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1 Introduction

The power of social media was trumpeted when the citizens of Libya, Egypt and other

Middle Eastern countries deposed their own government leaders and autocrats, in large part

through social media utilization. While this may have heightened the awareness for those in

governments across the world, businesses in every industry worldwide have been well aware

of the potential of big data for conducting forecasts. Proponents in the burgeoning field of

big data analytics often argue that to analyze data extracted from the social web,1 software

tools from fields such as predictive analytics and data mining, including penalization methods

should be used. In this paper, we contrast the performance of penalization methods with

computationally feasible econometric methods in demand forecasting using data from both

the movie industry and social web.

One of the main challenges when comparing empirical approaches via demand forecasting

exercises that exists even in the absence of social media data, is the absence of a unique well-

accepted theory to guide model specification. We argue in these situations, it is better to

simply accept that there is model uncertainty, rather than make difficult ad hoc decisions

on the choice of parameters, which as a consequence leads to different potential models.

Least squares model averaging provides a means to solve model uncertainty. Unlike the well-

known AIC method which selects only one “winning” model from the set of approximation

models, a model averaging estimator generates a weighted average model using all of the

approximation models.

To select the weights for a model averaging estimator, we additionally extend the results

of Hansen (2014) to develop an easy to implement econometric strategy that both minimizes

asymptotic risk and is computationally efficient.2 Further, motivated by the work of Bel-

1One of the main challenges researchers in this area face is determining the content from the approximately
350 million tweets and 6 billion Facebook messages per day. Appendix B discusses the tremendous growth
in academic circles in using data extracted from social media to analyze the economy with these tools.

2This extension allows our empirical strategy to utilize the least squares model averaging estimator of
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loni and Chernozhukov (2013) we introduce the idea of model averaging post LASSO.3 By

using the LASSO in a first step to reduce the dimensionality of the variables to include in

subsequent models, computational savings are obtained, and this should reduce the bias of

LASSO and thus possibly its risk.4

To compare the performance of alternative estimators, model selection criteria, and model

averaging strategies, we use data from the film industry since it remains one of the most

active industries in devoting resources to marketing departments to influence consumer sen-

timent towards their products on the social web.5 Our empirical results suggest that there

are substantial additional gains achieved by allowing for model uncertainty in the analysis.

We find that there are gains from using model averaging after the LASSO relative to using

OLS post LASSO or the LASSO in isolation. However, the LASSO only outperforms other

variable selection and model selection strategies considered in this paper when forecasting

retail movie unit sales. This indicates that variable selection mistakes do occur when cer-

tain potentially irrelevant regressors are eliminated from the potential set used to construct

models and suggests that the LASSO penalty might be too strong. Thus, we contribute

to the field of big data analytics by not just developing and applying new model averaging

estimators to conduct forecasts, but also illustrate that supervised learning algorithms do

not always outperform econometric approaches in variable and model selection.

This paper is organized as follows. Section 2 describes the data set we are using and how

Xie (2015) that computes empirical weights through numerical minimization of a prediction model averaging
(PMA) criterion. The PMA method has been shown in Xie (2015) to be (i) asymptotically optimal in the
sense of achieving the lowest possible mean squared error, which applies both to nested and to non-nested
approximation models; and (ii) to exhibit very good finite sample performance, particularly when the sample
size is small.

3The LASSO and related methods have received enormous attention in big data analytics since the
seminal work of Tibshirani (1996) since this estimator can be applied when the number of regressors exceeds
the number of observations.

4There are many different risk functions (e.g. absolute error loss, Kullback-Leiber loss, Lp loss, among
others) used to evaluate how good a prediction obtained from a given estimator is. In this paper, we follow
the general practice of using mean squared error (MSE) loss and refer to it as commonly in the text.

