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1 Introduction

Oil prices have historically been highly variable, with Brent crude spot prices ranging over
the past decade from $139/barrel at the peak in June 2008 to below $50/barrel in January
2015. These large oil price gyrations lead to corresponding changes in refined fuel prices,
influencing transport decisions, congestion, and environmental outcomes. Understanding
the price elasticity of driving, which underpins the price elasticity of fuel consumption, is
therefore of considerable policy interest. Not only is it valuable for anticipating responses
to future swings in oil prices, it is also useful for measuring the macroeconomic effects of oil
price fluctuations (e.g., Edelstein and Kilian, 2009) and providing insight into the role of
speculators during oil price shocks (Hamilton, 2009; Kilian and Murphy, 2014). Furthermore,
it forms the basis for measuring the welfare consequences of changes in fuel prices.

This study estimates the price elasticity of driving and provides new insight into the
underlying determinants of this elasticity. Using vehicle-level odometer readings matched to
individual-level location and demographic information from the Danish registers, we uncover
two small groups of households who are much more responsive to changing fuel prices than
most of the population. These households are in the tails of the work distance distribution;
one group has very short commutes and the other has the longest commutes. Our mean
medium-run (one-year) elasticity estimate of -0.30 is considerably influenced by these two
groups of tail households, each of which have an elasticity estimate closer to -0.6. These
findings can be rationalized with a model of switching costs incurred when switching from
driving to other modes of transport, such as public transport. Danes have almost universal
access to public transport and we posit that our results hold in similar settings around the
world.

This research contributes to three strands of literature with major policy importance.
First, it provides a new point estimate for the fuel price elasticity of driving, which is a
dominant component in the modeling of gasoline or diesel demand. There is a vast literature
aiming to estimate the price elasticity of gasoline demand (e.g., for some recent studies see
Coglianese et al., 2016; Davis and Kilian, 2011; Hughes, Knittel, and Sperling, 2008; Li,
Linn, and Muehlegger, 2014; Hymel and Small, 2015; Small and van Dender, 2007), largely
using aggregate data at the regional or national level.1 More recently, a handful of studies
have estimated the elasticity of vehicle-miles-traveled with respect to the price of gasoline
using disaggregated micro-level data, either from surveys or inspection odometer reading data
(Linn, 2016; Bento et al., 2009; Knittel and Sandler, 2013; Gillingham, 2013, 2014; Munk-
Nielsen, 2015; Levin, Lewis, and Wolak, 2014). Most of these recent medium-run elasticity

1Review articles cover dozens of studies going back decades, most using aggregate data. For example, see
Dahl and Sterner (1991), Espey (1998), Graham and Glaister (2004), and Brons et al. (2008).
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estimates are for drivers in the United States and are in the range of -0.10 to -0.35. In
contrast, similar benchmark estimates for Europe tend to show a more elastic response. For
example, Frondel and Vance (2013) estimate a medium-run driving elasticity with respect
to the gasoline price of -0.45 in Germany.2 Similarly, in contemporaneous work, De Borger,
Mulalic, and Rouwendal (2016a) focus on two-vehicle households in Denmark and find the
medium-run fuel price elasticity of driving to range between -0.32 and -0.45. Our study
not only helps to reconcile these differing estimates across countries, but it also sheds light
on the mechanisms underlying the differences. In particular, by identifying the tails in the
distribution of consumer response and the reason for these tails, we can posit that there
are groups of more-responsive households in Europe that simply do not exist in the United
States.

Identifying the composition of the tail households contributes to a second vein of literature
on the complex relationships between urban form, gasoline prices, and consumer decisions
about how much to drive. There is growing evidence that urban form and the spatial structure
of labor force demand affect travel choices and commuting behavior (Bento et al., 2005;
Grazi, van den Bergh, and van Ommeren, 2008; Brownstone and Golob, 2010). Since at least
McFadden (1974), it has been long-recognized that access to public transport is an important
mediator of travel choices, with clear environmental implications (e.g., Glaeser and Kahn,
2010). Denmark provides a very useful empirical setting for exploring these issues, for access
to public transport is near-universal, yet there is considerable variation in commute distances
and the degree of access to appealing substitutes to driving. Our findings are informative
for the development of models of household location choice and access to public transport by
revealing the detailed spatial relationship between location and driving.

The third strand of the literature to which we contribute is the analysis of environmental
tax reforms on the light duty vehicle fleet. Several recent papers focus on vehicle registration
tax reforms using discrete vehicle choice models (e.g. D’Haultfæuille, Givord, and Boutin,
2014; Adamou, Clerides, and Zachariadis, 2013; Huse and Lucinda, 2013). Without modeling
the endogenous choice of driving, these papers can only calculate a rough estimate of the
environmental implications of such policies. Other work incorporates the driving decision,
for example in a discrete-continuous framework (Jacobsen, 2013; Gillingham, 2013; Munk-
Nielsen, 2015; Grigolon, Reynaert, and Verboven, 2015), in order to evaluate environmental
policies focused on vehicles. However, the computational complexity of such models prevents
a sufficiently detailed modeling of the driving decision to fully capture the heterogeneity of
the response. Our study provides a comprehensive picture of the consumer response on the

2-0.45 is the fixed effects estimate, which we believe is better identified than other estimates in the paper,
which are closer to -0.6.
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intensive margin, which can help inform the choice of salient features to include in discrete-
continuous models of vehicle choice and utilization designed to examine policies affecting
both margins.

In this paper, we underpin our empirical analysis with a simple theoretical model that
provides an economic explanation for the existence the tail households. A key feature in this
model is the presence of switching costs incurred when changing transport modes. Consider
households with very high work distances. When fuel prices increase, these households stand
to gain more from switching to public transport and will therefore respond more strongly
than households who do not commute as far. Households with very short commutes face a
different decision problem, one in which nearly all driving demand is for non-work trips such
as shopping or leisure travel. These households drive to a diverse set of destinations and for
some of these destinations public transport or other mode choices are also attractive. This
means that when fuel prices rise, there is greater ability to respond by switching from driving
to other mode choices. We present empirical evidence consistent with these explanations
using both a quantile regression framework and a standard linear framework with a rich set
of interactions to explore the determinants of greater price responsiveness.

We illustrate what our results mean for policy through an illustrative counterfactual
analysis of a price increase of 1 DKK/liter (l) for both gasoline and diesel fuel (i.e., just over
$0.50/gallon). Decomposing the total response in driving, we find that the most-responsive
5% of drivers are responsible for 14.4% of the total reduction in driving. Moreover, we
develop a new approach to calculate the deadweight loss from this increase in fuel prices
based on our quantile regression results. We find a mean deadweight loss of 0.66 DDK/l,
and show that this deadweight loss is highly heterogeneous. In fact, the deadweight loss for
both highly responsive tails of households is more than four times greater than for the less
responsive households in the middle of the work distance distribution, a result that is new
to the literature.

The remainder of this paper is organized as follows. The next section lays out our simple
theoretical model to provide a framework for the economics underlying our results. Section
3 describes the rich Danish register data and provides descriptive evidence on the primary
features of the data relevant to estimating the driving responsiveness. Section 4 describes
our empirical strategy, while section 5 presents the results and a set of robustness checks.
Section 6 provides the illustrative policy counterfactual and section 7 concludes.
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2 A Simple Model of Travel Decisions

This section develops an simple model of the travel decision of a car-owning agent in order
to build intuition for the economics underlying our empirical results. The focus of this model
is on the economics of the price responsiveness of driving and how it varies with the work
distance of the household. For clarity of exposition, we abstract from other decisions that
may influence driving in the long-run, such as where to live and what employment to accept.
Our model is well-suited for a setting where the decision-maker has access to public transport.
Such a setting is relevant to nearly all of Denmark, as well as much of Europe and many other
areas in the world. For example, in 2014, 87% of Danes live within one kilometer (km) of a
public transport stop and nearly all the remainder are served by on-call buses (“telebusser”).3

We model a static setting for a given finite amount of time, such as one week.
To simplify our setting, we hold the total number of km traveled by the agent fixed at

T . The agent can travel by personal vehicle or by other modes of transport, including public
transport, biking, or walking. Let the km traveled by personal vehicle be denoted by v, so
the remaining km traveled is T − v. Consider two types of travel. The first type is repeated
travel that occurs several times a week, such as for a commute to work. The second is
discretionary, shopping, or leisure travel. Let dw ∈ [0, 1] be the decision of how much to drive
for commuting trips. dw = 1 if all of commuting is accomplished by driving and dw = 0 if
all of commuting is done by other modes of transport. Similarly, let dl ∈ [0, 1] be the same
decision for non-commuting (leisure) trips.

