to vary across birth cohorts (captured by the κs coefficients)

because our ability to measure parent’s locations during childhood varies across birth cohorts. We

observe children’s locations starting only at age 16 for the 1980 cohort, but starting at age 8 for the

1988 cohort. This leads to greater measurement error in ∆odps for earlier birth cohorts, which can

confound our estimates of bm since the distribution of ages at move is unbalanced across cohorts

(see Online Appendix A for further details). By including cohort interactions, we identify {bm}

from within-cohort variation in ages at move.22

Figure IVa plots estimates of bm from (5). The estimates exhibit two key patterns: selection

effects after age 24 and exposure effects before age 24. First, the fact that bm > 0 for m > 24 is

direct evidence of selection effects (δm > 0), as moves after age 24 cannot have a causal effect on

income at 24. Families who move to better areas have children with better unobservable attributes.

The degree of selection δm does not vary significantly with m above age 24: regressing bm on m for

m ≥ 24 yields a statistically insignificant slope of 0.001 (s.e. = 0.011). This result is consistent with

Assumption 1, which requires that selection does not vary with the child’s age at move. The mean

value of δm for m ≥ 24 is δ = 0.126, i.e. families who move to an area where permanent residents

have 1 percentile better outcomes have 0.126 percentile better outcomes themselves purely due to

selection effects. Assumption 1 allows us to extrapolate the selection effect of δ = 0.126 back to

earlier ages m < 24, as shown by the dashed horizontal line in Figure IVa, and thereby identify

causal exposure effects at earlier ages.

This leads to the second key pattern in Figure IVa, which is that the estimates of bm decline

steadily with the age at move m for m < 24. Under Assumption 1, this declining pattern constitutes

evidence of an exposure effect, i.e. that moving to a better area earlier in childhood generates larger

long-term gains.23 The linearity of the relationship between bm and the age at move m in Figure

22To avoid collinearity, we omit the most recent cohort interaction with ∆odps (the 1988 cohort when income is
measured at age 24). We show below that these cohort interactions have little impact on the estimates obtained from
(5), but play a larger role in specifications that include family fixed effects.

23This declining pattern could also potentially be generated by critical age effects rather than effects that operate
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IVa below age 24 implies that the exposure effect γm = bm+1 − bm is approximately constant with

respect to age at move m. Regressing b̂m on m for m < 24, we estimate an average annual exposure

effect of γ = 0.044 (s.e. = 0.003). That is, the outcomes of children who move converge to the

outcomes of permanent residents of the destination area at a rate of 4.4% per year of exposure until

age 23.24

Because some children do not move with their parents, the estimates of bm in (5) should be

interpreted as intent-to-treat (ITT) estimates, in the sense that they capture the causal effect of

moving (plus the selection effect) for children whose parents moved at age m. We can obtain

treatment-on-the-treated (TOT) estimates for children who move with their parents by inflating

the ITT estimates by the fraction of children who moved with their parents at each age m.25 In

Online Appendix Figure III, we show that the TOT estimate of the exposure effect is γTOT = 0.040.

This estimate is very similar to our baseline estimate because virtually all children move with their

parents below age 18 and roughly 60% of children move with their parents between ages 18-23.

Because the treatment effects converge toward zero as the age at move approaches 23, inflating the

coefficients by 1/0.6 at later ages has little impact on exposure effect estimates.

IV.B Parametric Estimates

Equation (5) includes more than 200,000 fixed effects (αqosm), making it difficult to estimate in

smaller samples and introduce additional controls such as family fixed effects. As a more tractable

alternative, we estimate a model in which we control parametrically for the two key factors captured

by the αqosm fixed effects: (1) the quality of the origin location, which we model by interacting

the predicted outcomes for permanent residents in the origin at parent income percentile pi with

birth cohort fixed effects and (2) disruption costs of moving that may vary with the age at move

and parent income, which we model using age at move fixed effects linearly interacted with parent

in proportion to exposure time. We present evidence in Section IV.C below supporting the interpretation of these
results as exposure effects.

24Figure IVa is identified from variation in movers’ destinations holding their origin fixed. An alternative approach
is to exploit variation in origins, holding destinations fixed. Online Appendix Figure II presents estimates of bm
identified from variation in origins by replacing the origin (αqosm) fixed effects in (5) with destination (αqdsm) fixed
effects. The resulting estimates yield a qualitative pattern that is the mirror image of those in Figure IVa: the later
the family moves to the destination, the more the child’s outcomes match the permanent residents in the origin, up
to age 23. The estimated exposure effect of 0.030 is smaller than the estimates above because we measure children’s
origins with greater error than destinations, as our location data is left-censored. This is why we focus on variation
in destinations in most of our specifications.

25We identify children who move with their parents based on whether they ever file a tax return, receive a W-2
form, or attend a college in the destination CZ.
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income percentile pi. This leads to the following regression specification:

yi =
1988∑
s=1980

I(si = s)(α1
s + α2

s ȳpos) +
30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) (6)

+
30∑
m=9

bmI(mi = m)∆odps +
1987∑
s=1980

κdsI(si = s)∆odps + ε3i,

The first two terms of this specification control for origin quality and disruption effects. The third

term represents the exposure effects of interest and the fourth consists of cohort interactions with

∆odps to control for differential measurement error across cohorts, as in (5).26

Figure IVb plots the coefficients {bm} obtained from estimating (6). The coefficients are very

similar to those obtained from the more flexible specification used to construct Figure IVa. Re-

gressing the bm coefficients on m for m ≤ 23, we obtain an average annual exposure effect estimate

of γ = 0.038 (s.e. = 0.002). This estimate is similar to that obtained from the fixed effects specifi-

cation because controlling for the quality of the origin using the permanent residents’ outcomes is

adequate to account for differences in origin quality. Put differently, movers’ outcomes can be mod-

eled as a weighted average of the outcomes of permanents residents in the origin and destination,

with weights reflecting the amount of childhood spent in the two places.

When measuring income at age 24, we cannot determine whether bm stabilizes after age 24

because moving after age 24 has no causal effect on income or because we measure income at that

point. In Online Appendix Figure IV, we replicate the analysis measuring income at ages 26, 28,

and 30 in addition to age 24. All of these series display very similar patterns of exposure effects in

the overlapping age ranges, showing that our estimates of bm are insensitive to the age at which we

measure children’s incomes in adulthood. In particular, all four series decline linearly at a rate of

approximately γ = 0.04 until age 23 and are flat thereafter. These results imply that neighborhood

exposure before age 23 is what matters for income in subsequent years.

The kink at age 23 motivates the baseline regression specification that we use for the rest of

our analysis. We parameterize both the exposure and selection effects shown in Figure IV linearly,

replacing the non-parametric
∑30

m=9 bmI (mi = m) ∆odps term in (6) with two separate lines above

26In addition to having much fewer fixed effects, this specification uses variation in both the quality of the origin
(ȳpos) and the destination (ȳpds) to identify {bm}. In contrast, the semi-parametric model in (5) is identified purely
from variation in destinations because it includes origin fixed effects. Estimating a parametric model that identifies
{bm} from variation in destinations by controlling for outcomes of permanent residents in the origin interacted with
the age of the child at the time of the move (

∑30
m=9 bmI(mi = m)ypos) yields very similar estimates.
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and below age 23:

yi =
1988∑
s=1980

I(si = s)(α1
s + α2

s ȳpos) +
30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +
1987∑
s=1980

κdsI(si = s)∆odps (7)

+I(mi ≤ 23) (b0 + (23−mi)γ) ∆odps + I(mi > 23)(δ + (23−mi)δ
′)∆odps + ε3i,

Estimating this specification directly in the microdata yields an average annual exposure effect

γ = 0.040 (s.e. = 0.002), as shown in Column 1 of Table II.27

The estimates of γ are robust to alternative specifications and sample definitions. Columns 2

and 3 of Table II show that estimating γ using data only up to age 18 or 23 – i.e., excluding the data

at older ages that identifies the selection effect in (7) – yields similar estimates of γ. Column 4 shows

that excluding the cohort interactions,
∑1988

s=1980 I(si = s)α2
s ȳpos and

∑1987
s=1980 κ

d
sI(si = s)∆odps, in

(7) does not affect the estimate of γ significantly. Column 5 shows that we obtain an estimate

of γ = 0.041 (s.e. = 0.002) when we measure movers’ income ranks yi and permanent residents’

income ranks ȳpcs at the individual rather than household level.

We replicate the analysis in Table II at the county level in Online Appendix Table V. We obtain

slightly smaller exposure effect estimates of γ ' 0.035 at the county level, indicating that selection

effects account for a larger fraction of the variance in permanent residents’ outcomes at smaller

geographies. This is intuitive, as families are more likely to sort geographically (e.g., to better

school districts) within rather than across labor markets.

IV.C Mechanisms

In this subsection, we present a set of additional specifications that shed light on the mechanisms

through which neighborhoods affect children’s outcomes.

We begin by distinguishing the role of childhood environment from differences caused by vari-

ation in labor market conditions or local costs of living across areas. In Column 6 of Table II, we

add fixed effects for the CZ in which the child lives at age 24 (when income is measured) to the

baseline model. This specification compares the outcomes of children who live in the same labor

market in adulthood but grew up in different neighborhoods. We obtain an annual exposure effect

27This coefficient differs slightly from the coefficient of γ = 0.038 that we obtain when regressing the coefficients
bm on m in Figure IVb because estimating the regression in the microdata puts different weights on each age (as we
have more data at older ages), while estimating the regression using the bm coefficients puts equal weight on all ages.
The standard error in this and all subsequent specifications is also obtained from the regression in the microdata. To
simplify computation, we report conventional (unclustered) standard errors. Clustering standard errors by family to
account for correlated outcomes across siblings does not affect the standard errors appreciably. In addition, regressing
the estimates of bm on m in Figure IVb – which is analogous to clustering the standard errors by the age at move
– also yields a s.e. of 0.002, showing that our inferences are not sensitive to the way in which standard errors are
computed.
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of γ = 0.031 in this specification, indicating that the majority of the exposure effect in our baseline

specification is driven by differences in exposure to a better childhood environment, holding fixed

labor market conditions.28 This conclusion is consistent with the fact that moving to an area where

permanent residents have higher income just before entering the labor market (e.g., in one’s early

20s) has little effect on income, as shown in Figure IV.

Next, we examine heterogeneity in exposure effects across subsamples (Online Appendix Table

III). Standard models of learning predict that moving to a better area will improve outcomes but

moving to a worse area will not. In practice, the exposure effect for negative moves is larger than

for positive moves: γ = 0.030 for moves to better CZs (∆odps > 0), while γ = 0.040 for moves

to worse CZs (∆odps < 0).29 Spending part of one’s childhood in a good neighborhood does not

make a child immune to subsequent deterioration in his or her neighborhood environment. We

also find slightly larger exposure effects for children from above-median income families relative to

below-median income families (γ = 0.047 vs. γ = 0.031).

Finally, we distinguish between two different mechanisms that could explain why moving to a

better area at a younger age is more beneficial: exposure effects – the mechanism we have focused

on above – and critical age effects. Critical age (or critical period) models predict that the impacts

of moving to a different neighborhood vary with children’s ages (e.g., Lynch and Smith 2005).

For example, suppose that moving to a better neighborhood improves a child’s network of friends

with a probability that falls with the age at move and that once one makes new contacts, they

last forever. In this model, neighborhood effects would decline with a child’s age at move (as in

Figure IV), but the duration of exposure to a better area would not matter for long-term outcomes.

Alternatively, if better neighborhoods offer a positive treatment (such as better schooling) in each

year of childhood, the key determinant of outcomes would be the total duration of exposure rather

than the specific age at which a child moves. Distinguishing between these mechanisms can be

important for policy: the critical age view calls for improving children’s environments at certain

key ages while the exposure view calls for a sustained improvement in environment throughout

childhood.

A critical age model cannot be distinguished from an exposure effect model in a sample of one-

28This specification likely over-adjusts for differences in labor market conditions and underestimates γ because the
CZ in which the child resides as an adult is itself an endogenous outcome that is likely related to the quality of a
child’s environment. For example, one of the effects of growing up in a good area may be an increased probability of
getting a high-paying job in another city.

29Moreover, roughly an equal fraction of families with children move to CZs with better vs. worse outcomes; 48.7%
move to CZs with ∆odps > 0. This contrasts with sorting models suggesting families with children would tend to sort
to CZs that produce better outcomes.
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time movers because a child’s age at move is perfectly collinear with his duration of exposure to

the new area. However, this collinearity is broken when families move multiple times. Intuitively,

one can distinguish between the critical age and exposure mechanisms by considering children who

move to an area with better permanent residents’ outcomes ȳpds but then move back to the place

where they started. In this case, the exposure model predicts that children will experience gains

that are proportional to the number of years they spent in the destination CZ, whereas the critical

age model predicts that the gain will depend only upon the age at which the child first moves to

the new area.

