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Abstract. Analyses of policies to reduce gasoline consumption have focused on two effects, a 
compositional effect on the fuel economy of the automotive fleet and a utilization effect on how 
much people drive. However, the literature has missed a third effect: a matching effect, in which 
the policy changes how high-utilization households are matched to fuel-efficient vehicles in equi-
librium. We show that higher gas prices should lead to stronger assortative matching. Empirical 
estimates using US micro-level data are consistent with this hypothesis. We find a $1 gas tax would 
reduce US gas consumption by 1.5% through the matching effect alone. 

 

I. Introduction 

Both to reduce dependency on petroleum imports and to reduce air pollution, many countries seek 

to reduce gasoline consumption from passenger vehicles. In the United States, passenger vehicles 

account for 16% of all greenhouse gas emissions (US EPA 2015 p. 2-28). Additionally, they are a 

major source of conventional pollutants such as carbon monoxide, ozone, and fine particulates. 

These pollutants can cause such health effects as headache, respiratory disease, heart disease and 

premature mortality. They may be particularly potent in such vulnerable populations as the elderly 

and young children. Indeed, studies have shown that in-utero and childhood exposure to these 
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gasses have the potential to affect various health outcomes in the short- and the long-run (Currie 

et al. 2014). 

 Policies to reduce gasoline consumption generally fall into two main categories: price-

based policies and performance-based policies. Price-based policies such as a gasoline tax work 

by making driving more expensive. Among OECD countries, the US has the lowest gasoline taxes 

save Mexico, at $0.53 per gallon (average state plus federal tax) as of 2013, compared to $4.73 in 

the UK and $4.54 in Germany (OECD 2014). Performance-based policies mandate minimum av-

erage fuel economy standards for the fleet. Examples include the US Corporate Average Fuel 

Economy (CAFE) standards and similar policies in Europe, Japan, and elsewhere. 

 Traditionally, the literature assessing the effectiveness of such policies has decomposed 

their effects into two channels: a compositional effect, relating to the average fuel efficiency of the 

fleet, and a utilization effect, relating to how much people drive (e.g. Bento et al. 2009; Goldberg 

1998; Li, Timmins, and von Haefen 2009; Puller and Greening 1999). By increasing the cost of 

driving, gas taxes create an incentive to drive less as well as to obtain a more fuel efficient car. 

Thus, they operate through both channels. Performance standards like CAFE mandate more fuel 

efficient cars (on average), but do not create incentives to drive less—indeed, by putting people in 

more fuel efficient cars they reduce the cost of driving and increase utilization (the so-called "re-

bound effect"). Bento et al. (2009) and Gillingham (2012) measure both the compositional and the 

utilization effects using structural models in which household simultaneously choose an automo-

bile and their level of driving in a consistent framework. They find that the utilization effect is 

bigger than the compositional effect. 

 In this paper, we show that this large literature has overlooked a third effect of such poli-

cies, a sorting or matching effect. In theory, even if the compositional and utilization effects are 
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held to zero—that is, even if the fleet remains exactly the same and each individual drives exactly 

the same number of miles annually—an increase in gasoline prices could still reduce gasoline 

consumption if it leads to stronger assortative matching between high-utilization households and 

the fuel efficiency of the cars they drive. Intuitively, if a household does little driving, the fuel 

efficiency of its car has little impact on overall consumption (at the extreme, a car parked in the 

garage burns no gas regardless of its fuel efficiency), whereas if a household drives great distances 

the fuel efficiency of its car matters a good deal. Conversely, if a car is very fuel efficient, its 

utilization has little impact on overall consumption (at the extreme, the utilization of a bicycle 

would not matter), whereas if a car is fuel inefficient its utilization matters a good deal.  

While the literature has long understood that, ceteris paribus, high-utilization households 

are more likely to choose low-energy alternatives (thus motivating the simultaneous modeling of 

a household's choice of a product's energy efficiency together with its utilization), to our 

knowledge the effect of a change in gas prices or other policies on how households are matched to 

products in equilibrium has been widely neglected in the literature.1 Yet it is not trivial. To gauge 

the potential importance of the matching effect, if household demand for VMT and vehicle fuel 

efficiency were perfectly matched in 2009, gasoline consumption would have been 15% lower, 

even with no change in the composition of the fleet and no change in individuals' utilization. 

 In addition to pointing out the importance of this effect, in this paper we show that, a priori, 

there are good reasons to believe that higher gasoline prices increase the degree of matching. The 

intuition is as follows. Increases in gasoline prices increase demand for fuel-efficient cars relative 

                                                            
1 The importance of such simultaneity has been noted since at least Dubin and McFadden (1984). In the 
context of automobiles, Anderson, Kellogg, and Sallee (2013) speculate that in a cross section, fuel effi-
cient vehicles should be assortatively matched to households who drive long distances.  We are more ag-
nostic about such relationships in any one cross section, but show that this relationship can be affected by 
prices and other policy parameters. 
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to inefficient ones, because the monetary savings of owning an efficient vehicle increase. But there 

is exogenous heterogeneity among households in their utilization. When gasoline prices rise, the 

savings of owning an efficient vehicle increase more for higher-utilization households than for 

low-utilization households. Consequently, high-utilization households are now comparatively 

more likely to outbid low-utilization households for fuel-efficient cars (ceteris paribus). Thus, 

when gas prices increase, high-utilization households tend to be allocated more fuel-efficient cars 

than before, while low-utilization households are allocated less efficient cars. Accordingly, in equi-

librium, after an increase in the gasoline prices, there should be a stronger assortative matching 

from households, based on the amount of driving they are likely to do, to the fuel economy of the 

cars they own. 

 Finally, we test this hypothesis empirically. Using data from the US National Highway 

Transportation Survey, we adopt a difference-in-differences framework, comparing the way (ex-

ogenously) high-utilization households change the fuel economy of their car when gas prices in-

crease relative to the way low-utilization households do. Given our difference-in-difference frame-

work, we interpret our results as short-run responses.  We find a statistically significant short-run 

matching effect from gas prices that is robust to a variety of identification strategies, including 

ordinary least squares (OLS) and different ways of instrumenting for utilization. Specifically, we 

find that when gasoline prices increase by $1, a household responds on average by driving a vehicle 

that gives 0.01 to 0.05 more miles per gallon for every 1,000 miles it drives in the short run. Using 

variation only in gasoline taxes, we find an effect of 0.03 to 0.06 miles per gallon for every 1,000 

miles. While these matching effects may seem small, in the aggregate they correspond to a savings 

of about 1.5% of fuel consumption, or 1.9 billion gallons, annually for a $1 increase in taxes.  

These savings in turn correspond to 84 million tonnes of carbon dioxide (CO2) emissions and 
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environmental damages of about $3.3 billion. These effects are likely to be bigger in the long run. 

 Insofar as it focuses on households' choices for fuel efficiency at the extensive margin and 

how such choices are affected by gasoline prices, our paper relates to the large literature on auto-

mobile demand and the compositional effect, including Allcot and Wozny (2014); Austin and Di-

nan (2005); Bento et al. (2009); Busse, Knittel, and Zettelmeyer (2013); Feng, Fullerton, and Gan 

(2013); Gillingham (2012); Goldberg (1998); Jacobsen (2013); Klier and Linn (2010); Li, Linn, 

and Muehlegger (2014); Li, Timmins, and von Haefen (2009); Puller and Greening (1999); and 

Sallee, West, and Fan (2016). Overall, this literature has found that an increase in gasoline prices 

increases the demand for more fuel efficient cars, which in equilibrium modestly nudges the com-

position of the automobile fleet toward fuel efficiency. In particular, new cars entering the fleet 

become more fuel efficient while older inefficient cars are scrapped more rapidly. Interestingly, 

Allcot and Wozny (2014); Busse, Knittel, and Zettelmeyer (2013); and Sallee, West, and Fan 

(2016) find that, in between, the shift in demand manifests in price rather than quantity effects, 

with the prices of fuel-efficient used cars rising relative to inefficient cars when gas prices rise. 

Our work can be viewed as exploring the heterogeneity in these demand effects at the extensive 

margin, showing that they are larger for (exogenously) higher-utilization households than lower-

utilization households. In equilibrium, this gives rise to more assortative matching, which in turn 

becomes a third channel through which gas prices affect gasoline consumption. 

 The rest of the paper is structured as follows: Section II explains the matching effect using 

a theoretical model; Section III introduces the basic empirical approach and describes the data; 

Section IV presents the results and briefly discusses the implications; and Section V concludes. 
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II. Theoretical Framework 

A. Conceptual Basics 

Consider an economy with a set ࣝ of cars indexed by c and a set ℐ of individuals indexed by i. 

These sets have the same measure, which we normalize to one, and in equilibrium there is a bijec-

tive mapping of cars to individuals. Individual i's fuel use is equal to its utilization, measured in 

vehicle miles travelled (VMT), times the inverse of the fuel efficiency of its car, or gallons per 

mile (GPM): 

௜ܮܧܷܨ  = ܯܸ ௜ܶ × ௖(௜), (1)ܯܲܩ

where c(i) represents the car assigned to individual i. 

 From this simple tautology, it would seem that changes in fuel use can be decomposed into 

two effects, a change in VMT (utilization) and a change in fuel economy (GPM). While this is true 

at the individual level, to extend it to the over-all economy is to commit the fallacy of composition. 

Overall fuel usage is the sum over all individuals of these products: 

ܮܧܷܨ ܮܣܱܶܶ  = න ܯܸ ௜ܶ × ௖(௜)݂(݅)݀݅ℐܯܲܩ , (2)

where f( ) is the density. This sum of products can be rewritten as  

ܮܧܷܨ ܮܣܱܶܶ  = തതതതതതܶܯܸ × തതതതതതതܯܲܩ + COV(ܸܶܯ, (3) .(ܯܲܩ

Thus, changes in total fuel consumption can be decomposed into three effects: the utilization effect 

measured in changes in average VMT, the compositional effect measured in changes in the average 

GPM of the fleet, and the matching effect which represents changes in the covariance between a 

households VMT and the GPM of the car assigned to it in equilibrium. Though seemingly obvious 

when written this way, to our knowledge the existence of this third effect—and in particular how 

it might be affected by policies—has been overlooked in the literature. 

 Our hypothesis is that when gasoline prices increase, high-GPM cars (i.e. fuel-inefficient 
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ones) will tend more strongly to be assigned to low-VMT households. Thus, the covariance be-

tween VMT and GPM will decrease and total fuel usage will fall, even holding constant average 

VMT and average GPM (indeed, even holding constant every individual's VMT and every vehicle 

in the fleet). 

 The argument for this hypothesis comprises two basic steps. First, when gasoline prices 

increase, the demand for high-GPM cars falls relative to the demand for low-GPM cars, and—

more to our point—this shift is greater for high-VMT households. Second, in equilibrium, this 

shift in demands leads to a more systematic assignment of high-GPM cars to low-VMT house-

holds. Because it is a simpler point to make, we begin with the second point first. 

B. The Matching Effect 

 A partial equilibrium model is sufficient to explain how this shift in relative demands leads 

to the matching effect. For simplicity, let there be two types of households that differ only in terms 

of what Gillingham (2012) calls their "utilization type," or their demand for VMT for reasons 

exogenous to the choice of car: thus, there are high-utilization households (ܪ) and low-utilization 

households (ܮ). Let there be two car types: fuel-inefficient (ܫ) and fuel-efficient (ܧ). In Figure 1, 

Panel A shows the demand for high-GPM cars relative to low-GPM cars. Heterogeneity in the 

relative demand for such cars is reflected by ܦு and ܦ௅, which indicate the relative marginal 

willingness to pay (WTP) of each respective household type. This WTP could be positive or neg-

ative, depending on which car type is preferred. Additionally, we take no stand on whether the 

high-VMT types or the low-VMT types have a higher relative WTP for such cars: high-VMT types 

may want them more than low-VMT types for their comfort when driving, or want them less than 

low-VMT types because of their operating cost. As an illustration, Figure 1 shows an example of 

a baseline scenario where ܦ଴ு =  ଴ and the relative price is ଴ܲ. Theܦ ଴௅. The market demand isܦ
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supply elasticity plays no role in the argument; in this example, the market supply curve is perfectly 

inelastic, as might be consistent with the market for used cars too young to be scrapped. 