5Moretti (2011) provides convincing evidence that not only is social learning an important determinant
of sales in the movie industry, but that the effects of positive buzz on revenue are more pronounced for
consumers with larger social networks.
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sentiment regarding films is measured. Section 3 details the least squares model averaging

estimator and our extensions. To measure the relative prediction efficiency of the model

averaging method relative to other model specification methods commonly employed to

make demand forecasts, we use a simulation based exercise to compare the accuracy of out

of sample forecasts for each strategy. Our empirical results are presented and discussed

in Section 4. Our main findings are that while social media data can improve box office

predictions for Hollywood studios irrespective of the method employed, model uncertainty

appears important for this industry. Section 5 presents our conclusions. This paper provides

a clear illustration of the potential benefits for those in data science of collaborating with

applied econometricians,6 who have a long history of developing estimable models of human

behavior.

2 Data Description

We collected data on all movies released in North America between October 1, 2010 and

June 30, 2013 with budgets ranging from 20 to 100 million dollars. The IHS film consulting

unit provided information on the characteristics of each film including the genre, the rating,7

budget excluding advertising and both the pre-determined number of weeks and screens the

film studio forecasted six weeks prior to opening that the specific film will be in theaters.

In our analysis, we consider two measures of retail sales of films that differ on the timing of

consumer purchases. We examine initial demand using opening weekend box office and total

sales of both DVD and Blu-Rays upon initial release.

Purchasing intentions are measured from the universe of Twitter messages by calculating

6We concur with Einav and Levin (2014) that interpreting social media data is quite challenging and in the
absence of collaborating with researchers experienced in analyzing source of plausible identifying variation,
this limitation will remain an important feature of incorporating this data.

7Film ratings are assigned by the Motion Picture Association of America and there are very few G rated
movies in our sample. See Table 1 for the list of film genres utilized in our analysis. Note our sample contains
few sequels and Appendix E.2 demonstrates seasonality and sequels do not play a significant role.
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Table 1: Summary Statistics

Variable Open Box Movie Unit
Mean Std.Dev Mean Std.Dev

Genre
Action 0.3723 0.4860 0.3671 0.4851
Adventure 0.1596 0.3682 0.1646 0.3731
Animation 0.0745 0.2639 0.0759 0.2666
Comedy 0.4255 0.4971 0.4304 0.4983
Crime 0.2660 0.4442 0.2532 0.4376
Drama 0.3404 0.4764 0.3671 0.4851
Family 0.0638 0.2458 0.0759 0.2666
Fantasy 0.0745 0.2639 0.0633 0.2450
Mystery 0.0851 0.2805 0.0886 0.2860
Romance 0.1277 0.3355 0.1013 0.3036
Sci-Fi 0.0957 0.2958 0.1013 0.3036
Thriller 0.2447 0.4322 0.2405 0.4301
Rating
PG 0.1489 0.3579 0.1646 0.3731
PG13 0.3723 0.4860 0.3671 0.4851
R 0.4681 0.5017 0.4557 0.5012
Core Parameters
Budget (in million) 49.9840 20.3961 51.1076 20.7681
Weeks 13.7826 5.4631 13.9747 5.7042
Screens (in thousand) 2.9967 0.5200 2.9751 0.5473
Sentiment
T-21/-27 73.6871 3.0737 73.4635 3.3572
T-14/-20 74.0545 2.4099 73.9789 2.5458
T-7/-13 74.3415 1.7985 74.2909 1.8175
T-4/-6 74.2604 2.0787 74.1940 2.1580
T-1/-3 74.2972 2.0516 74.2246 2.1297
T+0 74.3067 2.1654
T+1/+7 74.4563 1.8822
T+8/+14 73.8944 2.9500
T+15/+21 74.1226 2.5739
T+22/+28 74.3700 1.9751
Volume
T-21/-27 0.1775 0.9293 0.2011 1.0128
T-14/-20 0.1909 0.9055 0.2149 0.9867
T-7/-13 0.2152 0.8965 0.2385 0.9764
T-4/-6 0.2524 1.1280 0.2830 1.2289
T-1/-3 0.4130 1.1025 0.4528 1.1980
T+0 1.2025 3.1132
T+1/+7 0.6248 1.3385
T+8/+14 0.3328 1.0752
T+15/+21 0.2547 0.9562
T+22/+28 0.2116 0.9596

the sentiment specific to a particular film using an algorithm developed by Hannak et al.

