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1. Introduction  

Over the last decades, commodity pricing models have been very successful in fitting the term 

structure of futures prices and its dynamics.  These models make a wide variety of assumptions about 

the number of underlying risk factors, and the drift and volatility of these factors. [Gibson, R. & 

Schwartz, E.S. (1990); Schwartz, E.S. (1997); Schwartz, E.S. & Smith, J. (2000); Cortazar, G. & 

Schwartz, E.S. (2003); Cortazar, G. & Naranjo, L. (2006); Casassus, J. & Collin-Dufresne, P. (2005); 

Cortazar, G., & Eterovic, F. (2010); Heston, S. L. (1993); Duffie, D., J. Pan, & K. Singleton (2000); 

Trolle, A. B. & Schwartz, E. S. (2009); Chiang, I., Ethan, H., Hughen, W. K., & Sagi, J. S. (2015).] 

The performance of commodity pricing models is commonly assessed by how well these models fit 

derivative prices. It is well known that derivative prices are obtained from the risk neutral or risk 

adjusted probability distribution (e.g. futures prices are the expected spot prices under the risk neutral 

probability distribution).  These models also provide the true or physical distribution of spot prices, 

but this has not been stressed in the literature because they have mainly been used to price derivatives.  

However, as Cortazar, Kovacevic & Schwartz, (2015) point out, the latter is also valuable and is used 

by practitioners for risk management, NPV valuations, and other purposes. 

Despite the diversity of commodity pricing models found in the literature, they all share the 

characteristic of relying only on market prices (e.g. futures and options) to calibrate all parameters.  

In these models the risk premium parameters are measured with large errors and typically are not 

statistically significant, making estimations of expected prices (which differ from futures prices on 

the risk premiums) inaccurate. 

To solve this problem Cortazar et al. (2015) propose using an Asset Pricing Model (e.g. CAPM) to 

estimate the expected returns on futures contracts from which the risk premium parameters can be 

obtained, which results in more accurate expected prices.  However, these prices depend on the 

particular Asset Pricing Model chosen. 

This paper develops an alternative way to estimate risk-adjusted and true distributions that does not 

rely on any particular asset pricing model. The idea is to use forecasts of future spot prices provided 

by analysts and institutions who periodically forecast these prices, such as those available from 

Bloomberg and other sources.   Thus, by calibrating the commodity pricing model with both futures 

prices and analysts’ forecasts, two different data sets are jointly used to calibrate the model. 

Analysts’ forecasts have been previously used in finance, but mostly for corporate earnings. For 

example, O’Brien (1987) studies forecasts of earnings per share as predictors of earnings in the U.S. 

stock market.  O’Brien (1990) measures the predictive power of individual analysts comparing their 
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estimations with realized earnings in nine industries.  Hail and Leuz (2006) use stock earnings 

forecasts to calculate the implied cost of capital of companies. Zhang (2006) uses stock target price 

forecasts dispersion to measure information uncertainty. Bonini et al. (2010) and Bradshaw et al. 

(2012) study the predictive content of target price forecasts in the stock market, under different 

measures of accuracy. 

Analysts’ forecasts have also been used in other areas and markets. For example, Pesaran and Weale 

(2006) use survey information on short-term forecasts of macroeconomic variables to develop an 

analysis on how respondents shape their expectations on inflation, consumer sentiment or consumer 

spending. Bachetta et al. (2009) measure the predictability of returns in stock, foreign exchange, bond 

and money markets in different countries using surveys.  

The use of analysts’ forecasts in commodity markets, which is of interest in this paper, has been 

scarce and, in general, neglected. However, Bloomberg’s Commodity Price Forecasts have been 

subject to some analysis (Atalla et al. (2016), Haugom et al. (2016)).  Berber and Piana (2016) state 

that this data set is useful because price forecasts are a direct approximation to the market’s 

expectations since they are made by individual analysts that are experts in each specific commodity 

market. They use these price forecasts to test their predictive power for realized returns in the crude 

oil and copper markets.  

Another valuable source of commodity forecasts is the EIA (U.S. Energy Information 

Administration). Baumeister and Kilian (2015) use these data to test the predictive power of short-

term oil price forecasts by comparing them with a model that uses a combination of forecasts to 

estimate future spot prices. A similar study is made by Wong-Parodi et al. (2006), assessing if the 

short-term forecasts from EIA are good predictors of spot prices, in comparison to traded futures 

prices. Furthermore, Haugom et al. (2016) focus on forecasting long-term oil prices, and use the EIA 

forecasts as a reference for their own estimations provided by a model that is built on the fundamental 

relationships between demand and supply. Auffhammer (2007) analyzes the rationality of EIA short-

term forecasts. Bolinger et al. (2006), using only EIA reports from 2000 to 2003 natural gas contracts, 

estimate empirical risk premiums. 

Other analysis on forecasting of commodity prices include Pierdzioch et al. (2010) and (2013b) on 

oil price forecasts published by the European Central Bank, Pierdzioch et al. (2013a) extending the 

anti-herding evidence to nine metals, Singleton (2014) on the  disagreement among forecasters and 

the level of WTI oil price, and Atalla et al. (2016) on the fact that analysts’ disagreement on oil price 

forecasts reflects realized oil price volatility. 
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In this paper, by proposing to use both market data (futures prices) and analysts’ forecasts (expected 

prices) to calibrate a commodity pricing model, several related objectives are pursued.  The first one 

is to formulate a joint-estimation model that considers both sets of data and show how to estimate it 

using the Kalman Filter. 

Acknowledging that analysts’ price forecasts are very volatile, both because at any point in time there 

is great disagreement between them, and also because their opinions change greatly over time, our 

second objective is to build an analysts’ consensus curve that optimally aggregates and updates all 

their opinions. 

Our third objective is to improve estimations for long-term futures prices. This is motivated by current 

practice which consists in calibrating commodity pricing models using futures with maturities only 

up to a few years and then is silent about whether the model will behave well for longer maturities. 

However, there is evidence that extrapolating a model calibrated only with short/medium term prices 

to estimate long term ones is unreliable [Cortazar, G, Milla, C. & Severino, F. (2008)]. In this paper, 

long term futures price estimations will be obtained by using also information from analysts’ 

forecasts.  

Finally, the fourth objective is to estimate the term structure of the commodity risk premiums. This 

can be done by comparing the term structure of expected spot and futures prices.  