 Panel A depicts a situation where gasoline prices increase, so the relative WTP for high-

GPM vehicles falls. The new market demand is ܦଵ and the price falls to ଵܲ in the vehicle market. 

This is consistent with the findings of Allcott and Wozny (2014); Busse, Knittel, and Zettelmeyer 

(2013); and Sallee, West, and Fan (2016). Our insights hinge on the fact that the relative WTP for 

a high-GPM automobile will particularly decrease for the high-utilization types, as higher gasoline 

prices translate into greater costs for them. This is shown in this figure where ܦଵு is now lower 

than ܦଵ௅. As a consequence, in equilibrium, the low-VMT types now have a greater share of the 

high-GPM vehicles than before ( ୅୅ା୆ versus ଵଶ). By the same logic, as shown in Panel B, the high-

VMT types now have a greater proportion of low-GPM vehicles relative to the baseline case. 

Consequently, the correlation between VMT and fuel inefficiency is now lower, so that the 

covariance in Equation (3) is now lower with higher gas prices. (Equivalent, the correlation be-

tween VMT and fuel economy is higher.) In the empirical portion of this paper, we test this hy-

pothesis directly by looking at the matching of car types to utilization types under variation in 

gasoline prices.  

Before getting to that empirical work, however, we must complete the argument by show-

ing that the demand for fuel inefficient cars does shift back more among high utilization types than 

low utilization types when gas prices rise. 

C. Relative Shifts in Demand 

 We begin by generalizing our two-car, two-household model to continuums of types. In 

particular, let ࣝ be a simply ordered set of cars such that for any two elements c, c' ∈ ࣝ, c' > c ↔ 

GPMc' > GPMc. In differentiating cars only by their GPM, we do not imply that mileage is the only 
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relevant factor. To the contrary, we allow for the possibility that as GPM increases, the car be-

comes more desirable in other ways such as increased horsepower and/or comfort, or perhaps less 

desirable, if it is cheaper. 

 Additionally, we assume that individuals can be ranked according to their utilization type. 

In particular, let ߨ(݅, ܿ,  be individual i's inverse demand curve, or marginal WTP, for VMT (ܶܯܸ

conditional on being in car c. We make the following assumption about the ordering of ℐ: 

Assumption A1. For any two elements i, i' ∈ ℐ, if i' > i then ߨ(݅′, ܿ, ,݅)ߨ < (ܶܯܸ ܿ, -every (ܶܯܸ
where. 

That is, as we go through the index i, the demand curves for VMT, conditional on any car c, shift 

up. Note Assumption A1 does not necessarily imply that VMTi' > VMTi. For one thing, i and i' may 

face different gas prices. Moreover, they may choose different cars, which also affects their VMT 

choice. Assumption A1 only implies that, if they were in the same arbitrary car and faced the same 

prices, i' would choose higher VMT than i. 

With these preliminaries, consider now the WTP of some household i for an arbitrary car c, 

relative to having no car at all, which is a function of gasoline prices pG: 

 ܹܶܲ(ܿ, ݅, (ீ݌ = ݂(ܿ, ݅) + න ,݅)ߨ ܿ, ௏ெ்∗(௜,௖,௣ಸ)ܶܯܸ݀(ܶܯܸ
଴− ,݅)∗ܶܯܸ ܿ, (4) .ீ݌(ܿ)ܯܲܩ(ீ݌

The individual's WTP for car c comprises three terms. The first term f( ) represents a value unre-

lated to actually driving the car. It represents an option value of having it in the garage, a collector's 

value, or some similar utility value. The remaining two terms represent the consumer surplus from 

driving the car. Integrating under ߨ( ) up to the optimal level of driving given gasoline prices, ܸܶܯ∗(݅, ܿ,  gives the total (gross) value of driving car c. From this, we subtract the cost of ,(ீ݌

driving car c when gasoline prices are ீ݌, which is ܸܶܯ∗(݅, ܿ,  ,In equilibrium  .ீ݌(ܿ)ܯܲܩ(ீ݌
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an individual buys the car with the highest consumer surplus, after subtracting out the price of 

purchasing the car. 

 Our model depends on the triple difference among car types, utilization types, and gasoline 

prices—that is, on how WTP differs by car type, how that difference differs by utilization type, 

and how that difference-in-difference differs with gasoline prices. For simplicity, assume that all 

the functions in Equation (4) are twice differentiable in all their arguments.2 In Appendix A, we 

derive the following relationship on the third partial cross derivative of WTP: 

߲ଷܹܶܲ(݅, ܿ, ீ݌߲߲߲ܿ݅(ீ݌ = 

− ,݅)∗ܶܯܸ߲ ܿ, ߲݅(ீ݌ +ܿ݀(ܿ)ܯܲܩ݀ ߲ଶܸܶܯ∗(݅, ܿ, ீ݌߲߲ܿ(ீ݌ ,݅)ߨ߲ ܿ, +߲݅(∗ܶܯܸ ,݅)∗ܶܯܸ߲ ܿ, ீ݌߲(ீ݌ ߲ଶߨ(݅, ܿ, ߲߲ܿ݅(∗ܶܯܸ − ߲ଶܸܶܯ∗(݅, ܿ, ߲߲ܿ݅(ீ݌ +ܯܲܩ ߲ଶܸܶܯ∗(݅, ܿ, ீ݌߲߲݅(ீ݌ ൤߲ߨ(݅, ܿ, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ ൨ீ݌ .
 (5)

Note here that, in taking the partial derivative with respect to c, we are taking the car type c as 

exogenous, so there are no effects of pG or utilization type on the optimal choice of c.  

Conditional on this car, the individual does optimally choose VMT. At equilibrium, the 

individual sets marginal WTP for an additional mile equal to the cost, so ߨ(݅, ܿ, ீ݌(ܿ)ܯܲܩ = (∗ܶܯܸ . As we take the derivatives of the two sides of this expression with respect to c, we get 

two effects. If better performance accompanies the increase in c, then the marginal WTP for an 

addition mile increases, ߲ߨ ߲ܿ⁄  > 0, through a utility or comfort effect, as driving becomes more 

comfortable and/or more fun (West et al. 2016). But at the same time, the actual price paid for an 

additional mile increases through the GPM effect, that is 0 < ீ݌(ܿ)′ܯܲܩ. Thus, what we call the 

overall car effect on VMT, i.e. ߲ܸܶܯ∗ ߲ܿ⁄ , cannot be signed a priori. However, it is the opposite 

                                                            
2 This assumption is not necessary but simplifies the presentation. 
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sign as the "rebound effect," which is generally estimated to be positive (Gillingham et al. 2013, 

Linn 2016, Small and van Dender 2007, West et al. 2016). A crucial question when evaluating 

Equation (5) turns out to be the difference in the car effect on VMT between different values of i. 

Consider the following Assumption: 

Assumption A2.  ߲ଶߨ ߲߲݅ܿ⁄  ≥ 0 everywhere. 

Because the effect on operating costs is the same at a given car for all household types, A2 implies 

that the car effect on VMT is non-decreasing in i, ߲ ଶܸܶܯ ߲߲݅ܿ⁄  ≥ 0. Thus, as i exogenously moves 

from c to c' it might decrease its VMT, whereas a higher utilization type i' will decrease VMT less 

or perhaps increase it. Assumption A2 is stronger than A1 but is consistent with the idea that de-

mand for driving is increasing in i. For example, Assumption A2 is consistent with inverse demand 

curves for VMT that are proportional in c and i. 

 Assumption A2 is sufficient for the following proposition: 

Proposition: డయௐ்௉൫௜,௖,௣ಸ൯డ௜డ௖డ௣ಸ < 0 so long as either (i) the car effect on VMT is sufficiently small or 

(ii) it is the same sign as ߲ଶܸܶܯ∗ ⁄ீ݌߲߲݅ . 

A proof of the proposition can proceed by inspecting each line on the right-hand side of 

Equation (5). The first line is negative, since by definition of our ordered sets, డ௏ெ்∗డ௜  > 0 and 

ௗீ௉ௌ௖  > 0. This line, the lowest-order term in Equation (5), represents the basic intuition for why 

the triple difference is negative. As gas prices increase, operating high-GPM cars becomes more 

expensive, but this is especially true for high-utilization types. 

 Completing the proposition requires considering the higher-order terms in Equation (5). 

The second line also is negative. ߲ ߨ ߲݅⁄  is positive by Assumption A1. ߲ଶܸܶܯ ⁄ீ݌߲߲ܿ  is negative 

because, by the law of demand, VMT is decreasing in the effective price of driving, which is 
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ீ݌(ܿ)ܯܲܩ , and the effect of a given change in gasoline prices on the effective price of driving is 

greater for higher-GPM vehicles. 

The third line is non-positive by Assumption A2. In the first term, Assumption A2 states 

that ߲ଶߨ ߲߲݅ܿ⁄  is non-negative, and it is multiplied by ߲ܸܶܯ∗ ⁄ீ݌߲  which is negative by the law 

of demand. In the second term, ߲ଶܸܶܯ∗ ߲߲݅ܿ⁄  also is non-negative by Assumption A2 and of 

course GPM is positive. This third line is the only place we use Assumption A2. Notice that it is 

actually a sufficient—not necessary—condition: It would suffice for ߲ଶܸܶܯ∗ ߲߲ܿ݅⁄  to be "not too 

negative" rather than non-negative. 

 This then leaves the last line of Equation (5) as the only term that cannot be signed defini-

tively a priori. The Proposition requires either that this line not be large and positive. The term in 

square brackets is the same sign as the car effect on VMT, which is the negative of the rebound 

effect. ߲ߨ ߲ܿ⁄  represents the comfort effect (positive if c comes with performance) while ݀ܯܲܩ(ܿ) ⁄ܥ݀  represents the GPM effect. The literature on the rebound effect suggests this entire 

term is probably small and certainly negative (Gillingham et al. 2013, Linn 2016, Small and van 

Dender 2007, West et al. 2016). If so, then the proposition requires in turn that the first term in the 

product, ߲ଶܸܶܯ∗ ⁄ீ݌߲߲݅ , not be large and negative.  Unfortunately, the term cannot be signed 

definitively. ߲ܸܶܯ∗ ߲݅⁄  is positive by Assumption A1, but whether VMT becomes more or less 

responsive to changes in gasoline prices with utilization type is another question. However, if 

VMT becomes less price elastic with increasing utilization types, as seems plausible, then this term 

is positive, which would be consistent with the proposition. For it to be negative and large enough 

to undermine the proposition, it would have to be the case that the-low utilization types reduce 

their VMT more than the high types when gas prices increase, which, coupled with the general 

desire to reduce VMT when switching to a larger car, creates such a larger second-order effect on 
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the lost consumer surplus from driving, that low-utilization types will not begin to outbid the high-

utilization types for the larger car. This seems unlikely.  

 Under Assumption A2 (and the caveats in the previous paragraph), the Proposition states 

that as gasoline prices increase, the demand for high-GPM cars falls relative to the demand for 

low-GPM cars more so for high-utilization types than for low-utilization types. This is the key 

result of this sub-section. Given the equilibrium results in the previous sub-section, the implication 

is that as gasoline prices increase, the correlation between utilization and GPM decreases (or in-

creases between utilization and MPG). 