To implement this analysis, we first generalize the specification in (7) to include families who

move more than once by replacing the ∆odps terms with a duration-weighted measure of exposure

to different areas over childhood (see Online Appendix B for details). This multiple movers specifi-

cation yields an annual exposure effect estimate of γ = 0.042 (s.e. = 0.001) (Online Appendix Table

IV, Column 2). We then test between the critical age and exposure mechanisms by controlling for

the age of the child at the time of each move j interacted with the change in permanent residents’

outcomes (∆od(j)ps). This specification, which isolates variation in exposure that is orthogonal to

the ages at which children move, yields an exposure effect estimate of γ = 0.036 (s.e. = 0.005)

(Online Appendix Table IV, Column 4). The similarity between this estimate and our baseline

estimate of γ ' 0.04 implies that what matters for children’s incomes in adulthood is the total time

spent in a given area (exposure) rather than the age at which one arrives in that area.30

IV.D Summary

Under our key identification assumption (Assumption 1), the empirical results in this section yield

three lessons. First, place matters: children who move at earlier ages to areas where prior residents

have higher incomes earn more themselves as adults. Second, place matters in proportion to

the duration of childhood exposure. Every year of exposure to the better area during childhood

contributes to higher income in adulthood. Third, each year of childhood exposure matters roughly

equally. The returns to growing up in a better neighborhood persist well beyond early childhood.

All of these conclusions rest on the assumption that selection effects do not vary with the child’s

age at move. We evaluate the validity of this assumption in the next section.

30Critical age effects have been most widely documented in linguistic patterns and anthropometric measures (e.g.,
Singleton and Ryan 2004, Bleakley and Chin 2004, van den Berg et al. 2014). One potential explanation for why we
do not find evidence of critical age effects here is that we focus on U.S. natives, for whom language acquisition is less
of an issue.
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V Validation of Baseline Design

We assess the validity of our key identifying assumption – that the potential outcomes of children

who move to better vs. worse areas do not vary with the age at which they move – using a series of

tests that focus on different forms of selection and omitted variable bias. To organize the analysis,

we partition the unobserved determinant of children’s outcomes, represented by θi in equation (3),

into two components: a component θ̄i that reflects inputs that are fixed within families, such as

parent genetics and education, and a residual component θ̃i = θi − θ̄i that may vary over time

within families, such as parents’ jobs.

We implement four tests for bias in this section. First, we address bias due to selection on

fixed family factors θ̄i by comparing siblings’ outcomes. Second, we control for changes in par-

ents’ income and marital status, two key time-varying factors θ̃i that we observe in our data. Our

remaining tests focus on unobservable time-varying factors, such as changes in wealth, that may

have triggered a move to a better area. In our third set of tests, we isolate moves that occur due

to displacement shocks that induce many families to move. Finally, we conduct a set of outcome-

based placebo (overidentification) tests of the exposure effect model, exploiting heterogeneity in

permanent residents’ outcomes across subgroups to generate sharp testable predictions about how

children’s outcomes should change when they move to different areas. In our view, this last ap-

proach, although least conventional, provides the most compelling evidence that the identifying

assumption holds and that neighborhoods have causal exposure effects on children’s long-term

outcomes.

V.A Sibling Comparisons

If families with better unobservables (higher θ̄i) move to better neighborhoods at earlier ages,

Assumption 1 would be violated and our estimated exposure effect γ̂ would be biased upward.

We control for differences in such family-level factors θ̄i by including family fixed effects when

estimating (6). For example, consider a family that moves to a better area with two children, who

are ages m1 and m2 at the time of the move. When including family fixed effects, the exposure

effect γ is identified by the extent to which the difference in siblings’ outcomes, y1 − y2, covaries

with the difference in their ages interacted with the change in permanent residents’ outcomes,

(m1 −m2)∆odps.

Figure Va replicates Figure IVb, adding family fixed effects to equation (6). The linear decline

in the estimated values of bm until age 23 is very similar to that in the baseline specification.
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Children who move to a better area at younger ages have better outcomes than their older siblings.

Regressing the bm coefficients on m for m ≤ 23 yields an average annual exposure effect estimate

of γ = 0.043 (s.e. = 0.003), very similar to our estimates above.

The selection effect (i.e., the level of bm after age 24) falls from δ = 0.23 in the baseline

specification to δ = 0.01 (not significantly different from zero) with family fixed effects.31 Family

fixed effects thus reduce the level of the bm coefficients by accounting for differential selection in

which types of families move to better vs. worse areas, but do not affect the slope of the bm

coefficients. This is precisely what we should expect if selection effects in where families choose to

move do not vary with children’s ages when they move, as required by Assumption 1.

Column 7 of Table II shows that adding family fixed effects to the linear specification in equation

(7) and estimating the model directly on the micro data yields an estimate of γ = 0.044. Other

variants of this regression specification, analogous to those in Columns 2-6 of Table II, all yield very

similar estimates of γ, with one exception: excluding the cohort interactions with ȳpos and ∆odps, as

in Column 4, yields γ = 0.031 (Column 8 of Table II). The reason that the estimate of γ falls in this

specification is that we observe children’s origin locations for fewer years in earlier birth cohorts, as

discussed in Section IV.A. The missing data on origins increases the level of the selection effect δ in

earlier cohorts (see Online Appendix A). Because we only observe moves at older ages for children

in earlier cohorts, these differences across cohorts induce a positive correlation between δm and m,

biasing our estimate of γ downward. This bias is magnified in the specifications with family fixed

effects because they are identified purely by comparing the outcomes of children in different birth

cohorts, whereas our baseline specifications also compare children in the same birth cohort whose

parents move at different times. Including cohort interactions with ∆odps eliminates this bias by

permitting a separate selection term δ for each cohort.32

In sum, we continue to find childhood exposure effects of γ ' 0.04 when comparing siblings’

outcomes, implying that our design is not confounded by differences in the types of families who

move to better areas when their children are younger.

V.B Controls for Time-Varying Observables

The research design in Figure Va accounts for bias due to fixed differences in family inputs θ̄i, but it

does not account for time-varying inputs θ̃i. For example, moves to better areas may be triggered

31δ is identified even with family fixed effects because ∆odps varies across birth cohorts.
32The attenuation bias in γ is further amplified in CZs with smaller populations, where ∆odps is measured with

greater error (see Online Appendix A and Appendix Table VI).
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by events such as job promotions that directly affect children’s outcomes in proportion to their

time of exposure to the destination. Such shocks could bias our estimate of β upward even with

family fixed effects.

Prior research has focused on changes in parents’ income and marital status as two key factors

that may induce moves and also directly affect children’s outcomes in adulthood (e.g., Jencks and

Mayer 1990). We can directly control for these two time-varying factors in our data, as we observe

parents’ incomes and marital status in each year from 1996-2012. We control for the effects of

changes in income around the move when estimating (6) by including controls for the change in the

parent’s income rank from the year before to the year after the move interacted with indicators for

the child’s age at move. The interactions with age at move permit the effects of income changes to

vary with the duration of childhood exposure to higher vs. lower levels of parent income. Similarly,

we control for the impact of changes in marital status by interacting indicators for each of the four

possible changes in the mother’s marital status in the year before vs. after the move (married to

unmarried, unmarried to married, unmarried to unmarried, and married to married) with indicators

for the child’s age at move.

Figure Vb replicates Figure Va, controlling for all of these variables in addition to family fixed

effects. Controlling for changes in parent income and marital status has little effect on the estimates

of {bm}. The estimates of γ = 0.042 and δ = 0.015 are virtually identical to those when we do not

control for these time-varying factors. Column 9 of Table II confirms that including these controls

in a linear regression estimated on the micro data yields similar estimates.

These results show that changes in income and family structure are not a significant source

of bias in our design. However, other unobserved factors could still be correlated with moving

to a better or worse area in a manner that generates omitted variable bias. The fundamental

identification problem is that any unobserved shock that induces child i’s family to move to a

different area could be correlated with parental inputs θi. These changes in parental inputs could

potentially increase the child’s income yi in proportion to the time spent in the new area even in

the absence of neighborhood effects. For example, a wealth shock might lead a family to both move

to a better neighborhood and increase investments in the child in the years after the shock, which

could improve yi in proportion to exposure time independent of neighborhood effects. In the next

two subsections, we address concerns about bias due to such unobserved factors.
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V.C Displacement Shocks

One approach to accounting for unobservable shocks is to identify moves where we have some

information about the shock that precipitated the move. Suppose we identify families who were

forced to move from an origin o to a nearby destination d because of an exogenous shock such as a

natural disaster. Such displacement shocks can induce differential changes in neighborhood quality

as measured by permanent residents’ outcomes (∆odps). For instance, Hurricane Katrina displaced

families from New Orleans (an area with relatively poor outcomes compared to surrounding areas),

leading to an increase in average neighborhood quality for displaced families (∆odps > 0). In con-

trast, Hurricane Rita hit Houston, an area with relatively good outcomes, and may have reduced

neighborhood quality (∆odps < 0). If these displacement shocks do not have direct exposure effects

on children that are correlated with ∆odps – e.g., the direct effects of the disruption induced by

hurricanes does not covary with neighborhood quality changes – then Assumption 1 is satisfied and

we obtain unbiased estimates of the exposure effect γ by focusing on displaced families. Concep-

tually, by isolating a subset of moves caused by known exogenous shocks, we can more credibly

ensure that changes in children’s outcomes are not driven by unobservable factors.33

To operationalize this approach, we first identify displacement shocks based on population

outflows at the ZIP code level. Let Kzt denote the number of families who leave ZIP code z in year

t in our sample of one-time movers and K̄z mean outflows between 1996 and 2012. We define the

shock to outflows in year t in ZIP z as kzt = Kzt/K̄z.
34

Though many of the families who move in subsamples with large values of kzt do so for ex-

ogenous reasons, their destination d is still an endogenous choice that could lead to bias. For

example, families who choose to move to better areas (higher ȳpds) when induced to move by an

exogenous shock might also invest more in their children. To reduce potential biases arising from

the endogenous choice of destinations, we isolate variation arising from the average change in neigh-

borhood quality for individuals who are displaced. Let E[∆odps|q, z] denote the difference in the

mean predicted outcome in the destination CZs relative to the origin CZ for individuals in origin

ZIP code z and parent income decile q (averaging over all years in the sample, not just the year

33This research design is related to Sacerdote’s (2012) analysis of the effects of Hurricanes Katrina and Rita on
student test score achievement. Although we use similar variation, we do not focus on the direct effects of the
displacement itself, but rather on how children’s long-term outcomes vary in relation to the outcomes of permanent
residents in the destination to which they were displaced.

34Searches of historical newspaper records for cases with the highest outflow rates kzt reveal that they are frequently
associated with events such as natural disasters or local plant closures. Unfortunately, there is insufficient power to
estimate exposure effects purely from the events identified in newspapers.
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of the shock). We instrument for the difference in predicted outcomes in each family’s destination

relative to origin (∆odps) with E[∆odps|q, z] and estimate the linear specification in (7) using 2SLS

to identify the exposure effect, γIV .35

Figure VI presents the results of this analysis. To construct this figure, we take ZIP-year cells

with above-median outflows (kzt > 1.17) and divide them into population-weighted bins based on

the size of the shock kzt.
36 The first point in Figure VI shows the 2SLS estimate of the annual

exposure effect γIV using all observations with kzt greater than its median value (1.17). The second

point shows the estimate of γIV using all observations with kzt at or above the 52nd percentile.

The remaining points are constructed in the same way, increasing the threshold by 2 percentiles at

each point, with the last point representing an estimate of γIV using data only from ZIP codes in

the highest two percentiles of outflow rates. The dotted lines show a 95% confidence interval for

the regression coefficients.

If the baseline estimates were driven entirely by selection, γIV would fall to 0 as we limit the

sample to individuals who are more likely to have been induced to move because of an exogenous

displacement shock. But the coefficients remain quite stable atγIV ' 0.04 even when we restrict to

moves that occurred as part of large displacements. That is, when we focus on families who move

to a better area for what are likely to be exogenous reasons, we continue to find that children who

are younger at the time of the move earn more as adults.

These findings support the view that our baseline estimates of exposure effects capture the

causal effects of neighborhoods rather than other unobserved factors that change when families

move. Moreover, they indicate that the treatment effects of moving to a different area are similar

for families who choose to move for idiosyncratic reasons and families who are exogenously displaced.

This result suggests that the exposure effects identified by our baseline design can be generalized

to a broader set of families beyond those who choose to make a particular move.

35This approach does not fully eliminate the scope for selection bias, as biases from the endogenous choice of
destinations could persist if there is unobserved heterogeneity across areas experiencing displacement shocks. However,
it reduces the scope for selection bias by focusing on moves induced by aggregate displacement shocks and eliminating
variation in ∆odps due to individual choice, which is more likely to be correlated with unobservables θi than the area-
level variation in E[∆odps|q, z]. By testing if the estimate of γ remains stable when we use an estimator that reduces
the scope for selection, we can gauge whether our baseline estimate of γ is biased.