(2012). This algorithm involves textual analysis of movie titles and movie key words. In

a Twitter message mentioning a specific film title or key word, sentiment is calculated by

examining the strength of the emotion words and icons contained within.8 The overall

sentiment score for each film is a weighted average of the sentiment of the scored words

8Full details on the external validity and how the sentiment index for each film is calculated are provided
in Appendix A.1. This appendix summarizes evidence from evaluations of the sentiment inference algorithm,
demonstrating a high degree of accuracy in sentiment prediction. For open box office, the volume of Twitter
message is 1,100,439; for DVD, this number is 3,433,413 messages.
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in all the messages associated, and indicates the propensity for which there is a positive

emotion tweet related to that movie. Since opinions regarding a film likely vary over time, we

measured volume of Twitter messages and calculated sentiment over different time periods.9

Summary statistics for our sample are presented in Table 1. Since certain movies were not

released in either DVD or Blu-Ray format, the total number of observations for the DVD and

Blu-Ray sales is slightly smaller than that for open box office. Notice that the mean budget

of films analyzed for each outcome is approximately 50 million. On average, these films were

in the theater for 14 weeks and played on roughly 3000 screens during the opening weekend.

Not surprisingly, given trends in advertising, the volume of Tweets increases sharply close to

the release date, peaking that day and decreasing steadily afterwards. We consider volume

separate from sentiment in our analyses since the latter may capture perceptions of quality,

whereas volume likely just proxies for popularity.10

3 Model Averaging

Researchers who ignore model uncertainty implicitly assume their selected model is the

“true” one that generated the data (yi,xi) : i = 1, ..., n, where yi and xi = [xi1, xi2, ...] are

real-valued.11 We assume the data generating process for an outcome yi is given as

yi = µi + ui, (1)

where µi =
∑∞

j=1 βjxij, E(ui|xi) = 0 and E(u2
i |xi) = σ2. Since researchers and analysts

in the film industry often have little knowledge of the true data generating process, they

9Suppose the movie release date is T, we calculate sentiment in ranges suggested by the IHS film consulting
unit. For example, for a typical range, T–a/–b denotes a days to b days before date T. Similarly, T+c/+d
means c days to d days after date T, which are additionally used for forecasting the retail unit sales.

10Intuitively, if herd behavior is important, volume drives box office revenue, whereas Chintagunta et al.
(2010) and Liu (2006) suggest sentiment may affect revenue for those who make decisions based on quality.

11While there is a burgeoning theoretical literature, Breiman and Spector (1992) describes the certitude
that many researchers have with respect to model uncertainty as the “quiet scandal” in statistical research.
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generally select one model from a sequence of linear approximation models m = 1, 2, ...,M .

An approximation model m using k(m) regressors belonging to xi such that

yi =
k(m)∑
j=1

β
(m)
j x

(m)
ij + u

(m)
i for i = 1, ..., n, (2)

where β
(m)
j is a coefficient in model m and x

(m)
ij is a regressor in model m. Approximation

models can be either nested or non-nested and model averaging approaches first involve

solving for the smoothing weights across the set of approximation models based on a specific

criterion.