III. Empirical Strategy and Data 

A. Empirical Strategy 

Our basic strategy for testing our hypothesis is to run the following difference-in-differences re-

gression. The model compares the fuel economy of cars matched to high-utilization households to 

those matched to low-utilization households among year/quarter-MSA cells with comparatively 

high and low gasoline prices. Our preferred specification is: 

௜௖௠௧ܩܲܯ  = ߙ + ௠௧௚௔௦݁ܿ݅ݎܲߚ + ܯܸߛ ௜ܶ௖௠௧ + ௠௧௚௔௦݁ܿ݅ݎܲൣߠ × ܯܸ ௜ܶ௖௠௧൧ +ܠ௜௠௧′ࢾ + ௠ߟ + ௧ߣ +  ,௜௖௠௧ߝ
(6)

where ܩܲܯ௜௖௠௧ = 1/ܯܲܩ௜௖௠௧ is miles per gallon of vehicle ܿ owned by household ݅ in metro area ݉ in quarter ݁ܿ݅ݎܲ ,ݐ௠௧௚௔௦ is the per gallon price of gasoline in metro ݉ in year ܯܸ ,ݐ ௜ܶ௖௠௧ is VMT 

of vehicle ܿ owned by household ݅, ܠ௜௠௧ are demographic variables of household ݅, ߟ௠ are MSA 

dummies, ߣ௧ is a year dummy and ߝ௜௖௠௧ is an idiosyncratic error term. The matching effect of 

higher gasoline prices is represented by ߠ and our hypothesis is that ߠ > 0. In Equation (6), ߣ௧ 

controls for time-varying unobservables and ߟ௠ controls for time-invariant city-specific unobserv-

ables. 
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Four points about our empirical strategy deserve further comment. First, because we in-

clude year and MSA dummies, and because (as discussed below) we use contemporaneous gas 

prices, we view our estimates as short run effects. Given the transaction costs involved in changing 

cars, we would expect the effects to be higher in the long run. 

Second, we assume gasoline prices are exogenous. In doing so, it is important to emphasize 

that we are using micro-level data with city and year dummies. Thus, we assume deviations in 

tastes for MPG from the city's long-run average (insofar as they differ from national deviations) 

are uncorrelated with city-quarter gas prices. In an alternative specification, we use city-month 

dummies, thereby absorbing city-month averages in MPG demand, which might be correlated with 

changing city-level macroeconomic conditions and gas prices. This alternative specification re-

duces the error in Equation (6) to individual-level deviations from the city-month means. As an-

other alternative, we also instrument for gasoline prices using gasoline taxes. 

Third, in our basic approach using OLS, we also assume that VMT is exogenous to the fuel 

efficiency of the car. However, as discussed above, VMT and MPG likely are chosen simultane-

ously. If the MPG effect outweighs the comfort effect, households with more fuel efficient vehicles 

drive more, which is consistent with the rebound effect. With the exception of Linn (2016), recent 

evidence has suggested that this effect is fairly small (Gillingham et al. (2013), Small and van 

Dender (2007), West et al. 2016). If so, this endogeneity problem is probably small enough to 

ignore and OLS will be unbiased. Accordingly, we first use OLS to estimate Equation (6). How-

ever, in the following section we also consider a variety of instrumental variables (IV) strategies, 

including interactions of household characteristics with gasoline prices and nonlinearities inherent 

in the structural model of Bento et al. (2013). We generally find our results are robust to these 

approaches. 
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Fourth, in the data (described below) VMT is observed on the car, not the individual. Thus, ܸܯ ௜ܶ௖௠௧ is the VMT of the car, not an individual or household. In households with only one car, 

these would be observationally equivalent. In households with multiple cars, this raises the ques-

tion of how cars are assigned to individuals. In our base model, we effectively treat the data as if 

multi-car households not only have an exogenous total VMT, but an exogenous split of VMT into 

baskets to be assigned to cars. For example, if a household has two cars with 10,000 and 5,000 

VMT respectively, we treat the household as first exogenously splitting its total VMT into one 

basket of 10,000 miles and one of 5,000. However, we treat the assignment of cars to these VMT 

baskets as an endogenous choice. Thus, whether the 10,000 mile basket goes to one car and the 

5,000 to the other or vice versa is treated in our approach as a choice which can change under 

differing economic conditions. This approach allows for some within-household matching insofar 

as a high-VMT individual in a household can be more likely to be assigned the high-MPG car in 

the household as gasoline prices increase. However, it is conservative in that it does not allow 

VMT to otherwise be shifted to the high-MPG car, as it forces the split to stay constant (10,000 

and 5,000 in this example). As an alternative, we also consider each household, rather than each 

car, as a unit, using only one car per household or alternatively per-car VMT and average fuel 

economy of all cars in the household. This approach is even more conservative as it removes all 

within-household matching. 

B. Data 

Our data can be divided into three categories: (i) a confidential version of the 2001 and the 2009 

National Household Travel Survey (NHTS), which surveys a random sample of US households 

about the cars they own and their VMT for each car; (ii) quarterly gasoline prices from 2001-2 and 

2008-9 at the city level, purchased from the American Chamber of Commerce's ACCRA Cost of 
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Living Index (COLI) database; and (iii) data on the fuel economy of automobiles by make and 

model, from the U.S. Department of Energy. These data were merged to produce a distinct data-

set which provides information on driving habits, household characteristics, average gasoline 

prices paid and the fuel economy of vehicles owned by these households. 

 The 2009 NHTS was conducted between March 2008 and May 2009 and the 2001 NHTS 

was conducted from March 2001 through June 2002.  The raw 2009 NHTS samples consisted of 

338,184 observations (cars) for 172,105 households, from both urban and rural areas in the US; 

the 2001 NHTS sample consisted of 143,457 observations for 69,800 households.  Unfortunately, 

in 2001, many of the observations are missing information needed to compute MPG or could not 

be matched to gasoline prices.  After dropping these missing values and otherwise cleaning the 

data, we are left with 263,270 observations for 137,868 households in the 2009 sample and 63,102 

observations for 35,464 households in the 2001 sample.3  Both data sets contain information on 

household driving patterns, including VMT and the type of car(s) owned by the household (make, 

model, vintage).4  Furthermore, the survey includes demographic data about the household (in-

come, number of household members, age distribution, race, work status).  The confidential NHTS 

                                                            
3 In 2001, 27,956 observations (23.0% of observations with VMT data) are missing information on the 
model or other information necessary for computing MPG; in 2009, 3,909 observations (1.3%) are miss-
ing such data.  Additionally, in 2001 13,857 observations (17.8%) could not be assigned gasoline prices.  
In both survey waves, annual miles ranged from 0 to 200,000 miles. However, following Bento et al. 
(2009), mileage below 100 and above 60,000 indicate possible coding errors and so were dropped. This 
resulted in 3,487 (2.9%) and 7,894 (2.6%) observations dropped from the 2001 and 2009 NHTS data, re-
spectively. Additionally, vehicles that were more than 24 years old were not identified in the 2009 NHTS 
sample and so were dropped from the 2001 sample for consistency. Finally, diesel and electric vehicles 
were dropped (1.4% and 3.4% of the sample respectively). The results with these assumptions relaxed are 
similar to the main results and are available upon request.  
4 NHTS collected VMT data through (i) direct questioning; (ii) estimations based on odometer readings 
(only for 2001 NHTS); and (iii) estimations based on travel diaries. NHTS data reports two different 
measures of VMT, "reported VMT" and "bestmiles." Reported VMT is based only on the direct survey 
questions. Bestmiles is based on regression techniques combining information from all three reporting 
techniques. Since, bestmiles requires more information, this variables had more missing values compared 
to VMT. Following Bento et al. (2009), we used reported VMT in our central estimates, using bestmiles 
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data to which we had access provides more specific geographic data on each household than the 

public version, down to its zip code.  

 To each household, we match quarterly gasoline prices in the household's metropolitan 

statistical area (MSA) at the time of the NHTS survey. Using contemporary gasoline prices, rather 

than longer-term averages, is appropriate if households assume gasoline prices follow a random 

walk, so that current prices represent the best long-term forecast. In previous work, Bento et al. 

(2009), Berry et al. (1995), Gillingham (2012), and Goldberg (1995) all assume that prices follow 

a random walk and that only current prices matter. David and Hamilton (2004) and Geman (2007) 

have shown that gasoline prices do actually follow a random walk. Li, Timmins, and von Haefen 

(2009) also find the lagged gasoline prices have little impact on purchasing decisions. Finally, 

Anderson et al. (2011) and Anderson, Kellogg, and Sallee (2013) provide empirical evidence sug-

gesting that on average expected real gasoline prices as reported in surveys are equal to current 

prices. Moreover, because our model focuses as much on the decision to hold an existing car or 

re-optimize when gas prices change, matching at the time of the survey is more appropriate than 

matching at the purchase time. 

 Spatially, ACCRA provides gasoline prices for more than 300 MSAs. Using the geograph-

ical indicators of the NHTS data, we matched these prices to each household in the NHTS data-

sets, using the US Department of Housing and Urban Development (HUD) USPS ZIP Code Cross-

walk Files.5 Gasoline prices are converted to 2009 dollars using the Consumer Price Index (CPI). 

                                                            
wherever reported VMT is missing. As sensitivity analyses, we also considered using only reported VMT 
or only bestmiles. Our results are qualitatively similar when using those data instead. 
5 For households in the NHTS outside these 300 metropolitan areas, we used NHTS-reported gasoline 
prices. The NHTS prices are at a more aggregate geographic level, namely Petroleum Administration for 
Defense Districts (PADDs). These districts are similar to Census regions in that each state is assigned to a 
given region, but the regions are drawn up in such a way as to maximize gasoline distribution. ACCRA 
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 Finally, the fuel economy data was obtained from the Department of Energy's website 

www.fueleconomy.gov. This website provides the fuel economy data by vehicle make, model and 

year and these variables were used to match the vehicle fuel economy with the NHTS data.6  

 Table 1 provides summary statistics of household responses in the NHTS. The first column 

reports the descriptive statistics for the entire sample. This is broken down by NHTS survey years 

in columns 2 and 3, respectively. Column 4 compares columns 2 and 3 and reports the differences 

and standard errors in parentheses. Table 1 shows that the average real gasoline price increased 

from $1.63 in 2001 to $3.14 in 2009. Moreover, the heterogeneity in gasoline prices increased, 

with the standard deviation increasing from 0.21 to 0.67. One reason for this is major fluctuations 

in gasoline prices during the 2008-2009 period. Gasoline prices continued to increase during the 

first two quarters of 2008, reaching a peak of $4.60 and then started to decline before escalating 

again in the beginning of 2009. Panel A in Figure 2 shows the kernel densities of (real) gasoline 

prices for the two survey years. It shows very little overlap in the distributions, with the 2009 

distribution being both higher and more diffuse. Panel B of Figure 2 plots within-MSA average 

gasoline prices in 2009 against their equivalent in 2001. The figure shows that there is a good deal 

of between-MSA variation in changes in gasoline prices, as well as both cross-sectional and tem-

poral variation in levels of gasoline prices.  These within-city changes represent the essential var-

iation in gas prices that we exploit in our difference-in-differences framework. 

Along with this increase in gasoline prices, Table 1 shows that average VMT declined 

                                                            
and NHTS gasoline prices are highly correlated. We regressed ACCRA gasoline prices on NHTS gaso-
line prices and used predicted gasoline prices for those NHTS MSAs that could not be matched with 
ACCRA data. 
6 We use a combined MPG which is a weighted average based on the standard assumption (used by the 
US EPA and others) that the automobile was operated 55% under city driving conditions and 45% under 
highway conditions. 
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about 10% and average MPG improved by about 1%. Figure 3 plots the distribution of annual 

VMT and MPG for both surveys. The figure illustrates the slight leftward shift in the distribution 

of VMT over time and little detectable change in that for MPG. 

IV. Results 

A. Patterns in the Raw Data 

We begin our analysis of the matching effect by looking at patterns in the raw data. Because of the 

large changes in gas prices between 2001 and 2009, a simple starting point is to compare the pat-

terns in those two cross sections.  In Figure 4 Panel A, the expected value of miles per gallon 

(MPG) conditional on VMT is plotted for the years 2001 and 2009 using linear regression. Over-

layed on each plot is a similar counter-factual plot of what the relationship would look like if, 

given the actual distribution of VMT and the actual composition of the fleet in each year, there 

were perfectly assortative matching, so that the lowest-VMT individual had the lowest MPG (high-

est GPM) car, etc. The figures show that the observed assignment is far from perfectly assortative. 

A shift from the empirical relationship to perfect matching is one way to gauge the potential for 

the matching effect. If household demand for VMT and vehicle fuel efficiency were perfectly 

matched in 2009, gasoline consumption would have been 15% lower, even with no change in the 

composition of the fleet and no change in individuals' utilization. 