The paper is organized as follows. To motivate the proposed approach, Section 2 provides empirical 

illustrations of some of the weaknesses of current approaches.  Section 3 describes the model and 

parameter estimation technique used, while Section 4 describes the data set.  The main results of the 

paper are presented in Section 5. Section 6 concludes. 

 

2. The Issues 

In what follows some of the issues that will be addressed in this paper are described.  The first issue, 

already pointed out in Cortazar et al. (2015), is that expected prices under the true distribution are 

unreliable when calibrating a commodity pricing model using only futures contract prices. As an 

illustration, Figure 1 shows the futures and expected oil prices for 02-05-2014 using the Cortazar and 

Naranjo (2006) two-factor model1. It can be seen that while the 4.5 year maturity futures price is 77.9 

US$/bbl., the model’s expected price, for the same maturity, is 365.8 US$/bbl.  To justify that this 

																																																								
1	As	shown	in	Cortazar	and	Naranjo	(2006)	this	two‐factor	specification	is	equivalent	to	the	Schwartz	

and	Smith	(2000)	model,	but	may	easily	be	extended	to	N‐factors.	
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expected price is unreasonable, the Bloomberg’s Analysts´ Median Composite Forecast for 2018, 

which amounts to only 96.5 US$/bbl., is also plotted. 

Figure 2 shows the model expected spot prices, futures prices and analysts’ forecasts for a contract 

maturing around 07-01-2018 during the year 2014.  It can be seen that the model expected spot prices 

are for the whole year around three times higher than the futures prices and analysts’ forecasts.  

Given that we will make use of a diverse set of analysts’ forecasts, a second issue is how to optimally 

generate and update an analysts’ consensus curve, as new information arrives.  Figure 2 illustrates 

how the mean price forecasts for 2018 changes every week as new analysts provide their forecasts 

during 2014.  It also shows that these forecasts are close to the corresponding futures prices, but the 

expected prices from the two-factor commodity model, when estimated using only futures, are much 

higher. Some efforts to provide an analysts’ consensus curve have already been made (the Bloomberg 

Median Composite, also plotted in Figure 2), but in general they are computed using only simple 

moving averages of previous forecasts. 

 

 

Fig. 1: Oil futures and expected spot curves under the two-factor model, oil futures prices and 

Bloomberg’s Median Composite for oil price forecasts, for 02-05-2014.  The model is calibrated 

using weekly futures prices (01/2014 to 12/2014). 
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Fig. 2: Analysts’ 2018 Oil Price Forecasts, Bloomberg Median Composite Forecast for 2018, Oil 

futures prices of contracts maturing close to 07-01-2018, and a Two-Factor Model expected spot at a 

07-01-2018 maturity.  The model is calibrated using weekly futures prices (01/2014 to 12/2014). 

 
Another and related issue is how to obtain credible estimations of commodity risk premiums. When 

expected spot prices are unreliable, risk premiums are also unreliable.   

The final issue that will be addressed is how to obtain long-term futures price estimations that exceed 

the longest maturity contract traded in the market, using the information contained in long term 

analysts´ forecasts.  Cortazar et al. (2008) already showed that extrapolations are unreliable: even if 

commodity pricing models fit well existing data, contracts with longer maturities are estimated with 

large errors.   

To illustrate the point discussed above, a two factor model is calibrated using three alternative data 

panels of oil futures: all futures including maturities up to 9 years (100%), futures only up to 4.5 years 

(50%), and futures only up to 2.25 years (25%). For each data panel pricing errors for the longest 

observed futures price are computed. Table 1 shows that the longer the extrapolation, the higher the 

errors2 . 

 

																																																								
2	Differences are significant at the 99% confidence level.	
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Table 1: Mean absolute error for the longest futures observation (9 years approx.) when the futures 

curve is calibrated using maturities up to 9 years (100%), futures only up to 4.5 years (50%), and 

futures only up to 2.25 years (25%), from January 2010 to December 2015. The futures curve is 

obtained using the two factor model calibrated with oil futures weekly data from January 2010 to 

December 2014. (All differences between data panels are statistically significant al the 99% level).   

 
3. The Model 

3.1. The N-Factor Gaussian Model 

The Cortazar and Naranjo (2006) N-factor model is chosen to illustrate the benefits of using analysts’ 

forecasts, in addition to futures prices. This model nests several well-known commodity pricing 

models (e.g. Brennan and Schwartz (1985), Gibson and Schwartz (1990), Schwartz (1997), Schwartz 

and Smith (2000), Cortazar and Schwartz (2003)) and lends itself easily to be specified with any 

number of risk factors.   

Following Cortazar and Naranjo (2006), the stochastic process of the (log) spot price (ܵ௧ ) of a 

commodity is: 

 log ܵ௧ ൌ ૚ᇱ࢚࢞ ൅  (1) ݐߤ

where ࢚࢞ is the (1	ݔ	݊) vector of state variables and ߤ is the log-term price growth rate, assumed 

constant.  The vector of state variables follows the stochastic process: 

࢚࢞݀  ൌ െݐ࢚݀࢞ࡷ ൅ ઱݀(2) ࢚࢝ 

where ࡷ and ઱ are (݊	ݔ	݊) diagonal matrices containing positive constants (with the first element of 

ଵߢ ,ࡷ ൌ 0ሻ, and ࢚݀࢝ is a set of correlated Brownian motions such that ሺ࢚݀࢝ሻᇱሺ࢚݀࢝ሻ ൌ ષ݀ݐ, with 

each element of ષ being ߩ௜௝ ∈ ሾെ1,1ሿ.  The risk adjusted process followed by the state variables is: 

࢚࢞݀  ൌ െሺࣅ ൅ ݐሻ࢚݀࢞ࡷ ൅ ઱࢚݀࢝
ொ (3) 

where ࣅ is a (1	ݔ	݊) vector containing the risk premium parameters corresponding to each risk factor, 

all assumed to be constants. 

 100% 

(maturities from 0 
to 9 yrs. Approx.) 

50% 

(maturities from 0 
to 4.5 yrs. 
Approx.) 

25% 

(maturities from 
0 to 2.25 yrs. 

Approx.) 