36To ensure that large outflows are not driven by areas with small populations, we exclude ZIP-year cells with less
than 10 children leaving in that year.
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V.D Outcome-Based Placebo Tests

As a final approach to test for bias due to unobservable factors, we implement placebo tests that

exploit the heterogeneity in permanent residents’ outcomes across subgroups. We exploit variation

along three dimensions: birth cohorts, quantiles of the income distribution, and child gender. The

causal exposure effect model predicts precise convergence of a child’s outcome to permanent resi-

dents’ outcomes for his or her own subgroup. In contrast, we argue below that omitted variable and

selection models would not generate such subgroup-specific convergence under plausible assump-

tions about parents’ information sets and preferences. The heterogeneity in permanent residents’

outcomes thus gives us a rich set of overidentifying restrictions to test whether neighborhoods have

causal effects.37 We consider each of the three dimensions of heterogeneity in turn.

Birth Cohorts. Although permanent residents’ outcomes are generally very stable over time,

outcomes in some areas (such as Oklahoma City, OK) have improved over time, while others (such

as Sacramento, CA) have gotten worse.38 Such changes could occur, for instance, because of changes

in the quality of local schools or other area-level characteristics that affect children’s outcomes. We

exploit this heterogeneity across birth cohorts to test for confounds in our baseline research design.

Under the causal exposure effect model, when a child’s family moves to destination d, the

difference in permanent residents’ outcomes ∆odp,s(i) for that child’s own birth cohort s(i) should

predict his or her outcomes more strongly than the difference in outcomes ∆odps for other cohorts

s 6= s(i). Intuitively, what matters for a child’s outcome is a neighborhood’s quality for his own

cohort, not the neighborhood’s quality for younger or older cohorts. In contrast, it is unlikely that

other unobservables θi will vary sharply across birth cohorts s in association with ∆odps because

the fluctuations across birth cohorts are realized only in adulthood and thus cannot be directly

observed at the time of the move.39 Therefore, by testing whether exposure effects are predicted by

a child’s own vs. surrounding cohorts, we can assess the importance of bias due to unobservables.

We implement this analysis by estimating the baseline specification in (7), replacing the change

in permanent residents’ outcomes for the child’s own cohort, ∆odp,s(i), with analogous predictions

for adjacent birth cohorts s(i) + t, ∆odp,s(i)+t (see Online Appendix D for details). The series in

red triangles in Figure VII plots the exposure effect estimates (γ̃t) obtained from these regressions,

37In addition to being useful for identification, these results are also of direct interest in understanding the hetero-
geneity of place effects across subgroups.

38The autocorrelation of ȳpcs with ȳpc,s−1 across children’s birth cohorts is 0.95 at the 25th percentile of the parent
income distribution.

39For instance, a family that moves with a 10 year old child will not observe ȳpds for another 14 years (if income
is measured at age 24).
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with t ranging from −4 to 4. The estimates of γ̃t are similar to our baseline estimate of γ = 0.040

for the leads and lags, consistent with the high degree of serial correlation in permanent residents’

outcomes. The series in blue circles plots analogous coefficients γ̃t when all the cohort-specific

predictions from the four years before to the four years after the child’s own cohort are included

simultaneously. In this specification, the coefficients on the placebo exposure effects (γ̃t for t 6= 0)

are all very close to zero and not statistically significant.40 However, the exposure effect estimate for

the child’s own cohort remains at approximately γ = 0.04 even when we control for the surrounding

cohorts’ predictions and is significantly different from the estimates of γ̃t for t 6= 0 (p < 0.001).

The evidence in Figure VII strongly supports the view that the change in children’s outcomes is

driven by causal effects of exposure to a different place. Intuitively, it is unlikely that a correlated

shock – such as a change in wealth when the family moves – would covary precisely with cohort-

level differences in place effects, as manifested in the outcomes of children of permanent residents.

Formally, this test relies on the assumption that if unobservables θi are correlated with exposure

to a given cohort s(i)’s place effect (proxied for by permanent residents’ outcomes), they must also

be correlated with exposure to the place effects of adjacent cohorts t:

Cov(θi,m∆odp,s(i)|X) > 0⇒ Cov(θi,m∆odpt|X,m∆odp,s(i)) > 0, (8)

where X represents the vector of fixed effects and other controls in (7). Under this assumption,

the findings in Figure VII imply that our estimates of γ reflect causal neighborhood effects (which

are cohort-specific) rather than omitted variables, which are not cohort-specific under (8).

Quantiles: Distributional Convergence. Places differ not only in children’s mean outcomes, but

also in the distribution of children’s outcomes. For example, children who grow up in low-income

families in Boston and San Francisco have comparable mean ranks, but children in San Francisco are

more likely to end up in the tails of the income distribution than those in Boston. If neighborhoods

have causal exposure effects, we would expect convergence in movers’ outcomes not just at the

mean but across the entire distribution in proportion to exposure time. In contrast, it is less

plausible that omitted variables such as wealth shocks would perfectly replicate the distribution of

outcomes of permanent residents in each CZ.41 Therefore, testing for quantile-specific convergence

can distinguish the causal exposure effect model from omitted variable explanations.

40A test of the joint hypothesis that all γ̃t = 0 for all t 6= 0 yields a p-value of 0.251.
41Families are unlikely to be able to forecast their child’s eventual quantile in the income distribution, making it

difficult to sort precisely on quantile-specific neighborhood effects. Even with such knowledge, there is no ex-ante
reason to expect unobserved shocks such as changes in wealth to have differential and potentially non-monotonic
effects across quantiles, in precise proportion to the outcomes in the destination.
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To implement these tests, we begin by constructing predictions of the probability of having

an income in the upper or lower tail of the national income distribution at age 24 for children of

permanent residents in each CZ c. In each CZ, we regress an indicator for a child being in the top

10% of the distribution or an indicator for not being employed on parent income rank p using an

equation analogous to (1), including a quadratic term in parental income rank p to account for the

nonlinearities in tail outcomes identified in Chetty et al. (2014). We then calculate the predicted

probability of being non-employed πUpcs and being above the 90th percentile π90
pcs using the fitted

values from these regressions, as in (2).

In Table III, we estimate exposure effect models analogous to (7) using these distributional

predictions instead of mean predictions. In Columns 1-3, the dependent variable is an indicator

for having income in the top 10% of the income distribution. Column 1 replicates the baseline

specification in (7), using ∆90
odps = π90

pds − π90
pos instead of the mean prediction ∆odps = ȳpds − ȳpos

as the key independent variable (see Online Appendix D for the exact regression specifications).

We obtain an exposure effect estimate of γ = 0.043 per year in this specification. Column 2 uses

the change in the predicted mean rank, ∆odps, instead. Here, we obtain a statistically significant

estimate of 0.024, as expected given the high degree of correlation in permanent residents’ outcomes

across quantiles: places where more children reach the top 10% also tend to have better mean

outcomes. In Column 3, we include both the quantile prediction ∆90
odps and the mean prediction

∆odps, identifying the coefficients purely from differential variation across quantiles within CZs.

The coefficient on the quantile prediction remains unchanged at approximately γ = 0.04, while the

coefficient on the mean prediction is not significantly different from 0.

Columns 4-6 of Table III replicate Columns 1-3, using an indicator for non-employment as

the dependent variable and the prediction for non-employment ∆U
odps instead of ∆90

odps as the key

independent variable. As in the upper tail, children’s probabilities of being in the lower tail of the

income distribution are fully determined by the quantile-specific prediction rather than the mean

prediction. In Column 6, the coefficient on the non-employment prediction ∆U
odps is γ = 0.043,

while the placebo coefficient on the mean rank prediction is −0.002.

In short, we find evidence of distributional convergence: controlling for mean outcomes, chil-

dren’s outcomes converge to predicted outcomes in the destination across the distribution in pro-

portion to exposure time, at a rate of approximately 4% per year.42 Since omitted variables such

42The rate of convergence need not be identical across all quantiles of the income distribution because the prediction
for permanent residents at each quantile π90

pcs could reflect a different combination of causal effects and sorting. The
key test is whether the prediction for the relevant quantile has more predictive power than predictions at the mean
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as wealth shocks would be unlikely to generate such distributional convergence, this finding again

supports the view that the convergence in mover’s outcomes is driven by causal effects of place.

Formally, assume that if unobservables θi are correlated positively with exposure to place effects

on upper (or lower) tail outcomes πqpcs, they must also be correlated with exposure to the place

effects on mean incomes (proxied for by permanent residents’ outcomes):

Cov(θi,m∆q
odps|X

q) > 0⇒ Cov(θi,m∆odps|Xq,m∆q
odps) > 0. (9)

Under this assumption, the findings in Table III imply that our estimates of γ reflect causal place

effects (which are quantile-specific) rather than omitted variables, which are not quantile-specific

under (9).

Gender. Finally, we conduct an analogous set of placebo tests exploiting heterogeneity in per-

manent residents’ outcomes by child gender. We begin by constructing gender-specific predictions

of the mean household income ranks of children of permanent residents by estimating (1) separately

for male and female children, which we denote by ȳmpcs and ȳfpcs. Places that are better for boys

are generally better for girls as well: the (population-weighted) correlation of ȳmpcs and ȳfpcs across

CZs is 0.93 at the median (p = 50).43 We exploit the residual variation across genders to conduct

placebo tests analogous to those above, based on the premise that unobservable shocks are unlikely

to have gender-specific effects.

In Table IV, we estimate exposure effect models analogous to (7) with separate predictions by

gender. Column 1 replicates (7) using the gender-specific prediction ∆g
odps instead of the prediction

that pools both genders. We obtain an exposure effect estimate of γ = 0.038 per year in this

specification. In Column 2, we use the prediction for the other gender ∆−godps instead. Here, we

obtain an estimate of 0.031, as expected given the high degree of correlation in outcomes across

genders. In Column 3, we include predictions for both genders, identifying the coefficients purely

from differential variation across genders within CZs. In this specification, the coefficient on the

own gender prediction is γ = 0.03, three times larger than the other-gender prediction, which is

close to zero.44

or other quantiles.
43Online Appendix Figure V presents choropleth maps of ȳmpcs− ȳfpcs at p = 25 and p = 75. For low-income families

(p = 25), outcomes for boys are relatively worse than those for girls in areas with higher crime rates, a larger fraction
of single parents, and greater inequality (Chetty et al. 2016).

44It is not surprising that the other gender prediction remains positive, as the prediction for the other gender may
be informative about a place’s effect for children of a given gender due to measurement error. In general, finding
a 0 effect on the “placebo” prediction is sufficient but not necessary to conclude that there is no sorting under an
assumption analogous to (8).
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One may be concerned that families sort to different areas based on their child’s gender, which

– unlike the quantile and cohort-specific variation used above – is known at the time of the move.

To address this concern, Columns 4-6 of Table IV replicate Columns 1-3 including family fixed

effects. The own-gender prediction remains a stronger predictor of children’s outcomes than the

other-gender prediction even when we compare siblings’ outcomes within families. Column 7 shows

that this remains the case when we restrict the sample to families that have at least one boy and

one girl, for whom differential sorting by gender is infeasible.

The gender-specific convergence documented in Table IV supports the causal exposure effects

model under an assumption analogous to (8), namely that the unobservable θi does not vary

differentially across children of different genders within a family. This assumption requires that

families who move to areas that are particularly good for boys do not systematically invest more

in their sons relative to their daughters, a restriction that would hold if, for instance, families do

not have different preferences over their sons’ and daughters’ outcomes. Under this assumption,

the gender-specific convergence in proportion to exposure time must reflect causal place effects.

V.E Summary

The results in this section show that various refinements of our baseline design – such as including

family fixed effects or exploiting cohort- or gender-specific variation – all yield annual exposure

effect estimates of γ ' 0.04. These findings imply that any omitted variable θi that generates

bias in our estimate of the exposure effect γ must: (1) operate within the family in proportion to

exposure time (family fixed effects); (2) be orthogonal to changes in parental income and marital

status (controls for observables); (3) persist in the presence of moves induced by displacement

shocks (displacement shock analysis); and (4) precisely replicate permanent residents’ outcomes by

birth cohort, quantile, and gender in proportion to exposure time (outcome-based placebo tests).

We believe that plausible omitted variables are unlikely to have all of these properties. We therefore

conclude that our estimate of γ ' 0.04 is an unbiased estimate of the annual childhood exposure

effect. Extrapolating over the duration of childhood, from age 0 to 20, this estimate implies that

growing up from birth in an area with one unit higher income ranks in observational data increases

a given child’s income rank by about 0.8 units (80% of the observational difference).

An auxiliary implication of the results in this section is that the simple baseline design of

comparing families who move with children of different ages is not confounded by selection and

omitted variable biases. Although there is clear evidence of selection in terms of where families
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move – as shown by the estimate of δ > 0 in Figure IV – we find no evidence of differential selection

based on when families move to a better vs. worse area (at least after their children are nine years

old).45 This finding implies that research designs exploiting variation in the timing of moves can

be used to identify the causal effects of neighborhoods in observational data, providing a scalable

tool for identifying neighborhood effects even in the absence of randomized experiments.