However, our hypothesis does not center on how strong the matching effect should be in 

any particular cross section. Rather, our hypothesis is that when gas prices are higher, the matching 

effect should be stronger. Since gas prices increased from an average of $1.63 per gallon in 2001 

to $3.14 in 2009 (in real terms), we would expect more assortative matching over time. The raw 

data reveal this pattern. Figure 4 Panel A shows that, between 2001 and 2009, as gasoline prices 

increased, the relationship between these two variables went from slightly decreasing to slightly 
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increasing. (The small change is consistent with our findings, reported below, of a statistically 

significant change in slope of about 0.02, which still has meaningful effects on gas consumption.) 

Panel B displays the CDF of car fuel economy among individuals in the highest quartile of VMT 

and lowest quartile of VMT, for 2001 and 2009 respectively. It shows that in 2001, the distribution 

of MPG among the lowest VMT quartile actually first-order stochastically dominated the distribu-

tion among the highest quartile. That is, the low utilization types had cars with better gas mileage 

than the high utilization types. This is consistent with the downward slope in Panel A for 2001. In 

2009, when gas prices were higher, the situation reverses, with the distribution of MPG among the 

highest VMT quartile first-order stochastically dominating the distribution among the lowest quar-

tile. This is consistent with the upward slope in Panel A for 2009. The switch from 2001 to 2009 

in these patterns is consistent with our hypothesis, with high utilization types being more likely to 

have cars with better gas mileage when gas prices are high. 

Finally, we exploit the intertemporal and spatial variation in the data to analyze the changes 

in sorting correlations between the two survey waves. First, we calculate the correlations between 

VMT and MPG within each MSA–survey-wave period as an aggregate summary of matching. 

Second, we measure the changes in these city-specific correlations between the two survey years 

and correlate them with city-specific changes in gasoline prices over the waves. A scatter plot and 

an estimated weighted regression line that depicts the relationship between these two changes are 

presented in Figure 5. The slope of the regression line is 0.07 and is significant at the 5% level. In 

other words, MSAs where gasoline price changes were larger also had relatively higher increases 

in the correlation between VMT and MPG. This is consistent with our prediction of more assorta-

tive matching.  
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B. OLS 

 While such patterns in the raw data between 2001 and 2009 are suggestive, other changes 

in the economic environment between those years could be important.  Accordingly, we primarily 

rely on difference-in-differences models with year and MSA dummies.  As noted in the previous 

section, our base model uses OLS to estimate these effects. Table 2 shows the results of this model 

under different variants of Equation (6). The first column of the table only includes the main effects 

of VMT (in thousands of miles) and gasoline prices as well as their interaction. The interaction 

between VMT and gasoline prices represents the matching effect, that is, the change in correlation 

between MPG and VMT when gasoline prices increase. Standard errors clustered by state are re-

ported in parentheses. The second column adds MSA dummies to control for time-invariant unob-

servables between the survey years, such as the availability of mass transit, urban sprawl (Bento 

et al. 2005), and differences in average demands across cities. The third column adds year dummies 

to control for national time-varying effects. These could include the change in the fleet composi-

tion between years, other technological changes, changes in lifestyle and preferences, changes in 

commuting patterns, and so forth. Columns 4-6 parallel the first three specifications, but with the 

addition of household-level controls. These controls include number of household members, num-

ber of adults in the households, number of workers in the household, the fraction of children (age 

<18) and women in the household, and household income quartiles. Column 6 represents Equa-

tion (6) as it is written and is our preferred specification. The seventh column replaces the MSA 

and year dummies with MSA-month dummies. This specification controls for unobserved time-

varying economic conditions in the city, which might be correlated with gas prices, including 

changes in income or changes in geographic sorting patterns (Molloy and Shan 2013). Finally, the 
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eighth column includes interactions between the demographic variables and gasoline prices, cap-

turing additional heterogeneity in the effect of gasoline prices on VMT, beyond that already cap-

tured in the interaction with VMT. For all these regressions, the matching effect is positive and 

statistically significant and quite robust across specifications. 

The results imply that as gasoline prices increase, households that drive more are driving a 

more fuel efficient vehicle relative to households that drive less. Specifically, the results of Table 2 

indicate that, for a $1 increase in gasoline prices, households choose cars with about 0.02 greater 

MPG per 1000 miles they drive. Holding constant the mean fleet MPG at 2001 levels, when gas-

oline prices increase from $1.63 to $3.14 the model predicts an individual driving 4,000 miles (at 

the 25th percentile of VMT) switches on average from a car getting 25.3 MPG to one getting 25.4, 

while an individual driving 14,000 miles (at about the 75th percentile) on average switches from a 

car getting 25.2 MPG to one getting 25.7. In other words, when gas prices increase, fuel-efficient 

cars are more likely to be allocated to high-VMT types, while inefficient cars are more likely to 

be allocated to low-VMT types, consistent with the matching effect.  The negative coefficients on 

gas prices may at first be surprising (seemingly implying higher gas prices lower MPG), but recall 

that gas prices also enter in the interaction term; in fact, the marginal effect of gas prices is positive 

in all specifications at the mean of the data. 

 As noted previously, one potential concern with this model is the endogeneity of gasoline 

prices. Our preferred specification in column 6 includes year and MSA dummies. Thus, any en-

dogeneity of gasoline prices would have to come from city-year shocks in the average demand for 

(or supply of) vehicle types that drive city-year variation in gasoline prices, after controlling for 

time-invariant city effects and city-invariant year effects. This seems unlikely. However, in col-

umn 7 we include city-month dummies. This removes all variation in gasoline price (in levels), so 
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the mean residual in Equation (6) only relates to the individual's departure from the city-month 

average residual. Any city-time variation in average MPG that could affect gasoline prices is ab-

sorbed in the fixed effect. The results remain robust to this specification, indicating little concern 

about endogeneity of gasoline prices. Finally, we also consider instrumenting for gasoline prices 

in additional results presented below. 

C. Instrumenting for VMT 

 A potentially more serious issue with the OLS model is that VMT may be endogenous to 

MPG. VMT should affect the MPG of the chosen car, but by the same token the MPG of the chosen 

car also affects VMT, either decreasing it through the comfort effect or increasing it through the 

GPM effect. 

 To overcome this simultaneity problem, we use a variety of instrumental variables strate-

gies. Our first strategy is to use the interactions of demographics with gasoline prices as instru-

ments for VMT. In particular, consider the following model: ܩܲܯ௜௖௠௧ = ߙ + ௠௧௚௔௦݁ܿ݅ݎܲߚ + ܯܸߛ ௜ܶ௖௠௧ + ௠௧௚௔௦݁ܿ݅ݎܲൣߠ × ܯܸ ௜ܶ௖௠௧൧ +ܠ௜௠௧′ࢾ + ௠଴ߟ + ௧଴ߣ + ௜௖௠௧, (7)ߝ

ܯܸ ௜ܶ௖௠௧ = ܽଵ + ܿଵܲ݁ܿ݅ݎ௠௧௚௔௦ + ௖௧௚௔௦݁ܿ݅ݎܲൣ × ૚ࢊ′௜௠௧൧ܠ + ૚࢈′௜௠௧ܠ + ௠ଵߟ + ௧ଵߣ + ௜௖௠௧ଵ (8)ߤ

௠௧௚௔௦݁ܿ݅ݎܲ × ܯܸ ௜ܶ௖௠௧ = 
ܽଶ + ܿଶܲ݁ܿ݅ݎ௠௧௚௔௦ + ௠௧௚௔௦݁ܿ݅ݎܲൣ × ૛࢈′௜௠௧ܠ+૛ࢊ௜௠௧൧ᇱܠ + ௠ଶߟ + ௧ଶߣ +  ௜௖௠௧ଶߤ

(9)

where, ܠ௜௠௧ is a vector of household characteristics. The interactions of these characteristics with 

gasoline prices serve as instruments. These characteristics are the same as those used as controls 

in the OLS model.7  

                                                            
7 Thus, the interaction of household income quartile, number of household members, number of adults, 
number of workers, and fraction of children and women in the household with gasoline prices serve as 
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 The identifying assumptions of this strategy deserve some discussion. Note the level effects 

of ܠ௜௠௧ are not excluded from the outcome equation, Equation (7). Thus, demographics are al-

lowed to affect the choice of car. The identifying assumption is only that gasoline prices do not 

affect car choice differently for different demographic types except through VMT. Demographics 

do drive heterogeneity in VMT demand (at a given price), which in turn affects heterogeneous 

sensitivity of MPG to gasoline prices. All this is consistent with our model of WTP expressed in 

Equation (4), where individual demographics can affect the taste for car types at the extensive 

margin f( ) as well as the WTP for travel conditional on car type ߨ(݅, ܿ,  but the first order ,(ܶܯܸ

effect of gasoline prices on car demand only operate through VMT (as seen in the last term of the 

expression). Our first IV strategy effectively ignores the second order effects related to how het-

erogeneity in ∂VMT*/∂PriceGas (after conditioning on a level of VMT*) feeds back on the optimal 

choice of MPG. This restriction is embedded in a number of other models of car demand as well, 

including Feng, Fullerton, and Gan (2013), Gillingham (2012), and Goldberg (1998). 

 Table 3 shows the results for Equation (7) of the IV model. Besides the endogenous VMT 

terms, the only controls in the first column of Table 3 are gasoline prices, predicted VMT and 

demographics. MSA and year dummies are added successively to columns 2 and 3. Finally, MSA-

month dummies are included in column 4, which eliminates variation in gasoline prices in levels. 

(The specifications follow the pattern in Table 2 but always include demographics.) The matching 

effect is again positive and statistically significant in all specifications. The effect in Table 3 ranges 

from 0.018 to 0.028. Overall, the estimated matching effect is similar to the OLS estimates, indi-

cating little concern about the potential endogeneity of VMT and MPG after conditioning on these 

                                                            
instruments for VMT and [VMT × Pricegas]. These variables were selected based on the household deter-
minants of VMT established by the previous literature (Bento et al. 2009, Small and Van Dender 2007, Li 
et al. 2014). 
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effects. 

 As noted previously, the above exclusion restrictions are motivated by our theoretical 

model, in which the heterogeneous effects of gasoline prices on MPG work only through hetero-

geneity in utilization. Nevertheless, it might be desirable to include interactions of demographics 

with gasoline prices in the outcome equation in other ways, beyond the utilization channel, for 

additional flexibility. For example, perhaps different demographic groups form different expecta-

tions about future gasoline prices or have differences in how salient gasoline prices are to them. 

To accommodate this possibility, we consider two very different alternative strategies. One is to 

add additional economic structure, with nonlinearities in the model that we can leverage for iden-

tification. The other strategy is simply to loosen the causal interpretation of VMT in the model and 

look at heterogeneous effects of prices as they are correlated with VMT.  