Mean Absolute Error 

 ($/bbl.) 
0.9 2.1 18.5 
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Under the N-Factor model, the futures price at time ݐ, of a contract maturing at ܶ, can be obtained by 

computing the conditional expected value of the spot price, under the risk-adjusted measure: 

,࢚࢞ሺܨ  ,ݐ ܶሻ ൌ ௧ܧ
ொሺܵሺ࢚࢞, ܶሻሻ (4) 

As shown in Cortazar and Naranjo (2006), this boils down to: 

,࢚࢞ሺܨ  ,ݐ ܶሻ ൌ expሺ࢛ሺݐ, ܶሻᇱ࢚࢞ ൅ ,ݐிሺݒ ܶሻሻ (5) 

where,  

,ݐ௜ሺݑ  ܶሻ ൌ ݁ି఑೔ሺ்ି௧ሻ (6) 

 

,ݐிሺݒ ܶሻ ൌ ݐߤ	 ൅ ൬ߤ െ ଵߣ ൅
1
2
ଵଶ൰ߪ ሺܶ െ ሻݐ െ ෍ቆ

1 െ ݁ି఑೔ሺ்ି௧ሻ

௜ߢ
௜ቇߣ

௡

௜ୀଶ

൅
1
2
෍ ቆߪ௜ߪ௝ߩ௜௝

1 െ ݁ିሺ఑೔ା఑ೕሻሺ்ି௧ሻ

௜ߢ ൅ ௝ߢ
ቇ

௡

௜∙௝ஷଵ

 

(7) 

Similarly, it can be shown that the expected spot price for time ܶ at time ݐ, is defined by: 

,࢚࢞௧ሺܵሺܧ  ܶሻሻ ൌ expሺ࢛ሺݐ, ܶሻᇱ࢚࢞ ൅ ,ݐሺࡱ࢜ ܶሻሻ (8) 

where,  

,ݐாሺݒ  ܶሻ ൌ ܶߤ ൅
1
2
ଵଶሺܶߪ െ ሻݐ ൅

1
2
෍ ቆߪ௜ߪ௝ߩ௜௝

1 െ ݁ିሺ఑೔ା఑ೕሻሺ்ି௧ሻ

௜ߢ ൅ ௝ߢ
ቇ

௡

௜∙௝ஷଵ

 (9) 

Note that the only differences between the futures and expected spot dynamics are the risk premium 

parameters. Also, if these parameters were zero, the futures and expected spot prices would be equal.  

Define: 

,࢚࢞௧ሺܵሺܧ  ܶሻሻ ൌ ,࢚࢞ሺܨ ,ݐ ܶሻ ∗ ݁గಷ ሺ்ି௧ሻ (10) 

 

where ߨி is the futures’ risk premium, given by: 

 

ிߨ  ൌ ଵߣ ൅ ෍ቆ
1 െ ݁ି఑೔ሺ்ି௧ሻ

௜ߢ ሺܶ െ ሻݐ
௜ቇߣ

௡

௜ୀଶ

 (11) 

 

Finally, the model implied volatility (assumed to be constant in the time-series) is given by: 
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ிଶሺ߬ሻߪ  ൌ෍෍ߪ௜ߪ௝ߩ௜௝݁
ି൫఑೔ା఑ೕ൯ఛ

௡

௝ୀଵ

௡

௜ୀଵ

 (12) 

In this paper analysts’ forecasts are assumed to be noisy proxies for expected future spot prices. 

3.2. Parameter Estimation 

A Kalman filter that incorporates futures prices and analysts’ forecasts into the process of estimating 

all parameters is applied.  The Kalman Filter has been successfully used with incomplete data panels 

in commodities (Cortazar and Naranjo (2006)) and bond yields (Cortazar et al. (2007)), among others.  

Let’s define ݉௧ as the time-variable number of observations available at time ݐ. 

The application of the Kalman Filter requires two equations to be defined: 

o The transition equation, which describes the true evolution of the ݊	ݔ	1  vector of state 

variables (࢚࢞ሻ over each time step (∆ݐ): 

 
࢚࢞ ൌ ૚ି࢚࢚࢞࡭ ൅ ࢚ࢉ ൅  ࢚ࢿ

࢚ࢿ ~ ܰሺ૙,࢚ࡽሻ 
(13) 

where ࢚࡭ is a ݊	ݔ	݊ matrix, ࢚ࢉ is a ݊	ݔ	1 vector and ࢚ࢿ is an ݊	ݔ	1 vector of disturbances with mean 0 

and covariance matrix ࢚ࡽ.   

o The measurement equation, which relates the state variables to the log of observed futures 

prices and analysts’ forecasts: 

 
࢚ࢠ ൌ ࢚࢚࢞ࡴ ൅ ࢚ࢊ ൅  ࢚࢜

࢚࢜ ~ ܰሺ૙,  ሻ࢚ࡾ
(14) 

 

where ࢚ࢠ is a ݉௧	ݔ	1 vector, ࢚ࡴ is a ݉௧	ݔ	݊ matrix, ࢚ࢊ is a ݉௧	ݔ	1 vector and ࢚࢜ is a ݉௧	ݔ	1 vector of 

disturbances with mean 0 and covariance matrix ࢚ࡾ. 

Analysts provide their price forecasts as an annual average, instead of a price for every maturity, as 

is the case for futures. Thus, Equations (5) and (8) become  

 log ,࢚࢞ሺܨ ,ݐ ܶሻ ൌ ,ݐሺ࢛ ܶሻᇱ࢚࢞ ൅ ,ݐிሺݒ ܶሻ (15) 
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 log ,࢚࢞௧ሺܵሺܧ ܶሻሻ ൌ logቌ
1

௉ܰ
෍expሺ࢛ሺݐ, ܶሻᇱ࢚࢞ ൅ ,ݐாሺݒ ܶሻሻ

ேು

௜ୀଵ

ቍ (16) 

Notice that in order to measure the analysts’ forecast observations we numerically approximate the 

mean annual price as the mean of ௉ܰ observations evenly spaced over the same year of the estimation.  

As can be observed, unlike futures prices, price forecasts are not a linear function of the state 

variables.  

In order for expected spot prices to be normally distributed, under the N-Factor model, the log  ሺܵሻܧ

must be represented by a linear combination of the state variables. This can be achieved by linearizing 

the measured log ,࢚࢞௧ሺܵሺܧ ܶሻሻ when computing each measurement step of the Kalman Filter3.   

If ݉௧
ி and ݉௧

ா	are defined as the number of observations of futures prices and analysts’ forecasts at 

time ݐ, the matrices corresponding to the measurement equation are: 

ܜܢ  ൌ ቆ
ࡲܜܢ

ࡱܜܢ
ቇ (17) 

where ࡲܜܢ  is a ݉௧
ி ൈ 1  vector containing the futures observations and ࡱܜܢ  is a ݉௧

ா ൈ 1  vector 

containing the price forecasts observations. 