Let gw(dw) be the additional utility from commuting to work by driving rather than other
forms of transport. Similarly, let gl(dl) be the utility from driving for non-work trips. As
driving is a more flexible form of transport, assume ∂gl(dw)

∂dw > 0 and ∂gl(dl)
∂dl > 0. However,

there is an important difference between the commuting trips and other trips that motivates
our specification of these functions. While trips for shopping or leisure involve travel to a
diverse set of locations, commute trips are very homogenous, from the same origin to the
same destination and usually at the same time of day. Thus, for a given set of commute trips
in a given time period, we would expect the marginal utility from commuting by personal car
to be constant, regardless of the amount of driving. This allows us to define gw(dw) ≡ γwdw,
where γw is a constant. In contrast, there is inherent heterogeneity in the ability to bike,
walk, or take public transport for any specific non-commute trips. For some shopping or
leisure trips, public transport or biking are very attractive modes of travel; for others, they
are highly unappealing due to the distance or destination. Thus, one would expect some
curvature of gl(dl), i.e., the marginal utility of driving will vary with the fraction of non-work

3See http://passagerpulsen.taenk.dk/file/68/download?token=fy19yEeh (Accessed June 16, 2015).
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trips driven: ∂2gl(dl)
∂(dl)2 6= 0 (and we might expect that gl is concave, but it is not necessary to

assume this).
Denote the km traveled for the commute by w and the km traveled for non-commute trips

by l. Consider an agent who maximizes utility subject to a budget constraint:

max
dw∈[0,1],dl∈[0,1]

u(x) + gw(dw) + gl(dl)

s.t. y ≥ pvv + pb(T − v) + x,

where x is the outside good (whose price is normalized to 1), y is total income, pv is the price
per km of driving, and pb is the price per km of the non-driving mode.

Inserting the assumed form of gw, the Lagrangian for this problem can be written as

max
dw∈[0,1],dl∈[0,1]

u(x) + γwdw + gl(dl) + λ
[
y − (pv − pb)v − pbT − x

]
,

where λ is the shadow price or marginal utility of income.
We can now solve for dw and dl. Assuming standard regularity conditions and using

v = dww + dll, the optimal non-work travel decision can be characterized by the following
first-order condition:

∂g(dl)
∂dl

= λ(pv − pb)l.

This condition is entirely standard; the household will choose the fraction of non-commute
driving, dl ∈ [0, 1], so that the marginal utility of an additional kilometer traveled by car
is equal to the marginal cost (converted to be in terms of utility). In other words, since
shopping and leisure trips are heterogenous, the household will shift the least inconvenient
trips to public transport, walking, or biking when fuel prices increase. Of course, corner
solutions at 0 and 1 are possible if the marginal cost is sufficiently high or low. Otherwise,
∂2gl(dl)
∂(dl)2 6= 0 and the monotonicity of gl(dl) assures an interior solution, as one would expect.

The setting is different for commuting, since ∂gw(dw)
∂dw = γw. Given this, as long as we do

not have exact indifference (i.e., γw = λ(pv − pb)w), a utility-maximizing household would
never choose an interior solution. Instead, we obtain the following “bang-bang” solution for
the choice of mode for commute travel:

dw =

1 if γw ≥ λ(pv − pb)w

0 else.
(1)

If the marginal utility from driving is greater than marginal cost (converted to be in terms
of utility), then dw = 1 and all commute trips are done by driving. Otherwise, all commute
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trips are done by other forms of transport, such as public transport, cycling, or walking. We
can think of γw intuitively as a type of switching cost that prevents a change in commute
driving unless there is a sufficiently large change in the marginal cost.4 It can be thought of
as the marginal utility of driving instead of using other forms of transport, and it includes
such factors as the effort in planning transport trips or the psychological cost of changing
habits.

This framework has important implications for our empirical setting. We are interested
in the fuel price sensitivity of driving and the heterogeneity in this sensitivity. That is, we
are interested in ∂v

∂pv where v = dww + dll, holding w and l fixed. Consider the comparative
statics with a change in gasoline prices at the optimal values of dw and dl. From the implicit
function theorem we know that for non-work driving,

∂dl

∂pv
= λl

∂2gl

∂(dl)2

(2)

For commute driving, the discontinuity in the optimal mode choice implies a discontinuity in
the response so that the derivative is zero (almost) everywhere. We thus consider a change
in gasoline prices leading to a change from pv0 to pv1. Consumers will switch from driving to
other modes of transport at the threshold pv = pb + γw

λw
. So the change in driving with the

given change in gasoline prices is

∆dw =


1 if pv1 < pb + γw

λw
< pv0,

−1 if pv1 > pb + γw

λw
> pv0,

0 otherwise.

This expression highlights when switching might occur with a fuel prices rise. For example,
in order for there to be a switch away from driving for commutes, the increase in the marginal
cost of driving must be sufficient to overcome the marginal cost of the other option pb plus
the marginal utility of driving above other sources, scaled by the distance of the commute
and put in monetary terms.

Now the response in total driving to the change in gasoline prices is given by:

∆v = ∆dww + ∆dll. (3)

Thus, for households with very long commutes (i.e., a large w), a fuel price change sufficiently
4Note that this is a static, rather than dynamic model, so γw can be interpreted more as a threshold level

of savings required than as a classic switching cost in a dynamic model. But the interpretation as a type of
switching cost is still useful here.
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large to induce a switch would imply a much greater decrease in driving. This can be restated
as our first testable implication:

Proposition 1. Households with a longer work distances are expected to be more respon-
sive to changes in gasoline prices when there is sufficiently large gasoline price variation to
induce transport mode switching for work trips.

Equation (3) also shows that for the households with the shortest work distances, ∆v
becomes determined entirely by the change in non-work driving, ∆dl. According to equation
(2), the price sensitivity for these households ultimately boils down to the curvature of the
utility of driving for non-work travel (gl(·)). The underlying fundamentals determining the
shape of gl(·) are factors such as the availability of appealing substitutes to driving, the
closeness of amenities, and the types of leisure activities that households with low work
distances engage in. Our model imposes no a priori restriction on the curvature of gl(·), so
this is an empirical question. However, it is common to assume that non-work travel is more
discretionary and thus may be more responsive to changes in gasoline price. Our second
testable implication summarizes:

Proposition 2. For households with very short work distances, the fuel price sensitivity
of total driving approaches the fuel price sensitivity for non-work trips. To the extent that
non-work trips are more discretionary, we would predict greater responsiveness to changing
fuel prices for households with very short work distances.

This simple model lays a theoretical foundation for analyzing the heterogeneity of fuel
price elasticity of driving. It is intentionally a simple static model to build intuition for the
short and medium-run driving decisions. We would expect to see the same switching behavior
in a dynamic setting, whereby households could “invest” in switching if the discounted savings
from doing so outweigh the switching cost.5 Since the savings are just the work distance times
the fuel price differential, this implies that households with longer work distances will switch
for smaller changes in the fuel price. Such a mechanism can be explained in our model by
allowing γw to be heterogeneous in the population and increasing in w. In the longer-run
work distance could also be endogenized, but this is outside the scope of our paper.

5The intuition is similar to the intuition in an (S, s)-model of portfolio choice; for small changes in the
fuel prices, most households will stick with their baseline mode choice and avoid paying the switching cost.
For larger changes, however, they will be forced to re-optimize.
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3 Data

3.1 Data Sources

We use data from the Danish registers on the population of both households and vehicles
in Denmark from 1998 to 2011. There are three main sources. The first is the vehicle
license plate register, which contains the vehicle identification number, gross vehicle weight
rating (i.e., maximum operating weight including passengers and cargo), fuel type, date of
registration, owner identification number, and whether the vehicle type is a personal car or
a van.6

The second data source is the vehicle inspection database. Starting on July 1, 1998, all
vehicles in Denmark have been required undertake a mandatory safety inspection at periodic
intervals after the first registration of the vehicle. In Denmark, the first inspection is roughly
four years out, and subsequent inspections are every other year.7 Only a small number of
used vehicles are imported into Denmark, in part because they pay a large vehicle registration
fee and value-added tax that are assessed based on similar new vehicle prices. The fee and
tax schedule are based on the value of the vehicle for all vehicles new to Denmark.8 The
inspection database contains odometer readings, which can be used to determine the km
driven between two inspections.