VI Other Outcomes

In this section, we estimate neighborhood effects for several other outcomes beyond income: college

attendance, marriage, teenage birth, and teenage employment. This analysis provides further evi-

dence on the types of outcomes that are shaped by neighborhoods and illustrate how neighborhoods

affect behavior before children enter the labor market.

Figure VIII replicates Figure IVb using college attendance and marriage as the outcomes. In

Panel A, we replicate the specification in equation (6), replacing ∆odps with ∆C
odps = Cpds − Cpos,

where Cpcs is the fraction of children who attend college at any point between ages 18 and 23

(among children of permanent residents in CZ c in birth cohort s with parental income rank p). In

Panel B, we replace ∆odps with ∆M
odps = Mpds −Mpos, where Mpcs is the fraction of children who

are married at age 26.

We find evidence of childhood exposure effects until age 23 for both of these outcomes. Moving

to an area with higher college attendance rates at a younger age increases a child’s probability of

attending college. Likewise, moving at a younger age to an area where permanent residents are

more likely to be married increases a child’s probability of being married. Using parametric models

analogous to (7), the estimated annual exposure effect for college attendance is comparable to our

estimates for income (γ = 0.037) and is slightly smaller for marriage (γ = 0.025).

In Figure IX, we analyze outcomes measured while children are teenagers. Panel A considers

teen birth, defined as being listed as a parent on a birth certificate prior to age 20. We construct

gender-specific predictions of teenage birth rates and plot estimates from the baseline specification

in (6), replacing ∆odps with ∆z
odpsg = zpdsg−zposg, where zpcsg is the fraction of children of permanent

residents with parental income p in CZ c, cohort s, and gender g who have a teenage birth. For

both boys and girls, there are clear childhood exposure effects: moving at an earlier age to an area

45Such differential selection might be small because the outcomes of children of permanent residents ȳpcs are not
highly correlated with mean parent incomes across areas (Chetty et al. 2014). As a result, moving to a better area
for children (higher ȳpcs) is not systematically associated with parents finding higher-paying jobs, mitigating what
might be the most important confounding factor for our design.
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with a higher teen birth rate increases a child’s probability of having a teenage birth. The gradient

is especially steep between ages 13 and 18, suggesting that a child’s neighborhood environment

during adolescence may play a particularly important role in determining teen birth outcomes.

In Panels B-D of Figure IX, we analyze neighborhood effects on teenage employment rates.

In these figures, the outcomes are indicators for employment (based on having a W-2 form filed

on one’s behalf) at ages 16, 17, or 18. The key independent variable (corresponding to ∆odps) in

each of these figures is the difference in employment rates of children of permanent residents in

the destination vs. the origin CZ at the relevant age (16, 17, or 18). For teen employment, we

find discontinuous effects of moving just before employment is measured rather than continuous

exposure effects. Children who move at age 15 to a CZ where more 16-year-olds work are much

more likely to work at age 16 than children who make the same move at age 17. Making the same

move at earlier ages (before age 16) further increases the probability of working at age 16, but the

exposure effect is small relative to the jump at age 16 itself. Analogous jumps are observed at

ages 17 and 18 when we measure employment at ages 17 and 18 (Panels C and D).46 These jumps

suggest that neighborhood effects may be partly driven by distinct experiences at different points of

childhood, such as summer jobs that are available in a given area at certain ages. Such age-specific

impacts may aggregate to produce the linear childhood exposure effects that shape outcomes in

adulthood.

Although the mean income of individuals in an area is correlated with other outcomes such as

college attendance and teenage birth rates, there is substantial independent variation in each of these

outcomes. For example, permanent residents’ mean income ranks at age 30 have a (population-

weighted) correlation of 0.46 with college attendance rates for children with parents at p = 25

(Online Appendix Table VII). Hence, the finding that movers’ outcomes converge to those of

permanent residents on all of these dimensions constitutes further evidence that neighborhoods have

causal effects, as it would be unlikely that unobserved confounds would generate such convergence

on a spectrum of different outcomes.47 Moreover, the fact that neighborhoods have causal effects

on a wide variety of outcomes beyond earnings further suggests that the mechanism through which

neighborhoods shape children’s outcomes is not driven by labor market conditions but rather a set

46The magnitude of the {bm} coefficients in Panels B-D is approximately 0.8 at young ages and 0 after the age at
which employment is measured. Under our identifying assumption of constant selection effects by age, this implies
that children who move at birth pick up 80% of the differences in teenage employment rates across CZs observed for
permanent residents.

47This logic is analogous to the tests for distributional convergence in Section V.D; here, we effectively test for
convergence in the joint distribution of income and various other outcomes.
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of environmental factors that shape behaviors throughout childhood.

VII Conclusion

This paper has shown that children’s opportunities for economic mobility are shaped by the neigh-

borhoods in which they grow up. Neighborhoods affect children’s long-term outcomes through

childhood exposure effects: every extra year a child spends growing up in an area where permanent

residents’ incomes are higher increases his or her income. Movers’ outcomes converge to those of

permanent residents in the destination to which they move at a rate of approximately 4% per year of

childhood exposure. Extrapolating this annual exposure effect over 20 years of childhood, children

who move to a new area at birth will pick up roughly 80% of the difference in permanent residents’

outcomes between their origin and destination. Much of the variation in intergenerational mobility

observed across areas thus appears to be driven by causal effects of place rather than differences in

the types of people living in those places.

These results motivate place-focused approaches to improving economic mobility, such as mak-

ing investments to improve outcomes in areas that currently have low levels of mobility or helping

families move to higher opportunity areas. Identifying specific policy solutions – i.e., the invest-

ments needed to improve mobility and the areas to which families should be encouraged to move

– requires identifying the causal effect of each neighborhood and understanding what makes some

areas produce better outcomes than others. The analysis in the present paper shows that differ-

ences in permanent residents’ outcomes are predictive of neighborhoods’ causal effects on average.

However, it does not provide estimates of the causal effect of each area on children’s outcomes, as

the outcomes of permanent residents in any given area will reflect a different mix of selection and

causal effects. We construct estimates of the causal effect of growing up in each CZ and county in

the U.S. and characterize the properties of areas that produce good outcomes in the next paper in

this series.
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Online Appendix A. Sensitivity to Population and Distance Restrictions

This appendix assesses the sensitivity of our exposure effect estimates to alternative population and

distance restrictions. We first discuss the impacts of these restrictions on our baseline specification.

We then discuss their impacts on specifications with family fixed effects, focusing on the role of

cohort interactions with ∆odps.

Our baseline analysis restricts the sample to origin and destination CZs with more than 250,000

people based on the 2000 Census and requires the distance between the origin and destination ZIP

codes to be more than 100 miles. Appendix Table II shows how our estimates of the exposure effect

γ using the specification in (7) change when we vary these restrictions.

Column 1 repeats the baseline specification in column 1 of Table II as a reference. Columns

2-4 include moves of all distances, dropping the 100 mile restriction. Column 2 restricts to moves

between origins and destinations with at least 50K people; column 3 restricts to moves to and from

places with at least 250K people (our baseline population restriction); and column 4 restricts to

move to and from CZs with at least 500K people. Columns 5-7 replicate columns 2-4 imposing our

baseline restriction that moves are farther than 100 miles. Hence, column 6 is identical to column

1, as it imposes our baseline distance restriction of 100 miles and a 250K population restriction.

Columns 8-10 repeat the same specifications as in 5-7, requiring that moves be farther than 200

miles.

We find that using more stringent population and distance restrictions yield estimates of γ

similar to the baseline estimate of 0.04, but including moves across shorter distances or between

places with smaller populations tends to lead to slightly attenuated coefficients, γ. For example,

relaxing the population restriction from 250K to 50K or removing our distance restriction reduces

the estimate of γ from 0.04 to 0.036 (s.e. = 0.002), as shown in columns 3 and 5. The reason for this

attenuation is that permanent residents’ outcomes ȳpcs are estimated with sampling error. Including

CZs with smaller populations naturally leads to less precise estimates of the change in permanent

residents’ outcomes ∆odps, leading to an attenuated estimate of γ. Similarly, moves across short

distances are more likely to reflect moves across two areas that have similar characteristics but are

on different sides of a CZ border, again leading to measurement error in ∆odps and attenuation in

γ. Since the estimates stabilize once we impose a distance restriction of at least 100 miles and a

population restriction of at least 250,000 people, we use these cutoffs in our baseline analysis.

Family Fixed Effect Estimates and Cohort Interactions. Population restrictions have a larger
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effect on the estimates of γ in specifications that include family fixed effects, especially when we

exclude cohort interactions with ∆odps. Appendix Table VI illustrates this point by reporting

estimates of γ with and without family fixed effects. The first two columns of this table replicate

our baseline analysis, limiting the sample to CZs with more than 250,000 people, while the last two

columns include CZs with more than 50,000 people. In each pair of columns, we show estimates

both with and without family fixed effects. Panel A includes interactions of ȳpos and ∆odps with

the child’s birth cohort as shown in equation (7), while Panel B does not.

Relaxing the population restrictions reduces the estimate of γ with family fixed effects from

0.044 to 0.036, twice the change in the estimate without family fixed effects. The change is partic-

ularly large when we exclude the cohort interactions, where the estimate falls from 0.031 to 0.023.

The family fixed effect estimates are particularly sensitive to cohort interactions and population

restrictions for two reasons.

First, children’s origin locations are censored in earlier cohorts because we do not observe

children’s locations prior to 1996. This censoring increases the estimated selection effect δ in

earlier cohorts because families often return to where they used to live (or a similar area) after

moving elsewhere. This increases the correlation between ȳpds and children’s outcomes because

ȳpds is correlated with the quality of the place where children lived prior to 1996. Recall that we

cannot observe moves at early ages for children in earlier cohorts (e.g., we do not observe moves

before age 16 for the 1980 cohort). As a result of these missing data issues, δm increases with

m on average, violating Assumption 1 and biasing our estimate of γ downward. Including cohort

interactions with ∆odps resolves this problem by permitting a separate selection term δ for each

cohort. Cohort interactions are especially important in the specifications with family fixed effects

because those specifications are identified purely from comparisons across birth cohorts, whereas

our baseline specifications also compare children in the same birth cohort whose parents move at

different times.

Second, there are two distinct sources of variation that identify exposure effects: differences in

children’s ages at move m for a given value of ∆odps and differences in ∆odps across birth cohorts

due to changes in place effects over time. The latter source of variation becomes more important

in models with family fixed effects because the variance in ages between siblings is smaller than

the variance in ages across children in different families. Since ∆odps is measured with greater

error across cohorts in small CZs, there is more attenuation in our estimate ofγ when we include

small CZs in models with family fixed effects. Again, this attenuation is mitigated by the inclusion
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of cohort controls because we identify γ primarily from the age gaps in the siblings rather than

cross-cohort variation in ∆odps when including the cohort controls.

In sum, these results show that our qualitative conclusions are robust to alternative specifi-

cations, but provide justification for including cohort controls and imposing the population and

distance restrictions used in our baseline specifications to minimize attenuation bias.

Online Appendix B. Estimates Using Families that Move Multiple Times

This appendix discusses how we estimate exposure effects when including families who move across

CZs more than once.

We estimate specifications using families who move more than once using the sample in Panel B

of Table 1. As in our baseline analysis, we restrict attention to CZs with populations above 250,000

to reduce attenuation bias from sampling error in ȳpcs. However, unlike in the baseline specification,

we do not impose any distance requirements on the moves and do not require movers to stay in

the destination CZ for at least two years, because our objective is to evaluate the stability of the

exposure effect estimates when we expand the estimation sample to include a more representative

set of moves.

Let d(j) denote the jth destination location and let mj
i denote the age of the child i when

his parents move to destination j. We consider families that move across CZs up to j = 3 times

(excluding the 3% of children whose families move across CZs more than 3 times between 1996-

2012). Let Ei denote the total number of times the family moved when the child was under age 23,

Ei ∈ {0, 1, 2, 3}. To identify separate effects when children are below vs. above age 23, define eij

as the number of years child i’s family spends in place j before he turns 23 and e>23
ij as the number

of years that his family spends in place j after he turns 23.