Let 

ܜ۶  ൌ ቆ
ܜ۶

ࡲ

ܜ۶
 ቇ (18)ࡱ

and 

ܜ܌  ൌ ቆ
ܜ܌

ࡲ

ܜ܌
 ቇ (19)ࡱ

where ۶ܜ
is a ݉௧ ࡲ

ி ൈ ݊ matrix and ܜ܌
is a ݉௧ࡲ

ி ൈ 1  vector containing the measurement equations for 

the futures data and ۶ܜ
is a ݉௧ ࡱ

ா ൈ ݊  matrix and ܜ܌
is a ݉௧ ࡱ

ா ൈ 1 vector containing the linearized 

measurement equations for the price forecasts data.    

Finally, 

ܜ܀  ൌ ቆ
࢚ࡾ

ࡲ ૙
૙ ࢚ࡾ

 ቇ (20)ࡱ

																																																								
3 More information on this methodology can be found in Cortazar, Schwartz, Naranjo (2007).	
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where ࡲ࢚ࡾ ൌ ݀݅ܽ݃௠೟
ಷሺߦிሻ  and ࢚ࡾ

ࡱ ൌ ݀݅ܽ݃௠೟
ಶሺߦாሻ  are the diagonal covariance matrices of 

measurement errors of futures and price forecasts observations.   

 

4. The Data 

4.1. Analysts’ Price Forecasts Data 

Analysts´ price forecasts are obtained from four sources: Bloomberg, World Bank (WB), 

International Monetary Fund (IMF) and the U.S. Energy Information Administration (EIA). 

The first source is the Bloomberg Commodity Price Forecasts.  This data base provides information 

on the mean price of each following year, up to 5 years ahead, made by individual analysts from a 

wide range of private financial institutions.   Even though the data has not been analyzed extensively 

in the literature, it has been recently recognized as a rich and unexplored source of information 

[Berber and Piana (2016), Bianchi and Piana (2016)]. 

The next three sources (WB, IMF, and EIA), provide periodic (monthly, quarterly or annually) reports 

with long-term, annual mean price estimations up to 28 years ahead.  Most historical data is available 

since 2010. Among these three sources, the last one has received more attention in the literature. In 

particular, Berber and Piana (2016) and Bianchi and Piana (2016) use it for oil inventory forecasts, 

while Bolinger et al. (2006), Auffhammer (2007), Baumeister and Kilian (2015) and Haugom et al. 

(2016) focus on price forecasts. Finally, Auffhammer (2007) and Baumeister and Kilian (2015) claim 

this source is widely used by policymakers, industry and modelers. 

Figure 3 shows the analysts’ price forecasts from all four sources, between 2010 and 2015.  It can be 

seen that short-term forecasts are more frequent, in contrast to long-term forecasts which are issued 

in a less recurring, but periodical, basis. 

 



13 
	

 
 

Fig. 3: Oil analysts’ price forecasts from 2010 to 2015 provided by Bloomberg’s Commodity Price 

Forecasts, World Bank (WB), International Monetary Fund (IMF) and U.S. Energy Information 

Administration (EIA). 

Analysts’ price forecasts are made for the average of each year. Thus, for each forecast its maturity 

is computed as the difference (in years) between the issue date and the middle of the year of the 

estimation (01-July of each year).  Price forecasts are grouped into weeks ending on the following 

Wednesday, and then averaged4.  Forecasts for the same year, which include past information, are 

discarded as in Bianchi and Piana  (2016).  Table 2 summarizes the data. 

 

 

 

 

																																																								
4	This	is	similar	to	what	Berber	and	Piana	(2016)	or	Bianchi	and	Piana	(2016)	do	when	averaging	

forecasts	corresponding	to	the	same	period	of	estimation.	
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Table 2: Oil analysts’ price forecasts from 2010 to 2015 grouped by maturity bucket.  Forecasts are 

aggregated by week ending in the next Wednesday and averaged to obtain the mean price estimate 

for each following year in the same week.   

Maturity 
Bucket 
(years) 

Mean 
Price 

($/bbl.) 
Price  
S.D. 

Mean 
Maturity 
(years) 

Min. Price 
($/bbl.) 

Max. Price 
($/bbl.) 

N° of 
Observations 

0-1 88.4 17.5 0.8 47.2 117.5 149 
1-2 93.9 16.6 1.5 52.3 135.0 284 
2-3 96.8 19.2 2.5 50.9 189.0 236 
3-4 95.5 20.1 3.5 51.5 154.0 190 
4-5 93.0 19.7 4.5 52.0 140.0 141 
5-10 99.1 18.2 6.7 61.2 153.0 122 

10-28 165.9 40.6 16.9 80.0 265.2 110 
Total 100.9 29.6 4.1 47.2 265.2 1232 

 
 
4.2. Oil Futures Data 

Oil futures data is obtained from the New York Mercantile Exchange (NYMEX).  Weekly futures 

(Wednesday closing), with maturities for every 6 months, are used.  There are from 17 to 19 contracts 

per week.  Futures data is much more frequent than analysts’ forecasts, as can be seen by comparing 

Figures 3 and 4.  Table 3 summarizes the futures data by maturity buckets with similar number of 

observations. 

 

 
Fig. 4: Oil futures prices from 2010 to 2015 provided by NYMEX 
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Table 3: Oil futures prices from 2010 to 2015 grouped by maturity bucket. 

Maturity 
Bucket 
(years) 

Mean 
Price 

($/bbl.) 
Price  
S.D. 

Mean 
Maturity 
(years) 

Min. Price 
($/bbl.) 

Max. Price 
($/bbl.) 