The third primary data source is the household register, which contains detailed demo-
graphic data at the calendar year-level. These data include the number of members of the
household, ages and sex of these members, municipality of the household, income of the
household members (including transfers), and a measure of work distance used to calculate
the tax deduction for work travel. This measure of work distance is the product of the re-
ported work distance and the reported number of days that work travel occurred (regardless
of mode of transport). Since the address of the work place is known to the tax authorities,
this number is subject to auditing. The individual is only eligible for a deduction if the
distance is greater than 12 km but there is no minimum requirement on the number of days
worked. The work distance measure will therefore be equal to zero if the individual lives
closer than 12 km from the work place or if the individual does not work. For 2000 through
2008, we have data on the actual work distance for 79.6% of the households measured using

6Company cars are not in our database and are not linked to a person but rather to the firm. However,
individuals with access to a company car must pay a tax for this, and we observe that (3.7% of our households
have at least one member paying this tax).

7This is a very similar schedule to inspections in states in the United States, such as California. Details
about the driving period lengths are in Appendix A.1.2.

8After 2007, the vehicle registration fee assessed at the time of the transaction is also adjusted based on
the fuel economy of the vehicle.
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a shortest-path algorithm and provided by Statistics Denmark.9 We find that these two work
distance measures are quite similar in a robustness check using the tax deduction measure
(Appendix A.3.3). Further details on the dataset are in Appendix A.2.

In addition to the register data, we also bring in daily price data for 95 octane gasoline
and diesel fuel from the Danish Oil Industry Association.10 Similarly, we also bring in daily
West Texas Intermediate crude oil price data for a robustness check.11 Finally, we use data
from Journey Planner on all bus and train stops in Denmark in 2013.12

We also have access to some additional car characteristics, including fuel economy in km/l
and the manufacturer suggested retail price (MSRP). These data comes from a dataset from
the Danish Automobile Dealer Association (DAF). However, these variables are not available
for car vintages older than 1997 so we do not included them in the preferred specification.

3.2 Development of the Final Dataset

We combine the data from the various sources to create a final dataset where the unit
of observation is a vehicle driving period between two inspections. So if a driver has a
first inspection of her vehicle on June 1, 2004 and the next inspection on June 6, 2006,
the driving period will be the 735 days between these two tests. We use the difference in
odometer readings between these two inspections to calculate the total km driven and the km
driven per day over the driving period. Similarly, we calculate the average gasoline, diesel,
and oil price over the same driving period. If a car changes owners during a driving period,
we include an observation for both households that have contributed to the driving and a
variable for the fraction of the driving period the car is held by each owner.

To match our calendar year demographic data with driving periods, we construct a
weighted average of the values of the demographic variables over the years covered by the
driving period. For example, if a driving period covers half of 2001, all of 2002, and half of
2003, the values of the demographic variables would be given a weight of 0.25 for 2001, 0.5
for 2002, and 0.25 for 2003. The count of public transport stops is added to the dataset at
the municipality level. For a detailed description of the variables used, see Appendix A.2.

The final dataset after cleaning consists of 5,855,446 driving period observations covering
nearly all driving periods by Danish drivers over the period from 1998 to 2011. Table 1
presents summary statistics for the final dataset. Appendix A provides further details on the
data cleaning process.

9Statistics Denmark has access to the actual addresses of individuals. This information, however, is
anonymized in our dataset so we cannot perform any operations based on GIS information.

10See www.eof.dk, Accessed June 17, 2015.
11See www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RWTC&f=D, Accessed June 15, 2015.
12See www.journeyplanner.dk, Accessed April 19, 2013.
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Table 1: Summary Statistics

Mean Std dev
Vehicle-km-traveled (km/day) 46.6 (40.2)
Gross income (DKK) 574,056 (627,921)
Gross income-couples (DKK) 646,638 (628,011)
Gross income-singles (DKK) 320,975 (558,098)
1(Couple) 0.78 (0.42)
Age (oldest household member) 49.8 (14.4)
Reported work distance (km) 12.2 (19.7)
1(Work distance > 12km) 0.50 (0.50)
Actual work distance (km)a 23.4 (35.6)
Number of children 0.76 (1.02)
1(Urban municipality) 0.16 (0.36)
Bus/train stops per km2 15.9 (18.4)
1(Access to company car) 0.03 (0.18)
1(Self-employed) 0.10 (0.30)
Vehicle Weight (kilograms) 1,671 (331)
Car age at start of period (years) 6.97 (5.17)
1(Diesel vehicle) 0.14 (0.35)
1(Van) 0.08 (0.27)
% of period owned by this owner 0.79 (0.30)
Driving period length (years) 2.34 (0.89)
# additional cars owned 0.34 (0.60)
# vans owned 0.05 (0.24)
# motorcycles owned 0.05 (0.27)
# mopeds owned 0.03 (0.16)
Observations 5,855,446
An observation is a vehicle driving period between two odometer readings.
All Danish kroner (DKK) are inflation-adjusted to 2005 DKK.
a: The actual work distance is available for 79.6% of the sample.
We are not permitted to present the min and max due to Statistics Denmark rules.
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3.3 Descriptive Evidence

There has been considerable variation in both gasoline and diesel prices in Denmark from
1998 to 2008. Figure 1 shows average gasoline and diesel prices over time in our dataset. The
x-axis denotes the time of the inspection at the beginning of the driving period. Figure 1 also
plots the average daily vehicle-kilometers-traveled (VKT) over the driving period, illustrating
a negative relationship between fuel prices and driving.13

Figure 1: Vehicle Kilometers Traveled and Fuel Price
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Note: Local polynomial average smoothed by start date.

The rich Danish register data allow us to explore the relationship between fuel prices
and driving in greater detail. Figure 2 divides the sample into ten groups based on the
percentiles of driving in each year. The vehicles in each group may change over time, as we
recalculate the percentiles in each year. The figure shows the interesting pattern that for
most groups, there appears to be very little change in driving over time, even as fuel prices
change significantly. However, the 1 percent of drivers who drive the most show a noticeable
decrease in VKT during driving periods that begin between 2003 and 2005, just as gasoline
prices are rising. This provides the first evidence of the existence of the first tail of more
responsive drivers, as suggested in Proposition 1.

Who are these drivers who drive the most? Table 2 shows the mean for selected demo-
graphics and other characteristics stratified by the amount driven. Not surprisingly, higher
VKT drivers have a higher income, have more vehicles, have larger families, and live further

13See Appendix A for a figure of the unconditional distribution of VMT.
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Figure 2: VKT Percentiles Over Time
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away from their workplaces. They also tend to drive heavier, younger, and diesel cars more
frequently. Otherwise, these higher VKT drivers are similar to the average driver in most
other characteristics, including access to public transport.

To visualize where the high-driving households live, Panel (a) of Figure 3 shows a map of
Denmark where each municipality is shaded according to the average VKT of the households
living in that municipality (darker means less driving). The figure shows that, conditional
on owning a car, the high-VKT households tend to be in rural areas or on the outskirts of
the major urban areas, while lowest-VKT households are in the urban areas.14 The regions
of high-VKT also tend to be the municipalities with longer work distances (see Figure 15 in
the appendix).

An important way for a driver who lives further from work to be able to reduce driving
is by switching to public transport. In many countries, such as the United States, access to
public transport tends to be very limited. Panel (b) of Figure 3 illustrates the prevalence
of public transport access throughout Denmark by showing each train or bus stop as a dot.
There are bus or train stops nearly everywhere in Denmark. Moreover, there is on-call public
transport available in rural municipalities where the stops are sparser, as mentioned above.
This pervasiveness of public transport makes switching behavior possible for those with long
commutes.

14The car ownership rate is 40% in the five largest urban municipalities and 67% elsewhere in Denmark,
so a map of the per capita driving would show even lower driving in the urban areas relative to rural areas.
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Table 2: Means of Selected Variables Stratified by VKT

VKT<100 VKT≥100
Gross income (DKK) 571,328 645,390
Gross income-couples (DKK) 644,262 705,238
Gross income-singles (DKK) 319,520 369,008
Couple dummy 0.78 0.82
Reported work distance (km) 11.6 26.9
Work distance > 12 km dummy 0.44 0.63
Actual work distance (km)a 22.7 39.3
Number of kids 0.75 1.00
Urban dummy 0.16 0.14
Self-employed dummy 0.10 0.16
Bus/train stops per km2 15.9 14.2
Diesel dummy 0.13 0.50
Car age at start of period (years) 7.03 5.41
# additional cars owned 0.33 0.60
Observations 5,639,738 215,708
An observation is a vehicle driving period between two odometer readings.
a: The actual work distance is available for 79.6% of the sample.