 Consider first the strategy to impose additional economic structure, and to leverage non-

linearities to identify heterogeneous effects of gasoline prices on MPG choice. If VMT is a non-

linear function of household characteristics, we can include ܲ݁ܿ݅ݎ௠௧௚௔௦ ×  ௜௠௧ in Equation (7). Weܠ

use a functional form consistent with the structural model of Bento et al. (2009), in which VMT 

and MPG are simultaneously determined and in which such nonlinearities arise through the eco-

nomics of the model. Bento et al. (2009) use the following indirect utility function: 

௜ܸ௖ᇱ = − ௜ߣ1 exp ௜ߣ−ۇۉ ቌ ௜ܻ ௜ܶൗ − ௜௠௧௫݌௜௖ݎ ቍۊی − ௜௖ߚ1 exp ቆߙ௜௖ + ௜௖ߚ ௜௠௧௫݌௜௖ெ݌ ቇ + ߬௜௖, (10) 

where ߙ௜௖ = હ෥௜ᇱܢ௜௖ఈ ௜௖ߚ ; = −expቀ઺෩௜ᇱܢ௜௖ఉ ቁ; ߣ௜ = exp൫෨ૃ ௜ᇱܢ௜௖ఒ ൯; ߬௜௖ = ૌ෤௜ᇱܢ௜௖ఛ ܻ ;௜௖ெ is vehicle utilization price݌ ;௜௖ is vehicle rental priceݎ ; ௜ is the household income; ܶ ௜ is a fixed number of choice occasions 

set equal to the number of adults in the household plus one; and ݌௜௠௧௫  is the Hicksian composite 
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commodity price.8 ܢ௜௖ఈ ௜௖ఉܢ , ௜௖ఛܢ ,  are vectors of automobile characteristics (age, make, class dum-

mies) interacted with household demographics and ܢ௜ఒ are household characteristics.9 Using Roy's 

identity, VMT demand for household ݅ conditional on car ܿ is: 

ܯܸ ௜ܶ௖ = exp ௜௖ߙۇۉ + ௜௖ߚ ௜௠௧௫݌௜௖ெ݌ + ௜ߣ ቌ ௜ܻ ௜ܶൗ − ௜௠௧௫݌௜௖ݎ ቍ(11) ۊی

One can predict ܸ ܸ ෣ܶ௜௖(௜) by using the above model, butܯ  ෣ܶ௜௖(௜) still would be endogenousܯ

to MPG through the vehicle characteristics ܢ, which are simultaneously chosen. However, we in-

stead can predict VMT of household ݅  at a fixed set of characteristics. In particular, for each house-

hold i, we predict VMT for each car type (i.e. make-model-year) c. We then take a weighted aver-

age of those VMTs, using the proportion of type c in the sample as weights. Using this ܸܯ෣ܶ௜௖௠̅௧ 

as an instrument, we then estimate the following model: ܩܲܯ௜௖௠௧ = ߙ + ௠௧௚௔௦݁ܿ݅ݎܲߚ + ࢾ௜௠௧ܠ + ௠௧௚௔௦݁ܿ݅ݎܲൣ × ࣋௜௠௧൧ܠ + +෣ܶ௜௖௠௧ܯܸߨ ௠௧௚௔௦݁ܿ݅ݎܲൣߠ × ෣ܶ௜௖௠௧൧ܯܸ + ௠ߟ + ௧ߣ +  ௜௖௠௧ߝ

(12)

ܯܸ ௜ܶ௖௠௧ = ܽ + ෣ܶ௜௖௠̅௧ܯܸܾ + ௠௧௚௔௦݁ܿ݅ݎܲܿ + ௠௧௚௔௦݁ܿ݅ݎܲൣ × ෣ܶ௜௖௠̅௧൧݀ܯܸ + ௠ߟ + +௧ߣ  ௜௖௠௧ߤ
(13)

In Equation (13), VMT is a function of gasoline prices and ܸܯ෣ܶ௜௖௠̅௧, the latter being computed 

from the model estimated by Bento et al. (2009) averaged over the automobile fleet. This variable 

is a highly non-linear function of demographics, including household members, household income 

                                                            
8 If the number of adults is less than the number of household vehicles, ௜ܶ equals the number of household 
vehicles. ݌௜௠௧௫  is computed using the ACCRA cost-of-living index for each year, with adjustments over 
time using the CPI. 
9 Bento et al. (2009) categorized households into twelve different strata based on employment status, av-
erage household age and the number and age distribution of children in the household. Vehicles are cate-
gorized by vehicle class. For more information, see Bento et al. (2009). 
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quartile, number of children and women in the household, household age distribution, number of 

adults in the households, and vehicle class, vehicle age and driving cost per mile of the average 

vehicle. In Equation (12), we then estimate the main equation of interest using this constructed 

variable as an instrument for VMT. The matching effect is again given by ߠ: the coefficient asso-

ciated with the interaction term between gasoline prices and ܸܯ෣ܶ௜௖௠̅௧. The model given by Equa-

tions (12) and (13) overcomes the issues associated with the previous two models. An advantage 

of this particular model over the model given by Equations (7)-(9) is that now we can include ܲ݁ܿ݅ݎ௠௧௚௔௦ × -௜௠௧ in the second-stage. These will capture heterogeneous effects of a change in gasܠ

oline prices on MPG. 

 Table 4 shows the results of the second stage of the IV model given by Equation (12)-(13). 

In the first column, only demographic controls are included. In the second and third columns, city 

and time dummies are successively added. In the fourth column, city-month dummies replace the 

city and year dummies. As with the previous model using linear instruments, the matching effect 

is positive and significant in all but the first model (with no controls). The point estimates are 

bigger than the previous models, but of the same magnitude. Overall then, these results are con-

sistent with our previous estimates. In the last column, the interactions of demographic controls 

with gasoline prices, one of the chief motivations for using these instruments, are added. Unfortu-

nately, the standard errors are much higher using this approach. Although the estimated point effect 

also is much larger than in the previous models, with the large standard errors for this model we 

cannot reject the earlier point estimates. It may be too great a challenge to separately identify 

heterogeneity across utilization types in the effect of gasoline prices on MPG from other such 

heterogeneity. 
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 As an alternative to this additional structure, we also consider a simple reduced form ap-

proach that measures the correlation between heterogeneity in the effect of gasoline prices on MPG 

and heterogeneity in VMT. Consider the following two equations: ܩܲܯ௜௖௠௧ = ߙ + ࢼ′௜௠௧ܠ + ௠௧௚௔௦݁ܿ݅ݎܲߜ  + ௠௧௚௔௦݁ܿ݅ݎܲൣ × ࣂ′௜௠௧൧ܠ + ௠ଵߟ + ௧ଵߣ + ܯܸ ௜௖௠௧ (14)ߝ ௜ܶ௖௠௧  = ܽ + ࢈′௜௠௧ܠ + ௠௧௚௔௦݁ܿ݅ݎܲܿ + ௠௧௚௔௦݁ܿ݅ݎܲൣ × ࢊ′௜௠௧൧ܠ + ௠ଶߟ + ௧ଶߣ + ௜௖௠௧. (15)ߤ

Because the effects of VMT and x cannot be identified separately, Equations (14) and (15) repre-

sent reduced form regressions in which ࢼ and ࣂ (and ࢈ and ࢊ) capture direct effects of de-

mographics and effects through VMT (which is a linear function of demographics). MPG and 

VMT are simultaneously determined, so ܧሾߤߝሿ ≠ 0, but because VMT does not appear in the re-

duced form equation for MPG, the equations can be estimated with OLS. Then, the estimated 

heterogeneous effects of price on MPG can be correlated with VMT, to see whether it is the high- 

or low-VMT types that are more responsive to gasoline prices. In other words, we give up on 

identifying the heterogeneous effects of gasoline prices on MPG across utilization types per se, 

but still identify the heterogeneity across demographic groups, and we can see how those demo-

graphic groups are correlated with utilization. 

To accomplish this one could take the following steps: 

1. Estimate Equation (14) by OLS and let ෠ܶ = ෣ܩܲܯ߲ ௚௔௦ൗ݁ܿ݅ݎ߲ܲ = መߜ  + -෡ be the estiࣂ′ܠ

mated treatment effect of a change in gasoline prices on MPG for a household with char-

acteristics ܠ. 

2. Estimate Equation (15) by OLS and let ܸ ෣ܶܯ = ොܽ + ෡࢈′ܠ + ଓܿ݁௚௔௦തതതതതതതതതതതݎܲ̂ܿ + ሾܲݎଓܿ݁௚௔௦തതതതതതതതതതത ×  ,෡ࢊ′ሿܠ

where ܲݎଓܿ݁௚௔௦തതതതതതതതതതത is the average gasoline price in the data. These are predicted household 

VMT at the average gasoline price. Average gasoline prices are used to isolate shifts in the 

demand curves of different utilization types, evaluated at the same price. 
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3. To estimate the correlation between ߲ ෣ܩܲܯ ௚௔௦ൗ݁ܿ݅ݎ߲ܲ  and ܸ ෣ܶܯ , run the following regres-

sion: ෠ܶ = ଴ߨ + ෣ܶܯଵܸߨ + (16) ,ߪ

where the coefficient of interest is ߨଵ. 

 As we show in Appendix B, this whole process is equivalent to estimating the following 

model: ܩܲܯ௜௖௠௧ = ߙ + ௠௧௚௔௦݁ܿ݅ݎܲߚ + ࢽ′௜௠௧ܠ + ௠௧௚௔௦݁ܿ݅ݎܲൣߠ × ෣ܶ௜௖௠௧൧ܯܸ + ௠ߟ + ௧ߣ + ௜௖௠௧, (17)ߝ

where ܸܯ෣ܶ  is the predicted VMT from Equation (15), but at average gasoline prices. The match-

ing effect in Equation (17) is given by ߠ. However, this strategy merely provides a correlation 

between the predicted VMT and the effect of ܲ݁ܿ݅ݎ௚௔௦. 

 The results for Equation (17) with corrected standard errors are shown in Table 5. The first 

column omits any controls except demographics. The second and third columns add MSA dum-

mies and year dummies respectively. The fourth column includes MSA-month dummies. The es-

timated effects continue to be similar to the OLS and IV models, with a statistically significant 

matching effect (again in all but the first model) of roughly 0.017 to 0.021. Thus, even if we cannot 

say that the causal effect is through utilization per se, we can say that the types of people who do 

drive more are allocated more fuel-efficient cars when gasoline prices are higher, relative to those 

who drive less. This reduced form correlation is enough to trigger the matching effect and to pro-

vide additional savings in fuel consumption when gasoline prices rise. 

 Figure 6 summarizes the results of these four models, using our preferred specification with 

year and city dummies and demographic controls. It shows the changing in the matching relation-

ship predicted from various changes in gasoline prices ($0.25, $0.55, $1, and $3.50).  
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D. Robustness Checks 

The above models all use miles per gallon as the dependent variable. Table 6 replicates the main 

results with gallons per mile as the dependent variable instead (in thousands). Thus, the coefficient 

estimates indicate the change in gasoline consumption (in thousands of gallons) per mile when 

there is a small change in the explanatory variables. The matching effect is negative for all the 

models, implying that when gasoline prices increase, a household that drives more drives a vehicle 

that consumes less gasoline, relative to a household than drives less. The bottom row of the table 

converts these estimates to an equivalent effect on MPG at the mean of the data. The results are 

generally similar to the corresponding estimates from the main tables, indicating little sensitivity 

to this change of specification. The matching effect corresponds to about 0.01 to 0.04 MPG per 

dollar gasoline price per 1000 miles VMT. 

We considered a variety of alternative models as well. In particular, we considered alter-

native measures of VMT as well as alternative ways of trimming the variable (see note 7 above). 

We also considered nominal gasoline prices instead of inflation-adjusted prices. For our IV mod-

els, we considered GMM estimation as well as two-stage least squares. In all models, we computed 

standard White heteroskedastic-robust standard errors as well as clustered standard errors. Our 

basic findings are unchanged with all these models, which are available upon request. 

E. Within- and Between-Household Matching 

Thus far, we have estimated the matching effect for all vehicles in the household. As noted previ-

ously, households with N vehicles are treated as if they have N exogenous bundles of trips which 

they then allocate to vehicles. Continuing with this assumption, we can focus just on within-house-

hold matching effects, in which we look at how such bundles are allocated to vehicles within the 

household under different gasoline prices. Figure 7 shows, on the vertical axis, the difference in 
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MPG of the car allocated to the highest VMT bundle in the household relative to the lowest, plotted 

against the respective differences in VMT. Panel A does this for two-car households, Panel B for 

three-car households. (Notice some differences in VMT are quite large, but the left-hand side of 

the figure holds most of the density.) The figure shows that, in 2008-9, when gas prices averaged 

$3.14, the difference is positive, meaning that the higher-MPG car was allocated to more VMT. 

Moreover, it is increasing in VMT especially on the left side which holds most of the data, indi-

cating that as the split in miles between the two bundles of trips increases, the difference in MPG 

grows. In 2001-2, when gas prices averaged $1.63, the difference was negative for two-car families 

and decreasing. For three-car households in 2001-2, the difference is close to zero with little trend. 

In either case, the difference is higher in 2008-9, when gas prices average $3.14, than 2001-2. This 

suggests households match their high-MPG car to more VMT when gas prices are higher. 