N° of 
Observations 

0-1 85.4 17.7 0.4 36.6 113.7 786 
1-2 85.0 14.5 1.5 45.4 110.7 621 
2-3 84.0 12.7 2.5 48.5 107.9 625 
3-4 83.5 11.6 3.5 50.9 106.2 627 
4-5 83.4 11.0 4.5 52.5 105.6 631 
5-6 83.5 10.8 5.5 53.5 105.6 622 
6-7 83.8 10.9 6.5 54.2 105.9 625 
7-8 84.1 11.1 7.5 54.6 106.3 626 
8-9 84.6 11.6 8.4 54.9 107.0 461 

Total 84.2 12.8 4.2 36.6 113.7 5624 
 
 
4.3. Risk Premiums Implied from the Data 

As explained in Section 3.1, empirical risk premiums can be derived directly form the data by 

comparing analysts’ forecasts with futures prices of similar maturity5. Since oil futures contracts 

longest maturity does not exceed 9 years, it is not possible to calculate the data risk premiums 

exceeding this term. Then, if ܧ௧෢ሺ்ܵሻ is a price forecast at time ݐ, for maturity ܶ, and ܨ௧, ෠்  is its closest 

futures (in maturity) for the same date, following Equation 10 the data risk premium corresponding 

to that time is computed as: 

 

 
்,௧ߨ ൌ

log ൬
௧෢ሺ்ܵሻܧ
,௧ܨ ෠்

൰

ܶ
 

(21) 

 

The mean data risk premiums for each maturity bucket is presented in Table 4. Notice that the annual 

data risk premium is decreasing with maturity. 

 

																																																								
5	Forecasts	 with	more	 than	 one	 year	 of	 difference	 with	 the	 nearest	 future	 contract	 are	 not	 used	 to	

calculate	data	risk	premiums.	
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Table 4: Mean Annual Data Risk Premium from 2010 to 2015 by maturity bucket.  

 
Maturity Buckets 

 (years) 
Mean Data Risk Premium 

(%) 
0.5 – 1.5 7.6% 
1.5 – 2.5 6.7% 
2.5 – 3.5 5.2% 
3.5 – 4.5 3.3% 
4.5 – 5.5 2.9% 
5.5 – 6.5 3.2% 
6.5 – 7.5 3.2% 
7.5 – 8.5 3.1% 
8.5 – 9.5 3.0% 

 
 
5. Results 

This section presents the results from calibrating the Cortazar and Naranjo (2006) N-factor model, 

described in Section 3, using different specifications and calibration data.  Model specifications 

include two and three risk factors.  In terms of the calibration data, two sets are available: futures 

prices (F) and analysts’ forecasts (A).  Results using jointly both data sets (FA-Model), only-analysts’ 

data (A-Model), and the traditional only-futures data (F-Model), are presented. The behavior of the 

futures curve, the expected spot price curve and the risk premiums are analyzed. 

5.1. Joint Model Estimation (FA-Model) 

The Joint Model estimation, FA-Model, uses both the analysts’ price forecasts and futures data to 

calibrate the N-Factor Model for two and three factors.  To motivate the discussion, Figures 5 and 6 

illustrate the results for the futures and expected spot curves, under different specifications and 

calibrations, for two specific dates, one, on 04-14-2010, in the in sample period and the other, on 07-

22-2015, in the out of sample period. Notice that in all cases the curves fit reasonably well the futures 

prices and analysts’ forecasts observations when using the FA-Model. On the contrary, when using 

the traditional F-Model, the expected price curves are well below the analysts’ forecasts. 
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Fig. 5: Futures, expected spot curves and observations for 04-14-2010. Curves include two and three-

factor, FA- and F- Models. Parameter estimation from 2010 to 2014. 

 

Fig. 6: Futures, expected spot curves and observations for 07-22-2015. Curves include two and three-

factor, FA- and F- Models. Parameter estimation from 2010 to 2014. 
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Tables 5 and 6 present the parameter values obtained using the Kalman filter and using weekly data 

from 2010 to 2014, for the two- and three-factor FA-Models, respectively6.  It is worth noticing that 

by using this new FA approach most risk premium parameters λi are now statistically significant. 

Table 5: Two-factor F-Model and FA-Model parameters, standard deviation (S.D.) and t-Test 

estimated from oil futures prices and price forecasts. Parameter estimation from 2010 to 2014. 

Parameter F-Model FA-Model 
Estimate S.D. t-Test Estimate S.D. t-Test 

κ2 0.357 0.004 90.638 0.212 0.004 53.522 
σ1 0.163 0.007 23.617 0.375 0.003 149.492 
σ2 0.411 0.008 50.204 0.571 0.009 64.496 
ρ12 -0.407 0.036 -11.301 -0.885 0.012 -73.959 
μ -0.042 0.070 -0.600 -0.026 0.000 -55.725 
λ1 -0.041 0.070 -0.580 -0.003 0.002 -2.094 
λ2 0.004 0.127 0.033 0.068 0.003 25.968 
ξ 0.010 0.000 91.492 0.046 0.000 116.034 
       

 
 

 

 

 

 

	
	
	

																																																								
6	Measurement	errors	for	both	data	sets	are	assumed	to	be	the	same,	estimating	a	single	ߦ	parameter.		

However,	 this	 assumption	 can	 be	 relaxed	 to	 allow	 different	 measurement	 errors	 for	 futures	 and	

forecasts,	 consequently	 affecting	 the	 parameter	 estimation	 process.	 	 Furthermore,	 different	

measurement	errors	can	be	used	for	different	maturity	buckets	in	each	data	set,	as	shown	in	Cortazar	et	

al.	(2015)	or	in	Cortazar	et	al.	(2007).	
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Table 6: Three-factor F-Model and FA-Model parameters, standard deviation (S.D.) and t-Test 

estimated from oil futures prices and price forecasts. Parameter estimation from 2010 to 2014. 

Parameter F-Model FA-Model 
Estimate S.D. t-Test Estimate S.D. t-Test 

κ2 1.015 0.011 92.490 0.940 0.023 40.877 
κ3 0.200 0.003 74.208 0.170 0.004 47.314 
σ1 0.175 0.003 52.173 0.311 0.003 102.803 
σ2 0.531 0.006 91.077 0.241 0.004 56.060 
σ3 0.251 0.004 58.302 0.455 0.008 58.918 
ρ12 -0.162 0.003 -59.458 0.492 0.010 48.032 
ρ13 -0.497 0.007 -66.317 -0.809 0.015 -52.635 
ρ23 0.254 0.004 58.151 -0.693 0.012 -55.800 
μ -0.123 0.068 -1.818 0.002 0.000 44.564 
λ1 -0.125 0.068 -1.844 0.007 0.003 2.605 
λ2 0.046 0.189 0.246 0.101 0.009 11.151 
λ3 0.000 0.001 0.029 0.010 0.007 1.429 
ξ 0.005 0.000 102.346 0.044 0.000 108.762 

 
 
As discussed previously, the F- and FA-Models estimate both the true and the risk-adjusted 

distributions, from which futures prices and expected spot prices can be obtained. Futures price and 

analysts’ forecast errors for both models are computed and presented in Tables 7 to 10.   