For each place j in which the child lives, we define ∆j
od(j)ps = ∆od(j)ps = ȳpd(j)s − ȳpos as the

difference in the child’s predicted outcome based on permanent residents in destination j and the

mover’s first observed (origin) CZ, o. We then estimate the following specification, which generalizes

our baseline linear specification in equation ((7)) to permit multiple moves:

yi =

 3∑
j=1

γ
j
eij∆

j
od(j)ps

 +
1988∑

s=1980

I(si = s)

α1
s + α

2
sȳpos +

3∑
j=1

κ
j
s∆

j
od(j)ps

 +
3∑

j=1

δ
j
0I

{
e
>23
ij > 0

}
∆od(j)ps +

3∑
j=1

δ
j
e
>23
ij ∆

j
od(j)ps

(10)

+
3∑

j=0

I (Ei = j)

ζ2,j + ζ
3,j
pi +

∑
j′≤j

[ζ
4,j,j′

eij′ + ζ
5,j,j′

eij′pi]

 + ε3,i

The parameters of interest in (10) are the coefficients {γj} on the interaction between eij and

∆j
od(j)ps. We include three sets of additional controls to identify these parameters. First, we control
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for the outcomes of permanent residents in the origin interacted with the child’s birth cohort

(αsȳpos) and allow for a level impact of ∆j
od(j)ps that may vary by cohort (κjs∆odps). Second, we

control for the time spent in each area after age 23 by including interactions of e>23
ij with ∆od(j)ps

and a level effect, I
{
e>23
ij > 0

}
∆od(j)ps. Finally, we include a set of controls to capture potential

disruption effects of multiple moves (Coleman 1988), shown in the second line of (10). These controls

include indicators for the number of total moves when the child is under age 23 (I {Ei = j} ζ2,j)

and interactions of these indicators with (a) parental income rank (ζ3,jpi), (b) the number of years

spent in each place before age 23 (
∑

j′≤j ζ
4,j,j′eij′), and (c) the interaction of exposure time with

parental income (
∑

j′≤j ζ
5,j,j′eij′pi).

Column 1 of Appendix Table IV presents the results of estimating (10). We estimate a coef-

ficient of γ1 = 0.042 (s.e. = 0.001) for the first destination, γ2 = 0.036 (s.e. = 0.004) for the

second destination, and γ3 = 0.032 (s.e. = 0.006) for the third destination. Column 2 presents

an estimate of γ from a specification that constrains the estimates γj = γ for all j by replac-

ing
[∑3

j=1 γjeij∆
j
od(j)ps

]
in equation (10) with

[
γ
∑3

j=1 eij∆
j
od(j)ps

]
. This specification yields an

estimate of γ = 0.042 (s.e. = 0.001).

Columns 3 and 4 add controls for the age of the child at the time of move j interacted with

∆od(j)ps,
∑3

j=1m
j
iα

3
j + mj

iα
4∆od(j)ps, to the specification in equation (10). We obtain estimates

of γj ranging between 0.035 and 0.038, and a constrained coefficient of γ = 0.036 (s.e. = 0.005).

The standard errors of the estimates rise in these specifications because of the correlation between

children’s ages at move and exposure times.

Online Appendix C. County-Level Estimates

In this appendix, we present estimates of childhood exposure effects γ using counties as the geo-

graphic unit of analysis instead of CZs. To construct these estimates, we first estimate the mean

ranks of children of permanent residents in each county (ȳpcs) using the sample of children whose

parents stay in a single county from 1996-2012 (see Appendix Table I, Panel A for summary statis-

tics for this sample). We estimate ȳpcs using the same method as that in Figure I, exploiting the

linearity of the rank-rank relationship within counties. We then regress the outcomes of children

who move on ȳpcs interacted with their age at move, using specifications analogous to (7) estimated

at the county level. As in our baseline analysis, we focus on children whose families move exactly

once across counties and are observed in the destination county for at least two years. We also

limit the sample to origin and destination counties with populations (in the 2000 Census) of at
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least 250,000.

Appendix Table V presents estimates of γ using variants of the specification in (7). In Column

1, we replicate the baseline specification in Column 1 of Table II at the county level. To match that

specification and isolate the effect of changing the geographic unit, we restrict the sample to moves

across counties that are in different CZs and that exceed 100 miles based on the distance between

the origin and destination ZIP code (see Appendix Table I, Panel B for summary statistics). We

obtain an estimate of γ = 0.037 (s.e. = 0.003), slightly lower than our baseline estimate of γ = 0.040

at the CZ level. Column 2 shows that adding family fixed effects to the specification in Column 1

yields an estimate of γ = 0.033 (s.e. = 0.011), not significantly different from the baseline estimate.

Column 3 shows that adding time-varying controls for changes in income and marital status, as in

Column 9 of Table II, yields a coefficient of γ = 0.032 (s.e. = 0.011).

In Columns 4-7 of Appendix Table V, we turn to moves across counties within rather than

across CZs (see Appendix Table I, Panel C for summary statistics). Here, we drop the restriction

that moves must exceed 100 miles and include all within-CZ moves between counties that have

more than 250,000 residents. Column 4 replicates the specification in Column 1. Here, we obtain

an estimate of γ = 0.022, significantly lower than the estimate of cross-CZ moves of 0.037. This

reduction implies that a larger fraction of the variation in ȳpcs across counties within a CZ reflects

sorting rather than causal effects. This is intuitive insofar as families are more likely to sort in ways

that are correlated with their children’s outcomes within a given labor market rather than between

labor markets.

Estimates of exposure effects at the county-within-CZ level are less precise, particularly in

specifications that include family fixed effects. To maximize precision, in Column 5, we present an

estimate of γ from a specification that uses multiple observations per child, including income ranks

at all observed ages for ages 24 and above. In this specification, we replace ȳpcs with ȳpcsa, where a

indexes the age at which the child’s income is measured, and use yia as the dependent variable, where

yia denotes child i’s rank in his cohort’s income distribution at age a. This specification yields an

estimate ofγ = 0.027 (s.e. = 0.003). Column 6 adds family by age of income measurement (a) fixed

effects to the specification in Column 5. This specification yields a point estimate of γ = 0.029,

which is indistinguishable from the baseline estimate but is also indistinguishable from 0 given

the standard error of 0.025. Unfortunately, there is insufficient power to obtain precise estimates

from specifications with family fixed effects at the county-within-CZ level, even when attempting

to maximize power by using income data from all available years. Column 7 adds time-varying
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controls for changes in parental income and marital status, which yields similar estimates to those

in Column 6.

In sum, we find exposure effects at the county level similar to those at the CZ level, but with

slightly smaller values of the annual exposure effect γ, particularly across counties within a given

CZ. This finding implies that a larger fraction of the variation in observed rates of intergenerational

mobility across counties within a labor market (CZ) is due to sorting than between labor markets.

Online Appendix D. Specifications for Outcome-Based Placebo Tests

This section presents details of the specifications used for the outcome-based placebo tests described

in Section V.D.

Cohort-Specific Convergence. The estimates plotted in triangles in Figure VII are each obtained

from a separate regression of a child’s mean rank on predictions based on permanent residents’

outcomes for a different birth cohort. Each of these regressions replicates the baseline specification

in equation (7), replacing ∆odps and ȳpos with ∆odpt and ȳpot for each birth cohort t = s + a for

a ∈ {−4,−3,−2,−1, 1, 2, 3, 4} surrounding a given child’s birth cohort (s).

The estimates plotted in circles are obtained from a single regression. Starting from the

specification in equation (7), we add six variables to the regression for each cohort t = s + a

for a ∈ {−4,−3,−2,−1, 1, 2, 3, 4}. The first five variables replicate the linear parameterization

of the exposure effect for cohort t: I {mi ≤ 23}∆odpt, I {mi > 23}∆odpt, I {mi ≤ 23}mi∆odpt,

I {mi > 23}mi∆odpt, and ȳpot. These variables are populated for any child, i, in cohort s (i) for

which we observe permanent resident predictions, ȳpct.

If we cannot observe ∆odpt or ȳpot (e.g. if t = 1979 or t = 1987), we set each of these first

five variables to zero and we include an indicator, Ia = I {cohort s (i) + a is missing} for each

a ∈ {−4,−3,−2,−1, 1, 2, 3, 4}. For example, since our data covers the 1980-86 cohorts, a child in

the 1983 cohort would have non-zero entries for the permanent resident predictions for the three

years surrounding 1983, but would have zero entries for the permanent resident predictions along

with indicators Ia = 1 for a = −4 and a = 4.

The resulting specification is
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yi =

1988∑
s=1980

I(si = s)(α1
s + α2

sȳpos) +

30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +

1987∑
s=1980

κdsI(si = s)∆odps

+I(mi ≤ 23) (b0 + (23−mi)γ) ∆odps + I(mi > 23)(δ + (23−mi)δ
′)∆odps

+
∑

a∈{−4,−3,−2,−1,1,2,3,4}

I {mi ≤ 23} (ba0 + (23−mi) γa) ∆odp,s+a + I(mi > 23)(δa + (23−mi)δ
′
a)∆odp,s+a

+
∑

a∈{−4,−3,−2,−1,1,2,3,4}

αaȳpo,s+a + ωaIa + εi.

Quantiles: Distributional Convergence. For the distributional convergence analysis shown in

Columns 1-3 of Table III, we again begin with the baseline linear specification in equation (7).

However, we now define the outcome, y90
i , to be an indicator for having income above the 90th

percentile. Letting π90
pcs denote the predicted probability of having income above the 90th percentile

in CZ c for parental income level p and cohort s, we define ∆90
odps = π90

pds − π90
pos as the difference in

permanent residents’ outcomes in the destination relative to the origin.

Column 1 of Table III reports the coefficient γ from a regression analogous to the baseline

specification in equation (7), replacing the mean rank outcomes with indicators for income above

the 90th percentile:

y90
i =

1988∑
s=1980

I(si = s)(α1
s + α2

sπ
90
pos) +

30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +

1987∑
s=1980

κdsI(si = s)∆90
odps

+I(mi ≤ 23) (b0 + (23−mi)γ) ∆90
odps + I(mi > 23)(δ + (23−mi)δ

′)∆90
odps + εi.

In column 2, we use the same dependent variable as above (y90
i ), but use the mean ranks of

permanent residents as the key independent variables in the second line of the equation above:48

y90
i =

1988∑
s=1980

I(si = s)(α1
s + α2

sπ
90
pos) +

30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +

1988∑
s=1980

κdsI(si = s)∆90
odps

+I(mi ≤ 23) (bmean,0 + (23−mi)γmean) ∆odps + I(mi > 23)(δmean + (23−mi)δ
′
mean)∆odps + α3ȳpos + εi.

In column 3, we combine the independent variables used in columns 1 and 2 and estimate the

following specification:

y90
i =

1988∑
s=1980

I(si = s)(α1
s + α2,p90

s π90
pos) +

30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +

1987∑
s=1980

κdsI(si = s)∆90
odps)

+I(mi ≤ 23) (b0 + (23−mi)γ) ∆90
odps + I(mi > 23)(δ + (23−mi)δ

′)∆90
odps

+I(mi ≤ 23) (bmean,0 + (23−mi)γmean) ∆odps + I(mi > 23)(δmean + (23−mi)δ
′
mean)∆odps + α3ȳpos + εi.

48In column 1, we omit the 1988 cohort from the set of cohort interactions (κdsI(si = s)∆90
odps) since it would be

collinear with the ∆90
odps terms in the second line. However, in column 2, where we replace ∆90

odps with ∆odps, we
include the 1988 cohort interaction since this collinearity no longer arises.
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Columns 4-6 repeat the specifications in columns 1-3 using an indicator for being unemployed rather

than the indicator for having income above the 90th percentile.

Gender-Specific Convergence. For the gender-specific convergence analysis in Table IV, we first

construct gender-specific predictions of the mean outcomes of children of permanent residents in

each CZ and birth cohort by estimating (1) separately for male and female children, which we

denote by ȳmpcs and ȳfpcs. For a child of gender g ∈ {m, f}, we define the difference in predicted

outcomes for children of the same gender between the destination and origin as ∆g
odps = ȳgpds− ȳ

g
pos.

Column 1 of Table IV replicates the baseline specification in equation (7), replacing ∆odps and

ȳpos with ∆g
odps and ȳgpos. Column 2 replicates equation (7), using ∆−godps and ȳ−gpos, the predictions

based on the opposite gender (−g), as the key independent variables:

yi =

1988∑
s=1980

I(si = s)(α1
s + α2g

s ȳ
g
pos) +

30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +

1988∑
s=1980

I(si = s)(κdgs ∆g
odps)

+I(mi ≤ 23) (bother,0 + (23−mi)γother) ∆−godps + I(mi > 23)(δother + (23−mi)δ
′
other)∆

−g
odps + α3ȳ−gpos + εi.