To further explore these within-household effects within a difference-in-differences frame-

work, we repeat the OLS regression in Table 2, column 2 on multi-car households, but also include 

household fixed effects (which supersede MSA dummies and household demographics). We find 

a matching effect of 0.0362, statistically significant at the 1% level. This effect is somewhat bigger 

than the effect using all the data, which is not surprising given that it would be easier to re-match 

vehicles to trips within a household than between households, as the latter requires a market trans-

action but the former does not. We view these results as suggestive, but caution that they depend 

on our simplifying assumption that we can take baskets of trips as exogenously determined prior 

to being matched to vehicles. 

We similarly can focus on between-household effects by reducing the data set to one ob-

servation per household. This between-household analysis is interesting in itself, because it focuses 
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on the transactions that take place as households sell old cars and buy new ones and the re-alloca-

tion that emerges. It has the further virtue of eliminating the necessity of our assumption about the 

exogenous division of trips within the household. We conduct such a between-household analysis 

three ways. Our preferred approach is to take the average MPG of all cars in the household, 

weighted by each car's VMT, to represent a household-level average MPG. Likewise, we take the 

total VMT of the household divided by the number of adults, to obtain the household's per-capita 

VMT. This approach removes within-household variation while giving some weight to all its de-

cisions and makes no assumptions about how total VMT is allocated to cars. The results are dis-

played in Panel A of Table 7 (which for brevity shows only the coefficients from the matching 

effect). The columns correspond to our preferred specification (with year and MSA dummies and 

demographic characteristics) for the OLS, linear IV, IV with the non-linear instrument, and non-

causal models respectively. The results remain similar to the previous findings, but slightly 

smaller, which is consistent with the idea that the transaction costs of re-matching to automobiles 

is more difficult between households than within them. 

As an alternative to taking the household-level average, in Panel B we take only the car 

with the highest VMT in the household ("top car"). The results are similar to Panel A. This second 

approach has the advantage of using one one car but the disadvantage of taking the VMT assigned 

by multi-car households to the top car as exogenous. Finally, in Panel C, we take only one-car 

households.10 While this approach has the advantage of sidestepping the question of how VMT is 

allocated across cars, it has the disadvantage of created a more selected and less representative 

sample (as well as dropping over half the data). For example, the average one-car household has 

                                                            
10 We also include households in which the second car is effectively unused, with less than one thousand 
miles. 
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1.9 people and drives 9,287 miles per year, whereas the average household in the data has 2.4 

people and drives its top car 12,960 miles per year. Nevertheless, the estimates using this approach 

are similar to the other two approaches, except for the non-linear instruments, which were ineffec-

tive in this subsample (with the instruments failing to pass most tests of relevance). 

F. Gasoline Taxes 

Our analysis to this point has used variation in the overall price of gasoline. However, energy 

policies typically influence gasoline prices through gasoline taxes. Moreover, households might 

respond differently to gasoline taxes than other components of the price. For example, they might 

view them as more permanent than variation in oil prices or refinery costs or more salient. Speak-

ing to this point, Li, Linn, and Muehlegger (2014) recently found that gasoline price elasticities 

are larger for changes in the gasoline tax than from other sources of variation in prices.11 They also 

found that the MPG of the average car responded more to taxes. This raises the possibility that the 

matching effect might also be stronger from changes in gasoline taxes than other price changes. 

To further explore this issue, we gathered data on gasoline prices by state from the Amer-

ican Petroleum Institute's (API's) State Motor Fuels Tax Reports. These data are at the monthly 

level for 2008-9 (from which we constructed quarterly averages to match our quarterly gasoline 

price data) and the annual level for 2001-2. Weighting by our data, the average gasoline tax in-

creased 6 cents between survey waves. The variability ranged from increases of more than 10 cents 

in Texas, Oregon, and Maine to small decreases in Virginia and California. 

Following Li, Linn, and Muehlegger (2014), we then reran our OLS models using both 

                                                            
11 Coglianese et al. (2016) have argued that taxes are an inappropriate instrument for gas prices when esti-
mating very short-term gasoline demand elasticities, if households tank up in anticipation of tax hikes. 
However, this critique would not apply to our setting of year-to-year or changes in automobile fuel econ-
omy choices. 
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variation in gasoline taxes and net-of-tax price variation. This approach allows us to separately 

identify the two effects. As an alternative, we continue to employ our basic model with gasoline 

prices in the equation of interest, but instrument for gasoline prices with gasoline taxes. This ap-

proach obviously limits the source of variation in the data to the taxes.12 

Panel A of Table 8 shows the results of the first approach, in which we separately estimate 

the effects of gasoline taxes and net-of-tax gasoline prices, showing only the respective matching 

effects. The estimates suggest the effect of the gasoline tax is three times the effect of prices gen-

erally, with a statistically significant matching effect of about 0.06 (versus about 0.02 in our pre-

vious models). Net-of-tax prices have a slightly smaller effect than the over-all price effect, of 

about 0.019. (Note because these are a much larger share of overall prices they need not move as 

much from the overall effect.) Panel B shows the results in which we instrument for gasoline prices 

using gasoline taxes. The point estimates using this approach range from 0.03 to 0.04, still higher 

than our earlier estimates of about 0.02 using raw gasoline prices. The findings from both panels 

are consistent with the notion that gas taxes are more salient than other shocks and with previous 

results from Li, Linn, and Muehlegger (2014). They also suggest that gasoline taxes can have a 

more potent effect than our earlier estimates using only gas prices would suggest. 

G. Implications 

In the introduction, we noted that an increase in gasoline prices should have three effects: a utili-

zation effect on VMT, a compositional effect on the average fuel economy of the fleet, and a 

matching effect. Our model does not estimate the utilization effect, but does capture a combination 

                                                            
12 We also considered instrumenting for VMT using the above strategies, however, the presence of multi-
ple nonlinear endogenous variables (for the first strategy, VMT interacted with taxes and VMT interacted 
with net-of-tax prices; for the second, VMT interacted with gasoline prices with both treated as endoge-
nous) made it impossible to identify all the structural effects without additional instruments. 
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of a city-level composition effect and matching effect. It also provides a way to isolate the match-

ing effect. Using our model, the change in household fuel economy due to a change in gasoline 

prices is given by ߲ܩܲܯ௝ ߲ܲ௚௔௦⁄ = መߚ + ܯ෠ܸߠ ௝ܶ, where ߚመ  and ߠ෠ are the estimated parameters on 

Price and Price*VMT respectively. The proportion of the change in gasoline consumption through 

the matching channel can be measured by Equation (18): 

Proportion of predicted total change

from matching effect 
= 1 − ۈۉ

∑ۇ ቆ ܯܸ ௝ܶܩܲܯ෣௝ + መߚ + ෠ߠ ⋅ തതതതതതܶܯܸ − ܯܸ ௝ܶܩܲܯ෣௝ቇ௝∑ ቆ ܯܸ ௝ܶܩܲܯ෣௝ + መߚ + ෠ߠ ⋅ ܯܸ ௝ܶ − ܯܸ ௝ܶܩܲܯ෣௝ቇ௝ ۋی
,ۊ (18)

where ௏ெ்ೕெ௉ீೕ measures the gasoline consumption of vehicle ݆ and ܸܶܯതതതതതത is the average VMT. 

Using our preferred specification with MSA and year dummies and demographic controls, 

we predict that a $1 increase in gasoline taxes would result in a savings of 1.5% of US gasoline 

consumption in the short run from the matching affect alone, or 1.9 billion gallons annually.13 This 

compares to a short-run (one-year) savings of 7.2% from the composition effect estimated by Li, 

Timmins, and von Haefen (2009).14 Although smaller that this estimate of the composition effect, 

the matching effect is economically meaningful. These gasoline savings correspond to 84 million 

metric tonnes of CO2 annually. Using the US social cost of carbon of $36/tonne and Parry and 

Small's (2005) estimate of $0.16/gallon of damages from conventional pollution, these gasoline 

savings are equivalent to $3.3 billion in benefits from avoided pollution per year, just through the 

matching channel—i.e., with no change in the automotive fleet and no change in total miles driven. 

                                                            
13 As the models are linear in prices, the effects of smaller changes in taxes can be computed as any pro-
portion of $1. Similarly, if one prefers to use the estimates from prices in Tables 2-4 rather than the effect 
of taxes, one could proportionately adjust these effects by about one-fourth to one-half. 
14 To compute this figure, we used their short run elasticity of MPG of 0.022 combined with the percent-
age change in each household's gas price associated with $1 (adjusted for the difference in dollars). 
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Moreover, these short-run effects are likely to be lower bounds on the long-run effects. 

V. Conclusion 

Combustion of gasoline has detrimental environmental and health impacts. To reduce these effects, 

one policy tool is to increase gasoline prices. Two effects of gasoline prices have been identified 

in the literature, the utilization effect and the compositional effect. The former implies that an 

increase in gasoline prices results in a decrease in the demand for VMT. The latter suggests that it 

causes an evolution of fleet towards fuel efficiency. As we have shown in this paper, there is a 

potential third effect of gasoline prices that has been overlooked in the previous studies. Due to 

heterogeneity in demand for VMT, increase in gasoline prices should particularly affect vehicle 

choices of households that drive more. In the presence of higher gasoline prices, the costs borne 

by high-VMT households is greater and hence they become more to outbid low-VMT households 

for a fuel efficient vehicle. In equilibrium, there will be matching of fuel efficiency among high-

VMT households and fuel inefficiency among low-VMT households. This is the first study that 

analyzes such assortative behavior.  

 To understand the potential importance of the matching effect, if fuel economy was as-

signed perfectly to households based on their VMT demand, US gasoline consumption would be 

15% lower, without changing the fleet or VMT. Our study exploits variation in gasoline prices in 

the last decade to estimate how gasoline prices affect vehicle choice. Using our model based on 

taxes and our preferred specification, if gasoline taxes were $1 higher, gasoline consumption 

would have been about 1.5% lower due to the matching effect alone. These additional benefits of 

higher prices further favor price-based policies.   
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Figure 1: The Matching Effect  

Notes: In these diagrams partial-equilibrium models illustrate the matching effect. There are two types of households: high-VMT (Hand low-VMT 
(L). There are two types of vehicles: high- and low-GPM. The demand curves ܦு and ܦ௅ show the relative willingness to pay (WTP) of the two 
household types for different fuel economies. In both panels above, the baseline case is given by a scenario where ܦ଴ு =  ଴௅ and the baseline marketܦ
demand curve is given by ܦ଴ for a relative price ଴ܲ. After an increase in gas prices, the relative WTP for inefficient vehicles decreases. The new 
market demand curve is shown by ܦଵ for a relative price ଵܲ. However, due to the heterogeneity in demand among agents for VMT, the decrease 
(increase) in the relative WTP for the high-VMT types for inefficient (efficient) vehicles is greater than for the low-VMT types.  
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Figure 2: MSA 2009 Gasoline Prices v. 2001 Gasoline Prices (in 2009 Dollars) 

Panel A: Gasoline Prices Kernel Densities 

 

Panel B: 2009 Prices against 2001 Prices 

 
Notes: The graph in Panel A shows the kernel densities of gasoline prices for the 2001 (solid line) and the 
2009 (dashed line) ACCRA gasoline prices. Panel B plots 2009 average MSA gasoline prices against 2001 
average MSA gasoline prices. 
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Figure 3: Kernel densities of VMT and MPG 

 

Notes: These graphs show the kernel densities of reported vehicle miles traveled (VMT) in thousands and 
miles per gallon (MPG) per vehicle for the 2001 and the 2009 National Household Travel Survey (NHTS).  
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Figure 4: Is there a matching effect? 