Formally, the DGP (1) and approximation model (2) can be represented in matrix forms:

y = µ + u and y = X(m)β(m) + u(m), where y is n × 1, µ is n × 1, X(m) is n × k(m)

with the ijth element being x
(m)
ij , β(m) is k(m) × 1 and u(m) is the error term for model

m. For an approximation model m, the least squares estimate of µ from model m can be

written as µ̂(m) = P (m)y, where P (m) is a projection matrix. Let w =
[
w(1), ..., w(M)

]>
be

a weight vector in the unit simplex in RM , HM ≡
{
w ∈ [0, 1]M :

∑M
m=1 w

(m) = 1
}
, which

is a continuous set. We define the model average estimator of µ as

µ(w) ≡
M∑

m=1

w(m)µ̂(m) =
M∑

m=1

w(m)P (m)y. (3)

By defining the weighted average projection matrix P (w) as P (w) ≡
∑M

m=1 w
(m)P (m),

equation (3) can be simplified to µ(w) = P (w)y. Thus, the effective number of parameters

to be solved is defined as k(w) ≡
∑M

m=1 w
(m)k(m).12

The prediction model averaging (PMA) estimator of Xie (2015) can be understood as

the model averaging analog of the prediction criterion of Amemiya (1980). Following Xie

12Note that k(w) is not necessarily an integer and is a weighted sum of the k(m).
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(2015), the vector of empirical weight ŵ is the solution to

ŵ = arg min
w∈HM

PMAn(w) = arg min
w∈HM

(
y − µ(w)

)>(
y − µ(w)

)(n+ k(w)

n− k(w)

)
, (4)

where µ(w) and k(w) are defined above. The PMA estimator is asymptotically optimal in

the sense of achieving the lowest possible mean square error.13

3.1 Strategies that Reduce Asymptotic Risk

Recently, Hansen (2014) derived conditions under which the asymptotic risk of an averaging

estimator is globally smaller than the unrestricted least-squares estimator. In Appendix C.2

we supplement Theorem 3 in Hansen (2014), allowing this finding to be applied to a broader

set of least squares model averaging estimators including the PMA estimator. Imposing

Assumptions 1 to 6 and Lemmas 1 and 2 defined in Appendix C.1 permits us to state the

following theorem:

Theorem 1 Let Assumptions 1 – 6 hold. We have

R(β̂A,β) < R(β̂LS,β), (5)

where β̂LS and β̂A are defined in equations (A1) and (A3) respectively.

Theorem 1 indicates that, under relatively mild restrictions, if we group regressors into

sets of four or larger (Assumption 6), the averaging estimator β̂A always yields smaller

asymptotic risk than the unrestricted least-squares estimator β̂LS. By grouping regressors,

the total number of potential models is reduced, leading to gains in computational efficiency.

13See Xie (2015) for a detailed proof. For computational convenience, we can re-express the PMA in (4)

as PMAn(w) = w>Û
>
Ûw

(
n+k>w
n−k>w

)
. where Û is an n×M matrix consisting of n× 1 vectors of residuals

for each of the m models (i.e. Û ≡ [û(1), û(2), ..., û(M)]) and k is a M×1 vector of the number of parameters
from each model, such that k ≡ [k(1), k(2), ..., k(M)]>.
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A second strategy to potentially reduce asymptotic risk is using model averaging post

LASSO, which is in the spirit of Belloni and Chernozhukov (2013).14 In the first step, a

LASSO estimator selects the explanatory variables via a shrinkage procedure that predom-

inantly eliminates potentially irrelevant variables. In the second step, LASSO coefficient

estimates are dropped and the variables selected by LASSO are used with any model av-

eraging estimator. This procedure allows for both model uncertainty and is more data

dependent in conducting variable selection relative to common econometric strategy that

require a complete model specification. Further, this proposed estimation strategy yields

improvement in computational efficiency relative to traditional model averaging approaches

since the LASSO zeros out coefficient values in the first step, thereby reducing the numbers

of potential regressors and the total number of potential models used in the second step.15

3.2 Assessing Prediction Efficiency

Following Hansen and Racine (2012), the relative prediction efficiency of different estimators

with different sets of covariates is assessed via an experiment that shuffles the original data

with sample n, into a training set of size nT and an evaluation set of size nE = n − nT .