Column 3 includes both the own-gender and other-gender predictions, yielding the following spec-

ification:

yi =

1988∑
s=1980

I(si = s)(α1
s + α2g

s ȳ
g
pos) +

30∑
m=9

I(mi = m)(ζ1
m + ζ2

mpi) +

1987∑
s=1980

I(si = s)(κdgs ∆g
odps)

+I(mi ≤ 23) (b0 + (23−mi)γ) ∆g
odps + I(mi > 23)(δ + (23−mi)δ

′)∆g
odps

+I(mi ≤ 23) (bother,0 + (23−mi)γother) ∆−godps + I(mi > 23)(δother + (23−mi)δ
′
other)∆

−g
odps + α3ȳ−gpos + εi,

Columns 4-6 replicate Columns 1-3 including family fixed effects. Column 7 replicates the specifi-

cation in Column 6, restricting the sample to households with at least one child of each gender.
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Variable Mean Std. Dev. Median Num. of Obs.
(1) (2) (3) (4)

A. Permanent Residents: Families who do not Move Across CZs
Parent family income 89,909 357,194 61,300 19,499,662
Child family income at 24 24,731 140,200 19,600 19,499,662
Child family income at 26 33,723 161,423 26,100 14,894,662
Child family income at 30 48,912 138,512 35,600 6,081,738
Child individual income at 24 20,331 139,697 17,200 19,499,662
Child married at 26 0.25 0.43 0.00 12,997,702
Child married at 30 0.39 0.49 0.00 6,081,738
Child attends college between 18-23 0.70 0.46 1.00 17,602,702
Child has teen birth (females only) 0.11 0.32 0.00 9,670,225
Child working at age 16 0.41 0.49 0.00 13,417,924

B. Families who Move Between 1-3 Times Across CZs
Parent family income 90,468 376,413 53,500 4,374,418
Child family income at 24 23,489 57,852 18,100 4,374,418
Child family income at 26 31,658 99,394 23,800 3,276,406
Child family income at 30 46,368 107,380 32,500 1,305,997
Child individual income at 24 19,091 51,689 15,600 4,374,418
Child married at 26 0.25 0.43 0.00 2,867,598
Child married at 30 0.38 0.49 0.00 1,305,997
Child attends college between 18-23 0.66 0.473 1.00 3,965,610
Child has teen birth (females only) 0.13 0.33 0.00 2,169,207
Child working at age 16 0.40 0.49 0.00 3,068,421

C. Primary Analysis Sample: Families who Move Exactly Once Across CZs
Parent family income 97,064 369,971 58,700 1,553,021
Child family income at 24 23,867 56,564 18,600 1,553,021
Child family income at 26 32,419 108,431 24,500 1,160,278
Child family income at 30 47,882 117,450 33,600 460,457
Child individual income at 24 19,462 48,452 16,000 1,553,021
Child married at 26 0.25 0.43 0.00 1,016,264
Child married at 30 0.38 0.49 0.00 460,457
Child attends college between 18-23 0.69 0.46 1.00 1,409,007
Child has teen birth (females only) 0.11 0.32 0.00 769,717
Child working at age 16 0.39 0.49 0.00 1,092,564

TABLE I
Summary Statistics for CZ Permanent Residents and Movers

Notes: The table presents summary statistics for the samples used in our CZ-level analyses. The full analysis
sample of children consists of all individuals in the tax data who (1) have a valid Social Security Number or
Individual Taxpayer Identification Number, (2) were born between 1980-1988, and (3) are U.S. citizens as of 2013.
We report summary statistics for three subsets of this sample. Panel A shows statistics for permanent residents --
children whose parents do not move across CZs throughout our sample window (1996-2012) -- who live in CZs
with more than 250,000 people based on the 2000 Census. Panel B shows statistics for families who moved once,
twice, or three times across CZs with more than 250,000 people from 1996-2012. Panel C shows statistics for our
primary analysis sample: children whose families moved exactly once across CZs with more than 250,000 people,
are observed in the destination CZ for at least 2 years, and moved at least 100 miles (based on their ZIP codes).
Parent family income is the average pre-tax household income from 1996-2000, measured as AGI for tax filers
and using information returns for non-filers. Child family income is measured analogously at various ages, while
child individual income is defined as the sum of individual W-2 wage earnings, UI benefits, SSDI payments, and
half of household self-employment income. Marital status is defined based on the marital status listed on 1040
forms for tax filers; non-filers are coded as single. College attendance is defined as having a 1098-T form filed on
one's behalf at any point between the ages of 18 and 23. Teenage birth is defined (for women only) as having a
child between the ages of 13 and 19, using data from the Social Security Administration's DM-2 database. We
define an indicator for working at age 16 based on having a W-2 form filed on one's behalf at that age. All dollar
values are reported in 2012 dollars, deflated using the CPI-U. See Section II for further details on variable and
sample definitions.



No Cohort 
Controls

Individual 
Income

Child CZ 
FE

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Exposure Effect (γ) 0.040 0.040 0.037 0.036 0.041 0.031 0.044 0.031 0.043

(0.002) (0.002) (0.005) (0.002) (0.002) (0.002) (0.008) (0.005) (0.008)

Num of Obs. 1,553,021 1,287,773 687,323 1,553,021 1,553,021 1,473,218 1,553,021 1,553,021 1,553,021

Specification: Age < 18Age ≤ 23Pooled

With Family Fixed Effects

TABLE II
Childhood Exposure Effect Estimates

Notes: This table reports estimates of annual childhood exposure effects on children's income ranks at age 24 (γ). The estimates can be
interpreted as the impact of spending an additional year of childhood in a CZ where children of permanent residents have 1 percentile
point higher income ranks at age 24. Standard errors are shown in parentheses. Each column reports estimates from a regression of a
child's income rank at age 24 on the difference between permanent residents' predicted ranks in the destination vs. the origin, interacted
with the age of the child at the time of the move (m). We permit separate linear interactions for m≤23 and m>23, and report the coefficient
on the interaction for m≤23. Each regression also includes additional controls specified in equation (7). Permanent residents' predicted
ranks are constructed using linear regressions of children's ranks on parents' ranks in each CZ and birth cohort, as shown in Figure I.
Column 1 reports the estimate of γ from equation (7) using all children in the primary analysis sample of one-time movers, defined in the
notes to Table I (Panel C). Columns 2 and 3 restrict the sample to those who move at or before age 23 or 18. In Column 4, we exclude the
cohort interactions with the predicted outcomes of permanent residents in the origin and destination location and instead include a single
control for the predicted outcomes of permanent residents in the origin. Column 5 replicates Column 1, using individual income ranks
(rather than household income ranks) to measure both the child's outcome and the predicted outcomes of permanent residents in the
origin and destination. Column 6 adds fixed effects for the child's CZ in 2012 to the specification in Column 1; note that this specification
has a slightly smaller number of observations because ZIP code information is missing for some children in 2012 (e.g. a child with no
earnings or taxable income). Column 7 adds family fixed effects to the baseline specification in Column 1. Column 8 adds family fixed
effects to the specification in Column 4 that does not include cohort-varying intercepts. Column 9 adds controls for changes in parental
marital status and income rank in the year before versus after the move, along with their interactions with the age of the child at the time of
the move and indicators for moving above and below age 23, to the specification in Column 7.

Baseline No Cohort 
Controls

Time-
Varying 
Controls

Dependent Variable: Child's Income Rank at Age 24



Dep. Var:
(1) (2) (3) (4) (5) (6)

0.043 0.040 0.041 0.043
(0.002) (0.003) (0.003) (0.003)

0.024 0.003 0.018 -0.002
(0.002) (0.003) (0.002) (0.003)

Num. of Obs. 1,553,021 1,553,021 1,553,021 1,553,021 1,553,021 1,553,021

TABLE III
Childhood Exposure Effect Estimates: Distributional Convergence

Upper-Tail: Child in Top Decile Lower-Tail: Child Not Employed

Notes: This table reports estimates of annual childhood exposure effects (γ) for upper-tail and lower-tail
outcomes: being in the top 10% of the cohort-specific income distribution at age 24 or not being employed.
Standard errors are shown in parentheses. Column 1 reports estimates from a regression of an indicator for being
in the top 10% on the difference between permanent residents' predicted probabilities of being in the upper-tail in
the destination vs. the origin, interacted with the age of the child at the time of the move (m). We permit separate
linear interactions for m≤23 and m>23, and report the coefficient on the interaction for m≤23. The regression also
includes additional controls analogous to those in equation (7); see Online Appendix D for details. Column 2
continues to use the indicator for being in the top 10% as the dependent variable, but uses the difference between
permanent residents' predicted mean ranks in the destination vs. the origin instead of their predicted upper-tail
probabilities on the right hand side of the regression. Column 3 includes both the upper-tail (distributional)
prediction as well as the mean rank prediction in the same regression. Columns 4-6 replicate Columns 1-3 using
an indicator for being unemployed at age 24 as the outcome and the difference between the permanent residents'
predicted probabilities of being unemployed in the destination vs. the origin as the key independent variable.
Employment is defined as an indicator for having a W-2 filed on one's behalf at age 24. In all columns, the sample
consists of all children in the primary analysis sample of one-time movers, defined in the notes to Table I (Panel
C).

Mean Rank Prediction 
(Placebo)

Distributional Prediction



(1) (2) (3) (4) (5) (6) (7)
0.038 0.030 0.031 0.027 0.030

(0.002) (0.003) (0.006) (0.006) (0.007)

0.031 0.010 0.016 0.017 0.009
(0.002) (0.003) (0.005) (0.005) (0.007)

Sample 2-Gender HH

Num. of Obs. 1,552,898  1,552,898  1,552,898  1,552,898  1,552,898  1,552,898  490,964

TABLE IV
Childhood Exposure Effect Estimates: Gender-Specific Convergence

Notes: This table reports estimates of annual childhood exposure effects (γ) using gender-specific permanent resident predictions.
Standard errors are shown in parentheses. In all columns, the dependent variable is the child's family income rank at age 24. In
Columns 1-6, the sample consists of all children in the primary analysis sample of one-time movers, defined in the notes to Table I
(Panel C). Column 1 replicates Column 1 of Table II, replacing the predicted outcomes based on all permanent residents in the origin
and destination with predictions based on the outcomes of children who have the same gender as the child who moves. Column 2
replicates Column 1, replacing the own-gender predicted outcomes with the predicted outcomes of the opposite gender. Column 3
combines the variables in Columns 1 and 2, including both the own-gender and other-gender (placebo) predictions. Columns 4-6
replicate 1-3 including family fixed effects. Column 7 replicates column 6, restricting the sample of movers to families with at least
one child of each gender. Each regression also includes additional controls analogous to those in equation (7); see Online Appendix
D for details. 

No Family Fixed Effects

Full Sample Full Sample

With Family Fixed Effects

Other Gender 
Prediction (Placebo)

Own Gender 
Prediction

Dependent Variable: Child's Income Rank at Age 24



Variable Mean Std. Dev. Median Num. of Obs.
(1) (2) (3) (4)

A. Permanent Residents: Families who do not Move Across Counties
Parent family income 99,124 426,497 64,500 11,355,962
Child family income at 24 24,449 174,380 19,300 11,355,962
Child family income at 26 33,868 201,955 26,000 8,639,565
Child family income at 30 50,241 152,582 35,800 3,495,902
Child individual income at 24 20,741 175,277 17,300 11,355,962
Child married at 26 0.22 0.41 0.00 7,558,611
Child married at 30 0.36 0.48 0.00 3,495,902
Child attends college between 18-23 0.73 0.45 1.00 10,275,008
Child has teen birth (females only) 0.10 0.31 0.00 5,636,590
Child working at age 16 0.40 0.49 0.00 7,860,060

B. Families who Move Exactly Once Across Counties in Different CZs
Parent family income 112,141 456,094 60,600 595,244
Child family income at 24 23,931 69,737 18,400 595,244
Child family income at 26 32,774 139,408 24,500 440,653
Child family income at 30 49,424 103,587 33,800 172,614
Child individual income at 24 19,987 56,835 16,200 595,244
Child married at 26 0.22 0.42 0.00 387,036
Child married at 30 0.36 0.48 0.00 172,614
Child attends college between 18-23 0.72 0.45 1.00 541,627
Child has teen birth (females only) 0.11 0.31 0.00 296,024
Child working at age 16 0.37 0.48 0.00 422,630

C. Families who Move Exactly Once Across Counties Within the Same CZ
Parent family income 93,059 450,928 57,000 617,502
Child family income at 24 24,006 68,559 18,700 617,502
Child family income at 26 32,993 75,520 25,200 457,140
Child family income at 30 49,974 108,248 35,000 179,856
Child individual income at 24 20,679 61,101 17,000 617,502
Child married at 26 0.19 0.40 0.00 401,484
Child married at 30 0.34 0.47 0.00 179,856
Child attends college between 18-23 0.72 0.45 1.00 561,846
Child has teen birth (females only) 0.10 0.30 0.00 309,108
Child working at age 16 0.38 0.49 0.00 437,646

APPENDIX TABLE I
Summary Statistics for County Permanent Residents and Movers

Notes: The table presents summary statistics for the samples used in our county-level analysis. We present
statistics for three subsamples of the full analysis sample described in the notes to Table I. Panel A shows
statistics for permanent residents -- children whose parents do not move across counties throughout our sample
window (1996-2012) -- who live in counties with more than 250,000 people based on the 2000 Census. Panel B
shows statistics for families who moved exactly once across counties in two different CZs between 1996-2012,
each of which had more than 250,000 people, and who moved at least 100 miles (based on their ZIP codes).
Panel C shows statistics for children whose families moved exactly once across counties of more than 250,000
people within the same CZ. The sample of families who move is restricted to those who are observed in the
destination county for at least 2 years in both Panels B and C. See notes to Table I for variable definitions.