Figure 3: Average VKT by Municipality (Panel (a)) and Public Transport Stops (Panel (b))

(a) (b)

Copenhagen
Copenhagen
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Figure 4 uses binned scatterplots to show the nonparametric relationship between per-
vehicle driving and two key variables: household income (Panel (a)) and work distance (Panel
(b)). Both exhibit remarkable heterogeneity. The graph of driving by income displays an
inverted U-shape, although the amount of driving by the very wealthiest–who may live close
to the center city and/or have multiple cars–is slightly lower than at the peak. The graph
of driving by work distance demonstrates how longer commutes translate into more driving.
There is a point mass at zero, which accounts for all households with a work distance less than
12 km. After this driving is a monotonically increasing concave function of work distance.
This suggests that there is likely to be more non-work driving for households with shorter
work distances since households with a much longer commute only drive slightly more than
households with much shorter commutes. These descriptive results provide a useful context
for our empirical results focusing on the change in driving with fuel price changes.

Figure 4: Nonparametric Relationship Between Driving and Work Distance and Income
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Note: For couples, the maximum work distance (WD) is used.
WD is censored at 12 km, so many quantiles occur for WD equal to zero.

Notes: The dots are placed according to equi-distant percentiles of the conditioning variables and the
corresponding y-value represents the average VKT within that percentile-group. The dots are connected by
linear line segments for illustration purposes.

4 Empirical Approach

4.1 Empirical Specification

A primary goal of this paper is to investigate the fuel price elasticity and to explore the
heterogeneity in this elasticity. We follow a vast literature on estimating fuel price elasticities
in using a linear log-log specification for driving and the fuel price. This specification not
only provides for a ready interpretation of the coefficient of interest, but we find that it also
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fits the data well.
Consider the demand for driving for vehicle i in household h during a driving period t,

which may cover several years y. Recall that a driving period is simply the period in between
two odometer readings. We model the demand for driving as follows:

log VKTiht = γ log piht + xihtβ +
2011∑
y=1998

∑
f=gas,diesel

δfyω(i, t, y)1(gasi) + ηh + εiht. (4)

VKTiht is the average daily driving in kilometers and piht is the average daily fuel price over
the driving period for vehicle i (gasoline or diesel price depending on the car type) and xiht
denotes a vector of controls. The coefficient γ is our primary coefficient of interest–the fuel
price elasticity for vehicle i in driving period t. The controls in xiht include variables for
work distance, age of members of the household, gross income of members of the household,
whether the household lives within one of the five major urban areas of Denmark, number
of children, whether the vehicle is a company car, whether the household has at least one
self-employed individual, the density of bus or train stops in the municipality, and vehicle
characteristics. The vector xiht also includes variables for whether and by how much the
driving period overlaps with other driving periods by the same household.15

The variable ω(i, t, y) denotes time controls, which vary by the vehicle fuel type f ∈
{gas, diesel}, year y, and driving period t in order to capture fuel type-specific factors that
change over time. Our specification of these controls is motivated by the fact that a vehicle
driving period is not exclusively in a single year, but generally covers two years and up to five
years. This prevents us from using traditional year fixed effects. Instead, we allow ω(i, t, y)
to denote the fraction of a driving period t that falls within the year y ∈ {1998, ..., 2011}.
For example, if a driving period starts on July 1st 2001 and ends on June 30th 2003, ω(i, t, y)
will be 0.25 for y ∈ {2001, 2003} and 0.5 for y = 2002. The coefficients δfy will therefore
act similarly to fuel type-specific year fixed effects, but since ω are continuous variables they
afford the extra flexibility depending on the degree to which a driving period overlaps with
year y. Since the weights sum to unity, we omit year 2003 as the reference year. In our
robustness checks, we also examine alternative specifications for our time controls. Finally,
ηh are household fixed effects, included to control for household time-invariant unobserved
heterogeneity.

15Recall that if the car changes owner mid-way through the driving period, the driving period is included as
an observation by both households and we add a control for the percent of the driving period each household
owns the car. We also add controls for ownership of other vehicles that do not admit driving observations
such as motorcycles, mopeds, trailers, etc.
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4.2 Identification

Of primary interest in this paper is the relationship between driving and fuel price–and how
it varies across the population. Our gasoline and diesel fuel price variables are time series
variables, as there is negligible cross-sectional variation in fuel prices across Denmark. The
primary source of the time series variation in these refined fuel price variables is variation in
oil prices, as oil is the feedstock for gasoline and diesel production. Any remaining variation
in the refined fuel prices may be due to Denmark-specific shocks to refining or fuel demand.
The oil price is determined on the global market and Denmark is a small market, so it
reasonably follows that Denmark-specific shocks do not likely appreciably affect the global
oil price. However, localized shocks may influence the non-oil price-related variation in the
refined fuel prices. In addition, there may be correlated demand shocks across countries. For
example, a common demand shock in Northern Europe due to a macroeconomic shock would
be represented in the refined fuel price time-series variation.

These localized shocks and correlated demand shocks are likely to be a small part of the
fuel price variation. Nevertheless, we consider each carefully. We address common regional
demand shocks that may influence both driving and oil prices with our flexible time controls,
and we perform a series of robustness checks with different time controls. We address the
possibility of endogeneity due to localized shocks by performing a robustness check in which
we instrument for the refined fuel price with the global oil price. Specifically, we use the
WTI oil price index, which is based in the United States and captures variation in global oil
prices that is quite removed from localized shocks in Denmark.

Another potential identification concern is the possibility of unobserved heterogeneity at
the household level in vehicles and driving. We control for vehicle characteristics using our
rich data, and more importantly, include household fixed effects to nonparametrically address
time-invariant household unobserved heterogeneity. The household fixed effects are particu-
larly important for identifying the coefficients on our work distance, urban area, and public
transport variables since this allows us to focus on within-household variation (deviations
from the household mean) in driving over time. Any sorting into different locations based on
time-invariant unobserved preferences will be captured by the household fixed effects, and
as such, we are identifying these coefficients largely from movers within our sample. The
identifying assumption here is that people move for a variety of reasons (e.g., for a better
job, to be closer to family, to reduce their commute, to buy a house, etc.), but they do not
move because of a change in unobserved preferences for driving.16

16Because we control for commute distance, any change in unobserved preferences for driving would have
to relate to non-work driving to be an issue. But non-work driving tends to be highly diverse, so we view
it as highly unlikely that households will move for this reason. As a robustness check, we also estimate the
model with municipality fixed effects and find extremely similar results.
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5 Results

5.1 The Mean Elasticity of Driving

Table 3 shows the results from estimating the linear fixed effects model in equation (4). A very
rich set of controls are included in the estimation, but for brevity, we only report selected
coefficients (see the Appendix for the remainder). Column (1) is the most parsimonious
specification, which only controls for car characteristics, seasonality (% of the driving period
covering each month), and the driving period.17 The coefficient on the log fuel price indicates
a fuel price elasticity of driving of -0.87. When we add year controls and demographics in
column (2), the elasticity drops to -0.30. This indicates the importance of controlling for
individual-level demographics as well as using time controls. In columns (3) and (4), we
add household fixed effects with and without time controls. Without the time controls,
the elasticity is -0.52. Adding time controls reduces the elasticity to -0.30, which is our
preferred estimate and can be interpreted as a medium-run or one-year elasticity. It may
not be surprising that the elasticity moves closer to zero when we nonparametrically control
for general time trends in driving since larger economic trends could be correlated with both
driving and fuel prices.18 The ability to simultaneously control for household fixed effects
and time controls is a unique advantage of our data, which combines full population data
with a over a decade time horizon.

It is worth noting that we find the same fuel price elasticity in columns (2) and (4), which
are identical except for the addition of household fixed effects. We take this as an indication
that our rich set of controls are capturing the most important determinants of the fuel price
elasticity. In particular, the controls for work distance, company cars, and income appear to
capture key components of driving demand, as evidenced by an R2 of 0.34 in column (2),
which is quite high for micro-data studies in a specification without household fixed effects.

The results in Table 3 also help fill out the story for how driving demand is determined.
As was also seen in our descriptive analysis above, driving is increasing in work distance. This
holds for males and females in a household with a couple, as well as for one-person households.
Even the dummy for whether the work distance is non-zero (recall that it is censored at 12
km based on how the data are collected) has a positive and highly statistically significant
coefficient. The results for both males and females indicate that increasing the work distance
by one additional km can be interpreted as increasing daily driving by approximately 0.3%–an
economically significant effect.