Panel A. Matching in Raw Data vs. Perfect Matching, 2001 and 2009 

  

Panel B. CDF of MPG, by Top and Bottom VMT Quartile, 2001 and 2009 

  

 
Notes: In Panel A, actual values in both graphs represent a linear regression of fuel economy on vehicle 
miles traveled (VMT). For perfect matching, vehicles were re-assigned to households based on their re-
spective VMT, so that their ranks are the same. Panel B shows the distribution of fuel economy among 
those in the highest and lowest quartile of VMT. In 2001 low-VMT households have more fuel-efficient 
cars than high-VMT households (in the sense of first-order stochastic dominance of the distribution); in 
2009, the reverse is true. 
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Figure 5: Change in sorting correlations 

Notes: The figure shows the relationship between changes in city-specific gasoline prices and changes in 
city-specific MPG-VMT correlations between 2001 and 2009 NHTS. The slope and the standard error (in 
parentheses) of the predicted regression line are also reported. Positive slope indicates that MSAs that re-
ceived larger changes in gasoline prices also experienced larger changes in the MPG-VMT correlations.    
 
**Significant at the 5% level.
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Figure 6. MPG-VMT relationship for different tax regimes (Year = 2009) 

  

  

Notes: Figures in Panels A – D are based on the parameter estimates from the preferred specifications of the OLS linear IV, non-linear IV and the 
non-causal model, respectively. The predictions show the relationship between VMT and MPG when gasoline prices increase by $0.25, $0.55, $1, 
and $3.50. 
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Figure 7: Within-Household Matching 

A. Two-Car Households B. Three-Car Households 

 
Notes: The figures show the difference in MPG of the car allocated to the highest VMT bundle in the 
household relative to the lowest, plotted against the respective differences in VMT.  
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Table 1: Summary Statistics: 2001 & 2009 National Household Travel Survey and 
Matched Gasoline Prices 
Variable Full sample 2001 NHTS 2009 NHTS Difference

Gasoline price (2009 dollars) 
2.834 1.635 3.138 1.503***

(0.855) (0.214) (0.670) (0.002) 

Vehicle miles traveled (VMT) in '000  
10.280 11.138 9.980 -1.158***
(8.277) (8.640) (8.124) (0.033) 

Combined unadjusted fuel economy 
(MPG) 

25.551 25.400 25.599 0.199***
(6.094) (5.280) (6.332) (0.022) 

Household size 
2.666 2.816 2.614 -0.201***

(1.288) (1.353) (1.260) (0.005) 

Number of workers in household 
1.275 1.612 1.156 -0.456***

(0.984) (1.003) (0.949) (0.004) 

Number of adults 
2.085 2.081 2.087 0.006** 

(0.711) (0.721) (0.708) (0.003) 

Fraction of children 
0.139 0.176 0.126 -0.050***

(0.216) (0.233) (0.208) (0.001) 

Fraction of women 
0.518 0.508 0.522 0.014***

(0.230) (0.237) (0.228) (0.001) 

Household income <$25,000 0.137 
(0.343) 

0.150 
(0.357) 

0.132 
(0.339) 

-0.018***
(0.001) 

Household income <$50,000 and ≥ 
$25,000 

0.271 
(0.444) 

0.327 
(0.469) 

0.251 
(0.434) 

-0.075***
(0.002) 

Household income <$75,000 and ≥ 
$50,000 

0.207 
(0.405) 

0.235 
(0.424) 

0.197 
(0.397) 

-0.038***
(0.002) 

Household income ≥ $75,000 0.386 
(0.487) 

0.289 
(0.453) 

0.420 
(0.494) 

0.131*** 
(0.002) 

White, only 0.886 
(0.317) 

0.892 
(0.311) 

0.884 
(0.320) 

0.007*** 
(0.001) 

African-American, only 0.045 
(0.207) 

0.033 
(0.178) 

0.049 
(0.216) 

0.016*** 
(0.001) 

Asian, only 0.019 
(0.138) 

0.016 
(0.126) 

0.020 
(0.142) 

0.004*** 
(0.000) 

Number of households 190,121 52,211 137,910 
 
Notes: The main entries in columns 1, 2 and 3 report the mean level of the variables with standard deviations 
in parentheses. Column 4 reports the differences and standard errors.  
 
***Significant at the 1% level. **Significant at the 5% level. *Significant at the 10% level. 
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Table 2. Difference-in-Differences Ordinary Least Squares Results 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Matching effect  
(VMT x Pricegas) 

0.02027*** 0.02068*** 0.02006*** 0.02082*** 0.02169*** 0.02091*** 0.02119*** 0.02093*** 
(0.0035) (0.0031) (0.0032) (0.0035) (0.0031) (0.0032) (0.0034) (0.0032) 

VMT  -0.04149*** -0.04150*** -0.03931*** -0.03513*** -0.03275*** -0.03010*** -0.03000*** -0.03003***
(0.0079) (0.0078) (0.0083) (0.0078) (0.0080) (0.0086) (0.0096) (0.0082) 

Pricegas 0.00176 -0.10448*** -0.17568*** 0.00166 -0.10258*** -0.18866*** -0.25026** 
(0.0702) (0.0289) (0.0263) (0.0700) (0.0251) (0.0265) (0.1020) 

MSA dummies  X X  X X  X 

Year dummies   X   X  X 

MSA-Month dummies       X  

Demographic controls    X X X X X 

Pricegas × Demographic 
controls    

  
 

 X 

N =  326,372 326,372 326,372 304,637 304,637 304,637 304,637 304,637 

R2 0.002 0.024 0.024 0.015 0.038 0.038 0.062 0.038 

 
Notes: The estimates are associated with the OLS model represented by Equation (6). The first column shows the results of the basic model with no 
controls. MSA dummies are added in column 2 and year dummies in column 3. Columns 4-6 repeat the first three columns, but add demographic 
controls. Column 6 represents the model in Equation (6) and is our preferred specification. Column 7 replaces the MSA and year dummies with 
MSA-month dummies, which also removes variation in gas prices. Column 8 includes interactions between demographic controls and gasoline 
prices. Demographic controls are number of household members, number of adults in the households, number of workers in the household, the 
fraction of children (age <18) and women in the household and household income quartile. Standard errors clustered at the state level are in paren-
theses. 
 
***Significant at the 1%level. **Significant at the 5% level. *Significant at the 10% level. 
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Table 3. Difference-in-Differences with Linear Instruments — 2nd Stage Results 

 (1) (2) (3) (4) 

Matching effect  
(VMT x Pricegas) 

0.01795** 0.02612*** 0.02834*** 0.02510*** 
(0.0087) (0.0073) (0.0085) (0.0091) 

VMT  -0.16539 -0.22640 -0.36237*** -0.35375*** 
(0.1419) (0.1497) (0.1127) (0.1073) 

Pricegas -0.00542 -0.18731** -0.27781***  
(0.1038) (0.0767) (0.0911)  

MSA dummies  X X  
Year dummies   X  
MSA-Month dummies    X 
Demographic controls X X X X 
Pricegas × Demographic 
controls Instr. Instr. Instr. Instr. 

N =  304,637 304,631 304,631 304,034 

F-statistics of excluded instruments  
VMT 18.2 17.6 8.9 12.1 
VMT × Pricegas 393.9 220.6 196.6 190.9 

 
Notes: The estimates are associated with the coefficients estimates from the IV model represented by Equa-
tions (7) – (9), using demographics interacted with gas prices as excluded instruments. Column 1 omits 
MSA and year dummies, which are successively added in columns 2 and 3. Column 4 replaces the MSA 
and year dummies with MSA-month dummies, which also removes variation in gas prices. Demographic 
controls are number of household members, number of adults in the households, number of workers in the 
household, the fraction of children (age <18) and women in the household and household income quartile. 
Standard errors clustered at the state level are reported in parentheses.  
 
***Significant at the 1% level. **Significant at the 5% level. *Significant at the 10% level. 
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Table 4. Difference-in-Differences with Non-Linear Instruments — 2nd Stage Results 

 (1) (2) (3) (4) (5) 

Matching effect  
(VMT x Pricegas) 

0.01303 0.04995*** 0.04567*** 0.04810*** 0.12510 
 ෣ܶ௜௖௠̅௧ 0.19345** -0.05216 -0.03613 -0.05365 -0.23407ܯܸ (0.0833) (0.0133) (0.0126) (0.0131) (0.0124)
(0.0898) (0.0658) (0.0657) (0.0666) (0.1822) 

Pricegas 0.12687 -0.40959*** -0.46045***  -1.10281** 
(0.1590) (0.1331) (0.1318)  (0.5601) 

MSA dummies  X X  X 
Year dummies   X  X 
MSA-Month dummies    X  
Demographic controls X X X X X 
Pricegas × Demo-
graphic controls     X 

N =  270,146 270,138 270,138 269,419 270,138 

F-statistics of excluded instruments ܸܯ෣ܶ௜௖௠̅௧ 20.9 23.8 22.7 18.3 23.6 ܸܯ෣ܶ௜௖௠̅௧  × Pricegas 138.3 118.7 135.1 163.2 23.9 
 
Notes: The estimates reported are coefficients estimates for the second stage of the model represented by 
Equation (13). ܸܯ෣ܶ௜௖௠̅௧ as predicted from the structural model of Bento et al. (2009) serves as the instru-
ment for VMT. Column 1 omits MSA and year dummies, which are successively added in columns 2 and 
3. Column 4 replaces the MSA and year dummies with MSA-month dummies, which also removes varia-
tion in gas prices. Column 5 includes demographics interacted with price in the structural equation. Demo-
graphic controls are number of household members, number of adults in the households, number of workers 
in the household, the fraction of children (age <18) and women in the household and household income 
quartile. Standard errors clustered at the state level are reported in parentheses.  
 
***Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level. 
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Table 5. Non-causal estimation of the matching effect 

 (1) (2) (3) (4) 

Matching effect  
෣܂ۻ܄)  x Pricegas) 

0.01690* 0.02117*** 0.01829** 0.01986** 
(0.0097) (0.0075) (0.0081) (0.0085) 

VMT Not identified 

Pricegas 0.03864 -0.10021 -0.16299** N/A 
(0.1403) (0.0754) (0.0791)  

MSA FE  X X  
Year FE   X  

MSA-Month FE    X 

Demographic controls X X X X 

N =  304,637 304,637 304,637 304,637 
R2 0.013 0.036 0.036 0.060 

 
Notes: The estimates are associated with coefficients estimates of the model represented by Equation (17). 
Predicted VMT is a function of average gasoline prices, demographic characteristics, interactions between 
these characteristics and average gasoline prices, year dummies and MSA dummies. Corrected standard 
errors are reported in parentheses.  

***Significant at the 1% level. **Significant at the 5% level. *Significant at the 10% level. 
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Table 6. Difference-in-Differences using Gallons-per-Mile 

 (1) (2) (3) (4) 

 OLS IV-lin IV-nonlin Non-causal 

Matching effect  
(VMT x Pricegas) 

-0.02626*** -0.03011** -0.07034*** -0.01718 
(0.0048) (0.0150) (0.0213) (0.0129) 

VMT 
0.04283*** 0.50233*** 0.07288  

(0.0122) (0.1584) (0.1034)  

Pricegas 
0.20975*** 0.26835* 0.68844*** 0.11845 

(0.0423) (0.1617) (0.2294) (0.1304) 

MSA FE X X X X 

Year FE X X X X 

Demographic Controls X X X X 

N =  304,637 304,631 270,138 304,637 

Instruments: -- 
Pricegas × De-

mographic 
controls 

෣ܶ௜ఫ̅ܯܸ  ;෣ܶ௜ఫ̅ܯܸ × 
Pricegas 

-- 

Compare to: Table 2 
Col. 6 

Table 3 
Col. 3 

Table 4 
Col. 3 

Table 5 
Col. 3 

Equivalent value of matching effect 
for MPG at mean 0.0155*** 0.0179** 0.0417*** 0.0102 

 
Notes: The dependent variable in these regressions is 1000 × GPM. The columns correspond to selected 
models from Tables 2, 3, 4, and 5 respectively. In Column 3, ܸ  ෣ܶ௜௖௠̅௧ is estimated using Bento et al. (2009)ܯ
structural model. Standard errors clustered at the state level are reported in parentheses. The unit of obser-
vation is the vehicle. 
 