Using the training set, 11 different estimation strategies are used to make forecasts. For

each strategy, we next use the estimates to forecast box office and retail unit sales for the

evaluation set. The forecasts from these strategies are then evaluated by calculating mean

14The least absolute shrinkage selection operator (LASSO) of Tibshirani (1996) not only estimates re-
gression coefficients but also acts as a variable selection device. LASSO coefficients are the solutions to
an l1-optimization problem (see Appendix D.2 for details) that minimizes the sum of the OLS objective
function with a penalty for model size, which is the sum of the absolute values of the estimated regression
coefficients. Intuitively, the estimator shrinks several of the non-zero coefficient estimates towards zero to
satisfy a sparsity condition; at the cost of potentially introducing shrinkage bias. Belloni and Chernozhukov
(2013) suggest discarding the LASSO estimates and using OLS post LASSO to estimate the coefficients on
the remaining variables.

15Future theoretical and Monte Carlo research is needed to understand the optimal penalty when using the
LASSO for variable selection prior to model averaging. It is well-established that by zeroing out potentially
relevant regressors, the LASSO may generate bias in the LASSO coefficients. Therefore, with model averaging
post LASSO this would also result in having fewer potential approximation models.
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squared forecast error (MSFE) and mean absolute forecast error (MAFE):

MSFE =
1

nE

(yE − xEβ̂T )>(yE − xEβ̂T ),

MAFE =
1

nE

∣∣∣yE − xEβ̂T

∣∣∣> ιE,
where (yE, xE) is the evaluation set, nE is the number of observations of the evaluation set,

β̂T is the estimated coefficients by a particular model based on the training set, and ιE is a

nE × 1 vector of ones. The 11 estimation strategies include

(i) a general unrestricted model (GUM) using all the independent variables available,

(ii) a general unrestricted model that ignores social media data (MTV),

(iii) a model selected by Hendry and Nielsen (2007) general to specific method (GETS),

(iv) a model selected using the Akaike Information Criterion Method (AIC),

(v) the model selected using Mallows model averaging (MMA) proposed by Hansen (2007),

(vi) the model selected by Jackknife model averaging (JMA) (Hansen and Racine, 2012),16

(vii) the model selected by group MMA method developed in Hansen (2014) (MMAg1,g2),

(viii) the model selected by group PMA estimator, developed in Section 3.1 (PMAg1,g2),

(ix) the model selected using the (PMA) estimator developed in equation (4),

(x) the OLS post LASSO estimator of Belloni and Chernozhukov (2013) with 10, 12, and
15 explanatory variables selected by the LASSO (OLS10,12,15),

(xi) the PMA model averaging post LASSO estimation strategy proposed in Section 3.1
with 10, 12, and 15 explanatory variables selected byc the LASSO (PMA10,12,15).

The above exercise is carried out 10,001 times for different nE. For strategies (v) to

(ix), a simplified version of the automatic general-to-specific approach of Campos, et al.

16We also tried the more generalized JMA by Zhang, Wan, and Zou (2013) and the results are similar.
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(2003) was used for model screening.17 Last, as detailed in Appendix D.1, when examining

the empirical performance of strategies (vii) and (viii), we group regressors based on either

economic intuition (g1) or statistical logic (g2).

4 Results and Discussion

Table 2 reports the median MSFE and MAFE from the relative out-of-sample prediction

efficiency experiment for evaluation sets nE = 10, 20, 30, 40 for open box office and nE =

10, 15, 20, 25 for movie unit sales.18 To ease interpretation, we normalize the MSFEs and

MAFEs, respectively, by the MSFE and MAFE of the PMA. For open box office, all entries

are larger than one indicating inferior performance of the respective estimator relative to

PMA.