17For full list of variables, with details on each, see to Appendix A.2.
18In Appendix Table 16 we show that the elasticity is highly robust to the exact functional form of the

time controls. In fact, even in a specification with just a linear time trend in the starting year of the period,
the elasticity is -0.31.
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Table 3: Estimations of Driving Demand

OLS Household FE
(1) (2) (3) (4)

log pfuel -0.87∗∗∗ -0.30∗∗∗ -0.52∗∗∗ -0.30∗∗∗
(0.01) (0.01) (0.01) (0.02)

Work Distance (WD) controls
WD, male 0.002∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(0.00003) (0.00003) (0.00003)
WD non-zero, male 0.07∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.001) (0.001) (0.001)
WD, female 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.00004) (0.00004) (0.00004)
WD non-zero, female 0.058∗∗∗ 0.022∗∗∗ 0.026∗∗∗

(0.001) (0.001) (0.001)
WD, single 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.0001) (0.0001) (0.0001)
WD non-zero, single 0.17∗∗∗ 0.07∗∗∗ 0.07∗∗∗

(0.002) (0.002) (0.002)

Other demographic controls
log gross income (couple) -0.03∗∗∗ -0.03∗∗∗ -0.02∗∗∗

(0.001) (0.002) (0.002)
log gross income (single) 0.03∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.001) (0.003) (0.003)
1(Urban area) 0.004∗∗∗ -0.014∗∗∗ -0.025∗∗∗

(0.001) (0.003) (0.003)
Bus/train stops per km2 -0.001∗∗∗ -0.0003∗∗∗ 0.00004

(0.00002) (0.0001) (0.0001)
1(Access to company car) -0.19∗∗∗ -0.10∗∗∗ -0.098∗∗∗

(0.002) (0.002) (0.002)
Year controls No Yes No Yes
Age (quadratic) No Yes Yes Yes
Number of children No Yes Yes Yes
Self-employed No Yes Yes Yes
Household FE No No Yes Yes
R2 0.20 0.34 0.18 0.18
N 5,855,446 5,855,446 5,855,446 5,855,446
Dependent variable is the log VKT. An observation is a driving period. All speci-
fications have car characteristics (a quadratic in weight, diesel dummy, van dummy,
vehicle age, and number of vehicles of each type owned by the household), age of the
male and female of the household, period controls, and % of each month control. The
within R2 is reported for the household fixed effects specifications. Robust standard
errors clustered at the household level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001.
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Several other coefficients provide further new insight on driving demand. The highly
statistically significant coefficients on income suggest that increasing income lowers driving
demand for couples, while it increases driving demand for singles. This may be due to
wealthier couples being able to afford to live in more geographically advantageous areas,
while singles cannot. However, this effect is economically relatively small. The urban area
dummy is also highly statistically significant. The coefficient is positive in the specification
without household fixed effects, column (2), which may seem surprising, since Figure 3 showed
that major urban areas are associated with less driving. However, the coefficients should be
interpreted as conditional on work distance and other covariates–so they suggest that holding
work distance fixed, households in urban areas tend to drive more. When we add household
fixed effects in column (4), the urban dummy coefficient changes sign to be negative. In this
specification, the identifying variation comes from households that moved between urban and
rural areas. It indicates that these households drive 2.5% less when they live in the urban
areas.

The coefficient on the density of bus/train stops per km2 is statistically significant and
negative in columns (2) and (3), which might be expected: better access to public transport
should reduce driving. However, because access to public transport is so universal in Denmark
(recall Figure 3) and public transport access changes so rarely, there is limited variation in
this variable and no time-series variation. Thus, it may not be surprising that the effect in
column (3) is economically quite small and in column (4), the effect becomes statistically
indistinguishable from zero.

The coefficient on the availability of a company car is negative and highly statistically
significant in all specifications. In our sample, 3.8% of the households have access to a
company car. The negative coefficient can easily be explained by the fact that the car doing
the driving is not the company car, but is privately-owned. The coefficient implies that
households with access to a company car drive nearly 10% less than other households, likely
due to some switching of driving from the private car to the company car.19

A natural question that arises when using the price elasticity for policy analysis is how well
the functional form of the demand curve follows a constant elasticity assumption. Figure 5
plots a semi-parametric demand curve of log VKT versus log fuel price following the approach
in Robinson (1988).20 A key finding is that over a broad range of fuel prices, the functional
form is approximately linear. This supports both the use of the log-log specification, as

19See Gutiérrez-i Puigarnau and Ommeren (2011) for a more complete treatment of the travel elasticity
for households with company cars.

20Specifically, this is a double-residual approach, whereby first log VKT and log fuel price are residualized
by regressing out the effect of all the remaining regressors from the primary specification, and then the
residualized log VKT is regressed non-parametrically against the residualized log fuel price, using a local
polynomial regression.
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Figure 5: Semi-parametric Demand Curve
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well as the use of the elasticity over a relatively broad range of fuel price changes. Only at
the extremes of fuel price in our data (which are identified from fewer observations) do we
observe a nonlinear relationship, which would accord with intuition and underscore that the
estimates in this paper should be used with caution when the fuel price is much lower or
higher than has been typically observed in our dataset.

5.2 Heterogeneity in the Elasticity of Driving: Quantile Results

To better understand the mechanisms underpinning the fuel price elasticity, we leverage our
rich dataset by using quantile estimation approaches. Specifically, we estimate a conditional
quantile model at quantile τ :

log VKTiht(τ) = α(τ) log piht + xihtβ(τ) +
2011∑
y=1998

∑
f=gas,diesel

δfy(τ)ω(i, t, y)1(gasi) + ηh + eiht(τ).

This specification is particularly useful for examining the heterogeneity in the elasticity
by estimating the quantiles of the conditional distribution of the coefficients. There are
several approaches for estimating conditional quantile models with (quasi-)fixed or random
effects. We estimate the parameters using the panel quantile estimator of Canay (2011) for
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computational feasibility given the large size of our dataset.21 The Canay (2011) estimator
proceeds in three steps. First, we estimate a standard fixed effects estimator to obtain the
within estimate η̂h. Second, we construct the regressand log ṼKTiht := log VKTiht − η̂h.
Third, we run the pooled quantile regression of log ṼKTiht on all of our regressors (without
the fixed effects). The first assumption underpinning the Canay (2011) quantile estimation
approach is that the fixed effect is a pure location shift, i.e., it is not allowed to vary with
the quantiles. Second, conditional on the observables, the fixed effect must be independent
of the quantile error term. These assumptions also admit Chamberlain-style random effects,
where the fixed effect is projected onto the time-average of the observables. However, the
assumptions do not allow fully flexible, quantile-varying fixed effects, and consistency relies
on both the number of cross-sectional and time-series observations growing without bound.

Figure 6: Elasticity by Conditional Quantile
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We estimate the panel quantile regression model for various quantiles. Figure 6 presents
the results graphically (the full results are available in the Appendix). The figure shows a
clear inverted U-shape in the fuel price elasticity. The lowest and the highest conditional
quantiles of VKT have distinctly higher fuel price elasticities (in absolute value) than the

21In one alternative, Abrevaya and Dahl (2008) use a Chamberlain-style random effects estimator, project-
ing the ηhs on covariates from all periods or the time-averages. This essentially amounts to adding more re-
gressors and running a pooled quantile regression. Koenker (2004) on the other hand takes a high-dimensional
penalization approach, treating the ηhs as N additional parameters to be estimated, and penalizing the sum
of absolute values of the fixed effects in the spirit of the LASSO estimator. Using clever computational tricks,
he makes the approach computationally feasible for a small to medium size dataset. However, given the size
of our dataset, this approach would be infeasible due to memory constraints, even run on a server with over
100GB of RAM.
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middle region. These results provide strong evidence of two tails that increase the average
responsiveness and considerably influence the price elasticity of driving.

The finding of two tails is consistent with the predictions of the theoretical model. The
model suggested that households with long commutes but adequate access to public trans-
portation stand to gain a great deal from switching their commute from driving to public
transportation (Proposition 1). These may be the households in the upper tail, who are
more responsive to changing fuel prices. Similarly, the model suggested that households with
low driving demand would be likely to be taking a diverse set of trips with good substitutes
available, and thus would also be more responsive (Proposition 2). The next sections provide
further evidence on who is in these two tails.