***Significant at the 1% level. **Significant at the 5% level. *Significant at the 10% level. 
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Table 7. Between-Household Analysis 

 (1) (2) (3) (4) 

 OLS IV-lin IV-nonlin Non-causal 

A. Avg. MPG     

Matching effect  
(N = 160,539) 

0.00753*** 0.02474*** 0.03134*** 0.02093*** 
(0.0021) (0.0056) (0.0084) (0.0052) 

B. Top Car  

Matching effect  
(N = 159,815) 

0.01165*** 0.03642*** 0.03971*** 0.02381*** 
(0.0022) (0.0076) (0.0107) (0.0053) 

C. One-Car Households     

Matching effect  
(N = 76,321) 

0.01073*** 0.04535*** 0.01378 0.02219*** 
(0.0030) (0.0117) (0.0144) (0.0076) 

MSA FE X X X X 
Year FE X X X X 
Demographic Controls X X X X 

 
Notes: Each household is one observation. Panel A uses the households average MPG. Panel B 
uses the MPG of the highest-VMT car. Panel C uses only one-car households. All specifications 
control for year dummies and MSA dummies and household characteristics. 
 
***Significant at the 1% level. **Significant at the 5% level. *Significant at the 10% level. 
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Table 8. Matching Effect of Gasoline Taxes 

 (1) (2) (3) (4) (5) 

Panel A. OLS.  

Matching effect  
(VMT x Tax) 

0.06404*** 0.06409*** 0.06212* 0.06154* 0.06212* 
(0.0116) (0.0119) (0.0371) (0.0371) (0.0375) 

Matching effect  
(VMT x Net-of-Tax P) 

0.01844*** 0.01905*** 0.01937*** 0.01857*** 0.01882*** 
(0.0016) (0.0017) (0.0046) (0.0048) (0.0050) 

Panel B. IV using gas 
tax as instrument  

Matching effect  
(VMT x Pricegas) 

0.03099** 0.03036** 0.03624*** 0.03578*** 0.03662*** 
(0.0154) (0.0150) (0.0126) (0.0126) (0.0133) 

MSA dummies   X X  
Year dummies    X  
MSA-Month dummies     X 
Demographic controls  X X X X 

N =  322,866 301,311 301,311 301,311 301,311 
 
This table shows the matching effect from gasoline taxes. Panel A separately estimates the matching effect 
from taxes from the net-of-tax portion of gas prices. Panel B estimates the effect of gasoline prices when 
gasoline taxes are used as an instrument. 
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Appendix A. Derivation of Equation (5). 

We begin by taking the derivative of the expression for WTP in Equation (4) with respect to the 

car type c. Making use of Leibniz's rule when differentiating ܸܶܯ∗ in the limits of integration, we 

obtain: ߲ܹܶܲ(ܿ, ݅, ߲ܿ(ீ݌ = 
డ௙(௖,௜)డ௖ + ׬ డగ(௖,௜,௏ெ்)డ௖ +௏ெ்∗൫௖,௜,௣ಸ൯଴ܶܯܸ݀ డ௏ெ்∗൫௖,௜,௣ಸ൯డ௖ ሾߨ(ܿ, ݅, (∗ܶܯܸ − ,ܿ)∗ܶܯܸ−ሿீ݌(ܿ)ܯܲܩ ݅, (ீ݌ డீ௉ெడ௖ .ீ݌   (A1) 

This expression shows how the WTP for a car changes with the car type, as a function of the 

individual type and gasoline prices. Next, we take the cross partial derivative with respect to the 

individuals' utilization type.  

߲ଶܹܶܲ(ܿ, ݅, ߲߲݅ܿ(ீ݌ = 

߲ଶ݂(ܿ, ݅)߲߲ܿ݅ + න ߲ଶߨ(ܿ, ݅, ߲߲݅ܿ(∗ܶܯܸ ௏ெ்∗൫௖,௜,௣ಸ൯ܶܯܸ݀
଴+ ,ܿ)∗ܶܯܸ߲ ݅, ߲݅(ீ݌ ൤߲ߨ(ܿ, ݅, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ +൨ீ݌ ,ܿ)∗ܶܯܸ߲ ݅, ߲ܿ(ீ݌ ,ܿ)ߨ߲ ݅, +߲݅(∗ܶܯܸ ߲ଶܸܶܯ∗(ܿ, ݅, ߲߲݅ܿ(ீ݌ ሾߨ(ܿ, ݅, (∗ܶܯܸ − .ሿீ݌(ܿ)ܯܲܩ

 (A2) 

Now taking the third derivative with respect to ீ݌: 

߲ଷܹܶܲ(ܿ, ݅, ீ݌߲߲߲݅ܿ(ீ݌ = 

,ܿ)∗ܶܯܸ߲ ݅, ீ݌߲(ீ݌ ߲ଶߨ(ܿ, ݅, ߲߲݅ܿ(∗ܶܯܸ − ,ܿ)∗ܶܯܸ߲ ݅, ߲݅(ீ݌ +ܿ݀(ܿ)ܯܲܩ݀ ߲ଶܸܶܯ∗(ܿ, ݅, ீ݌߲߲݅(ீ݌ ൤߲ߨ(ܿ, ݅, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ ൨ீ݌
+ ߲ଶܸܶܯ∗(ܿ, ݅, ீ݌߲߲ܿ(ீ݌ ,ܿ)ߨ߲ ݅, ߲݅(∗ܶܯܸ − ߲ଶܸܶܯ∗(ܿ, ݅, ߲߲݅ܿ(ீ݌ +ܯܲܩ ߲ଷܸܶܯ∗(ܿ, ݅, ீ݌߲߲߲݅ܿ(ீ݌ ሾߨ(ܿ, ݅, (∗ܶܯܸ − .ሿீ݌(ܿ)ܯܲܩ

 (A3) 

But by the first-order condition for optimal VMT conditional on c, ߨ(ܿ, ݅, (∗ܶܯܸ =  ;ீ݌(ܿ)ܯܲܩ

that is, the marginal WTP for VMT equals the marginal cost. Thus, the last term in (A3) drops out 
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and we are left, after re-arranging some terms, with: 

߲ଷܹܶܲ(ܿ, ݅, ீ݌߲߲߲݅ܿ(ீ݌ = 

− ,ܿ)∗ܶܯܸ߲ ݅, ߲݅(ீ݌ +ܿ݀(ܿ)ܯܲܩ݀ ߲ଶܸܶܯ∗(ܿ, ݅, ீ݌߲߲ܿ(ீ݌ ,ܿ)ߨ߲ ݅, ,ܿ)∗ܶܯܸ߲߲݅(∗ܶܯܸ ݅, ீ݌߲(ீ݌ ߲ଶߨ(ܿ, ݅, ߲߲݅ܿ(∗ܶܯܸ − ߲ଶܸܶܯ∗(ܿ, ݅, ߲߲݅ܿ(ீ݌ +ܯܲܩ ߲ଶܸܶܯ∗(ܿ, ݅, ீ݌߲߲݅(ீ݌ ൤߲ߨ(ܿ, ݅, ߲ܿ(∗ܶܯܸ − ܿ݀(ܿ)ܯܲܩ݀ ൨ீ݌ .
 (A4)

  



-57- 
 

Appendix B. Proof of the non-causal model 

Consider the following two simultaneous equations: ݕଵ = ߙ + ଵݔߚ + ଶݔߜ + ଵݔሾߠ ⋅ ଶሿݔ + ଶݕ (B1) ߝ = ܽ + ଵݔܾ + ଶݔܿ + ݀ሾݔଵ ⋅ ଶሿݔ +  (B2) ߤ

where E(ݔଵߝ) = E(ݔଶߝ) = E(ݔଵߤ) = E(ݔଶߤ) = 0. Let ܆૚ = ሾ1 ݔଵሿ, ܆૛ = ሾݔଶ ݔଵ ⋅ ܆ ,ଶሿݔ =ሾ܆૚ ܆૛ሿ, ۯ૚ = ሾߚ ߙሿᇱ and ۯ૛ = ሾߠ ߜሿᇱ. Given the orthogonality conditions, (B1) and (B2) can be 

estimated by OLS. By the Frisch-Waugh-Lovell theorem: ۯ૛෢ = ૛ᇱ܆) ૛ᇱ܆૛)ିଵ܆૚ۻ  ଵ (B3)ݕ૚ۻ

where ܑۻ = ۷ − ܑ܆۾  = ۷ − .ᇱܑ܆૚ି(ܑ܆ᇱܑ܆)ܑ܆  is the projection matrix onto the space spanned by ܑ܆۾

the columns of ܑ܆ and ܆ᇱܑܑۻ = ૙. డ୉(௬భ|܆)డ௫మ = መߜ + ଵݔ෠ߠ = ૛෢ۯ૚܆ . Call this ෠ܶ; this is the estimated 

treatment effect of ݔଶ. To estimate how ߲ݔଶ is correlated with ݕଶෞ, estimate the following regres-

sion: ෠ܶ = ଴ߨ + ଶෞݕଵߨ + ߱ (B4) 

where ݕଶෞ = ොܽ + ෠ܾݔଵ + ଶതതതݔ̂ܿ + መ݀ሾݔଵ ⋅ ଶതതതݔ ଶതതതሿ, the structural parameters are estimated by OLS andݔ =∑ ௫మ೔ேே௜ୀଵ . Let ܆૜ = ሾ1 ݕଶෞሿ and મ = ሾߨ଴ ߨଵሿᇱ.  મ෡ = ૜ᇱ܆) ૜ᇱ܆૜)ିଵ܆ ෠ܶ  મ෡ = ૜ᇱ܆) ૜ᇱ܆૜)ିଵ܆ ૛෢ۯ૚܆   મ෡ = ૜ᇱ܆) ૜ᇱ܆૜)ିଵ܆ ૛ᇱ܆)૚܆ ૛ᇱ܆૛)ିଵ܆૚ۻ  ଵ (B5)ݕ૚ۻ

Now consider the following model: ݕଵ = ߙ + ଵݔߚ + ଶݔ଴ߨ + ଶෞݕଵሾߨ ⋅ ଶሿݔ +  (B6) ߦ

where ܆૝ = ሾݔଶ ݕଶෞ ⋅ ଶሿ. By the Frisch-Waugh-Lovell theorem: ۰෡ݔ = ૝ᇱ܆) ૝ᇱ܆૝)ିଵ܆૚ۻ  ଵ (B7)ݕ૚ۻ
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Note that the projection of ݕଵ onto the space defined by ܆૚ will be the same for (B1) and (B6). 

This implies that ۻ૛ =  ૚ in (B1) can be obtained when the residuals܆ ૝: the partial effects ofۻ

from a regression of ݕଵ on ܆૛ are regressed on the set of residuals obtained when each column of ܆૚ is regressed on ܆૛. The partial effects of ܆૚ in (B6) can be obtained when the residuals from a 

regression ݕଵ on ܆૝ are regressed on the set of residuals obtained when each column of ܆૚ is 

regressed on ܆૝. Hence, in both cases the residual-maker is the same and ۻ૛ =  ૝. Given thisۻ

results, the fact that ܆ᇱܑܑۻ = ૙ and using (B5) and (B7) we have, (܆૜ᇱ ૜ᇱ܆૜)ିଵ܆ ૛ᇱ܆)૚܆ ૛ᇱ܆૛)ିଵ܆૚ۻ ଵݕ૚ۻ૛ۻ = ૝ᇱ܆) ૝ᇱ܆૝)ିଵ܆૚ۻ ૜ᇱ܆) ଵ (B8)ݕ૚ۻ૝ۻ ૜ᇱ܆૜)ିଵ܆ ૛ᇱ܆)૚܆ ૛ᇱ܆૛)ିଵ܆૚ۻ ଵݕ૚ۻ૛ۻ = ૝ᇱ܆) ૝ᇱ܆૝)ିଵ܆૚ۻ ૜ᇱ܆)  ଵݕ૚ۻ૛ۻ ૜ᇱ܆૜)ିଵ܆ ૛ᇱ܆)૚܆ ૛ᇱ܆૛)ିଵ܆૚ۻ ଵݕ૚ۻ = ૝ᇱ܆) ૝ᇱ܆૝)ିଵ܆૚ۻ ଵ  મ෡ݕ૚ۻ = ۰෡ ∎  

 