 

Tables 7 and 8 show the mean absolute errors between analysts’ forecasts and model expected spot 

prices generated by the FA-Model versus the F-Model. It is clear that the FA-Model has a 

significantly better fit for all time windows and buckets, for both the two and the three factor models. 

Furthermore, Tables 9 and 10 show the mean absolute errors between observed futures prices and 

model futures prices. As expected, the benefit of obtaining a better fit in the expected spot prices, by 

including analysts’ forecasts, comes at the expense of increasing the mean absolute error on the 

futures prices.  Nevertheless, the error increase is only 1%.   
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In summary the FA-Model has the advantage of generating a more reliable expected spot curve, with 

only a moderate effect for the goodness of fit for the futures7. The three-factor model performs 

moderately better than the two-factor model. 

 

Table 7: Price forecasts Mean Absolute Errors for the two and three factor F- and FA-Models for 

each time window, between 2010 and 2015.  Errors are calculated as percentage of price forecasts. 

Parameter estimation from 2010 to 2014. 

Time Window 
N° of  

Observations 
Two Factors Three Factors 

F-Model FA-Model F-Model FA-Model 
In Sample (2010 – 2014) 981 24.7% 7.1% 38.6% 6.8% 
Out of Sample (2015) 251 22.9% 6.3% 37.6% 6.0% 
Total (2010 – 2015) 1232 24.3% 6.9% 38.4% 6.6% 

 
 
Table 8: Price forecasts Mean Absolute Errors for the two and three factor F- and FA-Models for 

each maturity bucket, between 2010 and 2015.  Errors are calculated as percentage of price forecasts. 

Parameter estimation from 2010 to 2014. 

Buckets  
(years) 

N° of  
Observations 

Two Factors 
 

Three Factors 

F-Model FA-Model 
 

F-Model FA-Model 
0-1 149 9.5% 4.1%  12.3% 3.9% 
1-2 284 14.7% 5.3%  22.1% 4.9% 
2-3 236 20.7% 7.5%  33.3% 7.1% 
3-4 190 23.5% 9.2%  40.7% 8.9% 
4-5 141 25.7% 10.3%  47.2% 10.0% 

5-10 122 35.5% 7.1%  61.1% 6.9% 
10-28 110 64.3% 5.3%  86.2% 5.2% 
Total 1232 24.3% 6.9%  38.4% 6.6% 

 
 
 

																																																								
7	Moreover,	the	tradeoff	between	both	effects	can	be	modified	by	setting	different	specifications	for	the	

measurement	 error	 variances	 for	 futures	 and	 forecasts	 when	 implementing	 the	 Kalman	 Filter.	 As	

explained	in	Section	3,	our	results	use	a	single	ξ	parameter	for	both	futures	and	forecasts	observations	

at	 all	 maturities.	 However,	 this	 assumption	 can	 be	 relaxed	 to	 allow	 different	 measurement	 error	

variances	according	to	the	nature	of	each	observation	included	in	the	parameter	estimation	process.	
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Table 9: Futures Mean Absolute Errors for the two and three factor F- and FA-Models for each time 

window, between 2010 and 2015. Errors are calculated as percentage of futures prices. Parameter 

estimation from 2010 to 2014. 

 
 
 
 

 

 
 
Table 10: Futures Mean Absolute Errors for the two and three factor F- and FA-Models for each 

maturity bucket, between 2010 and 2015. Errors are calculated as percentage of futures prices. 
Parameter estimation from 2010 to 2014. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2. Analysts’ Consensus Curve using only Analysts’ Forecasts (A-Model) 

In the previous section, futures and expected spot curves for the FA-Model, calibrated using both 

futures and analysts’ forecasts, were presented.  In that setting each curve is affected by both sets of 

data. In this section we calibrate the model using only analysts’ forecasts, modeling only the dynamics 

of the spot price. Thus, the expected spot curve represents an analysts’ consensus curve that optimally 

considers all previous forecasts.  Given that futures data is not used, no futures curve or risk premium 

parameters are obtained. Table 11 shows the A-Model parameters values for the two and three factor 

models. 

 

Time Window 
N° of  

Observations 

Two Factors Three Factors 

F-Model FA-Model F-Model FA-Model 
In Sample (2010 – 2014) 4690 0.7% 1.6% 0.3% 1.4% 
Out of Sample (2015) 934 1.0% 2.6% 0.8% 1.8% 
Total (2010 – 2015) 5624 0.8% 1.7% 0.4% 1.4% 

Buckets  
(years) 

N° of  
Observations 

Two Factors Three Factors 

F-Model FA-Model F-Model FA-Model 
0-1 786 1.3% 2.8% 0.6% 1.9% 
1-2 621 0.9% 1.7% 0.5% 1.7% 
2-3 625 0.9% 1.7% 0.3% 1.6% 
3-4 627 0.7% 1.5% 0.4% 1.5% 
4-5 631 0.5% 1.4% 0.5% 1.3% 
5-6 622 0.4% 1.4% 0.4% 1.2% 
6-7 625 0.3% 1.3% 0.2% 1.1% 
7-8 626 0.6% 1.5% 0.3% 1.1% 
8-9 461 1.1% 2.2% 0.6% 1.4% 

Total 5624 0.8% 1.7% 0.4% 1.4% 
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Table 11: Two and three-factor A-Model parameters, standard deviation (S.D.) and t-Test estimated 

from oil analysts’ price forecasts. Parameter estimation from 2010 to 2014. 

Parameter Two-Factor A-Model Three-Factor A-Model 
Estimate S.D. t-Test Estimate S.D. t-Test 

κ2 0.386 0.027 14.187 0.316 0.030 10.494 
κ3  - - -  0.259 0.021 12.508 
σ1 1.109 0.038 28.962 2.044 0.126 16.278 
σ2 1.122 0.054 20.600 9.566 4.759 2.010 
σ3  - - -  9.989 4.649 2.149 
ρ12 -0.968 0.009 -102.176 0.128 0.030 4.245 
ρ13  - - -  -0.355 0.097 -3.661 
ρ23 - - -  -0.972 0.029 -33.917 
μ -0.576 0.042 -13.622 -2.052 0.257 -7.990 
ξ 0.057 0.002 34.292 0.042 0.001 29.975 

 
 
 
Given that the model is only required to fit analysts’ price forecasts, and not futures prices, the 

expected spot curve fits better in the A-Model than in the FA-Model, and much better than in the F-

Model. For example, Figures 7 and 8 show the expected spot curves for both models and compares 

them with those of the F-Model, for two specific dates, one, on 04-14-2010, in the in sample period 

and the other, on 07-22-2015, in the out of sample period. 