5.3 Heterogeneity in the Elasticity of Driving: Interactions

To examine the characteristics of drivers in the two tails of greater responsiveness, we explore
a similar specification to our primary model in equation (4) that includes interaction terms.
We focus on interactions between the log of the fuel price and a subset of our controls. We
denote this subset with x1

iht. This linear model with interactions is given by

log VKTiht = γ0 log pit+γ1x1
iht× log pit+xihtβ +

2011∑
y=1998

∑
f=gas,diesel

δfyω(i, t, y)1(gasi)+ηh+εiht.

In x1
iht, we include a set of household demographic and car-related variables. A virtue of

this approach is the simplicity of estimation using a standard fixed effects estimator. One
feature of this approach is that the model places no restrictions on the values of γ0 or γ1,
so it is possible to find positive values of the price elasticity of driving for certain groups of
households. Blundell, Horowitz, and Parey (2012) formulate a nonparametric estimator that
imposes negative elasticities, arguing that their findings of an upward sloping demand curve
without this restriction must be due to a small sample size. Our sample size is very large
and set of controls extensive, so we prefer to not to impose any non-negativity constraints
on the elasticity.22

Table 4 shows the results from estimating the above equation. Column (1) shows the
results without including interactions with car characteristics. Column (2) removes all inter-
actions except car characteristics. Column (3) includes all interactions and is our preferred
specification for interpretation. Comparing across columns demonstrates the robustness of

22It is also theoretically possible that some people respond to rising fuel prices by increasing their driving
(e.g., if driving is a complement to an activity that is strongly negatively correlated with fuel prices).
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Table 4: Estimations with Interactions to Demonstrate the Heterogeneous Elasticity

(1) (2) (3)

log pfuel -0.88∗∗∗ -3.85∗∗∗ -4.70∗∗∗
(0.24) (0.09) (0.28)

Work Distance (WD) interactions
WD, male × log pfuel -0.01∗∗∗ -0.01∗∗∗

(0.0003) (0.0004)
WD, female × log pfuel 0.003∗∗∗ 0.005∗∗∗

(0.0004) (0.0004)
WD, single × log pfuel 0.002∗∗ 0.003∗∗∗

(0.0007) (0.0007)
WD squared, male × log pfuel -0.000006∗∗∗ -0.000006∗∗∗

(0.0000002) (0.0000002)
WD squared, female × log pfuel -0.000008∗∗∗ -0.000008∗∗∗

(0.000001) (0.000001)
WD squared, single × log pfuel -0.00001∗∗∗ -0.00001∗∗∗

(0.0000006) (0.0000006)
WD non-zero, male × log pfuel 0.10∗∗∗ 0.12∗∗∗

(0.013) (0.014)
WD non-zero, female × log pfuel 0.19∗∗∗ 0.19∗∗∗

(0.013) (0.013)
WD non-zero, single × log pfuel 0.33∗∗∗ 0.33∗∗∗

(0.027) (0.027)

Other demographic interactions
log gross income (couple) × log pfuel -0.086∗∗∗ -0.004

(0.012) (0.014)
log gross income (single) × log pfuel 0.085∗∗∗ 0.040

(0.022) (0.027)
1(Urban area) × log pfuel -0.014 -0.034

(0.018) (0.018)
Bus/train stops per km2 × log pfuel -0.004∗∗∗ -0.003∗∗∗

(0.0003) (0.0003)
1(Access to company car) × log pfuel -0.41∗∗∗ -0.40∗∗∗

(0.023) (0.024)
Car characteristics × log pfuel No Yes Yes
Household FE Yes Yes Yes
Mean predicted elasticity -0.25∗∗∗ -0.29∗∗∗ -0.24∗∗∗
R2 0.18 0.18 0.19
N 5,855,446 5,855,446 5,855,446
Dependent variable is log VKT. An observation is a driving period. All specifications
include the main effects for each interaction. All specifications have a year controls, car
characteristics (a quadratic in weight, diesel dummy, van dummy, vehicle age, and number
of vehicles of each type owned by the household), period controls, % of each month control,
and interactions between the fuel price and a couple dummy, age, number of children,
and the self-employed dummy. The mean predicted elasticity takes the mean predicted
elasticity over all observations. The within R2 is reported for the household fixed effects
specifications. Robust standard errors clustered at the household level in parentheses. ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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our results (e.g., the elasticity at the mean). The elasticity at the mean, presented near the
bottom of the table, and the coefficients do not substantially change across columns.

We first focus on the work distance interaction variables. In column (3) in Table 4, we
include interactions with a quadratic in work distance for males in a couple, females in a
couple, and singles. We find coefficients that are highly statistically significant from zero for
all of these work distance variables. There are also clear patterns that emerge. The coefficient
on the work distance is negative for males, while it is positive for females and singles. As is
shown in Appendix, it turns out that married males have by far the longest work distances.
The smaller and positive coefficient for females in a couple, along with the finding that the
female commute is much shorter, suggests that females either tend to have jobs that are more
widely dispersed or that couples tend to locate closer to the female’s workplace. Singles are
more similar to females, perhaps because they can more easily locate close to their workplace.

The quadratic terms for the work distance variables are particularly useful for better
understanding the how the responsiveness to fuel prices changes with work distance. Figure
7 illustrates this relationship. To develop this figure, we first calculated the individual-level
predicted elasticities (γ̂it = γ̂0 + x1

itγ̂). For couples, we use the maximum work distance of
the two members. Then we divided the work distance into 10 quantiles (since nearly half the
sample has a work distance less than 12 km, we include all in this category in one quantile
bin). Finally, we compute the average elasticity within each of these bins.

Figure 7: Fuel Price Elasticity and Work Distance (km)
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Note: For couples, the work distance is the maximum between the two spouses.
The elasticity is averaged within 20 quantiles of work distance (11 of which are equal to zero).

We observe an inverted-U shape in Figure 7, just as we had earlier seen in Figure 6. For
the shortest work distances (< 12 km), the fuel price elasticity is relatively high in absolute
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value at -0.30. For slightly longer work distances, the elasticity decreases in absolute value to
-0.05. But then it increases in absolute value again, reaching nearly -0.45 for work distances
just over 70 km. These results help to lift the veil off the mechanisms leading to the two tails
in Figure 6. Not only do we see the two tails here, but we show that they are closely related
to the commute distance, further confirming our model in section 2. For drivers with very
long commutes, smaller increases in fuel prices are required to decrease driving. For drivers
with short commutes, most driving will be due to non-work trips, which are more diverse
and thus it is likely that the drivers can substitute from driving to biking, walking, or using
public transportation.

The remaining coefficients in Table 4 further clarify the heterogeneity in responsiveness.
Column (1) indicates that high-income households are more responsive, but once we allow
the elasticity to vary with the car characteristics as well in column (3), the interaction
becomes statistically insignificant from zero. This result suggests that income effects are
largely captured by the car choice. The coefficient on the interaction of the fuel price with
the urban area dummy is statistically insignificant from zero in both columns (1) and (3).
However, the coefficient on the interaction of the fuel price with the density of bus/train
stops has a coefficient that is negative and highly statistically significant from zero. The
coefficient implies that households living in a region with one standard deviation more stops
available (18.4 stops/km2) will have a 25.2% larger (in absolute value) elasticity at the mean.
This result accords with intuition: when there is greater access to public transport, there
is greater ability to substitute away from driving. The statistically significant coefficient on
the bus/train stops variable and the insignificant coefficient on the urban area variable also
suggest that previous results showing that drivers in urban areas are more responsive to fuel
price increases (e.g., Gillingham (2014)) may be largely capturing a public transport effect.
Our study the first we are aware of to disentangle the effect of public transport from being
in an urban area. In addition, these results highlight the importance of public transport as
a mechanism for fuel price responsiveness.

The coefficient on the interaction between the fuel price and access to a company car is
negative and highly statistically significant from zero. This suggests that when fuel prices rise,
households may switch over to their company car more. More broadly, this is consistent with
multi-vehicle households switching to the least expensive vehicle option within the portfolio
(De Borger, Mulalic, and Rouwendal, 2016a; Archsmith et al., 2016).23

23In the Appendix we provide additional evidence that multi-vehicle households are more responsive, as
well as evidence that drivers of diesel vehicles are more responsive than drivers of gasoline vehicles.
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5.4 Spatial Heterogeneity in the Elasticity of Driving

The results thus far indicate two tails, the first of which involves households with long com-
mutes and the second households with short commutes. One might expect to see further
evidence of the first tail in a particularly high responsiveness to fuel price changes in the
outskirts of cities. Similarly, a high responsiveness to fuel price changes in cities themselves
would build further evidence for the second tail. Figure 8 presents the results of a geo-
graphical analysis, illustrating the spatial location of the most responsive households. The
shading in the figure indicates the predicted elasticity for each observation averaged over the
municipalities (darker is more responsive). The three largest cities are labeled.