There are several findings worth stressing. First, when comparing the results of PMA

with results of MTV (models without Twitter data), we see that the prediction efficiency

increases by more than 147% using MSFE as criterion when nE = 10. As nE increases, the

prediction efficiency of using PMA improves even more (204% when nE = 40). This result

provides the first piece of evidence demonstrating the importance of using social media data

in this forecasting exercise.19

Second, the results in Table 2 demonstrate the importance of considering model un-

certainty as seen when comparing GUM (no model uncertainty) to PMA. The prediction

17This approach examines each of the 16,777,216 potential models for open box office and 4,294,967,296
potential models for retail movie sales by estimating the p-values for tests of statistical significance. If the
maximum of these p-values exceeds our benchmark values (0.1 for open box office and 0.65 for retail movie
sales), we exclude the corresponding model. After pre-selection, we respectively obtain 95 and 56 models
for open box office and movie unit sales. Note Wan, Zhang, and Zou (2010) showed that screening methods
are necessary in practice to remove some poor models prior to model averaging. Appendix E.5 presents a
comparison with the backward elimination procedure of Claeskens et al. (2006).

18The size of evaluation set for retail movie unit sales is smaller because we have fewer observations since
some films were not released on DVD/Blu-Rays.

19Additional results demonstrating the importance of social media data including the need to have two
distinct measures, are presented in Appendix E.1.
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efficiency is improved by 34% when nE = 10 and by 131% when nE = 40. All model selec-

tion and model averaging methods in our exercise yield better forecasts than GUM, which

indicates the lack of prediction efficiency when ignoring model uncertainty.

Third, all of the different grouping estimators presented in columns PMAg1 to MMAg2

perform poorly relative to PMA and other model selection and model averaging methods

that considers a weighted combination of all potential models. In general, estimators per-

form better when the grouping is done based on statistical logic (g2) rather than economic

intuition (g1). Consistent with both Theorem 1 and Theorem 3 of Hansen (2014), the dif-

ferent grouping estimators yield smaller MSFE than GUM, which is the unconstrained least

squares estimator.

Fourth, exploring the two empirical strategies that use the LASSO for the variable selec-

tion, we first find that irrespective of the evaluation set or number of regressors selected by

the first step LASSO, model averaging post LASSO outperforms OLS post LASSO. However,

comparing model averaging post LASSO to PMA is quite striking in that PMA outperforms

the post LASSO strategy with box office openings but does not do so with retail unit sales.

In fact, the gains from model averaging post LASSO in forecasting retail movie unit sales

are incredibly large when nE ≥ 15. Yet, the worse performance with box office openings

suggests that if the true coefficients do not satisfy a strong sparsity condition and are forced

to equal zero, this estimator will not have lower MSFE.20 Since ex-ante, a researcher will nei-

ther know the true data generating process nor whether the strong sparsity condition holds,

conducting model averaging with different variable selection algorithms appears worthwhile

as a minimum to serve as a robustness exercise.

Panel B of Table 2 presents results for retail movie unit sales, where we find strong

20In Appendix E.1.2 we repeat this exercise with additional explanatory variables selected by the LASSO
and continue to find PMA outperforming model averaging post LASSO. By using the LASSO and forcing one
to drop certain coefficients and resulting approximation models, these results suggest that several important
models are lost. We should add that ex-ante, we anticipated model averaging post LASSO to perform worse
with retail movie unit sales since there are more potential variables and we restricted the LASSO to select
a small subset; thereby reducing the variables that satisfy the strong sparsity condition.
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evidence (i) supporting using model averaging to deal with model uncertainty when com-

paring the forecasting results of GUM to PMA; (ii) of gains from including social media

data, since MTV yields worse performance than any model averaging and model selection

method considered; and (iii) of improved performance from model averaging estimators that

use grouping. This contrasts with box office openings, in which PMA was the preferred

estimator in all cases. The improvement from PMA to grouping estimators is often quite

marginal in forecast accuracy topping out at 3%, but the computational gains are substan-