Tables 12 and 13 compares the mean absolute errors of the analysts’ consensus curve in both models, 

for two and three factors, respectively. As expected, the A-Model that only uses analysts’ forecast 

data fits better this data than the FA-Model which includes also futures prices. This holds for every 

time window and maturity bucket. 

Table 14 reports the expected spot mean price and annual volatility of the two-Factor FA- and A-

Models, for each maturity bucket between 2010 and 2015.  The first two columns of Table 14 show 

that for the two-factor model the mean expected spot prices for the FA- and A- models are similar, 

especially for short term maturity buckets8. The last two columns report the volatility of expected 

prices obtained for the two models. Since the analysts´ forecasts are very noisy, the A-Model 

generates an analysts’ consensus curve which is between 3 and 7 times more volatile than the one 

from the FA-Model.  Table 15 reports the results for the three-factor model, which are similar to the 

ones in the two-factor model. 

																																																								
8	In fact, differences in mean prices are significant at the 99% level for maturity buckets over 10 years.	
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In summary, the analysts’ consensus curve can be obtained from the FA or the A-Models. The former 

has the advantage of generating a less volatile curve, while the latter generates a better fit. The 

difference between the means of both curves increases with maturity. 

 

Fig. 7: Expected spot curves under the two and three-factor FA-, F- and A-Models, and forecasts 

observations, for 04-14-2010. Parameter estimation from 2010 to 2014. 
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Fig. 8: Expected spot curves under the two and three-factor FA-, F- and A-Models, and forecasts 

observations, for 07-22-2015. Parameter estimation from 2010 to 2014. 

Table 12: Expected Spot Mean Absolute Errors for the two and three factor FA- and A-Models for 

each time window, between 2010 and 2015.  Errors are calculated as percentage of price forecasts. 

Parameter estimation from 2010 to 2014. 

 
 
 
 
 
 
 
 
 

Time Window 
N° of  

Observations 

Two Factors Three Factors 

FA-Model 
 

 A-Model FA-Model 
 

 A-Model 
In Sample (2010 – 2014) 981 7.1% 3.5% 6.8% 2.3% 
Out of Sample (2015) 251 6.3% 4.0% 6.0% 2.9% 
Total (2010 -2015) 1232 6.9% 3.6% 6.6% 2.4% 
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Table 13: Expected Spot Mean Absolute Errors for the two and three factor FA- and A-Models for 

each maturity bucket, between 2010 and 2015.  Errors are calculated as percentage of price forecasts. 

Parameter estimation from 2010 to 2014.  

 
 
 
 
 
 

 

 

 
 
 
 
Table 14: Expected Spot Mean Price and Annual Volatility of the two-Factor FA- and A-Models, for 

each equal size maturity bucket between 2010 and 2015.  Volatility of the curve at maturities in the 

middle of each bucket are presented. Parameter estimation from 2010 to 2014. 

 

 

 

 

 

 

 

 

 

Buckets  
(years) 

N° of  
Observations 

Two Factors Three Factors 

FA-Model 
 

 A-Model FA-Model 
 

 A-Model 
0-1 149 4.1% 2.7% 3.9% 2.2% 
1-2 284 5.3% 3.5% 4.9% 2.5% 
2-3 236 7.5% 3.7% 7.1% 2.5% 
3-4 190 9.2% 3.8% 8.9% 2.9% 
4-5 141 10.3% 3.8% 10.0% 2.5% 

5-10 122 7.1% 3.8% 6.9% 1.9% 
10-28 110 5.3% 3.7% 5.2% 1.7% 
Total 1232 6.9% 3.6% 6.6% 2.4% 

 Mean Price ($/bbl.) 
 

Annual Volatility (%) 
Maturity Buckets  

(years) 
FA-Model  A-Model   FA-Model  A-Model  

0-5 94.5 95.1  17.4% 70.3% 
5-10 106.1 102.4  27.7% 104.8% 
10-15 123.8 119.3  33.9% 109.9% 
15-20 150.3 144.0  36.2% 110.6% 
20-25 185.9 175.0  37.0% 110.7% 
Total 132.3 127.3  30.9% 100.0% 
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Table 15: Expected Spot Mean Price and Annual Volatility of the three-Factor FA- and A-Models, 

for each equal size maturity bucket between 2010 and 2015.  Volatility of the curve at maturities in 

the middle of each bucket are presented. Parameter estimation from 2010 to 2014. 

 
 
5.3. Long-Term Futures Price Estimation using also Analysts’ Price Forecasts (FA-

Model) 

As has been argued earlier, estimation of long term futures prices done by extrapolation is subject to 

estimation errors. Also, oil futures’ longest maturity is around 9 years, while there are oil price 

forecasts for maturities of over 25 years. In this section, the impact on long-term futures prices of 

using analysts’ price forecasts, in addition to traded futures, is explored.  

To motivate this section Figures 9 and 10 show futures curves from the two factor FA- and F-Models, 

for two specific dates, one, on 04-14-2010, in the in sample period and the other, on 07-22-2015, in 

the out of sample period, and compares them to the analysts’ forecasts for the same dates.  It can be 

seen that both futures curves for long maturities are very different. On the other hand, both curves are 

very similar for short and medium term maturities, for which there is futures data.  Figures 11 and 

12 present a similar situation for the three-factor model. Given that there are no long term futures to 

validate any of the curves, we present the FA-Model futures curve as a valuable alternative to the 

traditional F-Model curve, which takes into consideration analysts’ opinions.   

Table 16 and Table 17 show the mean price and annual volatility of the futures curves (FA- and F-

Models) for every maturity, for the two and three factor models, respectively.  As the tables show, 

the inclusion of expectations data, when using the FA-Model, significantly affects the mean futures 

curve in the long-term, without considerably changing it in the short-term.  Again, as was the case for 

the expected spot curves in the previous section, the longer the maturity the greater the difference 

 Mean Price ($/bbl.) 
 