Figure 8: The Average Elasticity by Municipality
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Two key findings emerge from Figure 8. First, some of the most responsive municipalities
are in the largest cities. This aligns with Proposition 2 and the above evidence suggesting
that there is a tail of more responsive drivers with short commutes. Second, many of the
other most responsive municipalities are in the outskirts of cities. For example, the region
just north of Copenhagen has some of the most elastic drivers. These areas tend to have
wealthy, high-educated households who commute to jobs in Copenhagen. Access to public
transport is excellent (recall Figure 3). Similar findings emerge for other areas in the outskirts
of urban areas, further building evidence in support of Proposition 1.
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5.5 Robustness Checks

We perform an extensive set of robustness checks to confirm our primary results. They are
summarized briefly here and discussed in more detail in the Appendix. They broadly confirm
our preferred point estimate of the fuel price elasticity, -0.30. Moreover, in our tests, we have
found that the result of the two tails generally continues to hold. Table 5 provides an overview
of the different robustness checks, showing the highest and lowest elasticities that came out
in each case; in many cases, the extreme elasticities are perfectly expectable, so we discuss
them in the text below, going through each case in turn.

Table 5: Overview of Robustness Checks: Range of Elasticity Estimates

Name Elasticity Range
Years in the sample [-0.40;-0.28]
Length of driving periods [-0.30;-0.28]
Fuel type [-0.54;-0.26]
Singles or couples [-0.32; -0.25]
Time controls [-0.31;-0.30]
Instrumenting with oil price -0.37
Household-vehicle fixed effects -0.28

Our first robustness check examines the time window of our sample. Rather than using
driving periods that start between July 1998 and December 2007 (which run through 2011),
we estimate the same model either starting the sample as late as 2001 or ending the sample
as early as 2004. The results bound our preferred estimate in a relatively narrow window:
-0.40 to -0.28. The differences may be due to a time-varying elasticity as much as to a lack
of robustness. Our second check examines a subsample of of the data either controlling for
or restricting the sample to driving periods that are of a typical length, which in our setting
is two years or four years, plus or minus three months. Our estimated elasticity is extremely
robust to this robustness check and demonstrates that are results are not confounded by the
timing of the inspections.

The empirical design in this study models both gasoline and diesel car users. This essen-
tially imposes the restriction that drivers of the two different types of cars respond similarly
to the fuel price regardless of whether it is gasoline or diesel. The resulting mean elasticity
is more useful from a policy perspective, but it masks differences in how diesel and gaso-
line vehicles are driven. We thus perform a third robustness check where we estimate the
same model in equation (4) separately for diesels and gasoline vehicles. We also examine
a specification with an interaction between the log fuel price and a diesel dummy. The in-
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teraction shows that the gasoline price elasticity is -0.26, while for the diesel segment it is
-0.39. Estimating on separate samples yields corresponding elasticities of -0.27 and -0.54.
These findings demonstrate that the elasticity is not primarily identified by the differential
between gasoline and diesel fuel prices. They also highlight that the diesel segment is more
price sensitive, which is consistent with the theoretical model since diesel drivers tend to
have longer commutes. We perform a similar robustness check for a couples subsample and
a singles subsample, finding elasticities of -0.32 and -0.25 respectively. These underscore the
robustness of our primary estimated elasticity to the inclusion of either subsample.

The year controls employed in equation (4) are highly flexible, which is important for
controlling for potentially correlated time-varying factors, but is also demanding on the data.
We thus run robustness checks where we examine alternative time controls. We find that the
results are highly robust to removing our % of each month time controls and even removing
the year controls for diesel vehicles. When we reduce the time controls to a single linear
trend we find estimated elasticity of -0.31.

Next, we consider carefully the possibility that fuel prices are endogenous. Denmark is
a small country buying both gasoline and diesel on the larger European market, so it is
not likely that Denmark-specific demand shocks lead to a simultaneity issue. However, it is
possible that such an issue may occur. Thus, our robustness check instruments the fuel price
using the WTI crude oil price, which is not only physically located in the United States, but
is determined by global oil market movements. It is hard to imagine a small localized demand
shock in Denmark possibly affecting the WTI crude oil price. At the same time, the first
stage regression indicates that it is a strong instrument, since oil is the primary feedstock for
refined fuel (see the Appendix). The 2SLS fuel price elasticity estimate is highly statistically
significant from zero at -0.37. This estimate is quite close to our preferred estimate of -0.30,
and we view this as confirming our estimate. Given the standard errors, these two estimates
are not highly statistically significantly different (e.g., the 99% confidence intervals overlap).
For this reason and the computational complexity of many of our analyses, we chose not to
use the 2SLS estimate as the preferred estimate.

Finally, we perform a series of robustness checks examining the possibility of selection
into different vehicles that may lead car characteristics to be endogenous (e.g., see Gillingham
(2013); Munk-Nielsen (2015)). We find our results quite robust to the exact choice of vehicle
characteristics that are included. We also run a specification with household-vehicle fixed
effects so that we were not making as much use of variation from households switching
vehicles. The estimated elasticity with our preferred specification and household-vehicle
fixed effects is -0.28. These results suggest that selection into vehicles is not a concern.
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6 Illustrative Counterfactual Simulation

In this section, we analyze the implications of our empirical findings for the welfare effects of
an illustrative increase in fuel prices by 1 DKK/l for both gasoline and diesel. The average
gasoline price over the 1998 to 2008 period is 9.01 2005 DKK, so this represents a substantial
price increase, but it is within the range of the variation in our data.24 Such an increase may
be due to exogenous swings in oil prices or a fuel tax policy. There is some evidence that
consumers in the United States respond more to changes in gasoline taxes than to gasoline
price swings (Li, Linn, and Muehlegger, 2014). To the extent that these differ in Denmark
as well, then this counterfactual can best be thought of as an analysis of an exogenous fuel
price increase rather than a tax policy.

With a fuel price elasticity of driving of -0.30, the proposed increase of 1 DKK/l translates
into a 3.3% reduction in driving. If this occurred due to a tax policy, then fuel tax revenue
would increase by 13.2%.25 In terms of emissions, if households do not respond to the price on
the extensive margin (i.e., by changing their cars) and if all vehicles respond in the same way,
then our -0.30 estimate implies an elasticity of carbon dioxide or local air pollutant emissions
with respect to the fuel price of -0.30. Munk-Nielsen (2015) estimates a discrete-continuous
model of car choice and driving in Denmark and finds that when fuel prices increase by 1%,
the fuel economy of newly purchased cars only increases by 0.1%. Hence, the -0.30 may be
very close to the true medium-run change in emissions from this change in fuel prices. Fully
analyzing the effect on other important vehicle externalities, such as congestion and accidents
(Mayeres and Proost, 2013), is outside the scope of this paper, but our results can shed some
light on how these external costs would change. For example, since the drivers in the two
tails generally either live in the city or commute into the city, one might expect congestion
to be alleviated from the price change.

The dramatic heterogeneity in the fuel price responsiveness maps into differing conse-
quences of a change in fuel prices across quantiles of responsiveness. By computing the
predicted response in VKT by quantile based on the quantile regression estimates, we find
that the top 5th quantile accounts for 14.4% of the sum of the predicted responses in driving
for the population and the bottom 5th quantile accounts for 4.8% of the total predicted re-
sponse. This suggests that the tail of drivers with long work distances (the top 5th quantile)

24This maps to an increase in gasoline prices of $0.57 per gallon based on the June 18, 2015 exchange rate
of 6.54 DKK per dollar.

25At 9 DKK/l, the increase of 1 DKK/l is 11.1%, which at an elasticity of -0.30 translates to a change in
driving of 3.33%. Over the sample period, taxes make up 64.87% of the gasoline price, corresponding to 5.84
DKK/l at 9 DKK/l. An increase in 1 DKK/l thus corresponds to an increase of 17.13% in taxes, giving a
total relative change in taxes of (1 + 0.1713)× (1− 0.0333) = 13.23%.
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are more important for the welfare and environmental implications of a fuel price change.26

6.1 Average Welfare Effects

When examining the welfare effects of a change in gasoline prices, there is both a transfer
and a deadweight loss (DWL). We focus first on the calculating the classic DWL. We ignore
external costs, follow the usual practice in assuming a constant supply curve over the relevant
range of our price change (Hausman and Newey, 2016), and focus on the area under the
demand curve (i.e., Harberger triangle in a linear model).