tial. Last, we observed mixed results on how to optimally group regressors into subsets,21

suggesting a remaining issue that researchers might confront in practice.22

By exploring the variables selected by the LASSO with either outcome, additional ev-

idence of the relative importance of social media measures for forecasting is found. When

the LASSO respectively selects 10, 12 and 15 variables for open box office, 4, 4, and 5 of

which are social media measures; whereas 5, 7, and 9 are social media measures for retail

movie unit sales. This indicates that among the 10 variables with the strongest links to the

industry outcomes considered, 40 or 50% of them are obtained from social media, rather

than traditional data sources that describe the characteristics of the film itself.23

While these results show the practical advantages of using model averaging for forecasts

within this industry, there are clear computational costs relative to conventional approaches.

Put simply, implementing the model averaging method can be time consuming when the

total number of potential models is very large. This is mainly due to the optimization

routine irrespective of the software employed. To illustrate, consider the box office opening

21For example, we observe that MMAg2 offers the best performance when nE = 10 with both MSFE and
MAFE criteria, whereas MMAg1 has best performance when nE = 15 for MSFE and MAFE cases, and
PMAg2 has best performance when nE = 10, 15 when using MAFE as the criteria.

22Determining the optimal way to group regressors is beyond the scope of this paper. We leave this for
future research.

23Further analyses in Appendix E.1 demonstrate that while the sentiment variables play a larger role in
increasing forecast accuracy, the inclusion of the volume variables does explain substantially more variation
in both outcome variables. This difference is not surprising since an individual themselves is not exposed to
the full volume of messages on Twitter, just the sentiment within a subset. Thus, sentiment is more likely
to influence individual decisions, whereas volume can better predict aggregate outcomes.
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weekend example. With our data, there is a total number of 29 potential parameters in

the general unrestricted model. Even if we were to fix 5 parameters in every model, it still

implies a total of 224 = 16, 777, 216 potential models, since each model utilizes different

combinations of explanatory variables and estimates the corresponding parameters. Our

analysis suggests that researchers should use algorithms from both the machine learning

and econometrics literature to determine which of the potential variables and models are

reasonable to include.24

5 Conclusion

In summary, our evidence suggests that social media data and model uncertainty should

equally share the billing on the top of the marquee for Hollywood forecasts. Our empirical

exercise provides mixed evidence on the use of the LASSO relative to a more traditional

econometric strategy when conducting variable selection. While there are tremendous gains

from model averaging post LASSO in forecasting retail movie unit sales, our analysis is sug-

gestive that this strategy critically relies on the strength of the sparsity condition. Thus, we

suggest that future researchers verify the robustness of their findings using model averaging

approaches that select variables using at least one algorithm from each of the econometrics

and data science literature.25 Since there is a need for forecasts to help inform planning

for management and administrators in many industries beyond film, we believe the tools

24Further, additional analyses in Appendix E.3 uncovers that only 5 of the thousands of models estimated
accounted for over 90% of the resulting PMA estimator. Thus, concerns regarding model selection in em-
pirical practice in this setting may appear small. But in Appendix E.3, the gains in forecast accuracy from
PMA to any of these 5 models are shown to be non-trivial; reinforcing the importance of model uncertainty.
However, the issue of variable selection appears important since each of the top 5 models presented in Ap-
pendix E.3 contain more than 15 variables. Yet, in Table 2, model averaging post LASSO (PMA12 and
PMA15) outperform PMA with retail movie sales. Since variable selection influences the set of potential
approximation models, more guidance is needed to determine whether the traditional LASSO penalty is
either too strict or too lenient. We leave this to future research.

25In a follow-up paper, Lehrer and Xie (2016) develop and consider additional model screening strategies
with both homoskedastic and heteroscedastic data and suggest that heteroscedasticity is likely an important
feature of social media data.
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developed and illustrated in this paper can help managerial decision making.
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