Annual Volatility (%) 
Maturity Buckets  

(years) 
FA-Model  A-Model   FA-Model  A-Model  

0-5 95.1 95.4  18.3% 95.3% 
5-10 103.2 104.8  22.1% 170.9% 
10-15 118.9 115.1  26.8% 193.5% 
15-20 144.9 133.0  29.2% 200.9% 
20-25 182.2 158.6  30.3% 203.2% 
Total 129.0 121.5  25.4% 170.8% 
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between both curves9. Given the fact that analysts’ forecasts are very volatile, the effect of using them 

almost doubles the volatility of the futures curves when using the FA-Model. 

 

 
Fig. 9: Futures under the two-factor FA-, and F-Models, Expected spot curve under the two-factor 

FA-Model, forecasts and futures observations, for 04-14-2010. Parameter estimation from 2010 to 

2014. 

																																																								
9	Differences in mean curves are significant at the 99% level for maturity buckets from 10 to 25 years, for the 

two and three factor models.	
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Fig. 10: Futures under the two-factor FA-, and F-Models, Expected spot curve under the two-factor 

FA-Model, forecasts and futures observations, for 07-22-2015. Parameter estimation from 2010 to 

2014. 

 

Fig. 11: Futures under the three-factor FA-, and F-Models, Expected spot curve under the three-factor 

FA-Model, forecasts and futures observations, for 04-14-2010. Parameter estimation from 2010 to 

2014. 
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Fig. 12: Futures under the three-factor FA-, and F-Models, Expected spot curve under the three-factor 

FA-Model, forecasts and futures observations, for 07-22-2015. Parameter estimation from 2010 to 

2014.  
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Table 16: Futures Mean Price and Annual Volatility of the two-factor FA- and F-Models, for each 

maturity bucket between 2010 and 2015.  Volatility of the curve at maturities in the middle of each 

bucket are presented. Estimation from 2010 to 2014. 

 

 
 
 
 
 

Table 17: Futures Mean Price and Annual Volatility of the three-factor FA- and F-Models, for each 

maturity bucket between 2010 and 2015.  Volatility of the curve at maturities in the middle of each 

bucket are presented. Parameter estimation from 2010 to 2014. 

 
 
 
 
5.4. Data Risk Premium Curves 

Having reliable expected spot and the futures curves allows for the estimation of the term structure 

of risk premiums implied by their difference.  As stated earlier the calibration of the F-Model provides 

statistically insignificant risk premium parameters, thus expected spot curves are unreliable. On the 

contrary, adding analysts´ forecast data addresses this issue. 

Figure 13 shows the model term structure of risk premiums implicit in the difference of the expected 

spot and futures curves for the two and three factor FA- and F- Models. In these models the risk 

 Mean Price ($/bbl.) Annual Volatility (%) 
Maturity Buckets  

(years) 
F-Model  FA-Model F-Model  FA-Model 

0-5 84.2 84.4 18.0% 17.4% 
5-10 84.3 84.7 15.4% 27.7% 
10-15 88.2 96.1 16.1% 33.9% 
15-20 93.4 116.9 16.3% 36.2% 
20-25 99.1 146.4 16.3% 37.0% 
Total 89.9 105.9 17.0% 30.9% 

 Mean Price ($/bbl.) Annual Volatility (%) 
Maturity Buckets  

(years) 
F-Model  FA-Model F-Model  FA-Model 

0-5 84.3 84.3 17.2% 18.3% 
5-10 84.2 84.4 15.4% 22.1% 
10-15 88.5 92.8 16.5% 26.8% 
15-20 95.0 108.8 17.1% 29.2% 
20-25 103.0 131.7 17.3% 30.3% 
Total 91.0 100.5 17.9% 25.4% 
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premium depends only on maturity and not on the state variables, so there is a constant risk premium 

curve for each model over the whole sample period. The figure also shows the data risk premiums, 

obtained directly from the difference between price forecasts and their closest future price 

observation, averaged for each maturity over the whole sample period 2010 and 2015, along with the 

99% confidence interval. 

Several insights can be gained from Figure 13. First, the FA-model risk premiums are very close to 

the mean data risk premiums. Second the three-factor model fits better the risk premiums than the 

two factor model, especially for short term maturities.  Third, the term structure seems to be 

downward sloping, with annual risk premiums in the range of 2 to 10%. Finally, as expected, the F-

Model is not able to obtain a credible estimation of risk premiums. 

 

 

 

Fig. 13: Annual model risk premium term-structure for the two and three-factor FA- and F-Models, 

and annual mean data risk premiums.  The data risk premiums are implicit from the difference 

between price forecasts and their closest future price observation, for every date between 2010 and 

2015, and are displayed along their 99% confidence intervals.  Parameter estimation from 2010 to 

2014. 
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6. Conclusion 
 
Even though commodity pricing models have been successful in fitting futures prices, they do not 

generate accurate true distributions of spot prices.  This paper proposes to calibrate these models 

using not only observations of futures prices, but also analysts´ forecasts of spot prices. 

The Cortazar and Naranjo (2006) N-factor model is implemented for two and three factors, and 

estimated using the Kalman Filter. Each implementation is calibrated using the traditional only-

futures data (F-Model), an alternative only-analysts’ data (A-Model), and a joint calibration using 

both sets of data (FA-Model).  Futures data is from NYMEX contracts, and analysts´ forecasts from 

Bloomberg, IMF, World Bank, and EIA.  Weekly oil data from 2010 to 2015 is used.  

There are several interesting conclusions that can be derived from the results presented. The first is 

that in order to obtain reasonable expected spot curves, analysts´ forecasts should be used, either alone 

(A-Model), or jointly with futures data (FA-Model). Second, using both futures and forecasts (FA-

Model), instead of using only forecasts (A-Model), generates expected spot curves that do not differ 

considerably in the short/medium term, but long term estimations are significantly different and the 

volatility of the curve is substantially reduced. Third, the inclusion of analysts´ forecasts, in addition 

to futures, in the FA-Model, instead of only futures prices (F-Model) does not alter significantly the 

short/medium part of the futures curve, but does have a significant effect on long-term futures 

estimations, and increases the volatility of the curve. Finally, that in order to obtain a statistically 

significant risk premium term structure, both data sets must be used jointly, preferably using a three 

factor model.  

The information provided by experts in commodity markets, reflected in analysts’ and institutional 

forecasts, is a valuable source that should be taken into account in the estimation of commodity 

pricing models. This paper is a first attempt in this direction.   
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