Baseline 
Specification

Pop 
> 50K

Pop
 > 250K

Pop 
> 500K

Pop 
> 50K

Pop 
> 250K

Pop 
> 500K

Pop 
> 50K

Pop 
> 250K

Pop 
> 500K

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Exposure Effect (γ) 0.040 0.033 0.036 0.038 0.036 0.040 0.041 0.038 0.040 0.042

(0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002)

Num of Obs. 1,553,021 3,002,272 2,143,525 1,562,615 2,062,277 1,553,021 1,165,153 1,655,105 1,288,816 991,657

Notes: This table reports estimates of annual childhood exposure effects (γ) with alternative sample restrictions. Standard errors are shown in parentheses. Column
1 replicates the baseline specification in Column 1 of Table II, which restricts the sample to origin and destination CZs with more than 250,000 people based on the
2000 Census and requires the distance between the origin and destination ZIP codes to be more than 100 miles. Columns 2-10 replicate the specification in Column
1, varying these distance and population restrictions. See notes to Table II for further details.

Distance > 100 Miles (Baseline)

APPENDIX TABLE II
Exposure Effect Estimates: Sensitivity to Population and Distance Restrictions

No Distance Restriction Distance > 200 Miles



Above 
Median 
Income

Below 
Median 
Income

Moves to 
Better CZs

Moves to Worse 
CZs

(1) (2) (3) (4) (5)
Exposure Effect (γ) 0.040 0.047 0.031 0.030 0.040

(0.002) (0.003) (0.003) (0.004) (0.004)

Num of Obs. 1,553,021 803,189 749,832 783,936 769,085

By Parental Income

Notes: This table reports estimates of annual childhood exposure effects (γ) for various subsamples.
Standard errors are shown in parentheses. Column 1 replicates the baseline specification in Column 1 of
Table II. Columns 2 and 3 replicate Column 1, restricting the sample of movers to those with above-median or
below-median income (parent rank above or below 0.5). Note there are more observations in the above-
median income specification because the higher-income families move at higher rates. Columns 4 and 5
replicate Column 1, restricting the sample to moves in which the outcomes of permanent residents in the
destination CZ are higher (positive moves) or lower (negative moves) than those of permanent residents in
the origin CZ at the relevant parent income level. See notes to Table II for further details.

APPENDIX TABLE III
Heterogeneity in Exposure Effects Across Subgroups

Positive vs. Negative Moves

Baseline



(1) (2)

1st Destination Exposure Effect 0.042 0.036
(0.001) (0.000)

2nd Destination Exposure Effect 0.036 0.038
(0.004) (0.000)

3rd Destination Exposure Effect 0.032 0.035
(0.006) (0.000)

Average Exposure Effect 0.042 0.036
(0.001) (0.005)

Controls for Age at Move x Δod(j)ps X X

Num of Obs. 4,374,418 4,374,418 4,374,418 4,374,418

Notes: This table reports estimates of annual childhood exposure effects (γ) analogous to those reported in
Table II using the expanded sample of movers who move up to 3 times across CZs, defined in the notes to
Table I (Panel B). Standard errors are shown in parentheses. Column 1 presents estimates of the exposure
effect of the 1st, 2nd, and 3rd destination by permitting separate exposure effect coefficients for each move
using the specification in Appendix B. Column 2 presents an estimate of the exposure effect restricting the
coefficient to be the same across all moves. Columns 3 and 4 replicate 1 and 2, adding controls for the
child's age at the time of move to destination j interacted with the change in permanent resident outcomes
(Δod(j)ps) as described in equation (10). See Appendix C for further details on these specifications.

Separate 
Coefficients

Constrained 
Coefficient

Generalized Baseline 
Specification

Critical Age versus 
Exposure Effects

APPENDIX TABLE IV
Exposure Effect Estimates Using Families who Move Multiple Times

Separate 
Coefficients

Constrained 
Coefficient



(1) (2) (3) (4) (5) (6) (7)
Exposure Effect (γ) 0.037 0.033 0.032 0.022 0.027 0.029 0.029

(0.003) (0.011) (0.011) (0.003) (0.003) (0.025) (0.025)

Num of Obs. 595,244 595,244 595,244 617,502 2,900,311 2,900,311 2,900,311

Notes: This table reports exposure effect estimates at the county level analogous to those presented in Table II, using the
samples of one-time county movers defined in the notes to Appendix Table I (Panels B and C). Standard errors are shown in
parentheses. Column 1 presents estimates at the county level using a specification analogous to that in Column 1 of Table II,
replacing the CZ-level predictions with county-level predictions based on permanent residents. In this specification, we restrict the
sample to moves across counties that are in different CZs and require that both the origin and destination counties have
populations exceeding 250,000 (based on the 2000 Census). We also require that the move exceed 100 miles based on the
distance between the origin and destination ZIP code. Column 2 adds family fixed effects to the specification in Column 1, as in
Column 7 in Table II. Column 3 adds time-varying controls to the specification in Column 2, including changes in parent income in
the year before versus after the move and indicators for transitions in marital status, all interacted with the child's age at the time
of the move, as in Column 9 of Table II. Columns 4-7 consider the set of individuals who move across counties within CZs, again
requiring both origin and destination counties to have populations above 250,000 but dropping the distance restriction. Column 4
replicates the specification in Column 1 on this sample. Column 5 presents an estimate from a specification that uses multiple
observations per child, including income ranks at all observed ages for ages 24 and above. Column 6 adds family-by-age of
outcome fixed effects to the specification in Column 5. Column 7 adds time-varying controls for changes in parental income and
marital status to the specification in Column 6, as in Column 3. Standard errors are clustered by child in Columns 4-7 to account
for the multiple observations per child.

Within CZ Moves

Annual Exposure Effect Estimates at the County Level
APPENDIX TABLE V

Specification: Baseline Family FE Age 24 Family FEAge ≥ 24
Family FE & 
Time-Varying 

Controls

Across CZ Moves
Family FE & 
Time-Varying 

Controls



No Fam FE Fam FE No Fam FE Fam FE

(1) (2) (3) (4)
A. With Cohort-Varying Intercept
Exposure Effect (γ) 0.040 0.044 0.036 0.036

(0.002) (0.008) (0.001) (0.006)

Ratio of Fam FE to No Fam FE Ests.

B. Without Cohort-Varying Intercept
Exposure Effect (γ) 0.036 0.031 0.032 0.023

(0.002) (0.005) (0.001) (0.003)

Ratio of Fam FE to No Fam FE Ests.

Num of Obs. 1,553,021           1,553,021           2,062,277        2,062,277        

APPENDIX TABLE VI
Family Fixed Effect Estimates: Sensitivity to Cohort Controls and Population Restrictions

Notes: This table reports estimates of annual childhood exposure effects (γ) using alternative specifications. Standard errors
are shown in parentheses. Column 1 of Panel A replicates the baseline specification shown in Column 1 of Table 2. Column 2
of Panel A replicates the baseline specification with family fixed effects shown in Column 7 of Table 2. Columns 1 and 2 of
Panel B replicate these specifications excluding the cohort interactions in equation (7), replicating the specifications in
Columns 4 and 8 of Table 2. Columns 3 and 4 replicate the specifications in Columns 1 and 2, extending the sample to
include moves in which the origin and destination CZ has at least 50,000 residents (instead of 250,000 residents as required
in our baseline specifications). See the notes to Table II for further details.

Baseline (Pop > 250K) Pop > 50K

0.86 0.71

1.10 0.98



Fam. 
Inc. 

Rank at 
Age 24

Fam. 
Inc. 

Rank at 
Age 26

Fam. 
Inc. 

Rank at 
Age 30

Indiv. 
Inc. 

Rank at 
Age 26

Rank at 
Age 24 
in Top 
10%

Emp. at 
Age 24

Females 
Ind Inc. 
Rank at 
Age 24

Males 
Ind Inc. 
Rank at 
Age 24

College 
Attend 

Age 18-
23

Married 
at Age 

26

Teen 
Emp. at 
Age 16

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A. Below-Median Income Parents (p = 25)
Child Family Income Rank at Age 24 1.00
Child Family Income Rank at Age 26 0.97 1.00
Child Family Income Rank at Age 30 0.87 0.96 1.00
Child Indiv. Inc. Rank at Age 26 0.67 0.77 0.86 1.00
Child Rank at Age 24 in Top 10% 0.85 0.83 0.71 0.39 1.00
Child Employed at Age 24 0.71 0.67 0.59 0.44 0.59 1.00
Child Rank at Age 24 for Females 0.93 0.97 0.95 0.83 0.74 0.59 1.00
Child Rank at Age 24 for Males 0.96 0.98 0.92 0.69 0.87 0.71 0.91 1.00
College Attendance Age 18-23 0.15 0.29 0.46 0.63 -0.08 0.05 0.40 0.18 1.00
Married at Age 26 0.64 0.55 0.38 -0.08 0.76 0.49 0.44 0.64 -0.35 1.00
Teen Employment at Age 16 0.36 0.28 0.19 0.17 0.30 0.57 0.26 0.28 -0.09 0.22 1.00

B. Above-Median Income Parents (p = 75)
Child Family Income Rank at Age 24 1.00
Child Family Income Rank at Age 26 0.94 1.00
Child Family Income Rank at Age 30 0.73 0.87 1.00
Child Indiv. Inc. Rank at Age 26 0.48 0.56 0.79 1.00
Child Rank at Age 24 in Top 10% 0.79 0.81 0.53 0.09 1.00
Child Employed at Age 24 0.67 0.64 0.59 0.50 0.30 1.00
Child Rank at Age 24 for Females 0.91 0.98 0.83 0.50 0.79 0.60 1.00
Child Rank at Age 24 for Males 0.93 0.98 0.87 0.58 0.79 0.66 0.92 1.00
College Attendance Age 18-23 -0.21 -0.06 0.24 0.30 -0.30 0.00 -0.04 -0.08 1.00
Married at Age 26 0.53 0.51 0.11 -0.42 0.75 0.21 0.55 0.46 -0.37 1.00
Teen Employment at Age 16 0.57 0.51 0.46 0.44 0.22 0.80 0.49 0.52 -0.03 0.11 1.00

APPENDIX TABLE VII
Correlations of Permanent Resident Outcomes Across CZs

Notes: This table presents correlations of outcomes for children of permanent residents across CZs. Teen employment is defined using only cohorts 1983-
1986. All correlations are weighted by population in the 2000 Census. See notes to Table I for the definition of the sample of permanent residents and
definitions of the variables used in this table.



FIGURE I: Mean Child Income Rank vs. Parent Income Rank for Children Raised in Chicago

Notes: This figure presents a binned scatter plot of the relationship between children’s income ranks and parent income ranks
for children raised in Chicago. The points on the figure plot the mean rank of children within each parental income percentile
bin. The best-fit line is estimated using an OLS regression on the underlying micro data. The figure also reports the slope of
the best-fit line (the rank-rank slope), along with the standard error of the estimate (in parentheses). The sample includes all
children in the 1980 birth cohort in our analysis sample whose parents were permanent residents of the Chicago commuting
zone during the sample period (1996-2012). Children’s incomes are measured at the household (i.e., family) level at age 30;
parents’ incomes are defined as mean family income from 1996-2000. Children are assigned ranks based on their incomes
relative to all other children in their birth cohort. Parents’ are assigned ranks based on their incomes relative to other parents
of children in the same birth cohort.



FIGURE II: Mean Income Ranks for Children of Permanent Residents

A. For Children with Parents at the 25thPercentile

B. For Children with Parents at the 75thPercentile

Notes: These maps plot children’s mean percentile ranks at age 30 conditional on having parents at the 25th percentile (Panel
A) and 75th percentile (Panel B). The maps are constructed by grouping CZs into ten deciles and shading the areas so that
lighter colors correspond to higher outcomes for children. Areas with fewer than 10 children, for which we have insufficient data
to estimate outcomes, are shaded with the striped pattern. The sample includes all children in the 1980 birth cohort in our
analysis sample whose parents are permanent residents (i.e., whose parents do not move across CZs between 1996-2012). To
construct these estimates, we first regress children’s family income ranks on a constant and their parents’ family income ranks
separately for each CZ and birth cohort. We then define the predicted income rank for children with parents at percentile p in
CZ c in birth cohort s (ȳpcs) as the intercept + p times the slope of this regression. Panel A reports the predicted child rank
for parents at p = 25, which corresponds to an annual household income of $30,000. Similarly, Panel B reports the predicted
child rank for parents at p = 75, which corresponds to an annual household income of $97,000. See notes to Figure I for details
on definitions of parent and child income ranks.