We can exponentiate both sides of equation (4) to rewrite demand as VKT(p) = εpγ
∏K
k=1 z

θk
k ,

where p is the fuel price, z = (x, ω, η), and θ = (β, δ, 1). We then can calculate the DWL for
a change in fuel price from p0 to p1 by

DWL(p0, p1, γ) =
∫ p1

p0
VKT(p)− VKT(p1) dp

= ε
K∏
k=1

zθk
k

[
1

1 + γ
p1+γ

]p1

p0

− εpγ1
K∏
k=1

zθk
k (p1 − p0)

= VKT(1)
[

1
1 + γ

(p1+γ
1 − p1+γ

0 )− pγ1(p1 − p0)
]
.

When we calculate this equation using our preferred specification (with a mean elasticity
estimate of -0.30), we estimate a mean DWL of 0.59 DKK/l for a fuel price increase of 1
DKK/l. This suggests a substantial DWL from the increase in fuel prices, which might be
expected given that fuel prices are very high in Denmark due to high fuel taxes. However, this
calculation masks the heterogeneity that our results showed was so important. Recent work
has shown that the DWL accounting for individual heterogeneity can be quite different than
the average DWL (Hausman and Newey, 2016).27 Using the same mean elasticity, we also
calculate the transfer from consumers to producers (for a price increase) or the government
(for a tax increase) based on p1 times VKT(p1), finding this transfer to be 37.3 DKK/l.

26Note this results does not stem from the log-log functional form, since the quantile regression allows the
price parameter to vary freely over the conditional quantiles of VKT.

27Our panel dataset is much superior to the survey cross-section used in Hausman and Newey (2016), so
many of the identification issues they address do not apply in our context.
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6.2 Individual Welfare Effects

To account for individual heterogeneity in our DWL calculation, we develop a new procedure
for obtaining a measure of the DWL for each observation based on the quantile regression
results. We base our procedure on the argument in Koenker (2005, ch. 2.6) that suggests
we can think of the quantile model as having each observation (i, t) randomly drawing a
uniform quantile, uit, and then being assigned parameters according to the quantile regression
function, γit = γ(uit) and βit = β(uit). In this case, we would write the model as log VKTit =
γ(uit) log pit + xitβ(uit) + ∑

y δfi
ω(i, t, y) + ηi, with uit ∼ Unif(0, 1). This formulation is

advantageous because we do not observe uit; if we did, we could simply plug in the quantile
regression estimates into (6.1).

When uit is not observed but has a known density, we can integrate it out in the spirit
of Melly (2005) and Machado and Mata (2005). Thus, we replace the unobserved, latent
deadweight loss with the Integrated Deadweight Loss (IDWL) given by

IDWLi(p0, p1, 1) =∫ 1

0

(
K∏
k=1

z
θk(u)
itk

)[
1

1 + γ(u)
(
p

1+γ(u)
0 − p1+γ(u)

1

)
− pγ(u)

1 (p1 − p0)
]

du.
(5)

This integral can be computed in a number of different ways; Machado and Mata (2005)
use a simulation approach in a somewhat similar setting and Melly (2005) uses a grid.
Given the computational requirements for estimating the model at even a single quantile
(approximately 10 hours on a 64-core machine with 1 TB of RAM), we use a grid and
let the computer time dictate the fineness of the mesh.28 We use 21 grid points, so that
uq ∈ {0.01, 0.05, 0.10, 0.15, ..., 0.95, 0.99}.

Using this approach, we find an average DWL estimate of 0.56 DKK/l for the price
increase of 1 DKK/l when we plug in the average characteristics over all observations. When
we plug in the characteristics of each observation, the estimate is 0.66 DKK/l, which is
our preferred estimate of the DWL. We can see the heterogeneity in the DWL through the
standard deviation across observations, which is 0.38 DKK/l. Using the quantile estimation
results, we again calculate the transfer from consumers (plugging in the characteristics of
each observation), and find the mean transfer to be 43.7 DKK/l with a standard deviation
of 25.9 DKK/l. This underscores the differing distributional effects across the population.

28Portnoy (1991) shows that with a finite sample, the estimated quantile regression function, u 7→
(γ̂(u), β̂(u)), will only change at a finite number of points on the interval [0; 1] and that this number is
O(N logN). Melly (2005) notes that for his estimator of the conditional distribution based on the quan-
tile predictions, a mesh size on the order of O(N−.5−ε) will ensure that the asymptotics still hold. For
computational reasons, we are unable to scale up accordingly.
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6.3 Heterogeneity in the Welfare Effects

We further explore the heterogeneity in the DWL by using the individual-level predicted elas-
ticities from the model with interactions from Section 5.3. Given that we showed substantial
heterogeneity in the elasticity based on the work distance, we are specifically interested in
how the DWL varies with work distance. We divide the work distance (for couples we take
the maximum) into 10 quantiles as before and calculate the DWL for each quantile using the
predicted elasticity for each observation (γ̂it).

Figure 9 presents the results. As economic intuition would suggest, the most elastic
households have the greatest DWL. These are households in the tails, with the highest and
lowest work distances. For these households, the DWL is approximately 1 DKK/l, while
at the middle part of the work distance distribution there is a much smaller DWL (around
0.2 DKK/l). These findings illustrate how heterogeneity in the elasticity by work distance
carries over into substantial heterogeneity by work distance in the DWL–a novel finding in
the literature. We see analogous heterogeneity across work distance in the transfer as well.

Figure 9: Deadweight Loss by Work Distance
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7 Conclusion

This paper estimates the medium-run (one-year) fuel price elasticity of driving demand for
Denmark, with a preferred estimate of -0.30. We show that this elasticity is highly heteroge-
nous, with two tails of much more responsive drivers than most of the population. The first
tail is a small group of consumers living in the outskirts of cities with long commutes, but
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adequate access to public transport. The second tail is a group living in cities with short
commutes. These two tails can be explained by a simple economic model in which house-
holds with long commutes can readily switch to public transport, while households in the
city largely use their vehicles for a diverse set of non-work trips, many of which can easily be
switched to other modes of transport. Households that are not in these two tails tend to be
much more inelastic in their response to fuel price changes.

These results may help reconcile the results of studies in Europe and the United States.
Most studies in the United States show fuel price elasticities in the range of -0.15 to -0.35,
while those in Europe over the same time frame generally tend to be higher in absolute
value. The first tail of drivers with long commutes relies on access to public transport for
its existence. We posit that the difference in fuel price elasticities stems from the poor
public transport options in the United States, which ensure that the first tail does not exist
there. Our results indicating that public transport access has a very strong influence on the
elasticity underscore this possibility. One implication of these results is that if the United
States improved its public transport opportunities, the long-commute tail could emerge there
as well.

The two tails also play an important role in the effects of gasoline price increases. We
find that the high work distance tail households, defined as the households in the top 5%
of the conditional driving distribution, account for 14.4% of the total response in driving.
Other studies have found that the primary adjustment to fuel prices is in driving rather than
the fuel economy of new cars (Bento et al., 2009; Munk-Nielsen, 2015), so this result implies
that the tail households will bear the greater part of the aggregate reduction in driving and
emissions in response to a fuel price increase. This has implications for other externalities
from driving as well, as it suggests that fuel price increases may be particularly effective at
reducing commuting congestion in Denmark.

We use our quantile regression estimates to estimate that the average DWL from a 1
DKK/l increase in the fuel price is 0.66 DKK/l. This seemingly very large DWL is most
likely due to the high fuel prices in Denmark. The heterogeneity in responsiveness by work
distance also carries over to DWL. We find that the two groups of tail households bear a
four times larger DWL (and much larger transfers from consumers) than those with medium
work distances, highlighting how the heterogeneity in the elasticity implies that fuel price
increases affect the tails very differently than most of the population.

Finally, our findings have implications for the effect of fuel economy standards and other
policies aimed at improving new vehicle fuel economy. Policies that improve new vehicle fuel
economy lower the cost per kilometer of driving, leading to the well-known rebound effect of
increased driving, reducing fuel savings and emissions reductions (Gillingham, Rapson, and
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Wagner, 2015). If consumers respond the same way to changes in fuel prices as to changes in
fuel economy, our results suggest a rebound effect of 30%, whereby 30% of the fuel savings
from the fuel economy improvement are taken back by the induced driving. We are cautious
in this interpretation because consumers may respond differently to fuel price changes as to
fuel economy changes. We view this as an area worthy of continued study, perhaps building
on the recent work by De Borger, Mulalic, and Rouwendal (2016b).
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