FIGURE III
Movers’ Outcomes vs. Predicted Outcomes Based on Permanent Residents in Destination

Notes: This figure presents a binned scatter plot depicting the relationship between the income ranks of children who moved
to a different CZ at age 13 and the differences in the outcomes of permanent residents in the destination vs. origin CZ. The
sample includes all children in the 1980-88 birth cohorts whose parents moved when the child was 13 years old and moved
only once between 1996-2012. Children’s family income ranks yi are measured at age 24. Permanent residents’ predicted
ranks for each parent income percentile p, CZ c, and birth cohort s (ȳpcs) are constructed using the methodology described
in the notes to Figure I. To construct the figure, we first demean both yi and ∆odps = ȳpds − ȳpos within the parent decile
(q) by origin (o) by birth cohort (s) cells in the sample of movers at age m = 13 to construct residuals: yri = yi −E[yi|q, o, s]
and ∆r

odps = ∆odps−E[∆odps|q, o, s]. We then divide the ∆r
odps residuals into twenty equal-size groups (ventiles) and plot the

mean value of yri vs. the mean value of ∆r
odps in each bin. The slope of the best-fit line, which corresponds to b13 in equation

(4), is estimated using an OLS regression on the underlying microdata, with standard error in parentheses.



FIGURE IV: Childhood Exposure Effects on Income Ranks in Adulthood
A. Semi-Parametric Estimates

B. Parametric Estimates

Notes: Panel A plots estimates of the coefficients {bm} vs. the child’s age when the parents move (m) using the semi-parametric
specification in equation (5), measuring children’s incomes at age 24. The sample includes all children in the primary analysis
sample whose parents moved exactly once between 1996-2012. The {bm} coefficients can be interpreted as the effect of moving
to an area where permanent resident outcomes are 1 percentile higher at age m. They are estimated by regressing the child’s
income rank in adulthood yi on ∆odps = ȳpds − ȳpos, the difference between permanent residents’ predicted ranks in the
destination vs. the origin, interacted with each age of the child at the time of the move m. We include origin CZ by parent
income decile by birth cohort by age at move fixed effects when estimating this specification. Panel B plots estimates from the
parametric specification in equation (6), measuring children’s incomes at age 24. This specification replicates the specification
used in Panel A, replacing the fixed effects with indicators for the child’s age at the time of the move interacted with parent
income rank and predicted outcomes for permanent residents in the origin interacted with birth cohort fixed effects. The
dashed vertical lines separate the data into two groups: age at move m ≤ 23 and m > 23. Best-fit lines are estimated using
unweighted OLS regressions of the {bm} coefficients on m separately for m ≤ 23 and m > 23. The slopes of these regression
lines are reported along with standard errors (in parentheses) on the left side of each panel for m ≤ 23 and on the right side for
m > 23. The magnitudes of the slopes for m ≤ 23 represent estimates of annual childhood exposure effects. The parameter δ
is defined as the mean value of the bm estimates for m > 23; this parameter represents a selection effect because moves after
age 24 cannot affect income measured at age 24. In Panel A, the dashed horizontal line shows the value of the selection effect
δ; the identification assumption underlying the analysis is that the selection effect δ does not vary with the child’s age at move
m.



FIGURE V: Childhood Exposure Effects on Income Ranks with Additional Controls

A. With Family Fixed Effects

B. With Family Fixed Effects and Time-Varying Controls

Notes: This figure replicates Figure IVb using specifications analogous to equation (6) that include family fixed effects (Panel
A) and both family fixed effects and controls for changes in marital status and parental income around the time of the move
(Panel B). To control for changes in parental income, we first construct parental income ranks by child’s birth cohort and
calendar year. We then interact the differences in parental ranks in the year before versus after the move with the child’s
age at the time of the move along with interactions with indicators for moving above versus below age 23. To control for
changes in marital status, we construct indicators for being always married, getting divorced, or being never married in the
year before the move and the year after the move (getting married is the omitted category). We then interact these marital
status indicators with the child’s age at the time of the move along with interactions with indicators for moving above versus
below age 23. See notes to Figure IV for additional details on the construction of the figure.



FIGURE VI: Exposure Effect Estimates Using Displacement Shocks

Notes: This figure presents estimates of annual childhood exposure effects (γ) for the subset of areas that experience displace-
ment shocks, defined as ZIP code by year cells that have large outflows in the number of residents. We measure outflows by
defining Kzt as the number of families who leave ZIP code z in year t in our one-time movers sample and K̄z as mean outflows
between 1996 and 2012. We define the shock to outflows in year t in ZIP z as kzt = Kzt/K̄z. We then take ZIP-year cells with
above-median outflows (kzt > 1.17) and divide them into 25 population-weighted bins based on the size of the shock kzt. For
each subset of observations with values of kzt above the percentile threshold listed on the x axis, we estimate γ using equation
(7), instrumenting for the change in predicted outcomes based on permanent residents ∆odps with the average change in
predicted outcomes for movers from the origin ZIP, E[∆odps|q, z]. We define E[∆odps|q, z] as the mean value of ∆odps for each
parental income decile q, pooling across all years and all movers out of ZIP code z. The figure plots the resulting estimates of
γ vs. the percentile threshold cutoff for the sample. The dashed lines show 95% confidence intervals for the estimates. The
mean value of the outflow shock kzt used in each subsample is shown in brackets below the percentile thresholds.



FIGURE VII: Exposure Effect Estimates Based on Cross-Cohort Variation

Notes: This figure presents estimates of the annual childhood exposure effect on children’s income ranks in adulthood using
permanent resident predictions for the child’s own birth cohort and surrounding “placebo” birth cohorts. The series in triangles
plots estimates of the exposure effect γt from nine separate regressions analogous to that in equation (7), using permanent
resident predictions from cohort s + t (where t ranges between -4 and 4) as the key independent variables and the outcomes
of children in birth cohort s as the dependent variable. By construction, the exposure effect estimate for t = 0 (highlighted
by the dashed vertical line) corresponds to the baseline estimate of γ = 0.040 in Column 1 of Table II. The series in circles
plots estimates from a single multivariable regression that simultaneously includes all nine permanent resident predictions
t = −4, ..., 4 and plots the coefficient on the interaction of the child’s age at the time of the move m with ∆odp,s+t, the
difference between permanent residents’ predicted ranks in the destination vs. the origin in cohort s + t. The figure also
reports p-values from two hypothesis tests: the hypothesis that γ (the estimate using the actual cohort, t = 0) equals zero
in the simultaneous specification and the hypothesis that all other coefficients γs+t excluding the own-cohort coefficient are
equal to zero. See Online Appendix D for further details on the regression specifications.



FIGURE VIII: Exposure Effects on College Attendance and Marriage

A. College Attendance (Age 18-23)

B. Marriage (Age 26)

Notes: This figure plots exposure effects for college and marriage outcomes using an approach analogous to that in Figure IVb.
In Panel A, we replicate the specification in equation (6), using an indicator for college attendance at any age between 18-23
as the dependent variable instead of the child’s income rank and replacing the key independent variable ∆odps = ȳpds − ȳpos
with the difference between permanent residents’ college attendance rates in the destination vs. the origin. The coefficients
that are plotted can therefore be interpreted as the effect of moving to an area where permanent residents’ college attendance
rates are 1 percentage point higher at age m. We require that the child be observed between ages 18 and 23 to define college
attendance; because we observe college attendance in years 1999-2012, we obtain estimates for children who move between
the ages of 8 and 29. In Panel B, we replicate the baseline specification in equation (6), replacing the child’s outcomes with
an indicator for being married at age 26 and replacing ∆odps = ȳpds − ȳpos with the difference between permanent residents’
marriage rates in the destination vs. the origin. See notes to Figure IV for further details on the construction of this figure.



FIGURE IX: Exposure Effects on Teenage Birth and Employment

A. Teenage Birth B. Employment at Age 16

C. Employment at Age 17 D. Employment at Age 18

Notes: This figure plots exposure effects for teenagers’ outcomes using an approach analogous to that in Figure IVb. Panel
A replicates the parametric specification in equation (6), using teenage birth as the dependent variable and replacing the key
independent variable ∆odps = ȳpds − ȳpos with the difference between permanent residents’ teen birth rates in the destination
vs. the origin. We define teenage birth as having a child between the ages of 13 and 19 using data from the Social Security
Administration’s DM-2 database, and estimate separate specifications for males and females who have a child. Panels B-D
replicate the parametric specification in equation (6), using an indicator for working at ages 16, 17, or 18 (based on having a
W-2) as the dependent variable and replacing the key independent variable ∆odps = ȳpds − ȳpos with the difference between
permanent residents’ teen employment rates in the destination vs. the origin at the corresponding age. The coefficients
that are plotted can therefore be interpreted as the effect of moving at age m to an area where permanent residents’ teen
employment rates are 1 percentage point higher at ages 16, 17, or 18. The age at which teen employment is measured is shown
by the vertical dashed line in each panel; since moves after the age at which employment is measured cannot have a causal
effect, the coefficients to the right of the dashed lines reflect selection.



ONLINE APPENDIX FIGURE I
Mean Income Ranks for Children of Permanent Residents by County

A. For Children with Parents at the 25thPercentile

B. For Children with Parents at the 75thPercentile

Notes: These maps plot children’s predicted income percentile ranks at age 30 conditional on having parents at the 25th
percentile (Panel A) and 75th percentile (Panel B) at the county level, analogous to the CZ-level maps shown in Figure II.
The maps are constructed by grouping counties into ten deciles and shading the areas so that lighter colors correspond to
higher outcomes for children. Areas with fewer than 10 children, for which we have insufficient data to estimate outcomes, are
shaded with the striped pattern. The sample includes all children in the 1980-1982 birth cohorts in our analysis sample whose
parents are permanent residents of a given county (i.e., whose parents do not move across counties between 1996-2012). See
notes to Figure II for further details on the construction of this figure.



ONLINE APPENDIX FIGURE II
Childhood Exposure Effects using Variation in Origin CZs

Notes: This figure presents estimates of bm using the semi-parametric specification in equation (5), replacing the αqosm fixed
effects (origin by parent income decile by birth cohort by age at move) with αqdsm fixed effects (destination by parent income
decile by birth cohort by age at move). The estimates of bm are thus identified from variation across permanent resident’s
outcomes in the origin from which children move rather than the destinations to which they move. We also report estimates
from unweighted OLS regressions of the estimated coefficients bm on the age at move m for m ≤ 23 and m > 23, as in Figure
IV. The slope for m ≤ 23 represents an estimate of the annual childhood exposure effect that is identified from differences in
exposure to an origin CZ with 1 percentile better permanent resident outcomes. See notes to Figure IV for further details on
the construction of this figure.



ONLINE APPENDIX FIGURE III
Exposure Effects Adjusting for Children’s Rates of Moving with Parents

Notes: The series in circles plots estimates of the coefficients {bm} vs. the child’s age when the parents move (m) using
the semi-parametric specification in equation (5), replicating Figure IVa exactly. The series in triangles presents analogous
estimates of bm which adjust for the fact that not all children move with their parents. This adjusted series is constructed
as follows. First, at each child age m, we estimate the fraction of children who follow their parents to the new destination
when their parents move, φm, as the fraction of children who (a) file a tax return in the destination CZ, (b) have a form W-2
mailed to an address in the destination CZ, or (c) attend a college (based on 1098-T filings by colleges) in the destination
CZ. For parents who move when their child is age m ≤ 23, we then plot bTOTm = bm−δ

φm
+ δ, where δ = 0.126 is the estimated

selection effect (shown by the horizontal dashed line) and bm are the baseline “intent-to-treat” estimates shown in circles.
The bTOTm estimates, plotted in triangles, can be interpreted as “treatment-on-the-treated” exposure effects for children who
actually move with their parents. We also report estimates from unweighted OLS regressions of the estimated coefficients bm
and bTOTm on the age at move m for m ≤ 23, as in Figure IV. The slope using bTOTm as the dependent variable represents a
“treatment-on-the-treated” estimate of the magnitude of the annual childhood exposure effect, γTOT . See notes to Figure IV
for further details.



ONLINE APPENDIX FIGURE IV
Sensitivity of Childhood Exposure Effects to Measuring Income at Older Ages

Notes: This figure replicates the parametric in equation (6) presented in Figure IVb, measuring children’s incomes at ages 24,
26, 38, and 30. Coefficients from an unweighted regression of the estimated coefficients bm on the age at move m for m ≤ 23,
which represent estimates of the magnitudes of annual childhood exposure effects, are reported. Because childrens’ locations
are not observed before 1996, the earliest age at which movers can be identified varies across specifications. See notes to Figure
IV for further details on the construction of this figure.



ONLINE APPENDIX FIGURE V
Gender Differences in Mean Income Ranks for Children of Permanent Residents

A. For Children with Parents at the 25thPercentile

B. For Children with Parents at the 75thPercentile

Notes: These maps plot the difference between sons’ and daughters’ mean household income ranks at age 30 (ȳmpcs − ȳfpcs)
conditional on having parents at the 25th percentile (Panel A) and 75th percentile (Panel B). The maps are constructed by
grouping CZs into ten deciles and shading the areas so that darker colors correspond to better outcomes for boys relative
to girls. Areas with fewer than 250 male or female children, for which we have insufficient data to estimate outcomes, are
shaded with the striped pattern. The sample includes all children in the 1980-82 birth cohorts in our analysis sample whose
parents are permanent residents of a given CZ (i.e., whose parents do not move across CZs between 1996-2012). Mean ranks
are constructed using the same method as in Figure I, separately by gender; see notes to Figure I for further details.
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